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ABSTRACT  

Quantitative comparison of epigenomic data across multiple cell types or experimental conditions 

is a promising way to understand the biological functions of epigenetic modifications. However, 

differences in sequencing depth and signal-to-noise ratios in the results from different 

experiments can hinder our ability to identify real biological variation from raw epigenomic data. 

Proper normalization is required prior to data analysis to gain meaningful insights. Most existing 

methods for data normalization standardize signals by rescaling either background regions or 

peak regions, assuming that the same scale factor is applicable to both background regions and 

peak regions. While such methods adjust for differences due to sequencing depths, they do not 

address differences in the signal-to-noise ratios across different experiments. We developed a 

new data normalization method, called S3norm, that normalizes the sequencing depths and 

signal-to-noise ratios across different data sets simultaneously by a monotonic nonlinear 

transformation. We show empirically that the epigenomic data normalized by our method, 
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compared to existing methods, can better capture real biological variation, such as impact on gene 

expression regulation. 

INTRODUCTION 

Epigenetic features of chromatin, such as histone modifications, transcription factor binding, and 

nuclease accessibility, play an important role in the regulation of gene expression. Advances in 

biochemical enrichment strategies and high-throughput sequencing technologies have made it 

possible to determine the landscape of epigenetic features at a genome-wide scale. In recent 

years, a large collection of genome-wide epigenetic profiles have been acquired in many cell 

types under different biological contexts (1–4). Quantitative comparison of these epigenetic 

profiles across different cell types is a powerful approach to study the biological functions of 

epigenetic modifications and infer functional elements in genomes. Technical heterogeneity 

across the data sets, such as differences in sequencing depth (SD) and signal-to-noise ratio 

(SNR), however, can create systematic biases that mask real biological variation (5). Proper data 

normalization is needed to correct these biases before meaningful insights can be gleaned from 

the data analyses (6, 7).  

    A commonly used strategy for data normalization is to calculate a scale factor between two 

data sets (8, 9), for example between a reference data set and a target data set, and then rescale the 

target data set according to the scale factor. The simplest scale factor is the ratio of the total 

signals between the two data sets, which we will refer to as TSnorm hereafter (Figure 1A). This 

approach is  based on the assumption that the signals of a data set is dominated by the 

background regions and works well when real signals are scarce and take up only a small 

proportion of reads among the total. For epigenetic profiles, however, signal regions are often 

abundant, with drastically different number of peaks and reads across different data sets (9–12), 

whereas the background regions are more uniform across data sets. Recognizing this issue, some 

recent data normalization methods, such as SES and NCIS (13, 14), took a two-step approach. 

They first identify the background regions, and then they calculate the scale factor only from the 

background regions. While these methods can adjust for the scale differences in background 

regions between data sets, they implicitly assume that the same scale factor can be applied to 

peak regions as well. In reality, however, the signal-to-noise ratios between data sets are often 

different, thus the scale factor for the peak regions should be different from that for the 

background regions.  

    Some normalization methods focus on adjusting SNRs across data sets (15). MAnorm (6), one 

of the earliest methods to consider SNRs in ChIP-seq normalization, uses the MA plot (16) to fit 
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a curve between signal intensity ratio (M) and average intensity (A) between data sets. The fitting 

is done using signals in the common peak regions between data sets, under the assumption that 

the normalized data sets in common peak regions should have the same SNRs. The fitted curve is 

then applied to adjust signals in peak regions (Figure 1B). MAnorm can adjust signals in peak 

regions, but not for background regions. It thus is not applicable for applications that utilize 

signals across the genome, such as genome segmentation (17–20). In segmentations, some 

epigenetic states are defined by low signals of features, in which case an increase of background 

noise could result in incorrect assignments to those states. Alternative methods LOWESS 

normalization and quantile normalization (QTnorm), have been used to adjust both SDs and 

SNRs by equalizing local signals between two data sets (21–23). When applying these two 

methods to data sets with substantially different numbers of peaks, they may increase background 

noise (or decrease peak signals) for data sets with fewer (or more) peaks (21). Finally, rank-based 

methods have been proposed to normalize data sets with different signal distributions by 

converting signals into ranks (24). Because they ignore the quantitative spread among signals, 

they may lose power, and therefore they are not considered in this study.  

