

1 **RNA Polymerase II Independent Recruitment of SPT6 at Transcription**

2 **Start Sites in *Arabidopsis***

3 **Chen Chen^{1,2,*}, Jie Shu^{1,2}, Chenlong Li³, Raj K. Thapa^{1,2}, Vi Nguyen¹, Kangfu Yu⁴, Zechun
4 Yuan¹, Susanne E. Kohalmi², Jun Liu⁵, Frédéric Marsolais^{1,2}, Shangzhi Huang³, and Yuhai
5 Cui^{1,2,6*}**

6 ¹ Agriculture and Agri-Food Canada, London Research and Development Centre, London,
7 Ontario N5V 4T3, Canada;

8 ² Department of Biology, Western University, London, Ontario N6A 5B7, Canada;

9 ³ School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resource, Sun Yat-
10 sen University, Guangzhou 510275, Guangdong, China;

11 ⁴ Agriculture and Agri-Food Canada, Harrow Research and Development Centre, Harrow,
12 Ontario N0R 1G0, Canada;

13 ⁵ Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;

14 ⁶ Lead Contact

15 * Correspondence: yuhai.cui@canada.ca; jamwest101@hotmail.com

16

17

18

19

20

21 **Summary**

22 SPT6 is a conserved transcription regulator that is generally viewed as an elongation factor.
23 However, emerging evidence show its potential role in the control of transcription initiation at
24 genic and intragenic promoters. Here we first present the genome-wide occupancy of
25 Arabidopsis SPT6-like (SPT6L) and demonstrate its conserved role in facilitating RNA
26 Polymerase II (RNAPII) occupancy across transcribed genes. Further, we show that SPT6L
27 enrichment is shifted, unexpectedly, from gene body to the transcription starting site (TSS)
28 when its association with RNAPII is disrupted. Finally, we demonstrate that recruitment of
29 SPT6L starts at TSS, and then spreads to the gene body during transcription. These findings
30 refine the mechanisms underlying SPT6L recruitment in transcription and shed light on the role
31 of SPT6L in transcription initiation.

32

33 **Introduction**

34 It is well known that SPT6 is a transcription elongation factor, as evidenced by its physical
35 association with elongating RNAPII (Andrulis et al., 2000; Kaplan et al., 2000; Mayer et al., 2010)
36 and its ability to enhance elongation in vitro (Endoh et al., 2004) and in vivo (Ardehali et al.,
37 2009). The Src homology 2 (SH2) domain of SPT6 recognizes and binds to phosphorylated
38 serine 2 and tyrosine 1 repeats within the C-terminal domain (CTD) of RNA polymerase II
39 (RNAPII), and to phosphorylated linker region preceding the CTD (Ardehali et al., 2009; Mayer
40 et al., 2010; Sdano et al., 2017; Sun et al., 2010). Deletion or mutation of SH2 disrupts the
41 interaction of SPT6 and RNAPII (Dronamraju et al., 2018; Mayer et al., 2010; Yoh et al., 2007)
42 and significantly reduces the levels of SPT6 and RNAPII at transcribed regions of genes
43 (Dronamraju et al., 2018; Mayer et al., 2010). Genetic and genomic studies in yeast have
44 indicated the role of SPT6 and other elongation factors in control of intragenic initiation (Cheung

45 et al., 2008; Hennig and Fischer, 2013; Kaplan et al., 2003). Recently, it was found that SPT6
46 was involved in regulation of genic initiation and mutation of SPT6 caused the reduced
47 occupancy of TFIIB at genic promoters (Doris et al., 2018).

48 In *Arabidopsis*, there are two versions of SPT6: SPT6 (AT1g63210) and SPT6-like (SPT6L)
49 (AT1g65440) (Gu et al., 2012). The transcript of *SPT6* was barely detectable in most of the
50 tissues (Antosz et al., 2017) and no visible phenotype was observed in *spt6* mutants (Gu et al.,
51 2012), suggesting that SPT6 may not play an essential role in transcription. *SPT6L*, however,
52 appears to be commonly expressed (Antosz et al., 2017) and mutations in it led to the formation
53 of aberrant apical-basal axis and embryonic lethality (Gu et al., 2012). Furthermore, SPT6L can
54 be co-purified with RNAPII and other elongation factors (Antosz et al., 2017). These findings
55 indicate its potential role in the regulation of transcription.

56 In this study, we examined the genome-wide occupancy profile of SPT6L and demonstrate its
57 functional conservation in transcription elongation. By analyzing the global association between
58 SPT6L and RNAPII, intriguingly, we found that the enrichment of SPT6L was shifted from the
59 transcribed regions to transcription start sites (TSS) in the absence of its association with
60 RNAPII. We further generated a series of domain deletions and showed that the HtH and YqgF
61 domains of SPT6L are required for its TSS enrichment and even the distribution along gene
62 bodies. Finally, we show that SPT6L was initially recruited at TSS and then spread to the gene
63 body during transcription. In sum, our findings reveal novel mechanisms underlying the
64 recruitment of SPT6L into the transcription machinery.

65 **Results**

66 **SPT6L Co-occupies Genome-Wide with RNAPII over Highly Transcribed Genes**

67 To gain insights into the functions of SPT6L in plants, we tagged the green fluorescent protein
68 (GFP) to SPT6L (SPT6L-GFP) and introduced it into a *spt6l*^{+/−} (*SALK_016621*) heterozygous

69 background. The transgene can fully complement the defects of the *spt6l* mutant (referring to
70 *spt6l*^{-/-} homozygous mutant background hereafter) (Figure 1A to 1C) and the GFP signals were
71 mainly detected in the nuclei (Figure S1A). Next, we profiled the genome-wide occupancy of
72 SPT6L by chromatin Immunoprecipitation-sequencing (ChIP-seq) and found that SPT6L was
73 mainly recruited to the transcribed regions of genes (Figure 1D). As SPT6 plays a key role in
74 transcription elongation in other species (Ardehali et al., 2009; Endoh et al., 2004; Kaplan et al.,
75 2000; Sun et al., 2010; Yoh et al., 2007), we examined the association of SPT6L with
76 transcription in plants. First, we compared our SPT6L ChIP-seq data with published profiles of
77 histone marks (Chen et al., 2017; Luo et al., 2013) and found that SPT6L binding genes were all
78 marked with active histone modifications, but not the repressive ones (Figure S1B). Second, we
79 profiled RNAPII occupancy in wild-type (WT) and *spt6l*/mutants by ChIP-seq and compared with
80 the SPT6L data. The ChIP-seq reads of SPT6L and RNAPII were highly correlated genome-
81 wide (Figure 1E) and the occupancy of RNAPII was dramatically decreased in *spt6l* (Figure 1F).
82 Third, the binding intensity of SPT6L is positively correlated with transcript levels (Figure 1G).
83 These data indicate that *Arabidopsis* SPT6L likely plays similar roles in transcription as its
84 homologs in other species.

85 **SPT6L Enriched at transcription start sites in the Absence of Its Association with RNAPII**

86 In yeast, SPT6 interacts with both the phosphorylated C-terminal domain (CTD) of RNAPII and
87 the phosphorylated linker region preceding the CTD via its SH2 domain (Ardehali et al., 2009;
88 Sdano et al., 2017; Sun et al., 2010). Disassociation of SPT6 and RNAPII caused by the
89 deletion of the SH2 domain significantly reduced the level of SPT6 and RNAPII occupancy
90 along genes (Dronamraju et al., 2018; Mayer et al., 2010), but low levels of truncated SPT6 can
91 still be detected at the transcribed regions of genes (Dronamraju et al., 2018; Mayer et al.,
92 2010), suggesting the existence of RNAPII independent mechanism for SPT6 recruitment. To
93 examine whether plant SPT6L also can be recruited to genes in an SH2 independent manner,

94 we made an SH2 deleted version of SPT6L tagged with GFP (SPT6L Δ SH2-GFP) and
95 introduced it into *spt6*^{+/−} (Figure S2A). Due to the lack of antibodies that can recognize the
96 phosphorylated linker region of RNAPII, we chose to use the phosphorylated serine 2 of CTD
97 (RNAPIIS2P) as an indicator of the active form of RNAPII. We then performed co-
98 immunoprecipitation (Co-IP) experiments with the transgenic line and found that the deletion of
99 SH2 indeed impaired the interaction between SPT6L and RNAPIIS2P (Figure 2A). Intriguingly,
100 unlike the severely defected *spt6*^l mutants (Figure 2B to 2D), the *spt6*^l SPT6L Δ SH2-GFP
101 seedlings can grow bigger and develop small true leaves (Figure 2E to 2G). In line with the
102 morphological phenotype, the introduction of SPT6L Δ SH2 also partially rescued the genome-
103 wide occupancy of RNAPII (Figure 2H and 2J). These findings indicate that SPT6L Δ SH2 still
104 retains some capacity in facilitating RNAPII transcription.

