

1 **Title (100 char):**  
2 Global invasion history of the world's most abundant pest butterfly: a citizen science population genomics study  
3

4 **Running title:**  
5 Global invasion history of *Pieris rapae*  
6

7 **Authors:**  
8 Sean F. Ryan,<sup>1,2</sup>  
9 Eric Lombaert<sup>3</sup>,  
10 Anne Espeset<sup>4</sup>,  
11 Roger Vila<sup>5</sup>,  
12 Gerard Talavera<sup>5,6</sup>,  
13 Vlad Dincă<sup>7</sup>,  
14 Mark A. Renshaw<sup>8</sup>,  
15 Matthew W. Eng<sup>9</sup>,  
16 Meredith M. Doellman<sup>9</sup>,  
17 Emily A. Hornett<sup>10</sup>,  
18 Yiyuan Li<sup>9</sup>,  
19 Michael E. Pfrender<sup>9,11</sup>,  
20 DeWayne Shoemaker<sup>1</sup>  
21

22 **Affiliations:**

23 <sup>1</sup>Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996 USA

24 <sup>2</sup>Department of Applied Ecology, North Carolina State University, NC 27695 USA

25 <sup>3</sup>INRA, Université Côte d'Azur, CNRS, ISA, Sophia-Antipolis, France <sup>4</sup>Program in Ecology, Evolution, and  
26 Conservation Biology

27 <sup>5</sup>Department of Biology, University of Nevada, Reno, NV 89557 USA

28 <sup>5</sup>Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37, Barcelona 08003, Spain

29 <sup>6</sup>Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University,  
30 26 Oxford Street, Cambridge, MA 02138, USA

31 <sup>7</sup>Department of Ecology and Genetics, PO Box 3000, 90014 University of Oulu, Finland

32 <sup>8</sup>Oceanic Institute of Hawai'i Pacific University, Waimanalo, HI 96795

33 <sup>9</sup> Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556

34 <sup>10</sup> Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 3BX, United Kingdom

35 <sup>11</sup> Environmental Change Initiative, University of Notre Dame, South Bend, IN 46556

36 **Corresponding author:**

37 Sean F. Ryan,  
38 Email: [citscisean@gmail.com](mailto:citscisean@gmail.com)

39 **Keywords:**

40 Invasive Species, Invasion History, Genomics, Agricultural Pest, Citizen Science, Approximate Bayesian  
41 Computation

44     **Abstract**

45           A major goal of invasion and climate change biology research is to understand the  
46    ecological and evolutionary responses of organisms to anthropogenic disturbance, especially  
47    over large spatial and temporal scales. One significant, and sometimes unattainable, challenge of  
48    these studies is garnering sufficient numbers of relevant specimens, especially for species spread  
49    across multiple continents. We developed a citizen science project, "Pieris Project", to  
50    successfully amass thousands of specimens of the invasive agricultural pest *Pieris rapae*, the  
51    small cabbage white butterfly, from 32 countries worldwide. We then generated and analyzed  
52    genomic (ddRAD) and mitochondrial DNA sequence data for these samples to reconstruct and  
53    compare different global invasion history scenarios. Our results bolster historical accounts of the  
54    global spread and timing of *P. rapae* introductions. The spread of *P. rapae* over the last ~160  
55    years followed a linear series of at least four founding events, with each introduced population  
56    serving as the source for the next. We provide the first molecular evidence supporting the  
57    hypothesis that the ongoing divergence of the European and Asian subspecies of *P. rapae*  
58    (~1,200 yrBP) coincides with the domestication of brassicaceous crops. Finally, the international  
59    success of the Pieris Project allowed us to nearly double the geographic scope of our sampling  
60    (i.e., add >1,000 specimens from 13 countries), demonstrating the power of the public to aid  
61    scientists in collections-based research addressing important questions in ecology and  
62    evolutionary biology.

63

64 **Non-technical summary:** We provide genetic evidence that the success of the small cabbage  
65 white butterfly—its rise to one of the most widespread and abundant butterflies on the planet—  
66 was largely facilitated by human activities, through the domestication of its food plants and the  
67 accidental movement of the butterfly by means of trade and human movement (migration).  
68 Through an international citizen science project—Pieris Project—people from around the world  
69 helped to unravel the global invasion history of this agricultural pest butterfly by collecting  
70 samples for DNA analysis. The success of this citizen science project demonstrates the power of  
71 the public to aid in collections-based research that address important questions related to ecology  
72 and evolutionary biology.

73

## 74      **Introduction**

75            Invasive species—species spread to places beyond their natural range, where they  
76    generate a negative impact (e.g., extirpate or displace native fauna, spread disease, destroy  
77    agricultural crops<sup>1</sup>)—continue to increase in number, with no signs of saturation<sup>2</sup>. The spread of  
78    invasive species often is driven by (human) migration, global trade and transportation networks<sup>3</sup>,  
79    and, in some cases, domestication of wild plants and animals<sup>4</sup>. A critical, often first step to  
80    mitigating the spread and impacts of invasive species is to understand their invasion history,  
81    including assessing source populations, routes of spread, number of independent invasions, and  
82    the effects of genetic bottlenecks, among other factors. Such detailed knowledge is crucial from  
83    an applied perspective (e.g., developing an effective biological control program) as well as for  
84    addressing basic questions associated with the invasion process (e.g., genetic changes and  
85    adaptation to novel environments)<sup>5</sup>.

86            Unraveling a species' invasion history often requires sampling across large spatial and  
87    temporal scales, which can be challenging and expensive, particularly for many invasive species  
88    found on multiple continents. Citizen science—research in which non-scientists play a role in  
89    project development, data collection or discovery and is subject to the same system of peer  
90    review as conventional science<sup>6</sup>—is a potentially powerful means to overcome some of these  
91    challenges. A major strength of citizen science is that it can greatly enhance the scale and scope  
92    of science and its impact on society<sup>7</sup>. Consequently, there are now thousands of citizen science  
93    projects worldwide. Yet, still very few involve agricultural pests<sup>6</sup> and nearly all rely on  
94    observations (e.g., sightings or photographs), limiting their capacity to address fundamental  
95    questions in ecology and evolution.

96

97        *Pieris rapae*, the small cabbage white butterfly, is the world's most widespread and  
98        abundant pest butterfly. Caterpillars of this species are a serious agricultural pest of crops in the  
99        Brassicaceae family (e.g., cabbage, kale, broccoli, brussels sprouts)<sup>8</sup>. This butterfly is believed to  
100       have originated in Europe and subsequently undergone a range expansion into Asia several  
101       thousand years ago as a result of domestication and trade of its host plants<sup>9,10</sup>. The Europe and  
102       Asia populations recognized today are believed to represent separate subspecies—*P. rapae rapae*  
103       and *P. rapae crucivora*, respectively.

104       The small cabbage white butterfly has been introduced to many other parts of the world  
105       over the last ~160 years. These invasions are unique in that there is a wealth of historical records  
106       (observations and collections) documenting the putative dates of first introduction (North  
107       America in the 1860s<sup>11</sup>, New Zealand in 1930<sup>12</sup>, and Australia in 1937<sup>13</sup>). Detailed accounts and  
108       observations from what was essentially a 19<sup>th</sup> century citizen science project led by the  
109       entomologist Samuel Scudder provide a chronology of the spread of *P. rapae* across North  
110       America and suggest that there were multiple independent introductions<sup>11</sup>. While the small  
111       cabbage white butterfly ranks as one of the most successful and abundant invasive species, a  
112       detailed analysis of its invasion history has never been undertaken<sup>9,14</sup>. In addition, the  
113       consequences of this rapid invasion on the population genetic structure and diversity also are  
114       unknown.

115       Here, we employ a collection-based citizen science approach to obtain range-wide, long-  
116       term, population-level sampling of this globally distributed invasive agricultural pest. Molecular  
117       genomics tools are then applied to this global collection of specimens to demonstrate that a  
118       citizen science approach can be used to address a multitude of important questions in ecology

119 and evolutionary biology, including the reconstruction of the global invasion history of *P. rapae*  
120 and assessment of historical and contemporary patterns of genetic structure and diversity.

121

## 122 **Results**

### 123 ***Citizen scientist assisted sampling***

124 The international citizen science project—[Pieris Project](#)—recruited more than 100  
125 participants that collected >1,000 butterflies from 13 countries in less than three years. The  
126 majority of our participants (citizen scientists) were recruited through entomological and  
127 lepidopterist societies and other organizations related to nature and science. These citizen  
128 scientist collections were supplemented with collections from researchers bringing the total to  
129 >3,000 *P. rapae* from the period of 2002-2017 (median collection year: 2014, Fig S1). Nearly  
130 half (338/794) of the specimens used to generate mtDNA or ddRADseq data were from citizen  
131 scientists. Of the 32 countries represented in our collection, five countries (Portugal, Czech  
132 Republic, Gibraltar, Turkey, and South Korea) were made up of specimens sampled entirely by  
133 citizen scientists, three countries (Russia, Australia, and New Zealand) had the majority of  
134 specimens coming from citizen scientists, and three countries (United States, Canada, and Spain)  
135 had nearly half the specimens coming from citizen scientists (Table S1). These samples  
136 collectively cover nearly the entire native and invaded ranges, consisting of 293 localities  
137 spanning 32 countries (Fig 1, [up-to-date collections map](#)); note, we do not have collections from  
138 South America because there are no (known) populations of *Pieris rapae* on the continent.

139 A total of 22,059 autosomal (ddRADseq) Single Nucleotide Polymorphisms (SNPs) for  
140 559 individuals (average depth:  $74X \pm 28$  sd; average missingness:  $2.9\% \pm 4.3$  sd) passed quality  
141 filtering (Fig 1a). We also sequenced a 502 bp region of the mitochondrial gene cytochrome c

142 oxidase subunit 1 (*COI*) from 751 individuals (632 of these individuals were also used to  
143 generate ddRADseq data) and supplemented these sequences with 251 additional sequences from  
144 various online databases (total individuals with *COI* sequence = 1,002; Fig 1b).

145

146 ***Global patterns of autosomal genetic differentiation and diversity***

147 We filtered the ddRADseq data for autosomal markers and found evidence for at least  
148 seven genetically distinct clusters (ADMIXTURE lowest cross-validation error: 0.25 for K = 7)  
149 (Fig 2a). These genetic clusters largely correspond to the continental regions sampled and we  
150 refer to them henceforth as populations, named based on their sampling region: Europe, North  
151 Africa, Asia, Russia (east), North America (east), North America (west), Australia/New Zealand  
152 (Fig 2e). The greatest genetic differentiation was between Asia (including Russia (east)) and all  
153 other populations; average  $F_{ST} = 0.26 \pm 0.03$ sd (Fig 2c). Visual inspection of ancestry assignments  
154 (at higher values of K) suggests additional hierarchical levels of structure, primarily in Asia, but  
155 also within North America, and between Australia and New Zealand (Fig S2a,b). Surprisingly,  
156 we were unable to detect (geographically coherent) structure within Europe (except for Malta  
157 being distinct from the rest of Europe) or within Australia.

158 Almost all recently introduced populations (i.e., North America, Australia and New  
159 Zealand) exhibit lower observed heterozygosity and nucleotide diversity compared with  
160 populations in the native range (i.e., Europe and Asia), consistent with population bottlenecks  
161 associated with these introductions (Fig 3). North America (east) was a notable exception among  
162 the introduced populations, with observed heterozygosity higher than populations found in the  
163 native range. All estimates of Tajima's *D* fell within the range of -1 to 1, suggesting most  
164 populations are near equilibrium. However, there is a negative relationship between estimates of

165 Tajima's  $D$  and time since introduction—i.e., more recent introductions have higher (positive)  
166 estimates of Tajima's  $D$ , suggesting that North America (west), New Zealand and Australia are  
167 still recovering from repeated population bottlenecks.

168

169 ***Global Invasion History***

170 We compared a number of alternative invasion history scenarios for both the native and  
171 introduced populations using ddRADseq autosomal data within an approximate Bayesian  
172 computation random forest (ABC-RF) framework. We used an iterative process for selecting  
173 each bifurcation event, starting with native populations (Europe and Asia), then Russia (east) and  
174 North Africa, followed by the recently introduced populations (North America (east and west)),  
175 New Zealand and Australia, and then simulated a full model that incorporated all the best  
176 supported scenarios to get final parameter estimates (Fig 2e, Table 1). Based on this full final  
177 scenario (Fig 2d), posterior model checking revealed that the observed values of only six  
178 summary statistics out of 928 (i.e. 0.6%) fall in the tail of the probability distribution of statistics  
179 calculated from the posterior simulation (i.e.  $p < 0.05$  or  $p > 0.95$ ), which indicates that the  
180 chosen model fitted well the observed genetic data. From parameter estimation (Table 1), we  
181 found the greatest support for a scenario with an ancestral population undergoing a demographic  
182 expansion *ca.* 20,000 (32,000–4,900) yrBP (Years Before Present) (Table S2). In evaluating the  
183 source for the Europe and Asia populations, we found the strongest support for the scenario of an  
184 ancestral population giving rise to both the Europe and Asia populations (~85% posterior  
185 probability), *ca.* 1,200 (2,900–300) yrBP, over scenarios with Europe as the source for Asia, or  
186 Asia as the source for Europe (Fig S3a; Table 1). We evaluated multiple scenarios to determine  
187 the source for the Russia (east) and North Africa populations and found the strongest support for

188 a scenario with Asia giving rise to the Russia (east) *ca.* 300 (800–200) yrBP, and the Europe  
189 population giving rise to the North Africa population *ca.* 200 (600–200) yrBP (Fig S3b; Table 1).

190 We found strong support (total of 996 random forest votes out of 1000) for Europe being  
191 the source of introduction to North America (east) (Fig S3c; Table 1). The scenario of a single  
192 introduction had only slightly better support than the scenario with multiple (two) introductions,  
193 and both have a similar number of random forest votes (576 and 418, respectively, out of 1,000,  
194 for dataset 1). Thus, we cannot clearly distinguish between these two scenarios, and prior error  
195 rate was consequently relatively high (~33%). However, subsequent analyses performed by  
196 considering multiple introductions for the formation of North America (east) does not  
197 qualitatively change any of the following results (results not shown).

198 We found the strongest support for North America (east) serving as the source for the  
199 genetically distinct North America (west) population when compared to alternative scenarios  
200 with Asia or Europe (for both the scenario with ~ 400 or 200 yrBP prior estimate for date of  
201 introduction) as the source (Fig S3d; Table 1). This introduction was estimated to have occurred  
202 *ca.* 137 yrBP. For the introduction into New Zealand, we found strong support for North  
203 America (west) being the source, when compared to Europe, Asia, or North America (east) as the  
204 source (Fig S3e; Table 1). The New Zealand population was found to have the greatest support  
205 as being the source for the introduction to Australia (Fig S3f; Table 1). All of these results were  
206 obtained with dataset 1 but were qualitatively confirmed by the analyses of datasets 2 and 3  
207 (Table 1).

208 Demographic parameter estimates from ABC-RF analyses suggest each introduced  
209 population underwent a severe bottleneck, but the intensity (duration and number of founders  
210 with respect to the effective size of the source population) differed among populations (Table

211 S2). Specifically, New Zealand and, more importantly, North America (west) were estimated to  
212 have undergone the most intense bottlenecks, whereas North America (east) and, to a lesser  
213 extent, Australia suffered less intense bottlenecks.

214

215 ***Global patterns of mtDNA haplotype diversity and distribution***

216 A total of 88 COI haplotypes were identified from 1,002 individuals, and 85% of these  
217 individuals harbored one of the eleven most common haplotypes (Fig 4; Fig S4, Table S3). The  
218 geographic distribution of mtDNA haplotypes is consistent with the invasion routes identified  
219 from ABC-RF analyses—haplotypes in introduced populations are largely a subset of those from  
220 putative source populations or differ by only one to two mutations from haplotypes in high  
221 frequency in the putative source populations (Fig 4a; see interactive figure to plot haplotypes  
222 individually—<http://www.pierisproject.org/ResultsInvasionHistory.html>).

223 Estimates of mtDNA haplotype diversity (richness) were highest in Asia and Europe and  
224 had large confidence intervals (based on rarefaction curve analysis), indicating these populations  
225 were likely undersampled (Fig 4c). All introduced populations had substantially lower estimates  
226 of mtDNA haplotype diversity. New Zealand, Australia, North America (west), North Africa,  
227 and Russia (east) were estimated to have less than a dozen mtDNA haplotypes, whereas North  
228 America (east) had substantially (~3X) more mtDNA haplotypes and was significantly greater  
229 than all other introduced populations (based on non-overlapping confidence intervals). Estimates  
230 of mtDNA nucleotide diversity are similar to those observed for autosomal markers using  
231 ddRADseq data, with the exception of Australia, which had higher nucleotide diversity than New  
232 Zealand and North America (west) (Fig 4d). From a global perspective, there appears to be a

233 general trend of decreasing nucleotide diversity with increasing distance from southern Europe  
234 and the eastern Mediterranean region (Fig S5).

