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Abstract 19 

Background 20 

Insertions/deletions (InDels) and more specifically presence/absence variations (PAVs) are pervasive in 21 

several species and have strong functional and phenotypic effect by removing or drastically modifying 22 

genes. Genotyping of such variants on large panels remains poorly addressed, while necessary for 23 

approaches such as association mapping or genomic selection.  24 

Results 25 

We have developed, as a proof of concept, a new high-throughput and affordable approach to genotype 26 

InDels. We first identified 141,000 InDels by aligning reads from the B73 line against the genome of three 27 

temperate maize inbred lines (F2, PH207, and C103) and reciprocally. Next, we designed an Affymetrix® 28 

Axiom® array to target these InDels, with a combination of probes selected at breakpoint sites (13%) or 29 

within the InDel sequence, either at polymorphic (25%) or non-polymorphic sites (63%) sites. The final 30 

array design is composed of 662,772 probes and targets 105,927 InDels, including PAVs ranging from 35bp 31 

to 129kbp. After Affymetrix® quality control, we successfully genotyped 86,648 polymorphic InDels (82% 32 

of all InDels interrogated by the array) on 445 maize DNA samples with 422,369 probes. Genotyping InDels 33 

using this approach produced a highly reliable dataset, with low genotyping error (~3%), high call rate 34 

(~98%), and high reproducibility (>95%). This reliability can be further increased by combining genotyping 35 

of several probes calling the same InDels (<0.1% error rate and >99.9% of call rate for 5 probes). This 36 

“proof of concept” tool was used to estimate the kinship matrix between 362 maize lines with 57,824 37 

polymorphic InDels. This InDels kinship matrix was highly correlated with kinship estimated using SNPs 38 

from Illumina 50K SNP arrays. 39 

Conclusions 40 

We efficiently genotyped thousands of small to large InDels on a sizeable number of individuals using a 41 

new Affymetrix® Axiom® array. This powerful approach opens the way to studying the contribution of 42 

InDels to trait variation and heterosis in maize. The approach is easily extendable to other species and 43 

should contribute to decipher the biological impact of InDels at a larger scale. 44 
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Background 50 

In the past decade, there has been growing evidence that structural variations (SVs) are pervasive 51 

within plant genomes [1–9]. Insertion/deletions (InDels) are one class of SVs of particular interest, since 52 

they lead to the presence or absence of, sometimes large, genomic regions at a given locus, among 53 

individuals from the same species. The content of these InDels can be present elsewhere in the genome, 54 

but they can also be completely absent from the genome, in which case they are referred to as 55 

presence/absence variants (PAVs). Some InDels carry entire genes or affect gene regulatory elements and 56 

are thus likely to have a functional and phenotypic impact [10–12, 7, 13]. Hundreds to thousands of SVs, 57 

including PAVs and copy number variations (CNVs), have been discovered in several plant species, 58 

including wheat [14], rice [15], Arabidopsis thaliana [13], potato [16] , pigeon peas [17], and sorghum [18]. 59 

These results support the idea that one single reference genome cannot properly represent the complete 60 

gene set of a given species. There has been an increasing interest for building new individual genomes in 61 

complement to the reference genome, in order to better describe the genetic diversity within a plant 62 

species [3, 19–25] .  63 

In maize, BAC sequence comparison first revealed that gene and transposable element content 64 

greatly vary between inbred lines [26, 27]. Whole genome sequencing of the B73 inbred line then provided 65 

the opportunity to explore the extent of SVs  across the entire maize genome [28]  by designing 66 

Comparative Genomic Hybridization (CGH) technology [29] . Several CGH studies found multiple CNVs 67 

between the B73 reference genome and other maize inbred lines or teosintes [2, 8, 9]. These studies 68 

demonstrated the large extent of SVs among maize inbred lines, including presence/absence variations of 69 

low copy sequences, such as genes. This was well illustrated by the discovery of a large 2 Mbp 70 

presence/absence region between Mo17 and B73 carrying several genes [2, 9, 20, 21]. However, CGH 71 

array technology shows several major drawbacks since (i) it does not allow the discovery of sequences 72 

that are not present in the reference genome used for designing probes of the arrays, (ii) it has a limited 73 

resolution which does not allow detection of InDels smaller than 1kb, and (iii) it is costly and labor-74 

intensive, and therefore not adapted for genotyping several hundreds of individuals.  75 

Methods based on SNP array experiments have been developed to detect CNVs and were shown 76 

to be more affordable and with higher throughput than CGH arrays [32–35] . Didion et al. (2012) identified 77 

atypical patterns of reduced hybridization intensities that were highly reproducible, so called “off-target 78 

variants” (OTVs) [36]. OTV patterns could originate either from the absence of the sequence due to a PAV 79 

polymorphism, or to a single nucleotide polymorphism within the probe sequence, thus preventing the 80 

correct hybridization of the DNA sample. For instance, 45,974 OTVs were discovered in a maize population 81 

using the 600K Affymetrix® Axiom® SNP array [37]. While these approaches proved to be useful, there is 82 

a strong risk of false positive detection of PAVs using OTV patterns, mainly because these arrays were not 83 

designed to target PAVs. In order to reduce this risk of false positive detection of PAVs and more largely 84 

CNVs, several methods based either on segmentation or Hidden Markov Chain have been developed to 85 

use variation of fluorescent intensity signal of contiguous probes along the genome [38–43] These kind of 86 

approaches have been used on 600K Affymetrix® Axiom® SNP array to detect several hundreds of CNVs 87 

and to explore the contribution of CNV to phenotypic variation [44]. 88 
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With the emergence of massive parallel sequencing, new methods have been developed to detect 89 

structural variations based on the alignment of resequencing reads onto a high quality reference genome 90 

sequence. Among these, three have been mainly used [45] : (i) the “read-depth” (RD) method, which can 91 

only detect copy number variations; (ii) the “read-pair” (RP) method, which can detect deletions as well 92 

as small insertions (up to the size of the library insert); and (iii) the “split-read” (SR) method which can 93 

also detect deletions and small insertions (up to the size of a read). Chia et al. (2012) used the RD approach 94 

to identify CNVs among 104 maize lines and performed association studies for several traits [10]. 95 

However, the RD method does not allow the identification of novel sequences and is error prone, 96 

especially regarding the size of the discovered CNVs which greatly depends on the size of the sliding 97 

window used. The RP method has been implemented in many computational tools like BreakDancer [46] 98 

and has been widely used. Although it has proven to be highly efficient to detect deletions [47–49], this 99 

approach suffers from two limitations:  it does not allow precise detection of breakpoints, and the size of 100 

the insertions which can be detected is directly limited by the library insert size. The SR method, which 101 

was first implemented in PInDel [50], has the advantage of defining breakpoints at a single-base 102 

resolution, but again the size of the detectable inserted sequence is limited. 103 

The “assembly” (AS) method is able to detect all types of SVs of any size, but is also the most cost 104 

and computation-intensive. It is the only method able to detect large insertions with precise breakpoint 105 

definition. However, the assembly of large and complex genomes such as maize remains very expensive 106 

and computationally intensive, despite recent progress in this area [20, 21, 31]. There has been in the past 107 

some attempts to reduce this complexity by reducing the number of sequences to assemble. For instance, 108 

Lai et al., (2010) identified 104 deletions and 570 insertions among 6 maize inbred lines by assembling 109 

genomic regions from reads that did not map on the B73 reference genome [51]. The sequences 110 

assembled by this approach were enriched in erroneous reads or reads coming from external 111 

contamination, and they were too short to be anchored to the reference genome B73. Hirsch et al. (2014) 112 

identified several putatively expressed genes that were not present within B73 reference genome by 113 

assembling and comparing the transcriptome of hundreds of inbred lines  [12]. This new approach was 114 

limited to the transcribed part of the genome and suffered from a high level of false positives. More 115 

recently, Lu et al., (2015) used genotyping by sequencing approaches on 14,129 inbred lines to identify 116 

1.1 million short and unique sequences (GBS tags) that (i) did not align on the B73 reference genome, or 117 

were aligned but outside of a 10Mbp windows around their mapped position; or (ii) were mapped at the 118 

same location by joint linkage mapping in NAM populations using co-segregation with a SNP and logistic 119 

regression between the InDel and the SNP in an association panel [13]. The main drawback of this 120 

approach is the high percentage of missing data due to the low depth of sequencing, which requires 121 

imputation before being able to perform genetic analysis. Recent whole genome sequence assemblies of 122 

PH207 [31], and F2 [20] have allowed the identification of thousands of large InDel and PAV sequences. 123 

For instance, 2,500 genes were found either present or absent in PH207 and B73 genomes and 10,735 124 

PAV sequences larger than 1kb were discovered between F2 and B73, including 417 novel genes in F2. 125 

These discovery approaches have been limited to a few individuals due to sequencing costs and 126 

computational challenges, so they have not been adapted for characterization of SVs on large maize 127 

panels. Darracq et al. (2018)  developed an interesting approach for the genotyping of PAVs from mapping 128 

of low depth (5-20X) resequencing datasets [20]. This method is based on the comparison of reads aligning 129 
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to the region found in F2 and in the line of interest. While this method is potentially adapted to genotype 130 

PAVs on any set of line with low resequencing data, it has been so far used for PAV genotyping on a low 131 

(<30) number of maize lines. Moreover, it is restricted to the analysis of PAVs, and is not adapted for 132 

genotyping other types of SVs. To avoid this ascertainment bias due to use of a single reference genome 133 

to genotype SV, other studies proposed to call SV by aligning reads on a pan-genome representing the 134 

combination of several genomes [14, 22, 52]. However, these approaches remained computationally 135 

challenging on a sizable set of individuals, time demanding, and costly for large and complex genomes, 136 

since it requires high-depth sequencing [52]. To our knowledge, no high-throughput genotyping approach 137 

has been developed for genotyping large numbers of InDels, including PAVs, on a large set of individuals. 138 

We have developed, as proof of concept, a new high-throughput and affordable array that is able to 139 

genotype simultaneously large insertions and deletions, with highly variable size and contents that are 140 

previously discovered by different sequencing methods. In this study, we present this approach which is 141 

both (i) comprehensive, as it includes the discovery and localization of deletions as well as insertions 142 

regarding the B73 reference genome at the base pair level and (ii) high-throughput, as it allows genotyping 143 

of thousands of InDels on hundreds of individuals. Our strategy takes advantage of next generation 144 

sequencing (NGS) technologies and recent advances in assembly of complex genomes. It also benefits 145 

from the high efficiency of SNP arrays like the high-throughput Affymetrix® Axiom® technology. In this 146 

paper, we detail how we discovered thousands of small to large InDels, including PAVs, from three maize 147 

inbred lines (F2, PH207 and C103) as compared to the B73 reference genome. We then describe how we 148 

designed and selected 600,000 probes to create a new Maize Affymetrix® Axiom® array to genotype these 149 

InDels. Finally, we describe how we successfully used this array to genotype an association panel of 362 150 

maize inbred lines.  151 
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Results 152 

InDel and PAV discovery 153 

To design a comprehensive InDel genotyping array, we first discovered a set of InDels which would 154 

be representative of the maize temperate germplasm. We already had access to sequence data for the 155 

European flint line F2, and we benefited from a first set of 42,330 F2-specific sequences, larger than 150pb 156 

and totaling 16Mbp. This dataset was derived from the de novo assembly of an F2 paired-end that failed 157 

(at least for one read of the pair) to align onto the B73 AGPv2 sequence, and which were totally devoid of 158 

coverage by B73 reads (“Reference guided assembly” in Additional file 2: Figure S1, “no map” approach). 159 

We also took advantage of the work done by [20] to add another 10,044 F2-insertions (size >1 kb, total 160 

size of 88Mb), with less than 70% of their length covered by B73 reads discovered by a whole genome 161 

assembly approach (Additional file 2: Figure S1).  162 

To complement these two datasets of F2/B73 deletions and insertions, we generated and 163 

assembled Illumina® paired-end and mate-pair sequences from two other key founders of temperate 164 

maize breeding programs: PH207 and C103. We then used this F2, PH207, and C103 sequence data to 165 

detect all InDels, including PAVs, at base-pair resolution, between these three lines and B73. As opposed 166 

to the “reference guided assembly approach”, the “whole genome assembly” methodology allowed us to 167 

access both to their sequences and their breakpoints, permitting the genotyping of such InDels in several 168 

individuals (more details in Methods). We did not use the “no map” approach for InDel discovery on 169 

PH207 and C103, because this approach did not give access to breakpoint resolution, did not allow the 170 

discovery of InDels without knowledge of the specific sequence, and was almost redundant with the 171 

assembly approach.   172 

We first aligned F2, PH207, and C103 sequences against the B73 reference genome sequence in 173 

order to detect deletions. Here, the term “deletion” does not reflect any underlying biological process of 174 

DNA excision but refers to a sequence of at least 100bp present in the B73 genome at one locus and 175 

absent in another line at the same locus. Deletions were detected for the three lines simultaneously using 176 

the “genotyping” option of PInDel [50], generating a set of 26,368 non-redundant deletions with precise 177 

identification of their breakpoints (Additional file 2: Figure S2A). The number of deletions found for each 178 

line was similar, respectively 12,165, 11,922, and 13,432 for F2, PH207, and C103. 67% of the deletions 179 

found were unique to one line, 24% were shared by two lines, and 9% by three lines (Additional file 2: 180 

Figure S2A). These results confirm the good complementarity of the lines chosen to discover InDels. The 181 

high proportion of unique deletions among 4 lines may also reflect that numerous InDels remain to be 182 

discovered in temperate maize germplasm. 183 

Next, we generated a draft genome assembly for each of these lines, which was used as a 184 

template for alignment of B73 reads to detect insertions relative to the B73 reference genome (Additional 185 

file 1: Table S1). As for deletions, here the term “insertion” does not reflect any underlying biological 186 

process of DNA integration, but defines a sequence larger than 100bp that is present in one line at a given 187 

locus, and absent from B73 at the same locus. These three draft assemblies cover less than one third of 188 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/507756doi: bioRxiv preprint 

https://doi.org/10.1101/507756
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

the expected maize genome size but include a large portion of low copy sequences, including genes, as 189 

shown by BUSCO results (Table 1).  190 

Table 1: F2, PH207, and C103 de novo assembly metrics. 