105 We next asked whether the truncated SPT6L can still be recruited to chromatin. To answer that
106 question, we profiled the genome-wide occupancy of SPT6L Δ SH2 in *spt6*^l mutants. In contrast
107 to the occupancy pattern observed for the full-length SPT6L that spread over the entire
108 transcribed regions of genes, unexpectedly, the signals of SPT6L Δ SH2 were found to be
109 enriched at the transcription start sites (TSS) (Figure 2H and 2J). This binding pattern is
110 different from the observed occupancy of SPT6 Δ SH2 in yeast, where truncated SPT6 can still
111 weakly spread all-over the transcribed regions (Dronamraju et al., 2018; Mayer et al., 2010;
112 Sdano et al., 2017). Given the morphologic differences between the *spt6*^l SPT6L Δ SH2 and WT
113 seedlings, one can argue that the unexpected TSS enrichment of SPT6L Δ SH2 might be caused
114 by altered cell size and/or chromatin structure. To rule out this possibility, we performed a ChIP-
115 seq analysis of SPT6L Δ SH2 in *spt6*^{+/−} and the same pattern was detected again (Figure S2B).
116 As the TSS enrichment of SPT6L Δ SH2 was not detected for full-length SPT6L, one can also
117 argue that the enrichment pattern of the truncated SPT6L might result from certain protein
118 structural changes. To assess this possibility, we sought to disrupt the interaction between

119 SPT6L and RNAPII by inhibiting the phosphorylation of RNAPII CTD with flavopiridol (FP),
120 which can block the kinase activity of positive transcription elongation factor b (P-TEFb) (Chao
121 and Price, 2001). We First confirmed the FP inhibition of the phosphorylation of RNAPII CTD
122 and its subsequent effects on plant growth (Figure S2C and S2D). Then, we profiled the
123 genome-wide occupancy of SPT6L after FP treatment, and found dramatically decreased
124 signals over the transcribed regions and concomitant moderate enrichment at TSS (Figure 2H).
125 This pharmacological study complements our genetic work and together they strongly suggest
126 that SPT6L can be targeted to TSS in the absence of its interaction with RNAPII.

127 The unexpected TSS enrichment of SPT6L drew our attention to its potential effects on RNAPII
128 occupancy around TSS. As the levels of RNAPII around TSS are determined by the equilibrium
129 between its entry and release, we thought that it would be better to take RNAPII pausing at
130 promoter-proximal regions into account. Therefore, we calculated the pausing index (PI)
131 according to a published formula (Gilchrist et al., 2010) and divided RNAPII binding genes into
132 four groups according to their PI values. By plotting RNAPII signals around TSS in WT and *spt6l*,
133 we found that mutation of *SPT6L* led to decreased RNAPII occupancy levels around TSS in all
134 PI groups (Figure 2J), pointing to a role for SPT6L in early transcription stage. Importantly, the
135 introduction of SPT6L Δ SH2 can partially or even completely rescue the RNAPII occupancy
136 around TSS in higher PI groups (Figure 2J). In addition, the SPT6L Δ SH2 ChIP signals in all the
137 PI groups peaked immediately upstream of TSS, which were followed by RNAPII signals (Figure
138 2J), suggesting a possible scenario that the presence of SPT6L Δ SH2 may help the entry of
139 RNAPII during transcription initiation.

140 **The HtH and YqgF Domains Are Required for the TSS Association**

141 We next tried to determine which domain(s) of SPT6L is required for its TSS enrichment.
142 *Arabidopsis* SPT6L contains all the five conserved SPT6 domains plus the plant-specific

143 GW/WG domain (Figure 3A). Because the SH2-deleted version of SPT6L can partially rescue
144 the *spt6l* phenotype and show clear enrichment around TSS, we generated five “double-deletion”
145 constructs by deleting each of the five other domains individually on top of the SH2 deletion and
146 introduced them into *spt6l^{+/−}* (Figure 3A). All the five versions of truncated SPT6L were localized
147 in the nuclei, as evidenced by the GFP signals in the transgenic root tips (Figure S3A). Further
148 deletion of either the HtH or YqgF domain can compromise the function of SPT6L Δ SH2 as
149 shown by the severe phenotype of these transgenic plants (similar to *spt6l*), while the other
150 three double-deletion mutants remain the same as the *SPT6L Δ SH2* single mutant (Figure 3B to
151 3G). This observation suggests that these two domains may be required for the TSS enrichment
152 of SPT6L Δ SH2. In addition, we also examined the protein levels of the mutants and saw
153 comparable levels of the truncated SPT6Ls (Figure 3H), indicating that the compromised
154 phenotype was not due to altered protein levels. Finally, we performed ChIP-seq experiments
155 with the *SPT6L Δ SH2 Δ HtH* and *SPT6L Δ SH2 Δ YqgF* plants and found that signals around TSS
156 were dramatically reduced in *SPT6L Δ SH2 Δ HtH* and undetectable in *SPT6L Δ SH2 Δ YqgF* (Figure
157 3I). This result suggests that the HtH and YqgF domains are required for the TSS enrichment of
158 SPT6L Δ SH2.

159 **The HtH and YqgF Domains Are Indispensable for the Distribution of SPT6L Along Genes**

160 We next asked whether the HtH and YqgF domains also contribute to the distribution of SPT6L
161 along transcribed regions. Two new constructs with single deletion of either the HtH or YqgF
162 domain were generated and introduced into *spt6l^{+/−}* plants. The phenotype of the transgenic
163 seedlings indicates that both the single deletion mutants failed to rescue the *spt6l* mutant
164 phenotype (Figure 4A to 4D), which suggests the critical role of HtH and YqgF in maintaining
165 the normal function of SPT6L. To find out how the deletions affect the function of SPT6L in
166 transcription, we first tested whether these two mutant proteins can still interact with RNAPII by
167 performing a Co-IP experiment. As shown in Figure 4SA, they can still interact with RNAPIIS2P,

168 but at a markedly reduced level. We then performed a ChIP-seq analysis to examine their
169 association with chromatin and found that the two versions of truncated SPT6L, although can
170 still weakly associate with RNAPIIS2P, were no longer enriched over gene bodies (Figure 4E).
171 These results indicate that the YqgF and HtH domains are also required for the distribution of
172 SPT6L along genes.

173 We next took a genetic approach to examine the functional linkage between the SH2 and
174 HtH/YqgF domains. We reasoned that the *spt6l* phenotype would be rescued in the co-presence
175 of SPT6L Δ SH2 and SPT6L Δ HtH/SPT6L Δ YqgF if the functions of SH2 and HtH/YqgF could be
176 genetically separated. Toward that end, we crossed *spt6l*^{+/−} SPT6L Δ SH2^{+/+} with either *spt6l*^{+/−}
177 SPT6L Δ HtH^{+/+} or *spt6l*^{+/−} SPT6L Δ YqgF^{+/+} and examined the phenotypes of the F1 progenies.
178 Approximately 25% of the F1 progenies (*spt6l*^{+/−} SPT6L Δ SH2^{+/−} SPT6L Δ HtH^{+/−} or *spt6l*^{+/−}
179 SPT6L Δ SH2^{+/−} SPT6L Δ YqgF^{+/−}) showed SPT6L Δ SH2-like phenotype (Figure S4B to S4D). This
180 result indicates that the functional domains of HtH/YqgF and SH2 have to be preserved in the
181 same SPT6L protein.

182 **The TSS recruitment of SPT6L precedes its spread over gene bodies**

183 Our genetic and molecular evidence presented above imply that the TSS recruitment of SPT6L
184 may occur prior to its spreading over the gene bodies. To test this hypothesis, we monitored the
185 recruitment of SPT6L and RNAPII at *HEAT SHOCK PROTEIN 70* (*HSP70*, At3g12580) after
186 heat shock (HS) treatment. *HSP70* is a target of SPT6L (Figure S4E) and, as previously
187 reported, its transcription is maintained at a relatively low level at 17 °C and dramatically
188 upregulated when temperature elevated to 27 °C within 1 hour (Kumar and Wigge, 2010). These
189 features make it a perfect model for investigating the fine dynamics of SPT6L and RNAPII after
190 HS. To optimize the HS condition, we first examined the transcript levels of *HSP70* after HS at
191 5-minute intervals throughout an hour. Although the level of *HSP70* transcript kept going up

192 throughout the course of the HS treatment, a dramatic change occurred within the first 15
193 minutes (min) in terms of the increase rate (Figure S4F). Thus, we assessed the occupancy of
194 SPT6L, RNAPII, and RNAPIIS2P at *HSP70* within the first 15 min after HS. As shown in Figure
195 4F, strong signals of SPT6L were detected downstream of TSS after 7.5 min HS, which is
196 accompanied by the increased signals of RNAPII and RNAPIIS2P at the same sites. After 12.5
197 min HS, interestingly, we saw further increase in occupancy levels of SPT6L and RNAPIIS2P,
198 but not RNAPII, over the gene body (Figure 4F upper panel), which is consistent with the
199 established role of RNAP II phosphorylation in SPT6L recruitment during elongation. The fact
200 that the level of *HSP70* transcript was increased about 2 fold within the first 5 min after HS
201 (Figure S4F) suggested that the first wave of transcription (after HS) had occurred within that
202 short period of time. Therefore, we re-plotted the ChIP signals of SPT6L, RNAPII, and
203 RNAPIIS2P for the first 5 min after HS. As shown in Figure 4F (middle panel), the SPT6L
204 signals first peaked at TSS after 5 min HS, while both RNAPII and RNAPIIS2P peaked
205 downstream of TSS. This observation suggests that SPT6L was first recruited to TSS and the
206 recruitment was independent of RNAPII in the first wave of transcription at *HSP70* after HS.