235 Considering the mtDNA haplotypes found in North America and their frequencies in sub-  
236 populations of Europe, we estimate that the minimum number of individuals that would need to  
237 have been sampled from the sub-population of England (2.3) is  $23 \pm 12$  sd individuals or  $123 \pm$   
238 88 sd individuals for Spain/southern France (2.4) to account for all haplotypes in North America.

239

## 240 **Discussion**

### 241 ***Citizen science greatly expands range-wide sampling of butterflies***

242 We show for the first time how the public can contribute to our understanding of species  
243 invasions through a collection-based citizen science project. Collections made by citizen  
244 scientists dramatically expanded the geographic scope of our study by nearly doubling the  
245 number of countries we were able to include in our analyses. Samples from many of these  
246 countries either solely or primarily came from citizen scientists, including nearly the entire  
247 region of Australasia. Moreover, these contributions allowed us to increase substantially the total  
248 number of individuals in each of the populations studied, with nearly half of all specimens  
249 sequenced in our study coming from citizen scientists. We estimate that the use of citizen science  
250 to aid in the collection of *P. rapae* from across its near-global range resulted in tens of thousands  
251 of dollars (USD) in cost-savings that would have been required to cover salary and travel costs.  
252 We believe our citizen science approach can be applied to other systems, particularly to  
253 organisms that are easily identifiable (e.g., spotted lantern fly or Giant African snail) and easy to  
254 transport (e.g., dead invertebrates), to address questions in invasion biology as well as a broad  
255 range of questions in ecology and evolutionary biology. As examples, we currently are

256 leveraging our large collection to address questions concerning the effects of climate and land  
257 use changes on wing pigmentation of this butterfly and to identify genomic regions underlying  
258 ecological selection.

259 The development, implementation, and maintenance of this project was not trivial, as is  
260 the case with many citizen science projects, and required considerable time and effort engaging  
261 the public (e.g., contacting organizations, using social media, responding to emails) and  
262 processing samples. Collections-based citizen science projects that focus on less charismatic  
263 species or incorporate non-lethal forms of sampling (e.g., eDNA) and are easy to collect (slow  
264 moving or sessile) may have the greatest success. We suggest that those interested in applying a  
265 collections-based citizen science approach seek advice from, or build collaborations with,  
266 individuals with experience in the field of citizen science.

267

268 ***Geographic spread and divergence of P. rapae driven by host plant domestication***

269 The Europe and Asia populations of *P. rapae* are believed to represent distinct  
270 subspecies—*P. rapae rapae* and *P. rapae crucivora*, respectively—based on phenotypic  
271 differences<sup>9</sup> and evidence for reproductive isolation<sup>15</sup>. Our study provides further support for  
272 this, revealing the two main genetic lineages recovered by ddRADseq for *P. rapae* worldwide  
273 correspond to the Europe (*Pieris rapae rapae*) and Asia (*Pieris rapae crucivora*) populations. It  
274 has long been hypothesized that the domestication of brassicaceous crops, which are the primary  
275 host plants for this butterfly, aided the spread and/or divergence of the Europe and Asia  
276 subspecies<sup>10</sup>. Our data support this hypothesis. We estimate the divergence of both the Europe  
277 and Asia populations (subspecies) occurring within the last ~3000 years. This estimate overlaps  
278 with estimates for the domestication of brassicaceous crops that occurred during this time period

279 (i.e., *Brassica oleracea* and *Brassica rapa*)<sup>16–18</sup>. However, our results do not support the  
280 hypothesis that Europe was the source of the Asia population<sup>9</sup>. Instead, our results suggest both  
281 the Europe and Asia populations independently diverged from an ancestral population, most  
282 likely *ca.* 1,200 yrBP. This time period corresponds with the intensification in the cultivation of  
283 *B. oleracea* varieties, such as cabbage and brussels sprouts<sup>19</sup>.

284 It remains unclear whether *P. rapae* spread across and occupied Europe and Asia during  
285 this expansion event, and then diverged *in situ* in response to the domestication of brassicaceous  
286 crops, or whether *P. rapae* was more restricted in distribution (e.g., confined to Europe or the  
287 eastern Mediterranean region) and diverged in association with the domestication of  
288 brassicaceous crops across Eurasia. Consistent with the hypothesis that Europe and Asia *P.*  
289 *rapae* populations diverged as they spread out of the eastern Mediterranean, the range boundaries  
290 of the Europe and Asia populations (subspecies) abut in the eastern Mediterranean region and  
291 genetic diversity generally decreases with increasing distance from this region. In further support  
292 of this hypothesis, there is growing evidence that the domestication of *Brassica oleracea* and  
293 *Brassica rapa* originated in the Mediterranean region<sup>18</sup>. However, additional sampling in western  
294 Asia is needed to further evaluate this hypothesis.

295 Interestingly, the putative ancestral population that gave rise to the Europe and Asia  
296 populations appears to have undergone a rapid increase in effective population size *ca.* 7,000–  
297 28,000 yrBP. This time period overlaps with early human development of agriculture. However,  
298 our median estimate for the date of this expansion was *ca.* 20,000 yrBP, placing it at the end of  
299 the last glacial maximum *ca.* 23,000–19,000 yrBP<sup>20</sup>. Changes in the distribution and demography  
300 of species in response to glacial–interglacial cycles is well documented<sup>21,22</sup>, and may be more

301 likely to have facilitated a major demographic shift in *P. rapae*, as the earliest domestication of  
302 brassicaceous crops was relatively recent (earliest evidence being *ca.* 7,000 yrBP)<sup>17</sup>.

303

304 ***Recent invasion history largely reflects historical records, but with a few unexpected findings***

305           Although historical records of species invasions can be misleading<sup>23</sup>, our molecular  
306 genomics-based reconstruction of the *P. rapae* global invasion history is largely consistent with  
307 that historically documented through observations. As expected, we found Europe to be the most  
308 likely source of this butterfly's introduction into North America. However, we unexpectedly  
309 found that there was no discernable nuclear genetic structure in Europe (even when K = 30),  
310 making it impossible to narrow down with confidence the source population to a specific locality  
311 or country (e.g., England vs Spain). However, mtDNA haplotype distributions and frequencies in  
312 European countries suggest England as the most likely source—i.e., fewer individuals would be  
313 required to produce the mtDNA haplotypes found in North America, if England was the source  
314 rather than Spain and southern France. We do not know what specific factors account for the  
315 lack of genetic structure in Europe. One possibility is long-distance dispersal of this species<sup>24</sup>  
316 coupled with historic and/or ongoing human assisted dispersal has led to high levels of gene  
317 flow. Another interesting possibility supported by some evidence<sup>24–26</sup> is that *P. rapae* is  
318 migratory or undergoes migratory-like events.

319           Historical records obtained by Samuel Scudder pointed to possible multiple introductions  
320 of *P. rapae* into North America, which occurred during or shortly after its initial invasion<sup>11</sup>.  
321 Confirming multiple introductions from the same source population early in an invasion,  
322 particularly one that quickly underwent a rapid expansion, is extremely difficult. The best-fit  
323 model to our data suggests a scenario with a single introduction, but it seems reasonable there

324 were multiple introductions for a couple of reasons. First, both competing scenarios—one vs  
325 multiple introductions from Europe—had a similar number of random forest votes (576 vs 418  
326 out of 1,000) and the selected scenario (i.e. one introduction from Europe) had a low posterior  
327 probability estimate (~0.5; in contrast, all scenarios that were chosen in the other analyses had  
328 posterior probability estimates >0.70). Second, we estimated a rather low bottleneck intensity,  
329 with a founding population size of ~50-100 individuals; this estimate is much higher than a  
330 previous estimate of one to four individuals<sup>27</sup>. It seems unlikely that North America was founded  
331 from a single introduction given this rather large estimated founding population size and the  
332 reasonable assumption that no more than a few dozen (unrelated) butterflies would be  
333 transported on any one ship. Third, multiple introduction events (from Europe) would help  
334 explain the higher heterozygosity found in North America (east) than in the native range—i.e.,  
335 multiple introductions aided in the rebound in genetic diversity as the introduced population  
336 spread across eastern North America.

337 Our second unexpected finding was the identification of a genetically distinct population  
338 within North America that is restricted to the western USA. We found evidence of admixture in  
339 areas where the two North America (east and west) populations come into contact, suggesting  
340 that these genetically distinct populations are neither geographically or reproductively isolated  
341 from each other. The geographic extent of this admixture zone is not clear from our sampling,  
342 nor are the consequences of gene flow between these populations. We initially hypothesized this  
343 western population represents an early introduction brought by Spaniards during the 1600s, but  
344 our data instead indicate that it most likely results from a secondary founder event from the  
345 North America (east) population brought during the ~1860-1880s as a result of the rapid

346 development of railroad lines<sup>28</sup>, specifically from the eastern USA to central California (Video  
347 S1).

348 Our results confirm previous speculation that North America (west), likely San  
349 Francisco, California, was the source of introduction to the Hawaii islands, based on individuals  
350 from Hawaii being assigned to the North America (west) cluster but not being reported in the  
351 Hawaiian islands until 1987<sup>29</sup> (after the arrival of *P. rapae* to central California). Also,  
352 unexpectedly, our results suggest that the introduction of *P. rapae* to New Zealand came from  
353 North America (west), and not from Europe, as was believed to be the most likely case given the  
354 United Kingdom was the largest exporter into New Zealand at the time<sup>30</sup>. Lastly, previous  
355 speculation that New Zealand is the immediate source of *P. rapae* in Australia<sup>13</sup> is supported by  
356 our data.

357

### 358 ***Implications for invasion biology***

359 Our study also sheds light more broadly on invasion biology. Growing evidence shows  
360 many invasive populations are able to flourish and adapt to new environments despite substantial  
361 loss of genetic diversity—a phenomenon termed the genetic paradox of invasions<sup>31</sup>. *Pieris rapae*  
362 is a remarkable example of this paradox. This butterfly has rapidly expanded its range following  
363 each new founding event, despite repeated population bottlenecks—at least four separate times,  
364 with each new founding population the product of a previously bottlenecked population (i.e.,  
365 multiple serial founding events). Whether introduced populations maintained high genetic  
366 variation in ecologically relevant traits following each founding event remains unclear. Evidence  
367 of local adaption for thermal tolerances among populations in North America<sup>32</sup> suggests such  
368 variation exists. However, resolving this paradox and the persistent puzzle of how this butterfly

369 has been an extremely successful invader into new environments will require future studies to  
370 assess the relative contributions of factors such as adaptative evolution, phenotypic plasticity,  
371 natural enemy escape, and domestication of its host plants.

372

### 373 **Methods**

#### 374 *Specimens collection and DNA extractions*

375 The *Pieris rapae* specimens were collected as part of an international citizen science  
376 project—Pieris Project ([pierisproject.org](http://pierisproject.org))—that was launched in June 2014 and through  
377 collections by researchers. A website was created in 2014 for Pieris Project that included a  
378 description of the research goals and collection protocol—specimens were to be individually  
379 placed in hand-made or glassine envelopes, labeled with location and date collected, and placed  
380 in a freezer overnight, then air-dried for at least two days and shipped using standard mail. The  
381 project was advertised through social media—Twitter (@PierisProject) and Facebook  
382 (<https://www.facebook.com/pierisproject/>), and through listservs, social media, and blogs of  
383 Entomological and Lepidopterists societies and nature/science/citizen science related  
384 organizations (e.g., YourWildLife, eButterfly, National Geographic, and SciStarter). Once  
385 received, specimens were stored in 95% ethanol and kept at -20 °C; depending on the collector,  
386 specimens were air-dried for a few days to years prior to being placed in ethanol. Genomic DNA  
387 was isolated from tissue from prothorax or (2-3) legs using DNeasy Blood and Tissue Kit spin-  
388 columns (Qiagen, Hilden; Cat No./ID: 6950).

389 To estimate the contributions by scientists, we binned the collector of each specimen into  
390 one of two categories: 1) researcher, and 2) citizen scientist. Collectors whose identity was  
391 known (>90% of participants) were not considered as citizen scientists if they had a college

392 degree in biology. This makes our estimated contribution by citizen scientists a conservative  
393 estimate, as some of these participants may consider themselves citizen scientists. There is a  
394 great deal of debate as to what does or does not constitute being a citizen scientist. Our threshold  
395 is based on our previously stated definition of citizen science that is accepted by many within the  
396 field of citizen science.

397

### 398 ***ddRADseq sequencing and filtering***

399 Nine reduced-complexity libraries were generated using a double-digest restriction-site-  
400 associated DNA fragment procedure (ddRAD)<sup>33</sup> following Ryan et al., 2018<sup>34</sup>. Briefly, genomic  
401 DNA (~400 ng) was digested with the restriction enzymes EcoR1 and Mse1 and a universal  
402 Mse1 and barcoded EcoR1 adapter ligated to the digested DNA. Ligated products were diluted  
403 10 times with 0.1X TE buffer prior to PCR enrichment. Amplified products with unique  
404 barcodes were pooled into a single mixture prior to purification. The library was purified three  
405 times with 0.8X volume of Agencourt Ampure XP beads (Beckman Coulter, A63881). At the  
406 end of each round of purification, elution volume was reduced to 0.25 – 0.5X of the beginning  
407 sample volume. After three rounds of purification, each library (1.0 µg) was size selected for 400  
408 to 600 bp fragment length using 1.5% DF Cassette and BluePippin System (Sage Science).  
409 Libraries were evaluated by Bioanalyzer 2100 system and sequenced across one lane Illumina  
410 MiSeq (University of Notre Dame, Genomics Core Facility), 14 lanes of Illumina HiSeq 4000  
411 (12 at University of Illinois and 2 at Beijing Genomics Institute); most samples were sequenced  
412 on 2 (some 3) independent lanes.

413 Raw reads were demultiplexed and barcodes/cutsite removed using a custom Python  
414 script. Reads were further trimmed and cleaned with the program Trimmomatic (v0.32)<sup>35</sup> using

415 default settings. The first 5 bp and any after 80 bps were then trimmed from all reads and only  
416 reads at least 76 bp in length were retained, resulting in all reads being exactly 76 bp.

417 Reads were then aligned to the *Pieris rapae* genome v1<sup>27</sup> using BWA-aln (v0.7.15)<sup>36</sup>.

418 Variant calling was performed using GATK's Haplotypecaller (v3.8)<sup>37,38</sup> with the default  
419 settings. Filters were applied in the following order: kept only biallelic SNPs, applied GATK's  
420 "hard filtering" (QD < 2.0 || MQ < 40.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0),  
421 SNPs with a genotype quality (GQ) < 20 were converted to missing data, removed SNPs with  
422 minor allele frequency less than 0.01, kept SNPs with min of 1X coverage for 50% of  
423 individuals, removed SNPs with coverage > 95<sup>th</sup> percentile (112.8 X coverage), removed  
424 individuals with > 75% missing data, kept only SNPs with a minimum of 10X coverage in 90%  
425 of individuals, and removed individuals with >25% missing data. Finally, SNPs with  
426 heterozygosity > 0.6 were considered potential paralogs and were discarded.

427 As there is no linkage map for *P. rapae* and the genome is not assembled into  
428 chromosomes, we applied a simple heterozygosity method to determine whether SNPs were  
429 autosomal or sex (Z) linked. To do this we used the expectation that females should be  
430 homozygous at all SNPs on the Z-chromosome—females are the heterogametic sex (ZW) in  
431 Lepidoptera. Using 231 females, we calculated the percentage that were heterozygous or  
432 homozygous at each site (SNP) using the is\_het function from the R package vcfR (v1.6.0)<sup>39</sup> and  
433 custom scripts in R. SNPs with greater than 25% missing data were removed. A scaffold (and all  
434 SNPs within) was considered putatively Z-linked if > 60% of the SNPs fell below the threshold  
435 of having less than 1% of the females being heterozygous (average number of SNPs for each  
436 scaffold was  $84 \pm 101$ ; mode = 4).

437 To complement the heterozygosity method, we also inferred the chromosome assignment  
438 of each *P. rapae* scaffold using the approach by Ryan et al. (2017)<sup>40</sup>. Briefly, we used blastx  
439 (ncbi-blast-2.2.30+)<sup>41,42</sup> to blast all peptide sequences within each scaffold of the *P. rapae*  
440 assembly against the *Bombyx mori* genome (silkdb v2.0)<sup>43</sup>. The *B. mori* scaffold with the most  
441 significant blast hits (based on Bit scores) was retained and used to determine the putative  
442 chromosome of each *P. rapae* scaffold. All, except one scaffold, of those we identified as Z-  
443 linked using the heterozygosity method, mapped to chromosome 1 (Z) and 2 (W) of *B. mori* (Fig  
444 S6). That we found some regions of *P. rapae* mapping to the *B. mori* chromosome 2 (W)  
445 suggests they are not completely syntenic—the *P. rapae* genome was assembled from males and  
446 thus there should be no scaffold mapping to this chromosome. Some *P. rapae* scaffolds mapping  
447 to chromosome 2 (W) of *B. mori* were recovered as actually being on the chromosome 1 (Z)  
448 based on the heterozygosity method.

