

1 **The mutational features of aristolochic acid-induced mouse and**
2 **human liver cancers**

3 Zhao-Ning Lu^{1#}, Qing Luo^{1#}, Li-Nan Zhao¹, Yi Shi¹, Xian-Bin Su¹, Ze-
4 Guang Han^{1*}

5 ¹Key Laboratory of Systems Biomedicine (Ministry of Education),
6 Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University,
7 Shanghai, 200240, China

8 [#]These authors contribute equally to this work

9 ^{*}To whom correspondence should be addressed.

10 Ze-Guang Han, Key Laboratory of Systems Biomedicine (Ministry of
11 Education), Shanghai Center of Systems Biomedicine, Shanghai Jiao Tong
12 University, 800 Dongchuan Road, Shanghai 200240, China. Email:
13 hanzg@sjtu.edu.cn

14 **Abstract**

15 Aristolochic acid (AA) derived from traditional Chinese herbal remedies
16 has recently been statistically associated with human liver cancer; however,
17 the causal relationships between AA and liver cancer and the underlying
18 evolutionary process of AA-mediated mutagenesis during tumorigenesis
19 are obscure. Here, we subjected mice, including *Pten*-deficient ones, to
20 aristolochic acid I (AAI) alone or a combination of AAI and carbon
21 tetrachloride (CCl₄), which may induce liver injury. Significantly, AAI
22 promoted the development of liver cancer, including hepatocellular
23 carcinoma and intrahepatic cholangiocarcinoma, in a dose-dependent
24 manner, and it increased the incidence of liver cancer, together with CCl₄
25 or *Pten* deficiency. AAI could lead to DNA damage and AAI-DNA adducts
26 that initiate liver cancer via characteristic A>T transversions, as indicated
27 by the comprehensive genomic analysis, which revealed recurrent
28 mutations in *Hras* and some genes encoding components of the Ras/Raf,
29 PI3K, Notch, Hippo, Wnt, DNA polymerase family and the SWI/SNF
30 complex, some of which are also often found in human liver cancer.
31 Mutational signature analysis across human cancer types revealed that the
32 AA-related dominant signature was especially implicated in liver cancer in
33 China, based on very stringent criteria derived from the animal cancer form,
34 in which mutations of *TP53* and *JAK1* are prone to be significantly
35 enriched. Interestingly, AAI-mediated characteristic A>T mutations were

36 the earliest genetic event driving malignant subclonal evolution in mouse
37 and human liver cancer. In general, this study provides documented
38 evidence for AA-induced liver cancer with featured mutational processes
39 during malignant clonal evolution, laying a solid foundation for the
40 prevention and diagnosis of AA-associated human cancers, especially liver
41 cancer.

42 **Introduction**

43 Aristolochic acid (AA) is present in plants in the genera *Aristolochia*,
44 *Bragantia*, *Asarum* and others¹, which have been widely used in traditional
45 Chinese herbal remedies. AA is one of the most potent carcinogens known
46 to man, belonging to the Group I human carcinogens classified the by
47 International Agency for Research on Cancer (IARC). Aristolochic acid I
48 (AAI) and II (AAII) are the major components of the AA mixture contained
49 in the plant extract of *Aristolochia* species². AA is a genotoxic carcinogen
50 because its metabolite can bind purines to form AA-DNA adducts,
51 aristolactam (AL)-DNA adducts (dA-AL and dG-AL), which are specific
52 markers of exposure to aristolochic acids and induce DNA mutations with
53 characteristic adenine-to-thymine (A>T) transversions *in vitro* and *in*
54 *vivo*^{2,3}.

55 The dA-AL-I (7-(deoxyadenosin-N6-yl) aristolactam I) adducts
56 induced by AAI can show long-term persistence in renal tissue⁴, which
57 may have led to the occurrence of aristolochic acid nephropathy (AAN) in
58 Belgian women who had taken weight-reducing pills containing
59 *Aristolochia fangchi*⁵ and Balkan endemic nephropathy (BEN) through
60 dietary contamination with *Aristolochia clematitis* seeds⁶. Both
61 nephropathies are associated with urothelial carcinoma because AA-DNA
62 adducts have been found in kidney tissue and urothelial tumor tissues of
63 patients with AAN or BEN^{3,5,6}. In Taiwan, approximately one-third of the

64 people consume Chinese herbal remedies containing AA, which could be
65 associated with the highest incidence of upper urinary tract cancers (UTUC)
66 in the world⁷. The genome-wide mutational signature of characteristic A>T
67 transversions (COSMIC signature 22), specifically reflecting AA-
68 implicated mutagenesis, is frequently found in Taiwanese UTUC^{7,8}.

69 Recently, AA has been statistically associated with human liver cancer.
70 We found, for the first time, that the characteristic A:T to T:A transversions
71 were significantly enriched in 4 of 10 (40%) hepatitis B virus (HBV)-
72 associated hepatocellular carcinoma (HCC) specimens from China,
73 indicative of AA exposure in HCC tumorigenesis⁹. A survey in larger
74 cohorts of HCC patients indicated that the AA-implicated mutational
75 signature was discovered in some Asian HCC patients, especially in more
76 than 75% of Taiwanese HCC cases¹⁰.

77 There has been no direct evidence that AA can induce liver cancer until
78 now, although AA-DNA adducts have been detected in many organs,
79 including the liver, in experimental animals exposed to AA during a
80 relatively short period¹¹, and even in the livers of some nephropathy
81 patients with known AA exposure^{12,13}. To confirm whether AA can directly
82 induce liver cancer, including HCC, here we subjected mice, including
83 *Pten*-deficient ones, to AAI alone or a combination of AAI and carbon
84 tetrachloride (CCl₄), a well-documented liver injury agent. Significantly,
85 AAI administration alone increased the incidence of liver cancer in a dose-

86 dependent manner, and the combination of AAI and CCl₄ also led to a
87 higher incidence of mouse liver cancer. Interestingly, the types of liver
88 cancer included HCC, intrahepatic cholangiocarcinoma (ICC), and
89 combined hepatocellular and intrahepatic cholangiocarcinoma (cHCC-
90 ICC). Genome-wide analysis of the AAI-induced liver cancer showed the
91 characteristic mutational signature and process during clonal evolution,
92 providing new insights into the pathogenesis of AA-induced liver cancer.

93 **Results**

94 **AAI can induce mouse liver cancer**

95 To validate whether AA could directly induce liver cancer, especially HCC,
96 we first subjected C57BL/6 male mice to AAI administration alone by
97 intraperitoneal injection. Based on previous research^{11,14}, AAI was
98 administered at a lower dose (2.5 and 5 mg/kg body weight) for injection
99 of 3, 7, and 14 times, respectively (see **Methods**). Moreover, considering
100 the possibility that AAI could enhance tumorigenesis due to liver injury or
101 a genetic defect, we designed the combination of AAI and CCl₄ to treat
102 mice, in which CCl₄ can induce liver injury, compensatory proliferation,
103 inflammation, and fibrosis¹⁵; we also subjected liver-specific *Pten*-
104 deficient mice, who frequently develop liver cancer by 74–78 weeks of
105 age¹⁶, to AAI administration. In general, a total of eight experimental
106 groups of mice subjected to AAI administration (**Fig. 1a** and
107 **Supplementary Fig. 1a**) included the following: (I) “AAI (3x)”,

108 administration of AAI at a dose of 2.5 mg/kg every other day for 3 doses
109 at 2 weeks after birth; (II) “AAI (14x)”, administration of AAI at a dose of
110 2.5 mg/kg/day for 14 days at 2 weeks of age; (III) “AAI (high 3x)”,
111 administration of AAI at a dose of 5 mg/kg every other day for 3 doses at
112 2 weeks of age; (IV) “AAI (high 14x)”, administration of AAI at a dose of
113 5 mg/kg/day for 14 days at 2 weeks of age; (V) “AAI (3x) + CCl₄”,
114 administration of CCl₄ three times per week for 4 weeks at 2 months after
115 AAI injection; (VI) “AAI (14x) + CCl₄”, administration of CCl₄ once per
116 week for 10 weeks at 4 weeks after AAI injection; (VII) “AAI (7x)”,
117 administration of AAI at a dose of 2.5 mg/kg every other day for 7 doses
118 at 1 week of age, to observe the effect of AAI on younger fetal livers; (VIII)
119 “AAI (high 14x, *Pten*^{LKO})”, administration of AAI at a dose of 5 mg/kg/day
120 for 14 days at 2 weeks of age in liver-specific *Pten*-deficient mice. In
121 addition, male mice were injected with CCl₄ alone, which was administered
122 once or three times per week at a dose of 0.5 ml/kg body weight, and
123 vehicle as the control group (**Supplementary Fig. 1a**).

124 Interestingly, liver cancer occurred in all eight experimental groups of
125 AAI administration (**Fig. 1b-g** and **Supplementary Fig. 1b-p**). AAI
126 administration alone significantly promoted the development of liver
127 cancer in a dose-dependent manner. A lower dosage of AAI (“AAI (3x)”)
128 led to liver cancer development in 2 (20%) out of 10 mice at 11.5 months
129 after the first AAI administration, demonstrating a statistically increased

130 incidence compared with the control group without AAI treatment ($P =$
131 0.038) (**Supplementary Fig. 1b**). Significantly, a greater number of
132 injections (“AAI (14x)” *vs.* “AAI (3x)”) was associated with earlier
133 occurrence (8.5 M *vs.* 11.5 M) and larger tumor sizes (11.5 M, mean: 5.62
134 mm *vs.* 0.22 mm, $P = 0.048$) of liver cancer (**Fig. 1d**). Under the same AAI
135 administration durations, the larger the dosage (“AAI (high 3x)” *vs.* “AAI
136 (3x)”), the larger was the tumor size (11.5 M, mean: 4.63 mm *vs.* 0.22 mm,
137 $P = 0.048$) (**Fig. 1d**). However, many mice in the “AAI (high 14x)” group
138 died during the experimental observation period (**Supplementary Fig. 1q**),
139 and all 4 surviving mice at 8.5 or 11.5 months after the first AAI
140 administration developed liver cancer (**Supplementary Fig. 1j**). In
141 addition, the mice in the “AAI (7x)” injection group at the age of 1 week
142 also displayed an increment in tumor incidence, number and size,
143 compared to the “AAI (14x)” group, although this difference was not
144 statistically significant (**Supplementary Fig. 1b-d, o**).

145 Compared with AAI administration alone, the combination of both AAI
146 and CCl₄ led to a significantly higher incidence of mouse liver cancer. The
147 combined models (“AAI (3x) + CCl₄” *vs.* “AAI (3x)”; “AAI (14x) + CCl₄”
148 *vs.* “AAI (14x)”) resulted in an earlier tumor occurrence (8.5 M *vs.* 11.5 M;
149 5.5 M *vs.* 8.5 M), higher tumor incidence (11.5 M, 100% *vs.* 20%, $P =$
150 0.007; 8.5 M, 100% *vs.* 71.4%, $P = 0.2$), greater number of tumor nodules
151 (11.5 M, mean: 4.3 *vs.* 0.2, $P = 0.00048$; 8.5 M, mean: 3.75 *vs.* 0.86, $P =$

152 0.0013) and larger tumor sizes (11.5 M, mean: 6.53 mm *vs.* 0.22 mm, $P =$
153 0.00051; 8.5 M, mean: 8.25 *vs.* 2.86, $P = 0.014$) (**Fig. 1b-d**).

154 Moreover, compared with the same genetic background mice as a
155 control, the liver-specific *Pten*-deficient mice (*Pten*^{LKO}) treated with AAI
156 alone developed liver cancer (6 M, 100% *vs.* 0%, $P = 0.002$)
157 (**Supplementary Fig. 1b-d**), along with obvious bile duct hyperplasia in
158 adjacent liver tissues (**Supplementary Fig. 1p**).

159 Among the examined 84 livers from the above mice that received AAI
160 administration, 60 mice (71.4%) developed liver cancer. We checked these
161 tumors based on the microscopic morphology and immunohistochemistry
162 staining for Ki67, a proliferative index; α -fetoprotein (AFP), a well-known
163 HCC marker; and cytokeratin 19 (CK19), a cholangiocyte marker.
164 Interestingly, 55 (91.7%) of 60 tumors were observed to be HCCs, which
165 exhibited expansive growth, hyperchromatic and enlarged nuclei, an
166 increased nuclear-to-cytoplasmic ratio, a high Ki67 proliferative index, an
167 absence of normal liver architecture, and focal expression of AFP (**Fig. 1e**,
168 **g** and **Supplementary Fig. 1b-p**). Additionally, 4 (6.7%) of 60 tumors
169 were classified as combined HCC and intrahepatic cholangiocarcinoma
170 (cHCC-ICC) because both AFP and CK19-positive cells were present in
171 the same tumors (**Fig. 1f, g**), which were obtained from different groups
172 treated with AAI alone, a combination of AAI and CCl₄, and liver-specific
173 *Pten*-deficient mice, respectively (**Fig. 1g and Supplementary Fig. 1h, i**,

174 **n, p).** Interestingly, 1 (1.7%) *Pten*^{LKO} mouse developed ICC with CK19-
175 positive cells in an examined tumor nodule (**Fig. 1f, g**); however, the HCC
176 nodule was also observed in the same liver (**Supplementary Fig. 1p**). It
177 should be pointed out that no visible liver tumors were detected in any of
178 the control groups.

179 In addition to liver cancer, AAI also promoted liver fibrosis in a dose-
180 dependent manner. The minimum amount of AAI administration (“AAI
181 (3x)” group) also led to fibrillar collagen deposition, as detected by Sirius
182 red staining in noncancer livers, compared to the controls without AAI
183 treatment (Sirius red area: 0.79% vs. 0.42%, $P = 9.9 \times 10^{-10}$) (**Fig. 1g** and
184 **Supplementary Fig. 1r**). The mice in the “AAI (14x)” and “AAI (high 3x)”
185 groups displayed a profound increment of fibrosis compared with those in
186 the “AAI (3x)” group (Sirius red area: 1.81% vs. 0.79%, $P = 3.2 \times 10^{-15}$;
187 1.12% vs. 0.79%, $P = 1.44 \times 10^{-4}$, respectively) (**Fig. 1h** and
188 **Supplementary Fig. 1r**). Interestingly, the degree of liver fibrosis
189 paralleled the incidence of liver cancer with AAI administration alone.

190 Moreover, we also checked the other organs of these mice treated with
191 AAI. Hydronephrosis or renal cysts were found in the mice that were
192 administered AAI (**Supplementary Fig. 1s**). However, no visible tumors
193 were found in other organs, such as lung, spleen, stomach, ureter, bladder
194 and testis.

195 The collective data indicated that AAI could result in liver cancer,

196 including HCC, ICC and cHCC-ICC, in a dose-dependent fashion; when
197 the liver was injured or displayed a genetic defect such as *Pten* deficiency,
198 AAI could synergistically promote liver cancer tumorigenesis. The above
199 data also implied that AAI could trigger genetic lesions in liver progenitor
200 cells with bipotent potential towards hepatocytes or cholangiocytes, which
201 further develop three subtypes of liver cancer under the genetic
202 differentiation program.

203 **AAI causes DNA damage and dA-AL-I adducts in liver**

204 It is known that AA is a genotoxic agent that can form DNA adducts such
205 as dA-AL and dG-AL; however, whether AA causes genomic DNA
206 damage in liver cells is unclear. We first examined the phosphorylated
207 histone γ -H2AX, a biomarker for DNA double-strand breaks, in the livers
208 of mice with AAI administration alone (“AAI (14x)”), through
209 immunofluorescence staining. Interestingly, the phosphorylated γ -H2AX
210 level was obviously increased in the liver at 1 month of age (four days after
211 completion of AAI administration) (**Fig. 2a**); however, during the
212 subsequent 2-12 months, the γ -H2AX level was reduced in liver
213 (**Supplementary Fig. 2a**). Excluding the phosphorylated γ -H2AX level,
214 we further evaluated the p53 level and its downstream target molecule Bax
215 as a cellular response to DNA damage, in these livers via Western blotting,
216 which revealed that both γ -H2AX and p53 levels were markedly increased
217 in these livers (**Fig. 2b**), along with a slight upregulation of Bax. These

218 data suggested that AAI could give rise to DNA damage.

219 To confirm whether AAI could indeed lead to DNA damage in liver,
220 we employed the alkaline comet assay to directly detect DNA strand breaks
221 in livers 3 hours after AAI administration with 2.5 mg and 5 mg/kg dosages,
222 respectively. The data demonstrated that AAI could cause DNA strand
223 breaks in mouse livers in a dose-dependent fashion (**Fig. 2c, d**), in parallel
224 with the increased phosphorylated γ -H2AX level via immunofluorescence
225 staining (**Fig. 2e, f**), which was positively correlated with the incidence of
226 liver cancer. Except for the increased γ -H2AX level in an exposure time-
227 depend manner (**Supplementary Fig. 2b, c**), phosphorylated ATR, a
228 molecule that responds to DNA damage, was upregulated in liver at 12 h
229 after AAI administration (**Supplementary Fig. 2d**). These data revealed
230 that AAI directly triggered DNA damage in mouse livers.