    To illustrate the aforementioned issues encountered by the existing methods (Figure 1), we 

applied TSnorm and MAnorm to the nuclease accessibility data (ATAC-seq) at a histone gene 

locus in three hematopoietic cell types, namely, a stem and progenitor cell population (the lineage 

negative, Sca1 positive, c-kit negative cells or LSK), the megakaryocyte erythroid progenitor 

cells (MEP), and erythroblasts (ERY) (25). We chose this locus because active production of 

histones is required for cell replication, and histone genes usually have similar activities across all 

proliferating cell types. Thus the profiles of nuclease accessibility in the neighborhood are 

expected to be similar across cell types, but as shown in Figure 1D, the raw ATAC-seq signals in 

this locus were clearly weaker in LSK and MEP than in ERY. After applying TSnorm, which 

used a single scale factor, the signals in LSK and MEP were increased but the signals of the peak 

regions in LSK and MEP were still weaker than in ERY (Figure 1E). This result is expected for a 

method that cannot match signals in both peak regions and background regions simultaneously. 

After applying MAnorm, which only used information in common peak regions to estimate a 

normalization model, the signals of the peak regions in both LSK and MEP were increased to 

match the level in ERY (Figure 1F), but the background was inflated in LSK (Figure 1G). These 

results illustrate the need for simultaneous adjustment of both peaks and background.  

    We developed a new two-factor normalization method, called S3norm, to Simultaneously 

normalize the Signal in peak regions and the Signal in background regions of epigenomic data 

sets. Unlike TSnorm or MAnorm, in which either background regions or common peak regions 
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contribute to normalization, our method matches both the mean signals in the common peak 

regions and the mean signals in the common background regions between two data (Figure 1G), 

balancing the contribution of common peak and common background regions to data 

normalization. As a result, S3norm matched the peak signals in our example data sets (ERY, LSK 

and MEP) without increasing noise the background signals (Figure 1H and I). In this paper, we 

demonstrate the superior performance of S3norm over existing methods using several epigenomic 

data sets with a wide range of data quality.  

MATERIALS AND METHODS 

Data preprocessing and evaluation 

We used the data sets compiled by the ValIdated and Systematic integratION of epigenomic data 

project (VISION: usevision.org), which includes eight epigenetic marks (H3K4me3, H3K4me1, 

H3K27ac, H3K36me3, H3K27me3, H3K9me3, CTCF occupancy, and nuclease sensitivity) in 

twenty hematopoietic cell types of mice (20, 26–28). Using the bam files processed by the 

pipeline of VISION project as the input data (20, 28, 29), we then divided the mm10 mouse 

genome assembly into ~13 million 200-bp bins and counted the number of reads mapped to each 

bin (30). The reads counts per bin comprised the raw signals for each data set. For each data set, 

the SD was estimated by the number of mapped reads, and the SNR was estimated as the Fraction 

of Reads in Peaks (FRiP score) (31). The VISION data sets were generated in different 

laboratories at different time using different technologies, leading to substantial variation in 

signal quality across data sets (Supplementary Figure 1). Considering H3K4me3 experiments as 

an example, the total number of mapped reads ranged from <1 million to >10 millions, and the 

FRiP score ranged from <0.1 to >0.9. This large variability in both SDs and SNRs requires both 

aspects to be properly normalized to enable meaningful downstream analysis. Indeed, this large 

variation in both SD and SNR served as a motivating problem to develop our normalization 

method.  