449 Using a subset of the putative Z-linked markers—SNPs where < 1% of females had a  
450 heterozygous call (i.e., SNPs with a high likelihood of being Z-linked)—we validated the sex of  
451 each individual. Females and males with >20% or <20% of these SNPs being heterozygous were  
452 considered possibly mislabeled males and females respectively. These individuals were flagged,  
453 and the specimens double-checked visually; in all cases, visual identification confirmed that  
454 these individuals were mislabeled.

455

#### 456 ***Inference of Population Structure and Diversity***

457 Population structure was investigated with the model-based clustering algorithm  
458 ADMIXTURE<sup>44</sup> using default settings and a cross-validation = 10 for K 1-30 using a modified  
459 SNP dataset, i.e., pruned for LD ( $r^2 > 0.2$ ; calculated using VCFtools geno-r2) (17,917 SNPs).

460 The optimal K was that with the lowest cross validation error. The Bayesian program  
461 fastSTRUCTURE<sup>45</sup> as well as a non-model-based multivariate approach—Discriminant Analysis  
462 of Principal Components (DAPC; Fig S2c)<sup>46</sup>—were also used to confirm the results from  
463 ADMIXTURE (see Supplementary Materials for more details) using the R package adegenet  
464 (v2.1.1)<sup>47</sup>. Genetic assignments were plotted using custom scripts and the R package pophelper  
465 (v2.2.3)<sup>48</sup>. A Neighbor-Joining tree based on genetic distance was constructed in the poppr  
466 (v2.8.0)<sup>49</sup> and ape (v5.1)<sup>50</sup> packages in R, that included the species *Pieris napi*, *Pieris brassicae*,  
467 and *Pieris canidia* as outgroups, using only sites with at least 15X coverage in 90% individuals  
468 from this new dataset. Trees were visualized using FigTree (v1.4.4)<sup>51</sup>. Population differentiation  
469 was estimated between all populations using the Weir & Cockerham's estimator of  $F_{ST}$ <sup>52</sup>  
470 implemented in VCFtools (v0.1.15) using 10 kb windows and a window step size of 5 kb.

471 All measures of genetic diversity ( $H_{obs}$ ,  $\pi$ , and Tajima's  $D$ ) were calculated using SNPs  
472 restricted to scaffolds longer than 100kb (22,059 SNPs). In an attempt to minimize the Wahlund  
473 effect (i.e., reduction of heterozygosity caused by subpopulation structure), individuals were split  
474 into spatially contiguous subpopulations from within the seven identified by ADMIXTURE  
475 (N=34; one subpopulation from Mexico was not included because it contained only three  
476 individuals); these were the same subpopulations used for the ABC-RF analyses. To control for  
477 differences in sample size, we computed each statistic 1,000 times using a random subset  
478 (without replacement) of seven individuals (size of smallest population). Heterozygosity was  
479 estimated using the R package adegenet v2.1.1. Calculations for  $\pi$ , and Tajima's  $D$  were  
480 estimated using a dataset containing invariant sites (i.e., vcf files were created using gatk-4.0.4.0  
481 with the flag -allSites true and the same filters as described above were then applied) with  
482 VCFtools (v0.1.15) using 10 kb windows (and a window step size of 5 kb used for estimating  $\pi$ ).

483

484 ***ABC-RF-based inferences of global invasion history***

485 An approximate Bayesian computation analysis (ABC)<sup>53</sup> was carried out to infer the  
486 global invasion history of *Pieris rapae*. The eight populations considered in the ABC analysis  
487 corresponded to the seven identified by ADMIXTURE, with an additional separation of New  
488 Zealand and Australia for geographical reasons. Each population was represented in the analysis  
489 by a single sub-population (individuals sampled within the same subregion and within a three-  
490 year period) (dataset 1). ABC is a model-based Bayesian method allowing posterior probabilities  
491 of historical scenarios to be computed, based on historical data and massive simulations of  
492 genetic data. We used historical information (e.g., dates of first observation of invasive  
493 populations) to define 6 sets of competing introduction scenarios that were analyzed sequentially  
494 (Table 1 and Fig S3). Step by step, subsequent analyses used the results obtained from the  
495 previous analyses, until the most recent invasive populations were considered. The first set of  
496 competing scenarios (three scenarios) considered the evolutionary relationship between the  
497 Asian and European populations. In the second analysis (four scenarios), we explored the links  
498 between Asia, Europe, North Africa and Russia (east). In the third analysis (four scenarios), we  
499 set North America (east) as the target and determined whether it originated from Asia or Europe,  
500 either through one or two introductions. In the fourth analysis (5 scenarios), North America  
501 (west) could be originating either from Europe, Asia or North America (east), and the  
502 introduction could be ancient (400 yrBP) in the case of Europe. In the fifth analysis (four  
503 scenarios), New Zealand could be originating either from Europe, Asia, North America (east) or  
504 North America (west). Finally, the sixth analysis (five scenarios) aimed at deciphering the origin  
505 of the Australian population by testing as source population New Zealand, North America

506 (west), and admixtures between New Zealand and either Europe, Asia or North America (west).

507 All scenarios of all analyses are detailed in Table 1 and Fig S3.

508 In our ABC analysis, historical and demographic parameter values for simulations were  
509 drawn from prior distributions defined from historical data and demographic parameter values  
510 available from empirical studies on *Pieris rapae*<sup>11–13,29</sup>, as described in Table S5. Simulated and  
511 observed datasets were summarized using the whole set of summary statistics proposed by  
512 DIYABC<sup>54</sup> for SNP markers, describing genetic variation per population (e.g., mean gene  
513 diversity across loci), per pair (e.g., mean across loci of  $F_{ST}$  distances), or per triplet (e.g., mean  
514 across loci of admixture estimates) of populations (see the DIYABC v2.1.0 for details about  
515 statistics), plus the linear discriminant analysis axes<sup>55</sup> as additional summary statistics (Table  
516 S6). The total number of summary statistics ranged from 18 to 388 depending on the analysis  
517 (Table 1).

518 To compare the scenarios, we used a random forest process<sup>56,57</sup>. Random forest is a  
519 machine-learning algorithm which uses hundreds of bootstrapped decision trees to perform  
520 classification using a set of predictor variables, here the summary statistics. Some simulations  
521 are not used in tree building at each bootstrap (i.e., the out-of-bag simulations) and can thus be  
522 used to compute the “prior error rate”, which provides a direct method for cross-validation. We  
523 simulated a 10,000 SNPs datasets for each competing scenario using the standard Hudson’s  
524 algorithm for minor allele frequency (i.e., only polymorphic SNPs over the entire dataset are  
525 considered), so the number of used markers ranged between 13,974 and 17,116 depending on the  
526 analysis (Table 1). We then grew a classification forest of 1,000 trees based on the simulated  
527 datasets. The random forest computation applied to the observed dataset provides a classification  
528 vote (i.e., the number of times a model is selected among the 1,000 decision trees). The scenario

529 with the highest classification vote was selected as the most likely scenario, and we then  
530 estimated its posterior probability by way of a second random forest procedure of 1,000 trees<sup>57</sup>.  
531 To evaluate the global performance of our ABC-RF scenario choice, we computed the prior error  
532 rate based on the available out-of-bag simulations and conducted the complete scenario selection  
533 analysis with two additional datasets with different sub-populations (dataset 2 and dataset 3)  
534 representative of the same populations as dataset 1<sup>58</sup>.

535 We then performed a posterior model checking analysis on a full final scenario including  
536 all 8 populations (dataset 1), to determine whether this scenario matches well with the observed  
537 genetic data. Briefly, if a model fits the observed data correctly, then data simulated under this  
538 model with parameters drawn from their posterior distribution should be close to the observed  
539 data. The lack of fit of the model to the data with respect to the posterior predictive distribution  
540 can be measured by determining the frequency at which the observed summary statistics are  
541 extreme with respect to the simulated summary statistics distribution (hence defining a tail-area  
542 probability or *p*-value, for each summary statistic). We simulated 100,000 data sets under the full  
543 final scenario (17,609 SNP and 928 summary statistics), and then obtained a ‘posterior sample’  
544 of 5,000 values of the posterior distributions of parameters through a rejection step based on  
545 Euclidean distances and a linear regression post-treatment<sup>53</sup>. We simulated 1,000 new datasets  
546 with parameter values drawn from this “posterior sample”, and each observed summary statistic  
547 was compared with the distribution of the 1,000 simulated test statistics, and its *p*-value,  
548 corrected for multiple comparisons with the false discovery rate procedure<sup>59</sup>, was computed.

549 Finally, 10,000 simulated datasets of the full final scenario were used to infer posterior  
550 distribution values of all parameters, and some relevant composite parameters under a regression  
551 by random forest methodology<sup>60</sup>, with classification forests of 1,000 trees. The simulation steps,

552 the computation of summary statistics, as well as the model checking analysis were performed  
553 using DIYABC v2.1.0. All scenario comparisons and parameter estimations were carried out in  
554 R using the package abcrf (v1.7.1)<sup>57</sup>.

555

556 ***mtDNA sequencing and analysis***

557 A 1,600 bp region of COI was amplified using primers optimized to work with multiple  
558 species within the genera *Pieris* (Pieridae\_COI\_F 5-AAATTACAATYATCGCTTA-3,  
559 Pieridae\_COI\_R 5-TGGGGTTTAAATCCATTACATATW-3). When these primers failed we  
560 amplified a 658 bp region of COI using previously published primers<sup>61</sup>. PCR amplicons were  
561 purified using magnetic beads and amplified using standard fluorescent cycle sequencing PCR  
562 reactions (ABI Prism Big Dye terminator chemistry, Applied Biosystems). Sequencing reactions  
563 were purified using Agencourt CleanSeq magnetic beads (Beckman Coulter) and run on an ABI-  
564 3730XL-96 capillary sequencer (Applied Biosystems) at the University of Florida biotechnology  
565 facility (ICBR) or Macrogen (Macrogen Inc). Individuals with both forward and reverse reads  
566 were assembled in Geneious 11.0.4 using the De Novo Assemble tool with default settings. The  
567 find heterozygotes tool (peak similarity set to 50%) was used to find and discard any sequences  
568 found to be heterozygous. Reads were trimmed to 502 bp and aligned (error probability limit of  
569 0.001) with sequences from GenBank and Barcode of Life databases using MUSCLE Alignment  
570 in Geneious with default settings.

571 To evaluate whether we were adequately sampling mtDNA haplotype diversity, we  
572 plotted rarefaction curves (estimates of haplotype richness by sampling effort) for each  
573 population using iNEXT<sup>62</sup> and predicted the total haplotypes for each population assuming 1,000

574 sampled individuals. A median-joining haplotype network was created using POPART<sup>63</sup> for all  
575 populations and for each population separately.

576 In an effort to further pinpoint whether the introductions in North America came from  
577 western (i.e., United Kingdom) or southwestern (i.e., Spain and France) Europe, we estimated  
578 the minimum number of individuals that would need to be sampled from each of these native  
579 populations to generate the mtDNA diversity found in North America. Specifically, for each  
580 native subpopulation, we randomly sampled (with replacement) a haplotype from each  
581 subpopulation based on their haplotype frequencies, until all haplotypes represented in North  
582 America were sampled and simulated this procedure 10,000 times for each subpopulation. This  
583 approach assumes that the true source population will be the most parsimonious—i.e., require  
584 sampling of fewer individuals to create the diversity found in North America.

585

586 **Acknowledgements:**

587 We would like to thank all the participants in the Pieris Project, without their help this  
588 research would not have been possible. We would also like to thank Arthur Shapiro for his  
589 extraordinary insights into this system and to the many researchers who contributed specimens  
590 ([see full list here](#)). A special thank you to Sang-guy Park for donating specimens from his private  
591 collection. Many thanks to Jacqueline Lopez and Melissa Stephens in the Notre Dame Genomics  
592 & Bioinformatics Core Facility for ddRADseq library preparations. This research was funded by  
593 a USDA-NIFA Post Doctoral Fellowships grant #2017-67012-26999 to S.F.R. A.E. is supported  
594 by the NSF Graduate Research Fellowship Program (GRFP). R.V. was supported by project  
595 CGL2016-76322-P (AEI/FEDER, UE). G.T. is supported by the MINECO programme IJCI-

596 2016-29083 and by the National Geographic Society (grant WW1-300R-18). E.A.H. was  
597 supported by a Marie Curie Actions IO Fellowship no. 330136.

598

599 **Competing Interests:** the authors declare no competing interests.

600

601 **Data Availability:**

602 Demultiplexed ddRADseq reads generated in this study are available through NCBI's  
603 Sequence Read Archive associated with Bioproject (<ID>, SRA: <ID>). All new *COI* sequences  
604 were deposited to the Barcode of Life Database (BOLD; <ID>). All metadata and scripts  
605 associated with analyses in this study have been deposited on DRYAD (<link>).

606

607 **Contributions:**

608 Author contributions: S.F.R. designed the research project. S.F.R. conceived of, created,  
609 implemented, and runs the citizen science project—Pieris Project; S.F.R. performed all  
610 molecular work, with assistance from M.M.D. with prepping ddRAD libraries and M.A.R. with  
611 developing mtDNA primers; S.F.R. performed genomic diversity and structure analyses; E.L.  
612 conducted ABC-RF analyses with assistance from S.F.R.; S.F.R., R.V., G.T., V.D., A.E., E.A.H.  
613 contributed specimens and/or mtDNA sequences; S.F.R., M.W.E. and A.E. designed educational  
614 material related to the citizen science project; and S.F.R. wrote the manuscript with contributions  
615 from E.L., A.E., R.V., G.T., V.D., M.A.R., M.M.D., M.W.E., E.A.H., Y.Y., M.E.P., and D.D.S.  
616 All authors read and approved the final manuscript.

617

618 **Competing Financial Interests**

619 The authors declare no competing financial interests.

620 **References:**

- 621 1. Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. *Front. Ecol. Environ.* **5**, 199–208 (2007).
- 622
- 623 2. Seebens, H. *et al.* No saturation in the accumulation of alien species worldwide. *Nat. Commun.* **8**, 14435 (2017).
- 624
- 625 3. Westphal, M. I., Browne, M., MacKinnon, K. & Noble, I. The link between international trade and 626 the global distribution of invasive alien species. *Biol. Invasions* **10**, 391–398 (2008).
- 627 4. Chen, Y. H. Crop domestication, global human-mediated migration, and the unresolved role of 628 geography in pest control. *Elem Sci Anth* **4**, 000106 (2016).
- 629 5. Estoup, A. & Guillemaud, T. Reconstructing routes of invasion using genetic data: why, how and so 630 what? *Mol. Ecol.* **19**, 4113–4130 (2010).
- 631 6. Ryan, S. F. *et al.* The role of citizen science in addressing grand challenges in food and agriculture 632 research. *Proc. Biol. Sci.* **285**, (2018).
- 633 7. McKinley, D. C. *et al.* Citizen science can improve conservation science, natural resource 634 management, and environmental protection. *Biol. Conserv.* **208**, 15–28 (2017).
- 635 8. Hely, P. C., Gellatley, J. G., Pasfield, G. & Agriculture, N. S. W. D. of. *Insect pests of fruit and 636 vegetables in NSW*. (Clayton, Vic. : Inkata Press, 1982).
- 637 9. Fukano, Y., Satoh, T., Hirota, T., Nishide, Y. & Obara, Y. Geographic expansion of the cabbage 638 butterfly (*Pieris rapae*) and the evolution of highly UV-reflecting females. *Insect Sci.* **19**, 239–246 639 (2012).
- 640 10. Hiura, I. Monshirochou-zoku no Rekishi. *Konchu Shizen* **3**, 9–15 (1968).
- 641 11. Scudder, S. H. & History, B. S. of N. *The introduction and spread of Pieris rapae in North America, 642 1860-1885 [i.e. 1886]*. (Boston Society of Natural History, 1887).
- 643 12. Ashby, J. W. & Pottinger, R. P. Natural regulation of *Pieris rapae* Linnaeus (Lepidoptera : Pieridae) 644 in Canterbury, New Zealand. *N. Z. J. Agric. Res.* **17**, 229–239 (1974).
- 645 13. Braby, M. F., Upton, M. S., Collection, A. N. I. & Entomology, C. *The butterflies of Australia : their 646 identification, biology and distribution*. (Melbourne : CSIRO Publishing, 2000).
- 647 14. Seiter, S. & Kingsolver, J. Environmental determinants of population divergence in life-history traits 648 for an invasive species: climate, seasonality and natural enemies. *J. Evol. Biol.* **26**, 1634–1645 649 (2013).
- 650 15. McQueen, E. W. & Morehouse, N. I. Rapid Divergence of Wing Volatile Profiles Between 651 Subspecies of the Butterfly *Pieris rapae* (Lepidoptera: Pieridae). *J. Insect Sci.* **18**, (2018).

