

1 Title: **Complete genome sequence of a divergent strain of Tibetan frog hepatitis B virus**
2 **associated to concave-eared torrent frog *Odorrana tormota***

3

4 Humberto J. Debat ^{1*}, Terry Fei Fan Ng²

5

6 ¹Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de
7 Tecnología Agropecuaria (IPAVE-CIAP-INTA), X5020ICA, Córdoba, Argentina.

8 ²College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA 30602.

9

10 Running title: Tibetan frog hepatitis B virus in *Odorrana tormota*

11

12 *Address correspondence to:

13 Humberto J. Debat debat.humberto@inta.gob.ar

14

15 ORCID ID:

16 HJD 0000-0003-3056-3739, TFFN 0000-0002-4815-8697

17

18 Keywords: dsDNA virus, Hepadnavirus, amphibian virology, frog virus, *Odorrana tormota*, virus
19 discovery.

20

21 **Abstract**

22 The family *Hepadnaviridae* is characterized by partially dsDNA circular viruses of approximately 3.2 kb,
23 which are reverse transcribed from RNA intermediates. Hepadnaviruses (HBVs) have a broad host range
24 which includes humans (Hepatitis B virus), other mammals (genus *Orthohepadnavirus*), and birds
25 (*Avihepadnavirus*). HBVs host specificity has been expanded by reports of new viruses infecting fish,
26 amphibians, and reptiles. The tibetan frog hepatitis B virus (TFHBV) was recently discovered in
27 *Nanorana parkeri* (Family *Dicoglossidae*) from Tibet. To increase understanding of hepadnavirus in
28 amphibian host, we identified the full-length genome of a divergent strain TFHBV-Ot associated to the
29 concave-eared torrent frog *Odorrana tormota* (Family *Ranidae*) from China by searching deep
30 sequencing data. TFHBV-Ot shared the genomic organization and a 76.6% overall genome nucleotide
31 identity to the prototype TFHBV associated to *N. parkeri* (TFHBV-Np). TFHBV-Ot amino acid pairwise
32 identity with TFHBV-Np predicted gene products ranged between 63.9% and 77.9%. Multiple
33 tissue/organ specific RNAseq datasets suggest a broad tropism of TFHBV including muscles, gonads and
34 brains. In addition, we provide for the first time evidence of virus derived small RNA from an amphibian
35 hepadnavirus, tentatively enriched in 19-20 nt species and cytidine as first base. The results presented
36 here expand the genetic diversity and the host range of TFHBV to *Ranidae* frogs, and warrant
37 investigation on hepadnaviral infection of amphibian brains.

38 **Main**

39 The family *Hepadnaviridae* is characterized by viruses with partially dsDNA circular genomes of ca. 3.2
40 kb, which are reverse transcribed from RNA intermediates. Hepadnaviruses (HBVs) have a broad host
41 range which includes humans (Hepatitis B virus), other mammals (genus *Orthohepadnavirus*) and birds
42 (*Avihepadnavirus*). More recently, HBVs have been reported to infect fish, amphibians, and reptiles. The
43 Tibetan frog hepatitis B virus (TFHBV) was discovered recently in *Nanorana parkeri* (Family
44 *Dicroglossidae*) from Tibet, expanding the diversity of hepadnaviruses to amphibians: a neglected virus
45 host [1]. The emergent clade of amphibians and reptile HBVs has been tentatively clustered as
46 “herpetohepadnaviruses” within the *Hepadnaviridae* family [2]. The concave-eared torrent frog
47 (*Odorrana tormota*) distribution is restricted to the norther region of the costal Zhejiang province of
48 China. Concave-eared male frog have a large and distinctive call repertoire, which has been linked to
49 ultrasonic communication [3]. While exploring by BLASTX searches a transcriptome dataset of *O.
50 tormota*, oriented to unravel molecular mechanisms of concave-eared frog growth and development [4]
51 (BioProject PRJNA437724), we found a 7.9 kb long contig of a hepadnavirus-like sequence (E-value =
52 0). This contig was flanked by identical regions at either end, typical of an assembled sequence from a
53 circle genome. Using dotpot as implemented in <http://www.bioinformatics.nl/emboss-explorer/>, the
54 identical region was removed to construct a circle genome of 3,144 base pairs. In addition, the
55 1,412,314,266 raw 150 bp reads from PRJNA437724 were used to polish the contig using the Geneious
56 v8.1.9 platform (Biomatters, USA) map to reference tool with low sensitivity parameters. The genome
57 was supported by 40,719 reads (mean coverage = 2,348X, minimum cov. 190X, maximum cov. 6,959X)
58 (**Table 1**, **Supp. Figure 1.A**). The predicted circular nature of the virus sequence was further confirmed
59 by identifying overlapping read at both sequence termini, supported by >5,000 reads simultaneously
60 covering both terminal regions (**Supp. Figure 1.B**). In addition, 14 small RNA datasets of the same
61 bioproject [4], derived from diverse tissue/organs of six concave-eared torrent frogs were assessed.
62 Interestingly, in five of the libraries of two animals we detected virus-derived small RNAs, encompassing
63 over 5,804 reads (**Supp. Table 1**), ranging from 18-37 nt long. The specific landscape derived from
64 sRNA mapping to the virus sequence suggested an asymmetrical distribution of reads and the presence of
65 tentative hot-spots which could be associated to eventual regions of the virus RNA more prone to
66 generate vsRNAs (**Supp. Figure 1.C**). Additional analyses of the small RNA datasets were conducted,
67 and we observed that overall frog small RNAs are enriched in 21-22 nt species, as observed by Shu et al
68 specifically for microRNA species [4], and starting mostly with a Uridine as first base (**Supp. Figure 2
69 A-B**). On the other hand, virus derived sRNAs appear to be enriched in 19-20 nt species, with a more
70 diverse set of first bases, marginally enriched in Cytidine (**Supp. Figure 2 A-B**). Given the relatively low
71 number of virus derived sRNA species detected, further experiments should assess if the tendencies
72 observed here are supported, or derived from low sample size. To our knowledge, this is the first time that
73 hepadnavirus derived small RNAs are described in any amphibian, suggesting that the virus RNA is
74 recognized by the RNA interference machinery of the frog host, which might be related to the induction
75 of a molecular response to virus infection.

