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ABSTRACT

Structural variants (SVs) affect plant phenotypes, but they are a largely unexplored
feature of plant genomes. Little is known about the type and size of SVs, their
distribution among individuals or their evolutionary dynamics. Here we identify SVs and
study their evolutionary dynamics in clonally propagated grapevine cultivars and their
outcrossing wild relatives. To catalog SVs, we assembled the highly heterozygous
Chardonnay genome, for which one in seven genes is hemizygous. Using genomic
inference as the standard, we extended SV detection to population samples. We found
that negative selection acts against SVs, but particularly against inversion and
translocation events. SVs nonetheless accrue as recessive heterozygotes in clonal
lineages. They also define outlier regions of genomic divergence between wild and
cultivated grapevines, suggesting roles in domestication. Outlier regions include the sex
determination region and the berry color locus, where independent large, complex

inversions drive convergent phenotypic evolution.
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MAIN TEXT

Hundreds of economically important crops are long-lived perennials. These
perennials typically outcross in nature but are propagated clonally under cultivation?.
Clonal propagation captures genotypes in a state of permanent heterozygosity that
increases over time as somatic mutations accumulate2. To date, however, there have been
few insights into heterozygous genomes, because it is technological easier to sequence
either homozygous or haploid source material. The effect of this bias has been a lack of
insight into the structural variants (SVs) that distinguish heterozygous chromosomes and
a concomitant dearth of understanding both about the evolutionary processes that affect
SVs and about their effects on phenotypes. This gap of knowledge is critical, because
GWAS implicate SVs as major contributors to phenotypic variation3# and because SVs
play an important role in adaptation®. As an example of the latter, SVs are the causative
genetic variant for at least one-third of known domestication alleles®.

Here we study the evolutionary history and potential phenotypic effects of SVs in
domesticated grapevine (Vitis vinifera ssp sativa, hereafter ‘sativa’), a clonally
propagated crop. Grapevines are arguably the most important horticultural crop in the
world?, with ~76 million tons of fruit harvested globally in 20158°. They were
domesticated from their wild ancestor, the wild Eurasian grapevine (Vitis vinifera ssp.
sylvestris, hereafter ‘sylvestris’), nearly ~8,000 years ago in the Transcaucasus!0.
Domestication increased sugar content in the berry, enlarged berry and bunch size,
altered seed morphology, and prompted a shift from dioecy — i.e., separate male and
female individuals - to hermaphroditism!!. In theory, hermaphroditic grape cultivars can
be selfed; in practice, selfed progeny are often non-viable. Consequently, most grape
cultivars represent crosses between distantly related parents, resulting in high
heterozygosity levels within cultivars'2-15. Here our goal is to fill a major gap in our
understanding of plant genome evolution by comprehensively cataloging the type and
size of SVs within wild and domesticated grapevines, by inferring the evolutionary forces

that shape their persistence and by investigating their potential phenotypic effects.

SVs in Assembled Genomes:
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Our strategy to study the evolution of SVs was to first infer them from a phased
and highly contiguous genome and then to apply the knowledge gained to a population
resequencing sample. To date, however, grape genomes have been neither phased nor
highly contiguous. Accordingly, we began by generating a reference genome for the
Chardonnay cultivar, choosing a clone (FPS 04) that is grown worldwide. To resolve this
highly heterozygous genome, we employed a hybrid sequencing approach . Hybrid
assembly resulted in a contig N50 of 1.24Mb, and application of Hi-C improved the
scaffold assembly N50 to 24.5Mb, vastly extending contiguity relative to other grape
genomes!3141617 (Table 1). The resulting primary assembly was 605Mb in length, which
is similar to the 590Mb assembly of Cabernet Sauvignon (Cab08)!7. The Char04 primary
assembly had a BUSCO score of 93.4%, contained 38,020 annotated protein-coding
genes, and consisted of 47.3% transposable elements (TEs), particularly from the gypsy
and copia superfamilies (Tables 1 & S1).

We identified heterozygous SVs (hSVs) within Char04 by remapping SMRT
reads to the Char04 referencel8, revealing 18,998 hSVs of length = 50 bp (Figure 1A &
Table S2). Only 0.3% of the hSVs were detected as homozygous (Table S2), suggesting
a low rate of misassembly. After masking these regions, observed hSVs were as long as
5.3 Mb and together constituted 91.21 Mb, or 15.1%, of the 605Mb primary assembly.
hSVs were assigned to five categories relative to the reference: deletions (DELs),
duplications (DUPs), inversions (INVs), translocations (TRAs), and mobile elements
insertions (MEIs). DEL and MEI events were the most numerous, with 8,302 and 7,772
(Table S2), respectively. In addition to SVs = 50 bp in length, we also detected 119,067
small (< 50bp) indels and 873,159 SNPs.

Surprisingly, 5,546 genes were hemizygous in Char04 based on inferences from
long-read-mapping (Figure 1B), representing 14.6% of all annotated protein-coding
genes. This value is consistent with the overall proportion of chromosomal
heterozygosity by length, but it also raises concerns that it could be artificially high due
to artifacts in mapping or in the Char04 reference. To allay these concerns, we performed
two additional analyses to detect hSVs. First, we repeated the analysis by mapping
Char04 long reads to the PN40024 reference. We detected slightly more (6,419)

hemizygous genes, but they again constituted ~15% of all annotated genes in the
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reference. Second, we mapped SMRT reads from Cab08 to the Cab08 assembly and
detected 5,702 (15.5%) hemizygous genes within this cultivar. All of these analyses are
consistent in indicating that SVs affect hemizygosity for ~1 in 7 genes in cultivars.

The Cab08 assembly is less contiguous than Char04 but nonetheless permitted a
rare opportunity to infer SVs based on long read sequencing between individuals from a
single cultivated species!®. We detected SVs between genomes using three approaches.
We first mapped SMRT reads from Cab08 to the Char04 primary assembly (Figure S1).
These results yielded ~3-fold higher numbers of SV events between cultivars than within
Char(04 (Table S2), reflecting the distinct parentage of Chardonnay and Cabernet
Sauvignon”-20-22, Of 59,913 inferred SVs, DEL and MEI events were again most
numerous, with 24,138 and 21,722 events, respectively, between genomes. SMRT read
alignment further confirmed high hemizygosity of protein-coding genes, because the two
cultivars differed in ploidy level for 9,330 genes. Of these, 2,217 exhibited
presence/absence variation (PAV), similar to previous estimates based on less complete

12,23
data™

. Based on GO analyses, PAV genes are biased toward functions in defense
response, flower development, membrane components and transcription factors (P <
0.001).

We also compared Char04 and Cab08 primary assemblies by whole genome
alignment?* (Figure S2), which yielded a similar numbers of SVs (52,952) but fewer
MEI events (Table S2). Finally, we mapped 25x [llumina reads from Cab08 to Char04,
which detected 62% of the number of SVs based on SMRT reads (Table S2). The length
distribution of SVs varied among the three methods; SMRT-read analyses detected more
large (>10kb) events (Figure S3). Importantly, 75% of SVs inferred by SMRT-read
alignment were confirmed by either genome alignment or short-read analyses (Figure

1C; Figure S4). These confirmed SVs encompassed 1,822 PAV genes and 45,403 MEIs

between Char04 and Cab08, attesting to substantial SV variation among cultivars.