652 16. Qi, X. *et al.* Genomic inferences of domestication events are corroborated by written records in  
653 *Brassica rapa*. *Mol. Ecol.* **26**, 3373–3388 (2017).

654 17. Prakash, S., Wu, X.-M. & Bhat, S. R. History, Evolution, and Domestication of Brassica Crops. in  
655 *Plant Breeding Reviews* 19–84 (Wiley-Blackwell, 2011). doi:10.1002/9781118100509.ch2

656 18. Maggioni, L., von Bothmer, R., Poulsen, G. & Lipman, E. Domestication, diversity and use of  
657 *Brassica oleracea* L., based on ancient Greek and Latin texts. *Genet. Resour. Crop Evol.* **65**, 137–159  
658 (2018).

659 19. Maggioni, L. Domestication of *Brassica oleracea* L. (2015). Available at:  
660 <https://pub.epsilon.slu.se/12424/>. (Accessed: 15th November 2018)

661 20. Clark, P. U. *et al.* The Last Glacial Maximum. *Science* **325**, 710–714 (2009).

662 21. Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. *Philos. Trans. R. Soc.  
663 B Biol. Sci.* **359**, 183–195 (2004).

664 22. Hewitt, G. The genetic legacy of the Quaternary ice ages. *Nature* **405**, 907–913 (2000).

665 23. Fischer, M. L. *et al.* Historical Invasion Records Can Be Misleading: Genetic Evidence for Multiple  
666 Introductions of Invasive Raccoons (*Procyon lotor*) in Germany. *PLoS One* **10**, e0125441 (2015).

667 24. Jones, R. E., Gilbert, N., Guppy, M. & Nealis, V. Long-Distance Movement of *Pieris rapae*. *J. Anim.  
668 Ecol.* **49**, 629–642 (1980).

669 25. Williams, C. *The migration of butterflies*. (Oliver & Boyd, 1930).

670 26. John, E., Cottle, N., McArthur, A. & Markis, C. Eastern Mediterranean migrations of *Pieris rapae*  
671 (Linnaeus, 1758) (Lepidoptera: Pieridae): observations in Cyprus, 2001 and 2007. *Entomol. Gaz.* **59**,  
672 71–78 (2008).

673 27. Shen, J. *et al.* Complete genome of *Pieris rapae*, a resilient alien, a cabbage pest, and a source of  
674 anti-cancer proteins. *F1000Research* **5**, 2631 (2016).

675 28. Atack, J. Historical Geographic Information Systems (GIS) database of U.S. Railroads for 1830-1972.  
676 (2016).

677 29. Opler, P. A. & Krizek, G. O. *Butterflies East of the Great Plain: an illustrated natural history*. (Johns  
678 Hopkins University Press, 1984).

679 30. *New Zealand Official Yearbook (NZOYB)*. (1930).

680 31. Allendorf, F. W. & Lundquist, L. L. Introduction: Population Biology, Evolution, and Control of  
681 Invasive Species. *Conserv. Biol.* **17**, 24–30 (2003).

682 32. Kingsolver, J. G., Massie, K. R., Ragland, G. J. & Smith, M. H. Rapid population divergence in  
683 thermal reaction norms for an invading species: breaking the temperature-size rule. *J. Evol. Biol.*  
684 **20**, 892–900 (2007).

685 33. Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double Digest RADseq: An  
686 Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species.  
687 *PLoS ONE* **7**, e37135 (2012).

688 34. Ryan, S. F. *et al.* Climate-mediated hybrid zone movement revealed with genomics, museum  
689 collection, and simulation modeling. *Proc. Natl. Acad. Sci. U. S. A.* **115**, E2284–E2291 (2018).

690 35. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data.  
691 *Bioinformatics* **30**, 2114–2120 (2014).

692 36. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.  
693 *Bioinforma. Oxf. Engl.* **25**, 1754–1760 (2009).

694 37. DePristo, M. A. *et al.* A framework for variation discovery and genotyping using next-generation  
695 DNA sequencing data. *Nat. Genet.* **43**, 491–498 (2011).

696 38. McKenna, A. *et al.* The Genome Analysis Toolkit: a MapReduce framework for analyzing next-  
697 generation DNA sequencing data. *Genome Res.* **20**, 1297–1303 (2010).

698 39. Knaus, B. J. & Grünwald, N. J. vcfr: a package to manipulate and visualize variant call format data in  
699 *R. Mol. Ecol. Resour.* **17**, 44–53 (2017).

700 40. Ryan, S. F. *et al.* Patterns of divergence across the geographic and genomic landscape of a butterfly  
701 hybrid zone associated with a climatic gradient. *Mol. Ecol.* **26**, 4725–4742 (2017).

702 41. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J.*  
703 *Mol. Biol.* **215**, 403–410 (1990).

704 42. Shiryev, S. A., Papadopoulos, J. S., Schäffer, A. A. & Agarwala, R. Improved BLAST searches using  
705 longer words for protein seeding. *Bioinforma. Oxf. Engl.* **23**, 2949–2951 (2007).

706 43. Wang, J. *et al.* SilkDB: a knowledgebase for silkworm biology and genomics. *Nucleic Acids Res.* **33**,  
707 D399-402 (2005).

708 44. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated  
709 individuals. *Genome Res.* **19**, 1655–1664 (2009).

710 45. Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational inference of population  
711 structure in large SNP data sets. *Genetics* **197**, 573–589 (2014).

712 46. Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new  
713 method for the analysis of genetically structured populations. *BMC Genet.* **11**, 94 (2010).

714 47. Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. *Bioinforma.*  
715 *Oxf. Engl.* **24**, 1403–1405 (2008).

716 48. Francis, R. M. pophelper: an R package and web app to analyse and visualize population structure.  
717 *Mol. Ecol. Resour.* **17**, 27–32 (2017).

718 49. Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of  
719 populations with clonal, partially clonal, and/or sexual reproduction. *PeerJ* **2**, e281 (2014).

720 50. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R language.  
721 *Bioinformatics* **20**, 289–290 (2004).

722 51. Rambaut, A. *FigTree v1.4: Tree Figure Drawing Tool*. (2009).

723 52. Weir, B. S. & Cockerham, C. C. Estimating F-Statistics for the Analysis of Population Structure.  
724 *Evolution* **38**, 1358–1370 (1984).

725 53. Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian Computation in Population  
726 Genetics. *Genetics* **162**, 2025–2035 (2002).

727 54. Cornuet, J.-M. *et al.* DIYABC v2.0: a software to make approximate Bayesian computation  
728 inferences about population history using single nucleotide polymorphism, DNA sequence and  
729 microsatellite data. *Bioinformatics* **30**, 1187–1189 (2014).

730 55. Estoup, A. *et al.* Estimation of demo-genetic model probabilities with Approximate Bayesian  
731 Computation using linear discriminant analysis on summary statistics. *Mol. Ecol. Resour.* **12**, 846–  
732 855 (2012).

733 56. Breiman, L. Random Forests. *Mach. Learn.* **45**, 5–32 (2001).

734 57. Pudlo, P. *et al.* Reliable ABC model choice via random forests. *Bioinformatics* **32**, 859–866 (2016).

735 58. Lombaert, E. *et al.* Complementarity of statistical treatments to reconstruct worldwide routes of  
736 invasion: the case of the Asian ladybird *Harmonia axyridis*. *Mol. Ecol.* **23**, 5979–5997 (2014).

737 59. Cornuet, J.-M., Ravigné, V. & Estoup, A. Inference on population history and model checking using  
738 DNA sequence and microsatellite data with the software DIYABC (v1.0). *BMC Bioinformatics* **11**,  
739 401 (2010).

740 60. Raynal, L. *et al.* Raynal L, Marin J-M, Pudlo P, Ribatet M, Robert CP, Estoup A. ABC random forests  
741 for Bayesian parameter inference. *arXiv* **1605.05537v4**, (2017).

742 61. Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S. & Francis, C. M. Identification of Birds through DNA  
743 Barcodes. *PLoS Biol.* **2**, (2004).

744 62. Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species  
745 diversity (Hill numbers). *Methods Ecol. Evol.* **7**, 1451–1456 (2016).

746 63. Leigh, J. W. & Bryant, D. popart: full-feature software for haplotype network construction.  
747 *Methods Ecol. Evol.* **6**, 1110–1116 (2015).

748

749

750 **Figure Legends:**

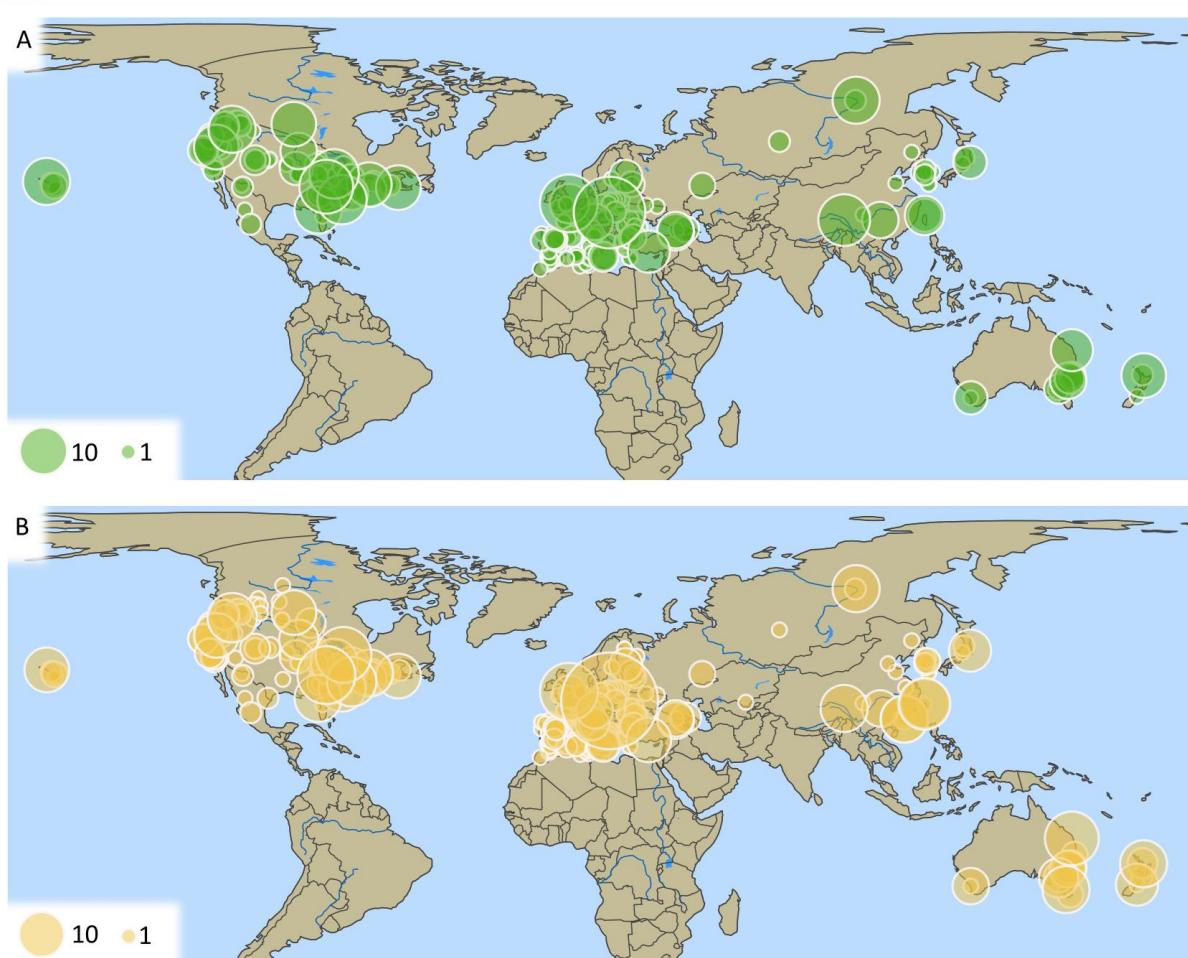
751 **Fig 1. Sample size by location.** **a**, ddRADseq (N = 559). **b**, mtDNA (N = 1,002). Size of points  
752 corresponds to sample size. Explore these data further through [interactive data visualizations](#).

753 **Fig 2. Global invasion history and patterns of genetic structure and diversity of *Pieris***  
754 ***rapae*.** **a**, Genetic ancestry assignments based on the program Admixture. **b**, Rooted neighbor-  
755 joining tree based on Nei's genetic distance. **c**, Among population genetic differentiation based  
756 on Weir and Cockerham's  $F_{ST}$ ; New Zealand and Australia are treated separately. **d**, Graphical  
757 illustration of divergence scenario chosen in ABC-RF analysis (Table 1), **e**, Geographic  
758 representation of divergence scenario with the highest likelihood based on ABC-RF analysis;  
759 points are colored based on their population assignment using Admixture (Fig 2a) and dates  
760 represent median estimates from ABC-RF analysis. All analysis based on 558 individuals  
761 genotyped for 17,917 ddRADseq SNPs. Explore these data further through [interactive data](#)  
762 [visualizations](#).

763 **Fig 3. Patterns of autosomal genetic diversity—observed heterozygosity, pairwise**  
764 **nucleotide diversity, and Tajima's D—by population.**

765 **Fig 4. Global patterns of mitochondrial haplotype diversity.** **a**, Geographic distribution of all  
766 88 mtDNA haplotypes discovered (unique color for each haplotype; see [interactive data](#)  
767 [visualizations](#) to explore individual haplotypes); note points jittered to avoid overlapping  
768 (hidden) points, thus coordinates are approximate, and the color used for haplotypes are  
769 unrelated to those used in other panels. **b**, Haplotype network inferred using median-joining  
770 algorithm and colored by population. Hash marks between haplotypes represent base changes  
771 (mutations). **c**, Number of unique mtDNA haplotypes by population as well as subpopulation  
772 estimated using a rarefaction approach (see Methods) and plotted by geographic location. **d**,  
773 Pairwise nucleotide diversity by population.

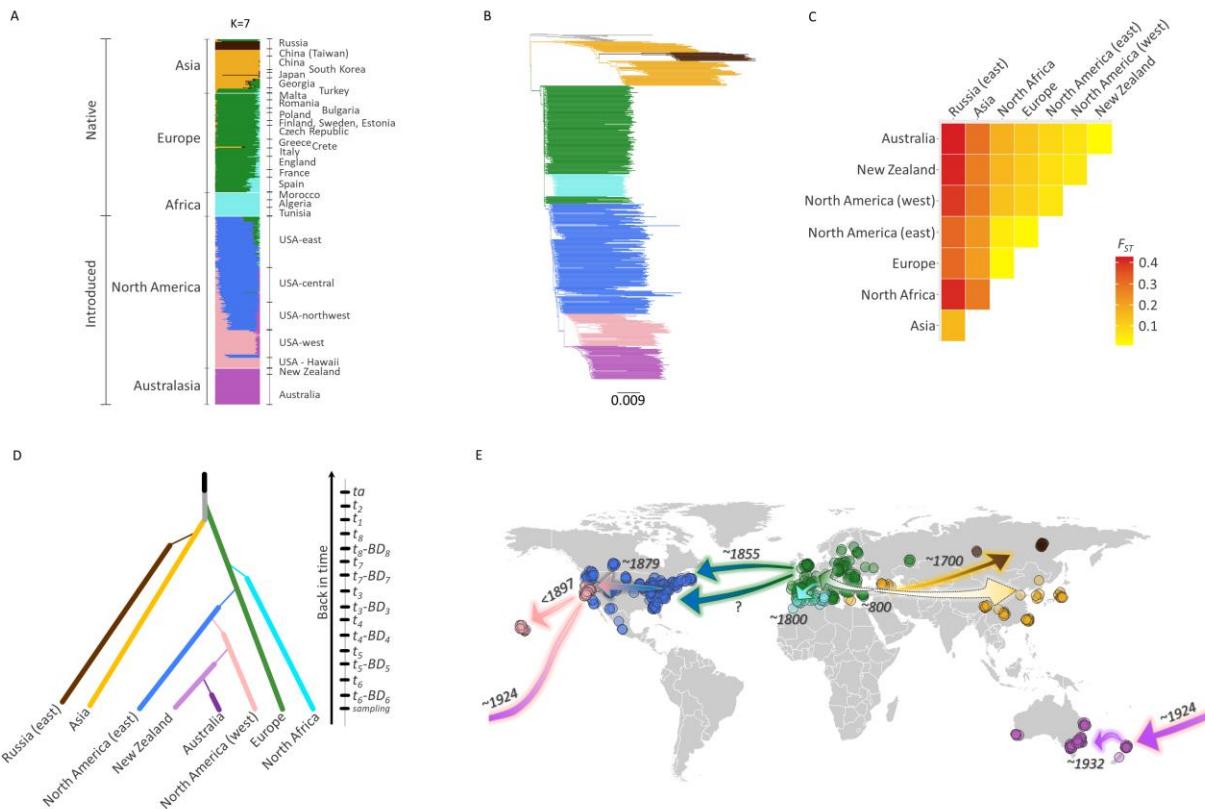
774 **Tables**


775 **Table 1.** Description of the competing scenarios and results of the six successive ABC analyses to infer the invasion  
 776 history of *Pieris rapae*.