76 This hepadanvirus in concave-eared torrent frog is a novel TFHBV strain Ot (TFHBV-Ot), as it shares a
77 76.6% overall genome nucleotide identity to the prototype TFHBV-Np. We analyzed the virus sequence

78 for ORFs and conserved amino acid domains, using established tools (ORFfinder,
79 <https://www.ncbi.nlm.nih.gov/orffinder/>; conserved domain database search tool,
80 <https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi> and compared with the prototype TFHBV
81 reference. The 3,144-bp TFHBV-Ot sequence contains a typical hepadnaviral organization (**Figure 1.A**),
82 consisting in three major overlapping ORFs associated with the Core (PreC/C), Polymerase (P) and
83 Surface (PreS/S) genes, encoding for capsid subunits, viral DNA polymerase, and surface protein,
84 respectively. As in the prototype TFHBV, the virus sequence presented no evidence of an X protein,
85 which has been associated with mammal-infecting orthohepadnaviruses [6]. Multiple sequence
86 alignments (MSA) using MAFFT v7.017 [5] (E-INS-i algorithm, BLOSUM 62 scoring matrix) showed
87 that the predicted gene products presented a 77.9% (C), 72.1% (P), and 63.0% (S) aa identity to that of
88 the prototype TFHBV associated to *N parkeri* (TFHBV-Np) (**Figure 1.B**).

89 Our comparative analysis between TFHBV-Ot and the prototype genome revealed common features for
90 this virus species. The first CDS (PreC/C) extends between the 57-857 nt coordinates, encoding a 30.6
91 kDa 266 aa phosphoprotein involved in assembly of subviral capsids [1]. TFHBV-Ot shares with
92 TFHBV-Np (also 266 aa and 31.3 kDa) the specific domains of the C protein at equilocal positions,
93 including the conserved core motifs I-II-III [1] (**Figure 1.C**). TFHBV-Ot contains a hepatitis core antigen
94 domain (hbcag, pfam00906, E-value = 3.74e-22), with 93% AI (amino acid identity) to the prototype
95 strain at the capsid core domain region (166-208 aa coordinates, InterPro id IPR036459). Both TFHBV
96 strains shared the arginine rich core C-terminal region which has been associated to nuclear transport
97 signal for pre-genome encapsidation [8]. The PreC/C CDS overlaps by 182 nt with the P CDS which is
98 located between the 676-3,117 nt coordinates. This gene encodes a 92.3 kDa viral DNA polymerase.
99 Similar to the prototype, TFHBV-Ot lacks the orthohepadnavirus-specific expansion in both the N-
100 terminal of DNA polymerase domain and reverse transcriptase domain (**Supp. Figure 2**). While overall
101 AI between TFHBV-Ot and TFHBV-Np P was 72.1%, AI reaches as high as 89.1% at functional domains
102 such as the N-terminal of the polymerase (**Figure 1.B**). Prototype TFHBV-Np was found to potentially
103 encode two alternative PreS/S start codon positions [1], the same configuration was detected in TFHBV-
104 Ot as well. Even though TFHBV-Ot appears to share similar S folding and topology to the prototype, we
105 identified an additional transmembrane signal at the C region of the longer S, absent in TFHBV-Np,
106 which could potentially form an extra loop in the ER lumen (**Figure 1.D**; TMHMM v. 2.0 tool,
107 <http://www.cbs.dtu.dk/services/TMHMM/>).

108 In general, hepadnaviruses are characterized by narrow host specificity and marked hepatotropism.
109 Nevertheless, some avihepadnaviruses have been detected in extra-liver organs, such as pancreas, kidney
110 and spleen [9]. There are no reports assessing the tropism of amphibian viruses in general, or
111 hepadnaviruses in particular. Here, we analyzed multiple RNAseq datasets of *O. tormota* in order to
112 detect potential virus derived RNAs, which could be considered as indirect evidence of a tentative
113 tropism of TFHBV. The bioproject PRJNA437724 is composed of high throughput sequencing in HiSeq
114 X Ten platform (Illumina, USA) of RNA extractions of dissected tissues/organs of four adult male and
115 three female *O. tormota* frogs from the Anhui Province of China [4]. The raw 150 bp reads from each
116 library of this bioproject were mapped to TFHBV-Ot genome using the Geneious v8.1.9 map to reference
117 tool with low sensitivity parameters. Interestingly, at least three of the seven individual frogs presented

118 strong RNA evidence of TFHBV (**Table 1**). In descending order of viral reads, the virus were detected
119 consistently in auricularis and hindlimb muscles, brain, and ovaries. In addition the frogs presenting
120 higher virus RNA titers (Females OT1 and OT2), when assessed by sRNA sequencing, were also found
121 to present virus derived sRNAs from both hindlimb muscles and brain libraries (**Supp. Table 1**). While
122 further direct detection experiments are needed to support these findings, TFHBV might have a broad
123 tropism in *O. tormota* frogs. In healthy animals, the brain is a pristine organ protected from infection by
124 the blood-brain barrier. The presence of detectable viral RNA in the brain tissue of the three positive
125 frogs suggest potential central nervous system infection. Even though sample contamination from blood
126 to brain during collection cannot be ruled out, this finding warrants further investigation on potential
127 hepadnaviral pathogenicity in brain tissue of amphibians.

128 To investigate the evolution of TFHBV, phylogenetic analysis were performed using MAFFT alignments
129 (BLOSUM 62 scoring matrix; E-INS-i, L-INS-i, and G-INS-i algorithm, respectively) and maximum
130 likelihood FastTree v2.1.10 <http://www.microbesonline.org/fasttree/> trees (JTT aa evolution model, CAT
131 approximation, local support values with Shimodaira-Hasegawa test) of P, C, and S proteins of TFHBV-
132 Ot and reported hepadnaviruses (**Figure 2.A-C**). The resulting trees unequivocally clustered both TFHBV
133 strains into a monophyletic clade of frog and reptiles viruses (dubbed herpetohepadnaviruses [2]),
134 including skink hepatitis B virus and spiny lizard hepatitis B virus, which were discovered recently in
135 public sequence databases of *Saprosircinus basiliscus* and *Sceloporus adleri*, respectively [2].
136 Hepadnaviruses were suggested to harbor the most frequent virus-host co-divergence levels of any animal
137 virus family [7]. The relatedness of the two TFHBV strains with considerably close host geographic
138 proximity (*Nanorana parkeri* frog from Tibet and *Odorrana tormota* frog from Anhui Province of China)
139 suggested that the evolution could be the result of virus–host co-divergence. However, in depth analysis is
140 precluded by the limited number of amphibian hepadnavirus known. Future studies should unveil whether
141 TFHBV might be linked to additional frog species and whether any pathogenic effect, such as brain
142 disease, is associated to hepadnavirus infection on amphibian hosts.