Maize 

line 

Number 

of 

scaffolds 

Min 

size 

Max size Average 

size 

N50 Total 

(Mb) 

% of 

Ns 

Complete 

BUSCOs 

(C) 

Fragmented 

BUSCOs (F) 

Missing 

BUSCO

s (M) 

F2 76,563 892 112,956 16,900 14,04

2 

646.3 9.48% 89.3% 4.9% 5.8% 

PH207 81,688 884 2,024,489 29,557 16,86

0 

797.5 8.90% 91.8% 2.7% 5.5% 

C103 84,990 886 120,582 19,305 16,14

6 

793 8.21% 90.6% 4.2% 5.2% 

Number of scaffold: The number of scaffold sequences assembled, Min Size: the length of the shortest scaffold, Max 

size: the length of the longest scaffold, Average Size: the average size of scaffolds, N50: N50 of the assembly, Total: 

the total number of bases included in the assembly, % of Ns: the percentage of Ns present in the assembly; BUSCO 

statistics included the percentage of complete (C), fragmented (F) and missing (M) BUSCO genes from a total of 1440 

BUSCO genes 

Detection of insertions was processed separately for each inbred line and generated 28,221 insertions for 191 

F2, 27,904 insertions for C103, and 26,795 insertions for PH207, with their precise breakpoints (Additional 192 

file 2: Figure S2B). The number of insertions is similar between lines, but significantly greater than the 193 

observed deletions. Among these insertions, 26,691 cases could be uniquely anchored at base pair 194 

resolution onto the B73 reference genome sequence (Additional file 2: Figure S2B). Again, a majority of 195 

insertions were unique to one line (72%) confirming the complementarity of the material chosen (Figure 196 

S2B). 197 

Finally, the results from the different approaches were merged into a non-redundant set of 198 

141,325 InDel sequences (see Methods), comprising 52,175 deletions and 89,150 insertions. These 199 

regions were then used for the design of genotyping probes. 200 

Design of the genotyping array 201 

Genotyping strategy 202 

Large InDels can be efficiently genotyped with a SNP array using a combination of two types of 203 

probes: (i) “external” probes, which target breakpoints using the two flanking sequences of a given InDel 204 

(BP probes), and (ii) “internal” probes, which target presence/absence regions (PARs) within the internal 205 

sequence of InDels on polymorphic (OTV probes) or monomorphic sites (MONO probes). We define PARs 206 

as small portions of DNA sequence of at least 35bp that were observed present or absent at the genome 207 

level, when comparing two individuals. They are thus suitable for the design of presence/absence 208 
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genotyping probes. Ideally, each InDel should be called by two BP probes on either side and by multiple 209 

internal probes, regularly distributed along the internal sequence of the InDel (Figure 1A). However, in 210 

practice, this combination of different probes is not always possible. For instance, precise breakpoints 211 

were not determined for all PAVs from our “no map” approach and [20], and PARs for internal probes 212 

were not always found in our InDels. 213 

Probe design 214 

BP probes should behave like classical SNP probes where one allele corresponds to the presence 215 

and the other to the absence of the InDel. They are useful to explore the conservation of the localization 216 

of large insertion/deletion events across multiple individuals, even when no internal probe can be 217 

designed due to the absence of PARs. Among the 141,325 selected variants, 86,406 InDels (22,420 218 

deletions and 63,986 insertions as compared to the B73 reference genome sequence) had breakpoints 219 

defined at base-pair resolution and were suitable for BP probe design. Four different breakpoint types 220 

were identified according to the presence of micro-homology and/or shorter non homologous sequence 221 

[53] in place of a complete deleted sequence (Additional file 2: Figure S3): (type I) 3,397 cases with sharp 222 

breakpoints; (type II) 45,987 cases with a micro-homology sequence (8.6 bp on average and no more than 223 

237 bp) which was present in one copy in the reference sequence and duplicated at both extremities of 224 

the novel inserted sequence; (type III) 36,893 cases harboring insertion of a short non-homologous 225 

fragment (42.2 bp on average and up to 892 bp) in place of a large deleted sequence; and (type IV) 156 226 

cases with a combination of type II and type III breakpoints. Following Affymetrix® recommendations, 227 

19,010 InDels with type II breakpoints having a micro-homology sequence longer than 5bp were excluded 228 

from the design process. In the end, 67,396 InDels, representing 48% of all available InDel variants, were 229 

submitted to the Affymetrix® design pipeline. Two probes, one on forward (FW) and one on reverse (REV) 230 

strand, were designed for each breakpoint. These probes were classified as not possible (18%), not 231 

recommended (33%), neutral (15%) and recommended (35%) by this automated pipeline (see Methods 232 

for details), leaving 33,430 InDels (51%) that could be targeted by at least one recommended probe. 233 

 Internal probes, which should behave like “off-target” variants [36] where the hybridization of the 234 

probe indicates presence of the InDel, and the absence of hybridization of the probe indicates absence of 235 

the InDel, are useful to explore the genetic diversity within InDel sequences (Figure 1 D). They will also be 236 

particularly interesting to target InDels for which no breakpoint could be identified (such as PAVs from 237 

the “no map” approach). 238 

For the design of OTV probes, we benefited from the availability of SNPs which had been 239 

previously identified from the alignment of resequencing data from a core collection of 25 temperate 240 

maize inbred lines against the B73-F2 maize pan-genome from [20]. As a consequence, OTV probes have 241 

only been designed for deletions positioned on the B73 reference genome and F2 insertions coming from 242 

[20]. Among these, the context sequences of 436,162 SNPs, corresponding to 21,390 InDels, were 243 

extracted and submitted to the Affymetrix® design pipeline. Two probes, one on forward (FW) and one 244 

on reverse (REV) strand, were designed for each SNP. A total of 872,324 OTV probes could be designed 245 

and scored as not possible (0.05%), not recommended (71%), neutral (14%) and recommended (16%), 246 

leaving 17,589 InDels (82%) which could be targeted by at least one recommended probe. 247 
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For the design of BP and OTV probes we could rely on Affymetrix® design pipeline to identify 248 

probes localized in PARs and thus suitable for the Affymetrix® Axiom® technology. For the design of MONO 249 

probes, we first had to identify such PARs within 141,325 InDels cumulating 133Mbp of sequence. We 250 

used sequence masking methods to exclude repeats based on similarity to known maize repeats or on 251 

occurrence of 17-mers found within the sequencing datasets we had for B73, F2, PH207, and C103 (see 252 

Methods). By doing so, we identified 122,972 PARs, representing a cumulated size of 27Mbp, 253 

corresponding to 20.3% of the initial size and allowing the possibility to design MONO probes for 79,987 254 

InDels (56.5%). These PAR sequences were successfully used for the design of 25,735,797 MONO probes, 255 

among which 59% were scored as recommended and allowed to target 62,875 InDels (79%). 256 

With this combined approach, we designed a total of 26,715,361 probes targeting 117,756 InDels, 257 

which represent a cumulated length of 250 Mbp including 27 Mbp of PARs (Table 2).  258 

Table 2: Number of probes and targeted InDels before and after selection for array design and 

passing the Affymetrix® quality control according to different probes type. Percentages are 

indicated in brackets 

 Before selection On array 
Called by Affymetrix® 

pipeline 

 Probes InDel+ Probes InDel+ Probes InDel+ 

BP 
Type1 

6,648  
(0.02%) 

3,324  
(2.82%) 

4,691  
(0.71%) 

2,751  
(2.6%) 

2,092  
(0.44%) 

1,482  
(1.66%) 

BP 
Type2 

51,770  
(0.2%) 

25,885 
(21.98%) 

38,790 
(5.85%) 

22,662 
(21.39%) 

20,540 
(4.29%) 

14,407 
(16.12%) 

BP 
Type3 

71,820 
(0.27%) 

35,910 
(30.5%) 

41,272 
(6.23%) 

27,897 
(26.34%) 

23,631 
(4.93%) 

18,485 
(20.68%) 

BP 
Type4 

312  
(0.001%) 

156  
(0.13%) 

241  
(0.04%) 

146  
(0.14%) 

119  
(0.02%) 

93  
(0.1%) 

OTV 
872,324 
(3.26%) 

21,390 
(18.16%) 

163,278 
(24.64%) 

18,558 
(17.52%) 

96,867 
(20.22%) 

15,064 
(16.85%) 

MONO 
25,735,797 

(96.25%) 
68,573 

(58.23%) 
414,500 
(62.54%) 

65,796 
(62.11%) 

335,778 
(70.1%) 

63,597 
(71.14%) 

ALL 26,738,671 117,756 662,772 105,927 479,027 89,393 

+Note that a same InDel could be genotyped by several probe types which resulted in the percentage values great 

than 1. 

Among these InDels, 97,748 (83%) can only be targeted with either internal or external probes, but not 259 

both (Figure 3A). These results support our overall strategy which includes the discovery of InDels, with 260 

precise breakpoints in a preliminary step, and the use of complementary internal/external probes for the 261 

genotyping of large InDels. 262 
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Array design 263 

We used the Affymetrix® recommendations to select the 700,000 probes to be included in the 264 

final array, plus some other criteria depending on the probe type. Nevertheless, because of their added 265 

value, we decided to keep all BP probes as long as they had less than 3 hits on the B73 reference genome 266 

sequence. This first selection consumed 84,994 probes targeting 53,456 InDels, among which 70% could 267 

only be targeted by BP probes. Concerning OTV and MONO probes, we first selected neutral and 268 

recommended probes having no hit at all (for insertions), and only one hit (for deletions), against the B73 269 

reference genome sequence. We then considered their density with the objective to maximize the 270 

number of InDels that could be surveyed, as well as to have an even distribution of probes along targeted 271 

InDel sequences (see Methods). We then performed a second selection among not recommended OTV 272 

and MONO probes for 4,541 InDels that were still not targeted. After filtering some duplicated probes, 273 

we built a final array design containing 662,772 probes targeting 105,927 InDels that represent a 274 

cumulated length of 232 Mbp, including 25.9 Mbp of PARs. 275 

Description of the array content 276 

The final array design allows genotyping InDels with various sizes, ranging from 37 bp to 129.7 277 

kbp, with a median of 501 bp (Figure 2). They are covered by 1 to 482 probes, with a median of 3 probes 278 

per InDel (Additional file 2: Figure S4). The number of probes does not always reflect the length of the 279 

InDels, as the proportion of PARs within InDels is highly variable (Figure 2A). 8,040 InDels (ranging from 280 

37 bp to 2,409 bp, with a median of 163 bp) were completely covered by PARs and could thus be 281 

considered as a proper PAVs, 34,372 InDels (ranging from 101 to 129,700 bp with a median of 320 bp) 282 

were not covered by any PAR at all (Figure 2A). The biggest InDels contains more frequently PARs than 283 

the little ones (Figure 2B). In fact, the number of internal probes were more strongly correlated to the size 284 

of the PARs (r2 = 0.79) rather than to the size of the InDels (r2 = 0.16) (Additional file 2: Figure S5).  285 

As expected, the probe selection process did not impact the overall distribution of probe types 286 

among targeted InDels, as 35% of them can exclusively be genotyped by BP probes, and 50% can only be 287 

genotyped by internal probes, among which 73% are only targeted by the use of the original MONO 288 

probes (Figure 3B). Indeed, a large number of InDels did not contain PARs and cannot be genotyped with 289 