| Step                                                                               | Scenario | Prior error rate |        |        | Random forest votes |            |            | Posterior probability |               |               |
|------------------------------------------------------------------------------------|----------|------------------|--------|--------|---------------------|------------|------------|-----------------------|---------------|---------------|
|                                                                                    |          | Data 1           | Data 2 | Data 3 | Data 1              | Data 2     | Data 3     | Data 1                | Data 2        | Data 3        |
| <i>Analysis 1 - Native area - 18 summary statistics; 13,974 SNPs</i>               |          | 13.82%           | 14.49% | 14.29% |                     |            |            |                       |               |               |
| S1: Asia is the source of Europe                                                   |          |                  |        |        | 57                  | 188        | 207        | -                     | -             | -             |
| S2: Europe is the source of Asia                                                   |          |                  |        |        | 132                 | 132        | 43         | -                     | -             | -             |
| <b>S3: Asia and Europe both derived from an ancestral population</b>               |          |                  |        |        | <b>811</b>          | <b>680</b> | <b>750</b> | <b>0.8479</b>         | <b>0.8173</b> | <b>0.8353</b> |
| <i>Analysis 2 - Russia and North Africa - 115 summary statistics; 15,533 SNPs</i>  |          | 16.26%           | 17.22% | 17.07% |                     |            |            |                       |               |               |
| <b>S1: Asia and Europe are respectively the sources of Russia and Africa</b>       |          |                  |        |        | <b>602</b>          | <b>676</b> | <b>521</b> | <b>0.7020</b>         | <b>0.7549</b> | <b>0.6352</b> |
| S2: Asia and Africa are respectively the sources of Russia and Europe              |          |                  |        |        | 162                 | 180        | 146        | -                     | -             | -             |
| S3: Africa and Russia are respectively the sources of Europe and Asia              |          |                  |        |        | 56                  | 30         | 76         | -                     | -             | -             |
| S4: Europe and Russia are respectively the sources of Africa and Asia              |          |                  |        |        | 180                 | 114        | 257        | -                     | -             | -             |
| <i>Analysis 3 - North America east (NAE) - 51 summary statistics; 16,753 SNPs</i>  |          | 32.82%           | 31.83% | 31.82% |                     |            |            |                       |               |               |
| S1: Asia is the source of NAE, 1 introduction                                      |          |                  |        |        | 0                   | 9          | 2          | -                     | -             | -             |
| <b>S2: Europe is the source of NAE, 1 introduction</b>                             |          |                  |        |        | <b>576</b>          | <b>553</b> | <b>559</b> | <b>0.5010</b>         | <b>0.6136</b> | <b>0.5064</b> |
| S3: Asia is the source of NAE, 2 introductions                                     |          |                  |        |        | 6                   | 4          | 2          | -                     | -             | -             |
| S4: Europe is the source of NAE, 2 introductions                                   |          |                  |        |        | 418                 | 434        | 437        | -                     | -             | -             |
| <i>Analysis 4 - North America west (NAW) - 116 summary statistics; 17,049 SNPs</i> |          | 11.44%           | 11.54% | 10.95% |                     |            |            |                       |               |               |
| S1: Asia is the source of NAW                                                      |          |                  |        |        | 19                  | 35         | 13         | -                     | -             | -             |
| S2: Europe is the source of NAW                                                    |          |                  |        |        | 144                 | 121        | 41         | -                     | -             | -             |
| <b>S3: NAE is the source of NAW</b>                                                |          |                  |        |        | <b>721</b>          | <b>720</b> | <b>933</b> | <b>0.8518</b>         | <b>0.9288</b> | <b>0.9524</b> |
| S4: Europe is the source of NAW ~ 1600 CE                                          |          |                  |        |        | 85                  | 73         | 7          | -                     | -             | -             |
| S5: Europe is the source of NAW ~ 1600 CE; NAW is the source of NAE                |          |                  |        |        | 31                  | 51         | 6          | -                     | -             | -             |
| <i>Analysis 5 - New Zealand - 223 summary statistics; 17,100 SNPs</i>              |          | 2.18%            | 2.30%  | 2.18%  |                     |            |            |                       |               |               |
| S1: Asia is the source of New Zealand                                              |          |                  |        |        | 2                   | 6          | 5          | -                     | -             | -             |
| S2: Europe is the source of New Zealand                                            |          |                  |        |        | 14                  | 14         | 28         | -                     | -             | -             |
| S3: NAE is the source of New Zealand                                               |          |                  |        |        | 16                  | 52         | 130        | -                     | -             | -             |
| <b>S4: NAW is the source of New Zealand</b>                                        |          |                  |        |        | <b>968</b>          | <b>928</b> | <b>837</b> | <b>0.9739</b>         | <b>0.9760</b> | <b>0.9802</b> |
| <i>Analysis 6 - Australia - 388 summary statistics; 17,116 SNPs</i>                |          | 14.94%           | 15.00% | 14.81% |                     |            |            |                       |               |               |
| <b>S1: New Zealand is the source of Australia</b>                                  |          |                  |        |        | <b>631</b>          | <b>733</b> | <b>613</b> | <b>0.7797</b>         | <b>0.8420</b> | <b>0.8124</b> |
| S2: NAW is the source of Australia                                                 |          |                  |        |        | 63                  | 33         | 62         | -                     | -             | -             |
| S3: New Zealand and Europe are the source of Australia (admixture)                 |          |                  |        |        | 15                  | 10         | 18         | -                     | -             | -             |
| S4: New Zealand and Asia are the source of Australia (admixture)                   |          |                  |        |        | 15                  | 7          | 10         | -                     | -             | -             |
| S5: New Zealand and NAW are the source of Australia (admixture)                    |          |                  |        |        | 276                 | 217        | 297        | -                     | -             | -             |

Results are provided for all three datasets. For each ABC analysis a forest of 1,000 trees was grown. The lines in bold characters corresponds to the selected (most likely) scenarios.

777

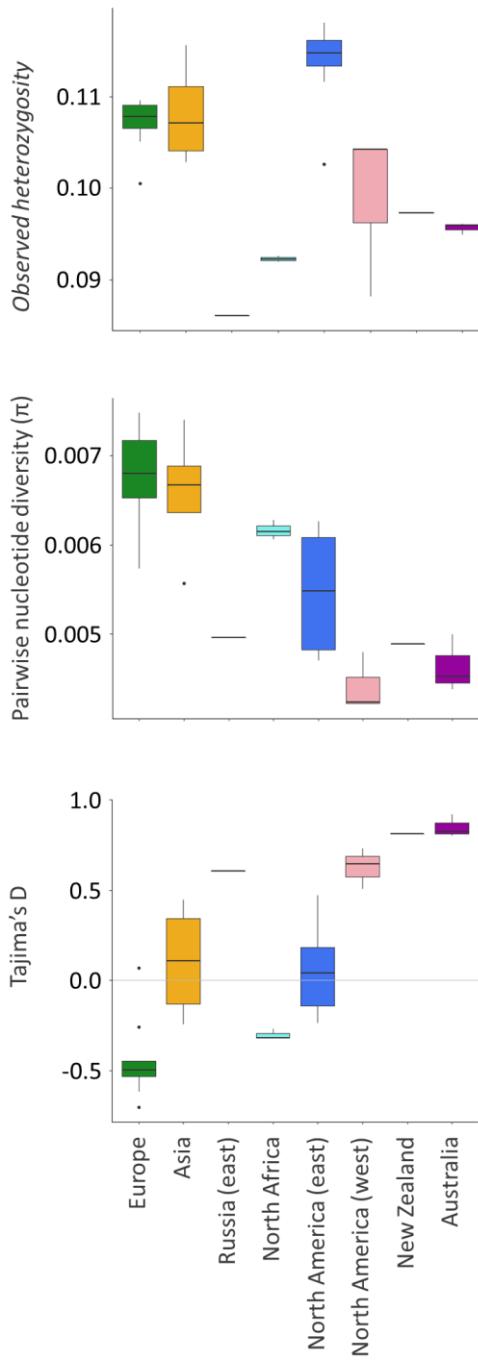

778 **Figures**



779

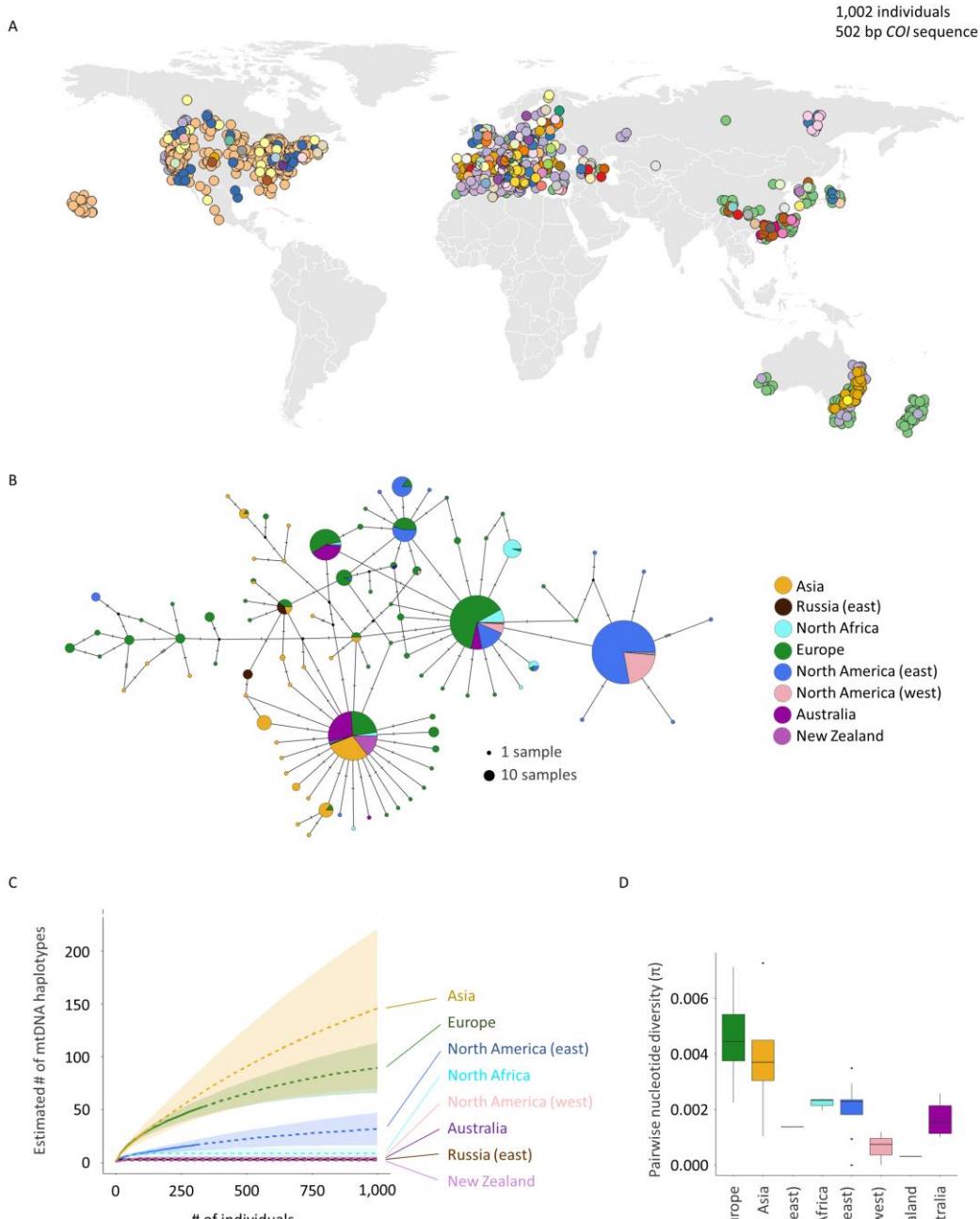
780 **Fig 1. Sample size by location. a, ddRADseq (N = 559). b, mtDNA (N = 1,002).** Size of points  
781 corresponds to sample size. Explore these data further through [interactive data visualizations](#).

782




783

784 **Fig 2. Global invasion history and patterns of genetic structure and diversity of *Pieris***  
785 ***rapae*.** **a**, Genetic ancestry assignments based on the program Admixture. **b**, Rooted neighbor-  
786 joining tree based on Nei's genetic distance. **c**, Among population genetic differentiation based  
787 on Weir and Cockerham's  $F_{ST}$ ; New Zealand and Australia are treated separately. **d**, Graphical  
788 illustration of divergence scenario chosen in ABC-RF analysis (Table 1). **e**, Geographic  
789 representation of divergence scenario with the highest likelihood based on ABC-RF analysis;  
790 points are colored based on their population assignment using Admixture (Fig 2a) and dates  
791 (Common Era) represent median estimates from ABC-RF analysis. All analysis based on 558  
792 individuals genotyped for 17,917 ddRADseq SNPs. Explore these data further through  
793 [interactive data visualizations](#).


794

795



796

797 **Fig 3. Patterns of autosomal genetic diversity—observed heterozygosity, pairwise**  
798 **nucleotide diversity, and Tajima's  $D$ —by population.**



799

800 **Fig 4. Global patterns of mitochondrial haplotype diversity.** **a**, Geographic distribution of all  
801 88 mtDNA haplotypes discovered (unique color for each haplotype; see [interactive data](#)  
802 [visualizations](#) to explore individual haplotypes); note points jittered to avoid overlapping  
803 (hidden) points, thus coordinates are approximate, and the color used for haplotypes are  
804 unrelated to those used in other panels. **b**, Haplotype network inferred using median-joining

805 algorithm and colored by population. Hash marks between haplotypes represent base changes  
806 (mutations). **c**, Number of unique mtDNA haplotypes by population as well as subpopulation  
807 estimated using a rarefaction approach (see Methods) and plotted by geographic location. **d**,  
808 Pairwise nucleotide diversity by population. Explore these data further through [interactive data](#)  
809 [visualizations](#).

810 **Supplementary Tables**

811 **Table S1.** Contribution of specimens made by citizen scientists.