207 **Discussion**

208 Although SPT6 has been extensively studied for its role in transcription elongation, the detailed
209 steps of its recruitment into the transcription machinery have not been elucidated. In this study,
210 we first profiled the genome-wide occupancy of SPT6L and confirmed its conserved function in
211 transcription elongation in plants. Further, we show that SPT6L can bind to transcribing genes
212 at initiation/early elongation regions in an RNAPII independent manner and this binding is
213 indispensable for the loading of SPT6L into the transcription machinery and distribution along
214 gene bodies. Our findings thus have refined the mechanism of SPT6 recruitment and shed light
215 on the roles of SPT6 in transcription initiation.

216 It has long been observed in yeast that SPT6 plays a role in maintaining the chromatin structure
217 (Ivanovska et al., 2011) and repressing intragenic initiation (Hennig and Fischer, 2013; Kaplan
218 et al., 2003). More recently, during the preparation of this manuscript, a new study further
219 confirmed the role of SPT6 in the repression of intragenic initiation on a genome scale and
220 found reduced genic initiation after knocking out *Spt6* in yeast (Doris et al., 2018). However, it is
221 less clear how *Spt6* achieves its roles at initiation sites. Our observation that the TSS
222 enrichment of SPT6LΔSH2 can partially recover the occupancy level of RNAPII in a *spt6*/
223 background (Figure 2H and 2J) point to a role for SPT6 in helping the entry of RNAPII during
224 transcription. Therefore, our result is complementary to the findings in yeast and provides new
225 evidence in support of the role of SPT6 in transcription initiation.

226 While the recognition between the SH2 domain of SPT6 and the phosphorylated linker region of
227 RNAPII is known to be critical for the recruitment SPT6 over gene body (Sdano et al., 2017),
228 emerging evidence have implied the existence of RNAPII independent recruitment of SPT6
229 (Adelman et al., 2006; Dronamraju et al., 2018; Mayer et al., 2010; Zhang et al., 2008a). Our
230 work, by integrating genetic and molecular evidence, revealed the RNAPII independent
231 recruitment of SPT6L around TSS region in plants and demonstrate that this recruitment
232 precedes its spreading over the gene body (Figure 4E and 4F). This finding helps to refine the
233 current model of SPT6 recruitment during transcription. Future work on the identification of
234 recruiters of SPT6L at TSS will certainly provide new insight into how SPT6L is involved in
235 transcription initiation and how initiation and elongation are coordinated to ensure a productive
236 transcription.

237 **Method**

238 **Plant Material and Growth Conditions**

239 The *spt6*/*spt6* heterozygous seeds (*SALK_016621*) were described previously (Gu et al., 2012) and
240 obtained from the Arabidopsis Biological Resource Center (ABRC) at the Ohio State University.

241 All *Arabidopsis* seeds used are in Columbia (Col-0) background. Plants were grown on half
242 strength of Murashige and Skoog (½ MS) medium (0.5XMS salts, 1.5% [w/v] sucrose, and 0.8%
243 agar [pH 5.8]) or soil under 16h/8h light/dark cycle at 23°C. For inhibitor treatment, 5,6-dichloro-
244 1-beta-D-ribofuranosylbenzimidazole (DRB), flavopiridol (FP), or triptolide (Trip) was added at a
245 final concentration of 100, 10, or 10 µM to the media, respectively. For heat shock treatment,
246 seeds were germinated and grown on ½ MS plates for 7 days at 23°C and the plates were then
247 moved to 17°C. After 3 days in 17°C, seedlings were subjected to heat shock treatment at 27°C
248 with different duration. Primers used for genotyping are listed in Supplementary Table 1.

249 **Plasmid Construction for Plant Transformation**

250 Due to the repetitive nature of the 3' end sequence of *SPT6L*, we combined PCR amplification
251 and direct DNA synthesis approaches to clone the full-length *SPT6L* genomic region and its 2
252 kb upstream regulatory sequence. Specifically, part1 (from -2009bp to +6594bp; - and + are
253 relative to ATG) and part2 (from +5247bp to +8443bp) were first PCR-amplified from genomic
254 DNA and cloned into the Gateway entry vector pDONR221 (Invitrogen) by BP reactions. Part3
255 (from +6889bp to +7380bp, including the repetitive sequence) was synthesized by GenScript
256 (www.genscript.com) and then also inserted into pDONR221. Finally, the entire sequence was
257 assembled by sequential digestions and ligations, first part2-part3 (*AvrII* and *PvuII*) and then
258 part2-3-part1 (*XbaI* and *PvuII*), and cloned into pDONR221 (*ProSPT6L:SPT6L-pDONR221*).
259 Finally, an LR reaction was performed with the destination vector pMDC107(Curtis and
260 Grossniklaus, 2003) to generate the fusion construct with GFP (*ProSPT6L:SPT6L-GFP*). All the
261 domain deletion mutants were generated based on the *ProSPT6L:SPT6L-pDONR221* construct.
262 Primers used are listed in Table S1.

263 **Analysis of transcript levels**

264 Total RNA extraction, cDNA synthesis, and real-time qPCR were performed as previously
265 described (Chen et al., 2017). Primers used are listed in Table S1. The WT RNA-seq data were
266 obtained from our previous work (Chen et al., 2017). Transcripts were grouped into eight
267 subgroups, from high to low, based on their FPKM values (after conversion to logarithm value
268 (log10)). Finally, the SPT6L ChIP signals were plotted for each of the gene groups separately.

269 **Co-immunoprecipitation and immunoblot**

270 Seventy-five milligram of 10 day-old seedlings grown on ½ MS medium were homogenized to
271 fine powder in mixer mills and dissolved in 300 µL lysis buffer (20 mM Tris-HCl pH 8.0, 300 mM
272 NaCl, 2.5 mM EDTA, 1 mM DTT, 0.5% TritonX-100, 0.1 mM PMSF, and Protease inhibitor) for
273 20 minutes at 4°C. Supernatants were collected after centrifuging at x14,000g, 4°C for 10
274 minutes. For western blot, the supernatants were directly loaded into SDS-PAGE gel. For co-IP,
275 20 µL anti-GFP µMACS micro-beads (Manufacturer info here) were added into the supernatants
276 and gently shaken at 4°C for 1h. Following the protocol of µMACS GFP isolation kit (130-091-
277 125, MACS), interacting proteins were eluted and loaded into SDS-PAGE gel. Other antibodies
278 used were listed as follows: anti-GFP (ab290, Abcam, lot: GR240324), anti-RNAPII (ab817,
279 Abcam, lot:GR313984), anti-RNAPIISer2P (ab5095, Abcam, lot:GR309257), and anti-Actin
280 (AS13 2640, Agrisera).

281 **Chromatin immunoprecipitation (ChIP)**

282 ChIP was performed as previously described (Chen et al., 2017) with some modifications. Five
283 grams of 10-day-old *Arabidopsis* seedlings (one gram for *spt6l* and *spt6l SPT6LΔSH2-GFP*
284 seedlings) grown on ½ MS medium were collected. Protein A Dynabeads (Invitrogen) was pre-
285 incubated with the antibody (5 µL for 50 µL beads) at 4 °C in a rotor for at least 6h. After
286 removing excess or unbound antibodies, the pre-cleaned chromatins (cleaned by incubating
287 with Dynabeads alone) were added into antibody bound Dynabeads. To minimize the variations

288 generated from sonication, the same chromatin was equally divided into 2 or 4 tubes and then
289 subjected to different antibodies (2 for anti-GFP and anti-RNAPII in ChIP-seq; 4 for anti-GFP,
290 anti-RNAPII, anti-RNAPIIIS2P, and anti-IgG in ChIP-qPCR). ChIP libraries were prepared using
291 the NEBNext® Ultra™ DNA Library Prep Kit (E7370S) following the manufacturer's instructions
292 and used for Illumina single-end sequencing. Primers used for ChIP-qPCR are listed in Table
293 S1.