Simultaneous normalization of both peak regions and background regions  

S3norm is a normalization model that matches signals in the peak regions between two data sets 

while avoiding an increase in background (Figure 2). Because the numbers and the signals of the 

unique peaks can differ between the two data sets, S3norm learns its normalization parameters 

only from the signals in the common peak regions (6) and the signals in the common background 

regions. S3norm is built on two assumptions derived from the biological principles of epigenetic 

events. First, we assumed that epigenetic events shared by multiple cell types tend to regulate 
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processes occurring in all those cell type, such as expression of constitutively active genes, so that 

the mean signal of common peaks should be the same after normalization. Second, we assumed 

that the signals in common background regions are technical noise, and thus, they should be 

equalized after normalization. Based on these two assumptions, S3norm matches the mean 

signals in the common peak regions and the mean signals in the common background regions 

between the two data sets. S3norm can also work for more than two data sets, in which case the 

common peak regions and the common background regions are those shared by all data sets.  

    To match the mean signals, we treat one data set as the reference and the other data set as the 

target, transforming the signals in the target data set by the following monotonic nonlinear 

function:  

    Let Y! and Y!"#$,! denote the signal of bin i in the target data set before and after normalization, 

then 

log (Y!"#$,!) = log (α)+ βlog(Y!) 

where α and β are two positive parameters to be learned from the data. Specifically, α is a scale 

factor that shifts the signals of the target data set in log scale, and β is a power transformation 

parameter that rotates the signals of the target data set in log scale (Figure 2). There is one and 

only one set of values for α and β that can simultaneously match the mean signals in both the 

common peak regions and the common background regions between the two data sets. In 

practice, we found matching the arithmetic mean in the original signal space can produce 

normalized signals with a cleaner background. Thus, our approach solves the values for α and β 

which satisfy the following two equations, so that the arithmetic mean signals in original signal 

space in both the common peak regions and the common background regions can be matched 

between two data sets:  

Y!"#$,! = αY! 
! 

mean(Y!"#,!") = mean(αY!"#,!"  
!) 

mean(Y!"#,!") = mean(αY!"#,!" 
!) 

where the mean(αY!"#,!"  
!) and the mean(αY!"#,!" 

!) are the means of normalized signals in 

common peak regions and common background region in target data set, the mean(Y!"#,!") and 

the  mean(Y!"#,!")  are the mean of signal in the same common peak regions and the same 

common background region in reference data set. The values of α and β were estimated by the 

Newton-Raphson method (32).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 28, 2019. ; https://doi.org/10.1101/506634doi: bioRxiv preprint 

https://doi.org/10.1101/506634
http://creativecommons.org/licenses/by-nc-nd/4.0/


    Depending on the characteristics of data sets being normalized, users may choose to match the 

mean signals of non-zero bins or the median signals of all bins rather than matching the mean 

signals as just described. For example, when the data sets have a very large number of zero bins, 

matching the mean signals of non-zero bins can generate more consistent background across data 

sets. For the reference data set, we choose the data set with the best SNR as the reference. In the 

S3norm package, users can also choose other data set or generate a reference data set by using the 

median (or mean) signal of all data sets for each genome position.  

Generating signal tracks from normalized signal 

To facilitate use in downstream analysis, such as peak calling and genome segmentation, we 

provide a script to generate signal tracks (bigwig format) of the S3norm normalized signals. We 

followed a similar method as the one adopted in MACS (9) except that the Poisson model used to 

adjust for fluctuation in the local background (33–36) was replaced by a Negative Binomial (NB) 

model. In ChIP-seq data, the variance is often greater than the mean (supplementary Figure 2), so 

NB is preferred as the background model because it estimates the mean and variance separately, 

whereas the Poisson model has the same mean and variance.  

    For ChIP-seq, there are usually two data sets for each experiment, one is referred as a immune-

precipitation (IP) sample which is a data set generated by sequencing the DNA after immune-

precipitation by target-specific antibody, and the other one is the corresponding control sample 

which is another data set generated by sequencing either the input DNA without immune-

precipitation or the DNA after immune-precipitation by non-specific antibody. 