Negative selection on SVs:
To gain wider information about SVs in grapevines and their wild relatives, we
amassed short-read sequencing data representing 50 grapevine cultivars and 19 wild

relatives (Table S3). The application of short-read alignment for detecting SVs is subject
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to high levels of false-negatives and -positives?>. To limit false-positives, we relied on
our Char(04 to Cab08 comparisons, specifically the subset of SVs confirmed by both
long-read and short-read alignments. We examined their mapping quality, mapping depth
and likelihood to provide empirical cut-offs for short-read SV calls. After applying these
cut-offs to the population sample, we filtered overlapping and complex SVs to obtain a
highly curated set of 481,096 SVs for population analyses (Table S4). These SVs yielded
relationships among accessions that were remarkably similar to those based on SNPs,
providing assurance about their reliability (Figure S5).

Given our population set of SVs, we computed the unfolded site frequency
spectrum (SFS) for 12 sylvestris samples and a down-sampled set of 12 sativa samples
chosen after genetic analysis (Figures S6-S8). The SFS for the two taxa were similar
overall (Figure 2A), reflecting the fact that cultivated grapevine did not undergo a severe
domestication bottleneck”-1> that can dramatically alters population frequencies. In both
taxa, all SV types exhibited leftward shifts of the SFS relative to synonymous SNPs
(sSNPs). Their SFS differed significantly from that of sSSNPs in both taxa (p<0.05,
Kolmogorov-Smirnov, Bonferroni corrected), suggesting that SVs are predominantly
deleterious.

To quantitate the strength of selection against SVs, we estimated the distribution
of fitness effects (DFE) from population frequency data, using sSSNPs as a neutral control.
In both taxa, the results confirmed that non-synonymous SNPs (nSNPs) and SVs undergo
strong purifying selection (Figure 2B). They also revealed variation among SV types,
because TRA events and INV events were more strongly selected against in both taxa,
mirroring their more extreme SFSs. These inferences were also consistent with estimates
of a, the proportion of adaptive variants, because a was estimated to be lower for INVs
(<2%) and for TRAs (<7%) than for DUP (a=25% for sylvestris), DEL (a=21%) and
MEI (0=20%) events (Figure 2C). o estimates for SVs were lower than those based on
nSNPs (27% and 36% for sylvestris and sativa, respectively), which were comparable to
other perennial taxa26. Based on DFE and « estimates, negative selection appears to be
stronger in sativa than sylvestris (Figure 2). However, the comparison between taxa must
be interpreted with caution because the inferential models were designed to analyze

outcrossing species like sylvestris and not clonally propagated crops. Nonetheless, the
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results strongly suggest that SV events are more deleterious than nSNPs, on average, and

that INV and TRA events are especially deleterious.

SVs accumulate in clonal propagants:

SVs are deleterious, on average, but clonal propagation may allow variants to hide
as heterozygous recessives!>27. The accumulation of recessive mutations was evident
from three aspects of sativa genetic diversity. First, within individual heterozygosity was
11% higher, on average, within sativa than sylvestris based on SNPs (Figure S9). Second,
sheltering of recessive mutations was evident from calculations of the additive SV load,
which is the number of number of heterozygous mutations plus twice the number of
derived homozygous mutations per individual?8. Individual cultivars have a 6% higher
additive SV load than their wild counterparts, on average, due to elevated heterozygosity
(Figure 3A). Enhanced load was not evident for homozygous SVs or for presumably
neutral sSSNPs (Figure 3A), suggesting that deleterious SVs accrue and are sheltered in
the heterozygous state. These patterns of SV load are consistent with forward simulations
showing that clonal propagation can lead to the accumulation of deleterious recessive
mutations without a notable fitness decreasel>. Finally, the SFS provided evidence of
sheltering of recessive mutations within sativa, based on the marked reduction in
frequency for any variants over 50% (Figures 2A&S8). This unexpected observation
may have a simple explanation: when a variant has a frequency over 50% in a clonally
propagated population, then at least one individual must be homozygous, so that the
recessive variant is exposed to negative selection.

The accumulation of heterozygous variants should affect linkage disequilibrium
(LD), both because LD decreases as a function of population frequency?® and because
cultivated grapes tend to have more low frequency variants than their wild counterparts
(Figure 2A). Consistent with this observation, LD decays more rapidly over physical
distance for sativa than for sylvestris, despite the relative dearth of recombination via
outcrossing in cultivars. LD also decays more rapidly for SVs than for SNPs in both taxa.
This last finding is important because SVs have been implicated to affect phenotypes and
explain more phenotypic variation than SNPs34. However, the more rapid decline of LD

for SVs suggests that it may be difficult to identify causative SVs by relying on linkage
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and also that reliance on SNPs for association mapping is likely to miss SVs that affect

phenotypes.

SV outliers, domestication and sex:

Cultivated grapevine differs phenotypically from its wild relatives!!. In theory,
the genes that contribute to these phenotypes can be inferred from population genetic data
as regions of marked chromosomal divergence between wild and cultivated samples. We
estimated both SNP and SV divergence across the genome, as measured by Fsr in fixed
windows of 20 kb (Figure 3C). Overall, average Fsr estimates were substantially higher
for SNPs (0.0354 = 0.0165) than SVs (0.0135 = 0.0066), reflecting that individual SVs
are typically found at lower population frequencies (Figure 2A).

We ranked the top 1% (or 485) Fst windows for both SNPs and SVs. SNP-based
windows generally conformed to a previous study?>, but SNPs and SVs both identified
QTL regions on chromosome 2 that correspond to the sex-determination region and to the
berry color locus (Figure 3C). An additional 410 SV-based windows were found on
chromosomes 1, 2, 3, 4, and 5. Of these 410, only 81 (19.8%) overlapped with windows
that also had significantly higher Fst for SNP divergence. Based on GO analyses, high
Fsr windows were enriched for a few functional classes, including stilbenoid and folate
biosynthesis. Stilbenes are particularly interesting because they accumulate in seeds and
berry skin during berry ripening, vary in concentration between cultivars, and include
resveratrol3?, a component thought to have beneficial effects on human health. We also
detected 78 diagnostic (or fixed) SVs between wild and cultivated samples that were
associated with the gain and loss of seven and 10 sativa genes, respectively (Table S5).
Among the 10 lost, four were NBS-LRR disease resistance genes located between 11.053
to 11.064 Mb on chromosome 9 of PN40024.

The highest Fstpeak for SVs corresponded to the sex determination (SD) region
on chromosome 2 (Figure 3C), which also contained more SV events relative to the
genomic background (p=0.0067; %°). Mutations in the SD region caused the shift in
mating system during domestication. After confirming that the sex-linked region
corresponds to 4.90Mb and 5.04Mb on PN400243132 (Figure S10), we resolved, for the
first time, complete SD haplotypes and their underlying SVs. Chardonnay is rare among
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cultivars because it is a homozygote for the hermaphroditic (H) haplotype32. We
compared its two H haplotypes to the PN40024 primary assembly33, which is thought to
represent the female (F) haplotype32. Four genes exhibited PAV variation between H
and F haplotypes. One of these, V'vi4PT3, has been proposed as a candidate SD gene31,
because it may have a role in the abortion of pistil structures34. However, VviAPT3 was
present in both the H and F haplotypes of Cab08 (Figure 4A), suggesting that the lack of
VviAPT3 on PN40024 was an assembly error. The remaining three PAV genes (a DEAD
DEAH box RNA helicase gene, the TPR-containing protein and the unknown protein
previously known as ETO/) differentiated H from F haplotypes (Figure 4A). We also
annotated two previously unrecognized genes, Inaperturate pollen 1 (VviINPI) and a
C2H?2-type Zinc finger, in both F and H haplotypes. INP1 expression in Arabidopsis
alters the deposition of pollen apertures3> and could confer pollen sterility in females.