143 **Data availability.**

144 The genome sequence reported here has been deposited in GenBank under the accession number
145 MH700450.

146 **Acknowledgements**

147 HJD would like to thank Benjamin Neuman for helpful discussions and insightful comments.

148 **Funding**

149 This research did not receive any specific grant from funding agencies in the public, commercial, or not-
150 for-profit sectors.

151 **Compliance with ethical standards**

152 **Conflict of interest**

153 The authors declare that they have no conflict of interest.

154 **Ethical approval**

155 This article does not contain any studies with human participants or animals performed by any of the
156 authors.

157 **References**

158 1. Dill JA, Camus AC, Leary JH, Di Giallonardo F, Holmes EC, Ng TFF (2016) Distinct viral lineages
159 from fish and amphibians reveal the complex evolutionary history of hepadnaviruses. *J Virol* JVI: 00832.

160 2. Lauber, C., Seitz, S., Mattei, S., Suh, A., Beck, J., Herstein, J., ... & Bartenschlager, R (2017)
161 Deciphering the origin and evolution of hepatitis B viruses by means of a family of non-enveloped fish
162 viruses. *Cell Host Microbe* 22:387-399.

163 3. Shen JX, Feng AS, Xu ZM, Yu ZL, Arch VS, Yu XJ, Narins PM (2008) Ultrasonic frogs show
164 hyperacute phonotaxis to female courtship calls. *Nature* 453:914.

165 4. Shu Y, Xia J, Yu Q, Wang G, Zhang J, He J, Wang H, Zhang L, Wu H (2018) Integrated analysis of
166 mRNA and miRNA expression profiles reveals muscle growth differences between adult female and male
167 Chinese concave-eared frogs (*Odorrana tormota*). *Gene* doi:10.1016/j.gene.2018.08.007

168 5. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements
169 in performance and usability. *Mol Biol Evol* 30:772-780.

170 6. van Hemert FJ, van de Klundert MA, Lukashov VV, Kootstra NA, Berkhout B, Zaaijer HL (2011)
171 Protein X of hepatitis B virus: origin and structure similarity with the central domain of DNA
172 glycosylase. *PLoS ONE* 6:e23392.

173 7. Geoghegan JL, Duchêne S, Holmes EC (2017) Comparative analysis estimates the relative frequencies
174 of co-divergence and cross-species transmission within viral families. *PLoS Pathog* 13:e1006215.

175 8. Yeh CT, Liaw YF, Ou JH (1990) The arginine-rich domain of hepatitis B virus precore and core
176 proteins contains a signal for nuclear transport. *J Virol* 64:6141-6147.

177 9. King AM, Lefkowitz E, Adams MJ, Carstens EB (Eds.) (2011) Virus taxonomy: ninth report of the
178 International Committee on Taxonomy of Viruses. Elsevier.

179

180 **Figure Legends**

181 **Figure 1.** Molecular characterization of tibetan frog hepatitis B virus associated to *Odorrana tormota*
182 (TFHBV-Ot) **(A)** Genome graph depicting predicted gene products of TFHBV-Ot. The predicted coding
183 sequences are shown in orange (PreC/C), red (P) and purple (S) arrowed rectangles. **(B)** Gene products
184 architecture and comparison of TFHBV-Ot and Nanorana parkeri associated TFHBV. Start and end
185 coordinates of each gene product are indicated, and nt pairwise identity are shown as percentage values
186 (upper panel). Curved yellow rectangles represent each predicted proteins and conserved domains are
187 shown in pink. aa pairwise identity is represented in percentage values for the overall predicted proteins,
188 or for each specific domain (lower panel). Abbreviations: DNA_pol_viral_N/C, N/C-terminal domain of
189 the viral DNA polymerase; RVT_1, Reverse transcriptase; vMSA, Major surface antigen from
190 hepadnavirus; hbcag, Hepatitis core antigen. **(C)** Multiple aa alignment of C proteins showing the
191 conserved core motifs I-II-III. Silhouettes illustrate representative host organism of the respective virus.
192 TFHBV are indicated with red highlighting. For virus abbreviations please refer to **Supp Table 2**. **(D)**
193 Secondary structure of TFHBV surface protein as predicted with Emboss garnier (coils in grey, alpha
194 helix pink, turns in blue arrows and beta strands in yellow arrows). Transmembrane helices in proteins
195 predicted by TMHMM Server v. 2.0 are indicated with blue rectangles. Asterisk shows an additional
196 transmembrane site at the C-terminal region of TFHBV-Ot S.

197 **Figure 2.** Phylogenetic insights of TFHBV-Ot based on MAFFT alignments and maximum likelihood
198 trees generated with P (**A**), C (**B**), and S proteins (**C**) of TFHBV-Ot and reported hepadnaviruses. The
199 scale bar indicates the number of substitutions per site. Node labels indicate FastTree support values.
200 Silhouettes illustrate representative host organism of the respective virus. Viruses clustering into genera
201 *Avihepadnavirus*, *Orthohepadnavirus* and the putative herpetohepadnavirus clade are indicated with
202 green, blue and red rectangles, respectively. The right inset of panel **A** mirrors the phylogenetic tree on
203 the left indicating the reported host of each virus.

204 **Supplementary Figure 1.** Coverage landscape per position obtained by mapping of total RNA virus
205 derived reads to TFHBV-Ot (**A**) or small RNA virus derived reads (**C**). Scale represents nt coverage per
206 position. In (**B**) total RNA reads were mapped to the terminal region of TFHBV-Ot and flanking 150 bp
207 showing high coverage of overlapping reads mapping to both terminal regions, supporting the circular
208 nature of the virus sequence. Position one of TFHBV-Ot is highlighted in red.