35bp internal probes but only with BP probes. Whereas, others InDels contains PARs but have no BP 290 

probes due to the InDel discovery approach (“no map”). 291 

Among the 43,117 InDels that could be anchored onto the B73 reference genome sequence and 292 

which were included in the array design, 13,737 were located inside a gene, 57 close to a gene (less than 293 

1 kb away), 1,311 inside a pseudo-gene and 2,212 inside a transposable element. InDels and probe density 294 

varied across each chromosome (Additional file 2: Figure S6). We observed a higher density in 295 

chromosome arms than in peri-centromeric regions (Additional file 2: Figure S6). We also identified 296 

clusters of InDels with a large specific sequence at the beginning of chromosome 6 (10-20Mbp) or at the 297 

end of chromosome 5 (~190Mbp). 298 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/507756doi: bioRxiv preprint 

https://doi.org/10.1101/507756
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

Assessing array quality by genotyping 105,927 InDels on 299 

480 maize DNA samples 300 

InDel calling using dedicated Affymetrix® pipelines 301 

We genotyped 480 maize DNA samples including 440 inbred lines, 24 highly recombinant inbred 302 

lines and 16 F1 hybrids. Dedicated Affymetrix® pipelines were implemented for each of the probe types 303 

to call genotype of the InDels based on fluorescent intensity and contrast variation of the probes. It 304 

included two algorithms already developed by Affymetrix® [36] for BP and OTV probes (Additional file 2: 305 

Figure S7A et B) and a third one, which was newly developed for the calling of presence/absence 306 

genotypes using MONO probes (Additional file 2: Figure S7C). 35 DNA samples including all F1 hybrids, did 307 

not pass Affymetrix® quality control due to their low call rate (<0.9) and were eliminated. Call rate of the 308 

445 remaining samples, which are all inbred lines, varied from 96% to 99% with a median of 98%. The call 309 

rate varied according to probe type (median of 90% and 99% for BP and internal probes, respectively). 310 

Out of 662,772 probes, 479,027 probes representing 89,393 InDels passed Affymetrix® quality control and 311 

were called on 445 DNA samples. Respectively 55%, 59%, and 81% of BP, OTV, and MONO probes were 312 

converted into recommended markers after clustering by Affymetrix® pipelines (Additional file 1: Table 313 

S2, S3, and S4). 94% of these recommended BP and OTV markers were classified as “PolyHighResolution” 314 

(PHR) indicating a high quality of clustering and that these markers were polymorphic (Additional file 2: 315 

Figure S8). Note that the criteria defining high quality of clustering for MONO probes called by new 316 

Hom2OTV algorithm was not yet implemented in Affymetrix pipeline (Additional file 1: Table S4 and 317 

Additional file 2: Figure S7C). As a consequence, classification of MONO probes could not be comparable 318 

to BP and OTV probes. Thanks to the 3 probe types and redundancy, 84% of all InDels could be called with 319 

an average of 5.4 probes per InDel. 320 

To evaluate the genotyping ability of the 479,027 probes, we first compared the clustering of 321 

inbred lines expected for three probe types (BP, OTV, and MONO) with the observed clustering of inbred 322 

lines based on fluorescence intensity and contrast of 445 inbred lines genotyped with the array. For BP 323 

probes, we expected at least two clusters corresponding to the individuals homozygous either for 324 

presence (“AA” or “BB”) or absence (“OO”). A third cluster could be observed when individuals were 325 

heterozygous individuals for presence/absence (“OA” or “OB” hemizygous) (Figure 1C). For OTV probes, 326 

we expected at least 3 different clusters: two cluster corresponding to the individuals homozygous for 327 

allele A or B of SNP (“AA”, “BB”), and a third “off-target” cluster for the individuals homozygous for 328 

absence (“OO”). A fourth cluster could be observed when some individuals were heterozygous at the 329 

within-InDel SNPs (AB). For MONO probes, we expected only two clusters corresponding to the individuals 330 

for which the sequence was present (“AA” or “BB”) or absent (“OO“, ”AA” or “BB”) (Figure 1C). The 331 

observed clustering by the three dedicated pipelines was consistent with the expected clustering for 43% 332 

of BP, 83% of OTV and 63% of MONO probes (Table 3).333 
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Table 3: Comparison between the clustering expected for BP, MONO, and OTV probe types and the clustering produced by 

Affymetrix® pipelines based on the fluorescent intensity and contrast of 445 inbred lines for 479,027 probes. 

  Classification based on the clustering produced by Affymetrix® pipelines and genotyping assignment 

Probe 
types 

 BP OTV     

BP 

Number (%) 20,370 (43.9%) 26,012 (56.1%)     

Clustering 
examples 

  

    

Description 
Two homoz. 

clusters 
Two homoz. and 
one OT clusters 

    

  OTV MONO SNP monomorphic   

OTV 

Number (%) 78,799 (81.3%) 502 (0.5%) 17,562 (18.1%) 4 (0.0%)   

Clustering 
examples 

    

  

Description 
Two homoz. and 
one OT clusters 

One homoz. and 
one OT clusters 

Two homoz. clusters One cluster   

  MONO OTV 
Unexpected MONO 

1 
SNP 

Unexpected 
MONO 2 

monomorphic 

MONO 

Number (%) 212,434 (63,3%) 15,690 (4,7%) 68,562 (20,4%) 1,981 (0.6%) 9,525 (2.8%) 27,586 (8.29%) 

Clustering 
examples 

      

 Description 
One homoz. and 
one OT clusters 

Two homoz. and 
one OT clusters 

One homoz., one OT 
and one het. clusters 

Two homoz. 
clusters 

One homoz. and 
one het. clusters 

One cluster 

“Clustering example”: typical example of clustering based on the fluorescent intensity (y-axis) and contrast (x-axis). Colors on figure indicate the assignation of 

the genotype to the individuals based on this clustering; “Number (%)”: Number (percentage) of probes displaying the corresponding clustering.  “Description”: 

Brief characteristic of each classification based on the clustering of individuals (homoz.= homozygote, het=heterozygous, OT= off-target).
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We observed also some unexpected clustering. For 57% of BP probes, we observed an additional 334 

off-target cluster (OTV in Table 3). This indicates that some BP probes did not hybridize properly in some 335 

inbred lines, which can either be due to the presence of polymorphism within flanking sequences of the 336 

targeted InDels or to the existence of more complex rearrangements removing the breakpoints.  337 

Regarding MONO probes, 25% displayed additional cluster(s) when the sequence was present 338 

suggesting the presence of single nucleotide polymorphisms at this position. Among these, we were able 339 

to distinguish two types of clustering (Table 3). 4.7% of MONO probes exhibited a clustering similar to 340 

those observed for OTV probes suggesting that these MONO probes revealed, by chance, a single 341 

nucleotide polymorphism. In contrast, 20.4% of MONO probes displayed an unexpected clustering pattern 342 

for inbred lines with the presence of a heterozygous cluster but absence of a second homozygous cluster 343 

for SNP (Additional file 2: Figure S9B). In the end, 2.8% of MONO probes displayed an additional 344 

heterozygous cluster for SNP when the sequence is present but no “off target” cluster corresponding to 345 

individuals for which the sequence is absent (Additional file 2: Figure S9D). 346 

For 18% of OTV (Additional file 2: Figure S9A) and 8.3% of MONO probes, clustering displayed no 347 

“off target” cluster for absence, suggesting no presence/absence polymorphism at this position (Table 3). 348 

Note that some BP were also classified as monomorphic for presence/absence but were filtered out by 349 

the BP pipeline (“MonoHighResolution” in Additional file 1: Table S2 and Additional file 2: Figure S8). These 350 

monomorphic probes originated from false positive discovery of InDels or PARs within InDels that are not 351 

present/absent elsewhere in the genome of four lines (see Discussion). After removing these 352 

monomorphic probes for presence/absence, 422,369 probes allowed us to successfully genotype a total 353 

of 86,648 InDels (82% of 105,927 InDels targeted by the array) on 445 inbred lines. 354 

Evaluation of genotyping reproducibility and quality  355 

Consistency of genotyping among the four inbred lines used for InDel discovery 356 

We used the 479,027 probes passing Affymetrix® quality controls to evaluate the quality of 357 

Presence/Absence genotyping by comparing the genotyping results obtained from our array (GBA: 358 

Genotyping By Array) with those from sequencing (GBS: Genotyping by Sequencing) for the 4 lines used 359 

for the discovery of InDels (B73, F2, PH207, and C103). Respectively, 97%, 912%, and 88% of the BP, OTV, 360 

and MONO probes had a genotyping result consistent with results obtained from BLAST alignments 361 

against our three draft genome assemblies and the B73 reference genome. We observed a strong 362 

asymmetry for concordance rates for internal probes (OTV and MONO) depending on whether the 363 

genotype has been called by sequencing as present or absent (95% vs 80% present and absent, 364 

respectively, Table 4). Interestingly, we observed no asymmetry for BP probes that are designed 365 

exclusively on B73 genome compared to OTV and MONO probes that are designed from the 4 genome 366 

assemblies (Table 4). These low consistencies for internal probes when genotype by sequencing indicated 367 

absence could be explained by the use of incompletely assembled genomes of the three lines (PH207, 368 

C103, F2) to call the presence/absence genotype from sequencing. 369 
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Table 4:  Consistency rate between genotyping by sequencing and by array for the 4 individuals 

used to discover the InDels, for the three probe types and for the two different genotypes 

observed from sequencing:  presence (P) or absence (A). 

Probe 
Types 

Genotype by 
sequencing 

B73 F2 C103 PH207 All Lines 

BP 

A 0,98 0,98 0,98 0,97 0,98 

P 0,97 0,97 0,97 0,96 0,97 

ALL 0,97 0,97 0,97 0,97 0,97 

OTV 

A 0,85 0,89 0,80 0,78 0,83 

P 0,93 0,97 0,96 0,96 0,96 

ALL 0,90 0,95 0,91 0,90 0,92 

MONO 

A 0,77 0,81 0,82 0,81 0,80 

P 0,90 0,98 0,94 0,94 0,95 

ALL 0,82 0,94 0,89 0,88 0,88 

ALL 

A 0,80 0,86 0,84 0,82 0,82 

P 0,92 0,97 0,94 0,95 0,95 

ALL 0,85 0,95 0,90 0,89 0,90 

*Note that consistency rate of hemizygous genotypes (heterozygous for presence / absence) were not displayed in 

the table for BP probes but considered to estimate global consistency rate (ALL). Note that the absence of probe 

sequence due to absence of hybridization or no alignment on draft sequence of BP probes were considered as missing 

data. Missing data were not included in the comparison for all probes.  

If the genomic region containing the InDels were absent or badly assembled in at least one line, some 370 

probes would not align properly, resulting in false absence calls, instead of presence in GBS. The four 371 

inbred lines showed very similar concordance rates, F2 being the most concordant (95%). This could be 372 

partially explained by the higher proportion of GBS present calls in F2 as compared to the three other lines 373 

since GBS present calls are more consistent with GBA than GBS absent calls. The median consistency rate 374 

of probes within InDels remained relatively high and stable, around 90%, independently of the number of 375 

probes per InDel (Figure S10), suggesting no relationship between the consistency rate of individual 376 

probes and length of PARs within InDels.  377 

Consistency among probes from the same InDel 378 

To estimate the consistency of different probes for typing a given InDel, we analyzed genotyping 379 

results for 50,648 InDels genotyped with at least two probes in a collection of 362 temperate inbred lines. 380 

For each InDel and each inbred line, we calculated the average allelic frequency of presence over all 381 

probes. Frequencies of 1 (presence) and 0 (absence) indicated that all probes displayed consistent 382 

genotyping for the corresponding inbred line (Figure 1D and Figure S11A). Alternatively, frequencies 383 

different from 0 or 1 (FreqDiff01) indicated that at least one probe displayed inconsistent genotyping with 384 

other probes for corresponding inbred lines (Figure S11B). Overall, 75% of the InDel genotyping resulted 385 

in an average allelic frequency for the presence of 1 or 0, meaning that all probes had a consistent 386 

genotyping results for calling the allele at both present or absent states, respectively (Figure 4A).  387 

However, we observed a strong variation of median (average) allelic frequency difference from 0 388 

or 1 (FreqDiff01), according to the number of probe interrogating that InDel (Figure 4B, Additional file 1: 389 

