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Abstract

Sex-differences in cancer occurrence and mortality are evident across tumor types; men exhibit higher
rates of incidence and often poorer responses to treatment. Targeted approaches to the treatment of tumors
that account for these sex-differences require the characterization and understanding of the fundamental
biological mechanisms that differentiate them. Hepatocellular Carcinoma (HCC) is the second leading
cause of cancer death worldwide, with the incidence rapidly rising. HCC exhibits a male-bias in
occurrence and mortality, but previous studies have failed to explore the sex-specific dysregulation of
gene expression in HCC. Here, we characterize the sex-shared and sex-specific regulatory changes in
HCC tumors in the TCGA LIHC cohort. By using a sex-specific differential expression analysis of tumor

and tumor-adjacent samples, we uncovered etiologically relevant genes and pathways differentiating male
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and female HCC. While both sexes exhibited activation of pathways related to apoptosis and cell cycle,
males and females differed in the activation of several signaling pathways, with females showing
PPAR pathway enrichment while males showed PI3K, 305 PI3K/AKT, FGFR, EGFR, NGF, GF1R,
Rapl, DAP12, and IL-2 signaling pathway enrichment. Using eQTL analyses, we discovered germline
variants with differential effects on tumor gene expression between the sexes. 24.3% of the discovered
eQTLs exhibit differential effects between the sexes, illustrating the substantial role of sex in modifying
the effects of eQTLs in HCC. The genes that showed sex-specific dysregulation in tumors and those that
harbored a sex-specific eQTL converge in clinically relevant pathways, suggesting that the molecular
etiologies of male and female HCC are partially driven by differential genetic effects on gene expression.
Overall, our results provide new insight into the role of inherited genetic regulation of transcription in
modulating sex-differences in HCC etiology and provide a framework for future studies on sex-biased

cancers.

Background

Differences in cancer occurrence and mortality between sexes are evident across tumor types; males
exhibit higher rates of cancer incidence and often poorer response to treatment, including some forms of
chemotherapy and immunotherapy [1,2]. While differences in risk factors may explain some portion of
the sex-bias, the bias remains after appropriate adjustment for these factors [3,4]. A recent study
examining the mutational profiles of tumors from males and females across The Cancer Genome Atlas
(TCGA) found sex-differences in mutational profiles, calling for the consideration of sex as a biological
variable in studies on cancer occurrence, etiology, and treatment [5]. Despite these underlying molecular

differences, sex is rarely considered in the development of cancer therapies.

Across tumor types analyzed, the largest sex-differences in autosomal mutational profiles were seen in
liver hepatocellular carcinoma (HCC), indicating that male and female HCC are etiologically distinct [5].

Furthermore, HCC exhibits sex-bias in occurrence, with a male-to-female incidence ratio between 1.3:1
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and 5.5:1 across populations [6,7]. The sexes also differ in the clinical manifestation of HCC, males
exhibiting an earlier onset and more/larger nodules [8]. HCC is the second leading cause of cancer
mortality worldwide, accounting for 8.2% of all cancer deaths [2], and the incidence in the US has
doubled in the last 3 decades, attributable to increased rates of obesity [7], calling for the development of

new interventions and targeted therapies.

Sex-specific gene regulation may partially underlie differences between the sexes in disease prevalence
and severity [9,10]. Previous work observed extensive sex-biased signatures in gene expression in HCC
and other sex-biased cancers [11]. However, this study focused solely on comparing male and female
tumor samples, without consideration sex-differences in non-diseased and tumor-adjacent tissues. To
understand cancer-specific processes, it is necessary to contrast the sex-differences in gene expression
identified in HCC with those in non-tumor and tumor tissues. For the targeted treatment of tumors, it is
necessary to understand whether sex differences in cancer reflect unique cancer-specific changes, or are
reflective of healthy sex-differences that may underlie observed sex-bias in cancer occurrence and disease

etiology.

In addition to sex differences in overall gene expression due to the wide effects of sex as a biological
variable, genetic variants may alter gene expression in a sex-specific manner. A pan-cancer analysis of
the TCGA dataset identified 128 germline variants altering gene expression levels (eQTLs) in HCC [12].
However, this study purposefully controlled for and removed the effect of sex and, to date, a sex-specific
eQTL analysis in HCC has not been performed. Sex-stratified analyses can reveal sex-biased genetic
effects on gene expression that may be obscured in a joint analysis of both sexes - e.g. cases where the
regulatory variant has a zero or very small effect in one sex, or the eQTL exhibits an opposite effect
direction in the two sexes [13]. eQTLs that are discovered in one sex but not in the whole sample analysis
are likely to affect gene expression in a sex-dependent manner, and while a combined analysis of both
sexes achieves a greater statistical power to detect sex-shared effects, it dilutes the signal of sex-