Hermaphroditism was likely to be caused by a mutation in the dominant
sterility gene on the male (M) haplotype323¢. The female sterility gene is unidentified, but
it is likely expressed in males and knocked-down in hermaphrodites. To identify potential
candidates, we performed gene expression analyses among sexes, based on expression
data from two late stages of floral development (Figure 4B). The three PAV genes were
lowly expressed and thus are unlikely F sterility candidates, but five genes differed
significantly (adj. P < 0.05) in sex-specific expression. Four were more highly expressed
in males, including VviAPT3 and the C2H2-type Zinc finger gene; these four constitute
plausible female sterility candidates.

To investigate whether any of these candidates housed a loss-of-function SV, we
built a phylogeny of the SD region, which confirmed that H haplotypes were closer to the
the M haplotype from our single, confirmed sy/vestris male than to F haplotypes (Figure
4C). In fact, the M haplotype separated two clades of H haplotypes, providing support for
more than one origin of hermaphroditism in cultivars32. We estimated estimated the two
clades to be 10,705 and 13,222 years old, respectively, slightly older than the accepted
date of domestication. Because the sylvestris M haplotype was closely related to one of
the Char04 haplotypes (Figure 4C), we identified SVs within and between them. Four
genes were in a hemizygous state in the wild male, including the three PAV genes, and

there were also three hemizygous TEs near genes, but none were obvious candidates to
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affect the function of the four most plausible female sterility candidates (Figure 4B).
Unfortunately, the genetic mutation(s) that causes hermaphroditism and the identity of
the dominant female sterility gene remain elusive, but the region underscores the

dynamics of SV events and their potential relationships to a domestication phenotype.

Convergent Inversions Contribute to Berry Color:

A second region of high Fsr divergence between wild and cultivated grapevines
encompassed the berry color region (Figure 3C). It, too, had more SVs than the genomic
background (P = 3.3x107, %%). The region is interesting because sylvestris has dark
berries, representing the ancestral condition!!, and because white berries originated in a
subset of sativa cultivars. SVs have been implicated in the origin of white berries,
especially a 5’ Gretl retroelement insertion that reduces the expression of a myb gene
(VWviMYBA) that regulates anthocyanin biosynthesis3’. Subsequently, it was shown that a
frameshift mutation in a second myb gene (VviMYBA2) was also necessary to cause white
berries38. Surprisingly, these two mutations (the Gret/ insertion and the VviMYBA?2
frameshift) are heterozygous in most grape cultivars3?. Somatic mutations causing white
grapes delete the functional VviMYBAI and VviMYBA?2 alleles, leaving the plant
hemizygous for null alleles#041.

Given the history of the MybA locus and the fact that it encompasses a peak of Fsr
divergence, we investigated the region with a chromosome scale plot of Char04 reference
vs. Cab08, revealing a large 4.82Mb (chr02: 12,295,113bp-17,118,777bp) inversion in
Char04 (Figure 5A). This inversion was confirmed by comparison to PN40024, by the
identification of discordant and split reads at the junctions (Figure S11), and by the lack
of an inversion between Cab08 and PN40024 (Figure 5B). The Char04 inversion was
bounded by copia elements, suggesting they played a role in its formation. The inversion
encompassed the MybA region, but it did not affect the number of MybA4 genes because
there were nine in Char04, Cab08 and PN40024. The inversion does, however, affect
hemizygosity, because the entire inverted region appears to be hemizygous on the basis
of read coverage and homozygosity (Figure S11). Thus, white berries in Chardonnay
may be attributable to two related events, a large inversion on one chromosome and a

simultaneous deletion on the other.
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Another study has recently characterized the somatic mutations that led to white
berries in the Tempranillo cultivar*2. The mutations included hemizygosity at both
VviMybA I and VviMybA2, along with a series of complex series of SVs that included a
putative 4.3Mb inversion on chromosome 242. Given that both Chardonnay and
Tempranillo have large, Mb-scale inversions associated with white berries, we
investigated the generality of the association. To do so, we first built SNP-based
phylogenies of white-berried cultivars and closely related dark-berried varieties. The
phylogeny shows that white-berry mutations occurred independently on several occasions
(Figure 5B). We then chose six pairs of closely related red and white-berried varieties
and contrasted them using short-read analyses. For these short-read analyses, we focused
on coverage and runs of homozygosity, while also carefully combing the data for
evidence of split and discordant reads that span potential inversions. All six contrasts
yielded evidence for a large inversion encompassing the MybA region (Figure 5C). The
inferred inversions ranged from 3.85Mb to 4.82Mb in size and included from 134 to 176
genes, with 118 genes in common (including the MybA genes) across all six inversions.
Read coverage data, which varied across pairs, strongly suggested hemizygosity of the
entire inversion in at least one contrast (Sultanina vs. Kishmish vatkana) and near the
MybA region in other contrasts (Figure 5C).

Somatic mutations to white berries are associated with hemizygosity of MybA
genes and with large, Mb scale inversions. But why are large inversions associated with
the white berry phenotype? We can think of three explanations. The first is that the
inversion contains non-MybA genes that also affect phenotype. To investigate this
hypothesis, we mapped gene expression data from red and white berries collected over
four stages of berry development*? and counted the proportion of differentially expressed
genes between color morphs. The proportion of differentially expressed genes within the
Char04 inversion was no higher than the genomic background (P = 0.82, %*), suggesting
that the inversion is not enriched for genes that contribute to berry color. The second
explanation is that inversions are common because of underlying properties of the
chromosome 2 sequence, such as enhanced fragility*+. The region does not contain any
obvious differences in TE distribution or other gross features (Figure 1A), but this

explanation remains a possibility, particularly given flanking copia elements in Char04.
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Finally, it is possible that similar inversions have occurred commonly throughout Vitis
genome evolution, that most are lost because they are selected against (Figure 2B), but
that only a few affect an obvious phenotype - like berry color - that is prone to human
intervention. Whatever the underlying cause(s) for these large inversions, they represent a
stunning example of convergent evolution via independent SV events.

Altogether, our sequencing of the Chardonnay genome, coupled with comparisons
to the genomes of Cabernet Sauvignon and Pinot Noir, have provided insights into the
evolution of clonally propagated genomes and into plant genomes more broadly. One
insight is that grapevine genomes are riddled with heterozygous SVs, to the extent that
they comprise up to 15% of the chromosome by length and cause 1 in 7 genes to the be
hemizygous. Although negative selection acts against SVs and is particularly strong
against inversions and translocations, SVs nonetheless accumulate in cultivars due to
clonal propagation and the sheltering of recessive somatic mutations. Only a small
proportion of these SV events are estimated to be adaptive, but some clearly associate
with agronomically important phenotypes, such as hermaphroditism and white berry
color. Although we cannot yet pinpoint the mutations that led to hermaphroditism, the
latter originated on multiple, independent occasions via complex and large Mb-scale

inversions.