812

| Country        | Specimens collected by citizen scientists | Total specimens collected | % of specimens collected by citizen scientists |
|----------------|-------------------------------------------|---------------------------|------------------------------------------------|
| Czech Republic | 43                                        | 43                        | 100%                                           |
| Portugal       | 2                                         | 2                         | 100%                                           |
| Gibraltar      | 4                                         | 4                         | 100%                                           |
| Turkey         | 10                                        | 10                        | 100%                                           |
| South Korea    | 11                                        | 11                        | 100%                                           |
| Russia         | 16                                        | 18                        | 89%                                            |
| Australia      | 62                                        | 76                        | 82%                                            |
| New Zealand    | 17                                        | 25                        | 68%                                            |
| USA            | 149                                       | 305                       | 49%                                            |
| Spain          | 13                                        | 27                        | 48%                                            |
| Canada         | 11                                        | 24                        | 46%                                            |
| Romania        | 4                                         | 12                        | 33%                                            |
| Bulgaria       | 2                                         | 9                         | 22%                                            |
| Algeria        | 0                                         | 12                        | 0%                                             |
| Austria        | 0                                         | 2                         | 0%                                             |
| China          | 0                                         | 22                        | 0%                                             |
| England        | 0                                         | 26                        | 0%                                             |
| Estonia        | 0                                         | 4                         | 0%                                             |
| Finland        | 0                                         | 7                         | 0%                                             |
| France         | 0                                         | 12                        | 0%                                             |
| Georgia        | 0                                         | 22                        | 0%                                             |
| Greece         | 0                                         | 12                        | 0%                                             |
| Italy          | 0                                         | 14                        | 0%                                             |
| Japan          | 0                                         | 11                        | 0%                                             |
| Malta          | 0                                         | 10                        | 0%                                             |
| Mexico         | 0                                         | 6                         | 0%                                             |
| Morocco        | 0                                         | 12                        | 0%                                             |
| Poland         | 0                                         | 12                        | 0%                                             |
| Sweden         | 0                                         | 2                         | 0%                                             |
| Taiwan         | 0                                         | 24                        | 0%                                             |
| Tunisia        | 0                                         | 12                        | 0%                                             |
| Ukraine        | 0                                         | 2                         | 0%                                             |

813

814

815 **Table S2.** Prior and posterior distributions of all parameters and several composite parameters of  
 816 the full final complete scenario (Fig 2d) performed with dataset 1.

| Parameters                  | Prior distributions |        |         |         | Posterior distributions |         |         |         |
|-----------------------------|---------------------|--------|---------|---------|-------------------------|---------|---------|---------|
|                             | Q 5%                | median | mean    | Q 95%   | Q 5%                    | median  | mean    | Q 95%   |
| <b>Raw parameters</b>       |                     |        |         |         |                         |         |         |         |
| $N_1$                       | 159                 | 10,110 | 107,800 | 629,178 | 2,630                   | 13,662  | 80,180  | 592,324 |
| $N_2$                       | 158                 | 9,872  | 108,500 | 636,286 | 8,217                   | 52,803  | 177,076 | 710,940 |
| $N_3$                       | 156                 | 9,942  | 107,600 | 626,685 | 10,994                  | 184,625 | 300,675 | 881,015 |
| $N_4$                       | 159                 | 10,010 | 108,200 | 630,976 | 2,305                   | 88,066  | 245,186 | 914,933 |
| $N_5$                       | 158                 | 10,050 | 108,900 | 632,660 | 3,477                   | 226,668 | 303,680 | 860,610 |
| $N_6$                       | 160                 | 10,350 | 108,100 | 628,855 | 1,863                   | 119,285 | 294,245 | 884,571 |
| $N_7$                       | 158                 | 10,140 | 108,900 | 630,040 | 2,033                   | 98,892  | 239,822 | 872,549 |
| $N_8$                       | 160                 | 9,863  | 108,100 | 629,561 | 1,038                   | 39,466  | 187,263 | 794,756 |
| $N_A$                       | 799                 | 68,110 | 193,500 | 792,653 | 26,142                  | 167,928 | 247,860 | 829,410 |
| $N_D$                       | 126                 | 1,469  | 23,160  | 123,273 | 269                     | 14,173  | 22,626  | 75,263  |
| $NF_3$                      | 3                   | 20     | 43      | 159     | 13                      | 90      | 98      | 191     |
| $NF_4$                      | 3                   | 20     | 43      | 159     | 11                      | 52      | 63      | 152     |
| $NF_5$                      | 3                   | 20     | 43      | 159     | 10                      | 68      | 77      | 164     |
| $NF_6$                      | 3                   | 20     | 43      | 158     | 11                      | 88      | 91      | 179     |
| $NF_7$                      | 3                   | 20     | 43      | 159     | 13                      | 87      | 89      | 179     |
| $NF_8$                      | 3                   | 20     | 43      | 159     | 6                       | 64      | 71      | 172     |
| $DB_3$                      | 2                   | 15     | 16      | 29      | 1                       | 5       | 6       | 15      |
| $DB_4$                      | 2                   | 15     | 15      | 29      | 5                       | 15      | 16      | 28      |
| $DB_5$                      | 2                   | 16     | 16      | 29      | 2                       | 15      | 15      | 29      |
| $DB_6$                      | 2                   | 15     | 15      | 29      | 1                       | 7       | 9       | 21      |
| $DB_7$                      | 2                   | 16     | 16      | 29      | 2                       | 9       | 11      | 26      |
| $DB_8$                      | 2                   | 16     | 16      | 29      | 3                       | 15      | 15      | 29      |
| $t_1$                       | 974                 | 4,162  | 4,566   | 9,260   | 908                     | 3,576   | 4,159   | 8,849   |
| $t_2$                       | 973                 | 4,165  | 4,562   | 9,265   | 850                     | 3,011   | 3,656   | 8,510   |
| $t_3$                       | 467                 | 480    | 480     | 494     | 467                     | 481     | 480     | 494     |
| $t_4$                       | 398                 | 411    | 411     | 425     | 397                     | 408     | 409     | 424     |
| $t_5$                       | 260                 | 273    | 273     | 287     | 261                     | 274     | 274     | 287     |
| $t_6$                       | 235                 | 249    | 249     | 262     | 235                     | 248     | 248     | 262     |
| $t_7$                       | 540                 | 1,205  | 1,788   | 5,121   | 511                     | 674     | 880     | 1,814   |
| $t_8$                       | 539                 | 1,200  | 1,783   | 5,119   | 529                     | 859     | 1,057   | 2,312   |
| $t_a$                       | 14,547              | 55,320 | 55,170  | 95,499  | 14,751                  | 60,482  | 58,546  | 96,484  |
| <b>Composite parameters</b> |                     |        |         |         |                         |         |         |         |
| $BNsev_3$                   | 42                  | 6,208  | 180,900 | 900,381 | 203                     | 1,062   | 11,425  | 51,050  |
| $BNsev_4$                   | 41                  | 6,155  | 181,600 | 907,241 | 2,513                   | 57,450  | 153,718 | 635,627 |
| $BNsev_5$                   | 41                  | 6,186  | 181,700 | 913,085 | 618                     | 23,343  | 99,199  | 459,562 |
| $BNsev_6$                   | 42                  | 6,290  | 182,500 | 924,448 | 151                     | 12,860  | 40,460  | 134,639 |
| $BNsev_7$                   | 41                  | 6,053  | 183,900 | 930,965 | 539                     | 6,793   | 34,863  | 167,428 |
| $BNsev_8$                   | 41                  | 6,162  | 179,500 | 886,500 | 309                     | 5,580   | 13,628  | 46,122  |

Note:  $BNsev_i$  = bottleneck severity of population  $i$  computed as  $[BD_i \times N_{\text{parental population of population } i}) / NF_i]$ , with parental populations being populations 2, 3, 4, 5, 2 and 1 for populations 3, 4, 5, 6, 7 and 8 respectively.

817

818

819 **Table S3.** Metadata for specimens used in this study.

820 Included as supplementary file (too large)

821

822 **Table S4.** Populations used for ABC-RF analyses.

823 Included as supplementary file (too large)

824

825 **Table S5.** Prior distributions of demographic and historical parameters used in ABC analyses  
 826 processed to retrace the worldwide invasion routes of *Pieris rapae*.

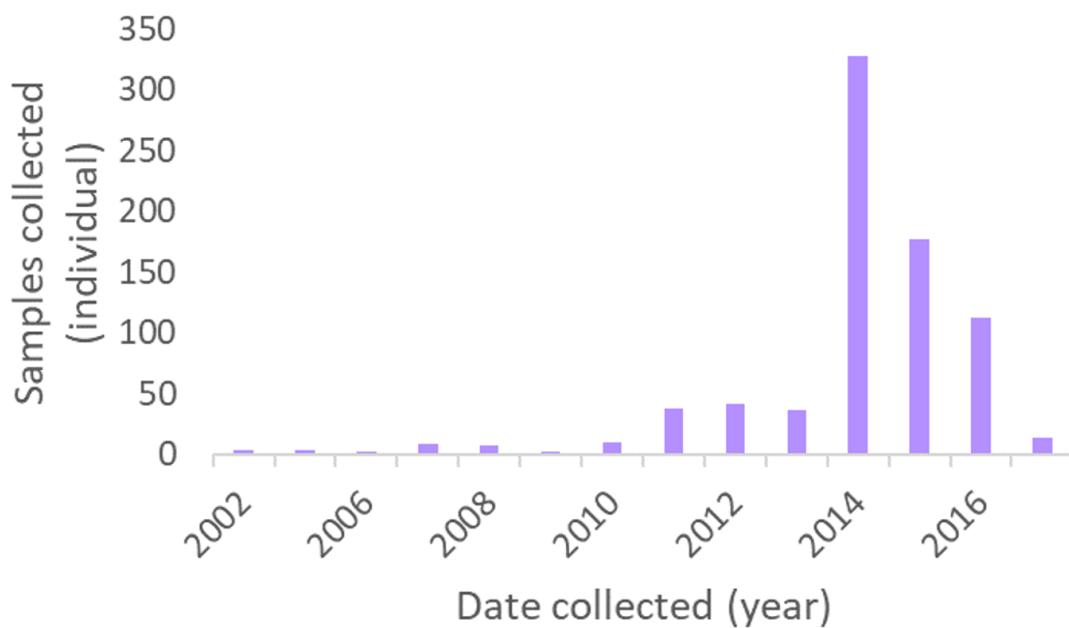
| Parameters                     | Distribution                     | Quantile 5% | Median | Mean    | Quantile 95% |
|--------------------------------|----------------------------------|-------------|--------|---------|--------------|
| $N_D$                          | Log-Uniform<br>[100 – 1,000,000] | 126         | 1,482  | 23,610  | 128,053      |
| $N_A$                          | Log-Uniform<br>[100 – 1,000,000] | 774         | 67,560 | 192,800 | 790,045      |
| $N_j, N_i, N_{ia}, N_{ib}$     | Log-Uniform<br>[100 – 1,000,000] | 159         | 10,280 | 108,600 | 629,089      |
| $NF_j, NF_i, NF_{ia}, NF_{ib}$ | Log-Uniform<br>[2 – 200]         | 3           | 20     | 43      | 159          |
| $BD_j, BD_i, BD_{ia}, BD_{ib}$ | Uniform<br>[1 – 30]              | 2           | 16     | 15      | 29           |
| $ta$                           | Uniform<br>[10,000 – 100,000]    | 14,547      | 54,930 | 54,990  | 95,453       |
| $t_j$                          | Log-Uniform<br>[500 – 10,000]    | 585         | 2,265  | 3,197   | 8,617        |
| $t_i, t_{ia}$                  | Uniform<br>[ $x_i - x_i + 30$ ]  | DV          | DV     | DV      | DV           |
| $t_{mix}, t_{ib}$              | Uniform<br>[165 – $x_i + 30$ ]   | DV          | DV     | DV      | DV           |
| $t_{4old}$                     | Uniform<br>[1245 – 1275]         | 1,246       | 1,260  | 1,260   | 1,274        |
| $ar_i$                         | Uniform<br>[0.1 – 0.9]           | 0.14        | 0.50   | 0.50    | 0.86         |

Notes: Index  $i$  stands for the number of the invasive population, i.e. 3, 4, 5 or 6 for North America (east), North America (west), New Zealand or Australia respectively. Index  $j$  stands for the number of the ancient putative native population, i.e. 1, 2, 7 or 8 for Asia, Europe, Africa or Russia (east) respectively.  $N_D$  and  $N_A$  = stable effective population size (number of diploid individuals) of the ancestral native population respectively before and after a demographic expansion event ( $N_G < N_A$ );  $N_j, N_i$  = stable effective population size (number of diploid individuals) of the putative native and invasive populations;  $NF_i$  = effective number of founders during a bottleneck lasting  $BD_i$  generation(s) for population  $i$ ;  $ta$  = time of the demographic expansion in the ancestral native population;  $t_j$  = merging time of the putative native populations into the ancestral one;  $t_i$  = introduction time of invasive populations  $i$  with bounds  $x_i$  fixed from dates of first observation of established population;  $t_{4old}$  corresponds to the particular case of an old introduction hypothesis of the North American (west) population in ABC analysis 4;  $N_{ia}, N_{ib}, NF_{ia}, NF_{ib}, BD_{ia}$  and  $BD_{ib}, t_{ia}, t_{ib}$  and  $t_{mix}$  are the parameters associated to an admixture event leading to the formation of invasive population  $i$ ;  $ar_i$  = admixture rate. Depending on the scenarios considered, various conditions were applied to times so that coalescent times fit with each scenario's topology. All times are expressed in number of generations assuming 3 generations per year, and running back in time from time 0 which corresponds to year 2015. All prior quantities presented were computed from  $10^5$  values. DV = different values were possible. See Figure S3 for a graphical representation of the evolutionary scenarios with associated historical and demographic parameters considered in the ABC analyses.

827

828

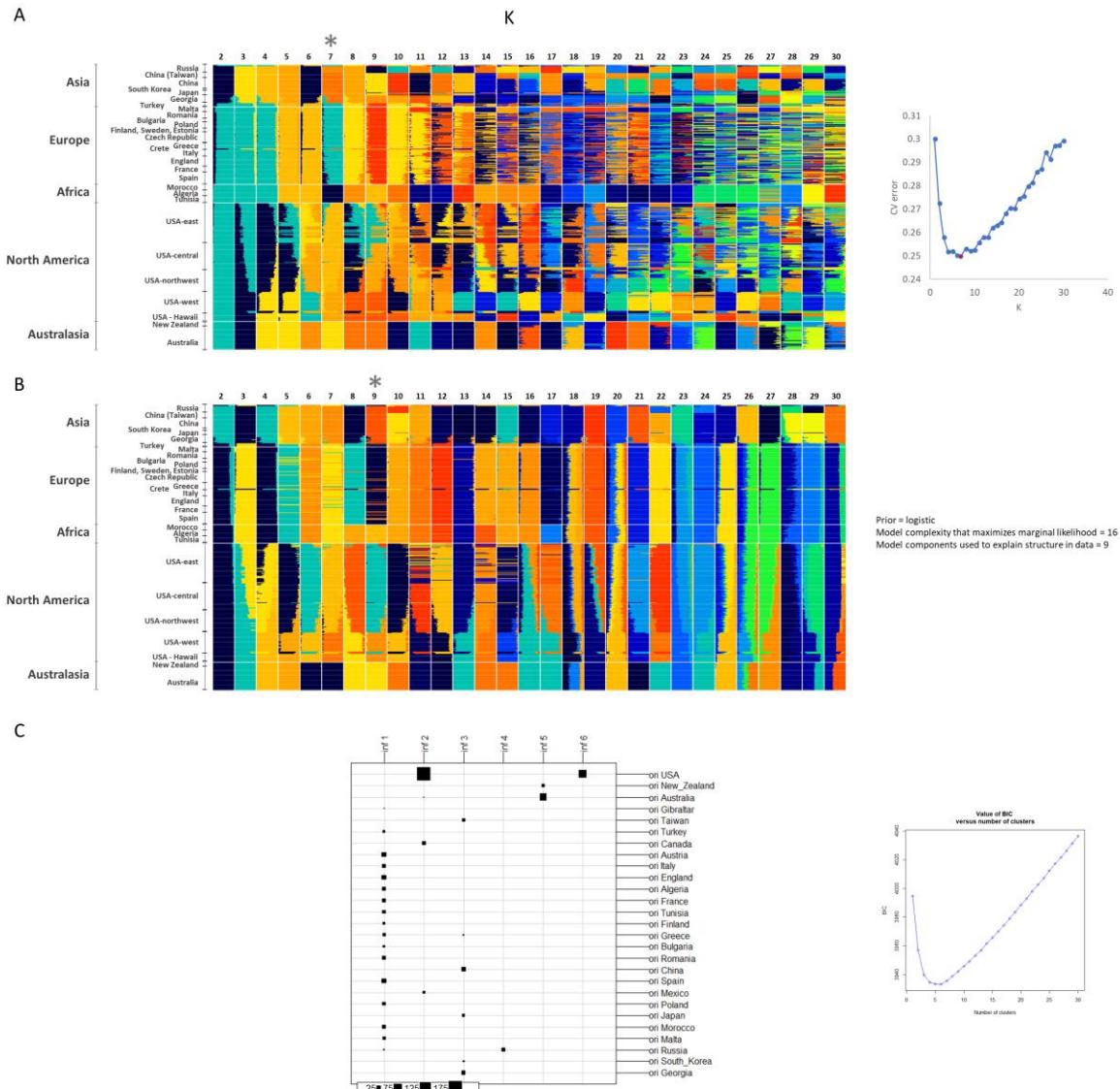
829 **Table S6.** Summary statistics used in all DIYABC simulations (Cornuet et al., 2014).


| DIYABC abbreviation                                                                                        | Description                                                         |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| <i>Single sample statistics for each sampled population</i>                                                |                                                                     |
| HP0                                                                                                        | Proportion of loci with zero gene diversity                         |
| HM1                                                                                                        | Mean gene diversity across polymorphic loci (Nei, 1987)             |
| HV1                                                                                                        | Variance of gene diversity across polymorphic loci                  |
| HMO                                                                                                        | Mean gene diversity across all loci                                 |
| <i>Two sample statistics for each pairwise sample combination</i>                                          |                                                                     |
| FP0                                                                                                        | Proportion of loci with zero F ST distance (Weir & Cockerham, 1984) |
| FM1                                                                                                        | Mean across loci of non-zero F ST distances                         |
| FV1                                                                                                        | Variance across loci of non-zero F ST distances                     |
| FMO                                                                                                        | Mean across loci of F ST distances                                  |
| NP0                                                                                                        | Proportion of loci with zero Nei's distance (Nei, 1972)             |
| NM1                                                                                                        | Mean across loci of non-zero Nei's distances                        |
| NV1                                                                                                        | Variance across loci of non-zero Nei's distances                    |
| NMO                                                                                                        | Mean across loci of Nei's distances                                 |
| <i>Admixture statistics (Choisy et al., 2004) for each combination of parental and admixed populations</i> |                                                                     |
| AP0                                                                                                        | Proportion of loci with zero admixture estimates                    |
| AM1                                                                                                        | Mean across loci of non-zero admixture estimate                     |
| AV1                                                                                                        | Variance across loci of non-zero admixture estimated                |
| AMO                                                                                                        | Mean across all locus admixture estimates                           |

830

831

832 **Supplementary Figures**


833

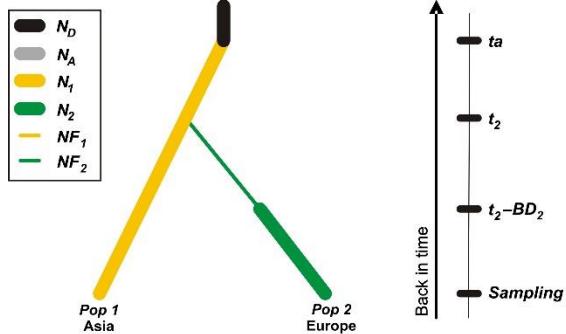


834

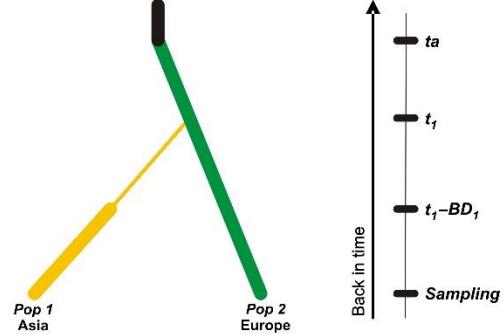
835 **Fig S1.** Sample sizes of *Pieris rapae* specimens by year collected.