dependent effects [14].
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Targeted approaches to the treatment of male and female HCC require the characterization and
understanding of the fundamental biological mechanisms that differentiate them. Here, we analyzed data
from TCGA and The Genotype-Tissue Expression project (GTEx) to examine the sex-specific patterns of
gene expression and regulation in HCC. Here, we have contrasted the sex-biased patterns of gene
expression in HCC tumors with healthy and tumor-adjacent liver tissues, allowing us to detect sex-
differences in gene expression shared between and specific to the different tissues. We show that male
and female HCC exhibit differences in the dysregulation of genes and the germline genetic regulation of
tumor gene expression. Importantly, these orthogonal approaches identify genes that converge in shared
pathways, indicating sex-specific etiology in HCC. The results presented here have implications for the

development of targeted therapies for male and female HCC.

Methods

Data

GTEX (release V6p) whole transcriptome (RNAseq) data (dbGaP accession #8834) were downloaded
from dbGaP. TCGA LIHC Affymetrix Human Omni 6 array genotype data, whole exome sequencing
(WES) and RNAseq data (dbGaP accession #11368) were downloaded from NCI Genomic Data
Commons [15]. In total, RNAseq data from 91 male and 45 female GTEx donors, germline genotypes and
tumor RNAseq data from 248 male and 119 female TCGA LIHC donors, as well as paired tumor and
tumor-adjacent samples from 28 male and 22 female TCGA LIHC donors were utilized in this study.
FASTQ read files were extracted from the TCGA LIHC WES BAM files using the strip reads() function
of XYAlign [16]. We used FastQC [17] to assess the WES and RNAseq FASTQ quality. Reads were
trimmed using TRIMMOMATIC [lluminaClip [18], with the following parameters: seed mismatches 2,
palindrome clip threshold 30, simple clip threshold 10, leading quality value 3, trailing quality value 3,

sliding window size 4, minimum window quality 30 and minimum read length of 50.
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93 Read mapping and read count quantification

94  Sequence homology between the X and Y chromosomes may cause the mismapping of short sequencing
95  reads derived from the sex chromosomes and affect downstream analyses [16]. To overcome this, reads
96  were mapped to custom sex-specific reference genomes using HISAT2 [19]. Female samples were
97  mapped to the human reference genome GRCh38 with the Y-chromosome hard-masked. Male samples
98  were mapped to the human reference genome with Y-chromosomal pseudoautosomal regions hard-
99  masked. Gene-level counts from RNAseq were quantified using Subread featureCounts [20]. Reads

100  overlapping multiple features (genes or RNA families with conserved secondary structures) were counted

101 for each feature.

102  Germline variant calling and filtering

103  BAM files were processed according to Broad Institute GATK (Genome Analysis Toolkit) best practices
104  [21-23]: Read groups were added with Picard Toolkit’s AddOrReplaceReadGroups and optical

105  duplicates marked with Picard Toolkit’s MarkDuplicates (v.2.18.1,

106  http://broadinstitute.github.io/picard/). Base quality scores were recalibrated with GATK (v.4.0.3.0)

107  BaseRecalibrator. Germline genotypes were called from whole blood Whole Exome Sequence samples
108  from 248 male and 119 female HCC cases using the scatter-gather method with GATK HaplotypeCaller
109  and GenotypeGVCFs [21]. Affymetrix 6.0 array genotypes were lifted to GRCh38 using the UCSC

110  LiftOver tool [24] and converted to VCF. Filters were applied to retain variants with a minimum quality
111 score > 30, minor allele frequency > 10%, minor allele count > 10, and no call rate < 10% across all

112 samples.

113 Clinical characteristics and cellular content of tumor samples

114  Confounding effects, e.g. differences in clinical and pathological characteristics or cell type composition

115  of the sequenced samples, may contribute to the observed effect modification when utilizing stratified
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116  analyses. We examined the differences in the clinical characteristics between males and females in the
117  TCGA LIHC cohort. We used a #-test to test for the equality of means in patient age and cell type
118  proportions, and Fisher’s exact test to test to detect differences in risk factors and pathological

119  classifications (Supplementary Tables S1 and S2).