METHODS:
Genome sequencing, assembly and polishing

The Chardonnay clone chosen for sequencing was FPS 04, a clone commonly
grown in California and throughout the world. The reference plant is located at
Foundation Plant Services, University of California, Davis. DNA isolation and the
preparation of SMRTbell libraries followed!”. The preparation of paired-end Illumina
libraries followed!>. SMRTbell libraries were sequenced on a PacBio RSII system,
generating a total of 31.51gb (52X). Illumina sequencing was conducted on a HiSeq4000
sequencing platform in 150 paired-end (PE) mode (54X) and 100 PE mode (124X). Both
SMRTbell and Illumina libraries were sequenced at the UC Irvine High Throughput
Genomics Center. Raw reads were deposited to the Short Read Archive (SRA) at the
NCBI under the BioProject ID: PRINAXXX.
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Genome assembly was based on a hybrid strategy, that utilized both long and
short sequencing reads, and that merged three separate assemblies. The first assembly
utilized Canu v1.5%5 to assemble SMRT reads, based on default parameters and with a
genome size of 600 Mb. A second, hybrid assembly was generated with DBG20OLC#6
based on contigs from the Platanus assembly and the longest 30X Pacbio reads. The
Platanus assembly was based on*” v1.2.4 with default settings, using trimmed 178X
[llumina paired-end reads. The DBG2OLC settings (options: k 31 AdaptiveTh 0.01
KmerCovTh 2 MinOverlap 30 RemoveChimera 1) were similar to those used for
previous hybrid assemblies*849, except that the k-mer size was increased to 31. The k-
mer size was increased to minimize the number of misassemblies by including 90% of all
k-mers reported by the meryl program within the Canu package*>. The consensus stage
for the DBG2OLC assembly was performed with PBDAGCON>? and BLASRS>!. Third,
PacBio genomic reads were assembled using FALCON-Unzip v1.7.717. Multiple
assembly parameters (length _cutoff pr) were tested; the least fragmented assembly was
obtained with a minimum length cut-off of 9 kb. The final FALCON-Unzip parameters
can be found in Supplemental text 1. Unzip phasing and haplotype separation were
performed with default parameters.

To integrate information obtained from the different assembly methods - Canu,
DBG2OLC and FALCON-Unzip — we opted for an iterative approach of assembly
merging using quickmerge>?, following a broader application of assembly merging based
on*?. Quickmerge merges assemblies to increase the contiguity of the most complete
(query) genome by taking advantage of the contiguity of the second reference sequence.
To merge the assemblies, we followed a series of steps. First, the DBG20OLC and Canu
assemblies were merged into a single assembly, QM1, using DBG2OLC assembly as the
query, the Canu assembly as the reference and run options (options: hco 5.0 c 1.5 1
260000 ml 20000). Contigs that were unique to the Canu assembly were incorporated in
the subsequent assembly, QM2, by a second round of quickmerge (options: hco 5.0 ¢ 1.5
1260000 ml 20000). In this second quickmerge run, the merged assembly from the
previous step, QM1, was used as the reference assembly, and the Canu assembly was
used as the query. A third round of merging (options: hco 5.0 ¢ 1.5 1345000 ml 20000)

was performed using primary contigs of FALCON-Unzip as the reference assembly and
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the previous resultant assembly, QM2, as the query, generating the QM3 assembly. The
final assembly, QM4, was generated by a fourth run of quickmerge (options: hco 5.0 ¢
1.5 1345000 ml 20000), using QM3 as the reference and the Falcon-unzip assembly as
the query.

All the assemblies described above, including the preliminary assemblies (Canu,
DBG2OLC and Falcon-Unzip), temporary assemblies (QM1-QM3), and the final
assembly (QM4), were polished twice with long reads using Quiver (Pacific Biosciences)
from SMRT Analysis v2.3 (using parameter: -j 80). Long reads (> 1,000bp), consisting of
~43X coverage, were used for polishing. The assemblies were also polished twice using
Pilon v1.16°3 run using default settings. For this purpose, I[llumina reads were aligned to
the assembly using Bowtie2 v2.325% and sorted using samtools v1.355,

BUSCO v2.0 was used to measure gene space completeness and conserved gene
model reconstruction of all generated assemblies®6. The embryophyta database, which
contained 1,440 highly conserved genes, was used to measure gene model reconstruction
and estimate assembly completeness. Quast v2.357 was run to calculate assembly length
and N50 on each assembly. Dot plots were generated using nucmer and mumplot from
MUMmer4 v3.2324 with the options: -1 100 -c 1000 -d 10 -banded -D 5. The BUSCO
v356 pipeline was applied to the final genome assembly, using the embryophyta odb9
database.

The final assembly included both primary haplotype sequences and alternative
contigs (aka haplotigs). To remove some of the alternative contigs and minimize
redundancies, we performed a contig reduction. Contig reduction was executed by first
aligning the final assembly to itself using Blat v. 36°8. A python script was generated for
filtering contigs that did not meet one minimum and two maximum thresholds: contig
length, %query alignment and %alignment overlap. In practice, the three thresholds were
investigated over ranges — e.g., minimum contig length ranged from 0, 10000, 50000,
100000 bp; % query alignment was examined over 18 randomly chosen values between
90% to 99.9999%, and % aligned overlap (PctAO) (80 and 90%), as well as maximum
PctQA (100%) and PctAO (110 and 120%). New filtered genome assemblies were
generated after filtering contigs based on a combinatorial of these five parameters. A

gradient descent was performed on three additional parameters generated for each new
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filtered assembly; assembly size, contig N50 and BUSCO scores. Two formulas were

Aligned Query Length

generated to calculate PctQA and PctAO. PctQA = and PctAO =

Total Query Length

Aligned Query Length

- . Alignments generated from contigs aligning to themselves were
Aligned Reference Length

not considered. The scripts and code used for assembly and alternate haplotig reduction

are available on GitHub: https://github.com/esolares/CAP

Scaffolding and GapClosing

A Dovetail HiC library was prepared in a similar manner as described previously®°. The
library was sequenced on an Illumina platform to produce 211 million 2x100bp
paired end reads, which provided 1,624x physical coverage of the genome (1-50kb
pairs). The input de novo assembly, shotgun reads, and Dovetail HiC library reads were
used as input data for HiRise®?. Shotgun and Dovetail HiC library sequences were
aligned to the draft input assembly using a modified SNAP read mapper
(http://snap.cs.berkeley.edu). The separations of HiC read pairs mapped within draft

scaffolds were analyzed by HiRise to produce a likelihood model for genomic distance
between read pairs, and the model was used to identify and break putative misjoins, to
score prospective joins, and make joins above a threshold. After scaffolding, shotgun
sequences were used to close gaps between contigs.

MUMmer v4.02%4 was used to identify and to sever erroneous junctions between
contigs. The resulting scaffolds underwent a second scaffolding procedure using
SSPACE-longreads v1.16! with default parameters and a minimum coverage of 10 reads
(options: -1 10). Gaps were closed using PBjelly (PBSuite v15.8.24;62) with default
parameters for all the gap-closing steps, and assembled with options: -x ‘-w 1000000 -k -

n 10°. Scaffolds were again manually curated as described above.