836

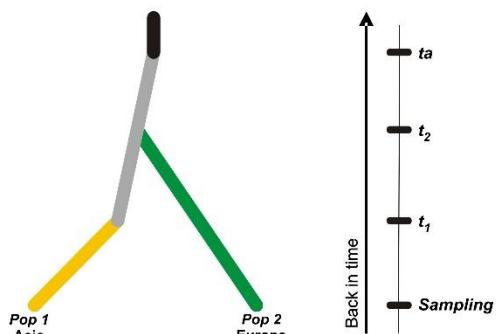



842

A. Analysis 1 – Native area


843

844


Scenario 1



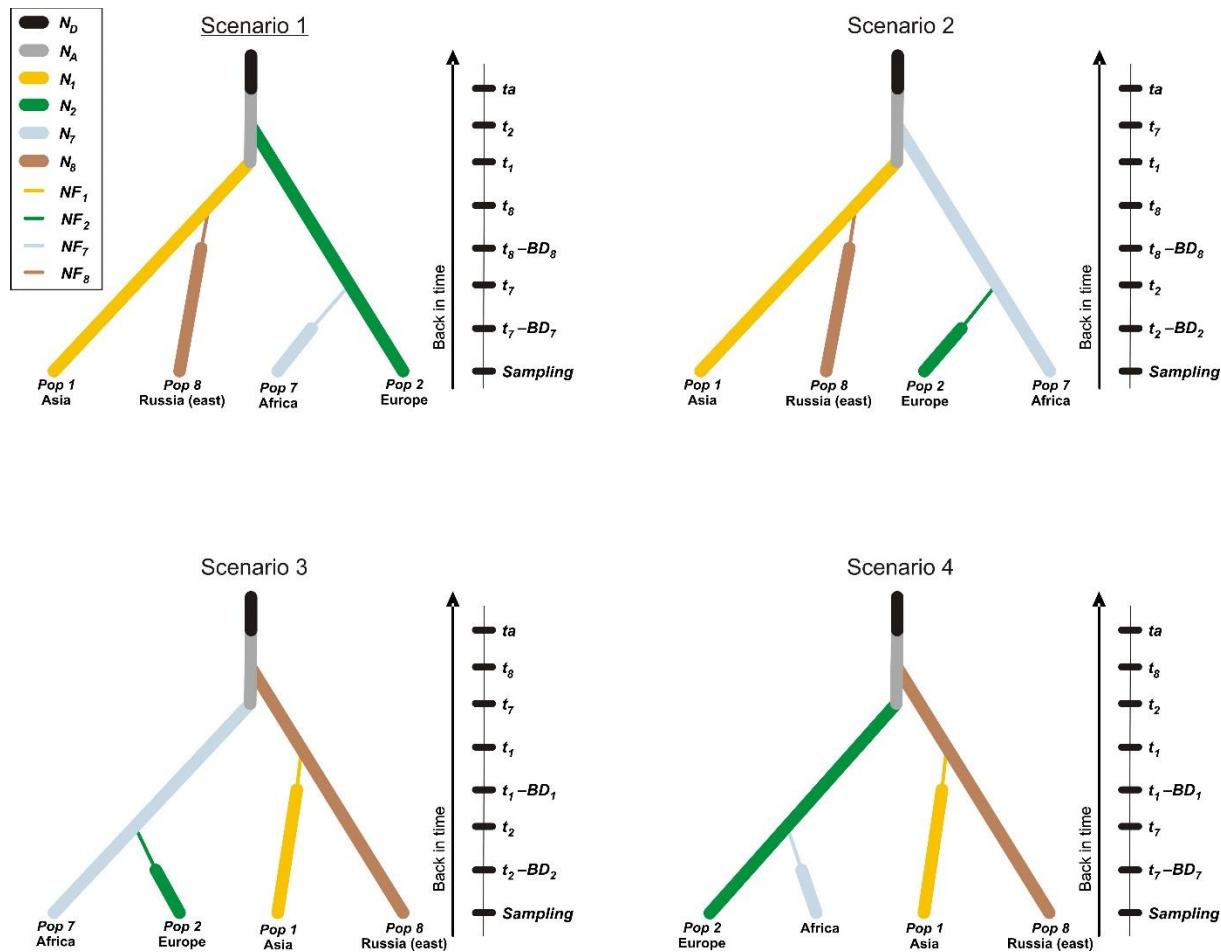
Scenario 2



Scenario 3



845


846

847

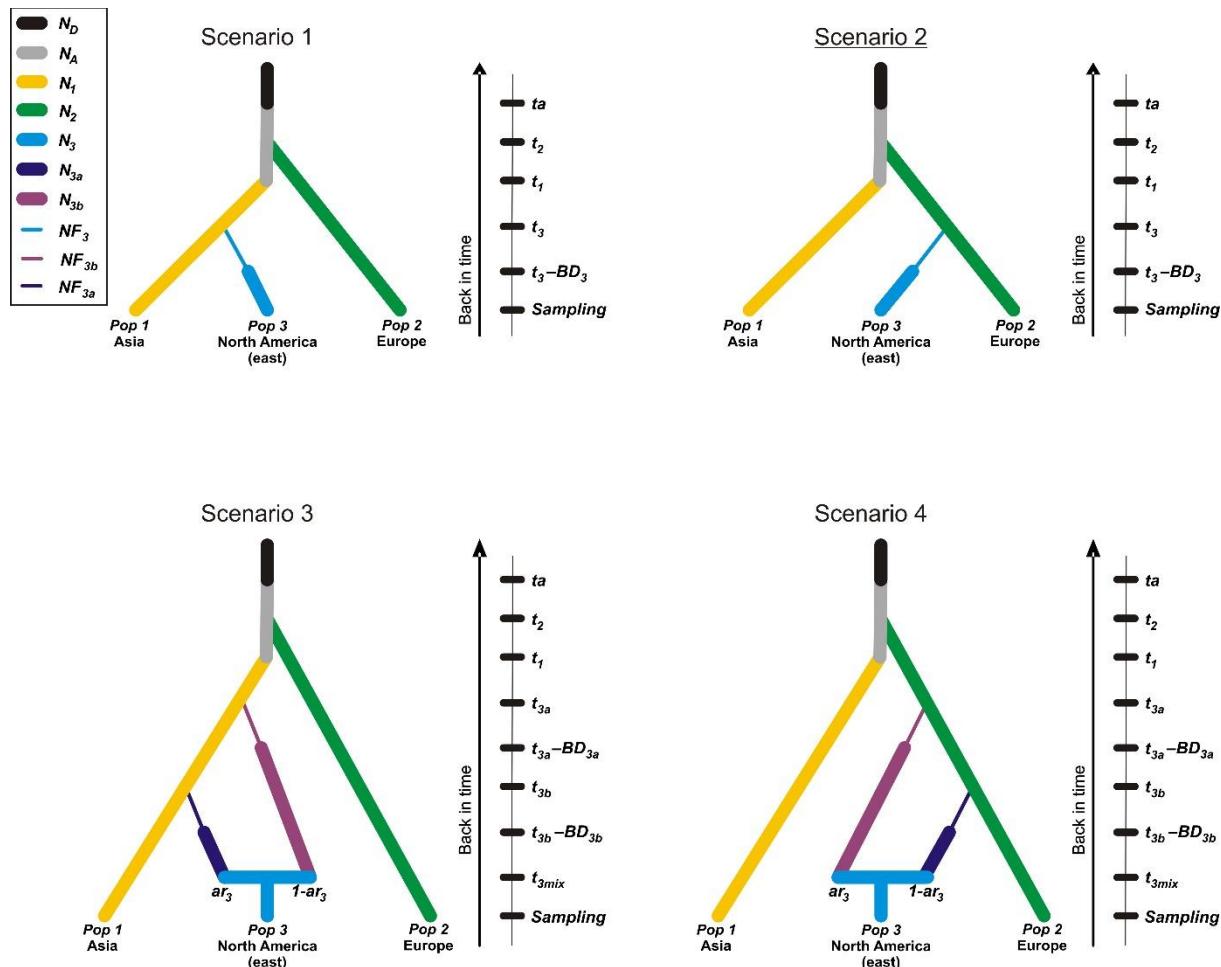
848 B. Analysis 2 – Russia (east) and North Africa

849

850

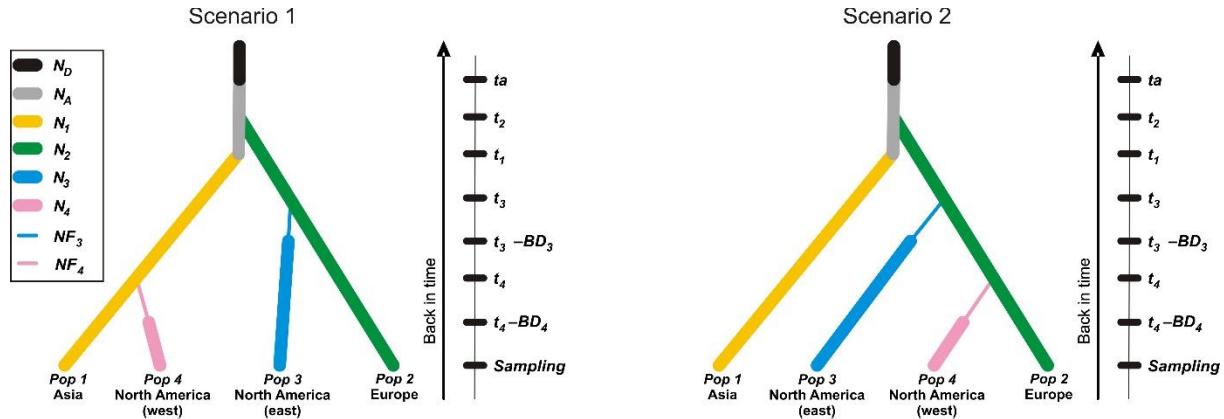


851

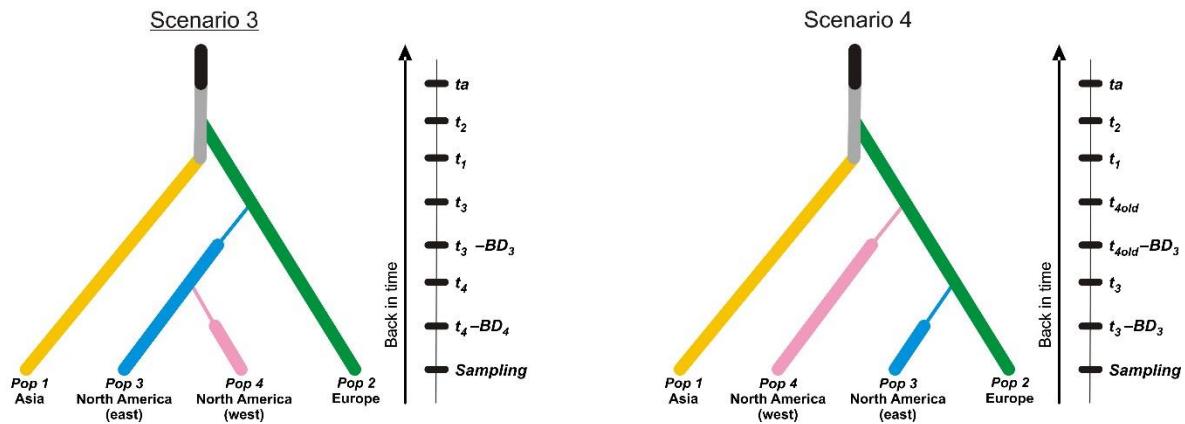

852

853

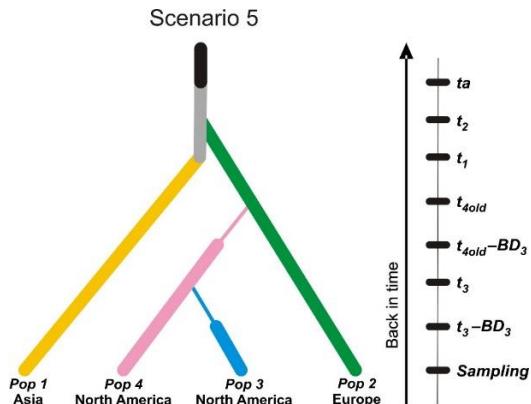
854 C. Analysis 3 – North America (east)