120  Filtering of gene expression data

121  FPKM (Fragments Per Kilobase of transcript per Million mapped reads) expression values for each gene
122  were obtained using EdgeR [25]. Each expression dataset was filtered to retain genes with mean

123 FPKM>(0.5 and read count of >6 in at least 10 samples across all samples under investigation. In the
124  comparative analysis of differentially expressed genes (DEGs) between the tumor vs. tumor-adjacent
125  samples in males, females, and both sexes, genes that reached the previously described expression

126  thresholds in at least one tissue in at least one sex were retained. This assures that the DEGs detected in

127  the sex-specific and combined analyses are not due to filtering.

128  Differential expression analysis

129  For differential expression (DE) analysis, filtered, untransformed read count data were quantile

130  normalized and logCPM transformed with voom [26]. From the TCGA LIHC dataset, paired tumor and
131  tumor-adjacent samples were available for 22 females and 28 males. From the GTEx liver dataset, 91
132  male and 45 female samples were used in the DE analysis. A multi-factor design with sex and tissue type
133  as predictor variables were used to fit the linear model. duplicateCorrelation function was used to

134  calculate the correlation between measurements made between tumor and tumor-adjacent samples on the
135  same subject, and this inter-subject correlation was accounted for in the linear modeling. As the paired
136  tumor samples differed significantly between the sexes in terms of race, tumor grade, and HBV status,
137  (Supplementary Tables S1 and S2), these parameters were included in the linear models as covariates.
138  Due to missing values in the covariate data, the final numbers of sample pairs used in the analyses were

139 18 females and 26 males.
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140  DEGs between comparisons were identified using the limma/voom pipeline [26] by computing empirical
141  Bayes statistics with eBayes. An FDR-adjusted p-value threshold of 0.01 and an absolute log. fold-change

142  (FC) threshold of 2 were used to select significant DEGs.

143  To reliably detect genes that are expressed in a sex-biased way in HCC but not in non-diseased liver or in
144  tumor-adjacent tissue, we examined genes that were DE in the male vs. female tumor comparison using

145  the previously described significance thresholds, but not in the male vs. female comparisons of normal or
146  tumor-adjacent samples with a relaxed significance threshold of FDR-adjusted p-value < 0.1 and absolute

147  log(FC)>0.

148  To detect genes that are dysregulated in tumors compared to matched tumor-adjacent samples in each sex,
149  we identified DEGs in the tumor vs. tumor-adjacent comparison of males, females, and in the whole

150 sample. DEGs that were identified in one sex but not in the other or in the combined analysis of both

151  sexes were considered sex-specific. DEGs identified in the combined analysis were considered sex-

152  shared. This approach allows the identification of high-confidence sex-specific events that are a result of
153  the underlying biological differences as opposed to sampling or statistical power. ANOVA and Kruskal-
154  Wallis tests were used to test for equality of fold changes of sex-shared and sex-specific DEGs across

155 male, female, and all samples.

156  Overrepresentation of biological functions and canonical pathways

157  We further analyzed the sex-shared and sex-specific tumor vs. tumor-adjacent DEGs as well as the sex-
158  specific eQTL target genes (eGenes) to identify sex-shared and sex-specific pathways driving HCC

159  etiology. We used the NetworkAnalyst web tool [27], which utilizes a hypergeometric test to compute p-
160  values for the overrepresentation of genes in regards to GO terms and KEGG and Reactome pathways.
161  An FDR-adjusted p-value threshold of 0.01 was used to select significantly overrepresented GO terms

162  and canonical pathways.
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163  Accounting for confounding effects and population structure

164  Gene expression values are affected by genetic, environmental, and technical factors, many of which may
165  be unknown or unmeasured. Technical confounding factors introduce sources of variance that may greatly
166  reduce the statistical power of association studies, and even cause false signals [28]. Thus, it is necessary
167  to account for known and unknown technical confounders. This is often achieved by detecting a set of
168 latent confounding factors with methods such as principal component analysis (PCA) or Probabilistic

169  Estimation of Expression Residuals (PEER) [29]. These surrogate variables are then used as covariates in
170  downstream analyses. We derived 10 PEER factors from the filtered tumor gene expression data and used
171  the weights of these factors as covariates in the eQTL analysis. We used the R package SNPRelate [30] to
172 perform PCA on the germline genotype data. We accounted for population structure by applying the first

173  three genotype PCs as covariates in the eQTL analysis.