    The NB background model was defined as follows. Let r! and r!!"#$ denote the read counts in 

bin i in a IP and a control, respectively. Let M and σ! denote the mean and variance of read 

counts in the IP in the common background regions, and M!"#$ denote the mean read counts in the 

control in the common background regions. Our dynamic NB background model is defined as: 

 r! ∼ NB s!"#$!,p  

p =
M
σ! 

s!"#$! =
M!

σ! −M×  
r!!"#$

M!"#$ 

r!!"#$ = max  r!,!", r!,!"# ,  r!,!"#,  r!,!"#$ , 

where p denotes the probability of success parameter in the NB model, and s!"#$! denotes a shape 

parameter of the NB model. For each bin i, s!"#$! is adjusted by !!
!"#$

!!"#$ to capture any local bias as 
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reflected in the control. The increase of control signal ( !!
!"#$

!!"#$) is equivalent to the decrease of σ! 

which can generate a more significant p-value. The r!!"#$ is the local mean read count learned from 

the control computed in a same way in MACS (9). The r!,!" is the genome mean read count in the 

control, the  r!,!"#, r!,!"# and  r!,!"#$, are mean read counts of different window sizes centered at 

the bin i in the control. The local mean read counts are calculated as the maximum of  r!,!", 

 r!,!"#, r!,!"# and  r!,!"#$. For data sets without a control (i.e. ATAC-seq), the value for r!!"#$ can 

be generated with both of two modifications (9). First, the r!!"#$ and M!"#! are estimated from the 

IP instead of the control. Second, the r!,!"# is not used to estimate r!!"#$. 

    Finally, -log10 p-value of read count per bin, as derived from the NB background model, is 

used as the processed signal in the S3norm signal track.  

Predicting gene expression from histone modifications 

To evaluate whether our new method helped bring out biological meaning from epigenomic data, 

we used S3norm and several current methods to normalize histone modification datasets, and 

then compared how well the data normalized by the different methods could predict levels of 

gene expression. Previous studies showed that a model properly trained to predict gene 

expression from histone modifications in one cell type can be used to predict gene expression 

accurately in a different cell type utilizing the histone modification data from the second cell type 

(37, 38). We thus hypothesized that improvements in normalization of histone modification 

datasets would enable more accurate prediction of gene expression. We used two histone 

modifications (H3K4me3 and H3K27ac) that are strong predictors of gene expression (39). 

Following the study design in Dong et al 2012 (37), we used ten-fold cross validation to evaluate 

the predictability of gene expression. For each cross validtion, we randomly selected 90% of the 

genes as training genes and the remaining 10% of the genes as the testing genes. We first trained 

a regression model to predict expression of training genes in one cell type (training cell type). We 

then applied the trained model to predict the expression of testing genes in another cell type 

(testing cell type). The Reads Per Kilobase of transcript per Million mapped reads (RPKM) in 

log2 scale was used as the estimate of gene expression. The histone modification signal was 

defined as the mean read counts of the histone modification in a 5kb window centered at 

transcription start site (TSS). The predictability of gene expression was measured by mean square 

error (MSE) between the observed gene expression and the predicted gene expression in the 

testing genes in the testing cell type. To prevent a bias from a specific  regression model, we 

performed this analysis by using four different commonly used regression models, specifically a 
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local regression (loess) model, the 2-step linear regression model (37), a linear regression model, 

and a support vector machine regression (SVR) model. 

Calling peaks from epigenomic data by MACS2  

To compare of the influence of data normalization on peak calling, we applied MACS2 to call 

peaks from CTCF ChIP-seq data normalized by different normalization methods. We first 

generated the signal tracks in each cell type. For all methods, the signal track was generated by 

the -log10 p-value (input signal for bdgpeakcall in MACS2 package) of normalized reads count 

based on the previously described NB background model. We then used the bdgpeakcall in the 

MACS2 package in the default setting to call peaks from the signal tracks. The threshold was 

FDR = 1e-2. For each normalization method, the CTCF peaks were first called in 11 cell types 

that have CTCF occupancy data in VISION project. We used the UpSet method (40) to visualize 

the number of commonly called peaks from different normalization methods.  