Gene Annotation

Repetitive sequences were identified with RepeatMasker®3 using the repeat library
previously developed for V. vinifera cv. Cabernet Sauvignon®4. Ab initio prediction of
protein-coding genes was carried out with SNAP (ver. 2006-07-28)%5, Augustus v3.0.366,

and GeneMark-ES v4.3267. Ab initio predictions were combined with the predictions of
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Augustus trained with BUSCO genes, as well as the gene models annotated with PASA
v2.1.0%8, using the experimental data reported in Supplemental text 2. RNA-seq data
obtained from public databases (Supplemental text 2) were i) assembled using both an
on-genome strategy, with Stringtie v1.3.369, and a de novo transcriptome procedure, with
Trinity v2.4.0 in genome-guided mode setting a maximum intron length of 10Kb (option:
--genome_guided max_intron 10000); i7) clustered with CD-HIT-EST v4.679, with
coverage threshold 90% (option: -c 0.9); and iii) filtered with Transdecoder v3.0.171,
which retained only genes with a full-length open reading frame (ORF). Experimental
evidences (transcripts and proteins) were mapped on the genome using Exonerate
v2.2.07?and PASA v2.1.0%8, and together with all the predictions used as input to
EVidenceModeler v1.1.173. Weights used in EVidenceModeler are reported in
Supplemental text 3. The annotation was refined and enhanced with alternative
transcripts using PASA v2.1.073 and assembled experimental evidences; parameters used
for refining the gene structures are described in Supplemental text 4. Models not showing
a full-length ORF from start codon to stop codon or showing in-frame stop codons were
removed. Transcripts were blast-searched for homolog proteins in the RefSeq plant

protein database (ftp://ftp.ncbi.nlm.nih.gov/refseq, retrieved January 17th, 2017).

Functional domains were identified using InterProScan v574 using the databases provided
in Supplemental text 5. Gene models with no significant blast hit against RefSeq plant
protein database (HSP<50 amino acids) and lacking any functional domain were
discarded. Gene ontology (GO) obtained from InterPro domains and RefSeq homologs
with at least 50% of reciprocal coverage and identity were combined using Blast2GO v4
(75 to assign a functional annotation, gene ontology (GO), and enzyme commission (EC)

descriptions to each predicted transcript.

Chromosome assignment and heterozygosity in the Chardonnay genome

The Char04 primary assembly consisted of 684 scaffolds, that summed to 606 Mb
with an N50 close to that of an average grape chromosome size (25.4 Mb). We aligned
the Char04 primary assembly to the PN40024 genome using the nucmer function in
MUMmer42?4, The top 23 scaffolds covered 82% (492 Mb) of the Char04 primary
assembly and aligned to the PN40024 chromosomes (Fig. S1), except two long scaffolds
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with lengths of 20Mb (Char04v1.0_683) and 11Mb (Char04v1.0_682). These two
scaffolds did not align to PN40024 genome assembly but did align to Cab08 contigs. At
the same time, chromosome 13 of the PN40024 genome aligned to only a few small
Char04 scaffolds. For the purposes of presentation (Figure 1).

The largest 22 scaffolds of Char04 were collinear with PN40024 and summed to
481 Mb. Each chromosome was represented by one scaffold, except chromosomes 7 and
11, which consisted of 2 and 3 scaffolds, respectively. For all ensuing analyses, we
treated these 22 scaffolds as the Char04 reference genome. We evaluated heterozygosity
within this reference for both small variants (SNPs + indels < 50 bp) and large structural
variants (SVs = 50 bp). SNPs and indels were called based on remapping 124X Illumina
100-bp PE reads to the reference. The Illumina reads for this application and for diversity
analyses (see below) were trimmed using Trimmomatic-0.36 to remove adapter
sequences and bases for which average quality per base dropped below 20 in 4 bp
windows. Filtered reads were then mapped to the Char04 reference with default
parameters implemented in bwa-0.7.12 using the BWA-MEM algorithm?”¢. The bam files
were filtered (unique mapping with a minimum mapping quality of 20) and sorted using

samtools v1.95>, PCR duplicates introduced during library construction were removed

with MarkDuplicates in picard-tools v1.119 (https://github.com/broadinstitute/picard).
SNPs and small indels were called with the HaplotypeCaller in GATK v4.0 pipeline, and
then filtered following?5.

To identify SVs within the Char04 genome (i.e. between the two haplotypes), we
called SVs using the Sniffles pipeline!8. First, Pacbio reads longer than 500bp were
mapped onto Char04 primary assembly using the two aligners Minimap?2 v2.14 with the
MD flag’” and NGMLR v0.2.718, separately. Variant calling was then performed with
Sniffles. SV analysis outputs (VCF files) were filtered based on the following four steps:
i) we removed SVs that had ambiguous breakpoints (flag: IMPRECISE) and also low
quality SVs that did not pass quality requirements of Sniffles (flag: UNRESOLVED); ii)
we removed SV calls shorter than 50 bp; iii) we removed SVs with less than 4 supporting
reads; and iv) we removed duplicate SV calls from Sniffles. [Sniffles frequently called
multiple SVs at the same position for multiple pairs of breakpoints. In these cases, we

kept the SV with the most supporting reads.] The same filtering steps were applied in

17


https://doi.org/10.1101/508119
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/508119; this version posted April 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

downstream analyses when we called SVs between Cab08 and Char04 primary
assemblies (see below). In general, using the aligner Minimap2 from the Sniffles pipeline
lead to detecting more SVs (e.g., 37,169 in total within Char04) than long-read mapping
with NGMLR v0.2.7 (23,972 in total within Char04). Given the differences from the two
mapping protocols, we built consensus SVs calls using SURVIVOR v1.0.378. Using the
merged SV set, we called genotypes and combined them into a single VCF using the
population calling steps of the Sniffles pipeline®. The genotypes of SV calls from both
programs (NGMLR and Minimap2) were intersected using bedtools v2.2579 to get the
final Pacbio SV calls. False positives associated with assembly errors were identified
when homozygous no-reference (1/1) SVs were called. For downstream analyses, we

masked those regions when we used Char04 primary genome assembly as the reference.

Comparing SVs between Chardonnay and Cabernet Sauvignon

Char04 and Cab08 genomes were compared using three different alignment
approaches: whole-genome alignment, long-read alignment, and short-read alignment.
The first consisted then to compare primary contigs of Cab08 (N50 = 2.2 Mb) and
Char04. Cab08 primary contigs were aligned to the Char04 reference using nucmer
(nucmer -maxmatch -noextend) in MUMmer424. After filtering 1-to-1 alignments with a
minimum alignment length of 1,000 bp (delta-filter -1 -1 1000), the show-diff function
and NucDiff8® were used to extract the features and coordinates of SVs.

The second comparison was based on alignment of SMRT reads from Cab08 onto
the Char(04 reference. SMRT reads from Cab08, representing ~140X coverage, were
mapped onto Char04 genome using Minimap2 and NGMLR, as described above. SVs
were genotyped based on merged SV calls from both mappers, using the population
calling steps of Sniffles pipeline'®. The SV calls were filtered and duplicates were
removed following the four steps listed in the previous section. The genotypes of SV
calls from both programs were intersected using bedtools v2.2579 to get the final SMRT-
based SV calls. These SMRT-based SV calls were used as the “gold standard” for
downstream analyses.