294 **ChIP-seq data analysis**

295 The sequenced reads were aligned to the TAIR10 assembly using the Bowtie2 program
296 (Langmead and Salzberg, 2012) with default settings. After removing unmapped reads and
297 PCR duplicates, peaks were called by using the MACS2 program (Zhang et al., 2008b) with the
298 following setting (-g 135000000, -broad, and -broad-cutoff 0.01). Only the highly reproducible
299 peaks across two biological replicates (IDR \leq 0.01) were kept. Common genes were identified
300 by using PeakAnalyzer (Salmon-Divon et al., 2010). Coverage files (BigWig files) for all the
301 samples were converted from bam files by using bamCoverage (from deeptools2) (Ramirez et
302 al., 2016) with the following settings (-bs 10 --effectiveGenomeSize 135000000 --
303 normalizeUsing RPGC --ignoreDuplicates -e 300 --samFlagExclude 1796). Heatmaps and
304 mean density plots were generated with deeptools2 (settings indicated in Figure legends).
305 Visualization of coverage files was carried out with a web-based genome browser (ENPG,
306 www.plantseq.org). The genome-wide occupancies of histone methylation and acetylation were
307 obtained from published ChIP-seq datasets (Chen et al., 2017; Luo et al., 2013).

308 **Data availability**

309 The data that support the findings of this study are available from the corresponding author
310 upon request. The ChIP-seq data have been deposited in Gene Expression Omnibus with the
311 accession code GSE108673.

312 **ACKNOWLEDGMENTS**

313 We thank the Arabidopsis Biological Resource Centre for providing the mutant seeds used in
314 this study. This work was supported by grants from the Natural Science and Engineering
315 Research Council of Canada (RGPIN/04625-561 2017, to Y.C.); Agriculture and Agri-Food
316 Canada (to Y.C.); Natural Science Foundation of China (31170286, to S.H.); The Specialized
317 Research Fund for the Doctoral Program of Higher Education (20100171110034, to S.H.);
318 National Natural Science Foundation of China (31640059, to J.L.). C.C. and J.S. were
319 supported by a graduate fellowship from the China Scholarship Council.

320 **AUTHOR CONTRIBUTIONS**

321 C.C. and Y.C. conceived and designed the experiments; J.S. performed immunoblot and Co-
322 immunoprecipitation; R.K.T. performed Real time-qPCR to quantify HSP70 expression level
323 after heat shock; C.L. obtained and validated the *spt6l* mutant. C.C. generated all the constructs,
324 performed ChIP-seq and bioinformatics analyses; V.N., K.Y., Z.Y., S.E.K., J.L., F.M., and S.H.
325 contributed to sequencing, critical reagents, and data analyses. C.C. and Y.C. wrote the paper.

326

327 **DECLARATION OF INTERESTS**

328 The authors declare no competing interests.

329

330 **Reference**

331 Adelman, K., Wei, W., Ardehali, M.B., Werner, J., Zhu, B., Reinberg, D., and Lis, J.T. (2006). Drosophila
332 Paf1 modulates chromatin structure at actively transcribed genes. *Molecular and cellular biology* 26,
333 250-260.
334
335 Andrulis, E.D., Guzman, E., Doring, P., Werner, J., and Lis, J.T. (2000). High-resolution localization of
336 Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and
337 transcription elongation. *Genes & development* 14, 2635-2649.
338
339 Antosz, W., Pfab, A., Ehrnsberger, H.F., Holzinger, P., Kollen, K., Mortensen, S.A., Bruckmann, A.,
340 Schubert, T., Langst, G., Griesenbeck, J., *et al.* (2017). The Composition of the Arabidopsis RNA

341 Polymerase II Transcript Elongation Complex Reveals the Interplay between Elongation and mRNA
342 Processing Factors. *Plant Cell* 29, 854-870.

343

344 Ardehali, M.B., Yao, J., Adelman, K., Fuda, N.J., Petesch, S.J., Webb, W.W., and Lis, J.T. (2009). Spt6
345 enhances the elongation rate of RNA polymerase II in vivo. *The EMBO journal* 28, 1067-1077.

346

347 Chao, S.H., and Price, D.H. (2001). Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II
348 transcription in vivo. *The Journal of biological chemistry* 276, 31793-31799.

349

350 Chen, C., Li, C., Wang, Y., Renaud, J., Tian, G., Kambhampati, S., Saatian, B., Nguyen, V., Hannoufa, A.,
351 Marsolais, F., *et al.* (2017). Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in
352 *Arabidopsis*. *Nature plants* 3, 814-824.

353

354 Cheung, V., Chua, G., Batada, N.N., Landry, C.R., Michnick, S.W., Hughes, T.R., and Winston, F. (2008).
355 Chromatin- and transcription-related factors repress transcription from within coding regions
356 throughout the *Saccharomyces cerevisiae* genome. *PLoS Biol* 6, e277.

357

358 Curtis, M.D., and Grossniklaus, U. (2003). A gateway cloning vector set for high-throughput functional
359 analysis of genes in planta. *Plant physiology* 133, 462-469.

360

361 Doris, S.M., Chuang, J., Viktorovskaya, O., Murawska, M., Spatt, D., Churchman, L.S., and Winston, F.
362 (2018). Spt6 Is Required for the Fidelity of Promoter Selection. *Molecular cell* 72, 687-699 e686.

363

364 Dronamraju, R., Hepperla, A.J., Shibata, Y., Adams, A.T., Magnuson, T., Davis, I.J., and Strahl, B.D. (2018).
365 Spt6 Association with RNA Polymerase II Directs mRNA Turnover During Transcription. *Molecular cell* 70,
366 1054-1066 e1054.

367

368 Endoh, M., Zhu, W., Hasegawa, J., Watanabe, H., Kim, D.K., Aida, M., Inukai, N., Narita, T., Yamada, T.,
369 Furuya, A., *et al.* (2004). Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro.
370 *Molecular and cellular biology* 24, 3324-3336.

371

372 Gilchrist, D.A., Dos Santos, G., Fargo, D.C., Xie, B., Gao, Y., Li, L., and Adelman, K. (2010). Pausing of RNA
373 polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. *Cell*
374 143, 540-551.

375

376 Gu, X.L., Wang, H., Huang, H., and Cui, X.F. (2012). SPT6L encoding a putative WG/GW-repeat protein
377 regulates apical-basal polarity of embryo in *Arabidopsis*. *Molecular plant* 5, 249-259.

378

379 Hennig, B.P., and Fischer, T. (2013). The great repression: chromatin and cryptic transcription.
380 *Transcription* 4, 97-101.

381

382 Ivanovska, I., Jacques, P.E., Rando, O.J., Robert, F., and Winston, F. (2011). Control of chromatin
383 structure by spt6: different consequences in coding and regulatory regions. *Molecular and cellular*
384 *biology* 31, 531-541.

385

386 Kaplan, C.D., Laprade, L., and Winston, F. (2003). Transcription elongation factors repress transcription
387 initiation from cryptic sites. *Science* 301, 1096-1099.

388

389 Kaplan, C.D., Morris, J.R., Wu, C., and Winston, F. (2000). Spt5 and spt6 are associated with active
390 transcription and have characteristics of general elongation factors in *D. melanogaster*. *Genes &*
391 *development* 14, 2623-2634.

392

393 Kumar, S.V., and Wigge, P.A. (2010). H2A.Z-containing nucleosomes mediate the thermosensory
394 response in *Arabidopsis*. *Cell* 140, 136-147.

395

396 Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature methods* 9,
397 357-359.

398

399 Luo, C., Sidote, D.J., Zhang, Y., Kerstetter, R.A., Michael, T.P., and Lam, E. (2013). Integrative analysis of
400 chromatin states in *Arabidopsis* identified potential regulatory mechanisms for natural antisense
401 transcript production. *The Plant journal : for cell and molecular biology* 73, 77-90.

402

403 Mayer, A., Lidschreiber, M., Siebert, M., Leike, K., Soding, J., and Cramer, P. (2010). Uniform transitions
404 of the general RNA polymerase II transcription complex. *Nature structural & molecular biology* 17, 1272-
405 1278.

406

407 Ramirez, F., Ryan, D.P., Gruning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dundar, F., and
408 Manke, T. (2016). deepTools2: a next generation web server for deep-sequencing data analysis. *Nucleic
409 acids research* 44, W160-165.

410

411 Salmon-Divon, M., Dvinge, H., Tammoja, K., and Bertone, P. (2010). PeakAnalyzer: genome-wide
412 annotation of chromatin binding and modification loci. *BMC bioinformatics* 11, 415.

413

414 Sdano, M.A., Fulcher, J.M., Palani, S., Chandrasekharan, M.B., Parnell, T.J., Whitby, F.G., Formosa, T., and
415 Hill, C.P. (2017). A novel SH2 recognition mechanism recruits Spt6 to the doubly phosphorylated RNA
416 polymerase II linker at sites of transcription. *Elife* 6.

417

418 Sun, M., Lariviere, L., Dengl, S., Mayer, A., and Cramer, P. (2010). A tandem SH2 domain in transcription
419 elongation factor Spt6 binds the phosphorylated RNA polymerase II C-terminal repeat domain (CTD).
420 *The Journal of biological chemistry* 285, 41597-41603.