231 AA is known to form AA-DNA adducts that are further processed to
232 form somatic mutations through infidelity DNA repair system, which could
233 be critical step in tumorigenesis. We thus examined the AAI-mediated dA-
234 AL-I adduct in mouse livers after AAI administration by mass
235 spectrometry, using the identified synthetic dA-AL-I as a reference
236 (**Supplementary Fig. 2e, f**). Significantly, we could detect dA-AL-I
237 adducts in all examined noncancerous livers from “AAI (14x)” mice (**Fig.**
238 **2g**), and the quantity of the adduct in these livers gradually decreased along
239 the different time points after AAI administration (**Fig. 2g, h**), while the

240 quantity of dA-AL-I in kidneys was generally higher than in livers from
241 the same mice (**Supplementary Fig. 2g**). However, we could not detect
242 the dA-AL-I adducts in three matched liver cancers (**Fig. 2h**), implying
243 that, within these tumor cells, the activated DNA repair system had
244 removed the adduct or the adduct could be diluted by repeated DNA
245 replication via cell cycle progression.

246 The above data indicated that AAI caused DNA damage, including
247 DNA double-strand breaks, and dA-AL-I adducts in liver cells, which
248 triggered the cellular response and DNA repair system. This process could
249 further lead to genomic instability and somatic mutations that contribute to
250 tumorigenesis.

251 **AAI leads to the characteristic mutational signature of A to T
252 transversions**

253 To survey the genomic instability and somatic mutations triggered by AAI,
254 we performed whole-genome sequencing (WGS) for DNA copy number
255 variations (CNVs), whole-exome sequencing (WES) and transcriptome
256 analysis of 11 AAI-induced liver tumor nodules, three matched adjacent
257 noncancerous livers, three livers prior to the occurrence of tumors (from
258 the “AAI (3x)” group) and two livers from mice treated with CCl₄ alone,
259 in which their corresponding mouse tails for sequencing were used as the
260 reference controls (**Supplementary Table 1**). Among the 11 tumor nodules,
261 3 were respectively resected from 3 mice of the “AAI (14x)” group (labeled

262 the AAI group), and the other 8 tumors from another 3 mice in the “AAI
263 (3x) + CCl₄” group (labeled as combination group) (**Supplementary Table**
264 **1** and **Supplementary Fig. 1g, l**), where 3 and 4 discrete tumor nodules
265 were resected respectively from two mice (**Supplementary Fig. 3a**).

266 CNV analysis of the 11 tumor nodules by WGS at the depth of about
267 3-fold, compared to their corresponding tail tissues as references, showed
268 that the AA-induced tumors barely had obvious CNV alterations
269 (**Supplementary Table 2**). WES at the average depth of 267-fold for all
270 examined 11 tumor nodules and 8 nontumor livers from the AAI, CCl₄ and
271 combination groups, in which WES data of 62-fold for their corresponding
272 tail tissues were references, identified a total of 8107 single-nucleotide
273 variants (SNVs) and 704 small insertions and deletions (indels) in the 11
274 tumor nodules (**Supplementary Tables 1 and 3**).

275 The somatic SNVs and indels of tumors from the AAI group were
276 significantly more abundant than those in the combination group (mean:
277 1555 vs. 518, $P = 0.012$) (**Supplementary Table 1**), possibly because of
278 the larger AAI dosage in “AAI (14x)” group than in the combination group.
279 Interestingly, somatic mutations were also found in the paratumor livers
280 and noncancerous livers with or without tumors (mean: 130 vs. 76, $P =$
281 0.036) (**Supplementary Table 1**) of mice treated with AAI or CCl₄ alone,
282 respectively, suggesting that the increased somatic mutations in livers
283 could be prerequisite to liver cancer development triggered by AAI.

284 Significantly, the tumors exhibited remarkably high proportions (69%)
285 of A>T transversions, whereas the nontumor liver tissues, except for one
286 (M4P: 33%), did not show such feature (10%) (**Supplementary Fig. 3b, c**
287 and **Supplementary Table 4**). Notably, the load of A>T mutations in the
288 AAI group was larger than those in the combination group (mean: 1043 *vs.*
289 305, *P* = 0.012) (**Supplementary Table 4**), which was consistent with the
290 observation that the total applied AAI amount was higher in the AAI group.

291 The mutational profile of each tumor nodule was depicted (**Fig. 3a** and
292 **Supplementary Fig. 3d-g**) and showed that the trinucleotide context of the
293 highest proportion of A>T mutations was CTG (or CAG on the
294 complementary strand). The pentanucleotide context of the highest
295 proportion of A>T mutations was CCTGT (or ACAGG on the
296 complementary strand) (**Supplementary Fig. 3h**). In the series of
297 mutational deciphering analysis, 7 COSMIC mutational signatures were
298 detected (**Fig. 3b**), of which signature 22 related to AA was obviously
299 dominant in all tumor nodules. Except for signature 22, signatures 1, 5, 6,
300 17 and 23 were detected in these mouse tumor nodules, of which signature
301 1 related to deamination of 5-methylcytosine, and 5 related to aging, have
302 been found in all human cancer types and most cancer samples, while
303 signature 6 is associated with defective DNA mismatch repair, and the
304 etiologies of signatures 5, 17 and 23 remains unknown. Tobacco-associated
305 signature 4 was surprisingly detected in two mouse tumors.

306 However, it was noteworthy that two tumors, M4T1 and M6T,
307 presented higher levels of T > G mutations (marked with a prominent peak
308 at ATG > AGG) (**Supplementary Fig. 3e**), the etiology of which remains
309 unknown. Subsequently, the cosine similarities between the mutational
310 spectra of these tumors and signature 22 (typical AA signature) were
311 calculated. Except for M4T1 and M6T, which showed a somewhat lower
312 similarity (0.59 and 0.64) to signature 22 due to distortion of the higher T >
313 G mutations, the mutational profiles of the tumors were nearly identical to
314 signature 22, having a cosine similarity larger than 0.9 (**Fig. 3c** and
315 **Supplementary Table 5**).

316 Interestingly, the mutational spectrum of one paratumor tissue (M4P,
317 A>T, 33%) also exhibited a similar feature to signature 22 (cosine
318 similarity = 0.69) (**Fig. 3a**), which was obviously higher than the other
319 nontumor liver tissues (average cosine similarity = 0.14) (**Fig. 3c** and
320 **Supplementary Table 5**). This result indicated that M4P could be
321 associated with a precancerous process, which was consistent with the
322 pathology of hyperplasia (**Supplementary Fig. 3a**), along with higher
323 somatic mutations (189) than the other two paratumor livers from the same
324 group (mean: 100.5), albeit being significantly lower than those of the
325 tumor nodules from the same group (mean: 518) (**Supplementary Table**
326 **1**).

327 Except for M4P, other nontumor liver tissues exhibited C>T (average

328 36%) rather than A>T (average 10%) as the predominant mutation
329 category (**Supplementary Fig. 3c** and **Supplementary Table 4**). Their
330 mutational spectra exhibited higher similarities to signatures 5 and 6
331 (**Supplementary Fig. 3i** and **Supplementary Table 5**).

332 Previous studies have revealed that AA-induced mutations are likely to
333 be transcriptionally strand biased⁸. Here, the calculated average ratio of
334 A>T mutations on the nontranscribed strand versus the transcribed-strand
335 was 2.02 ($P < 0.001$) in tumors (**Supplementary Fig. 3j** and
336 **Supplementary Table 6**), indicating the existence of a transcription-
337 coupled repairing (TCR) mechanism to fix the AA-mediated mutations. To
338 further validate the influence of the transcription history on the
339 asymmetries of the A>T strand distribution, we investigated the A>T
340 mutation counts on both strands in the five defined gene expression
341 categories, from low to high expressions, according to the gene expression
342 profiles of the 11 tumor nodules (**Supplementary Table 7**). Next, the
343 mutation counts on the transcribed versus nontranscribed strands were
344 analyzed within each defined gene category, showing that the strand bias
345 of A>T mutations was indeed positively correlated with the gene
346 expression levels (**Fig. 3d**).

347 The collective data revealed that the characteristic mutational signature
348 of A to T transversions and the COSMIC signature 22 induced by AAI
349 were involved in tumorigenesis and could be necessary and critical for the

350 development of liver cancer.

351 **Affected driver genes and signaling pathways**

352 The AAI-mediated characteristic A>T mutations could damage the driver
353 genes that could initiate liver cancer. To identify the driver mutations of
354 these genes in AAI-induced mouse tumors, we searched for genes that were
355 mutated more frequently than expected given the average observed
356 mutation frequency. Interestingly, we found 1919 genes with
357 nonsynonymous mutation in the 11 tumor nodules (**Supplementary**
358 **Tables 1**), of which 98 genes with a total of 123 nonsynonymous somatic
359 mutations belong to the Cancer Gene Census as known driver genes (Tier
360 1 for 77 genes), or those with strong indications for a role in cancer but
361 with less extensive available evidence (Tier 2 for 21 genes) in human
362 cancers (**Supplementary Table 8**). Interestingly, 92 (75%) of the 123
363 nonsynonymous mutations were A>T mutations.

364 The statistically significantly mutated genes included *Hras*, *Sfi1*, *Muc4*,
365 *Sp140*, *Vmn2r121* and *Inpp5d* (**Supplementary Table 9**). The well-studied
366 oncogenic A>T mutations led to the change of *Hras* Q61L (CAA>CTA) in
367 8 of 11 (72.7%) tumor nodules, and *Kras* Q61L (CAA>CTA) and *Braf*
368 V637E (GTG>GAG) were also identified in two other tumor nodules (**Fig.**
369 **4a**), indicating that the cancer-promoting mutations of the Ras/Raf
370 pathway were crucial in AAI-induced liver cancer. Interestingly, 4 of 11
371 (36.4%) tumors presented *Muc4* (4 A>T mutations), in which the same

372 *Muc4* (c.3869T>A) mutation was detected in two tumors (**Fig. 4a**). *Muc4*
373 as an oncogene is listed in the Cancer Gene Census Tier 2, mutations of
374 have appeared in many human cancers, including HCC^{10,17,18}, and are
375 associated with tumor metastasis¹⁹. *Sfil* encoding a spindle assembly
376 associated protein, which was reported to be mutated in human HCC¹⁸,
377 showed 8 mutations (A>T mutations) in 4 mouse tumors (**Fig. 4a**). *Sp140*
378 encodes a member of the SP100 family of proteins, *Inpp5d* encodes a
379 member of the inositol polyphosphate-5-phosphatase (INPP5) family, and
380 unknown functional *Vmn2r121* also showed a higher mutation frequency
381 in these mouse tumors (3/11), of which *Inpp5d* (3/11), also named *SHIP1*,
382 involved in the PI3K-AKT pathway, has been known to be mutated in
383 human cancers, including HCC¹⁷ (**Supplementary Table 3** and **Fig. 4a**).

384 Both the Ras/Raf and PI3K-AKT pathways could participate in the
385 pathogenesis of all these liver tumors (**Fig. 4a, b**). Except for *Ras* and *Braf*,
386 five genes that regulate Ras activity, *Nf1* (2/11), *Rasal2* (1/11), *Sos2* (1/11),
387 *Rasgrp1* (1/11) and *Rasgrp4* (1/11), were also identified with A>T
388 mutations (**Supplementary Table 3**). In addition, some genes encoding
389 growth factors and receptors with tyrosine kinase, such as *Hgf* (3/11), *Egf*
390 (1/11), *Fgf13* (1/11), *Kdr* (2/11), *Pdgfra* (1/11), *Pdgfrb* (1/11), and *Fgfr3*
391 (1/11), except for *Met* (1/11), were also influenced by A>T mutations. *Hgf*
392 mutations also appear in human HCC^{10,17,18}. Moreover, the mutant genes
393 were significantly enriched in the PI3K-AKT signaling pathway ($P = 6.6$

394 $\times 10^{-6}$) (**Supplementary Table 10** and **Fig. 4a, b**), which included those
395 encoding growth factors and the receptors mentioned earlier. Except for
396 *Inpp5d*, some genes encoding phosphoinositide-3-kinase (PI3K), such as
397 *Pik3cg* (2/11), and modulators of AKT activity such as *Ppp2r2d* (1/11),
398 *Ppp2r5e* (1/11), *Phlpp1* (1/11) and *Tcl1* (1/11), were also influenced by
399 A>T mutations. The tumor suppressor gene *Tsc1* (2/11), as a negative
400 regulator of mTORC1 and *Rheb* (1/11) activating the protein kinase
401 activity of mTORC1, demonstrated A>T mutations. (**Fig. 4a**).

402 Some mutations could damage development-related genes, including
403 components of the Hippo, Notch and Wnt pathways (**Fig. 4a, b**). *Fat4*
404 (2/11), *Cdh1* (1/11), *Nf2* (1/11), *Lats1* (1/11), *Mst1* (1/11), *Tead1* (1/11) and
405 *Wwc1* (1/11), belonging to the Hippo signaling pathway, had A>T
406 mutations. *Notch1* (1/11), *Notch2* (1/11), *Notch3* (2/11), *Notch4* (2/11) and
407 *Ncor2* (1/11), encoding components of the NOTCH signaling pathway, had
408 A>T mutations. Three genes involved in the WNT signaling pathway, *Apc*
409 (1/11), *Axin2* (1/11) and *Wnt1* (1/11), were mutated in 2 tumors
410 (**Supplementary Table 3**).

411 It was noticeable that these genes encoding DNA polymerases,
412 including *Polq* (2/11), *Pold1* (1/11), *Pold3* (1/11), *Pole* (1/11), *Poln* (1/11)
413 and *Rev1* (1/11), had A>T mutations in 6 of 11 (54.5%) tumors (**Fig. 4a,**
414 **b**). Excluding DNA replication, these DNA polymerases perform
415 exonucleolytic proofreading for DNA repair. It is known that defective

416 DNA polymerase proofreading contributes to human malignancy, and
417 DNA polymerase mutations in the exonuclease domain have been reported
418 in human tumors with an extremely high mutation load^{20,21}. Other DNA
419 repair-related genes, such as *Atm* (2/11), *Prkdc* (2/11), *Mcm8* (2/11) and
420 *Trp53bp1* (1/11), were also mutated in these tumors (**Supplementary**
421 **Table 3**). Here, we statistically analyzed the correlation between somatic
422 mutations and these gene mutations, showing that the mutations of these
423 DNA genes in tumors were positively associated with the total somatic
424 mutations (**Fig. 4c**).

425 Some genes related to epigenetic regulation exhibited somatic mutations
426 (**Fig. 4a, b**), including *Tet1* (1/11), *Dnmt3b* (1/11) and *Dnmt3l* (1/11) for
427 DNA methylation, *Crebbp* (2/11), *Trrap* (2/11), *Kdm6a* (1/11) and *Kmt2c*
428 (1/11) for histone modifications and *Srcap* (3/11), *Smarca2* (2/11),
429 *Smarca4* (1/11), *Smarcb1* (1/11) and *Arid1b* (1/11) for the chromatin
430 remodeling SWI/SNF complex. Mutations of these genes have been
431 described in human cancers, including liver cancer.

432 In addition, some genes related to ubiquitination and sumoylation were
433 also mutated, including *Usp34* (3/11), *Trim33* (2/11), *Birc6* (2/11) and
434 *Ranbp2* (2/11) (**Fig. 4a**). *Usp34* encoding ubiquitin carboxyl-terminal
435 hydrolase 34 can remove conjugated ubiquitin from Axin1 and Axin2, as a
436 regulator of the Wnt signaling pathway, which is also mutated in human
437 HCC^{10,17,18}.

438 To further assess the effect of these mutations on the pathogenesis of
439 liver cancer, we analyzed the transcriptome data from these tumor nodules.
440 Some target genes of important pathways were upregulated, such as the
441 Ras, PI3K-AKT, Hippo and Wnt pathways disrupted by the mutations,
442 especially Ras and Hippo (**Supplementary Fig. 3k, Fig. 4d and**
443 **Supplementary Table 11**). Interestingly, some genes, such as *Afp*, *Dlk1*,
444 *Gpc-3*, *Prom1*, *Itga6*, *Cd34* and *Igdcc4* related to stem cells/progenitor
445 cells, along with downstream target genes, such as *Fstl1*, *Dab2*, *Hes1* and
446 *Mycn* of the Hippo, Notch and Wnt pathways, were upregulated in liver
447 tumors, suggesting that cell differentiation arrest or dedifferentiation
448 occurred in these liver cancers (**Supplementary Fig. 3k and**
449 **Supplementary Table 11**). The transcription of cell cycle-related genes,
450 such as *Ccnd1*, *Ccne1*, and *Cdk5*, were increased in tumors, possibly due
451 to activation of the Ras and PI3K-AKT pathways (**Supplementary Table**
452 **7**). Further, the activation of these signaling pathways including Ras, PI3K-
453 AKT and Hippo was verified in these AAI-induced tumors, as compared
454 to adjacent non-tumorous livers (**Fig. 4e and Supplementary Fig. 3l**),
455 along with the up-regulated hepatic stem cells/progenitor cell biomarkers.

456 The collective data suggested that AAI contributed to tumorigenesis of
457 liver cancer through activating the RAS pathway, in combination with
458 other deregulated important pathways such as PI3K-AKT, DNA replication
459 and repair, the chromatin remodeling SWI/SNF complex, epigenetic

460 regulation, the development-related Hippo, Notch and Wnt pathways,
461 spindle integrity, and cell adhesion.

462 **AAI-mediated mutations are the early event during malignant clonal
463 evolution**

464 Though it was testified that the AA signature was dominant in mouse liver
465 tumors, we had particular interest in whether the AA-mediated mutations
466 were the originating source driving tumor initiation and progression,
467 especially for tumors in the combination group composed of AAI and CCl₄,
468 as the application of CCl₄ inevitably cast doubts on the role of AA in the
469 carcinogenic processes. Therefore, we further investigated the clonal
470 architecture and AA-related mutational signature distribution in these
471 malignant subclones within tumors from the “AAI alone” and “AAI and
472 CCl₄ combination” groups.