Finally, we mapped Cab08 Illumina PE reads corresponding to ~15X of raw

coverage, which mimics the coverage of population data (see below). These reads were
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filtered, mapped onto the Char04 reference, and then the bam files were cleaned, sorted
with PCR duplicates and masked following!>. SVs were called with all the population
samples (69 in total, see below) using both LUMPY v0.2.1381 and DELLY?2 v0.7.782. For
LUMPY, the read and insert lengths were extracted from mapping files (bam files) for
each sample using samtools v1.955, and the SVs were genotyped using SVTyper8!l. The
SV calls from DELLY and LUMPY were merged using SURVIVOR v1.0.378. SV for
all 69 population samples presenting the following five criteria were retained: i) a
minimum of three PE reads or split reads (SR) supporting the given SV event across all
samples; ii) SV calls with precise breakpoints (flag PRECISE); iii) SVs passing the
quality filters suggested by DELLY and LUMPY (flag PASS); iv) SV length = 50 bp; v)
complex SVs, consisting of, or overlapping SVs were excluded. SV calls for Cab08 and
Char04 were extracted using vcftools v0.1.1383 to permit the comparison of the three
detecting methods.

The coordinates and SV features for all SV calls of Cab08 and Char04 based on
whole-genome alignment, SMRT reads and Illumina short-read alignments were
extracted and saved as bed files. SV calls of the three methods were compared using
bedtools v2.2579 with a minimum reciprocal overlap of 80%. We took the intersect of the
DELLY and LUMPY calls to separate SVs into three categories: i) shared between
methods, which was roughly 74.6% of the SV calls; ii) DELLY -specific SVs, and iii)
LUMPY-specific SVs. We then combined the three sets using SURVIVOR?8 and
intersected it with SMRT-based SV calls to get a shared VCF. Finally, we extracted
mapping and quality statistics from the short-read SV calls that corresponded to the ‘gold
standard’ long-read calls. These statistics were used in the population mappings as cut-

offs to filter short-read SV calls (see below).

SNP and SV calling for population samples

[llumina whole genome resequencing data were gathered from 69 accessions
(Table S4), each of which with coverage > 10X. The mean mapping depth across
accessions was 21.6X. The sample of accessions included 12 wild (ssp. sylvestris)
samples from the Near East, where grape was domesticated, along with 50 vinifera

cultivars that represent major lineages. The sample also included three V. flexuosa and
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four Muscadinia rotundifolia accessions from North America, which were used as
outgroups for downstream population genetic analyses.

SNPs and indels were called for this population sample using the HaplotypeCaller
in the GATK v4.0 pipeline, following!5. SNPs and indels were filtered and annotated
using SnpEff v4.084, following>. SVs were called from short-read alignment using the
LUMPY & DELLY pipelines, as described above. The merged SV genotypes were
filtered following the six steps enumerated in the previous section, with the added proviso
that SV calls missing in 30% of all individuals were excluded for population genetic
analyses. In addition, we used statistics from the intersected set of SVs called from Cab04
to Char04 comparisons to filter ‘real” SVs (see previous section). That is, we used
statistics from the set of SVs detected by short-read alignment that were confirmed by
corresponding to ‘gold standard’ SV calls by long-read alignment. These cut-off statistics
included: i) a minimum number of supporting four reads in LUMPY calls (flag SU,
which equals to SP+PE) ii) a minimum number of three SR or PE reads supporting each
of the reference and variant alleles in DELLY calls (the flag DR/RR: number of PE/SR
reads supporting the reference allele and the flag DV/RV: number of PE/SR reads
supporting the variant allele); iii) a mapping quality = 20 in DELLY calls (flag MAPQ);
iv) a genotype quality score < -5 (flag GQ) in DELLY calls. SV calls that did not pass

these criteria were treated as missing data.

Mobile element insertions (MEIs)

We used the filtered BAM files with PCR duplicates masked for each sample as
input for detecting polymorphic transposable elements (TEs) with the Mobile Element
Locator Tool (MELT) v2.1.485, MELT uses unaligned and split reads from BWA
alignments, a reference genome, and consensus TE sequences to identify polymorphic
TEs. Because MELT relies on sequence similarity for identifying TEs, we used an
Hidden Markov Model (HMM) method to build consensus sequences for the TE families
that represented > 4% of the Char04 reference (i.e., LINES: L1; LTR retrotransposons:
Copia and Gypsy; and DNA transposons: MuDR and MULE-MuDR; Table S2). We
preprocessed BAM and TE consensus files with the Preprocess and BuildTransposonZIP
utilities of MELT, respectively.
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MEIs were detected across the population by using the following four steps from
the MELT pipeline: i) TE variants compared to Char04 genome were detected for each
accession individually using IndivAnalysis; i7) all polymorphic TE calls from all samples
were merged to detect breakpoints of insertions in the reference genome using
GroupAnalysis; iifi) the resulting variants file was then used to call genotypes of all
insertions for each sample using the Genotype utility; iv) a consensus VCF file was
creating after filtering the detected MEIs using the MakeVCEF utility. We again used only
the first 22 longest scaffolds to represent the reference genome in these analyses, because
fragmented scaffolds affect the performance of the program8>. These four steps were
performed for each TE family, separately. In order to set a threshold of maximum
divergence, we used both short- and long-read alignments of Cab08 onto Char(04 for
calling MEI. Then, the four analysis steps were performed for each TE family, separately,
with two different thresholds of maximum divergence, 5% and 10%, between putative
polymorphic TEs and the consensus sequence. Comparison of the MEIs detected using
short- and long-read alignments showed a higher overlap of MEIs between the two kinds
of sequencing when applying a maximum divergence threshold (i.e., divergence from an
inferred consensus TE) of 5% rather than 10% (58% and 33%, respectively). Accordingly,
we used MEI calls based on 5% divergence for downstream analyses after filtering. MEI
calls were discarded that did not pass the MELT quality filters, with imprecise
breakpoints, that were missing in 30% of the population sample, and that were shorter

than 50bp.

Population genetic analyses

Our analyses of the [llumina population data resulted in SV calls for a wide
variety of events, including insertions (INS), deletions (DEL), duplications (DUP),
inversions (INV), and translocations (TRA). In general, variant calling using short-read
alignment allowed to detect only short insertions (INS, Figure S2), and we therefore
excluded INS variants from further analyses. Complex variants, which were defined as
composite variant of different types (for example a reverse tandem duplicate: INVDUP),
were also excluded. We also removed any DELLY & LUMPY SV calls in the remaining
categories (i.e, DEL, DUP, INV, TRA) that overlapped with MEI calls or genomic
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regions annotated as TEs. Finally, we only retained SV calls that shared the same
breakpoints across the population samples. Altogether, we considered five distinct SV
categories - DEL, DUP, INV, TRA, and MEI — in our population genetic analyses. We
also conducted principal component analyses (PCA) for SNP and SV calls using PLINK
v1.986(Figure S6).

SNPs and SVs with a minor allele frequency > 0.1 were used for analyses of
linkage disequilibrium (LD) in the wild and the cultivated grapevine samples,
respectively. LD decay along physical distance were measured by the squared correlation
coefficients (+°) between all pairs of SNPs within a physical distance of 300 kbp, using
PLINK v1.986. The decay of LD against physical distance was estimated using nonlinear
regression of pairwise 7 vs. the physical distance between SNPs or SVs mid-positions2°.