209 **Supplementary Figure 2.** Virus derived small RNA of TFHBV-Ot. (**A**) Total virus derived sRNAs
210 classified by length from bioproject PRJNA437724 (left upper panel) or only from library SRX3826253
211 (right upper panel) obtained from dissected brain of a female frog. For comparison, the same
212 classification of all sRNA reads is depicted for the complete bioproject (left lower panel) or only from
213 library SRX3826253 (right lower panel). Asterisks denote the two most prevalent sRNA species found in
214 each dataset. (**B**) sRNA first base as percentage of total small RNA reads for the complete bioproject
215 PRJNA437724 (right panel) or only considering virus derived small RNAs (left panel).

216 **Supplementary Figure 3.** Multiple aa alignment of P proteins of TFHBV-Ot and reported
217 hepadnaviruses generated by MAFFT. Only N/C terminal domains and reverse transcriptase domains are
218 shown. TFHBV are indicated with blue highlighting. Red rectangles depict specific expansions.
219 Similarity is shown from white (low) to black (100% identity).

220

221

222

223

224

225

226

227

228

229

230

231 **Table 1** - Tibetan frog hepatitis B virus derived reads in diverse NGS RNAseq datasets obtained from
 232 total RNA of dissected tissue/organs from *Odorranal tormota*. Data is paired 150bp reads obtained with
 233 HiSeq X Illumina instrument. Viral reads less than 100 would be treated as typical sequencing bleed over.

234

Sample id	Run	BioSample	Experiment	Sex	Tissue	Total reads	Virus reads	Virus RPM
OT1FB	SRR6896130	SAMN08683453	SRX3845984	female	Brain	50925040	1846	36.2
OT1FE	SRR6896129	SAMN08683456	SRX3845985	female	Auricularis muscle	50767620	10317	203.2
OT1FM	SRR6896120	SAMN08683463	SRX3845994	female	Hindlimb muscle	50832762	2374	46.7
OT1FS	SRR6896132	SAMN08683459	SRX3845982	female	Ovaries	50809536	173	3.4
OT1MB	SRR6896119	SAMN08683466	SRX3845995	male	Brain	51520470	40	0.8
OT1ME	SRR6896122	SAMN08683469	SRX3845992	male	Auricularis muscle	51145732	33	0.6
OT1MM	SRR6896144	SAMN08683477	SRX3845970	male	Hindlimb muscle	50581552	30	0.6
OT1MS	SRR6896127	SAMN08683472	SRX3845987	male	Testis	51398962	43	0.8
OT2FB	SRR6896131	SAMN08683454	SRX3845983	female	Brain	51227736	2459	48.0
OT2FE	SRR6896134	SAMN08683457	SRX3845980	female	Auricularis muscle	51446264	17031	331.0
OT2FM	SRR6896121	SAMN08683464	SRX3845993	female	Hindlimb muscle	50894374	4673	91.8
OT2FS	SRR6896133	SAMN08683460	SRX3845981	female	Ovaries	50794092	398	7.8
OT2MB	SRR6896124	SAMN08683467	SRX3845990	male	Brain	50484980	34	0.7
OT2ME	SRR6896123	SAMN08683470	SRX3845991	male	Auricularis muscle	51127928	38	0.7
OT2MM	SRR6896143	SAMN08683478	SRX3845971	male	Hindlimb muscle	50731628	0	0.0
OT2MS	SRR6896141	SAMN08683473	SRX3845973	male	Testis	50758148	4	0.1
OT3MF	SRR6896138	SAMN08683476	SRX3845976	male	Skin	54287526	0	0.0
OT3MS	SRR6896139	SAMN08683475	SRX3845975	male	Testis	51007646	0	0.0
OT4FB	SRR6896128	SAMN08683455	SRX3845986	female	Brain	54737374	0	0.0
OT4FE	SRR6896135	SAMN08683458	SRX3845979	female	Auricularis muscle	55143698	3	0.1
OT4FF	SRR6896137	SAMN08683462	SRX3845977	female	Skin	50844636	0	0.0
OT4FM	SRR6896118	SAMN08683465	SRX3845996	female	Hindlimb muscle	54540910	0	0.0
OT4FS	SRR6896136	SAMN08683461	SRX3845978	female	Ovaries	55815918	4	0.1
OT4MB	SRR6896125	SAMN08683468	SRX3845989	male	Brain	55649520	153	2.7
OT4ME	SRR6896126	SAMN08683471	SRX3845988	male	Auricularis muscle	54601460	645	11.8
OT4MM	SRR6896142	SAMN08683479	SRX3845972	male	Hindlimb muscle	54529624	214	3.9
OT4MS	SRR6896140	SAMN08683474	SRX3845974	male	Testis	55709130	207	3.7

235

236

237

238

239

240

241 **Supplementary Table 1** - Tibetan frog hepatitis B virus derived short reads in diverse NGS RNAseq
242 datasets obtained from small RNA samples of dissected tissue/organs from *Odorrana tormota*. Data is
243 single 18-37bp filtered reads obtained with a BGISEQ-500 instrument. Viral reads less than 100 would be
244 treated as typical sequencing bleed over.

245

Sample id	Run	BioSample	Experiment	Sex	Tissue	Total reads	Virus reads	Virus RPM
OT1FBmiRNA	SRR6872795	SAMN08714513	SRX3826260	female	Brain	28765745	650	22.6
OT1FMmiRNA	SRR6872796	SAMN08714514	SRX3826259	female	Hindlimb muscle	28254413	948	33.6
OT1FSmiRNA	SRR6872797	SAMN08714515	SRX3826258	female	Ovaries	28222189	197	7.0
OT1MBmiRNA	SRR6872798	SAMN08714516	SRX3826257	male	Brain	28399684	0	0.0
OT1MMmiRNA	SRR6872801	SAMN08714517	SRX3826254	male	Hindlimb muscle	27133835	1	0.0
OT1MSmiRNA	SRR6872799	SAMN08714518	SRX3826256	male	Testis	28887872	0	0.0
OT2FBmiRNA	SRR6872802	SAMN08714519	SRX3826253	female	Brain	28005713	1233	44.0
OT2FMmiRNA	SRR6872804	SAMN08714520	SRX3826251	female	Hindlimb muscle	26703096	2774	103.9
OT2FSmiRNA	SRR6872800	SAMN08714521	SRX3826255	female	Ovaries	26627948	1	0.0
OT2MBmiRNA	SRR6872803	SAMN08714522	SRX3826252	male	Brain	26547642	0	0.0
OT2MMmiRNA	SRR6872791	SAMN08714523	SRX3826264	male	Hindlimb muscle	28416610	0	0.0
OT2MSmiRNA	SRR6872792	SAMN08714524	SRX3826263	male	Testis	29990793	0	0.0
OT4FMmiRNA	SRR6872793	SAMN08714525	SRX3826262	female	Hindlimb muscle	29180483	0	0.0
OT4MMmiRNA	SRR6872794	SAMN08714526	SRX3826261	male	Hindlimb muscle	28776201	0	0.0