473 We first performed a clonality analysis of these 11 liver tumor nodules
474 (see **Methods**). Ten of the 11 nodules exhibited multiple subclones, of
475 which 3 contained 3 subclones and 7 had 2 subclones (**Fig. 5a, b** and
476 **Supplementary Fig. 4a-f, left**).

477 Pure tumor was expected to present a high-density region with nearly
478 a 50% variant allele frequency (VAF) in the Sciclone deconvolution
479 results²². The estimated weights of VAF in the tumor dominant clones,
480 however, ranged from 16% to 39% (**Supplementary Table 12**), reflecting
481 a substantial immunological cell infiltration into the tumors as presented in

482 the pathological sections (**Supplementary Fig. 3a**). Alternatively, the
483 subclones could have been initiated in parallel style in the tumorigenesis
484 procedures, especially in tumors M1T, M4T1 and M6T, as their dominant
485 clone had VAF centered at 16%, 19% and 17%. If the subclones formed
486 simultaneously, they should present similar mutational signatures induced
487 by the same etiologies. However, we found that the mutational signatures
488 varied within the multiple subclones within each tumor (**Fig. 5a, b, right**
489 and **Supplementary Fig. 4a-f, right**). In addition, there was a trend
490 towards a diminished AA signature from the higher-weighted to the lower-
491 weighted clones in their signature profiles. Therefore, we considered the
492 subclones with the largest weight to be the initiating founding subclones
493 and the lower-weighted subclones to be formed sequentially in later
494 processes ²². To determine how the AA-related mutations evolved between
495 the founding clone and subsequent subclones, we calculated the A>T
496 proportions of each subclone within the tumors. For example, after
497 characterizing the multiclonal architectures in M3T (two subclones) and
498 M5T2 (three subclones) (**Fig. 5a, b, left**), we then retrieved their
499 mutational profiles (**Fig. 5a, b, right**). Significantly, the results indicated
500 that the AAI-mediated A>T transversions were predominant in the earliest
501 founding clones and then gradually were reduced in the later subclones.
502 The other 8 tumor nodules composed of multiple subclones also exhibited
503 a similar AA-related signature distribution pattern (**Supplementary Fig.**

504 **4a-f).** This result indicated that the AAI-mediated A>T mutations were the
505 early event during the malignant clonal evolution process, contributing to
506 an average of 82% in the AAI group (M1T, 86%; M2T, 71%; M3T, 88%)
507 and an average of 75% in the combination group (M4T1, 55%; M4T2, 77%;
508 M5T1, 78%; M5T2, 91%; M5T3, 88%; M5T4, 80% and M6T, 52%). By
509 contrast, the non-A>T mutational patterns, such as C>T mutations, slightly
510 increased gradually during clonal evolution and merged into the late
511 subclones (**Fig. 5a, b and Supplementary Fig. 4 a-f, right**). As illustrated
512 by the downward-directed lines in these 11 tumor nodules (**Fig. 5c**), there
513 was a general trend of A>T mutations that diminished along with the
514 malignant clonal progression within tumors, typically M5T1 and M5T2, in
515 which the A>T transversions almost disappeared in their late-formed
516 subclones.

517 Based on the above analysis, we speculate that, regardless of the AAI
518 alone group or the combination group, AAI-mediated A>T somatic
519 mutations are responsible for the initiation of liver cancer, and the second
520 non-A>T mutations drive malignant clonal evolution and tumor
521 progression, possibly through a synergistic effect between AAI-mediated
522 A>T and non-A>T mutations.

523 **AAI-mediated tumors exhibit diversiform evolution process**

524 The above clonality analysis depicted the intratumor clonal heterogeneity
525 within single tumor nodules, but AAI can induce multiple tumor nodules

526 in the same livers in some mice, and the phylogenetic relationship of these
527 nodules is unclear. To explore their phylogenetic relationship and
528 evolutionary process, here we investigated these tumor nodules and their
529 paratumor livers from mice in the combination group, with a total of the 8
530 discrete tumor nodules; 3 were from one mouse (M4), 4 were from another
531 (M5), and 1 was from the last mouse (M6). We reconstructed their
532 phylogenetic tree to examine the relationship of the somatic mutational
533 patterns among the discrete tumor nodules within the same mice. To
534 establish a control, we applied the reconstruction to all 11 tumor nodules
535 to generate their phylogenetic tree (**see Method**). It was seen that, despite
536 a tiny overlapping distance between M1T and M2T, the other tumor
537 nodules were categorized properly, in accordance with their mouse source
538 (**Fig. 5d**), implying that multiple nodules in M4 and M5 could have
539 evolved from identical ancestors, respectively.

540 Interestingly, the three nodules in M4 shared the specific oncogenic
541 *Hras* Q61L mutation and another 15 identical mutations, supporting the
542 assumption that the separate tumor nodules might have originated from a
543 common ancestor. Moreover, 12 passenger mutations were shared by both
544 the paratumor liver and all three tumor nodules, although they had lower
545 allelic frequencies in the paratumor tissue (e.g., Chr14: 5140816 C>G),
546 suggesting that the tumor could be initiated by the emerging driver
547 mutations, such as *Hras* Q61L, in the background originating cell with

548 passenger mutations (**Fig. 5e**). Additionally, M4T1 and M4T2 might
549 branch later than M4T3, as indicated in the phylogenetic tree (**Fig. 5d**).

550 Unlike the tumor nodules in mouse M4, the four tumor nodules in M5
551 did not share a commonly known driver mutation, although three (M5T1,
552 M5T2 and M5T4) of them shared an identical oncogenic *Hras* Q61L
553 mutation, and the other (M5T3) harbored an oncogenic *Braf* V637E
554 mutation. However, as indicated in the phylogenetic tree, all four nodules
555 could have arisen from the same ancestor and then evolved separately in
556 the late phase. The observation that M5T1, M5T2 and M5T4 were located
557 within a branch (**Fig. 5d**), rather than M5T3, revealed a closer phylogenetic
558 relationship, in accordance with their differences in the initiating driving
559 force. Interestingly, all four tumor nodules in M5 also shared 10 somatic
560 mutations with their paratumor liver, including Chr11: 3176625 G>A that
561 increased the mutation allele frequency from the paratumor liver to the
562 tumor, suggesting that these tumor nodules could be initiated from the same
563 precancerous cells through the emerging driver mutations such as *Hras*
564 Q61L or *Braf* V637E (**Fig. 5f**). Although all four tumor nodules could
565 originate from the same precancerous cells with a similar genetic
566 background, the M5T3 nodule with the *Braf* V637E mutation was
567 distinguished from the other three nodules sharing a common ancestor,
568 wherein the two malignant transformed clones had undergone parallel
569 evolution within M5 liver (**Fig. 5f**).

570 To reveal the kinship between different subclones within the separated
571 tumor nodules from M4 and M5, here we adopted the assumption that the
572 second subclone was generated dependently from the founding clones.
573 However, whether the third weighted subclone was generated dependently
574 or independently of the second-weighted clone was unclear
575 (**Supplementary Fig. 4g**). Here, the M4T2, M5T1 and M5T2 nodules were
576 composed of three subclones (**Supplementary Fig. 4d, e**), where the third
577 subclones within single nodules were depicted to emerge via parallel
578 evolution along with the second subclones by driver genes such as *Ranbp2*,
579 *Actbl2*, *Smarca2* and others (**Fig. 5e, f**). The relationship between the
580 second and third clones could also be replaced by the other model as
581 provided in supplementary Fig. 4g with the same suggested driver genes
582 and cell proportions.

583 In M6, both the paratumor liver and the corresponding tumor had 30
584 overlapping somatic mutations, among which 6 expanded their allelic
585 frequencies more than 5 times from the paratumor liver to the tumor. Next,
586 we examined the presence of mutated reads of essential genes in the
587 paratumor liver tissue in Integrated Genome Viewer (IGV). We found that
588 the paratumor liver of M6 has the same positioned *Muc4* mutation reads in
589 its corresponding tumor, albeit with a very low number (2 reads)
590 (**Supplementary Fig. 4h**). Therefore, we speculate that the *Muc4* mutation,
591 along with the other passenger mutations (like the 6 expanded mutations),

592 was not sufficient to trigger tumor initiation and that one of the *Muc4*
593 mutated cells, if acquiring the oncogenic *Kras* mutation, would be
594 malignantly transformed and then become proliferative (**Supplementary**
595 **Fig. 4i**).

596 Together with the above clonality analysis within tumor nodules (**Fig.**
597 **5e, f** and **Supplementary Fig. 4i**), we may see that, except for Ras/Raf
598 A>T mutations as the earliest events in the tumorigenesis of M4, M5 and
599 M6 mice, the patterns of other driver mutations exhibit obvious
600 heterogeneity among different nodules and subclones within single nodules.
601 The different driver genes, such as *Polq*, *Fgfr3*, *Met*, *Asxl1*, *Pdgfrb*, *Notch3*,
602 *Mllt10* and *Tet1* with A>T mutations and late emerging driver genes such
603 as *Fat4*, *Smarca2* and *Inpp5d* with non-A>T mutations, synergistically
604 facilitate malignant subclonal evaluation.

605 **Human liver cancer exhibits an AA-mediated mutational signature**

606 To explore the AA signature intensities in human cancers, we first grasped
607 a quick estimation of the AA signature contribution through the webserver
608 mSignatureDB (see **Methods**). Interestingly, some human cancer
609 resources presented a possible characteristic A>T mutational signature to
610 certain degrees (**Supplementary Fig. 5a**). However, current approaches
611 for signature deconvolution were mostly based on nonnegative matrix
612 factorization (NMF), which do not consider mutation counts. Based on a
613 simulated dataset with 844 samples (see **Methods**), we noticed that, when

614 the mutation number fell within 100, the mean squared error (MSE) of
615 deconvolution increased exponentially as the mutation number decreased
616 (**Supplementary Fig. 5b**). Therefore, in an effort to reduce false positives
617 with a low number of mutation counts, we improved the traditional
618 decomposing strategy by introducing the bootstrap sampling technique to
619 make up for the shortcoming that the deconvolution originally did not
620 provide empirical *P* values. Afterwards, we used the simulated dataset to
621 evaluate the performance of the bootstrap performance by considering its
622 accuracy, specificity, sensitivity and F1 measure. Surprisingly, the
623 evaluation revealed no false positive mistakes (specificity = 1) throughout
624 each threshold (**Supplementary Fig. 5c**). In addition, the method yielded
625 fine-tuned accuracies, sensitivities and F1 measures for detecting the AA
626 signature intensity in the interval between 10 to 90%. Therefore, we
627 decided to identify the AA signature intensities in human cancers with a
628 cutoff of both 0 and 10% ($P = 0.05$). Furthermore, we required that the AA
629 signature proportion should be larger than the MSE to balance the
630 instabilities due to low mutation counts and unpredictable noise. Using this
631 method, we found that the primary positive detection of AA signature in
632 the majority of tumors and leukemia was prone to be false.

633 However, with this rigorous method, we identified an AA signature in
634 liver cancer, including HCC and ICC (**Table 1**). We detected a
635 characteristic AA signature in 52 (20%) of 313 China (mainland) HCC

636 samples catalogued in the International Cancer Genome Consortium
637 (ICGC) project, 68 (69%) of 98 Taiwan-based samples¹⁰, and 7 (8%) of 88
638 samples that were accepted in Hong Kong²³, as well as 6 (55%) of another
639 11 samples in mainland China²⁴. In total, 133 (26%) of 510 Chinese HCCs
640 were identified with an AA signature. Moreover, we detected the AA
641 signature in 3 (< 1%) of 594 HCCs from Japan^{17,18}, 22 (10%) of 231 HCCs
642 in Korea²⁵, 4 (44%) of 9 HCCs in Singapore²⁶, 29 (10%) of 364 HCCs in
643 the US from The Cancer Genome Atlas (TCGA) dataset, and 1 (< 1%) of
644 249 HCCs from France in the ICGC. Among the TCGA HCCs, Asian
645 ethnicity patients had higher detection rate of AA signature, which is 24
646 (15%) of 160. In addition, we noticed that 11 (11%) of 103 ICC from
647 China²⁷ showed the AA signature, indicating that AA might play a role in
648 the etiology of human ICCs (**Table 1**).

649 We also investigated other human cancer types. Bladder cancer in
650 China²⁸ and kidney cancer in Europe (from ICGC) presented different
651 extents of AA signature contributions (**Supplementary Table 13**). In
652 addition, it was noteworthy that we identified 1 case of esophagus cancer
653 in China (from ICGC) that exhibited the AA signature (**Supplementary**
654 **Tables 13, 14**). Generally, in all the cancer types, liver cancer, including
655 HCC and ICC, presents the most disturbingly high proportions of the AA
656 signature. Additionally, we retrieved the T>A mutations of liver cancer in
657 COSMIC and found that the T>A mutation profile was highly consistent

658 with the AA signature (cosine similarity = 0.94) (**Supplementary Fig. 5d**),
659 which implicated that the AA signature operated predominantly in causing
660 the T>A mutation in human liver cancers. Next, we compared the AA
661 signature intensities in the affected human cancers, which exhibited wide
662 intertype and regional variabilities (**Fig. 6a**). Kidney cancer and liver
663 cancer were more susceptible to AA genotoxicity, as their AA intensities
664 were prominently higher. According to the proportions of affected
665 populations and their AA signature intensities, it seemed that the most
666 influenced cancer type was HCC in China.

667 To uncover the affected driver mutation by AA, next we investigated
668 the liver cancers that harbored a nonsilent or splicing site with AA
669 signature mutations in known driver genes. Here, the mutations were
670 ascribed to the signatures using a Bayesian classifier, which showed that
671 83 (16%) of the 510 HCCs from China had driver genes affected by the
672 AA signature, while 16 (4%), 1 (11%), and 11 (5%) were respectively
673 identified in the US, Singapore and Korea HCCs, as well as 4 (4%) ICCs
674 from China (**Table 1**).

675 In addition, we also applied a more stringent threshold to estimate the
676 AA contribution to human liver cancers by applying the lowest observed
677 AA signature intensities in our experimental mouse tumors, requiring the
678 95% lower confident interval of the AA signature contribution to be larger
679 than 52%, which was the lowest contribution of the bootstrapped results

680 obtained for these mouse tumors (**Supplementary Fig. 5e**). We used this
681 value as an indication of carcinogenic dosage in liver cancer. Our method
682 appeared to perform well for detecting an exposure contribution above
683 50%, as the accuracy, specificity, sensitivity and F-measure all equaled 1
684 (**Supplementary Fig. 5c**). As a result, 64 (3%) of the 1957 HCCs
685 worldwide were identified as having an AA exposure greater than 52%
686 (**Table 1** and **Fig. 6b**). Significantly, among them, 57 (89%) of the 62 were
687 from China. Additionally, 3 (3%) of the ICCs in China were identified with
688 the same standard.

689 The finding that the AA mutational signature exists in human cancer,
690 particular in Chinese liver cancer, based on the different criteria (**Table 1**),
691 strongly indicates that AA exposure in Chinese population might have been
692 one of the major risk factors for the onset of liver cancer, including HCC
693 and ICC.

694 **AA exposure could be operative in an earlier stage of human liver
695 cancer**

696 We hope to determine whether AA is operative in the initial stage of human
697 liver cancer, similar to its role in mouse liver cancer. Therefore, we
698 performed a clonality analysis in the TCGA-derived HCC samples with the
699 AA signature and DNA copy number profiles, as we did in the mouse
700 tumors. Here, we chose 6 HCC samples with an AA signature contribution
701 above 30% to compare their AA exposures along with clonal evolution

702 (Fig. 6c). It was shown that, in all 6 tumors, AA-associated mutagenesis
703 was operative in the initial subclones. In sample DD.AADF, the AA
704 signature was found to be the predominant etiology in the founding
705 subclone and decreased in later formed subclones, demonstrating a similar
706 trend to that observed in mouse liver cancers. In contrast, the AA signature
707 seemed to continue or even increase throughout the clonal evolution of the
708 other five human HCCs, possibly due to the prolonged AA exposure in
709 patients rather than acute exposure in our mouse model. In addition, among
710 3 of 9 Singapore patients with HCCs carrying the AA signature, we
711 ascribed the mutations as early (trunk) and late (branch), as the study
712 provided multisector sequencing results. It was shown that trunk mutations
713 had higher proportions of A>T transversions, indicating that AA exposure
714 was likely to play roles in the initial stage of tumorigenesis
715 (Supplementary Fig. 5f).

716 Moreover, we analyzed the contribution of the AA signature to known
717 driver genes in HCCs. Excluding *TP53*, *ARID2*, *ARID1A* and *AXIN1*
718 frequently harbored nonsilent A>T mutations (Fig. 6d), which encode
719 components of SWI/SNF complex and Wnt-β-catenin pathway that were
720 also disrupted in AAI-induced mouse liver cancer.

721 In addition, to identify the driver mutations induced by AA exposure,
722 we further investigated the cancer genomic data regarded as AA-induced
723 liver cancer according to a more stringent criterion referring to an AA

724 signature > 52%. We retrieved the genomic data from 62 HCCs meeting
725 the criterion to obtain 74045 putative mutations, and we performed
726 MutSigCV analysis, which revealed that the scattered A>T mutations in
727 the tumor suppressor gene *TP53* were significantly affected in AA
728 dominant human liver cancer. *TP53* ($q < 0.1$), along with eight A>T
729 transversions, was significantly mutated in these AA-related liver cancers
730 (**Fig. 6e**), where the A>T transversions led to nonsense mutations that
731 dispute the structure of *TP53*, or missense mutations that alter its functions
732 by the mutated DNA-binding domain.