Since LD decayed within 20 kbp in both the wild and the cultivated samples, we
divided the Char04 genome into 24,056 non-overlapping windows of 20 kbp in size to
calculate genomic differentiation of SVs between wild and cultivated samples and to
compare SV differentiation to SNPs. For a window to be included in downstream
analyses, we required at least 1,000 bases after filtering. Levels of genetic differentiation
between species at each site were estimated using the method-of-moments Fsr estimators
based on vcftools v0.1.1383, which calculates indices of the expected genetic variance
between and within species allele frequencies. We then averaged Fsr values of all sites
within each 20 kbp non-overlapping window.

We calculated the unfolded site frequency spectrum (SFS) using the V. flexuosa
and Muscadinia rotundifolia samples as outgroup. To derive the SFS, we counted the
number of sites at which & of n haplotypes carry the derived variant for SNPs
(synonymous: 4-fold sites, and non-synonymous sites: 0-fold sites), and SVs (DEL, DUP,
INV, TRA, and MEI). To exclude direct effects of selection on synonymous sites, we
detected selective sweeps based on the composite likelihood ratio (CLR) test
implemented in SweeD v3.2.187. Synonymous sites at genomic windows with top 5%
CLR values were excluded in SFS and downstream analysis.

We calculated the SFS for the sample of 12 putatively wild sy/vestris samples, a
down-sampled set of 12 cultivars, and the full set of 50 cultivars (Figure S7). To identify

a set of 12 cultivars to down sample, we inferred population structure across samples for
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all wild sylvestris and grapevine cultivars using the NGSadmix utility of ANGSD
v0.91288 based on SNP sites with < 20% missing data, a minimal base quality of 20 and a
minimal mapping quality of 30. We predefined the number of genetic clusters K from 2
to 8, and the maximum iteration of the Expectation Maximization (EM) algorithm was set
to 10,000. Based on these population structure results (Figure S5), the down-sampled set
of 12 cultivars was chosen to represent major genetic clusters and also to represent

accessions with the least missing data (Table S4).

Distribution of fitness effects (DFE) of SVs

We applied the program DFE-a v2.15 to estimate the distribution of fitness effects
(DFE) and the proportion of adaptive variants (o) for non-synonymous SNPs, DELs,
DUPs, INVs, TRAs, and MEIs8990, In these analyses, we used information from
synonymous SNPs as the neutral reference, based on the unfolded SFS. First, we fitted a
demographic model to the SFS for neutral sites using maximum likelihood (ML). We
chose a two-epoch demographic model that allows a single step change in population size
from N, to N»t, generations in the past8?. We performed multiple ML searches, each with
a different starting point, and treated the parameter values that produced the highest log-
likelihood as the ML estimates of the demographic parameters. Next, given the estimated
parameters of the demographic model, we inferred the DFE by fitting a y distribution to
the SFS for the selected sites. As above, we carried out multiple searches with different
starting values for £ and s, where /£ is the shape parameter of the gamma distribution
and s is the mean fitness effect of variants. The ML estimates of the DFE parameters and
the observed divergence at the selected and neutral sites were then used to estimate the
proportion of substitutions (o) that have been fixed by positive selection®0. We obtained
95% confidence intervals (CIs) for the parameter estimates by analyzing 100 bootstrap
replicates of SFS and divergence data sets, which were generated by randomly sampling
genes. Following the findings of®1, we used high-quality data from two North American
wild Vitis species as outgroup??! to infer the ancestral state of variants. We note, however,
that the inference of the ancestral state of SVs are likely to be inaccurate, because the
genetic divergence between the wild Vitis species and Char04 complicated the mapping

process. We therefore also used the folded SFS to estimate the DFE and o, using
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polyDFE v2.0°2. The results were similar, so we presented the polyDFE results with 95%
CIs obtained from the inferred discretized DFEs from 100 bootstrap data sets.

SVs and sex determination:

Fsr values for both SNPs and SVs exhibited clear outlier peaks in the sex
determination region (Figure 3). The SNPs of the sex determination region were phased
and imputed based on a genetic map?? using Shapeit v2.12%, following the study of>. To
examine relationships among different sex haplotypes, we built Maximum Likelihood
(ML) trees from SNPs within the region. ML trees were based on 10,000 bootstrap
replicates, as implemented in MEGAX?®5. We built trees for the two regions,
corresponding to the peaks of SNP divergencel>. We reasoned that the true SD region
should cluster by gender, which was true for the first peak of the SD region but not the
second (Figure S10). We therefore concluded that the first peak, defined as the region
between 4.90 Mb and 5.04Mb on chromosome 2 of the PN40024 assembly, represents
the SD region. BEAST v1.8.0%was applied to calculate genetic divergence, based on a
tree with a relaxed molecular clock. After a burn-in of 100,000 steps, data were collected
once every 1,000 steps from 10 million MCMC cycles, The divergence time between
haplotypes was bases on a genome-wide divergence time of 46.9 million years ago
between M. rotundifolia and Vitis species®’.

The boundaries of the sex determination region were determined by mapping the
coding sequences (CDS) of the chr02:4840000 - 498000 region from PN40024 12X.v233
to the Char04 and Cab08 references. For both Chardonnay and Cabernet Sauvignon
haplotypes, gene models were refined by mapping all the CDS identified in the four
haplotypes onto Char04 and Cab08 genome assemblies, separately, using GMAP v.2015-
11-20 with default parameters®8.

We analyzed gene expression data from the three grape flower genders. Raw
sequencing data were obtained from the Short Read Archive (SRP041212). Reads were
first trimmed using Trimmomatic v.0.36°° with the options: LEADING:3 TRAILING:3
SLIDINGWINDOW:10:20 MINLEN:20. High-quality reads were mapped onto the
primary and haplotig genome assemblies of Char04 and Cab0817 separately, using

HISAT?2 v.2.0.5100 with the following options: --end-to-end --sensitive --no-unal. The
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Bioconductor package GenomicAlignments v.1.12.1191 was used to extract counts of
uniquely mapped reads (Q > 20). Mapped reads were then normalized by millions of
mapped reads per library (RPM). Differential expression analysis across flower genders
(i.e. Male vs. Female, Male vs. Hermaphrodite, Female vs. Hermaphrodite) was
performed using the Bioconductor package DESeq2 v1.16.1102 using samples of the last
two flower growth stages as replicates to allow enough statistical power. These same data
were analyzed previously using the same methods, based on mapping to the PN40024
reference!®. The previous work found a tendency toward female biased expression of
genes in the sex region. However, in the current analyses the genes that differ in
expression in the sex-determination tend to show male-biased expression. The differences
between studies reflect mapping biases between the presumed female haplotype in the
PN4002432 and the H haplotype in the Char04 reference. For these reasons, we consider
the gene expression analyses to be a tool to help identify interesting candidate loci, but

caution that additional studies of sex biased expression are merited.

SVs and berry color:

We compared genomes of two cultivars with dark blue berries (PN and Cab08) with two
cultivars with light green berries (Char04 and Sultanina) using pairwise whole-genome
alignments and called SVs using the MUMmer4 pipeline. Dot plots were generated using
mumplot from (mumplot -1 100 -¢ 1000 -d 10 -banded -D 5) for chromosome 2 where the
berry color QTL located. For Char04 and Cab08, we verified the SV calls using the
Sniffles pipeline® after mapping SMRT reads onto the PN40024 reference genome using
both the Minimap277 and NGMLR8. We also zoomed in on this region for SV calls for
the population samples to investigate the potential association of SVs, gene expression
and the berry color in different cultivars.