246

247

248

249

250

251

252

253

254

255

256

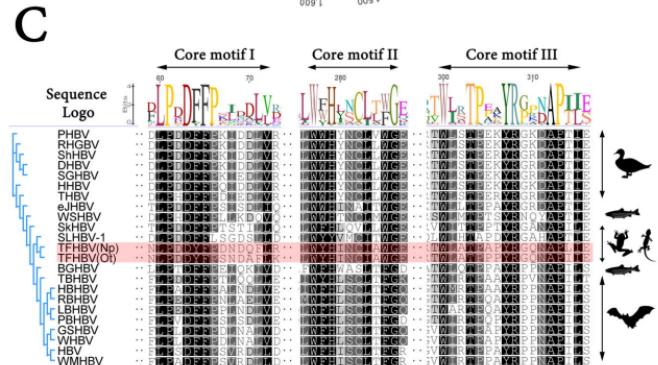
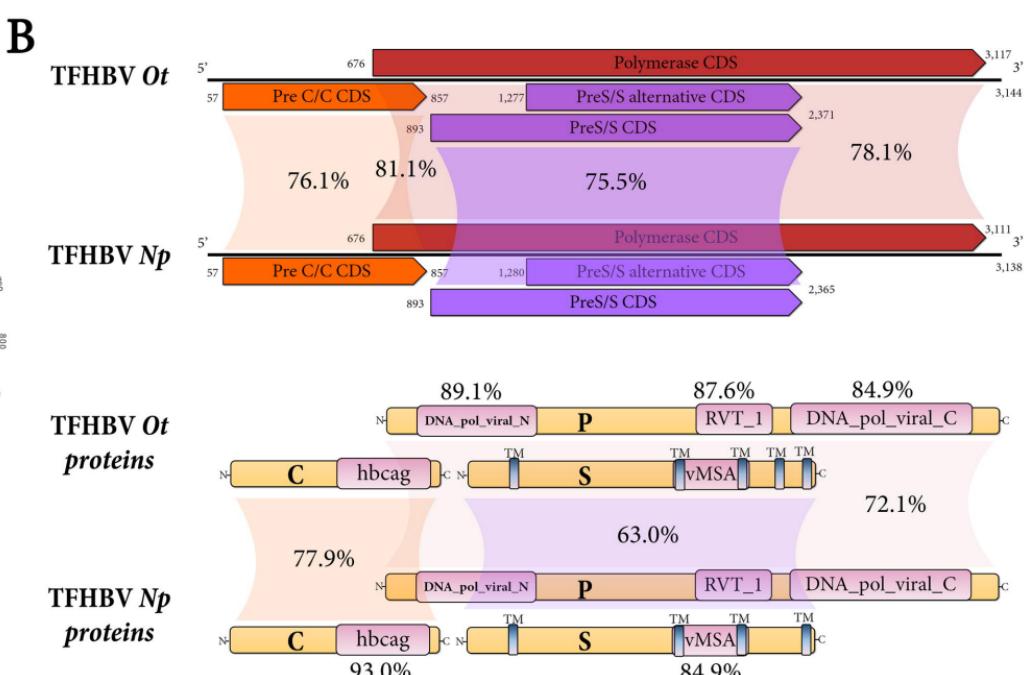
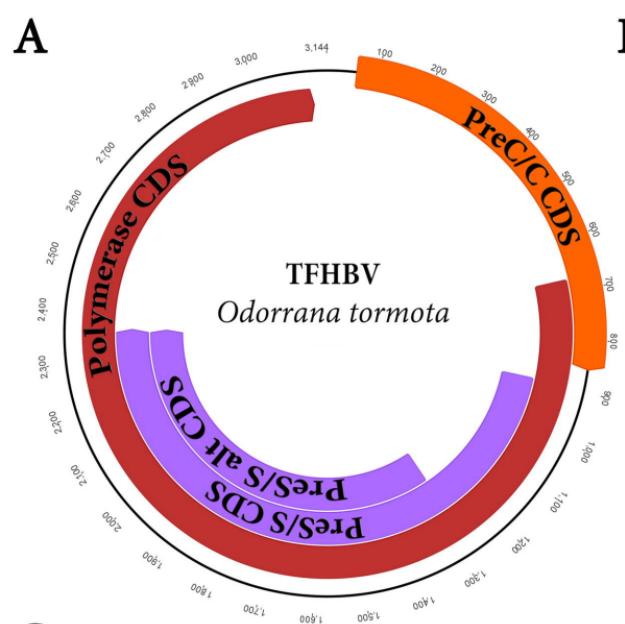
257