    To evaluate the type I error (false positive peaks) in these CTCF peak calling results, we 

compared both the proportion of peaks with a CTCF binding site motif (Jaspar id: MA0139.1) 

(41) and the signal consistency between the biological replicates in these peaks. We expected that 

the false positive peaks were generated from the background regions with increased signal, so 

that they should have lower values for both of these two measurements.  

    For the proportion of peaks with CTCF binding site motif, we used FIMO in its default setting 

to scan for the CTCF binding site motif (Jaspar id: MA0139.1) (41) in those peaks.  

    The signal consistency between the biological replicates was measured by the mean square 

error (MSE) between the two biological replicates. 

MSE = mean (signal!"#$ −  signal!"#$)! , 

where signal!"#$ and signal!"#$ are the signals in two biological replicates. The false positive 

peaks tend to be the peaks with lower signal. To measure the signal consistency of peak with 

different signal levels, we calculated the cumulative MSEs. Specifically, we first calculated the 

MSE of peaks with highest signals (top 1 to 5,000 peaks) and used the MSE as the first MSE in 

figure 5B. In the second step, we added more peaks (top 1 to 10,000 peaks) and recalculated the 

MSE. We repeated the second step until all of the peaks were used. All of the MSEs were defined 

as the cumulative MSEs for each method. We plotted the cumulative MSE for both S3norm peaks 

and the QTnorm peaks in figure 5B. Since there are more QTnorm peaks than the S3norm peaks, 

the cumulative MSEs of the QTnorm peaks have more points. 
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RESULTS 

S3norm overview 

We introduce a new data normalization method called S3norm that uses a nonlinear 

transformation to normalize signals in both peak regions and background regions simultaneously. 

The goal of the S3norm method is to match both the mean signal in the common peak regions 

and the mean signal in the common background regions between a target data set and a reference 

data set, which is the data set with the best SNR (Figure 2). The method employs a nonlinear 

transformation model with parameters learned from the signal in both common peaks and 

common background regions. As shown in the scatterplot between signal of target data set and 

signal of reference data set, this nonlinear transformation can rotate the target signal in log scale 

so that both the mean signal in the common peak regions and the mean signal in the common 

background regions between a target data set and a reference data set can are matched. As a 

result, the method can boost signals in peak regions in the target data set without increasing the 

background noise, thereby increasing the SNR in the target data sets (see Materials and Methods 

for details). This makes S3norm a more desirable method for genome-wide normalization across 

multiple data sets than existing methods.  

Evaluation by ATAC-seq 

We first compared S3norm with other normalization methods in terms of their abilities to match 

the signal in both peak regions and background regions. We used the ATAC-seq data sets in 

megakaryocyte (iMK) cells (~92 million reads for replicate 1 and ~74 million reads for replicate 

2) and LSK cells (~53 million reads for replicate 1 and ~59 million reads for replicate 2) for 

illustration. We chose these two data sets because they have different SNRs (Figure 3A). We used 

the iMK as the reference because it has a higher SNR than the LSK data set. For all normalization 

methods, the signal of the target data set was matched to the signal of the reference data set. 

    Because the two data sets had similar signal in background regions, the TSnorm method had 

little impact on the results (Figure 3B), i.e., the peak signals in iMK remained consistently higher 

than the peak signals in LSK after TSnorm normalization. The MAnorm method did normalize 

the signals in peak regions so that the peak signals in the LSK data set became similar to the peak 

signals in the iMK data set (Figure 3C). However, MAnorm increased the noise in the 

background regions in the LSK data set. The poor performance of TSnorm and MAnorm was 

expected, as they either used background regions or peak regions to calculate scale factors, but 

not considering both types of regions  simultaneously. In contrast, the QTnorm and S3norm 

normalized the signals in both peak regions and background regions. After their normalization, 
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the mean signals of the common peak regions (green point) and the mean signals in the common 

background regions (dark blue point) were both matched between the two data sets (Figure 3D 

and E).  