Table S5). Median (average) FreqDiff01 across InDels varied from of 1.2% (9.8%) to 58% (52%) when the 390 
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number of probes varied from 0 to 30 (Figure 4B, Additional file 1: Table S5). We compared this variation 391 

to what could be expected for different probe genotyping error rates (1%, 3%, 5%, and 10%). Based on 392 

this comparison, we estimated the probe genotyping error rate is approximately 3% (Figure 4). For InDels 393 

with fewer probes (<10), the average and median FreqDiff01 differed slightly, suggesting that some InDels 394 

with low probe numbers displayed high genotyping inconsistencies among their probes (Figure 4, 395 

Additional file 1: Table S5). In order to evaluate whether probe genotyping error is similar for present or 396 

absent calls, we analyzed the variation of FreqDiff01 with regard to the average frequency of absence of 397 

InDel sequences in 362 lines (Additional file 2: Figure S12A). The median FreqDiff01 was higher for InDels 398 

which have their sequence more frequently absent than present across 362 lines, regardless of the 399 

number of probes (Additional file 2: Figure S12B). It suggested that genotyping was more accurate for 400 

absence than presence. This was logical, considering that polymorphisms within probes would preclude 401 

hybridization of the probes for some lines, and it would result in absent calls with MONO and OTV probes, 402 

while polymorphisms within probes have no impact when the sequences are absent.  403 

Combining genotyping from multiple probes within InDels greatly improved reliability of InDel 404 

genotyping, since it allowed (i) to correct the individual genotyping errors due to polymorphisms within 405 

probe sequences, (ii) to reduce the missing data rate due to bad clustering or probes polymorphisms, and 406 

(iii) to remove probes displaying highly-divergent genotypes compared to other probes for the same InDel, 407 

due, for example, to a bad design of the probes. In order to evaluate the combining of genotypes of several 408 

probes on the accuracy of InDel genotyping, we simulated global genotyping error rates for InDels by 409 

assigning to each inbred line the most frequent allele, based on the average frequency over all probes 410 

from an InDel, with various genotyping error rates (Additional file 1: Table S6). By this approach, the 411 

genotyping error for InDels was greatly reduced. Considering a probe genotyping error of 5%, the 412 

genotyping error of InDels for inbred lines were reduced to 0.2% and 0.1%, when the number of probes 413 

within the InDels were 2 and 5, respectively (Additional file 1: Table S6). Combining genotypes from 414 

several probes also strongly reduced the average missing data rate for InDels; it decreased from 2.3% to 415 

0.2%, when the number of probes increased from 2 to 5 (Additional file 1: Table S5). However, some 416 

contradictory probe genotypes were repeatedly found across the 362 samples (Additional file 2: Figure 417 

S11B), suggesting that some probe inconsistencies could have biological origins (i.e more complex 418 

rearrangement), rather than being genotyping errors. Additionally, 35% of InDels called by BP had their 419 

FW and REV probes classified differently (e.g. one as BP and the other as OTV). Altogether, these results 420 

suggest that some calling inconsistencies between probes within InDels could come from polymorphisms 421 

in the flanking sequence while some other could be due to local rearrangements in the genotyped lines 422 

as compared to the lines used for InDels discovery.  423 

Reproducibility and Mendelian inheritance 424 

Genotyping reproducibility was evaluated by comparing genotypes between five DNA replicates 425 

corresponding to unique F1 hybrids derived from a cross between B73 and F72 for all probes type. Median 426 

reproducibility was 95%, 96%, and 97% for BP, OTV and MONO probes respectively. Interestingly, there is 427 

some variation of reproducibility relative to probe clustering (Additional file 1: Table S7). Note that 428 

Affymetrix© algorithms were not specified to genotype hemizygote using OTV and MONO probes in this 429 

dataset. We also performed a parent-offspring analysis on 12 F1 hybrids derived from 9 parental lines by 430 
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comparing genotypes observed of these F1 hybrids with those predicted from genotypes of their two 431 

parental lines for 46,382 BP probes (Additional file 1: Table S8). On average, 95% and 77% of observed 432 

genotypes were consistent with those predicted from parental lines for homozygous and hemizygous 433 

genotypes, respectively (Additional file 1: Table S8). The consistency rate was slightly higher when 434 

genotypes were absent (98%) than present (94.5%).  Note that the seed-lot of parental lines used for 435 

producing F1 hybrids were different from those genotyped, which could explain lower consistencies rate 436 

than for DNA replicate of F1 hybrids. Note also that the genotypes of all F1 hybrids have been initially 437 

eliminated by Affymetrix® quality control due to their low call rate and were therefore forced for 438 

reproducibility analysis. This low call rates can be attributed to the fact that these samples had different 439 

genotype cluster properties (probe intensity profiles) compared to the samples that passed QC. As a 440 

consequence, this strongly increased the missing data rate for the F1 hybrids for OTV and MONO probes. 441 

In the end, we evaluated genotyping reproducibility for inbred lines, by comparing the genotyping 442 

results of 13 different inbred lines that were replicated in the experiment (Additional file 1: Table S9). 443 

Note that these are not perfect biological replicates, as they represent the same variety but come either 444 

from different seed lots or from different accessions. These replicates exhibited a genotyping difference 445 

varying from 0.6% to 5.2% (Median = 1.7%, Additional file 1: Table S9). This is similar to the amount of 446 

inconsistencies obtained on the same material using a 50K SNP array [54], suggesting that InDel 447 

genotyping inconsistencies for replicates can be attributed mostly to seed-lot divergences, rather than 448 

genotyping errors (Additional file 1: Table S9). However, genotyping reproducibility was higher for these 449 

inbred lines than for the DNA replicates of the F1 hybrid, suggesting that errors in F1 hybrids can mostly 450 

be attributed to the inability to genotype hemizygous with OTV and MONO probe for this small dataset.  451 

 452 

Application: Diversity analysis of 362 maize inbred lines 453 

panel 454 

In order to evaluate this new array for genetic analysis, we analyzed genetic diversity using 57,824 455 

polymorphic InDels on a subset of 362 inbred lines, representing genetic variation that has been 456 

successfully used to decipher maize genetic structuration and perform genome-wide association studies 457 

[55–57]. To represent each InDel in the diversity analysis, we selected one single probe per InDel, based 458 

on the probe genotyping quality (see Methods). 459 

We first compared kinship values between 362 inbred lines estimated with 57,824 InDels and with 460 

28,143 prefixed Panzea SNPs from the 50K SNP array. Kinship values between lines obtained with SNPs 461 

and InDels were strongly similar and highly correlated (r=0.9), except those for a couple of lines closely 462 

related to B73 and F2 (Additional file 2: Figure S13). Then, we performed Principal Coordinate Analysis 463 

(PCoA) based on the genetic distance between 362 lines estimated by InDels and SNPs (Figure 5). We 464 

included on this PCoA the genetic structuration of these 362 inbred lines, as obtained from the prefixed 465 

Panzea SNPs from the 50K SNP array [55]. The global genetic structure developed using two types of 466 

polymorphisms are highly similar. The first axis showed good discrimination of European Flint from Corn 467 

Belt Dent and Stiff Stalk lines, while the second axis discriminated European Flint and Northern Flint lines. 468 
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Overall, the clustering of individuals based on genetic distance estimated with InDels (Figure 5A) was 469 

consistent with those estimated with SNPs (Figure 5B). We observed that B73 and F2, which were used to 470 

discover the majority of InDels, were more contrasted on PCoA when genetic distance was estimated with 471 

InDels, as compared with SNPs from the 50K array, indicating some ascertainment bias. We thus 472 

performed two PCoAs, with InDels and SNPs, excluding B73 and F2 (Additional file 2: Figure S14). The two 473 

PCoAs gave similar patterns, suggesting that this ascertainment bias was largely removed when no close 474 

relative lines from those used for discovering InDels were used in diversity analysis. Due to this 475 

ascertainment bias, result of our array should be therefore interpreted with caution for diversity analysis.  476 

Discussion 477 

1. An original high throughput approach for 478 

genotyping InDels 479 

The comparison of whole genome sequence assemblies is in theory the best approach to identify, 480 

precisely and exhaustively, structural variations between two individuals. But even though great progress 481 

has been made recently in this area, high-quality, whole genome assembly is still too costly, time-482 

consuming, and computationally intensive to be applied to hundreds of individuals, especially when 483 

considering the complexity of the maize genome [20, 58]. Other whole genome sequencing approaches 484 

based on alignment of reads on a single reference, and using either “read-depth”, “read-pair”, or “split-485 

read” identification methods [46–50] have mostly been limited to the identification of deletions (i.e. 486 

sequences absent from a reference genome). Liu et al., (2015) partially addressed the lack of insertions 487 

(i.e. novel sequences compared to a reference genome) by the identification 1,973,746 InDels [4]. 488 

Although, among these a majority were very small (85% smaller than 11bp), and the use of PCR markers 489 

to genotype them is time-demanding, labor-intensive, and costly at a large-scale level. To avoid this 490 

ascertainment bias due to use of a single reference genome to genotype SVs, other studies proposed to 491 

call SVs by aligning reads from sequencing on a pan-genome representing the combination of several 492 

genomes [14, 20, 22, 52]. However, genotyping InDels with high reliability and call rate by these 493 

approaches required at least 30X-50X coverage of the genome to correctly cover their breakpoint and 494 

their internal sequence, especially to genotype InDels larger than 50bp [52]. Additionally, aligning reads 495 

from a thousand individuals on a pan-genome remained computationally intensive, and therefore 496 

required large informatics facilities [52]. In the end, these approaches required to build a pan-genome of 497 

high-quality, which remains challenging for a complex genome. 498 

In this paper we describe a new approach combining (i) the ‘accuracy’ of detecting InDels using whole 499 

genome assembly, with the detection of 89,150 insertions and 52,175 deletions from the comparison of 500 

three newly sequenced and assembled maize inbred line (F2, PH207, and C103) genomes and the public 501 

maize B73 AGPv2 reference genome, (ii) and the ‘high-throughput’ genotyping utility provided by SNP 502 

arrays. This approach allowed us to genotype, for the first time, thousands of insertion/deletion variants, 503 

including PAVs, on a few hundred maize individuals. Genotyping cost per individual using the InDel array 504 

was at least 10-20 fold cheaper than any approach based on sequencing for a species with a genome as 505 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/507756doi: bioRxiv preprint 

https://doi.org/10.1101/507756
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

complex as maize, at a similar level of reliability (> 1000€-2000€ for a 30-50X of a 3Gbp genome vs 50€-506 

220€ using Affymetrix® Axiom® array, depending on the number of samples and probes). This genotyping 507 

cost did not include bioinformatics analysis. Calling SVs from a pan-genome of a species with a large and 508 

complex genome, such as maize, was time-consuming and required bioinformatics skills and large 509 

informatics facilities, which are costly and not available in all laboratories. In the contrary, the array could 510 

be analyzed rapidly on a laptop using a pipeline already implemented for analyzing SNPs and the 511 

Hom2OTV R script developed for analyzing MONO probes. Additionally, the array provided a wet-lab 512 

validation of the InDel discovery and allowed the removal of putative genotyping errors from sequencing 513 

(particularly for PAVs), due to incomplete or bad genome assembly, as we observed in our study. In the 514 

end, the probe content of the InDel array can be largely optimized, either to reduce the size of array (and 515 

therefore the cost), or to increase the number of SVs genotyped, without losing reliability (e.g. 200,000 516 

to 300,000 InDels) by filtering out under-performing probes, by strongly reducing the number of probes 517 

per InDel (2-3), and by removing false positive InDels. It would also be easy to design an array combining 518 

probes targeting InDels and more classical SNPs, outside of InDel sequences. 519 

With the use of breakpoint probes for both insertions and deletions, our approach overcomes some 520 

of the limitations of previous CGH or SNP array-based studies, which were only able to call deletions if a 521 

few successive probes had lower fluorescent intensity signals [32–35]. Unterseer et al., (2014) genotyped 522 

specifically 6,759 small deletions, which were discovered by aligning reads of 30 inbred lines against the 523 

B73 genome, but the study did not include any insertions [37]. However, previous CGH and SNP arrays did 524 

not design probes to target breakpoints and detected InDels by analyzing the variation of fluorescent 525 

intensity signals of ordered probes [32–34]. Consequently, these technologies targeted exclusively low 526 

copy regions of the genome, excluding InDels containing repeats, such as transposable elements (TEs) [2, 527 