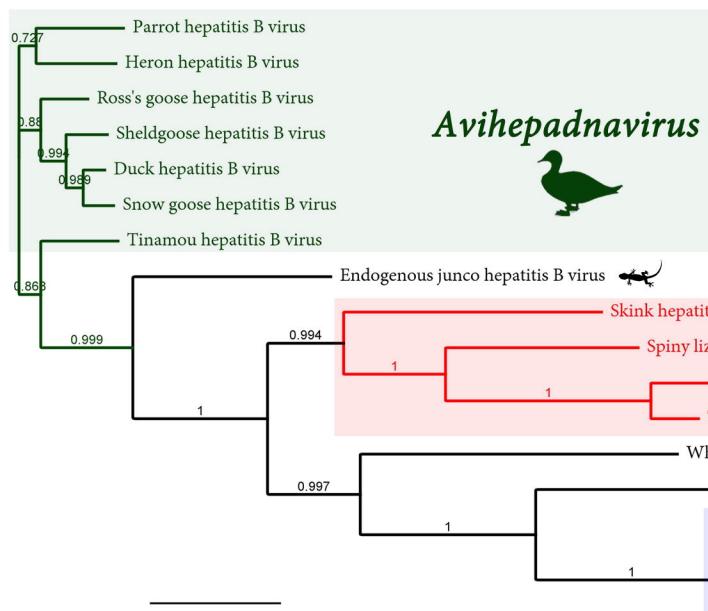
258

259

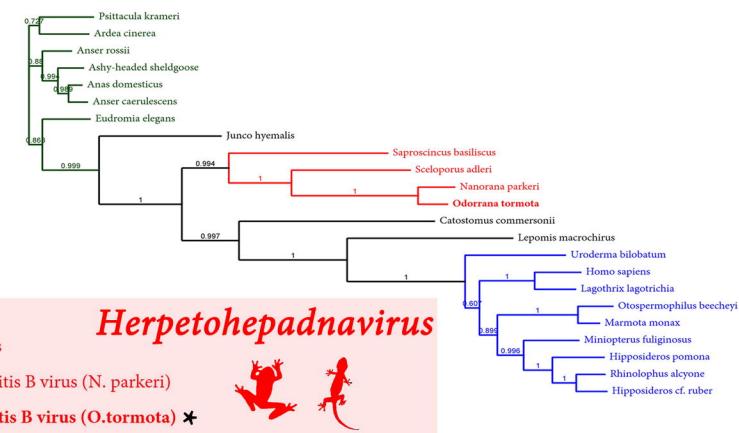
260 **Supplementary Table 2** – Viruses, GenBank accession numbers, and abbreviations used in this study.

261




Virus	GenBank id	Abbreviation
Bluegill hepatitis B virus	NC_030445.1	BGHBV
Duck hepatitis B virus	MF471768.1	DHBV
Endogenous junco hepatitis B virus	JV160320 ^a	eJHBV
Ground squirrel hepatitis virus	NC_001484.1	GSHBV
Hepatitis B virus	NC_003977.2	HBV
Heron hepatitis B virus	NC_001486.1	HHBV
Horseshoe bat hepatitis B virus	NC_024444.1	HBHBV
Long-fingered bat hepatitis B virus	NC_020881.1	LBHBV
Parrot hepatitis B virus	NC_016561.1	PHBV
Pomona bat hepatitis B virus	NC_038503.1	PBHBV
Ross's goose hepatitis B virus	NC_005888.1	RHGBV
Roundleaf bat hepatitis B virus	NC_024443.1	RBHBV
Sheldgoose hepatitis B virus	NC_005890.1	ShHBV
Skink hepatitis B virus	SRX213382 ^b	SkHBV
Snow goose hepatitis B virus	NC_005950.1	SGHBV
Spiny lizard hepatitis B virus	SRX542351 ^b	SLHBV-1
Tent-making bat hepatitis B virus	NC_024445.1	TBHBV
Tibetan frog hepatitis B virus (N. parkeri)	NC_030446.1	TFHBV-Np
Tibetan frog hepatitis B virus (O. tormota)	MH700450	TFHBV-Ot
Tinamo u hepatitis B virus	NC_035210.1	THBV
White sucker hepatitis B virus	NC_027922.1	WSHBV
Woodchuck hepatitis virus	NC_004107.1	WHBV
Woolly monkey hepatitis B virus	NC_028129.1	WMHBV


262

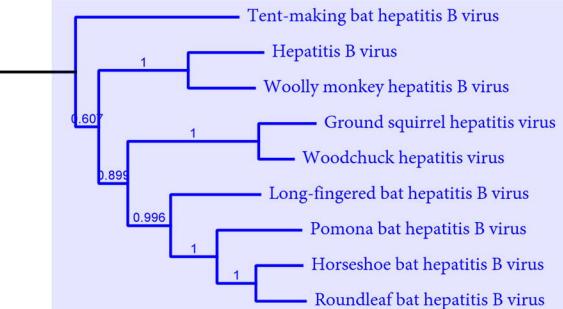
263 ^aTSA accession. ^bAccession number of the corresponding SRA library.


264

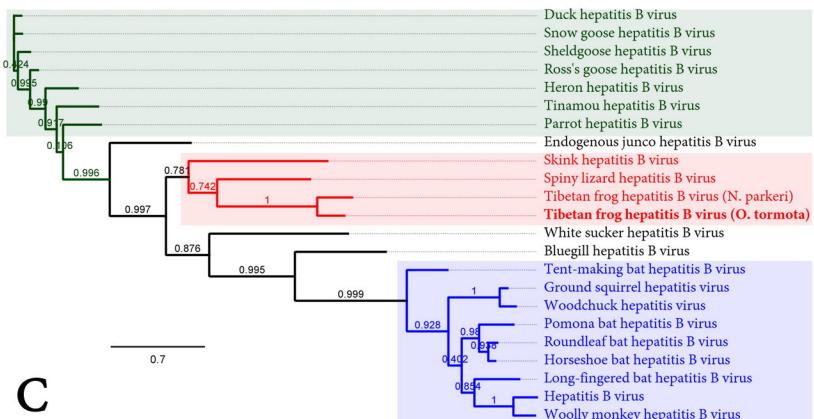
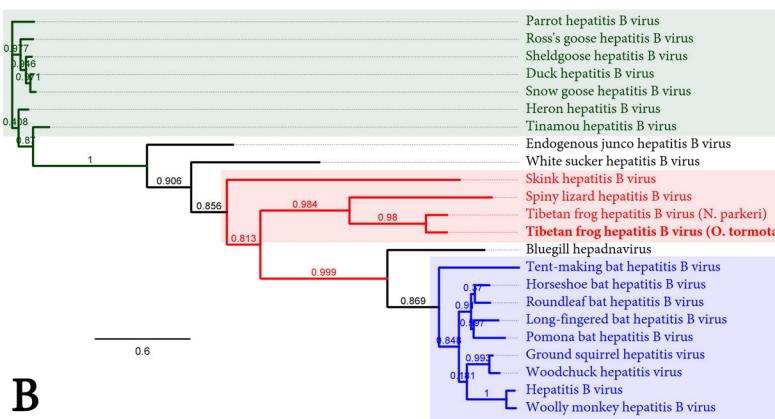
265