174  eQTL analysis

175  Weused eQTL analyses to detect germline genetic effects on tumor gene expression. Similar to the DE
176  analysis, we utilized combined and sex-stratified analyses to detect sex-shared and sex-specific effects.
177  Germline genotypes and tumor gene expression data from 248 male and 119 female donors in the TCGA
178  LIHC cohort were used in the eQTL analysis. Filtered count data was normalized by fitting the FPKM
179  values of each gene and sample to the quantiles of the normal distribution. To account for technical

180  confounders and population structure, 10 de novo PEER factors and three genotype principal components
181  were used as covariates. Cis-acting (proximal) eQTLs were detected by linear regression as implemented
182  in QTLtools v.1.1 [31]. Variants within 1Mb of the gene under investigation were considered for testing.
183  We used the permutation pass with 10,000 permutations to get adjusted p-values for associations between
184  the gene expression levels and the top-variants in cis: first, permutations are used to derive a nominal p-
185  value threshold per gene that reflects the number of independent tests per cis-window. Then, QTLtools

186  uses a forward—backward stepwise regression to determine the best candidate variant per signal [31].
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187  FDR-adjusted p-values were calculated to correct for multiple phenotypes tested, and an adjusted p-value
188  threshold of 0.01 was used to select significant associations. To allow the comparison of effect sizes of
189 sex-specific and sex-shared eQTLs across the sexes, effects of each variant located within the 1Mb cis-

190  window were obtained using the QTLtools nominal pass.

191  Similarly to the tumor vs. tumor-adjacent DEGs, eQTLs that were detected in one sex but not in the other
192  orin the combined analysis were considered sex-specific, while eQTLs detected in the combined analysis
193  were considered sex-shared. ANOVA and Kruskal-Wallis tests were used to test for equality of effect

194  sizes of sex-shared and sex-specific eQTLs across male, female, and all samples.

195  Estimating statistical power in the eQTL analysis

196  We used the R package powereQTL [32] to estimate the effect of the sample size to the statistical power

197  to detect eQTLs in the combined analysis of both sexes and in the sex-specific analyses (Fig. S2).

198 Genomic annotations of eQTLs

199  We used the R package Annotatr to annotate the genomic locations of eQTLs [33]. Variant sites were
200 annotated for promoters, 5S'UTRs, exons, introns, 3'UTRs, CpGs (CpG islands, CpG shores, CpG shelves),

201  and putative regulatory regions based on ChromHMM [34] annotations.

202 Results

203  Sex-specific patterns of gene expression in HCC

204  We identified sex-differences in gene expression in non-diseased liver (GTEx; 21 sex-biased genes with
205 an FDR-adjusted p-value < 0.01 and an absolute log.FC > 2), tumor-adjacent tissue (TCGA LIHC; 21
206  genes), and HCC (TCGA LIHC; 53 genes) to characterize the shared and unique sex-differences that may

207  drive the observed sex-biases in HCC occurrence and etiology (Fig. 1, Supplementary Tables S3-5). X-
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208  linked XIST and Y-linked genes were expressed in a sex-biased way across all tissues. While sex-biased
209  gene expression in non-diseased and tumor-adjacent tissues may contribute to the sex-differences in

210  cancer occurrence, sex-biased expression in tumors is suggestive of distinct molecular etiologies of male
211  and female HCC. We identified 34 genes that show sex-differences in expression in HCC, but not in

212  tumor-adjacent tissue or non-diseased liver, even with a relaxed significance threshold (Fig. 1A). Notably,

213  Notch-regulating DTX1 (Fig. 1B) and signal transducer CD24 were downregulated in male HCC.

214  To further examine the sex-shared and sex-specific mechanisms driving HCC etiology, we detected DEGs
215  Dbetween tumor and tumor-adjacent samples in males and females, as well as in the combined analysis of
216  Dboth sexes. Dimensionality reduction of gene expression data shows that variation among the tumor and
217  tumor-adjacent samples is driven by tissue type and sex (Fig. 1C). When inspecting the tumor samples
218  only, the first dimension is largely driven by sex (Supplementary Fig. S1). In the combined analysis of
219  male and female samples, we detected 691 tumor vs. tumor-adjacent DEGs (Supplementary Table S6). In
220  male- and female-specific analyses, we detected 715 and 542 tumor vs. tumor-adjacent DEGs,

221  respectively (Supplementary Tables S7 and S8). Out of the total of 903 unique DEGs, 76.5% were shared
222  Dbetween the sexes. We identified 103 female-specific and 108 male-specific tumor vs. tumor-adjacent
223  DEGs. Notably, substantially more DEGs were detected in sex-specific analyses than in the unstratified
224 analysis (Fig. 1D). Specifically, DEGs that showed different magnitudes in fold change between the sexes
225  (based on ANOVA/Kruskal-Wallis tests) were detected in the sex-specific analyses (Fig. 2C, 2D), while
226  DEGs with similar fold changes across all comparisons were detected in the combined analysis as well as
227  the sex-specific analyses (Fig. 2A). Sex-shared DEGs that were only detected in the combined analysis,
228  and not in the sex-specific analyses, showed a large variance in expression and, due to limited power,

229  were not detected as statistically significant DEGs in sex-specific analyses (Fig. 2B). Tumor-infiltrating
230  immune cells may produce spurious signals in DE analyses, which is evident from the detection of

231  various immunoglobulin genes in tumor vs. tumor-adjacent comparisons (Supplementary Tables S6-8).