30, 44]. This is a strong drawback for maize and many other crops since a large part of their sequence is 528 

composed of transposable elements [28, 59] which may be highly variable between individuals [4, 24, 60] 529 

and may impact phenotypes [61–63]. The use of BP probes allows to target Present/Absent Variations, 530 

whose sequence are unique and not present elsewhere in the genome, as well transposable elements, 531 

whose internal sequence can be present/absent at one specific locus but also present elsewhere in the 532 

genome. Another advantage of genotyping breakpoints is that it provides the ability to genotype the same 533 

mutational event across all individuals of the population, as it is highly unlikely that two independent 534 

mutational events could lead to the exact same breakpoint. On the contrary, for InDels detected using 535 

classical CGH or SNP arrays, it is much harder to identify common InDels among a population of 536 

individuals, as we don’t know precisely their breakpoints. Genotyping breakpoints is also very cheap since 537 

only one or two probes are needed , which makes the InDel size no longer a limitation for genotyping it 538 

accurately, contrary to previous SNP and CGH arrays that rely on fluorescent intensity variation of probes 539 

covering the entire InDel sequence [45]. The genotyping of breakpoints by sequencing is possible with a 540 

tool like PInDel [50], which has a genotyping mode or BayesTyper [52], but at a much greater cost and 541 

with lower call rate compared to the use of a SNP array. Finally, breakpoint probes are codominant 542 

markers and allow accurate genotyping of hemizygous individuals (Heterozygous for presence/absence), 543 

since their genotyping is based on fluorescent contrast rather than fluorescent intensity variation, which 544 

is known to be noisier as with MONO and OTV probes [45]. 545 
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Although the use of BP probes is clearly the simplest way to genotype InDels using an SNP array, 546 

breakpoints are not always available (“no map” approach discovery) or “designable” with 35bp probes, 547 

for instance, the cases where sequences of microhomology at breakpoint site were larger than 5bp. In 548 

order to genotype the 52,471 InDels without breakpoints and explore the genetic diversity within InDels, 549 

we also designed 577,778 internal probes both on monomorphic and polymorphic sites in PARs for both 550 

insertions and deletions. To genotype PARs in InDel sequences using SNPs, we took advantage of the 551 

already available Affymetrix® algorithms to call Off-Target Variants (OTVs), which can detect variation of 552 

fluorescent intensity signals for a single probe (Figure 1C) [36]. This approach was used by [37] who was 553 

able to detect 45,974 OTVs on a set of diverse maize inbred lines using a 600K SNP array. Nevertheless, 554 

the array was designed in a classical way to target SNPs, and there was no prior evidence that the probes 555 

called as OTVs would belong to InDels. Additionally, detecting SNPs in insertions required the assembly of 556 

a pan-genome, combining common and specific sequences from different individuals, in order to retrieve 557 

SNPs by aligning reads from sequenced lines [14, 20, 22, 52]. In our case, only using OTV probes would 558 

have resulted in the elimination of many InDels, since 87,372 of them, including 74,648 insertions, did not 559 

have known SNPs within their sequence. In order to avoid this ascertainment bias due to prior knowledge 560 

of the presence of SNPs we designed 414,500 MONO probes on putative monomorphic sites within PARs 561 

of InDel sequences. This permitted the genotyping of 38,134 supplementary InDels that could not be 562 

targeted by OTV or BP probes. This new type of probe required the development of a new algorithm in 563 

order to cluster individuals according to their fluorescent intensity variation only, to be able to assign a 564 

genotype to each individual (Additional file 2: Figure S7C). A limitation of current workflow is that 565 

Affymetrix® algorithms require a larger number of hemizygous individuals to generate high-quality 566 

genotype clusters using the OTV and MONO probes. While it was not an issue for maize inbred lines (or 567 

individuals from autogamous species) that are mostly homozygous, it was an issue for individuals from 568 

allogamous species that are highly heterozygous. By using alternate genotyping techniques or processing 569 

a larger number of hemizygous samples, it should be possible to identify hemizygous clusters according 570 

to fluorescence intensity from OTV and MONO probes. We observed some clusters that seem incorrectly 571 

interpreted as heterozygote for SNPs, although they likely correspond to hemizygous individuals for OTV 572 

and MONO probes (Additional file 2: Figure S9B, see below for a more detailed discussion). Alternatively, 573 

other algorithms/software based on fluorescent intensity variation of either a single probe or several 574 

ordered probes exist and could be used to detect copy number variation for hemizygote individuals [38–575 

43]. 576 

In the end, we observed some ascertainment bias using our array (Figure 5).  This was due to the fact 577 

that our four inbred lines do not well represent the whole genomic diversity of maize, notably missing are 578 

tropical lines. As a consequence, it could lead to ascertainment bias by reinforcing the differentiation of 579 

inbred lines genetically close to the four inbred lines used to discover InDels [54, 64, 65] as we observed 580 

in our diversity analysis for lines close to B73 and F2 (Figure 5 and Figure S13). It could be therefore highly 581 

valuable to use more lines for the initial InDel discovery step. Several new individual maize genome 582 

assemblies are now available in the public domain and more and more could become available in the 583 

future. Our approach could easily be applied to these new genome assemblies to discover new InDels on 584 

a larger set of inbred lines representative of maize diversity with the aim to design a new InDel array. 585 
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2. Reliability of genotyping / calling results 586 

 587 
Our approach provides a reliable and reproducible method for genotyping InDels in inbred lines, since 588 

(i) the genotypes obtained by array and by sequencing were highly consistent for BP probes (97%) and in 589 

a lesser extent with OTV and MONO probes (92% and 88%, respectively), due to the fact that the genome 590 

assembly of sequenced lines were incomplete or incorrect, resulting in high error rates for absent calls 591 

using GBS  ; (ii) the average probe genotyping error rate was estimated at 3% (lower for absent calls); (iii) 592 

the InDel genotyping errors could be greatly reduced by combining the genotypes of different probes 593 

within the InDels (0.02% for 5 probes); (iv) the genotyping results were highly reproducible between DNA 594 

replicates of F1 hybrids (95 to 97%, depending on probe type) and between inbred lines  (94.8 to 99.4%); 595 

and (v) the call rate for individuals was very high (96 to 99%) and can be increased by combining the 596 

genotypes of the probes within the InDels (97.7 to 99.9% for 2 and 5 probes, respectively).   597 

Our approach is promising as a method to genotype structural variations in maize, as well as other 598 

species with complex genomes. We obtained high metrics, comparable to classical SNP arrays, based on 599 

Affymetrix® Axiom® Technologies, even though InDels are more complex to genotype. First, call rates are 600 

high and quite similar to those obtained for SNP with the 600K SNP Affymetrix® array (98% against 98.1% 601 

in [37] ). Nevertheless, we observed a lowest call rate for BP probes (90%). This lowest call rate could be 602 

explained by the usage of more relaxing criterion to filter out probes for building array and by the fact 603 

that polymorphisms in surrounding sequences of InDel breakpoints have not been taken into account 604 

contrary to internal probes. Second, the percentage of BP and OTV probes classified as PHR (94% in both 605 

cases) is similar than for 600K SNP Affymetrix® genotyping array (92%) but higher than for 1.2M screening 606 

Affymetrix® arrays (~65%) that have been used to select best markers for designing the final 600K SNP 607 

Affymetrix® arrays. It is difficult to compare the classification of MONO probes, because the algorithm 608 

used (Hom2OTV) is new and quite different from the one used for BP, OTV, and classical SNPs. Third, the 609 

reproducibility between DNA replicates of F1 hybrids was high (95 to 97%, depending on probe type), but 610 

this is lower than for SNP arrays (~99.5% in [37]). However, the reproducibility was estimated on DNA 611 

replicate of F1 hybrids in our study while it was estimated on inbred lines for 600K SNP Affymetrix® array. 612 

When we compared genotype of 13 inbred lines originated from different seedlots, reproducibility is close 613 

to those of 600K SNP Affymetrix® array (98.3%) and displayed approximatively same reproducibility with 614 

50K SNP Illumina array ([54], Additional file 1: Table S9). This comparison suggested strongly that our 615 

lower reproducibility might not be due to genotyping errors but possibly the divergence between the 616 

samples for inbred lines and the use of F1 hybrids rather than inbred lines for DNA replicate. Fourth, the 617 

Mendelian inheritance between F1 hybrids and their parental lines was lower for our InDel than for SNP 618 

array (88% vs 97.6% in [37]) but quite similar considering only homozygous genotypes (95%). This is likely 619 

due to the presence of a small number of hemizygous samples since the 16 F1 hybrids were eliminated 620 

due to their low call rate (<0.9) and there are only residual hemizygosity for inbred lines. Considering the 621 

F1 hybrids for defining BP cluster could improve the delineation of hemizygous cluster and therefore 622 

Mendelian inheritance. Note that 600K SNP Affymetrix® in maize was designing by selecting the high 623 

confidence probes based on results of a first screening 1.2M SNP Affymetrix® array which could favor 624 

reproducibility for this array. Finally, 72% of probes were converted into markers, which is comparable to 625 

this 1.2 maize Affymetrix® Axiom® SNP screening arrays (74.9% in [37]). Out of these, 88% were 626 
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polymorphic for presence/absence. This conversion rate is expected, considering that Affymetrix® Axiom® 627 

array analysis pipelines have been optimized for the detection of bi-allelic SNPs and are more sensitive to 628 

variations in fluorescent contrast (x-axis) compared to variations in fluorescent intensity (y-axis), which is 629 

known to be noisier [36, 45]. Moreover, we did not always follow Affymetrix® recommendations, as we 630 

did not filter out probes with a bad design score. 631 

We identified some inconsistencies between genotyping by array (GBA) and genotyping by 632 

sequencing (GBS) obtained by aligning probes against our genomes (Table 4). These inconsistencies were 633 

higher when GBS called absent for InDels interrogated by OTV and MONO probes (17.1% and 20.2% vs. 634 

4.3% and 5.4%, respectively), although no differences were observed for BP probes (Table 4). These biased 635 

inconsistencies towards absence for internal probes seems very high compared to our analysis on the 636 

consistencies between probes within Indels. Our analysis of consistencies between probes within InDels 637 

showed indeed that genotyping errors produced by the array were close to 3% (Figure 4) and lower for 638 

absent calls (Additional file 2: Figure S12). These results suggested that the higher genotyping 639 

inconsistencies for GBS absent are due to errors in GBS. GBS errors for absence were well explained by 640 

the use of an incomplete genome draft assembly to align probes sequences, and the use of a higher-641 

quality genome could help to reduce these inconsistencies. The probes targeting sequence regions 642 

present in one line, but not assembled in their draft genome assemblies, were falsely genotyped absent, 643 

but the sample DNA correctly hybridized with the probes, and the InDels were called present with the 644 

array. This could also explain why the number of inconsistencies was higher for B73, as all B73 absence 645 

genotypes were defined in comparison to draft assemblies. Whereas for the other 3 lines, absence 646 

genotypes were defined in comparison with the gold standard B73 genome sequence. The fact that we 647 

obtained a better result on OTV probes interrogating InDels discovered in F2 can be explained because 648 

we used only SNPs discovered on the B73-F2 pan-genome and not in other genomes. And, the fact that 649 

BP probes had similar consistencies for genotyping absent and present calls could be explained by the fact 650 

that the BP probes were designed exclusively on B73 reference genome.  651 

We also found that 20,574 InDels were monomorphic and present across all lines, suggesting they 652 

represented false positives from regions not assembled in our draft genomes. To reduce this false positive 653 

rate, we strongly advise to not only align B73 reads onto each draft genome assembly but to also align 654 

reads from each sequenced genome on each other and against itself. This would have several benefits: (i) 655 

it would allow to discover even more and higher-quality InDels, as each putative deletion discovered in 656 

one sample could potentially benefit from supporting reads from another sample; (ii) this would simplify 657 

the identification of InDels common to more than one genotype; and (iii) it would help to identify and 658 

eliminate false positive deletions by the alignment of each sample on its own draft assembly.  659 

Nevertheless, the use of incomplete draft genomes does not explain all discrepancies between 660 

genotypes obtained by sequencing and by array. First, these discrepancies could also be due to incorrect 661 

clustering and assignment of a genotype call (array errors). This was exemplified by some MONO probes 662 

classified as SNPs, although the clustering pattern looks like a MONO cluster with a large difference of 663 

fluorescence intensity between two clusters (Additional file 2: Figure S9C). A more detailed inspection of 664 

the clustering of MONO probes displayed an unexpected cluster pattern (Table 4, Additional file 2: Figure 665 

S9D), and OTV probes classified as SNPs (Table 4, Additional file 2: Figure S9A) suggests a wrong 666 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/507756doi: bioRxiv preprint 

https://doi.org/10.1101/507756
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

assignment of genotypes for the cluster displaying the lowest fluorescent intensity. Similarly, the genome 667 

divergence within probe sequences for some inbred lines could result to group those individuals in an OTV 668 

cluster, and therefore result in an incorrect absent call. However, these genotyping errors due to bad 669 

clustering or genomic divergence between individuals within probes sequences could be strongly reduced 670 

by combining genotypes from several probes. As an InDel called by five different probes has a random 671 

genotyping error of 5%, we showed by simulation that the genotyping error for that InDel would be 672 

reduced to 0.1%, when the most frequent allele among the 5 probes was assigned as genotype of the 673 