733 We also ascribed each mutation to a specific signature and then selected
734 the AA signature A>T mutations (**Supplementary Table 15**) for analysis
735 via the oncodriveCLUST algorithm, a positional clustering method,
736 because most of the oncogenic mutations of one gene were enriched at a
737 few specific loci (aka hot-spots). Significantly, 17 genes with FDR smaller
738 than 0.1 were identified (**Supplementary Table 16**). It is noteworthy that
739 *JAK1* S729C induced by a c. 2185 A>T mutation was identified ($FDR = 5$
740 $\times 10^{-4}$) as a candidate driver (**Fig. 6e** and **Supplementary Table 16**), as
741 there were four hits at the exact same locus in *JAK1*. Interestingly, the
742 mutation was found in Chinese liver cancer and validated as an oncogenic
743 driver in a previous study²³.

744 **Discussion**

745 Liver cancer is the seventh most common cancer and the third leading

746 cause of cancer-related death worldwide²⁹. In China, its incidence and
747 mortality rate are higher³⁰. Liver cancer has several known risk factors,
748 including infection with HBV and hepatitis C virus, alcohol consumption,
749 and aflatoxin B1 contamination of food. Recently, AA has been statistically
750 associated with human liver cancer, especially in Chinese patients^{8,10}.
751 However, no experimental evidence supports the notion that AA can
752 directly lead the liver cancer. Significantly, our results demonstrate that
753 AAI can directly induce mouse liver cancer, including HCC and ICC, in a
754 dose-dependent manner, and increases the incidence of liver cancer when
755 the liver is injured, such as CCl₄ administration. This finding is consistent
756 with clinical practice in China and some Asia countries, because some
757 Chinese patients, including hepatitis patients, often take traditional Chinese
758 herbal remedies that could contain AA. In fact, in human liver cancer, we
759 found the characteristic AA signature in HCC and ICC patients based on
760 very stringent criteria, indicating that AA exposure was the leading cause
761 in some liver cancers, especially in Chinese patients. Therefore, our animal
762 experiments and analyses of human liver cancer strongly indicate that AA
763 can directly lead to liver cancer and should be listed as major risk factor
764 for liver cancer.

765 AA exposure could be prone to trigger some driver mutations by
766 characteristic A>T transversions, which lead to a growth advantage of the
767 malignant transformed clones. Significantly, AAI-mediated mutations are

768 found to be the early event during malignant clonal evolution in mouse and
769 human liver cancer. AAI-DNA adducts could be detected not only in livers
770 from mice exposed to AA but also in multiple heterogeneous subclones
771 within the same tumor nodules, and the AAI-mediated characteristic A>T
772 mutational signature was found in the founding subclones in both mouse
773 and human liver cancers, further supporting the critical nature of AA
774 exposure in some forms of liver cancer.

775 AA could prefer to damage different driver genes in different species,
776 although these mutations share similar A>T transversions. A previous
777 study had shown that the *ras* family, including *Hras*, *Kras* and *Nras*, had
778 the same activating mutation — Q61L (CAA to CTA) — in oral
779 administration AA-induced rat tumors¹⁴. In this study, the same activating
780 mutation in *Hras* and *Kras* also occurred in most AA-induced HCC
781 samples (*Hras*, 8/11; *Kras*, 1/11), indicating that the Ras pathway is crucial
782 in AAI-induced mouse liver cancer. Interestingly, activating mutations of
783 *KRAS* are frequent in human ICC³¹, although relatively lower in human
784 HCC.

785 More interestingly, AA-mediated mutations also alter other genes that
786 can lead to the deregulation of some signaling pathways, such PI3K-AKT,
787 the chromatin remodeling SWI/SNF complex, epigenetic regulation, and
788 the development-related Hippo, Notch and Wnt pathways (**Figure 4**),
789 which are often associated with human HCC and ICC. Like human HCC,

790 AAI-induced mouse HCCs also express hepatic stem or progenitor cell-
791 related biomarkers such as *Afp*, *Gpc3*, *Dlk1* and *Prom1* (**Supplementary**
792 **Fig. 3k**). In addition, it should be pointed out that, although *Tp53* and *Jak1*
793 mutations were not found in the AAI-induced mouse HCCs, some point
794 mutations of *TP53* and *JAK1*, especially *JAK1* S729C, could be considered
795 as candidate biomarkers for AA exposure, similar to *TP53* R249S for
796 aflatoxin B1 contamination.

797 In conclusion, this study provides documented evidence indicating that
798 AA can directly induce mouse liver cancers, including HCC and ICC,
799 similar to the genetic pathogenesis of human liver cancers. In light of the
800 animal model, AA exposure is considered as a major risk factor for some
801 human liver cancers, especially among Chinese patients. The featured
802 mutational process during malignant clonal evolution in AA-induced liver
803 cancer reveals that AAI-mediated characteristic mutations are the earliest
804 genetic event in tumorigenesis. Our data lay a solid foundation for the
805 prevention and diagnosis of AA-associated human cancers, especially liver
806 cancer.

807 **URLs.** ICGC data portal, <https://dcc.icgc.org/>; TCGA data portal,
808 <https://portal.gdc.cancer.gov/>; COSMIC mutation signatures,
809 <http://cancer.sanger.ac.uk/cosmic/signatures>; COSMIC cancer census
810 genes, <http://cancer.sanger.ac.uk/census>; HMMcopy (v1.22.0),
811 <http://www.bioconductor.org/packages/release/bioc/html/HMMcopy.html>;
812 MsigDB, <http://software.broadinstitute.org/gsea/msigdb>; R package
813 `pracma` (v2.1.4), <https://cran.r-project.org/web/packages/pracma/index.html>; mSignatureDB,
814 <http://tardis.cgu.edu.tw/msignaturedb/Browse/>.

816 **Methods**

817 **Mice.** The mice used in this study were on a C57BL6/J background. The
818 wild-type C57BL6/J mice were purchased from the Slaccas Company
819 (Shanghai, China). LoxP-flanked (floxed [f]) *Pten* (*Pten*^{ff}) mice (The
820 Jackson Laboratory) and Alb-Cre mice (The Jackson Laboratory) were
821 crossed to generate conditional liver-specific PTEN-KO mice designated
822 as *Pten*^{LKO}. All animal experiments were conducted under procedural
823 guidelines and severity protocols with the approval granted by the
824 Institutional Review Board on Bioethics of Shanghai Jiao Tong University.

825 **HCC induction.** As mentioned in the results section, the male mice were
826 randomly grouped and administered with AAI (2.5 or 5 mg/kg, dissolved
827 in PBS) or a combination of AAI (2.5 mg/kg) and CCl₄ (0.5 ml/kg,
828 dissolved in corn oil) by intraperitoneal injection for different doses and

829 times since the age of 1 or 2 weeks. Additional groups were injected with
830 CCl_4 alone or vehicle as controls. The exposure timeline was presented in
831 **Fig. 1a.** Mice were sacrificed with CO_2 anesthesia. The visible discrete
832 tumors at mice livers were dissected and counted. Tumor sizes was
833 measured with a caliper at its largest diameter. No mice were excluded in
834 subsequent analyses.

835 **Histology, immunohistochemistry and immunofluorescence.** Formalin-
836 fixed tissues were embedded in paraffin. Sections (5 μm) were stained with
837 hematoxylin and eosin (H&E), and PicroSirius Red. For
838 immunohistochemical (IHC) staining, sections were incubated with
839 primary antibodies against AFP (polyclonal rabbit, 1:100; ab46799,
840 Abcam), Ki67 (polyclonal rabbit, 1:200; ab15580, Abcam) and CK19
841 (monoclonal rabbit, 1:400; ab52625, Abcam) overnight at 4 °C. HRP-
842 conjugated anti-rabbit secondary antibody (polyclonal goat, 1:400; A0545,
843 Sigma) and DAB (Sangon Biotech, Shanghai, China) were used to detect
844 the primary antibodies, followed by hematoxylin redyeing. For
845 immunofluorescence assay, tissues were embedded in OCT (optimal-
846 cutting-temperature compound). Cryosections (5 μm) were fixed in 4%
847 paraformaldehyde for 10 min and then permeabilized with 0.1% Triton X-
848 100. Sections were incubated with primary antibody against γ -H2AX
849 (monoclonal rabbit, 1:200; 9718, Cell Signaling) overnight at 4°C. Primary
850 antibody were detected using fluorescent-conjugated secondary antibody

851 (polyclonal Donkey, 1:1000; A21206, Invitrogen). The nuclei were stained
852 with DAPI and mounted with anti-fading mounting reagent
853 (FluoromountTM Aqueous Mounting Medium, Sigma). Brightfield images
854 were taken using a Nikon Eclipse Ni microscope. Fluorescence images
855 were taken using fluorescent confocal microscope (Nikon A1Si). Sirius
856 Red stained area or fluorescence intensities of 10 non-overlapping fields in
857 each section were quantified using Fiji Image J at $\times 100$ or $\times 400$
858 magnification.

859 **Western blot analysis.** Liver tissues were lysed and the protein
860 concentrations were determined using the BCA assay (Thermo Scientific).
861 Membranes were incubated with the following primary antibodies: anti- γ -
862 H2AX (monoclonal rabbit, 1:1000; 9718, Cell Signaling), anti-p53
863 (monoclonal mouse, 1:200; sc-126, Santa Cruz), anti-Bax (polyclonal
864 rabbit, 1:200; sc-493, Santa Cruz), anti-p-ATR (Ser428, polyclonal rabbit,
865 1:1000; 2853, Cell Signaling), anti-AFP (polyclonal rabbit, 1:1000;
866 ab46799, Abcam), GPC3 (polyclonal rabbit, 1:400; ab66596, Abcam), E-
867 cadherin (polyclonal rabbit, 1:1000; 20874-1-AP, Proteintech), p-ERK (Tyr
868 204, monoclonal mouse, 1:200, sc-7383, Santa Cruz), ERK1 (polyclonal
869 rabbit, 1:400, sc-94, Santa Cruz), p-AKT (Ser473, monoclonal rabbit,
870 1:2000; 4060, Cell Signaling), AKT (polyclonal rabbit, 1:1000; 9272, Cell
871 Signaling) and YAP (polyclonal rabbit, 1:1000; 4912, Cell Signaling) and
872 anti- β -actin (monoclonal mouse, 1:5000; A2228, Sigma). HRP-conjugated

873 secondary antibodies (polyclonal goat, 1:10000; A6154 and A4416, Sigma)
874 were applied. Proteins was detected by ECL reagent (Share-bio, Shanghai,
875 China).

876 **In vivo alkaline comet assays.** The male mice (n = 4) were administered
877 with PBS (10 ml/kg) or AAI (2.5 or 5 mg/kg) by intraperitoneal injection
878 at the age of 2 weeks. Mice were anesthetized at 3 hours after
879 administration. Livers were perfused with Hanks' balanced salt solution
880 (HBSS). Then alkaline comet assay was performed with CometAssay kit
881 (4250-050-K, Trevigen) following the manufacturer's instructions.
882 Afterwards, the slides were stained with SYBR Green I (Sangon Biotech,
883 Shanghai, China). Fluorescence images were taken using fluorescent
884 confocal microscope (Nikon A1Si) at $\times 100$ or $\times 400$ magnification. Tail
885 DNA were analyzed using the CASP³². At least 100 cells were randomly
886 selected and analyzed per sample. A total of 600 cells were analyzed per
887 group.

888 **DNA and RNA extraction.** Tissues were minced and digested overnight
889 at 55 °C in 10 mM Tris-HCl (pH 8.0) containing 100 mM EDTA, 10 mM
890 NaCl, 0.1% SDS, proteinase K (0.2 mg/ml), and RNase A (0.2 mg/ml).
891 DNA was purified by phenol/CHCl₃. RNA was extracted from frozen tissue
892 using TRIzol according to the manufacturer's instructions.

893 **Synthesis and identification of dA-AL-I.** 7-(deoxyadenosin-N6-yl)
894 aristolactam I (dA-AL-I) was synthesized by incubating deoxyadenosine

895 (dA) with AAI according to the method described previously³³. A mixture
896 containing dA-AL-I, AAI and dA was yielded.

897 Synthetic dA-AL-I was analyzed with an ACQUITY ultra performance
898 liquid chromatography (UPLC) system (Waters) connected to a XEVO-
899 G2XS quadrupole time-of-light (QTOF) mass spectrometer (UPLC-
900 QTOF-MS) (Waters) with electron spray ionization (ESI). Seven
901 microliters synthetic dA-AL-I was injected into an ACQUITY HSS T3
902 column (2.1 mm × 100 mm i.d., 1.8 µm particle size) (Waters) in positive
903 electrospray ionization mode at a flow rate of 0.4 ml/min. Mobile phase A
904 and B were 0.1% formic acid in water and acetonitrile, respectively. The
905 gradient program used was: 0-1 min, 1% B; 1-3 min, 1-30% B; 3-7 min,
906 30% B; 7-9 min, 30-100% B; 9-11.2 min, 100% B; 11.2-11.3 min, 100-1%
907 B and 11.3-13 min, 1% B. The ESI source was operated in positive ion
908 mode with a capillary voltage of 2 kV, cone voltage of 40 V, source
909 temperature of 115 °C, desolvation temperature of 450 °C, cone gas flow
910 of 50 l/h, and desolvation gas flow of 900 l/h. The mass spectra were
911 acquired over m/z 50-1200 in full scan mode. The secondary mass spectra
912 (MS/MS) were also acquired in the positive mode in the range of m/z 50-
913 600 with the collision energy of 10-30 eV. Data were acquired by software
914 Masslynx v 4.1 and analyzed by UNIFI 1.8.1.

915 **Mass spectrometry identification and quantitation of AAI-DNA
916 adducts.** Liver and renal tissue DNA (500 µg and 50 µg in 5 mM bis-tris-

917 HCl buffer (pH 7.1) containing 10 mM MgCl₂) was digested with DNase I
918 (Worthington), nuclease P₁ (Sigma), alkaline phosphatase (Worthington)
919 and phosphodiesterase I (Worthington) as described previously³⁴. Protein
920 was precipitated by adding 2 vol of chilled C₂H₅OH and centrifuging. The
921 supernatant was concentrated by vacuum centrifugation and dissolved in a
922 solvent of 1:1 H₂O/DMSO (50 µl)³⁴.

923 Ultra-high-performance liquid chromatography/triple quadrupole mass
924 spectrometry (UHPLC/QQQ MS) was used for identification and
925 quantitation of AAI-DNA adducts. The chromatographic column and
926 mobile phases used with this system were the same as those that were used
927 with the UPLC-QTOF-MS system. The injection volume of synthetic dA-
928 AL-I or DNA digestion product was two microliters. The QQQ MS system
929 (Waters) was operated in positive ion mode with a capillary voltage of 0.5
930 kV, cone voltage of 30 V, source temperature of 150 °C, desolvation
931 temperature of 500 °C, cone gas flow of 150 l/h, and desolvation gas flow
932 of 1000 l/h. Detection of the ion pairs were performed by multiple reaction
933 monitoring (MRM) mode. The MRM ion pairs for dA-AL-I were
934 543.16/427.12, 543.16/395, and 543.16/292, and the corresponding
935 collision energies were 25, 30 and 35 eV, respectively. The quadrupoles
936 were set at unit resolution. The analytical data was processed by Masslynx.
937 **WGS and copy number analysis.** Whole-genome DNA libraries were
938 created with Illumina Truseq Nano DNA HT Sample Prep Kit following

939 the manufacturer's instructions. The libraries were sequenced on Illumina
940 Hiseq platform and 150 bp paired-end reads were generated. We
941 investigated the copy number patterns of the samples applying the suite of
942 HMMcopy (v1.22.0) on the WGS data. Briefly, the coverages were
943 initially corrected with the GC and mappability bias of the reference
944 genome. Then the corrected signals were segmented using Hidden Markov
945 Model to yield an estimate of the copy number events.

946 **WES and somatic mutation calling.** Whole-exome capture was done with
947 Agilent SureSelect Mouse All Exon V1 kit according to the manufacturer's
948 instructions. The libraries were sequenced on Illumina Hiseq platform and
949 150 bp paired-end reads were generated. Raw sequencing reads of WES
950 were aligned against mouse reference build GRCm38 using bwa
951 (v0.7.11)³⁵. The duplicates were removed by Picard Tools (v1.4.5)
952 (<http://broadinstitute.github.io/picard/>). The base quality was recalibrated
953 using the Genome Analysis Toolkit (GATK 3.7-0-gcfedb67)³⁶. Mutect
954 (v2.0)³⁷ was employed to predict somatic mutations of liver tumor and
955 adjacent tissue with the corresponding tail tissue being the control. The
956 mutations were removed if it was in mouse dbsnp. Filtered somatic
957 mutations were functionally annotated by ANNOVAR³⁸, using the
958 RefGene database. Nonsynonymous, stop-loss, stop-gain and splice-site
959 SNVs (based on RefGene annotations) were considered to be functional.
960 SNPEFF (v4.3s)³⁹ were used to predict functional influences of the somatic

961 mutations. Bam files were visualized in Integrated Genome Viewer
962 (IGV)⁴⁰. Nonsynonymous mutant genes in AAI-induced mouse liver
963 cancer were performed with KEGG pathway enrichment analysis⁴¹.