855

856




860

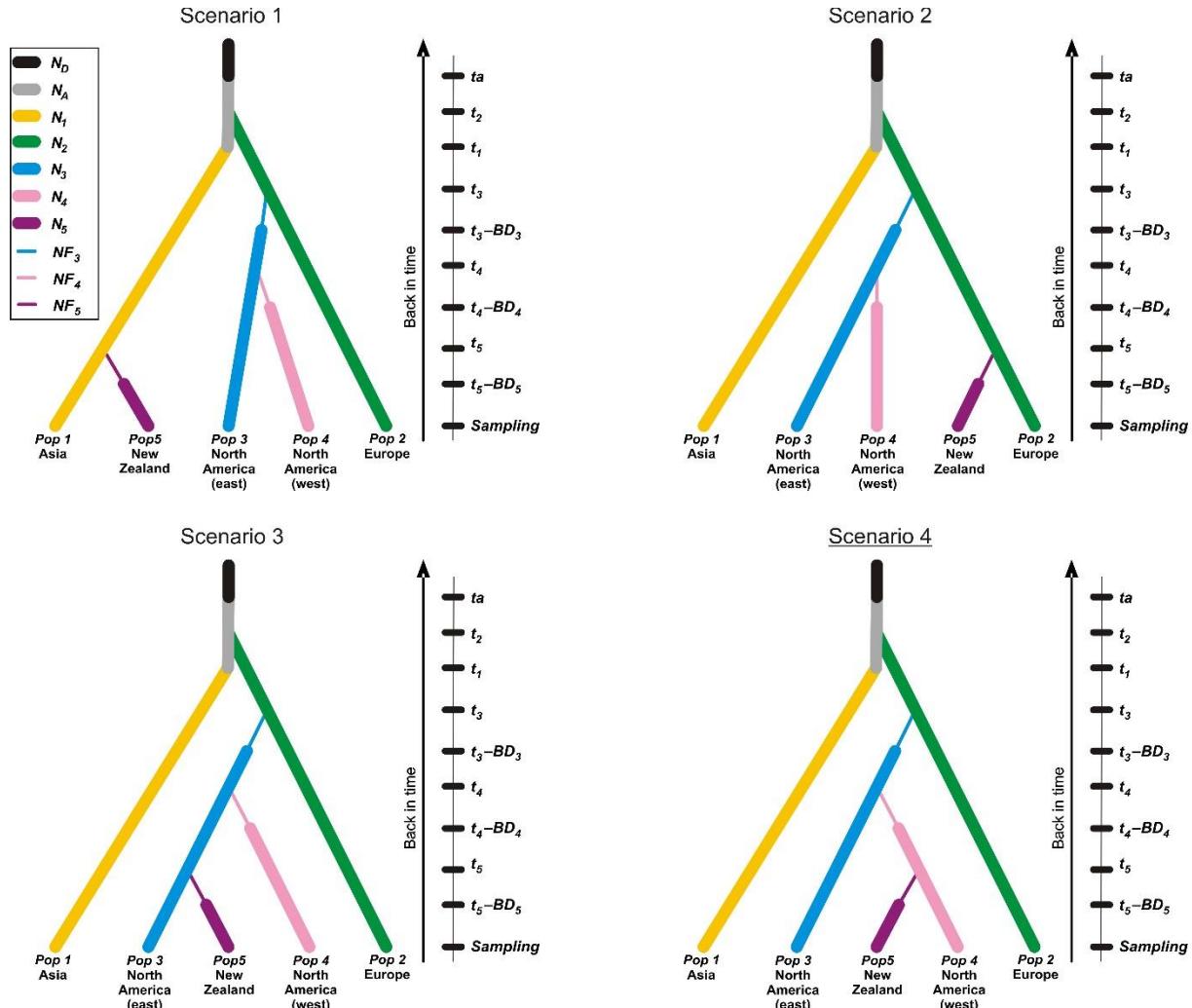

D. Analysis 4 – North America (west)



861



862



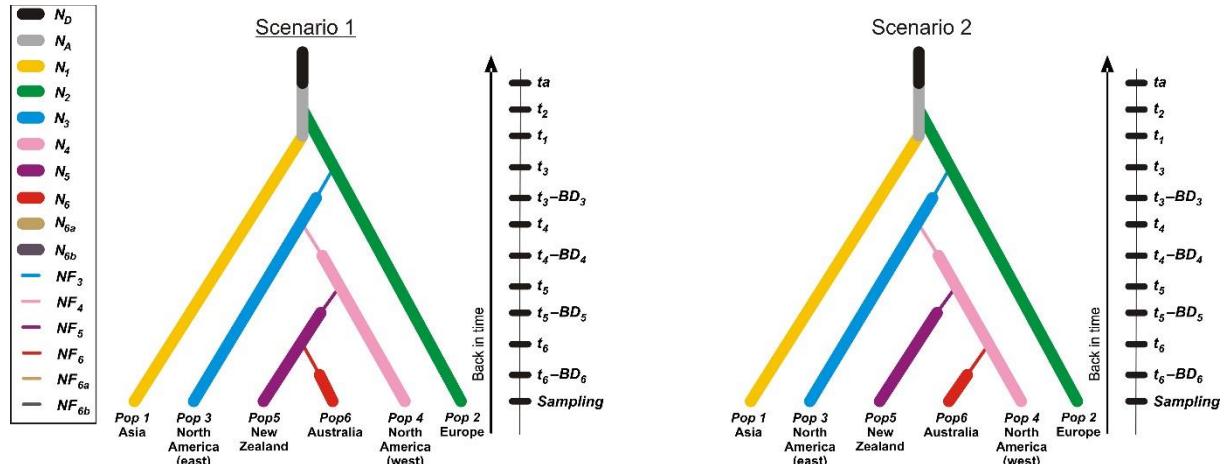

863

864

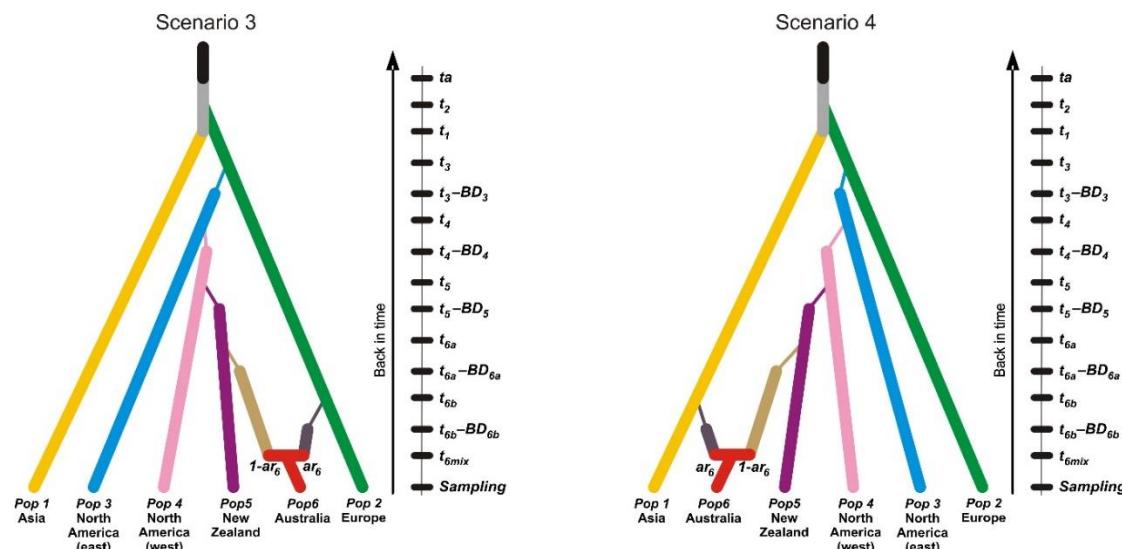
865

E. Analysis 5 – New Zealand



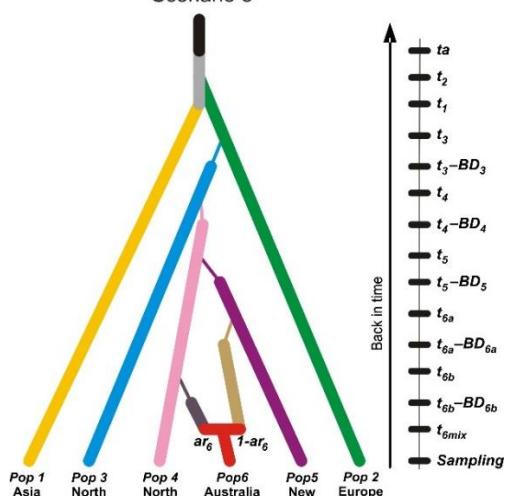

866

867


868

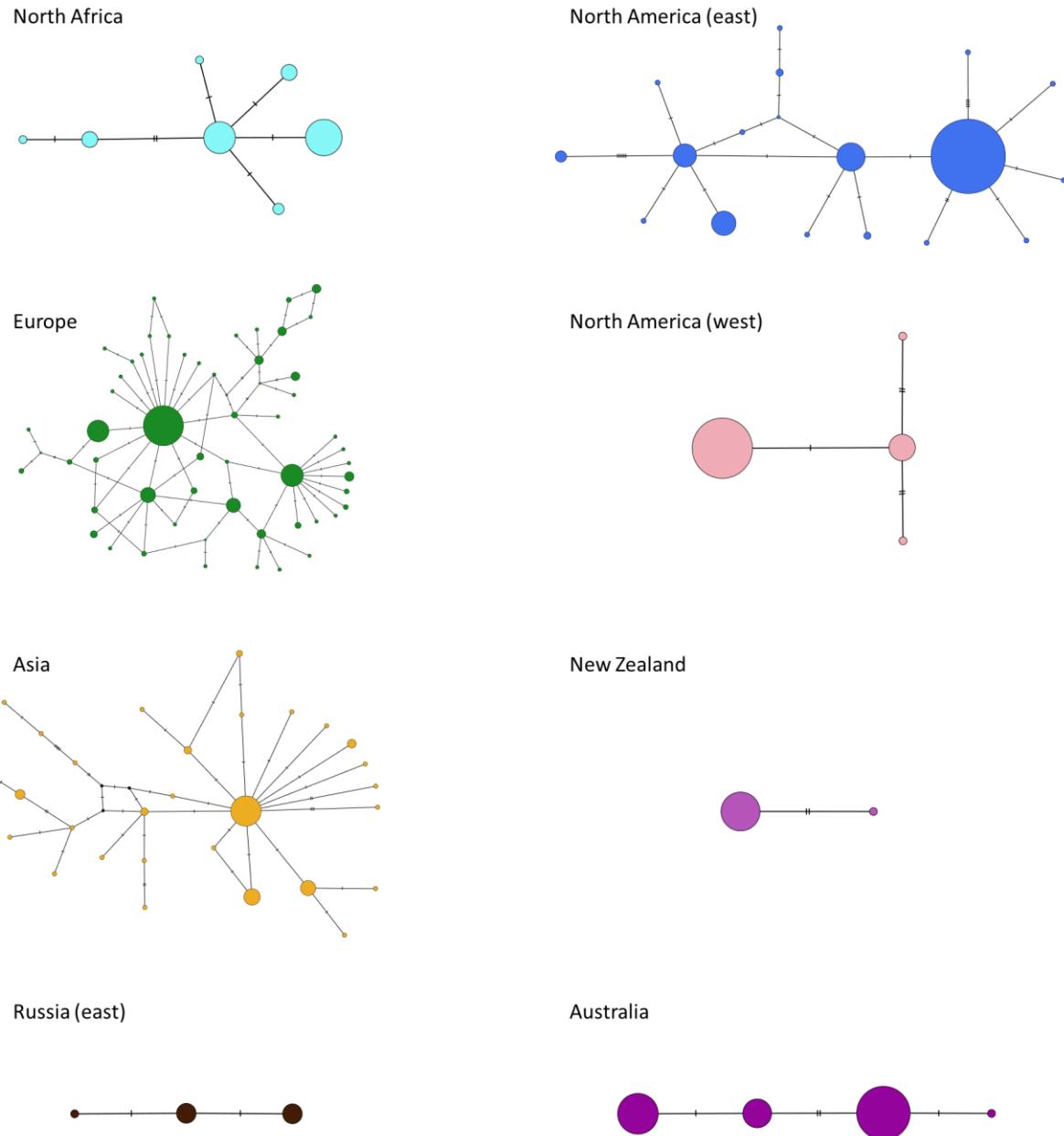
869

F. Analysis 6 – Australia




870



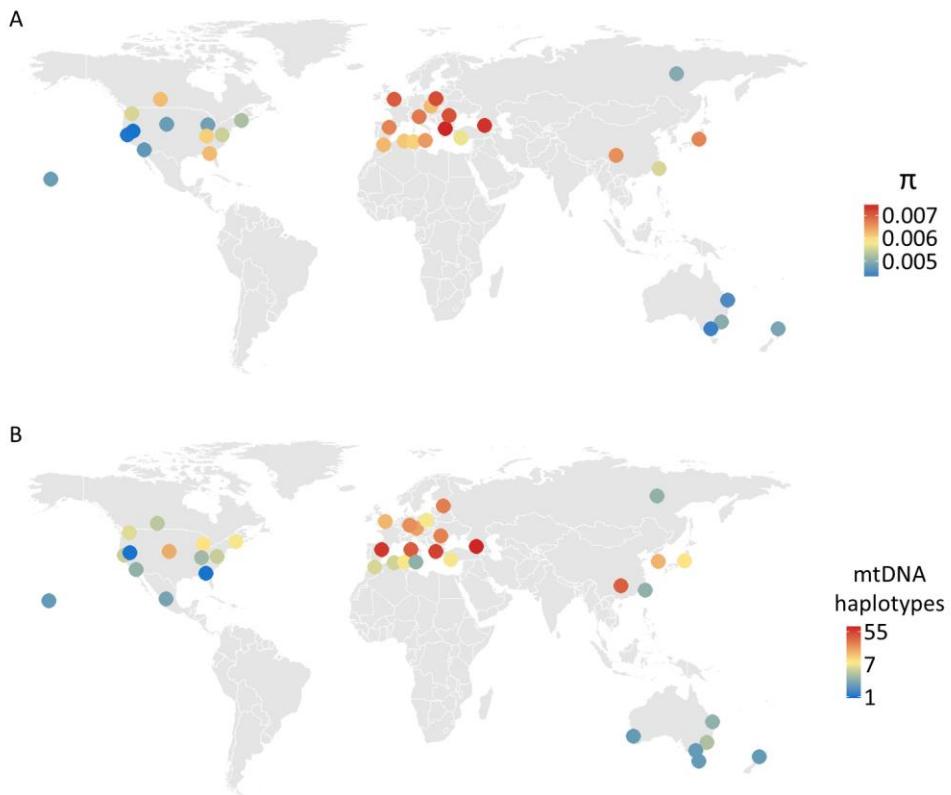

871

Scenario 5



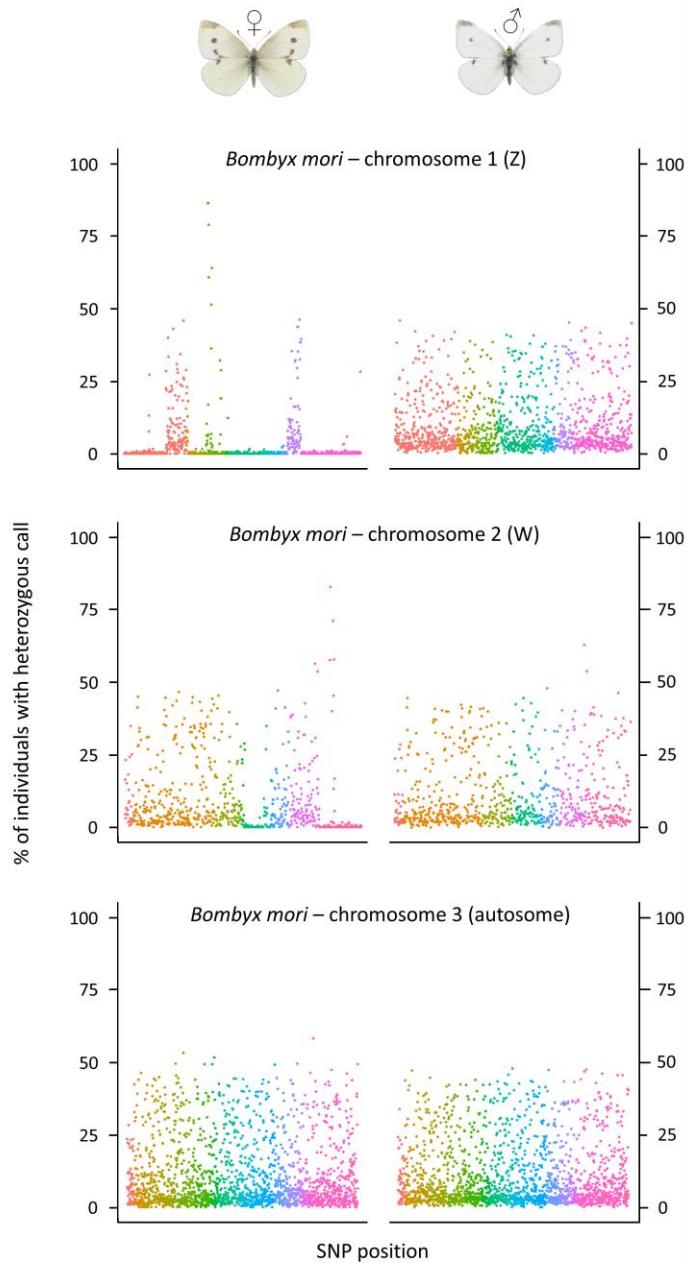
872

873 **Fig S3.** Schematic representation of each set of scenarios used in the ABC analyses to decipher  
874 the worldwide invasion routes of *Pieris rapae* (see also Table 1). Population numbers are as  
875 follows: 1 for Asia; 2 for Europe; 3 for North America (east); 4 for North America (west); 5 for  
876 New Zealand; 6 for Australia; 7 for North Africa; 8 for Russia (east). For each analysis, the name  
877 of the most likely scenario is underlined. Thin lines indicate bottlenecks. For parameters  
878 descriptions and priors see Table S5. Time is not to scale.




879

880 **Fig S4.** Median-joining haplotype networks for each population. Hash marks between haplotypes  
881 represent base changes (mutations).


882

883



884

885 **Fig S5. Global patterns of genetic diversity.** **a**, Estimate of pairwise nucleotide diversity for  
886 each subpopulation based on autosomal ddRADseq data. **b**, mtDNA haplotype diversity  
887 estimated from rarefaction curves (note, colors are based on a log scale).



888

889 **Fig S6. Percentage of individuals with heterozygous calls for each locus, plotted separately**  
890 **females and males.** The location of each locus is based on its position within each *P. rapae*  
891 scaffold, with each *P. rapae* scaffold then ordered in each *B. mori* chromosome based on its  
892 homology to each *B. mori* scaffold (see Methods). Loci are colored by the *B. mori* scaffold to  
893 which they are associated. An autosome (chromosome 3) is plotted for reference and the pattern  
894 reflects those observed in other autosomes—no discernable difference in heterozygosity between  
895 males and females. Note, the W chromosome was not sequenced or assembled in the reference  
896 genome used in this study and is thus likely to be made up of portions of other chromosomes,  
897 including the Z (regions with no heterozygosity in females).

898 *Video included as a supplementary file*

899 **Video S1.** Development of railroad lines in the United States from 1830-1972. Railroad line data  
900 were obtained from Atack, 2016<sup>28</sup> and plotted by their date of operation. Note the competition of  
901 railroad lines connecting eastern and western US in 1872, a few years prior (1879) to when a  
902 small population originating from North America (east) was believed to be introduced to that  
903 exact region—North America (west) (i.e., central California).