InDel (Additional file 1: Table S6).  674 

Surprisingly, 4.7% of MONO probes displayed a classical OTV clustering, suggesting that an unknown 675 

SNP was targeted by these probes by chance. This high level of polymorphism (1 SNP / 21 bp) was slightly 676 

higher than observed by sequencing a small set of diverse lines [66, 67]. It could suggest that PAR genomic 677 

regions might have more divergence than other parts of the genome, because these regions were involved 678 

in local adaptation by maintaining together favorable combinations of alleles as proposed by [68]. These 679 

15,690 new OTVs are very interesting, since they were discovered by chance on a large set of 445 inbred 680 

lines. We could therefore expect that these OTVs have no ascertainment bias, which can be very useful 681 

for analyzing genetic diversity within InDels carrying PAR regions. In addition, 20.4% of MONO probes 682 

displayed unexpected clustering:  one off-target cluster, corresponding to absence of the sequence; one 683 

homozygous cluster, corresponding to presence of the sequence; and an unexpected heterozygous cluster 684 

(Unexpected MONO 1 in table 4). Considering these “unexpected MONO 1” as true SNPs would indicate 685 

a density of 1 SNP every 5 bp, which is not compatible with the level of diversity observed in previous 686 

studies of maize [66, 67]. Deeper investigation of these MONO probe clusters identified that for some 687 

probes, the unexpected heterozygous cluster is positioned between the presence and absence clusters 688 

(Additional file 2: Figure S9B). This suggests that these unexpected heterozygous clusters are identifying 689 

inbred samples with only one copy presence (hemizygous genotype). An alternative hypothesis to explain 690 

this unexpected pattern is the presence of divergent duplicated sequences, leading to the existence of an 691 

artificial heterozygous cluster for SNPs corresponding to the presence of two paralogous sequences. This 692 

result suggests therefore that there is probably room to develop genotyping strategies in order to better 693 

identify additional clusters corresponding to the presence of hemizygous individuals for both MONO and 694 

OTV probes and therefore improve the quality of the genotyping of InDels when using a SNP array. 695 

These potential clustering errors, as well as the incorrect design of some probes, can explain some 696 

inconsistent genotypes for presence/absence between probes for the same InDel. Comparison of 697 

genotyping across different probes within InDels could help to identify and remove probes displaying 698 

highly discordant genotypes, due to errors originating from poor clustering or from poor design. 699 

Interestingly, some InDels showed reproducible inconsistent genotypes for presence/absence across their 700 

probes in several inbred lines (Additional file 2: Figure S9B). This suggested that this pattern could have a 701 

biological origin, with possible rearrangements having occurred several times within the same genomic 702 

region in some inbred lines. Following this hypothesis, Gu et al. (2008) observed two different types of 703 

rearrangements which could explain our observations [69]:  (i) rearrangements with an unique breakpoint 704 

in population and therefore common size between individuals resulting to two haplotypes in a population 705 

and (ii) rearrangement with non-unique breakpoints, scattered in a genomic region, which resulted in 706 
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several haplotypes. This hypothesis is also supported in our experiment by the 56% of BP probes classified 707 

as OTVs, indicating that FW or/and REV flanking sequence did not hybridize in some lines.  708 

The development of a statistical approach to merge either a posteriori the calling results of 709 

independent clustering of individual probes or a priori the fluorescent intensity signal of successive probes 710 

within a InDel could be interesting in order to improve the robustness of InDel genotyping. This would 711 

have the advantage to limit the effect of genotyping errors due to poor clustering and to reduce the noise 712 

in fluorescent intensity signals. We showed by simulation that assigning the most frequent allele across 713 

probes as the genotype reduced genotyping error to 0.7% and 0.1% when 3 and 5 probes were used, 714 

respectively. Additionally, it increases the InDel call rate (Additional file 1: Table S6). In the end, it would 715 

also help to identify varying haplotypes, representing the complexity of a region in a population. Using 716 

multiple probes for calling InDels is therefore highly valuable for improving reliability of InDel genotyping, 717 

since it allows putatively to reduce random genotyping error, due to genomic divergence or other causes, 718 

removes probes poorly clustered or designed, and identifies more complex rearrangements.   719 

3. Conclusions 720 

 721 

Our approach, from the sequencing of a few representative genotypes, their genome assembly, the 722 

insertion/deletion discovery, and to the design and use of the high-throughput genotyping array was 723 

applied to maize as a proof of concept. Our approach allowed us to rapidly create at a reasonable cost a 724 

high-throughput SVs genotyping tool for this species. This approach will remain interesting as long as 725 

calling large InDels from sequencing, for a large set of individuals, remains un-affordable, bioinformatically 726 

challenging, and time-demanding. Nevertheless, our approach could benefit from few improvements 727 

based on the knowledge accumulated from this test on maize. First, it could be highly valuable to use 728 

more lines for the initial InDel discovery step to avoid ascertainment bias [64] as we observed in our 729 

diversity analysis (Figure 5). Using more lines for detecting InDels should also reduce the number of false 730 

positives SVs in array due to poor assembly, genotyping error due to genomic divergence between 731 

individuals, and help to identify complex rearrangement. Second, even though we did not have any 732 

indication that our sequenced data had been contaminated, a contamination cleaning step should be 733 

applied to the sequenced data prior to SVs discovery and genome assembly, in order to avoid potential 734 

false positive SVs in the final array. Third, aligning reads against the internal sequence of InDels, as well as 735 

aligning probes sequences against each genome assemblies, should strongly reduce false positives in the 736 

final array. Fourth, improving the pipeline of MONO and OTV probes to call hemizygous genotype from 737 

variation of fluorescent data would be very valuable, notably for allogamous species. Fifth, capacity of 738 

array could be largely increased to 200,000 or 300,000 InDels without losing reliability by optimizing 739 

number of probes per InDels. 740 

To conclude, we developed a “proof of concept” high-throughput and affordable InDel genotyping 741 

array, based on the InDels discovered by sequencing on four inbred lines. Our “proof of concept” approach 742 

could be easily applied to other species to explore genomic structural variation, notably species with 743 

limited sequence data or few genome assemblies available. This could also be interesting for species with 744 

greater sequencing resources and where genotyping a large set of individuals is required, such as for 745 
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breeding purposes, genome wide association studies, genomic selection, or characterizing SVs in large 746 

germplasm.  Although our array was not designed to genotype duplications and inversions, our approach 747 

could be easily extended to genotype breakpoints of inversions, but further development of the pipeline 748 

for genotyping duplications using internal probes would be required. This powerful approach opens the 749 

way to studying the contribution of InDels and other SVs to trait variation and heterosis in maize [44] and 750 

should contribute to decipher the biological impact of InDels and other SVs at a larger scale in different 751 

species. 752 

 753 

 754 

Methods 755 

Sequencing material  756 

Three maize inbred lines, which are key founders of maize breeding programs and originated from 757 

three different heterotic groups, had been selected for deep sequencing and InDel discovery: the 758 

European Flint line F2 and two American dent lines, PH207 (Iodent) and C103 (Lancaster). For the F2 759 

inbred line, see [20]. For C103 and PH207 inbred lines, DNA was extracted with the NucleoSpin Plant XL, 760 

according to the manufacturer’s instructions (Macherey Nagel, Düren, Germany). The DNA concentration 761 

was estimated by UV measurement and the quality was checked with an agarose gel electrophoresis. Two 762 

library types were sequenced:  a 180bp overlapping paired-end library and a 3kb mate-pair library. The 763 

paired-end libraries and the sequencing were performed by Integragen (Evry, France) on a HiSeq2000 764 

sequencer (Illumina, San Diego, USA). 412 and 377 million 100bp paired-end reads (33x and 30x) were 765 

sequenced respectively for C103 and PH207. The mate-pair libraries were prepared and sequenced at BGI 766 

(China) also on HiSeq2000 sequencer (Illumina, San Diego, USA). Raw reads were filtered to remove 767 

adaptor sequences, contamination, and low-quality reads. 326 and 316 million 100bp mate-pair reads 768 

(26x and 25x) were sequenced, respectively for C103 and PH207.  A data set of 473 million B73 inbred line 769 

100bp paired-end reads (35x) with an average insert size of 191bp was downloaded from 770 

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR404/SRR404240.  771 

InDel and PAV discovery 772 

For the deletion discovery step, F2, PH207, and C103 paired-end reads were aligned against B73 773 

AGPv2 genome sequence using novoalign version 3.01.01 (http://www.novocraft.com) (default 774 

parameters). Samtools [70] version 0.1.18 was used to coordinate, sort, and retain reads with a mapping 775 

quality of at least Q30. Duplicated reads were eliminated using MarkDuplicate from the picardtools suite 776 

(http://broadinstitute.github.io/picard) version 1.48. PInDel [50] version 0.2.5a2 was run in parallel on 777 

each chromosome to perform multi-genotype calling of deletions. Raw formatted results were converted 778 

to VCF (Variant Calling Format) using the script PInDel2vcf. BreakDancer [46] was used in complement 779 

PInDel, but only for F2. Deletions shorter than 100bp were discarded. Deletions spanning a B73 assembly 780 

gap or located in regions prone to mis-assemblies, such as telomeric, knob, and centromeric regions, were 781 

also excluded from further analysis using IntersectBed BEDTools [71] version 2.16.1. 782 
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For whole genome sequence reconstruction of F2, PH207, and C103 inbred lines, paired-end and 783 

mate-pair reads were used together and assembled using ALLPATHs-LG [72] version R41008 (Additional 784 

File 2: Figure S1B). For F2, the script CacheToAllPathsInputs.pl was used to cache the data to use for 785 

assembly:  100% of the non-overlapping 230bp insert paired end data set, 100% of the overlapping 170bp 786 

insert paired end data set, 30% of the non-overlapping 370bp insert paired end data set, and 100% of the 787 

2.4kb insert mate pair data set. Indeed, only overlapping paired end reads are used by ALLPATHs-LG for 788 

building contigs, but the supplementary non-overlapping paired end reads for F2 were used for error 789 

correction. RunAllPathsLG was then run for all three genotypes using optional parameters. Details on the 790 

sequence library usage during the assembly process are given in Additional file 1: Table S1. For each 791 

assembly, the coverage of the gene space was evaluated using BUSCO [73] version 3.0.2 using genome 792 

mode and the maize species (-m geno -sp maize). 793 

B73 paired-end reads were successively aligned to ALLPATHs-LG F2, PH207, and C103 genome 794 

sequence assemblies (Additional File 2: Figure S1B). The same tools and parameters used to call deletions 795 

against the B73 genome were applied to detect B73 deletions against F2, PH207, and C103 genome 796 

sequences. These B73 deletions were reciprocally called insertions of F2, PH207, and C103. Only insertions 797 

smaller than 100bp were discarded, except those spanning real assembly gaps (with approximate size 798 

inferred from paired reads average distance) and not “unsized” gaps like in the B73 genome. When 799 

possible, insertions were anchored onto the B73 AGPv2 genome sequence using a dedicated pipeline 800 

combining Megablast version 2.2.19 [74] and Age version 0.4 [75]. Again, insertions that could be 801 

anchored on the B73 reference and were overlapping regions prone to mis-assemblies such as telomeric, 802 

knob, and centromeric regions, were also excluded from further analysis using IntersectBed. 803 

F2 specific sequences coming either from the no map approach (Additional file 2: Figure S1) or 804 

from the work of [20] were included as such, without any further filtering. 805 

The multiple references and approaches used during the InDel discovery step led to a set of InDels 806 

with various levels of redundancy. Some “intra-tool” redundancy was found (e.g. multiple calls found by 807 

one tool within the same genotype at highly polymorphic loci). These “ambiguous” calls were 808 

systematically identified using the Bedtools suite version 2.16.1 [71] and eliminated. Moreover, for F2 809 

deletions, some “inter-approach” redundancy was also expected and eliminated using intersectBed utility 810 

also from the Bedtools suite. When redundancy was found, PInDel calls were preferred to BreakDancer 811 

calls, because they had precise breakpoints and contained the calls for PH207 and C103. The same filter 812 

was applied to all insertions that could be anchored to the B73 genome sequence. Furthermore, for non-813 

anchored InDels, in order to avoid redundancy in internal genotyping probe design, RepeatMasker 814 

(http://www.repeatmasker.org) was used to mask redundant regions by similarity using an iterative 815 

approach. First, “ALLPATHs-LG assembly” F2 insertions were masked with “ABySS assembly” F2 insertions 816 

(at least 95% of identity) to generate a non-redundant set of F2 insertions. Then C103 insertions were 817 

masked with F2 insertions (at 90% of identity), PH207 insertions were masked with C103 and F2 insertions 818 

(90%), and finally F2 no map specific sequences were masked with PH207, C103, and F2 insertions (90%). 819 
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Design of Affymetrix® Axiom® array 820 