964 **RNA sequencing, analysis and annotation.** RNA-seq libraries were
965 generated using NEBNext® Ultra™ RNA Library Prep Kit for Illumina®
966 according to the manufacturer's instructions. Then they were sequenced on
967 an Illumina Hiseq platform to generate 150 bp paired-end reads. Sequenced
968 reads were mapped to the GRCm38 UCSC annotated transcripts via Tophat
969 (v2.1.0)⁴². Transcripts were then assembled and counted with the Cufflinks
970 suit (v2.2.1)⁴³. Differentiated expressed genes were analyzed by Cuffdiff.

971 **Gene set enrichment analysis.** Gene set enrichment analysis (GSEA)
972 v3.0)⁴⁴ was performed using the normalized expression values generated
973 by Cuffnorm between the liver and the tumors. Differential enrichment was
974 calculated using the signal-to-noise metric. FDR 0.1 was set as significant
975 in the analysis. To investigate the response of expression alterations to the
976 significantly mutated pathways, we investigated the gene sets of the target
977 genes of the activated transcription factors, such as Ets1 in the Ras pathway.
978 Therefore, the analysis was run using the 'motif'⁴⁵, together with 'KEGG',
979 and 'GO' signature collections from the Molecular Signature Database
980 (MsigDB). Differentially expressed genes in the Ras, Hippo and PI3K-
981 AKT downstream transcription factor associated gene sets (FDR < 0.1)
982 were selected and listed in **Supplementary Table 11**, along with

983 differentially expressed the liver cell stem markers⁴⁶, and Wnt
984 (<http://web.stanford.edu/group/nusselab/cgi-bin/wnt/>) and Notch⁴⁷
985 signaling pathway target genes. The top 30 genes with higher fold change
986 were used to generate the heatmap in **Supplementary Fig. 3k**.

987 **Clonal and phylogenetic reconstruction.** With the information of copy
988 number and mutation allele frequency, Sciclone was used to characterize
989 coexisting subpopulations in the individual tumors, both in the mouse liver
990 tumors and the TCGA-derived liver cancers. The minimum depth of
991 coverage was set as 70-fold and 50-fold respectively for mouse and human
992 data. The phylogenetic tree of the 11 tumor nodules was reconstructed via
993 R package ape (v5.2)⁴⁸ with the application of the neighbor-joining
994 algorithm⁴⁹. R package fishplot⁵⁰ was used to visualizing tumor evolutions
995 of the discrete tumor nodules within the same mouse.

996 **Mutation signature analysis.** Trinucleotide contextualized mutational
997 signature deconvolution was previously described as cocktail party
998 problem⁵¹. We used the least square root implemented in the R package
999 pracma to decipher the mutational signatures with the known mutational
1000 signatures inferred in the specific cancer type, from “Signatures of
1001 Mutational Processes in Human Cancer” in the COSMIC database, as
1002 recommended in the signature analyzing R package Mutational Patterns
1003 (v1.8.0)⁵². Briefly, the algorithm deciphers the set of mutational signatures
1004 that optimally explains the total trinucleotide frequencies. For the mice

1005 tumor signature deciphering, we adopted this method with a cutoff of 5%
1006 of signature contribution to avoid over fitting

1007 For human cancer signature investigation, we initially used the
1008 webserver mSignatureDB⁵³ to investigate the COSMIC signature
1009 contributions across 73 research programs over 15, 780 tumors
1010 documented on The Cancer Genome Atlas (TCGA) and the International
1011 Cancer Genome Consortium (ICGC) data portals using the deciphering
1012 method provided on the server. Next, we used the locally adopted least
1013 square root implementation to double check the positively detected cancer
1014 projects. To improve the deconvolution, bootstrap resampling
1015 implemented in the R package Signature Estimation⁵⁴ was employed to
1016 calculate the confident interval of signature exposures. In this way, we
1017 conducted 1000 times of randomized re-sampling in order to simulate the
1018 perturbation of the input data. Then we generated estimation of the
1019 exposures of the mutational signatures in each bootstrap sample. From the
1020 continuum of the estimated signature contributions, we retrieved the lower
1021 boundary of the 95% confidence intervals of the bootstrapped AA
1022 signature distribution to obtain a probability of 0.05 for rejection of the
1023 event that the AA signature contribution being above the specific retrieved
1024 threshold. To evaluate the performance of the deciphering procedure, we
1025 used the random sampling and permutation function to generate a
1026 simulated dataset of 1000 samples with known signature exposures and

1027 mutation counts. 156 samples were excluded for containing zero mutation.
1028 The remained 864 samples were used for evaluation of deciphering
1029 methods. There was a work reporting that performing the same method on
1030 the exome resided mutations or the genome resided mutations revealed
1031 different results; the former was stricter for AA signature detection⁵⁵. It is
1032 to some degree due to the overfitting danger when dealing with a large load
1033 of mutations. Therefore, to avoid sequence bias between WES and WGS
1034 generated data, we only retained the exome resided mutations from WGS
1035 generated data for the mutation deconvolution analysis.

1036 To estimate similarities between tumor or clonal mutational profiles,
1037 and the COSMIC signatures, cosine similarities were calculated using the
1038 R package Mutational Patterns (v1.8.0).

1039 **A>T Transcriptional strand bias.** For each tumor, A>T transcriptional
1040 strand bias was analyzed by comparing the number of mutations occurring
1041 on the transcribing and non-transcribing strands over the genome with the
1042 Poisson distribution test. Later on, to correlate AAI mutational processes
1043 with gene transcription history, we categorized the UCSC (University of
1044 California Santa Cruz)⁵⁶ known genes into 5 categories from no to high
1045 transcriptional activities in the RNA-seq data of the 11 non-tumor liver
1046 samples and compared the transcriptional strand bias within each defined
1047 gene expression category.

1048 **Mutation assignment to the signatures.** Each mutation was firstly

1049 ascribed to a specific signature via a Bayesian inference method
1050 implemented in the R package Palimpsest⁵⁷, which was calculating the
1051 probability of each operative process for a certain mutation and then
1052 choosing the largest as the assigned signature for the specific mutation.

1053 **Driver gene analysis.** To analyze the significant A>T mutated genes in the
1054 mice, we calculated the nonsilent mutational counts per mega base for each
1055 gene to search for the genes that are mutated more frequently. The genes
1056 listed in the duplicated gene database were removed as they are easily to
1057 be falsely detected with mutations⁵⁸. The MutSigCV⁵⁹ and
1058 oncodriveCLUST⁶⁰ analyses were performed on the human mutation data
1059 for drive gene identification. R package maftools⁶¹ was used to plot the
1060 gene mutation points distribution on the motifs and Palimpsest was used to
1061 calculate the contribution of the operative signatures to the reported driver
1062 genes in HCC⁵⁷.

1063 **Statistics.** Statistical analyses were performed using SPSS software. All
1064 the statistical tests used were described in the relevant sections of the
1065 manuscript. *P*-values < 0.05 were considered statistically significant.

1066 **Data availability**

1067 The mouse next-generation sequencing data used in the manuscript can be
1068 downloaded from the database of NCBI under accession number: PRJNA
1069 507339.

1070 **Acknowledgements**

1071 We sincerely thank associate professors Lan Wang and Kunyan He of Shanghai
1072 Center of Systems Biomedicine, Shanghai Jiao Tong University, for providing
1073 critical comments in this study. This work was supported in part by China
1074 National Science and Technology Major Project for Prevention and
1075 Treatment of Infectious Diseases (grant no. 2017ZX10203207), National
1076 Program on Key Research Project of China (grant number
1077 2016YFC0902701) and National Natural Science Foundation of China
1078 (81472621 and 81672772).

1079 **Author contributions**

1080 Z.-G.H. initiated and supervised the project. Z.-N.L., L.-N.Z. and X.-B.S.
1081 performed animal test, other experiments and statistical analysis. Q.L. and Y.S.
1082 analyzed the mouse WGS and WES data. Q.L. did the other bioinformatics
1083 analysis. Z.-G.H., Z.-N.L, and Q.L. analyzed the data and wrote the manuscript.

1084 **Competing interests**

1085 The authors declare no competing interests.

1086 **Supplementary information**

1087 Supplementary Figures 1–5 and Supplementary Tables 1–16

1088 **References**

- 1089 1. Yang, H.Y., Chen, P.C. & Wang, J.D. Chinese herbs containing aristolochic acid associated with
1090 renal failure and urothelial carcinoma: a review from epidemiologic observations to causal
1091 inference. *Biomed Res Int* **2014**, 569325 (2014).
- 1092 2. Debelle, F.D., Vanherwegenhem, J.L. & Nortier, J.L. Aristolochic acid nephropathy: a worldwide
1093 problem. *Kidney Int* **74**, 158-69 (2008).
- 1094 3. Grollman, A.P. *et al.* Aristolochic acid and the etiology of endemic (Balkan) nephropathy. *Proc
1095 Natl Acad Sci U S A* **104**, 12129-34 (2007).
- 1096 4. Schmeiser, H.H. *et al.* Exceptionally long-term persistence of DNA adducts formed by
1097 carcinogenic aristolochic acid I in renal tissue from patients with aristolochic acid nephropathy.
1098 *International Journal of Cancer* **135**, 502-507 (2014).
- 1099 5. Nortier, J.L. *et al.* Urothelial carcinoma associated with the use of a Chinese herb (*Aristolochia
1100 fangchi*). *N Engl J Med* **342**, 1686-92 (2000).
- 1101 6. Jelakovic, B. *et al.* Aristolactam-DNA adducts are a biomarker of environmental exposure to
1102 aristolochic acid. *Kidney Int* **81**, 559-67 (2012).
- 1103 7. Hoang, M.L. *et al.* Mutational signature of aristolochic acid exposure as revealed by whole-
1104 exome sequencing. *Sci Transl Med* **5**, 197ra102 (2013).
- 1105 8. Poon, S.L. *et al.* Genome-wide mutational signatures of aristolochic acid and its application as
1106 a screening tool. *Sci Transl Med* **5**, 197ra101 (2013).
- 1107 9. Huang, J. *et al.* Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. *Nat
1108 Genet* **44**, 1117-21 (2012).
- 1109 10. Ng, A.W.T. *et al.* Aristolochic acids and their derivatives are widely implicated in liver cancers in
1110 Taiwan and throughout Asia. *Sci Transl Med* **9**(2017).
- 1111 11. Arlt, V.M. *et al.* Gene expression changes induced by the human carcinogen aristolochic acid I
1112 in renal and hepatic tissue of mice. *Int J Cancer* **128**, 21-32 (2011).
- 1113 12. Arlt, V.M. *et al.* Aristolochic acid (AA)-DNA adduct as marker of AA exposure and risk factor for
1114 AA nephropathy-associated cancer. *Int J Cancer* **111**, 977-80 (2004).
- 1115 13. Nortier, J.L. *et al.* Invasive urothelial carcinoma after exposure to Chinese herbal medicine
1116 containing aristolochic acid may occur without severe renal failure. *Nephrol Dial Transplant* **18**,
1117 426-8 (2003).
- 1118 14. Schmeiser, H.H. *et al.* Aristolochic acid activates ras genes in rat tumors at deoxyadenosine
1119 residues. *Cancer Res* **50**, 5464-9 (1990).
- 1120 15. Caviglia, J.M. & Schwabe, R.F. Mouse models of liver cancer. *Methods Mol Biol* **1267**, 165-83
1121 (2015).
- 1122 16. Horie, Y. *et al.* Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular
1123 carcinomas. *J Clin Invest* **113**, 1774-83 (2004).
- 1124 17. Fujimoto, A. *et al.* Whole-genome mutational landscape and characterization of noncoding and
1125 structural mutations in liver cancer. *Nat Genet* **48**, 500-9 (2016).
- 1126 18. Totoki, Y. *et al.* Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. *Nat
1127 Genet* **46**, 1267-73 (2014).
- 1128 19. Rowson-Hodel, A.R. *et al.* Membrane Mucin Muc4 promotes blood cell association with tumor
1129 cells and mediates efficient metastasis in a mouse model of breast cancer. *Oncogene* **37**, 197-
1130 207 (2018).

1131 20. Barbari, S.R. & Shcherbakova, P.V. Replicative DNA polymerase defects in human cancers:
1132 Consequences, mechanisms, and implications for therapy. *DNA Repair (Amst)* **56**, 16-25 (2017).

1133 21. Rayner, E. *et al.* A panoply of errors: polymerase proofreading domain mutations in cancer. *Nat*
1134 *Rev Cancer* **16**, 71-81 (2016).

1135 22. Miller, C.A. *et al.* SciClone: inferring clonal architecture and tracking the spatial and temporal
1136 patterns of tumor evolution. *PLoS Comput Biol* **10**, e1003665 (2014).

1137 23. Kan, Z. *et al.* Whole-genome sequencing identifies recurrent mutations in hepatocellular
1138 carcinoma. *Genome Res* **23**, 1422-33 (2013).

1139 24. Lin, D.C. *et al.* Genomic and Epigenomic Heterogeneity of Hepatocellular Carcinoma. *Cancer*
1140 *Res* **77**, 2255-2265 (2017).

1141 25. Ahn, S.M. *et al.* Genomic portrait of resectable hepatocellular carcinomas: implications of RB1
1142 and FGF19 aberrations for patient stratification. *Hepatology* **60**, 1972-82 (2014).

1143 26. Zhai, W. *et al.* The spatial organization of intra-tumour heterogeneity and evolutionary
1144 trajectories of metastases in hepatocellular carcinoma. *Nat Commun* **8**, 4565 (2017).

1145 27. Zou, S. *et al.* Mutational landscape of intrahepatic cholangiocarcinoma. *Nat Commun* **5**, 5696
1146 (2014).

1147 28. Guo, G. *et al.* Whole-genome and whole-exome sequencing of bladder cancer identifies
1148 frequent alterations in genes involved in sister chromatid cohesion and segregation. *Nat Genet*
1149 **45**, 1459-63 (2013).

1150 29. Bray, F. *et al.* Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality
1151 worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* **68**, 394-424 (2018).

1152 30. Chen, W. *et al.* Cancer incidence and mortality in China, 2014. *Chin J Cancer Res* **30**, 1-12 (2018).

1153 31. Sia, D., Villanueva, A., Friedman, S.L. & Llovet, J.M. Liver Cancer Cell of Origin, Molecular Class,
1154 and Effects on Patient Prognosis. *Gastroenterology* **152**, 745-761 (2017).

1155 32. Konca, K. *et al.* A cross-platform public domain PC image-analysis program for the comet assay.
1156 *Mutat Res* **534**, 15-20 (2003).

1157 33. Schmeiser, H.H., Frei, E., Wiessler, M. & Stiborova, M. Comparison of DNA adduct formation by
1158 aristolochic acids in various in vitro activation systems by 32P-post-labelling: evidence for
1159 reductive activation by peroxidases. *Carcinogenesis* **18**, 1055-62 (1997).

1160 34. Yun, B.H. *et al.* Biomonitoring of aristolactam-DNA adducts in human tissues using ultra-
1161 performance liquid chromatography/ion-trap mass spectrometry. *Chem Res Toxicol* **25**, 1119-
1162 31 (2012).

1163 35. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.
1164 *Bioinformatics* **25**, 1754-60 (2009).

1165 36. McKenna, A. *et al.* The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
1166 generation DNA sequencing data. *Genome Res* **20**, 1297-303 (2010).

1167 37. Cibulskis, K. *et al.* Sensitive detection of somatic point mutations in impure and heterogeneous
1168 cancer samples. *Nat Biotechnol* **31**, 213-9 (2013).

1169 38. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from
1170 high-throughput sequencing data. *Nucleic Acids Res* **38**, e164 (2010).

1171 39. Cingolani, P. *et al.* A program for annotating and predicting the effects of single nucleotide
1172 polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-2;
1173 iso-3. *Fly (Austin)* **6**, 80-92 (2012).

1174 40. Thorvaldsdottir, H., Robinson, J.T. & Mesirov, J.P. Integrative Genomics Viewer (IGV): high-

1175 performance genomics data visualization and exploration. *Brief Bioinform* **14**, 178-92 (2013).

1176 41. Huang da, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene
1177 lists using DAVID bioinformatics resources. *Nat Protoc* **4**, 44-57 (2009).

1178 42. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq.
1179 *Bioinformatics* **25**, 1105-11 (2009).

1180 43. Roberts, A., Trapnell, C., Donaghey, J., Rinn, J.L. & Pachter, L. Improving RNA-Seq expression
1181 estimates by correcting for fragment bias. *Genome Biol* **12**, R22 (2011).

1182 44. Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for
1183 interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* **102**, 15545-50 (2005).

1184 45. Xie, X. *et al.* Systematic discovery of regulatory motifs in human promoters and 3' UTRs by
1185 comparison of several mammals. *Nature* **434**, 338-45 (2005).

1186 46. Su, X. *et al.* Single-cell RNA-Seq analysis reveals dynamic trajectories during mouse liver
1187 development. *BMC Genomics* **18**, 946 (2017).

1188 47. Borggrefe, T. & Oswald, F. The Notch signaling pathway: transcriptional regulation at Notch
1189 target genes. *Cell Mol Life Sci* **66**, 1631-46 (2009).

1190 48. Popescu, A.A., Huber, K.T. & Paradis, E. ape 3.0: New tools for distance-based phylogenetics
1191 and evolutionary analysis in R. *Bioinformatics* **28**, 1536-7 (2012).