421

422 Yoh, S.M., Cho, H., Pickle, L., Evans, R.M., and Jones, K.A. (2007). The Spt6 SH2 domain binds Ser2-P
423 RNAPII to direct lws1-dependent mRNA splicing and export. *Genes & development* 21, 160-174.

424

425 Zhang, L., Fletcher, A.G., Cheung, V., Winston, F., and Stargell, L.A. (2008a). Spn1 regulates the
426 recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II.
427 *Molecular and cellular biology* 28, 1393-1403.

428

429 Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M.,
430 Brown, M., Li, W., *et al.* (2008b). Model-based analysis of ChIP-Seq (MACS). *Genome biology* 9, R137.

431

432

433

434 **Figure 1: SPT6L is associated with transcribed genes and promotes transcription**
435 (A) to (C) 14 days old WT (A), *spt6l* (B), and *spt6l* ProSPT6L:SPT6L-GFP (C) seedlings. Bar =
436 0.5 mm
437 (D) Mean density of SPT6L occupancy at the SPT6L bound genes. Plotting regions were scaled
438 to the same length as follows: 5' ends (-2.0 kb to transcription starting site [TSS]) and 3' ends
439 (transcription termination site [TTS] to downstream 2.0 kb) were not scaled, and the gene
440 bodies were scaled to 3 kb. The y-axis represents the means of normalized reads (1x
441 sequencing depth normalization) per 10 bp non-overlapping bin, averaged over two replicates
442 (SPT6L) or one replicate (Input). Gene number (n) is indicated.
443 (E) Reads correlation between SPT6L and RNAPII ChIP-seq (Pearson correlation value was
444 indicated). The entire genome was equally divided into 100 bp non-overlapping bins and the
445 numbers of reads were averaged over two replicates.
446 (F) Mean density of RNAPII occupancy in WT and *spt6l* at SPT6L bound genes. Plotting regions
447 were the same as in Figure 1D and y-axis values were the means of normalized reads (1x
448 sequencing depth normalization) per 10 bp non-overlapping bin, averaged over two replicates or
449 one replicate for RNAPII in *spt6l*.
450 (G) Mean density of SPT6L occupancy in gene groups with different transcription levels. All
451 *Arabidopsis* genes were clustered into 8 groups based on their transcript levels, from high to low.
452 The y-axis values were the means of normalized reads (1x sequencing depth normalization) per
453 10 bp non-overlapped bin, averaged over two replicates.
454

455 **Figure 2: SPT6L enriched at TSS in an RNAPII independent manner**
456 (A) Co-immunoprecipitation performed with transgenic plants expressing SPT6L-GFP and
457 SPT6L Δ SH2-GFP, respectively. Antibodies used for IP and immunoblotting are indicated.
458 (B) to (D) 5, 10, and 30 days old *spt6l* seedlings, respectively. Bar = 0.5 mm
459 (E) to (G) 5, 10, and 30 days old *spt6l* SPT6L Δ SH2 seedlings, respectively. Bar = 0.5 mm
460 (H) Heatmaps of RNAPII, SPT6L, and SPT6L Δ SH2 binding as measured by ChIP-seq in wide-
461 type (WT), *spt6l*, and *spt6l* SPT6L Δ SH2 backgrounds, over the same regions shown in Figure
462 1D. From top to bottom, the plotted genomic regions were sorted by RNAPII signal strength in
463 WT and the values were the means of normalized reads (1x sequencing depth normalization)
464 per 10 bp non-overlapping bin, averaged over two replicates or one replicate for RNAPII in *spt6l*.
465 (I) Screenshots of representative peaks in chromosome 1 visualized in a genome browser
466 (ENPG, www.plantseq.org). The y-axis values represent mean of normalized reads (1x
467 sequencing depth normalization) per 10 bp non-overlapping bin.
468 (J) Mean density of RNAPII, SPT6L, and SPT6L Δ SH2 occupancy at the SPT6L bound genes,
469 which were grouped into four groups based on their RNAPII pausing index (PI). Gene number in
470 each group is indicated. The y-axis values were the means of normalized reads (1x sequencing
471 depth normalization) per 10 bp non-overlapping bin, averaged over two replicates or one
472 replicate for RNAPII in *spt6l*. Reads were plotted on regions covering 2kb upstream and
473 downstream of TSS.
474

475 **Figure 3 The HtH and YqgF domains are required for the TSS enrichment of SPT6L Δ SH2.**
476 (A) Diagrams showing the protein domains of *Arabidopsis* SPT6L and the mutant versions.
477 (B) to (G) 30 days old *spt6l* SPT6L Δ SH2 (B), *spt6l* SPT6L Δ SH2 Δ HtH (C), *spt6l*
478 SPT6L Δ SH2 Δ YqgF (D), *spt6l* SPT6L Δ SH2 Δ HhH (E), *spt6l* SPT6L Δ SH2 Δ S1 (F), and *spt6l*
479 SPT6L Δ SH2 Δ GW/WG (G) seedlings, respectively. Bar = 0.5 mm

480 (H) Immunoblots showing the protein levels of truncated versions of SPT6L, and that of
481 RNAPIIS2P in each of the respective genetic backgrounds. H3 levels were used as loading
482 control.
483 (I) Heatmaps of the occupancy of the truncated versions of SPT6L as measured by ChIP-seq,
484 over the same regions and order shown in Figure 2H. The values were the means of normalized
485 reads (1x sequencing depth normalization) per 10 bp non-overlapping bin, averaged over two
486 replicates.
487

488 **Figure 4 The TSS recruitment of SPT6L precedes its spread along genes**

489 (A) to (D) 10 days old *spt6l* (A), *spt6l SPT6LΔSH2* (B), *spt6l SPT6LΔHtH* (C), and *spt6l*
490 *SPT6ΔYqgF* (D) seedlings, respectively. Bar = 0.5 mm
491 (E) Heatmaps of the occupancy of the truncated versions of SPT6L as measured by ChIP-seq,
492 over the same regions and order shown in Figure 2H. The values were the means of normalized
493 reads (1x sequencing depth normalization) per 10 bp non-overlapping bin, averaged over two
494 replicates.
495 (F) ChIP signals of SPT6L, RNAPII, and RNAPIIS2P at the *HSP70* locus at different time points
496 after heat shock (HS) treatment. The upper panel shows the ChIP signals relative to the
497 percentage of input. The middle panel shows the fold change of ChIP signals at 2.5 and 5
498 minutes relative to 0 minutes after HS. Each of the indicated points represents the middle of the
499 PCR fragments. The schematic of the *HSP70* locus is shown in the bottom panel. The plotted
500 values are the means \pm S.D. of three biological replicates and numbers on the x-axis are
501 distances to the TSS (TSS = 0).
502

503 **Figure 1S. Related to Figure 1 (SPT6L-GFP ChIP-Seq)**

504 (A) Root tip (7 DAG) showing nuclear localization of SPT6L. Red signals represent propidium
505 iodide stained cell walls.
506 (B) Mean density of 15 different histone modifications at SPT6L binding genes. Plotting regions
507 are the same as those in Figure 1D, and y-axis values are the means of normalized reads (1x
508 sequencing depth normalization) per 10 bp non-overlapping bin, obtained from one replicate.
509 (C) Reproducibility between ChIP-seq replicates as evaluated by Pearson correlation analysis.
510

511 **Figure 2S. Related to Figure 2 (SPT6LΔSH2 and RNAPIIS2P ChIP-seq)**

512 (A) Root tip (7 DAG) showing the nuclear localization of SPT6LΔSH2. Red signals represent
513 propidium iodide stained cell walls.
514 (B) Heatmaps of SPT6LΔSH2 binding as measured by ChIP-seq in *spt6l^{-/-}* and *spt6l^{+/+}*
515 backgrounds, over the same regions and order shown in Figure 2H. The values are the means
516 of normalized reads (1x sequencing depth normalization) per 10 bp non-overlapping bin,
517 averaged over two replicates.
518 (C) Seedlings (10 days old) treated with DMSO, 100 μ M 5,6-dichloro-1-beta-D-
519 ribofuranosylbenzimidazole (DRB), 10 μ M triptolide (Trip), or 10 μ M flavopiridol (FP). Bar = 0.5
520 mm.