232 However, male and female samples did not significantly differ in terms of cellular content

10
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233  (Supplementary Table S2), and thus such spurious signals are unlikely to affect male-female comparisons.
234  The observed differences in gene expression are thus likely to reflect actual sex-differences rather than

235  confounding differences in sample characteristics or composition.

236  To put these results in a broader context, we analyzed the male- and female-specific DEGs (tumor vs.

237  tumor-adjacent) for the overrepresentation of functional pathways. We found that the sex-shared and sex-
238  specific DEGs were enriched in pathways relevant to oncogenesis and cancer progression (Supplementary
239  Tables 9-11). We identified pathways that were overrepresented in only one of the sexes but not in the
240  other or in the combined analysis of both sexes, indicating that male and female HCC are partially driven

241 Dby different mechanisms and processes (Fig. 1E-F).

242  Differential cis-eQTL effects in male and female HCC

243  To further investigate the mechanisms of sex-difference in HCC etiology, we used eQTL analyses to

244 detect germline genetic effects on tumor gene expression in both the joint and sex-stratified analyses (Fig.
245  3A). We detected 1,204, 761, and 245 eQTLs in the combined, male-specific, and female-specific

246  analyses, respectively (Supplementary Tables S12-14). As expected, genomic annotations show that most
247  eQTLs are located on non-coding regions (Fig. 3B, Supplementary Tables S15-S17). Consistent with
248  previous reports, most cis-eQTLs were located near transcription start sites (TSSs), with 63% of all

249  eQTLs across the combined and sex-specific analyses being located within 20kb of TSSs. On average,
250 384 variants were tested per gene. 31% of the unique shared and sex-specific cis-eQTLs in HCC were
251  also identified as eQTLs in the liver data in the GTEx project analysis release V7, indicating shared tissue
252 origin. Out of the total of 1,595 unique associations, 75.7% were shared between the sexes. We detected
253 295 male-specific and 92 female-specific eQTLs. Since these associations were not detected in the

254  unstratified analysis, they are likely not a result of differential power to detect associations due to

255  different sample sizes, but exhibit effect modification by sex. Sex-specific associations exhibited

256  differences in effect size between the sexes (based on ANOV A/Kruskal-Wallis tests, Fig. 4C, 4D), and

11
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257  the sex-specific effect is diluted in the combined analysis (Fig. 4C, 4D). Sex-shared large effect eQTLs
258  were detected in sex-specific and combined analyses (Fig. 4A), and, due to the larger sample size, sex-

259  shared low-effect eQTLs are detected in the combined analysis only (Fig. 4B).

260  We detected 27 shared eGenes that were associated with independent variants in males and females. This
261  could be due to actual biological differences in gene regulation, or due to technical constraints, in

262  particular, missing genotypes in one sex affecting the permutation scheme to select the top-variant for
263  cach target gene. To overcome this and to detect high confidence instances of differential gene regulation
264  Dbetween the sexes, we further examined the sex-shared and sex-specific eGenes: we found 24 genes that
265  are under germline regulatory control in only male HCC (Fig. 3C), including POGLUT1, which is an
266  essential regulator of Notch signaling (Fig. 3D). No genes were found to be associated with nearby

267  variants in females only, likely due to reduced power to detect associations in females (Supplementary
268  Fig. S2). Male-specific eGenes were overrepresented in pathways related to cell cycle, apoptosis, and
269  cancer (Supplementary Table S18). Concordant with previous studies [14,35], none of the male-specific
270  eGenes were differentially expressed between male and female HCC, indicating that the male-specific
271  eQTLs are not a result of differences in overall gene expression levels between males and females, but are
272  likely to arise from factors such as differential chromatin accessibility or transcription factor activity. The
273  observation that non of the sex-biased autosomal genes in tumors harbor significant cis-eQTLs

274  (Supplementary Table S19) also suggests that while sex-specific cis-eQTLs may contribute to differences
275  in variance, sex-biased gene expression is likely a result of trans-effects, e.g. sex-chromosomal effects on

276  autosomal gene expression, or, more widely, a result of sex as a biological variable, e.g. hormonal effects.