Preparation of sequences for probes for design  821 

To identify presence/absence regions (PARs) within InDel sequences suitable for the design of 822 

“off-target” probes, we used the genometools Tallymer utility [76] version 1.5.6 to create two indexes for 823 

B73, F2, PH207, and C103:  one from their genome assemblies (17-mers with a minimal occurrence of 1) 824 

and one from a 5x genome equivalent subset of their raw sequenced data (17-mers with a minimal 825 

occurrence of 5). Then B73 genome was iteratively annotated with the script tallymer2gff3.plx (options 826 

used: -k 17 -min 35 -occ 1|5 depending on the index) to identify regions not covered by F2, PH207, and 827 

C103 kmers. Reciprocally, the two F2 draft genomes, PH207 and C103 ALLPATHs-LG draft genomes were 828 

run through the same procedure to identify regions not covered by B73 kmers. The gff files generated by 829 

this process were then used in combination with gff files of repeats annotated with RepeatMasker to 830 

define PARs of a minimum size of 35bp for each type of InDel and each draft genome. 831 

BP preparation 832 

Breakpoints could be targeted by probes (Figure 1A) provided that the nucleotide flanking the 833 

breakpoint at the beginning of the deleted sequence was different from the nucleotide right after the end 834 

of deleted sequence (and reciprocally on the reverse strand). Type I and type III breakpoints without 835 

micro-homology sequence can be submitted for the Affymetrix®’ standard design procedure, whereas 836 

type II breakpoints have to go through an iterative design process, shifting the sequence by one base on 837 

each attempt until reaching a discriminative position. This iterative process stops after 5bp and is also 838 

performed by Affymetrix®. 839 

Probes scoring 840 

 All potential probes were evaluated in an in-silico analysis to predict their microarray 841 

performance. A p-convert value, which arises from a random forest model intended to predict the 842 

probability that the SNP will convert on the array, was determined for all probes. The model considers 843 

factors including probe sequence, binding energies, and the expected degree of non-specific binding and 844 

hybridization to multiple genomic regions. This degree of non-specific binding is estimated calculating 16-845 

mer hit counts, which is the number of times all 16 bp sequences in the 30 bp flanking region from either 846 

side of the SNP have a matched sequence in the genome. These scores were generated both for forward 847 

and reverse probes. A probeset is recommended if p-convert>=0.6 and there are no expected 848 

polymorphisms in the flanking region. A probeset is neutral if p-convert>=0.4, the number of expected 849 

polymorphisms in the flanking region is less than 3, and the polymorphisms are further than 21 bp of the 850 

variant of interest. Probesets not falling into these two categories are scored as not recommended. 851 

Probesets that cannot be designed are scored as not possible. 852 

Probes selection 853 

Concerning OTV and MONO probes, we applied three successive filtering steps. First, we selected 854 

only probes classified as recommended and neutral based on their scoring, with no more than one hit on 855 

the B73 reference genome for deletion probes, and no hit at all for insertion probes. After this step, 856 

204,213 OTV probes and 18,884,827 MONO probes remained. Secondly, only probes with more than 70% 857 
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in PARs were kept. An additional filtering step was implemented specifically for MONO probes to optimize 858 

probe distribution along the targeted PARs. For this step, PARs were split in 75bp windows using 859 

windowmaker (Bedtools) and the MONO probe with the highest p-convert value was selected for each 860 

window. If there were InDels with less than 4 MONO probes selected using 75bp windows, these probes 861 

were eliminated and a second iteration was attempted, using 50bp windows, followed by a last iteration 862 

with 25bp windows. This generated 616,286 probes including BP and OTV probes targeting 108,24 InDels 863 

(90% of InDel selected for design). We completed the design by rescuing 6,219 OTV and 53,441 MONO 864 

probes from InDels or PARs not targeted by any probes, bringing the total number of probes selected to  865 

675,946 to target 109,292 InDel. 866 

At the last step, duplicated probeset were removed based on their sequence by Affymetrix® during the 867 

chip design procedure, leaving 662,772 probeset (105,927 InDels) corresponding to 1,404,570 different 868 

probes to be tiled on the array. 869 

Genotyping of 105k InDels on 480 maize DNA samples 870 

Plant material for genotyping 871 

For genotyping, 480 different DNA samples were extracted from leaves following a NaBisulfite 872 

method modified from [77, 78]. These 480 samples included 440 inbred lines, 24 highly recombinant 873 

inbred lines, and 16 F1 hybrids. Both F1 hybrids (obtained by crossing inbred lines) and their parental 874 

inbred lines were genotyped on the array, but seed lots used to produce F1 hybrids and those used to 875 

extract DNA for genotyping were different. Among these 480 DNAs, 13 inbred lines were genotyped using 876 

two different DNAs from two different seed-lots and were used to evaluate the reproducibility of the 877 

genotyping (Additional file 1: Table S9). DNA samples of one F1 hybrid were also genotyped 6 times. 878 

Mendelian inheritance was estimated between 12 hybrids F1 derived from 9 different parental lines 879 

(Additional file 1: Table S8) 880 

Variant calling using Affymetrix® algorithm 881 

Each type of probe had a dedicated algorithm (Additional file 2: Figure S7) to call genotypes, 882 

according to expected behavior from the probe design. DNA samples from 480 individuals were hybridized 883 

to the array using the Affymetrix® system. The genotyping, sample QC, and marker filtering were 884 

performed according to the Axiom® Best Practice genotyping analysis workflow. Genotype calls and 885 

classifications were generated from the hybridization signals in the form of CEL files using the Affymetrix® 886 

Power Tools (APT) and the SNPolisher package for R, according to the Axiom® Genotyping Solution Data 887 

Analysis Guide, and a custom-made R script, Hom2OTV, implemented the algorithm for calling MONO 888 

probes. 889 

The APT results were then post-processed using SNPolisher, which is an R package specifically 890 

designed by Affymetrix®. Marker metrics were generated using the Ps_Metrics function. These marker QC 891 

metrics were used to classify probesets into 14 categories (Additional file 2: Figure S8) using the 892 

Ps_Classification and Ps_Classification_Supplemental functions, with all default setting for diploid (e.g. 893 

HetSO.cut=-0.3, HetvMAF.cut=1.9), except for an empirically determined, more stringent heterozygous 894 

variance filter (AB.varY.Z.cut=2.6). Example of clusters from each classification were visualized using the 895 
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Ps_Visualization function (Additional file 2: Figure S8). Variants were preferentially selected as 896 

recommended if they were exhibiting stable category assignments with clearly separated clusters. Each 897 

variant was ranked into a category (Additional file 2: Figure S8) at each step of the pipeline.  898 

Algorithms used to convert BP and OTV were similar, as BP and OTV probes behaved like classical 899 

SNPs. For initial genotype calling, a priori (generic) cluster positions were used, since no information about 900 

expected positions was available. A first analysis was performed according to Affymetrix® 901 

recommendations. Secondly, the level of inbreeding was taking into account for a posteriori cluster 902 

definition, because of the high amount of inbred lines in the panel. This parameter took values from 0 for 903 

fully heterozygous to 16 for completely homozygous samples. For OTV and BP algorithms, an inbred 904 

penalty of 4 (lower penalty for inbred species) was applied to try to re-labelled probes that fall into 905 

categories: CallRateBelowThreshold (CRBT), HomHomResolution (HHR), NoMinorHom (NMH), Other and 906 

UnexpectedHeterozygosity, after the first cluster analysis (Additional file 2: Figure S8). Markers that were 907 

classified as OTV may also be considered recommended after the OTV_caller function has been used to 908 

re-label the genotype calls. The SNPolisher OTV_Caller function performed post-processing analysis to 909 

identify miscalled AB clustering and identify which samples should be in the OTV cluster and which 910 

samples should remain in the AA, AB, or BB clusters. Samples in the OTV cluster were re-labelled as OTV. 911 

Finally, the recommended markers list is created by combining the list of markers that are classified into 912 

the recommended categories (PolyHighResolution (PHR), MonoHighResolution (MHR), and OTV). 913 

BP and OTV probes that exhibited only two clusters (AA or BB and OTV) should fall into the 914 

monomorphic classification and be considered as not recommended. A new MONO algorithm was 915 

developed (Figure 4), because, unlike traditional SNP genotyping, we only expected two clusters for 916 

MONO probes (presence and absence) (Figure 1C). To classify monomorphic sequence genotyping, the 917 

OTV_Caller function was called, and only MHR and NMH were considered as recommended. Other 918 

monomorphic probes are then analyzed with an inbred penalty of 16 (highest level) to re-labelled probes 919 

displaying higher-than-expected levels of heterozygosity. Finally, the new function called Hom2OTV was 920 

implemented to classified probes exhibiting two homozygous clusters, with primarily an intensity 921 

difference. This function determined if the intensity difference represents one homozygous cluster (InDel 922 

presence) and one OTV cluster (InDel absence), as we expected. There are no parameters in this function. 923 

The lower intensity homozygous cluster is recalled as OTV. 924 

Evaluation of genotyping quality  925 

We compared the genotyping for 479,027 probes from the InDel array (Genotyping By Array: GBA) with 926 

the genotyping from sequencing (Genotyping By Sequencing: GBS) of 4 inbred lines used to discover the 927 

InDels: B73, F2, PH207, and C103. Genotyping by sequencing was built from the alignment of probe 928 

sequences on the reference genome B73 and the de novo assembly of 3 inbred lines (F2, PH207, and 929 

C103) with Blast software. Sequences were considered present in lines when the probes were aligned 930 

with less than 5% of mismatch or otherwise considered absent. 931 

Genotyping consistency for B73, F2, PH207, and C103 was calculated between GBS and GBA according to 932 

genotype calls “present” or “absent”, produced by GBS (Table 4). For this purpose, Affymetrix® genotyping 933 

was converted into these genotypes:  present, absent, and hemizygote (1 copy present). Consistency of 934 
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Presence/Absence genotypes between sequencing and array genotyping was analyzed for four individuals 935 

(B73, F2, PH207, C103) according to probe types (BP, OTV, MONO):  Number of similar genotypes between 936 

GBS and GBA /number of genotype called by GBA and GBS. Note that the seed-lot used for B73 and F2 937 

genotyping is different from the seed-lot used for InDel discovery, but it is the same seed-lot for inbred 938 

lines PH207 and C103. 939 

In order to evaluate the consistency of probe genotyping within InDels (Figure 4), we used 362 inbred 940 

lines from an association panel representing a wide range of genetic diversity (Camus-Kulandaivelu, 2005; 941 

Bouchet et al., 2013). From 479,027 probes, we selected 294,650 polymorphic probes and fully consistent 942 

between GBS and GBA in order to limit the genotyping errors due to sequencing. These probes genotyped 943 

72,555 InDels. We then selected 50,648 polymorphic InDels that are genotyped with at least two probes 944 

(corresponding to 270,581 probes), and calculated the average frequency of the presence allele across all 945 

probes for each InDel and inbred line. For each InDel, we calculated the frequency of inbred lines 946 

displaying fully consistent genotypes between probes, i.e the proportion of lines where the average 947 

frequency across all probes is 0 or 1. We also calculated frequency of inbred lines that have a least one 948 

probe with an inconsistent genotype (FreqDiff01), i.e the proportion of lines where the average frequency 949 

across all probes is not 0 or 1. To evaluate the effect of the probe numbers on the frequency of lines 950 

inconsistent within InDels, we analyzed the variation of frequency of lines not fully consistent (FreqDiff01) 951 

with relation to the number of probes within the InDels, by estimating median and average FreqDiff01 for 952 

each probe count (Figure 4B, Additional file 1: Table S5). To estimate the probe genotyping error rate, we 953 

compared this variation to what we could expect for different genotyping error rates (1, 3, 5, and 10%) in 954 

362 lines, genotyped by 10,000 Indels, with the number of probes varying from 2 to 50, using a binomial 955 

sampling (Additional file 1: Table S6). For this, we simulated a number of false genotypes among the 956 

probes for each InDel and each line using the rbinom function in R, with the following parameters:  957 

Number of observation = 362 lines x 10,000 Indels; Number of trials for each observation = Number of 958 

probes; Probability of success of each trial = probes genotyping error rate. Using this simulation, we 959 

estimated frequency of inconsistent calls among 362,000 simulated genotypes (FreqDiff01) for each 960 

probes count, varying from 2 to 50, and compared them with the median and average FreqDiff01 (Figure 961 

4). To evaluate the impact of combining multiple probes for a genotype to correct genotype errors, we 962 

used this simulation to estimate the InDel genotyping error rate, if we assign, to an inbred line, the most 963 

frequent allele, based on the average allelic frequency of presence (Additional file 1: Table S6). To 964 

compare accuracy for genotyping absence and presence using this array, we separated the InDels in four 965 

classes, according to their average allelic frequency of absence in 362 inbred lines (0-25%, 25%-50%, 50%-966 