521 (D) Immunoblot showing the level of RNAPIIS2P in 10 days old seedlings after FP treatment for
522 the indicated time. The amount of ACT2 is used as loading control.
523 (E) Reproducibility between ChIP-seq replicates as evaluated by Pearson correlation analysis.
524

525 **Figure 3S. Related to Figure 3 (truncated SPT6Ls and ChIP-seq)**

526 (A) to (E) Root tips of 7 days old seedlings showing the nuclear localization of five truncated
527 versions of SPT6L proteins. Red signals represent propidium iodide stained cell walls.
528 (F) Reproducibility between ChIP-seq replicates as evaluated by Pearson correlation analysis.
529

530 **Figure 4S. Related to Figure 4 (TSS recruitment of SPT6L precedes its spread along
531 genes)**

532 (A) Co-immunoprecipitation examining the interaction between SPT6L-GFP/truncated SPT6Ls
533 and RNAPII. IP and immunoblot performed using indicated antibodies.
534 (B) to (C) F1 progenies (10 DAG) from the cross between *spt6^{lt}* *SPT6LΔSH2* with *spt6^{lt}*–
535 *SPT6LΔHtH* (B) or *spt6^{lt}* *SPT6LΔYggF* (C). Bar = 0.5 mm
536 (D) Segregation ratio of F1 progenies.
537 (E) Reproducibility between ChIP-seq replicates as evaluated by Pearson correlation analysis.
538 (F) Screenshots of RNAPII and SPT6L ChIP-seq signals at the *HSP70* locus in a genome
539 browser (ENPG, www.plantseq.org). The value of y-axis represents mean of normalized reads
540 (1x sequencing depth normalization) per 10 bp non-overlapping bin.
541 (G) The relative transcript levels (left y-axis, black dotted line) and fold change (right y-axis, red
542 dotted line) of *HSP70* during a 1h heat shock (HS) treatment. The relative fold change at each
543 time point was calculated as the ratio between the current and previous time points. The values
544 are the means \pm S.D. of three biological replicates.
545 (H) IgG ChIP signals at sites across the *HSP70* gene during a 12.5 minutes heat shock (HS)
546 treatment. Each of the indicated points represents the middle of a PCR fragment; and the
547 schematic of the *HSP70* locus is shown at the bottom. The plotted values are the means \pm S.D.
548 of three biological replicates and numbers on the x-axes are distances to the TSS (TSS = 0).