    We further systematically used the four methods to normalize all ATAC-seq data sets in the 

VISION project that have biological replicates. We used the data set with the highest SNR as the 

reference, which is the iMK data set. As shown in Figure 3F, the signals in the common peak 

regions retained substantial differences both between replicates and across all data sets after 

TSnorm, illustrating the limitation of single factor normalization. On the other hand, though 

MAnorm can adjust the signal in common peak regions appropriately (as deduced from 

similarities in distributions between replicates), the signals in the background regions became 

more heterogeneous across all data sets than before normalization. In comparison, S3norm and 

QTnorm effectively adjusted the signals in both types of regions so that the normalized signals 

became much more comparable both between replicates and across data sets.  

Evaluation by gene expression 

Modeling approaches have been used to predict gene expression from histone modifications, and 

the quantitative relationships learned from one cell type can be applied to predict gene expression 

in other cell types (37, 38). The predictability, however, will be reduced if the epigenomic data 

across cell types are not properly normalized. We thus use the predictability of gene expression 

from different normalized epigenetic data to evalute their ability to reflect real biological 

variation.  

    Specifically, we randomly selected 90% of genes (Training Genes) to train four commonly 

used regression models to predict a gene expression from H3K4me3 and H3K27ac normalized 

signals around a gene TSS. We then evaluated the performance of these regression models on the 

remaining 10% of genes (Testing Genes). We first trained the regression models using the 

Training Genes in one cell type (Training Cell type) and then evaluated the models using the 

Testing Genes in both Training Cell type and a different cell type (Testing Cell type).  

    The evaluation in the Training Cell type is to see if these regression models can successfully 

learn robust quantative relationships between gene expression and histone modifications. As 

expected for performance in the Training Cell types, the MSEs of the models were similarly good 

across all normalization methods (Figure 4A and Supplementary figure 3A-C). It thus indicated 

the regression models can successfully learn the quantitative relationships between the gene 

expression and histone modications with different normalizations.  

    To further evaluate if the learned quantitative relationships can be applied to different cell 

types, we compared the performances of the trained models on the Testing Genes in the Testing 
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Cell Type. As shown in figure 4B and Supplementary figure 3D-F, the models trained on S3norm 

signals and QTnorm signals were always better (Wilcoxon test p-value < 1e-4) than the models 

trained on the TSnorm signals and MAnorm signals. This result shows that the quantitative 

relationships learned from the histone modification signals normalized by the latter two methods 

did not transfer to other cell types as effectively as those normalized by QTnorm and S3norm.  

Evaluation by peak calling 

So far we have observed superior performance of S3norm and QTnorm than some other 

normalization methods. Like S3norm, QTnorm matches the signal in both peak regions and 

background regions simultaneously. However, QTnorm assumes normalized signals have the 

same distribution across data sets. This assumption is particularly questionable for epigenomic 

data, because the number of epigenetic peaks usually differs substantially across cell types. If two 

data sets have different numbers of peaks, QTnorm would force some background signals in the 

data set with fewer peaks to match the peak signals with the same rank in the data set with more 

peaks, potentially creating false positive peaks. 

    To evaluate the effect of normalization on peak calling, we called peaks on CTCF ChIP-seq 

data in VISION project using the signal normalized by different normalization methods. We first 

compared the number of peaks overlapping between sets by using the UpSet figure (Figure 5A) 

(40). While almost 80,000 peaks were called consistently on the data normalized by all methods, 

71,472 peaks were only called from the QTnorm signal. These peak calls that were unique to 

normalization by QTnorm could be false positive peaks created by forcing identical distributions 

across data sets and thereby inflating the background such peaks are called erroneously.  

    To further estimate the false positive peaks in these peaks, we first compared the proportion of 

the peaks with a match to the CTCF binding site motif in the peaks obtained from the different 

normalization methods. Given that the ~80% of CTCF binding site contain the CTCF motif (42, 

43), we expect the false positive peaks should be less likely to have CTCF motif. Among the 

QTnorm specific peaks, only 8.7% of the peaks had CTCF binding site motif, whereas 80.8% of 

the peaks that shared by all methods had CTCF motif. These results suggest that many of the 

QTnorm CTCF peaks are likely to be false positive peaks.  