A

Avihepadnavirus

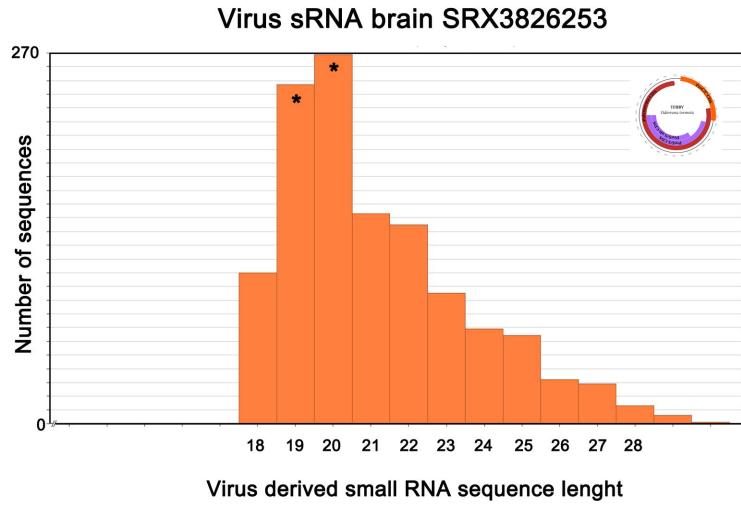
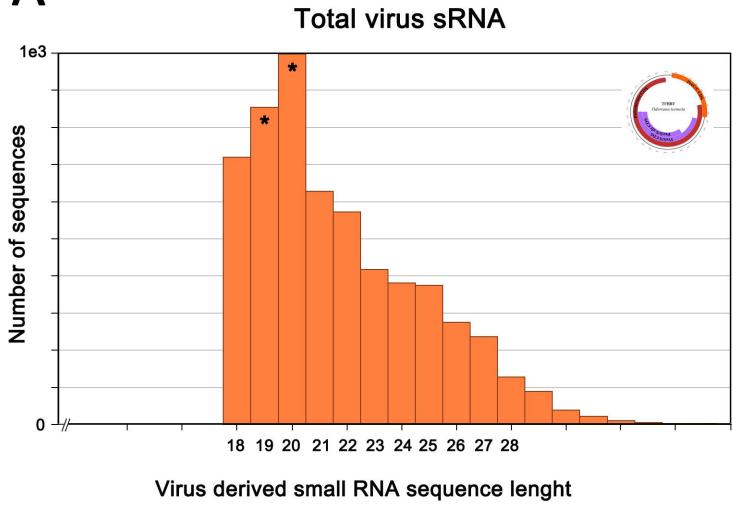


Herpetohepadnavirus

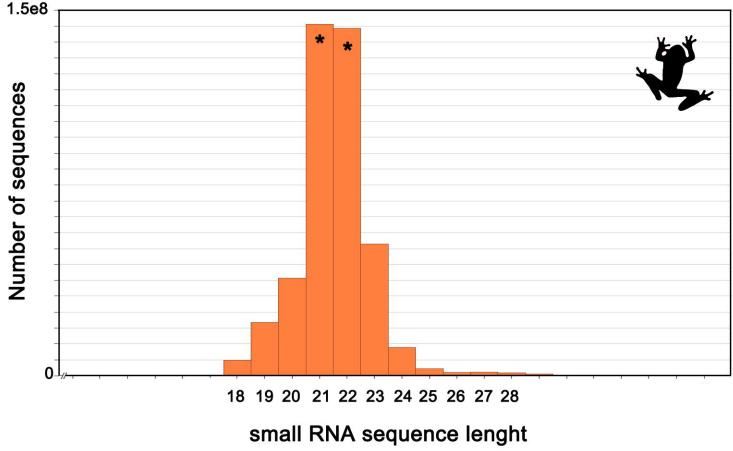



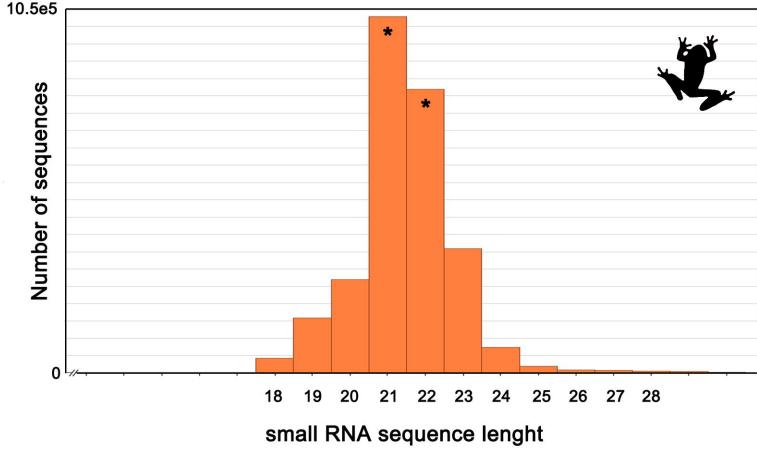
White sucker hepatitis B virus

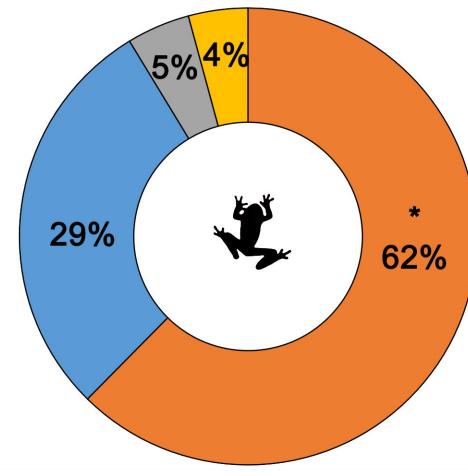
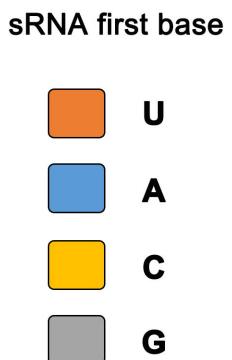
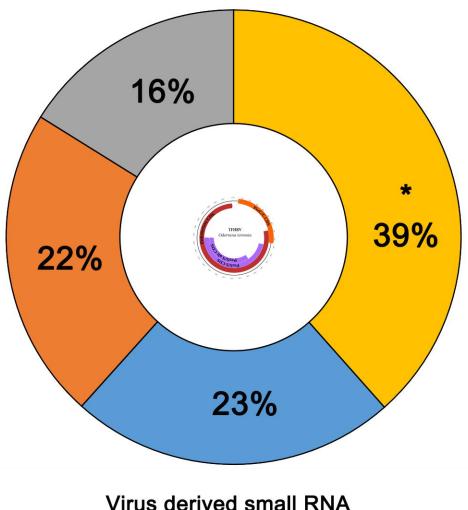
Bluegill hepatadnavirus