549

Figure 1

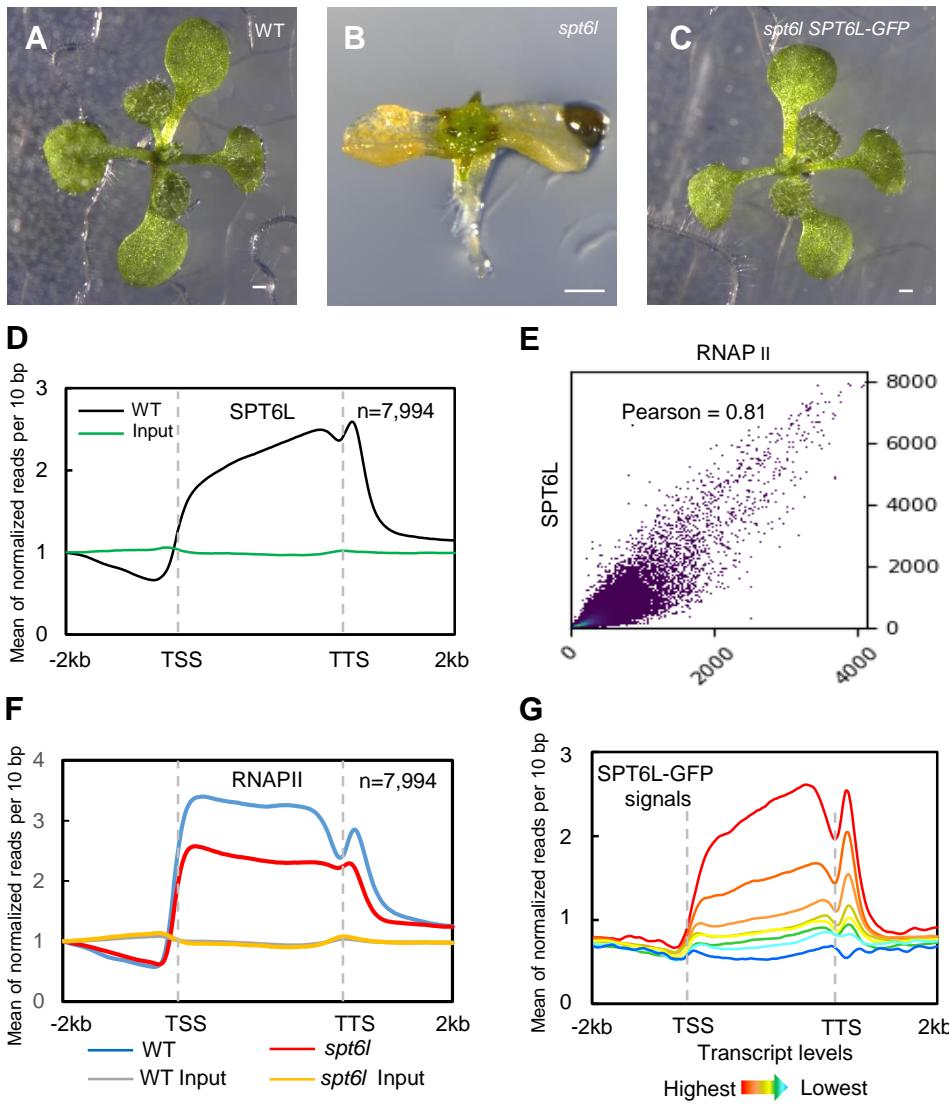


Figure 1S related to Figure 1

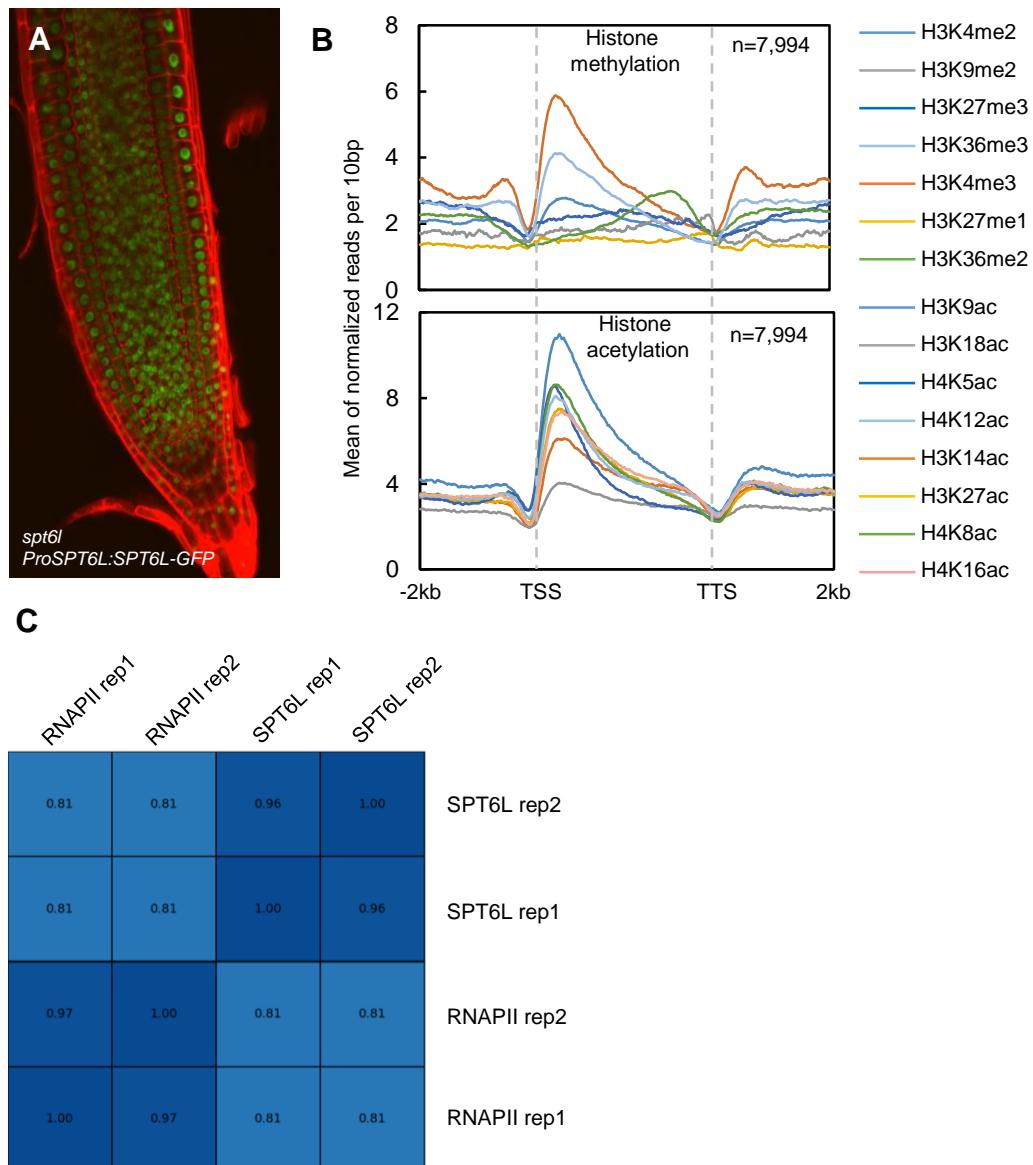


Figure 2

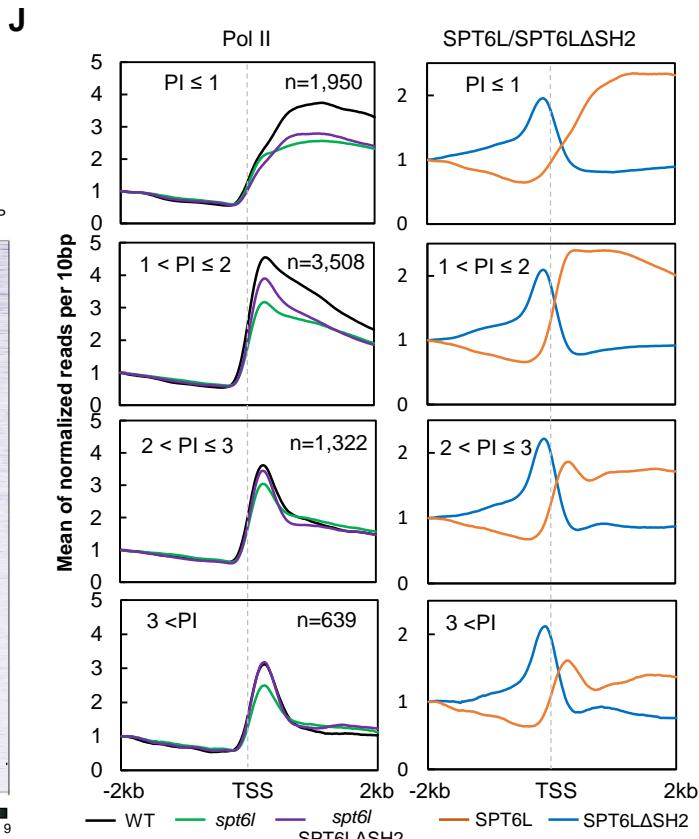
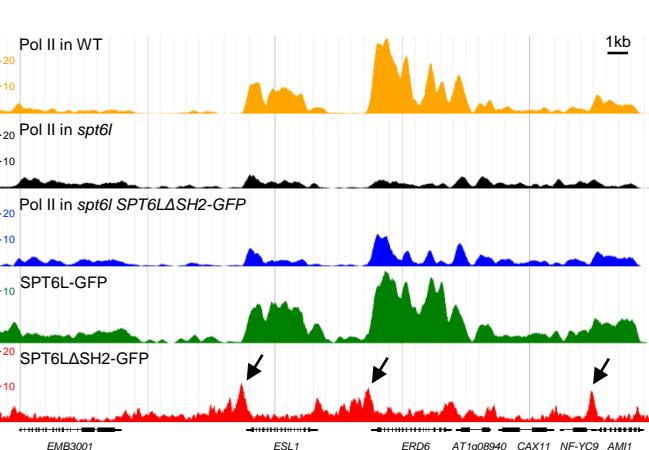
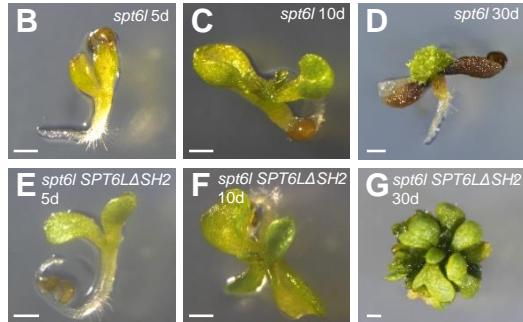
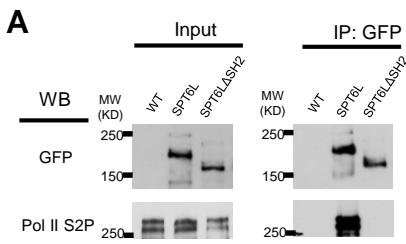





Figure 2S related to Figure 2

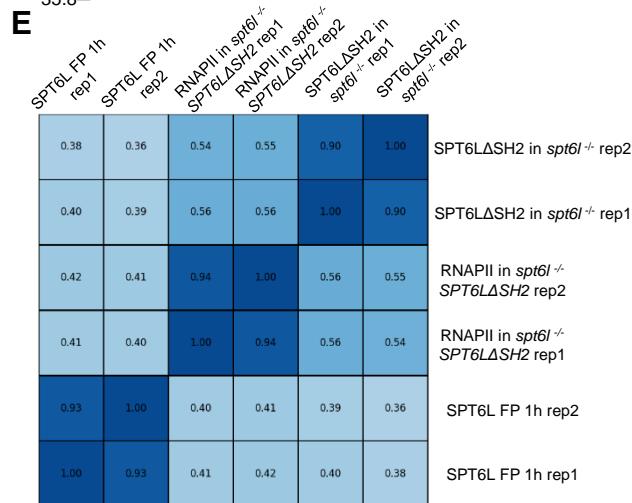
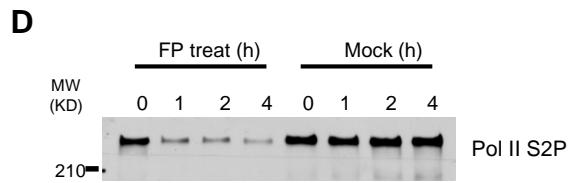
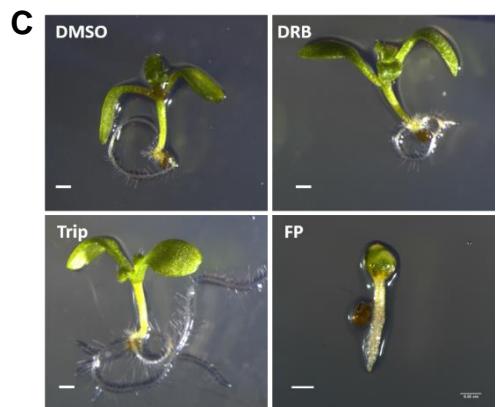
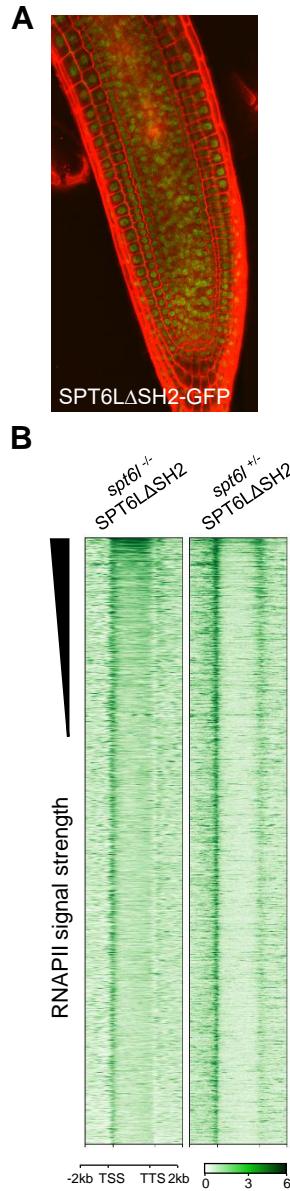
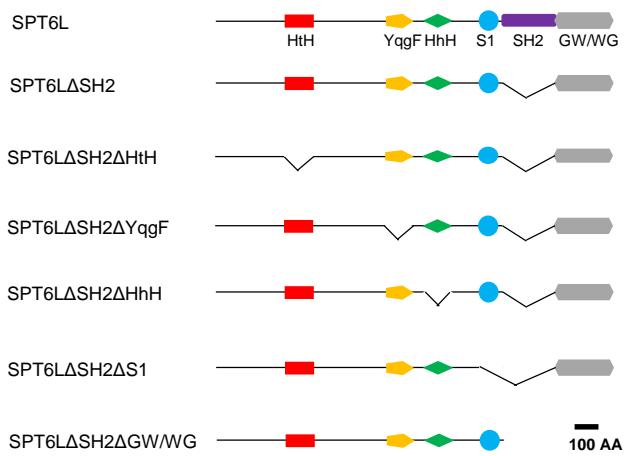
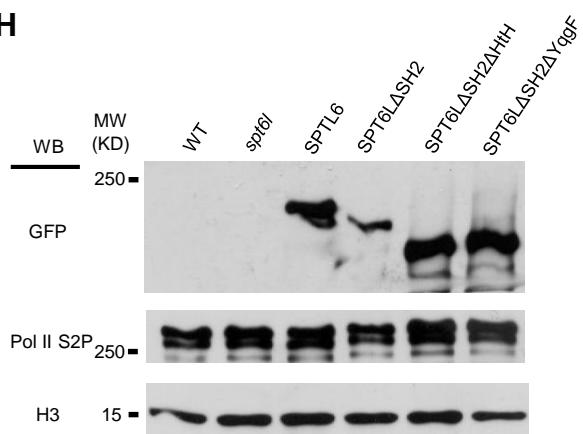