    Furthermore, we examined the consistency of signal strengths in biological replicates of CTCF 

in G1E-ER4 cells. We first pooled and merged the peaks called by different normalized methods 

into one master peak list. The mean square error (MSE) between the two biological replicates of 

these peaks was used to measure the signal consistency (Figure 5B) (see Materials and Methods 

section for more details). The number of peaks in the pooled peak list that was called by each 

normalization method was shown as a vertical line with specifc color. Compared with S3norm, 
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QTnorm called ~42% more peaks. The peaks called in both S3norm signals and QTnorm signals 

were highly consistent, with similarly low MSEs between the biological replicates. For the 

QTnorm specific peaks, however, the MSEs between biological replicates increased substantially. 

That is, the signals were less consistent between replicates in those peaks. This is also confirmed 

by the scatterplot showing the signal of two biological replicates normalized by QTnorm and 

S3norm. The replicates normalized by QTnorm show much more between-replicate variance, 

especially for the peaks with weaker signals (Figure 5C) relative to S3norm (Figure 5D). All of 

these results suggest the large number of QTnorm specific peaks are false positive peaks.  

    The evaluation of both CTCF motif occurrence and the signal consitency indicate the S3norm 

has a substantial advantage over QTnorm in reducing false positive peaks in peak calling results. 

DISCUSSION 

We introduce a simple and robust method to normalize the signals across multiple epigenomic 

data sets. The essence of this method is to use a nonlinear transformation to rotate the signal of 

the target data set to that of the reference data set, so that the mean signals of both common peak 

regions and common background regions are matched simultaneously between the two data sets. 

The S3norm method achieves several notable improvements over existing normalization 

methods. First, the inclusion of background regions is a particular advantage when data across the 

entire genome needs to be normalized. As an example, this method was developed to facilitate 

our work on genomic segmentations that assign every genomic interval to an epigenetic state, 

which is a common combination of epigenetic features (20).  An inflation of background noise 

could result in assigning regions with increased noise to low signal-containing states. Second, in 

contrast to the TSnorm and QTnorm methods, S3norm is robust to biases resulting from the 

substantial proportion of background regions in the genome. Third, S3norm can be trained on 

data sets with small numbers of peaks, such as data sets that include spike-in controls (44). 

Finally, S3norm has only two parameters to be trained from the data, which makes the method 

robust across a wide variety of data sets. 

    A key assumption of the S3norm method is that true biological signals should have the same 

means in common peak regions and in common background regions between data sets. For some 

data sets in which different signal strengths in common peak regions are expected, the S3norm 

method may not be directly applicable. For example, for ChIP-seq data sets of transcription 

factors whose abundance is changing over the course of a targeted degradation protocol, we 

expect the mean signals in peak regions (which are common peak regions across the time course) 

to deteriorate over time. In such cases, one should not use any of the data sets in the time course 
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as a reference for S3norm normalization. Instead, a spike-in control or a small number of 

unchanged peak regions identified by other techniques should be paired with the background 

regions at each time point in order for S3norm to work properly.  

    In summary, S3norm is a simple and robust method to normalize multiple data sets. The results 

of applying S3norm to epigenomic data sets show that it is more effective in bringing out real 

biological differences than existing methods. As more epigenomic data continue to be generated, 

S3norm will be useful to normalize signals across these diverse and heterogeneous epigenomic 

data sets to allow downstream analyses to capture true epigenetic changes rather than technical 

bias. Improved normalization will aide studies that analyze data sets across multiple experiments, 

such as differential gene regulation, genome segmentation (17, 19) , joint peak calling (45), 

predicting gene expression (46), and detecting transcription factor binding events (47). 