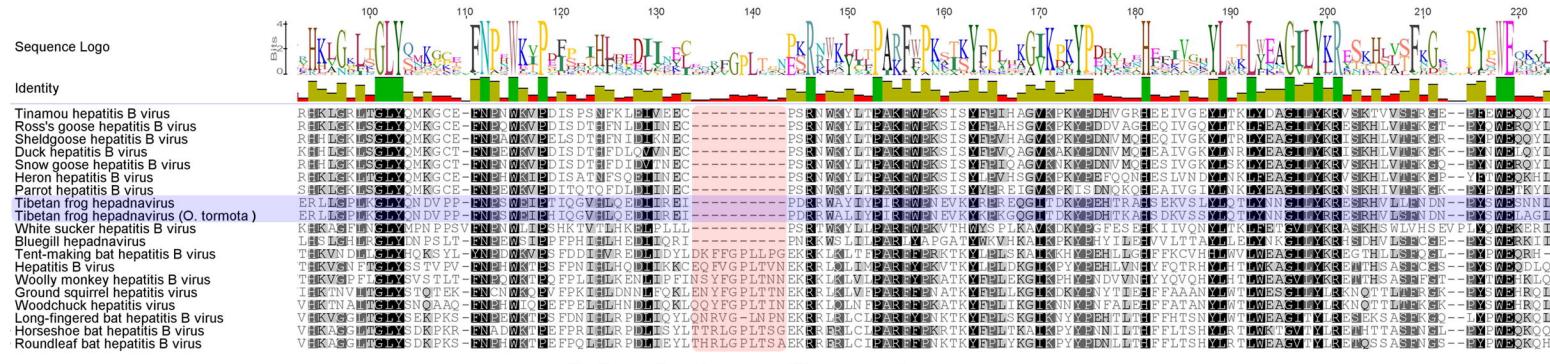



Orthohepadnavirus

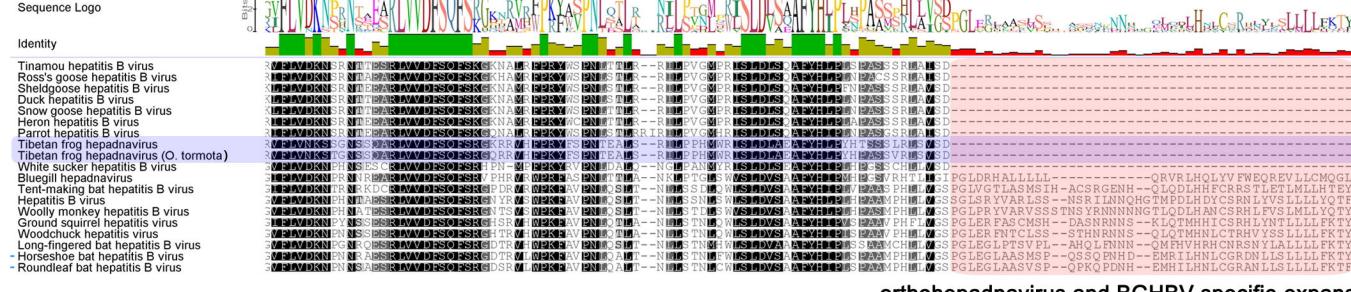

B**C**


A

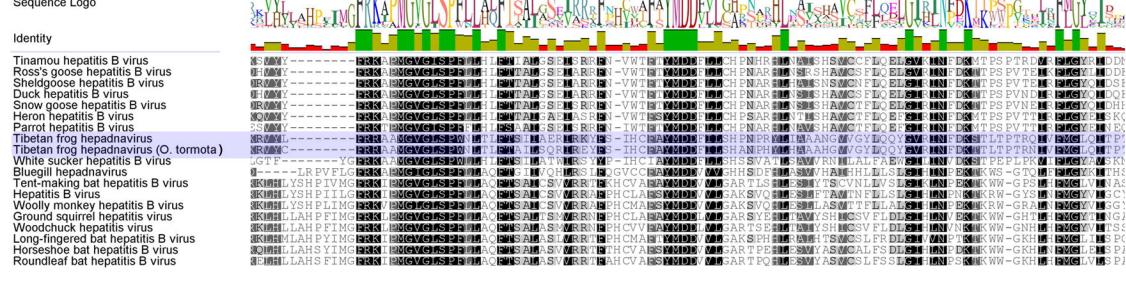



Total sRNA (background)


Total brain sRNA SRX3826253 (background)

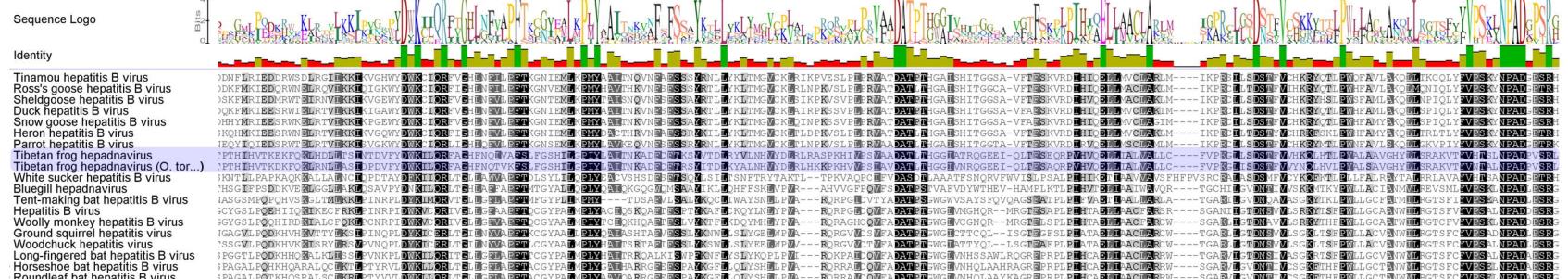
B



N-terminal domain Viral DNA polymerase



orthohepadnavirus specific-expansion


Reverse transcriptase domain PSSM-ID 238825

orthohepadnavirus and BGHBV specific-expansion

C-terminal domain Viral DNA polymerase