277 Discussion

278  Distinct molecular etiologies of male and female HCC

12
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279  Itis well established that patterns of gene expression vary between the sexes across different tissues.

280  Previous studies have confounded these differences with those which may be driving etiological

281  differences between male and female tumors. For example, Yuan et al. previously reported extensive sex-
282  Dbiased signatures in gene expression in HCC and other strongly sex-biased cancers [11]. While they

283  identified immunity and cancer-associated enriched pathways based on sex-biased genes detected in HCC
284  tumors, their approach was limited as it did not include the examination of non-diseased liver nor tumor-
285  adjacent tissues. From the results presented here, we are able to distinguish the differences detected in
286  comparisons of male and female HCC from those reflecting sex-differences in the healthy liver or in

287  tumor-adjacent tissue, as well as to detect genes that are dysregulated in HCC in a sex-shared or sex-

288  specific manner.

289  We characterized differences in gene expression between male and female HCC cases. Notably, sex-

290  differences in gene expression were the largest in the tumor tissue, with 53 genes (including 32 autosomal
291  genes) being expressed in a sex-biased way. These sex-differences point to distinct mechanisms

292  underlying HCC oncogenesis between the sexes, and may partially underlie the observed sex-biases in
293  HCC occurrence and onset. We detected 34 genes that were expressed in a sex-biased way in HCC

294  tumors, but not in healthy or tumor-adjacent liver tissues. Some of these genes are of particular interest in
295  the context of HCC: Notch-regulating DTX1, found here to be underexpressed in males compared to

296  females, has been identified as a putative tumor suppressor gene in head and neck squamous cell

297  carcinoma [36]. Another female-biased gene detected here, CD24, has a crucial role in T cell homeostasis
298  and autoimmunity [37]. The opposing roles of CD24 expression in cancer and autoimmune diseases raise
299  interesting questions on the role of sex-differences in immunity underlying sex-differences in cancer.

300  Future studies will focus on better understanding the differential regulation of immune functions between

301 the sexes, and how these differences contribute to the observed biases in disease occurrence and etiology.

302 By sex-specific analyses of matched tumor and tumor-adjacent samples, we detected genes that are

303  uniquely dysregulated in male and female HCC. Further examination of these genes revealed sex-
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differences in the pathway activation, indicating that the molecular etiologies of male and female HCC
are partly driven by distinct functional pathways. Males and females differed in the activation of several
signaling pathways, with females showing PPAR pathway enrichment while males showed PI3K,
PI3K/AKT, FGFR, EGFR, NGF, GF1R, Rapl, DAP12, and IL-2 signaling pathway enrichment (Fig. 1E,
Supplementary Tables 9-10). As these signaling pathways are notable targets for anti-cancer and anti-
metastasis therapies [38—44], the results presented here have implications for the targeted treatment of

male and female HCC.

Sex-specific germline genetic effects on tumor gene expression may drive the molecular

etiologies of male and female HCC

Sex-specific regulatory functions may underlie sex-differences in cancer etiology, progression, and
outcome. We detected sex-differences in the germline genetic regulation of tumor gene expression in
HCC, including 24 genes that were under germline regulatory control only in male HCC (Fig. 3).
Functional annotations of these male-specific eGenes provide insight into possible regulatory mechanisms
contributing to the observed male-bias in HCC and sex-differences in HCC etiology. Protein O-
glucosyltransferase 1 (POGLUTI) was found to be under germline regulation in male HCC, but not in
female HCC or in the joint analysis of both sexes (Fig. 3D). The eQTL associated with POGLUT1 is
located on a promoter region of its target (Supplementary Table S15). POGLUT1 is an enzyme that is
responsible for O-linked glycosylation of proteins. Altered glycosylation of proteins has been observed in
many cancers [45,46], including liver cancer [47,48]. POGLUT1 is an essential regulator of Notch
signaling and is likely involved in cell fate and tissue formation during development. Genes involved in
Notch and PI3K/AKT signaling were also found to be expressed in a sex-biased way in HCC tumors and
overrepresented among the male-specific DEGs detected in the tumor vs. tumor-adjacent comparison,
showing that sex-specific e€QTLs and sex-specific dysregulated genes converge in canonical pathways.