1192 49. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing
1193 phylogenetic trees. *Mol Biol Evol* **4**, 406-25 (1987).

1194 50. Miller, C.A. *et al.* Visualizing tumor evolution with the fishplot package for R. *BMC Genomics*
1195 **17**, 880 (2016).

1196 51. Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Campbell, P.J. & Stratton, M.R. Deciphering
1197 signatures of mutational processes operative in human cancer. *Cell Rep* **3**, 246-59 (2013).

1198 52. Blokzijl, F., Janssen, R., van Boxtel, R. & Cuppen, E. MutationalPatterns: comprehensive
1199 genome-wide analysis of mutational processes. *Genome Med* **10**, 33 (2018).

1200 53. Huang, P.J. *et al.* mSignatureDB: a database for deciphering mutational signatures in human
1201 cancers. *Nucleic Acids Res* **46**, D964-D970 (2018).

1202 54. Huang, X., Wojtowicz, D. & Przytycka, T.M. Detecting presence of mutational signatures in
1203 cancer with confidence. *Bioinformatics* (2017).

1204 55. Ji, X.J., Feng, G.S., Chen, G. & Shi, T.L. Lack of correlation between aristolochic acid exposure
1205 and hepatocellular carcinoma. *Science China-Life Sciences* **61**, 727-728 (2018).

1206 56. Haeussler, M. *et al.* The UCSC Genome Browser database: 2019 update. *Nucleic Acids Res*
1207 (2018).

1208 57. Letouze, E. *et al.* Mutational signatures reveal the dynamic interplay of risk factors and cellular
1209 processes during liver tumorigenesis. *Nat Commun* **8**, 1315 (2017).

1210 58. Ouedraogo, M. *et al.* The duplicated genes database: identification and functional annotation
1211 of co-localised duplicated genes across genomes. *PLoS One* **7**, e50653 (2012).

1212 59. Lawrence, M.S. *et al.* Mutational heterogeneity in cancer and the search for new cancer-
1213 associated genes. *Nature* **499**, 214-218 (2013).

1214 60. Tamborero, D., Gonzalez-Perez, A. & Lopez-Bigas, N. OncodriveCLUST: exploiting the positional
1215 clustering of somatic mutations to identify cancer genes. *Bioinformatics* **29**, 2238-44 (2013).

1216 61. Mayakonda, A., Lin, D.C., Assenov, Y., Plass, C. & Koeffler, H.P. Maf-tools: efficient and
1217 comprehensive analysis of somatic variants in cancer. *Genome Res* **28**, 1747-1756 (2018).

1218 **Figure legends**

1219 **Figure 1. AAI can induce liver cancer.** (a) Simplified diagram of liver
1220 cancer induction in C57BL/6 male mice with AAI alone or a combination
1221 of AAI and CCl₄, where the dosages and time points of drug administration
1222 are indicated by arrows, and samples are harvested at the indicated time of
1223 sacrifice mice (Sac). (b-d) Tumor incidence (b), tumor number (c), and
1224 largest tumor size (d) of AAI-induced liver cancer. The numbers in
1225 parentheses are the numbers of mice in the corresponding group. The
1226 numbers of mice in the control groups corresponding to the first four
1227 experimental groups in the figure were 6 (5.5 M), 10 (8.5 M), and 12 (11.5
1228 M); that in the fifth group were 5 (CCl₄ (2 M), 8.5 M) and 6 (CCl₄ (2 M),
1229 11.5 M); and that in the sixth model were 6 (CCl₄ (1 M), 5.5 M) and 6 (CCl₄
1230 (1 M), 8.5 M). The asterisk directly above each group indicates a
1231 significant difference compared with the corresponding control group. The
1232 numbers marked with an asterisk indicate the numbers of surviving mice,
1233 and the initial number of mice in each group was 11. (e, f) Representative
1234 images of gross appearance (scale bars, 1 cm), hematoxylin and eosin
1235 (H&E) staining (scale bars, 100 μ m), and immunohistochemistry (IHC)
1236 analysis with anti-AFP, Ki67 and CK19 antibodies (scale bars, 100 μ m) of
1237 AAI-induced HCCs (e), cHCC-ICC and ICC (f). (g) Proportion of types of
1238 HCC, cHCC-ICC and ICC in all C57BL/6 male mice with liver cancers
1239 (up) and each group (down). The numbers in the column charts indicate the

1240 number of mice with the corresponding cancer types in each group. **(h)**
1241 Quantification of PicroSirius Red histochemistry staining in liver slices
1242 from the different experimental groups and control groups. The numbers
1243 of mice corresponding to each group were 12 (time after first
1244 administration, 11.5 M), 10 (11.5 M), 9 (11.5 M), 9 (11.5 M), 5 (8.5 M), 5
1245 (8.5 M), 6 (5.5 M) and 6 (5.5 M). **(b-d, h)** Values indicated by long and
1246 short horizontal lines represent the mean \pm SD. Asterisks signify
1247 significant differences using the two-sided Student's *t*-test or Wilcoxon
1248 rank-sum test and Fisher's exact test. $*P < 0.05$; $**P < 0.01$; $***P < 0.001$;
1249 NS, not significant.

1250 **Figure 2. AAI can cause liver DNA damage.** **(a)** The γ -H2AX level was
1251 measured by immunofluorescence assay in livers from the control group
1252 (PBS) and "AAI (14x)" mice at 1 month of age. **(b)** γ -H2AX, p53 and Bax
1253 levels were measured by Western blotting assay ($n = 3$) in mouse livers
1254 from the control group (PBS) and "AAI (14x)" group. The numbers under
1255 the Bax band are relative intensity values. **(c, d)** The DNA strand breaks
1256 were measured by the alkaline comet assay in liver cells from 2-week-old
1257 mice at 3 h once after PBS or AAI (2.5 mg/kg or 5 mg/kg) injection,
1258 including representative images **(c)** and quantitative analyses **(d)**, the
1259 number of mice per group is 4; the number of nuclei per group: 600, at least
1260 100 nuclei from each mouse). The white dot, thick black bar in the center
1261 and thin black line extended from it in **(d)** stand for the median,

1262 interquartile range and 95% confidence intervals. (e, f) The γ -H2AX level
1263 was measured by the immunofluorescence assay in livers from the above
1264 samples, including representative images (e) and quantitative analyses (f,
1265 the number of mice per group: 3; 10 nonoverlapping fields at $\times 400$
1266 magnification per mouse). Values indicated by long and short horizontal
1267 lines represent the mean \pm SD. (g, h) The relative abundance (*m/z* 427) of
1268 dA-AL-I was measured by MS in livers of “AAI (14x)” mice at the
1269 indicated ages, including representative images (g) and quantitative
1270 analyses (h). Spots with the same colors indicate the paratumors and
1271 tumors are from the same mouse. The horizontal lines in (h) denote the
1272 mean. Asterisks signify significant differences using the two-sided
1273 Student’s *t*-test or Wilcoxon rank-sum test. ****P* < 0.001. Scale bars, 100
1274 μ m.

1275 **Figure 3. Mutational signatures of AAI-induced mouse liver cancer. (a)**
1276 Representative trinucleotide contextualized mutational spectra in AAI-
1277 induced liver cancer. (b) Estimated COSMIC mutational signature
1278 contributions for each mouse liver cancer. Mutational signature
1279 decomposing with known liver cancer signatures (i.e., COSMIC signatures
1280 1, 4, 5, 6, 12, 16, 17, 22, 23 and 24) was performed using the least square
1281 root algorithm. The AA signature (or COSMIC signature 22) was dominant
1282 throughout the mouse liver cancer. (c) Cosine similarities of trinucleotide
1283 mutational spectra between the tumor/noncancerous liver samples and the

1284 AA signature. M1T, M2T, M3T, M4T1, M4T2, M4T3, M5T1, M5T2,
1285 M5T3, M5T4 and M6T refer to AAI-induced liver cancer; M4P, M5P and
1286 M6P are the paratumor liver tissues of the mice in the combination group;
1287 M7L, M8L and M9L are the livers from the “AAI (3x)” group. M10L and
1288 M11L are the liver tissues from the CCl₄-treated group. **(d)** The mutational
1289 frequency of A>T transversions in transcribed and nontranscribed regions
1290 per megabase (Mb) in these genes as a function of the expression level.
1291 The genes with expression were divided into 4 expression quintiles
1292 according to the expression levels. NT, nontranscribed strand; Tr,
1293 transcribed strand.

1294 **Figure 4. The genes and signaling pathways affected by AAI-mediated**
1295 **mutations. (a)** The categories of the statistically and empirically important
1296 genes with somatic mutations in liver cancer. The genes in red or blue refer
1297 to the proto-oncogenes and tumor-suppressor genes listed in COSMIC
1298 Cancer Gene Census Tier 1, respectively. Genes in purple font refer to
1299 driver genes without a clear definition in terms of proto-oncogenes and
1300 tumor-suppressor genes. **(b)** Major signaling pathways involving genetic
1301 alterations in AAI-induced mouse liver cancer. A brown background
1302 indicates mutated genes; a white background denotes unmutated genes.
1303 Genes in red and blue refer to proto-oncogenes and tumor-suppressor genes
1304 listed in COSMIC Cancer Gene Census Tier 1, respectively. Those in
1305 purple refer to driver genes without a clear definition in terms of proto-

1306 oncogenes and tumor-suppressor genes. Percentages stand for the
1307 proportion of gene or genes in the pathway altered in liver cancer. **(c)**
1308 Correlations between the number of DNA repair-related genes with the
1309 total mutation counts in mouse liver tumors. **(d)** Gene set enrichment
1310 analysis (GSEA) plot of SRF and YAP motif target gene sets. SRF is a key
1311 regulatory transcription factor in the Ras signaling pathway, and YAP is a
1312 key regulatory transcription factor in the Hippo signaling pathway. **(e)** AFP,
1313 GPC3, E-cadherin, p-ERK, ERK1, p-AKT, AKT and YAP levels were
1314 measured by Western blotting assay ($n = 3$) in mouse paratumors (“P”) and
1315 tumors (“T”) from “AAI (3x) + CCl₄” (18 M) group.

1316 **Figure 5. Clonal architecture and phylogenetic reconstructions of**
1317 **AAI-induced mouse liver cancer. (a, b, left)** Malignant clonal
1318 architecture reconstructions within M3T1 and M5T2 tumors. Each peak
1319 indicates one subclone. The subclones lying at the right end had the largest
1320 mutational allele frequency and therefore represent the founding clones.
1321 Others are subclones. **(a, b, right)** Trinucleotide mutational spectra of the
1322 founding clone and subclones within M3T1 and M5T2. The A>T
1323 transversions were predominant in the earliest founding clones and
1324 diminished in the later formed subclones. **(c)** The downward-pointing lines
1325 of A>T mutations in different subclones within these 11 tumor nodules.
1326 The A>T mutation proportions deposited in each clone in the multiclonal
1327 tumors. **(d)** The phylogenetic tree was reconstructed using the neighbor-

1328 joining algorithm with the R package ape (v5.2). **(e)** A common ancestry
1329 evolutionary model for three discrete tumor nodules within M4 liver. The
1330 font size of the genes reflects the allele frequency in each tumor.

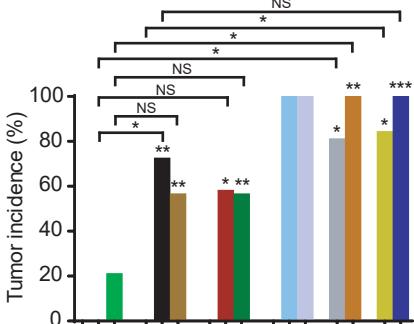
1331 **(f)** Common ancestry evolutionary model for three discrete tumor nodules
1332 within M5 liver. The font size reflects the genes allele frequency in each
1333 tumor.

1334 **Figure 6. AA signatures in human liver cancer and other cancers. (a)**
1335 The AA signature contribution in each individual of the affected human
1336 cancer types. The figure is depicted as a violin plot, in which each dot
1337 represents one human tumor. **(b)** COSMIC signature contribution
1338 according to mutational counts (upper) and proportions (bottom) in the
1339 selected human HCCs with an AA signature proportion larger than 52%.

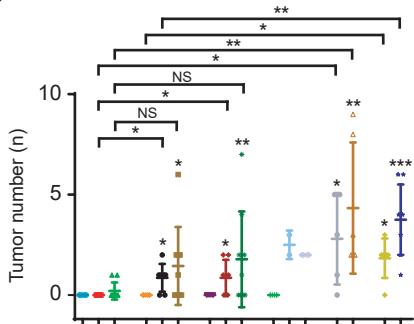
1340 **(c)** The curves of the A>T mutation proportions in different subclones
1341 within 6 TCGA-derived human HCCs. The A>T mutations were deposited
1342 in the founding clones. Tumor DD.AAC8 presents a typical pattern,
1343 implying that AA led to tumor initiation and diminished in the later
1344 processes, as in the mouse tumors. The upward-pointing lines of the AA
1345 contributions across the clonal evolution in the other 5 tumors indicate
1346 sustained AA exposures in the patients. **(d)** Cosmic signature contributions
1347 to the essential driver genes reported in HCCs. **(e)** The AA signature caused
1348 A>T mutation sites in *TP53* and *JAK1* in the selected human HCCs with
1349 an AA signature proportion larger than 52%.

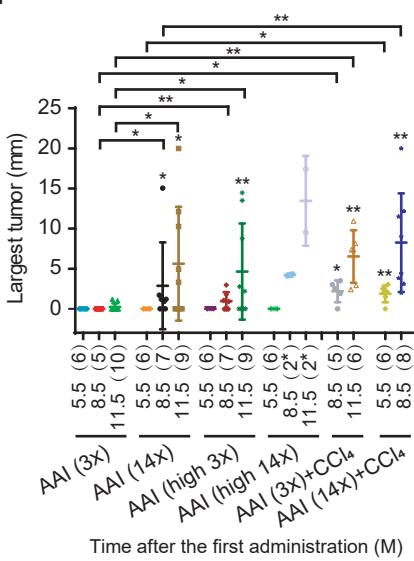

Table 1. Aristolochic acid exposure in human liver cancers

Cancer type	Data source	Regions	Number of patients	Numbers (%) of patients with AA exposure inferred by different criteria			
				> 0*	> 10**	Nonsilent mutations in known driver genes	> 52%***
HCC	ICGC	China (mainland)	313	52 (17)	51 (17)	27 (9)	12 (4)
	Kan, <i>et al.</i> ²³	China (Hongkong)	88	7 (8)	4 (5)	1 (1)	1 (1)
	Lin, <i>et al.</i> ²⁴	China (mainland)	11	6 (55)	6 (55)	2 (18)	2 (18)
	Ng, <i>et al.</i> ¹⁰	Taiwan	98	68 (69)	68 (69)	53 (54)	42 (43)
	Chinese HCC total		510	133 (26)	129 (25)	83 (16)	57 (11)
	TCGA	USA (Asian)	160	24 (15)	23 (14)	13 (8)	4 (3)

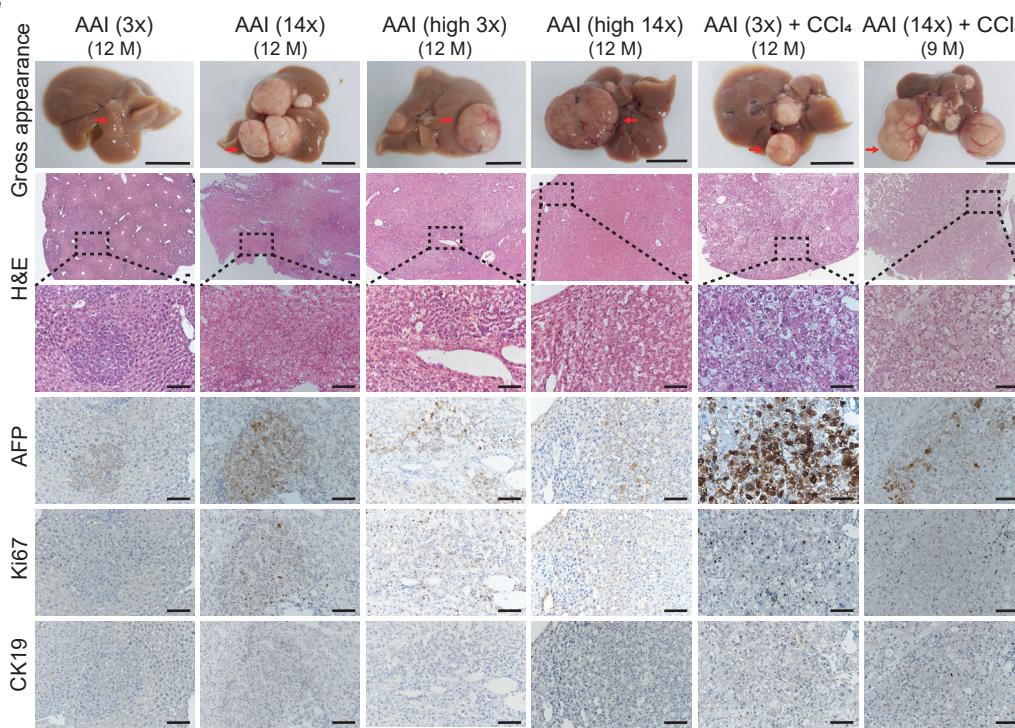

TCGA	USA (others)	204	5 (2)	4 (2)	3 (1)	0 (0)
ICGC	France	249	1 (<1)	0 (0)	0 (0)	0 (0)
ICGC ^{17,18}	Japan	594	3 (<1)	1(<1)	2 (<1)	0 (0)
Zhai, <i>et al.</i> ²⁶	Singapore	9	4 (44)	4 (44)	1 (11)	0 (0)
Ahn, <i>et al.</i> ²⁵	Korea	231	22 (10)	22 (10)	11 (5)	3 (1)
Worldwide HCC total		1957	192 (10)	183 (9)	113 (6)	64 (3)
ICC	Zou, <i>et al.</i> ²⁷	China (mainland)	103	11 (11)	11 (11)	4 (4)
						3 (3)

Note: * indicates the estimated lower boundary of 95% confidence interval of AA signature exposure larger than 0 ($P < 0.05$); ** indicates the estimated lower boundary of 95% confidence interval of AA signature exposure larger than 10% ($P < 0.05$); *** indicates the estimated lower boundary of 95% confidence interval of AA signature exposure larger than 52% ($P < 0.05$).