DATA AVAILABILITY 

Files for raw signals, p-value converted signals, and signals from S3norm are available both for 

download and for viewing from the VISION website (http://usevision.org). The S3norm 

normalization package is available at GitHub (https://github.com/guanjue/S3norm). 
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TABLE AND FIGURES  

 

 
Figure 1. Impacts of different methods of data normalization. Panel (A-C), respectively, shows 
schematic plots for the signals in two epigenomic data sets normalized by TSnorm, MAnorm, and 
S3norm. (D-I) The ATAC-seq or DNase-seq read counts at histone gene loci in three cell types 
(LSK, MEP, and ERY). Panel (D) shows the raw read counts in those three cell types. Panel (E), 
(F) and (H), respectively, shows the read counts normalized by TSnorm, MAnorm, and S3norm. 
The scale of tracks is from 0 to 1000. Panel (G) and (I), respectively, shows the zoomed-in 
version of the same regions in Panel (F) and (H). The scale of tracks is from 0 to 100.  
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Figure 2. Overview of the S3norm method. The graphs present scatterplots of read counts (log 

scale) in 10,000 randomly selected genome locations (200bp) in target cell (x-axis) and reference 

cell (y-axis). The left figure is the signal before S3norm. The right figure is the signal after 

S3norm. The S3norm applies a monotonic nonlinear model ( log (Y!"#$,!) = log(α)+ βlog(Y!) ) 

to rotate the target signal so that (1) the mean signals of common peaks (green point, highlighted 

by black dash circle) and (2) the mean signals of common background (dark blue point, 

highlighted by black dash circle)  can be matched between the two data sets. The original data 

were split into three groups: the common peak regions (orange), the common background regions 

(gray), and the remaining bins (blue). The overall mean is represented by a black point.  
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Figure 3. Comparison of normalization methods on peaks and background in ATAC-seq 

experiments. The scatterplots of ATAC-seq signal in iMK (reference data set) and LSK (target 

data set) are shown on a log scale. (A) The scatterplot of the raw signal between reference data 

set and target data set. Panel (B) to (E), respectively, shows the scatterplot of the signal after 

TSnorm, MAnorm, QTnorm, and S3norm. (F) The boxplot of the mean signals in common peak 

regions (P) and the mean signals in the common background regions (B) in the biological 

replicates of different cell types.  
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Figure 4. Comparing S3norm and other methods by their ability to predict gene expression. (A) 
The MSE of the observed RNA-seq signal and the predicted RNA-seq in ten-fold cross validation 
in the Training Cell Type by using a loess regression model. (B) The MSE of the observed 
RNA-seq signal and the predicted RNA-seq in ten-fold cross validation in the Testing Cell Type. 
The p-values above the boxes come from the Wilcoxon test that tests if the MSE of S3norm are 
significantly better than the other methods. 
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Figure 5. Comparing S3norm and other methods by CTCF ChIP-seq peak calling results. (A) 
The UpSet figure of the peak calling results using different normalization signals in all 11 cell 
types in VISION project. The top black barplot represents the number of peaks present in the 
peak calling results by using different normalized signals. The black points below each bar 
represent the combinations of normalization methods. The left barplot represents the total number 
of peaks called by using a specific normalization method. For the bars with the substantial 
number of peaks, the number of the peaks are shown on the top of the bar. The percentage of 
those peaks that include the CTCF motif are shown in the parentheses. (B) The cumulative mean 
square errors (MSE) of CTCF-seq signal between two biological replicates. Each point represents 
the MSE calculated from signals of two biological replicates in top 1 to N+5000 peaks with the 
highest mean signals. For examples, the first blue point on the left indicates the MSE of top 1 to 
5,000 S3norm peaks is 0.74 and the second blue point on the left indicates the MSE of top 1 to 
10,000 S3norm peaks is 0.70. The vertical lines with different colors represent the proportion of 
the pooled peak list was called by a specific normalization method. Panel (C) and (D) shows the 
normalized peak signals in two biological replicates. Panel (C) is the signals normalized by 
QTnorm. Panel (D) is the signals normalized by S3norm. 
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