75%, 75%-100%) and compared their median FreqDiff01 (Additional file 2: Figure S12).  967 

To evaluate the reproducibility of the 479,027 probes on the array, we compared the genotypes between 968 

6 DNA replicates from F1 hybrids that originated from crossing B73 and F72. We also compared the 969 

genotypes of 13 duplicated inbred lines (A554, A632, A654, B73, C103, CO255, D105, EP1, F2, F252, KUI3, 970 

Oh43, and W117) that originated from different seed sources (Additional file 1: Table S9). The genotypes 971 

of these 13 duplicated lines were also compared using 43,982 SNPs from the Illumina 50K SNP array. 972 

To evaluate the quality of genotyping, we also analyzed 12 F1 hybrids derived from 9 parental inbred lines 973 

Additional file 1: Table S8). We first predicted the genotypes of the 12 F1 hybrids, based on the genotyping 974 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/507756doi: bioRxiv preprint 

https://doi.org/10.1101/507756
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

of their 2 parental lines, for 46,382 BPs probes, removing OTV calls. These predicted genotypes were then 975 

compared with the observed genotypes of the corresponding hybrids: Number of similar genotypes 976 

(homozygous or hemizygous) between predicted and observed/Number total of genotypes. BP probes 977 

producing missing data or displaying hemizygous genotypes in the parental lies were excluded from the 978 

comparison. Note that the seed-lots of the parental inbred lines genotyped may have been different from 979 

the seed-lots used for producing the F1 hybrids. 980 

 981 

Diversity analysis 982 

We performed diversity analysis on 362 inbred lines from an association panel representing a 983 

wide range of diversity [55, 57], obtained using InDels genotyped on our InDels Affymetrix® Axiom® array 984 

and using SNPs genotyped from the Illumina 50K SNP array [54]. The genotypes of InDels were treated as 985 

bi-allelic “present” and “absent”. 986 

To perform diversity analysis, we first selected 237,629 probes among the 479,027 probes for 987 

which (i) the clustering observed were consistent with expectation (Table 3) and (ii) for which genotypes 988 

produced by our array for the 4 lines used for discovering the InDels were fully consistent with the 989 

genotyping, based on the alignment of the probes on the genome assemblies using BLAST software. We 990 

filtered out 219,068 probes based on their genotyping quality (missing data rate below 20%, heterozygous 991 

rate below 15% and minor allele frequency above 5%). In the end, we selected a single, best probe for 992 

each InDel, leading to a set of 57,824 probes genotyping 57,824 InDels to analyze diversity in 362 inbred 993 

lines. 994 

We estimated two kinship matrices between 362 lines using “identity by descent” estimators (IBD) 995 

based on 57,824 InDels and on 28,143 prefixed Panzea SNPs from the Illumina 50K (Figure 5). Kinship 996 

matrices were estimated with the “ibd” function in the R package GenABEL [79]. We performed 997 

correlation between IBD values estimated with SNP and InDel polymorphisms. Genetic structuration was 998 

estimated using only the 28,143 Panzea SNPs with admixture software [80]. We selected the admixture 999 

results for five genetic groups (Q=5), since it corresponded to the number of genetics groups defined in 1000 

previous studies using the Panzea SNPs from the Illumina 50K [55]. Lines were assigned to one genetic 1001 

group, given that the probability of assignment to the groups was greater than 0.6, whereas lines below 1002 

this threshold were considered “admixed”. In order to compare genetic structuration based on InDels and 1003 

SNPs, we performed Principal Coordinate Analysis (PcoA) on genetic distance between lines with (362 1004 

lines) and without F2 and B73 (360 lines) based on their dissimilarity (1-IBD) using InDels. Each line was 1005 

plotted on the first two planes of PcoA and colored according to the assignment to the 5 genetics groups 1006 

(Figure 5). 1007 

  1008 
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List of abbreviations 1009 

GBA = Genotyping by array 1010 

GBS = Genotyping by sequencing 1011 

SNP = Single nucleotide polymorphism 1012 

InDel = Insertion / Deletion 1013 

BP = Breakpoint 1014 

MONO = Monomorphic  1015 

OTV = Off Target Variant 1016 

QC = Quality control 1017 

PHR = Poly High Resolyion 1018 

VCF = Variant Call Format 1019 

PAR = Presence / Absence Region 1020 

PAV = Presence / Absence Variant 1021 

SV = Structural variant 1022 

CNV = Copy Number Variant 1023 

TE = Transposable Element 1024 

CGH = Comparative Genomic Hybridization 1025 

NGS = Next Generation Sequencing 1026 

FW = Forward 1027 

REV = Reverse 1028 

NAM = Nested Association Mapping 1029 

DNA = Deoxyribonucleic Acid 1030 

PCR = Polymerase Chain Reaction 1031 

PcoA = Principal Coordinate Analysis 1032 

Mbp = Millions of Base Pairs 1033 
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bp = base pair 1034 

FreqDiff01 = Frequency of lines not fully consistent between probes within InDel 1035 
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Figures 1256 

Figure 1: Genotyping of InDel CNVMAIZE_DEL_12661 using three probe types on 445 individuals. A) 1257 

Schematic distribution of the 9 probes along the sequence of InDel CNVMAIZE_DEL_12661 (green line) 1258 

and the bordering sequence common between all individuals (blue line) genotyped by the array. Double, 1259 

dotted, and full arrows represented the probes designing on the forward and reverse flanking sequences 1260 

of the breakpoint sites (BP), at not polymorphic (MONO) and polymorphic sites (OTV) within internal 1261 

sequence of InDel. B) Schematic distribution of the 8 probes passing Affymetrix® quality control and called 1262 

by the Affymetrix® pipeline C) Clustering produced by the Affymetrix® algorithm for an OTV, MONO, and 1263 

BP probe from InDel based on both fluorescence contrast (X axis) and intensity (Y axis) of the 445 inbred 1264 

lines. Red, blue and yellow dots indicated the presence of the sequence (genotype “present”) either 1265 

homozygous for allele A (AA) or allele B (BB) or heterozygous (AB), respectively. Cyan and green indicated 1266 

that the sequence was absent in the individual (OO), or only in one copy of the sequence, e.g hemizygous 1267 

for presence/absence (OB or OA). Black dots indicated individuals for which no genotype could be 1268 

assigned (Missing data) D) Haplotypes displayed by the genotyping using 8 probes (column) on the 445 1269 

inbred lines (row). Colors corresponded to the genotype of individuals produced by clustering in C) 1270 
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Figure 2: Distribution of 105,927 InDels genotyped by the array according to their size and the cumulated 1273 

length of Presence/Absence regions (PARs) in their internal sequence. A) Distribution of the number of 1274 

InDels according to the proportion of presence/absence regions (sequence not present elsewhere in the 1275 

genome) within their internal sequence. B) Distribution of the number of InDels according to their size 1276 

(kbp) and the percentage of internal sequence of InDel covered by PAR(s). Red Color indicates the 1277 

proportion of InDels with (red) or without (blue) PARs for the 7 InDel size classes. 1278 
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Figure 3:  Number of InDels interrogated by each probe types or their combination, for which: a probe 1282 

could be designed (A) and a probe was finally selected to be included in the final array (B). Vertical bars 1283 

indicate number of InDels interrogated by each probe types or their combination. Black points and 1284 

connected traits below the vertical bars indicate the corresponding probes types or their combination 1285 

that are used for interrogating this subset of InDels. Horizontal bars indicate number of InDels 1286 

interrogated by each probe types (OTV, BP, MONO). Number of InDels by probe type, for which: a probe 1287 

could be designed (A) and a probe was finally selected to be included in the final array (B). Number of 1288 

InDels that could be targeted by each type of probes designed (A) and selected to be included in the final 1289 

array (B). 1290 
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Figure 4: Consistencies among probes within 50,648 InDels with at least two probes genotyped in 362 1292 

inbred lines. (A) Distribution of the average allelic frequencies of present calls over all probes. (B) Variation 1293 

of proportion of genotypes not fully consistent across all probes. The black and gray curves with triangle 1294 

points represent the variation of the median and average FreqDiff01 across InDels, respectively. Colored 1295 

curves with circle points represent the expected variation of the proportion for different error rates (1%: 1296 

red, 3%: green, 5%: light blue, 10%: dark blue). Frequencies of 1 (presence) and 0 (absence) indicate that 1297 

all probes had consistent genotypes for the corresponding inbred line. Intermediate frequencies 1298 

(FreqDiff01) indicate that at least one probe was not consistent with the other probes for the same InDel 1299 

in one inbred line. 1300 
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Figure 5: Principal coordinate analysis on the genetic distance between 362 inbred lines from an association panel estimated by A) 57,824 InDels 1302 

and B) 28,143 SNPs. Colors represent the assignment of the inbred lines to the 5 genetic groups defined by admixture using pre-fixed Panzea SNPs 1303 

from the 50K Illumina array, when the probability of assignment to a group (membership) was greater than 60%. Inbred lines not assigned to a 1304 

group were considered admixed and colored gray. The common names of maize accessions, typical of each genetic group, were used. 1305 
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Additional Files 1309 

Additional file 1:  1310 

Table S1: Summary of sequencing data used during the assembly process provided by ALLPATHS-LG; Table S2: Classification by the Affymetrix® 1311 

pipeline of 84,994 BP probes based on cluster number, separation, variance, and call rate. A) Probes recommended for genotyping, B) Probes 1312 

not recommended for genotyping; Table S3: Classification by the Affymetrix® pipeline of 163,278 OTV probes based on cluster number, 1313 

separation, variance, and call rate. A) Probes recommended for genotyping B) Probes not recommended probes for genotyping; Table S4: 1314 

Classification by the Affymetrix® pipeline of 414,500 MONO probes, based on cluster number, separation, variance, and call rate. A) Probes 1315 

recommended for genotyping B) Probes not recommended for genotyping; Table  S5: Effect of probe number within InDels on average 1316 

percentage of missing data, of genotypes absent and genotypes not fully concordant; Table  S6: Simulation of genotyping error rates for 362 1317 

lines and 10,000 InDels called by various numbers of probes with a probe genotyping error rate ranging from 1% to 10%; Table  S7: Comparison 1318 

of reproducibility between 5 DNA replicates of hybrid F1 according to probes type and observed clustering; Table  S8: Mendelian inheritance of 1319 

12 hybrids F1 derived from 9 different parental inbred lines for 46,382 BP probes passing Affymetrix quality control and polymorphic; Table  S9: 1320 

Comparison of the reproducibility of InDels and SNP genotyping between 13 maize varieties replicated on 50K Illumina SNP and Affymetrix® 1321 

Axiom® InDel arrays 1322 

Additional file 2:  1323 

Figure S1: Description of two approaches used to discover InDels using resequencing data of DNA; Figure S2: Number and complementarity of A) 1324 

deletions and B) insertions regarding B73 reference genome discovered between F2, PH207 and C103 inbred lines and B73; Figure S3: Schematic 1325 

representation of four different breakpoint types identified by PINDEL at InDel breakpoints according to the presence of micro-homology 1326 

sequence or not in place of the deleted sequence; Figure S4: Distribution of probe number per InDel for 105,927 InDels genotyped with the 1327 

array; Figure S5: Relationship between probes number genotyping the InDel and A) the InDel length B) cumulated length of specific sequence 1328 

(PARs) within InDel; Figure S6: Variation of probes and InDels density across the 10 maize chromosomes; Figure S7: Three dedicated Affymetrix 1329 

pipelines used for calling InDel polymorphisms from the fluorescent intensity variation of BP probes (A), OTV probes (B) and MONO probes (C); 1330 

Figure S8: Example of clustering based on probes fluorescence (intensity in y-axis and contrast in x-axis), for 14 different classifications of probes 1331 

assigned by the Affymetrix® algorithm; Figure S9: Example of clustering for 6 randomly probes in different classifications; Figure S10: Variation 1332 

of the distribution of the average consistency rate (%) of InDels between expected and observed genotyping of probes according to number of 1333 

probes within the InDel; Figure S11: Haplotype of two InDels genotyped with multiple probes (in column) for 362 individuals (in rows); Figure 1334 
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S12: Effect of average frequency of absence across 362 lines on consistencies between probes genotyping within InDels; Figure S13: Comparison 1335 

of kinship between 362 inbred lines estimated with 57,824 InDels and with 28,143 SNPs from the 50K Illumina genotyping array; Figure S14: 1336 

Principal coordinate analysis on the genetic distance between 360 inbred lines from an association panel (B73 and F2 were excluded) estimated 1337 

by A) 57,824 InDels and B) 28,143 SNPs. 1338 
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