Notch signaling pathway was also detected as overrepresented (FDR-adj. p-value < 0.01) among the 24

14
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328  male-specific eGenes. PI3K-AKT is known to co-operate with Notch by triggering inflammation and
329  immunosuppression [49]. These results point to a major role of the Notch/PI3K/AKT axis in the

330 development of HCC in males. PI3K/AKT/mTOR signaling is of particular interest in the context of
331 HCC, as it has been implicated in HCC carcinogenesis [50], is involved in hepatic gluconeogenesis [51],
332  and is activated in a sex-biased way in the liver and other tissues [52]. The role of Notch and PI3K/AKT
333  signaling in HCC may differ between early and late-stage tumors and among molecular subtypes, and
334  further studies are necessary to understand the possible oncogenic properties of these pathways among
335  HCC subtypes and between the sexes. In the future, analyses of data collected as a part of the

336 International Cancer Genomics Consortium project may elucidate the sex-specific processes of HCC
337  oncogenesis among the Japanese, as well as the interactions between sex and hepatitis infections in

338  shaping HCC etiology. However, each dataset has a unique ancestry composition and are not directly

339  comparable for validation purposes.

340 Conclusions

341  In summary, we discovered differential regulatory functions in HCC tumors between the sexes. This work
342  provides a framework for future studies on sex-biased cancers. Further studies are required to identify and
343  validate sex-specific genetic effects on tumor gene expression and its consequences in HCC and other

344  sex-biased cancers across diverse populations.
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346  HCC: Hepatocellular Carcinoma. TCGA: The Cancer Genome Atlas. GTEx: Genotype x Tissue
347  Expression Project. HBV: Hepatitis B virus. HCV: Hepatitis C virus. DEG: Differentially expressed gene.

348  eQTL: Expression quantitative trait loci. TSS: Transcription start site.
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372  Fig S1. A multi-dimensional scaling plot of the TCGA LIHC tumor samples of each sex (N male = 248,
373 N female = 119). Euclidean distances between samples were calculated based on 100 genes with the

374  largest standard deviations between samples.

375  Fig S2. Estimation of statistical power in the combined (grey), male-specific (blue), and female-specific
376  (red) eQTL analyses with a p-value level 0.01 and 384 variants. Increased power in the combined analysis

377  allows the detection of sex-shared low-effect eQTLs.

378  Table S1. Categorical clinical characteristics of male and female patients in the TCGA LIHC cohort.
379  Table S1. Categorical clinical characteristics of samples derived from male and female patients in the
380 TCGA LIHC cohort. The following symbols are used to indicate statistical significance: * =p < 0.10, **

381 =p<0.05,***=p<0.0l.

382  Table S2. Continuous clinical characteristics of male and female patients in the TCGA LIHC cohort.

383  Table S3. Sex-biased gene expression in the GTEx liver tissue samples with an FDR-adjusted p-value <

384 0.1 and absolute log. fold-change > 0. N males = 91, N females = 45.

385  Table S4. Sex-biased gene expression in the TCGA LIHC tumor-adjacent samples with an FDR-adjusted

386  p-value < 0.1 and an absolute log. fold-change > 0. N males = 22, N females = 18.

387  Table S5. Sex-biased gene expression in TCGA LIHC tumor samples with an FDR-adjusted p-value <

388  0.01 and an absolute log. fold-change > 2. N males = 22, N females = 18.
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389  Table S6. Differentially expressed genes between matched tumor and tumor-adjacent samples in the
390 combined analysis of male and female samples with an FDR-adjusted p-value < 0.01 and an absolute log;

391  fold-change > 2. N male sample pairs = 22, N female sample pairs = 18.

392  Table S7. Differentially expressed genes between matched male tumor and tumor-adjacent samples with

393  an FDR-adjusted p-value < 0.01 and an absolute log. fold-change > 2. N of sample pairs = 22.

394  Table S8. Differentially expressed genes between matched female tumor and tumor-adjacent samples

395  with an FDR-adjusted p-value < 0.01 and an absolute log. fold-change > 2. N of sample pairs = 18.

396  Table S9. Overrepresented GO terms and canonical pathways in the sex-shared tumor vs. tumor-adjacent
397  DEGs. Significant terms and pathways were selected based on an FDR-adjusted p-value threshold of

398  0.01.

399  Table S10. Overrepresented GO terms and canonical pathways in the male-specific tumor vs. tumor-
400  adjacent DEGs. Significant terms and pathways were selected based on an FDR-adjusted p-value

401 threshold of 0.01.

402  Table S11. Overrepresented GO terms and canonical pathways in the female-specific tumor vs. tumor-
403  adjacent DEGs. Significant terms and pathways were selected based on an FDR-adjusted p-value

404 threshold of 0.01.

405  Table S12. cis-eQTLs detected in the combined analysis of both sexes. N=367 (N males = 248, N

406  females = 119). Significant eQTLs were selected based on an FDR-adjusted p-value threshold 0.01.