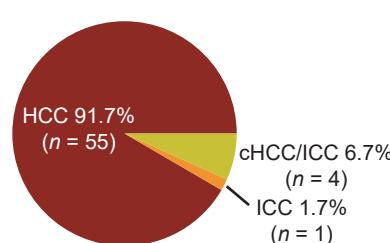

a


b

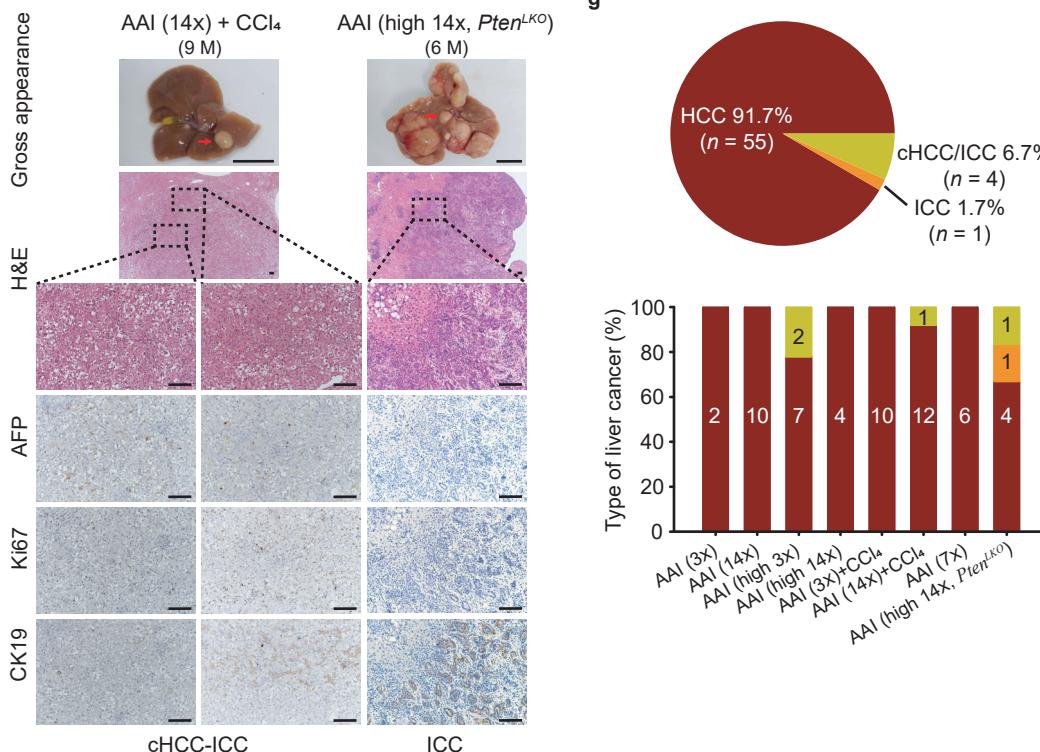
c

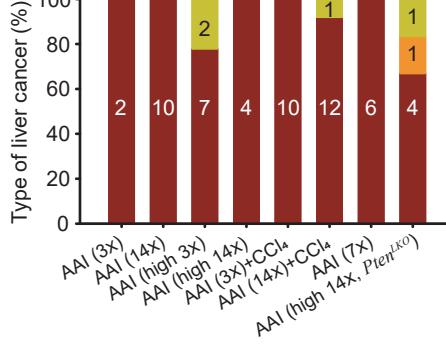


d

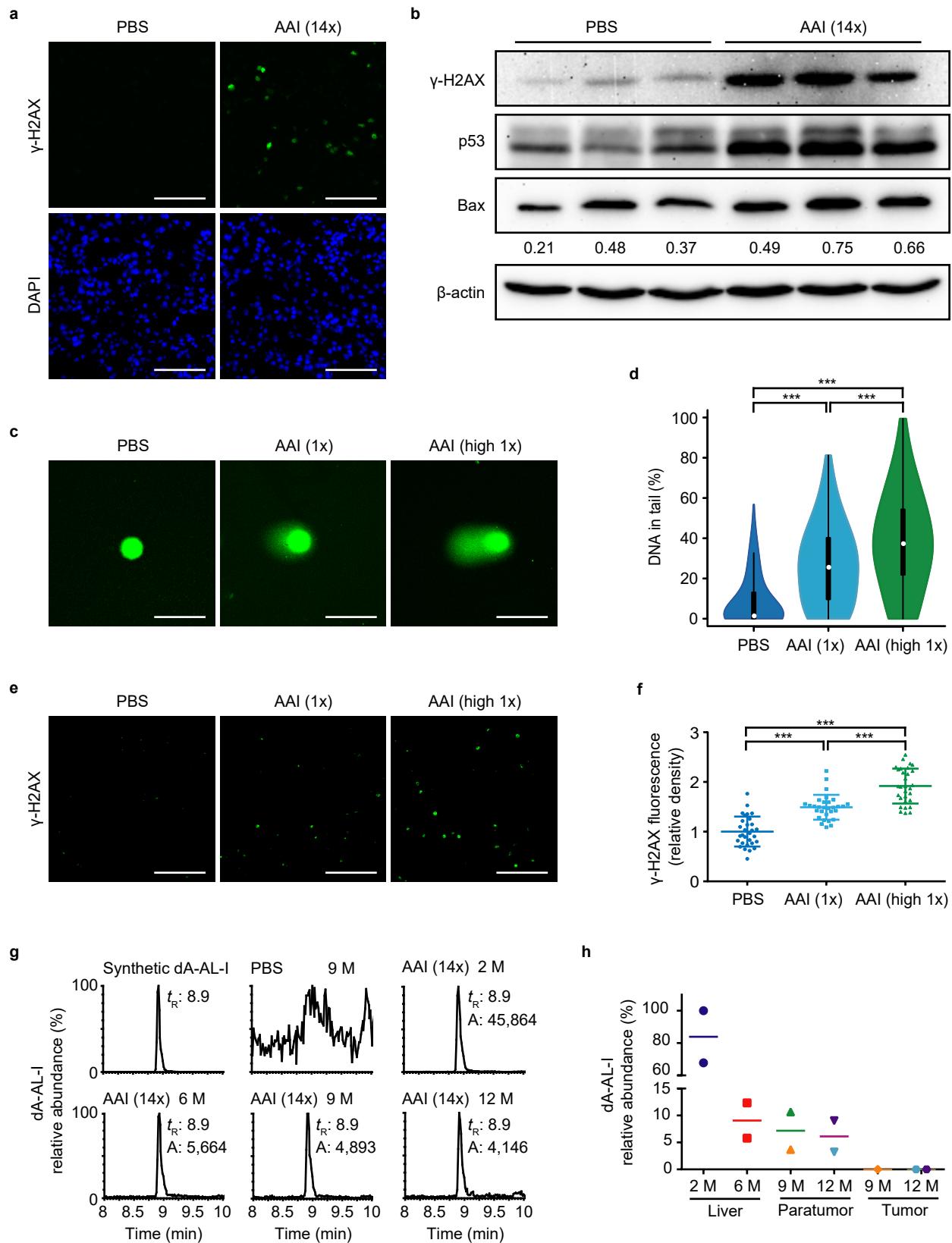


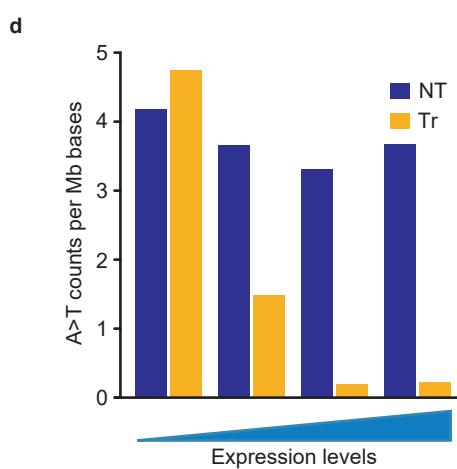
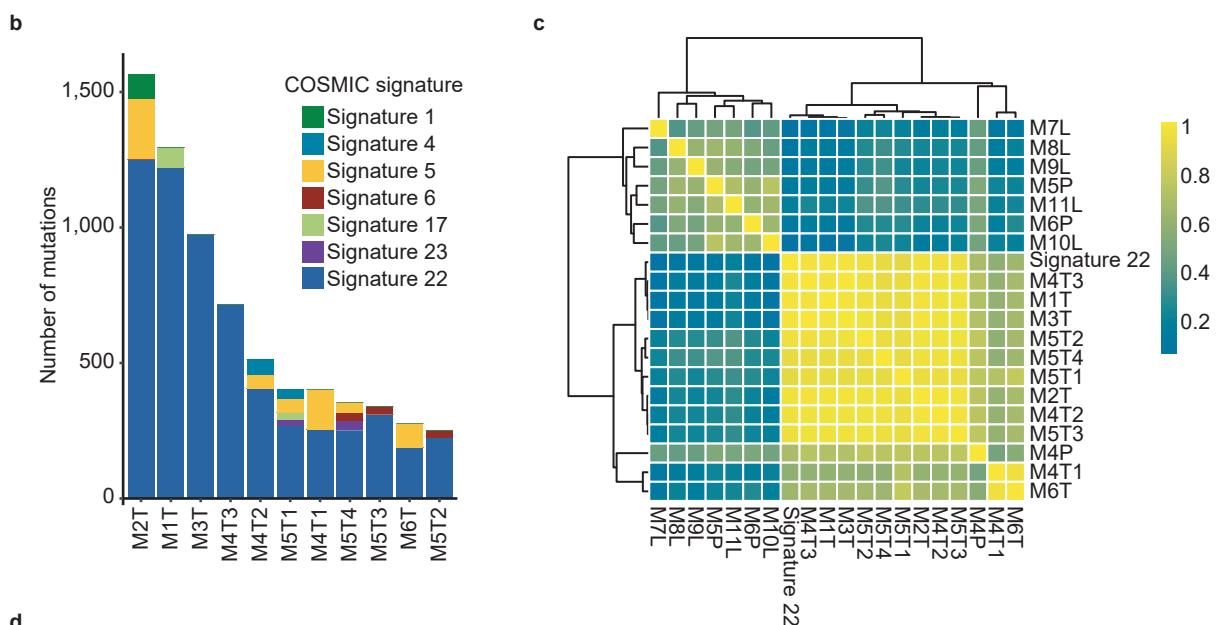
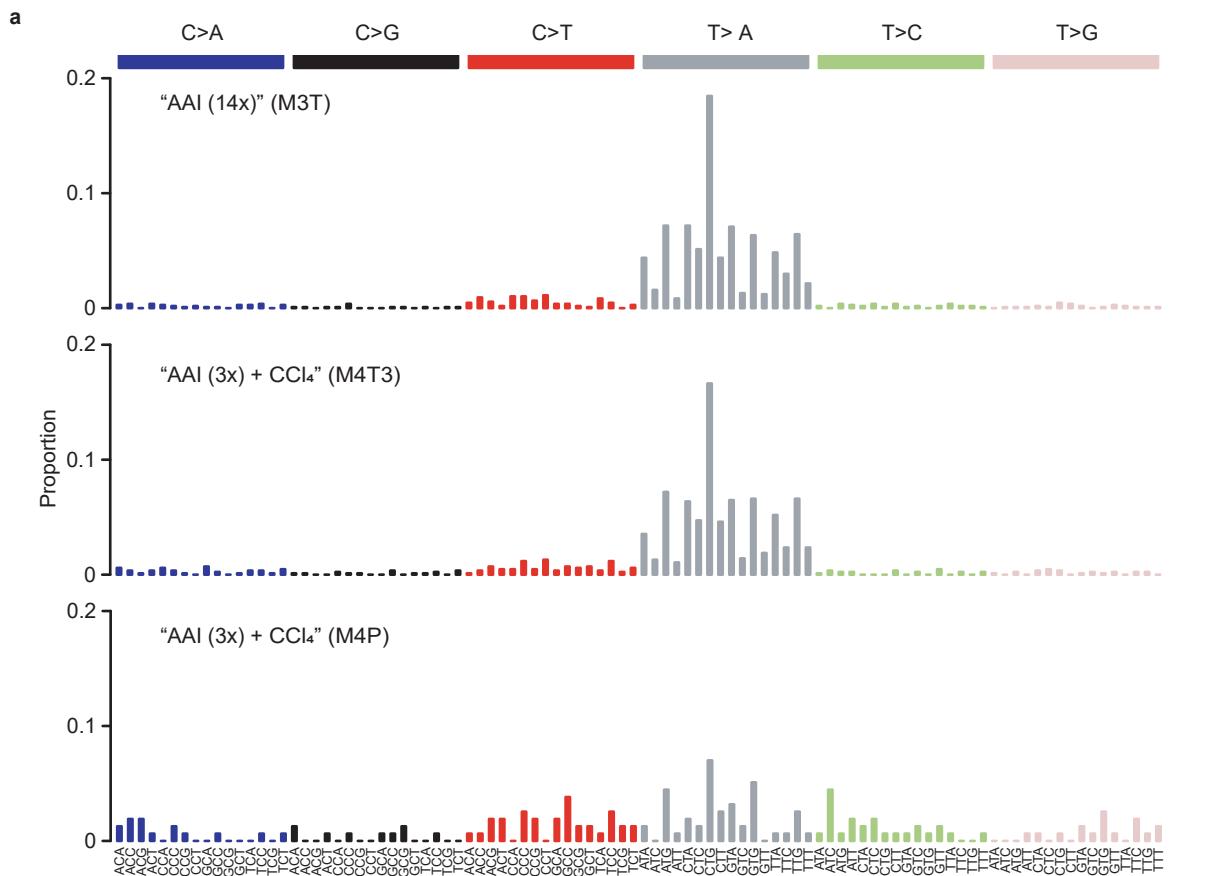
Time after the first administration (M)