To identify whether other green berry accessions housed large inversions that
include the berry color genes, we determined the orientation of the rearranged
chromosome fragments and putative breakpoints from bam files of discordant PE reads
and split reads (SP) after mapping short-reads to the PN40024 genome V2.033. Reads
were mapped using the BWA-MEM algorithm in bwa-0.7.1276. The discordant reads and

split reads were extracted using samtools v1.955 and LUMPY v0.2.1381. To select
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breakpoints distinguishing genomes of red- and white-berry cultivars, the discordant, the
splitter, and the original bam files were inspected visually using IGV v2.2103,

To detect potentially hemizygous regions on chromosome 2, we calculated runs of
homozygosity (ROH) for each sample using the software PLINK v1.98¢ with the
following options: --homozyg-window-het 0 --homozyg-snp 41 --homozyg-window-snp
41 --homozyg-window-missing 0 --homozyg-window-threshold 0.05 --homozyg-kb 500 -
-homozyg-density 5000 --homozyg-gap 1000. CNV analyses were conducted in cnv-
seq1%* using the neighboring grapevines with green and dark blue berry colors with bam
file of the former as test while bam file of the later as a reference. The log2 values of the
adjusted copy number ratio were plotted in R.

Gene expression analyses of the berry color region utilized the raw RNA-seq data
from SRA: SRP049306-SRP04930743. The data were generated from berries sampled
during berry development at four stages, including two before and two after veraison,
from 10 Italian varieties (5 red and 5 white). RNA-seq data were mapped onto the Char04
reference and analyzed as described in the previous section. Differential gene expression
analysis was performed for each berry growth stage, separately, by comparing samples
from red cultivars with berries from with varieties. Genes presented an adjusted P-value
< 0.05 between red and white cultivars were considered as significantly expressed. Gene

expression analyses focused on the 173 genes in the Char04 chromosome 2 inversion.
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FIGURE LEGENDS:

Figure 1: Structural heterozygosity within Chardonnay 04 and comparisons of structural
variation between Chardonnay 04 and Cabernet Sauvignon 08. A) The circle plot reports
heterozygous SVs within the Char04 genome. The outermost circle denotes the number
and size of chromosomes (gray), followed by gene density (red), TE density (black),
deletions (orange), duplications (dark red), insertions (green), inversions (blue) and with
translocations represented in the middle of the circle in purple. B) A demonstration of
hemizygous genes of Char04 supported by both homozygosity and coverage. The vertical
colored lines in the grey coverage plot shows heterozygous sites. Both coverage and
heterozygous sites support a complete hemizygous gene (Vitvi02g00781), a partial
hemizygous gene (Vitvi02g00783). C) A Venn diagram showing the common and
specific SVs detected by each method between Cab08 and Char04. The SVs shared
between Illumina and Pacbio calls provide the basis for criteria to identify SVs from the

diversity panel.

Figure 2: SVs are strongly deleterious and under purifying selection. A) The unfolded
site frequency spectrum (SFS) of different types of SVs compared to presumably neutral
synonymous SNPs (Syn) and nonsynonymous SNPs (Nsyn) for samples of 12 wild (top)
and 12 cultivated (bottom) grapevines. The types of SVs plotted include duplications
(DUP), TE polymorphisms (MEI), deletions (DEL), translocations (TRA) and inversions
(INV). B) The inferred distribution of fitness effects (N.s) for SVs and nonsynonymous
SNPs in wild (left) and cultivated (right) grapevines. C) The proportion of adaptive

variation (@) in wild and cultivated grapevines.

Figure 3: Population genetics of SVs associated with grapevine domestication. A) The
recessive (number of homozygous SVs per grapevine), heterozygous and additive (the
number of heterozygous SVs plus two times the number of homozygous SVs per
grapevine) load in wild and cultivated grapevines for SVs compared to presumably
neutral sSSNPs. B) The decay of LD, as measured by 7%, of SVs and SNPs as a function of

physical distances between markers. C) Genetic differentiation between sylvestris (n =
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12) and sativa (n = 50) sample across the genome, based on Fsr of SVs within 20 kb
sliding windows. The dashed horizontal line represents the cut-off for the 1% tail of the
Fgr distribution. Peaks of divergence corresponding to the sex region and the berry color
loci are indicated. The x-axis indicates the number and size of chromosomes across the

genome. D) The same as panel C, except genetic differentiation is based on SNP data.

Figure 4: Haplotypes of the sex region and the evolution of sex in grapevine. A)
Comparison of the sex determination region among cultivars. The PN40024 (V2)
haplotype represents the primary assembly. Chardonnay is homozygous hermaphroditic
(HH), and both haplotypes from Char04 are shown. Cabernet Sauvignon is heterozygous
(HF), with Haplotype 1 of Cab08 representing the presumed H haplotype. * denotes the
gene VviAPT3 that is absent from PN40024 assembly but found in both F and H
haplotypes; open diamonds denote the genes located on chromosome 0 in the PN40024
assembly, and the filled diamond denotes a novel functional annotation in Char04 (INPI).
Protein-coding genes are colored according to their functional annotation. Genes that are
not shared among genome assemblies are colored in black. Black arrows highlight genes
that are found on inferred H haplotypes in Chardonnay and Cabernet Sauvignon. B) Gene
expression values of each flower gender type projected on the Chardonnay protein-
coding genes are shown at both G (flowers closely pressed together) and H (flowers
separating, just before blooming) stages as log,®*™ * 1. C) A phylogeny of the sex
determination region recapitulates known sex types for cultivars and detects two H clades
split by the single known male in the wild sample, suggesting more than one origin of the

H type.

Figure 5: Convergent evolution of inversions associated with white berries. A) A dot plot
between PN40024 chromosome 2 and Cab08 contigs. B) A dot plot between PN40024
chromosome 2 and Chard04 chromosome 2 that reveals a 4.82 Mb inversion overlapping
with the major berry color QTL in grapevines. C) These plots contrast coverage across
chromosome 2 for pairs of white berry and dark berry grapevines. In each contrast, the
white berry grape is labeled in green. The y-axis is the log2 of white/dark read numbers

so that, for example, regions of very low values indicate relatively few reads in the white-
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berry grape. For each contrast, the size of the inferred inversion is provided, based on the
presence of split reads. TB and TT are abbreviations for Tempranillo Blanco and
Tempranillo Tinto. D) A phylogeny, based on genome-wide SNPs from a selection of

grape varieties, with the color of text labels reflecting the color of the berry.
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Table 1 Assembly statistics of the Chardonnay genome and two comparatives: the

PN40024 reference and the Cabernet Sauvignon (Cab08) assembly.

Assembly statistics Annotation
Cultivar Abbrev. Assembly  Contig Scaffold
#Genes %BUSCO %TE
size N50 (Mb) N50 (Mb)
Chardonnay ~ Char04' 606 Mb 1.24 24.5 38,020 934 47.3
Cabernet Cab08’ 591 Mb 2.17 - 36,687 925 51.1
Sauvignon
Pinot Noir PN40024° 486 Mb 0.102 34 41,163  96.9 47.0
" This paper.
17
* Reference
? Reference
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