407  Table S13. cis-eQTLs detected in the male-specific analysis. N=248. Significant eQTLs were selected

408  based on an FDR-adjusted p-value threshold 0.01.

409  Table S14. cis-eQTLs detected in the female-specific analysis. N=119. Significant eQTLs were selected

410  based on an FDR-adjusted p-value threshold 0.01.

18


https://doi.org/10.1101/507939
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/507939; this version posted July 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

411  Table S15. Genomic annotations of eQTLs detected in the combined analysis of both sexes.
412  Table S16. Genomic annotations of eQTLs detected in the male-specific analysis.
413  Table S17. Genomic annotations of eQTLs detected in the female-specific analysis.

414  Table S18. Overrepresented canonical pathways in the male-specific eQTL target genes. Significant

415  terms and pathways were selected based on an FDR-adjusted p-value threshold of 0.01.

416  Table S19. Top-variants associated with autosomal genes that were expressed in a sex-biased way in

417  HCC tumor samples.

418  Figure Captions

419  Fig. 1. Patterns of gene expression and molecular etiologies of male and female HCC. A: Sex-biased
420  gene expression in HCC. A volcano plot of DEGs between male (N=26) and female (N=18) HCC tumor
421  samples. X-linked genes are indicated in pink, Y-linked in green, and autosomal in black. Significant

422  genes were selected based on an FDR-adjusted p-value threshold of 0.01 and absolute log.(FC) threshold
423  of 2. Multiple transcripts of the long non-coding RNA XIST are independently expressed. Genes that were
424  not expressed in a sex-biased way in healthy liver (GTEx) or in the tumor-adjacent tissues are indicated
425  with an asterisk. B: An example of a gene exhibiting a sex-bias in HCC but not in healthy liver or tumor-
426  adjacent tissues. DTX] expression in log(CPM) is shown for male and female samples in each tissue. C:
427 A multi-dimensional scaling plot of the paired TCGA LIHC tumor and tumor-adjacent samples of each
428  sex. Euclidean distances between samples were calculated based on 100 genes with the largest standard
429  deviations between samples. Tissue type (dimension 1) and sex (dimension 2) drive the overall patterns of
430  gene expression in HCC. D: Venn-diagram of the overlap of DEGs in the sex-specific and combined

431  analysis of matched tumor and tumor-adjacent samples. Substantially more DEGs were identified in the

432  sex-specific analyses. E: Sex-specific and sex-shared DEGs were analyzed for the overrepresentation of
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433  functional pathways. Sex-specific patterns of pathway enrichment point to differential processes driving

434  the etiology of male and female HCC. F: Examples of sex-specific and sex-shared pathways.

435  Fig 2. Absolute log.-fold changes of DEGs detected from tumor vs. tumor-adjacent comparisons in the
436  sex-specific analyses and combined analysis of both sexes. Absolute log.-fold changes are given for
437  female samples, male samples, and across all samples. Global p-values for ANOVA are shown for each

438  DEG type. Adjusted p-values based on Kruskal-Wallis tests are shown for each pairwise comparison.

439  Fig. 3. Sex-specific genetic effects on tumor gene expression in HCC. A: QQ-plot of eQTL

440  associations in the combined analysis of both sexes (grey), male-specific analysis (blue), and female-
441  specific analysis (red). B: Genomic annotations of eQTLs in the combined analysis of both sexes, male-
442  specific analysis, and female-specific analysis. C: Overlap of eGenes detected in combined and sex-

443  specific analyses. D: An example of a male-specific eQTL. POGLUT1 expression in tumors is modulated
444 by a germline variant in cis in male HCC, but not in female HCC nor in the combined analysis of both
445  sexes, indicating effect modification by sex. Numbers of individuals with each genotype, adjusted

446  significance, and effect size (B) are given for each model.

447  Fig 4. Absolute effect sizes of sex-shared and sex-specific eQTLs in males, females, and the whole study
448  sample. Due to the larger sample size, sex-shared low-effect eQTLs are only detected as significant in the
449  combined analysis (A). Sex-shared large effect eQTLs are detected in the combined analysis as well as
450  the sex-specific analyses (B). Sex-specific eQTLs exhibit a larger effect in one sex than the other, and the
451  effect is diluted in the combined analysis (C, D). Sex-shared large effect eQTLs can be detected in sex-
452  specific and combined analyses. Global p-values for ANOVA are shown for each eQTL type. Adjusted p-

453  values based on Kruskal-Wallis tests are shown for each pairwise comparison.
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