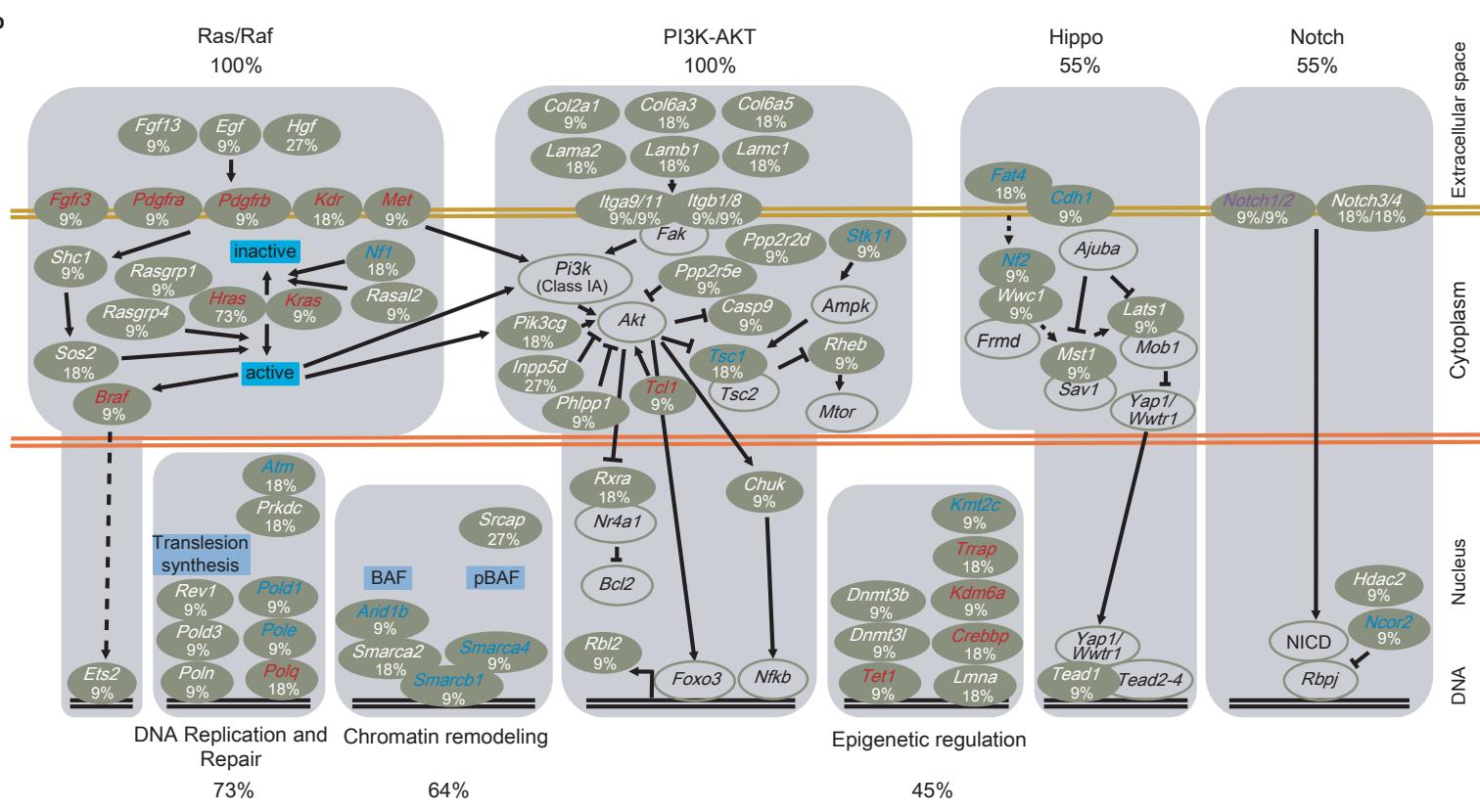
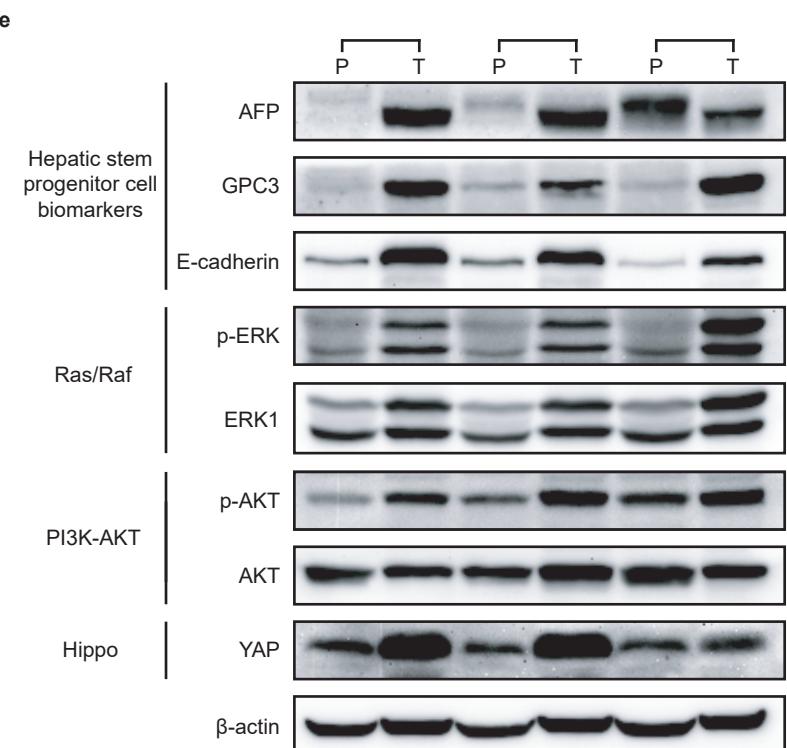
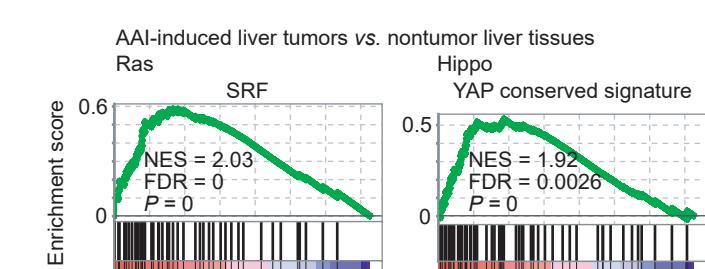
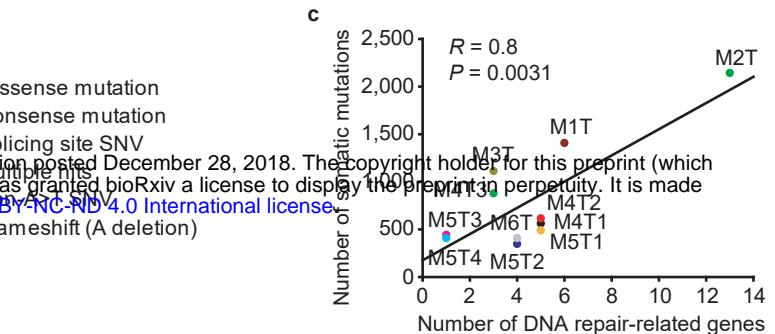
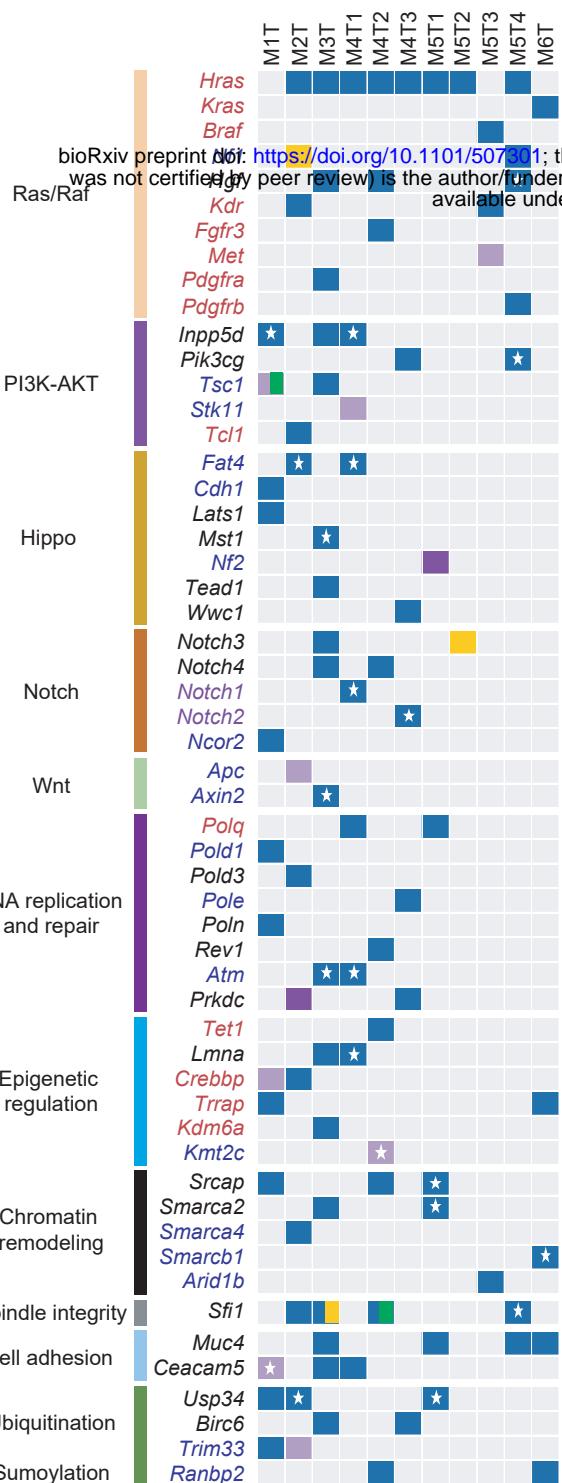

e

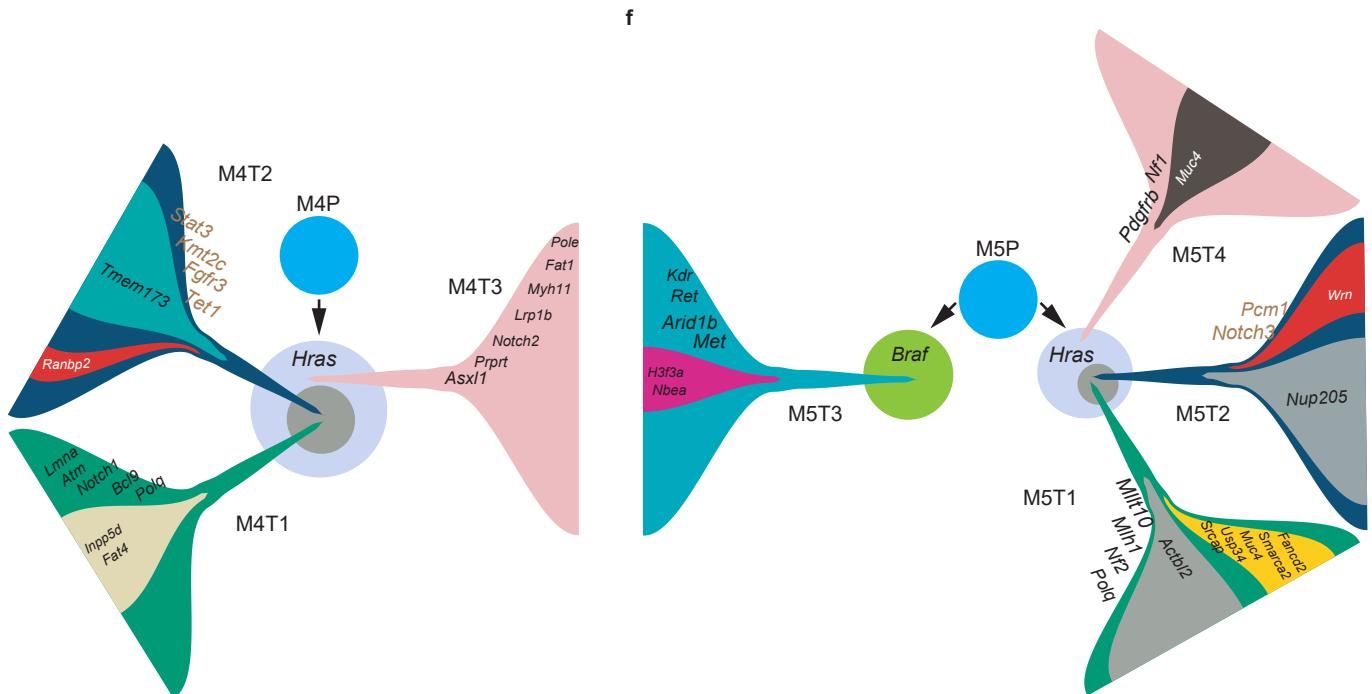
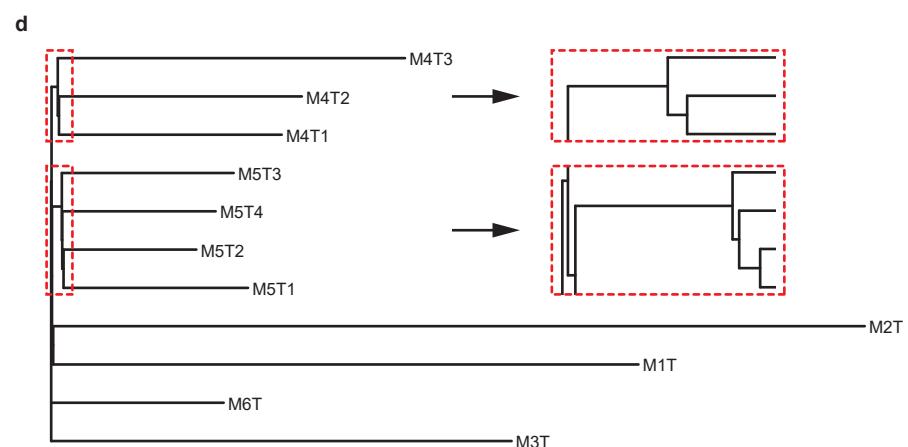
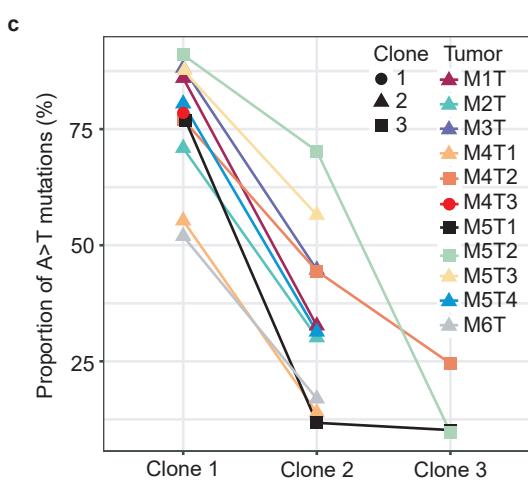
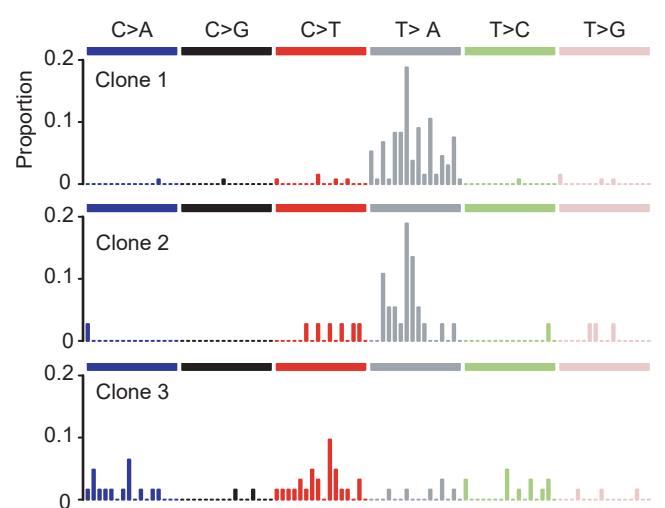
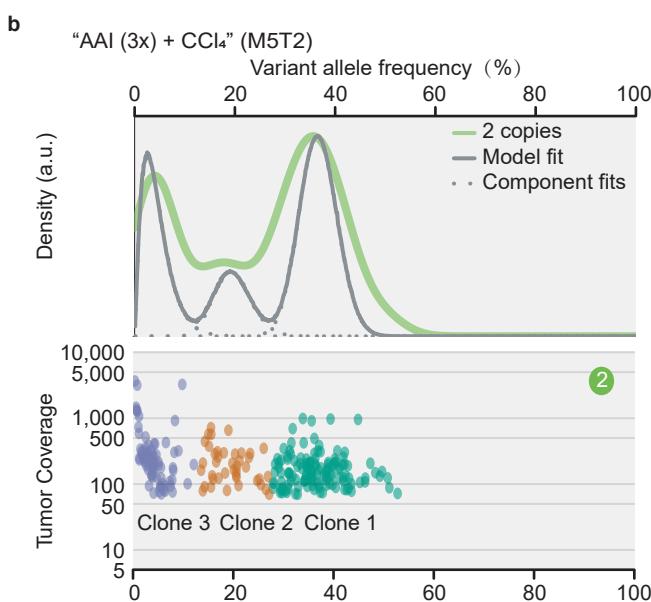
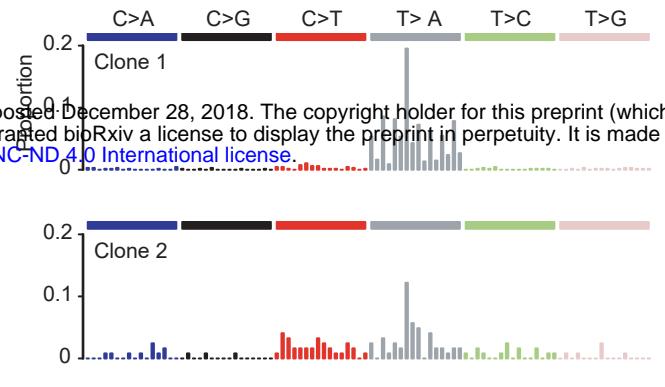
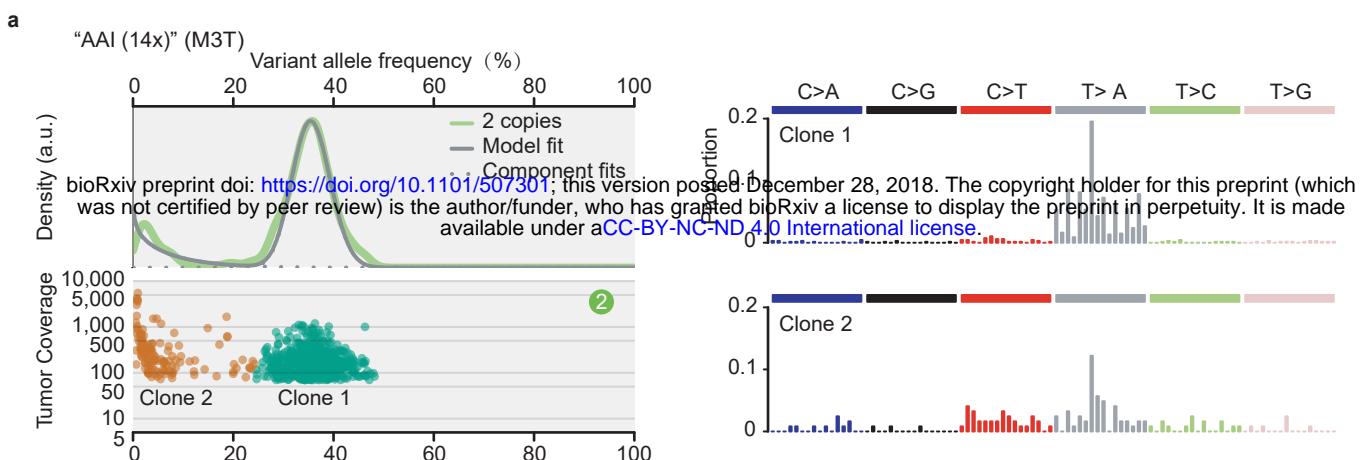

g


f






g








h