Figure 3

A

H

I

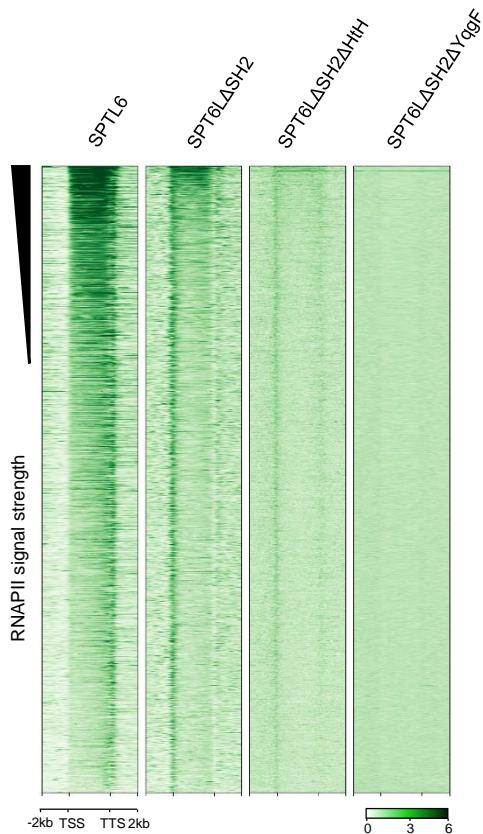
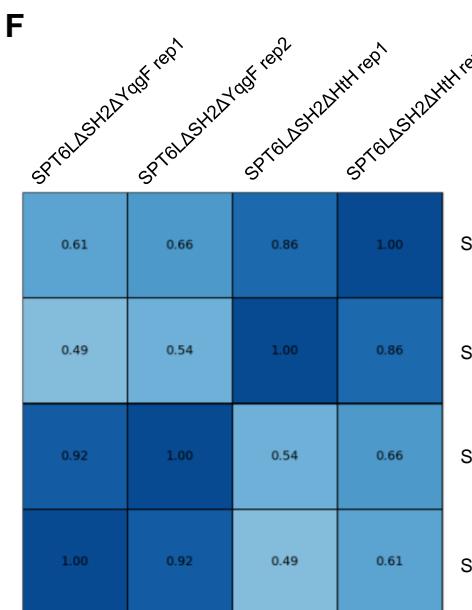
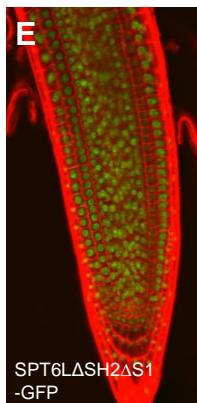
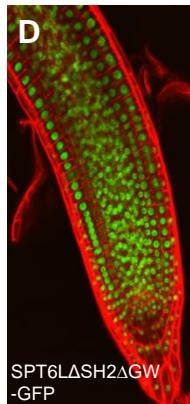


Figure 3S related to related to Figure 3

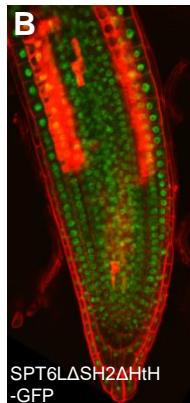
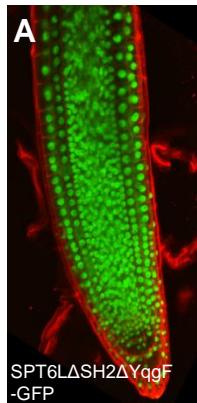
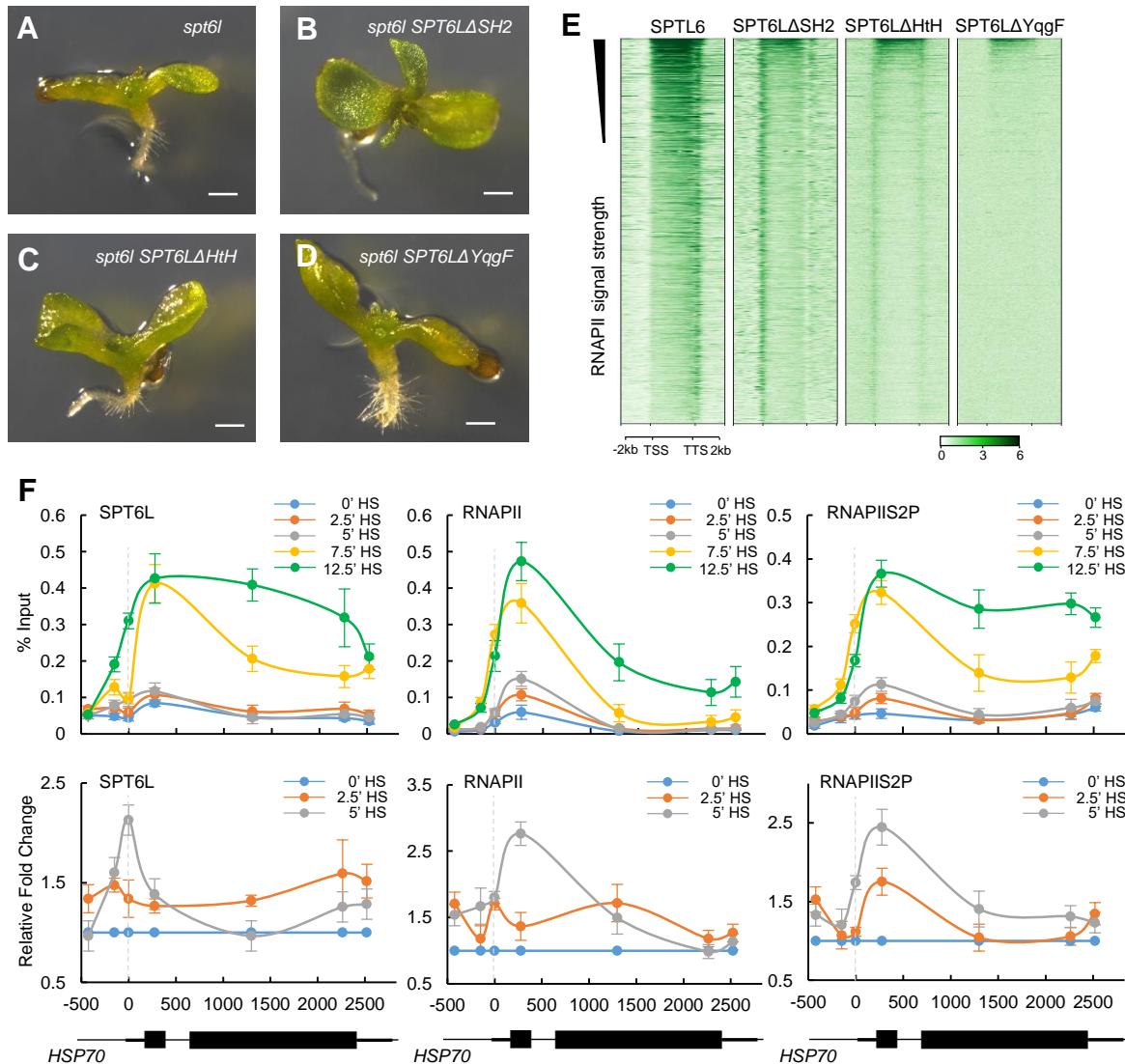
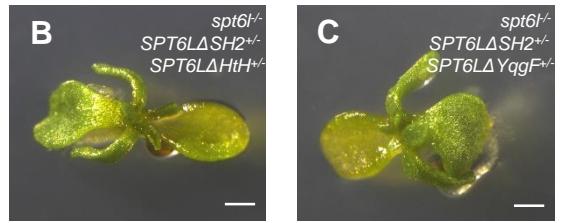
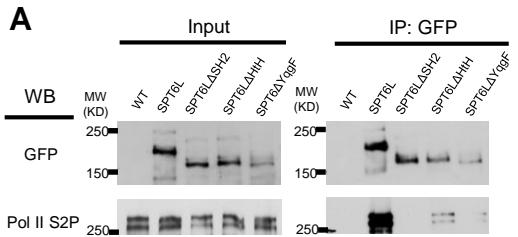
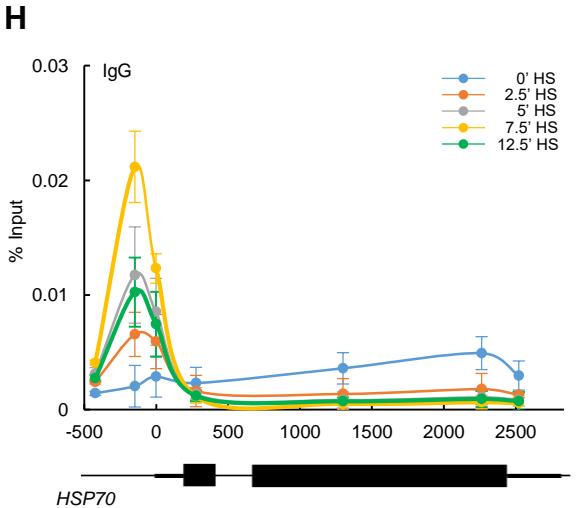
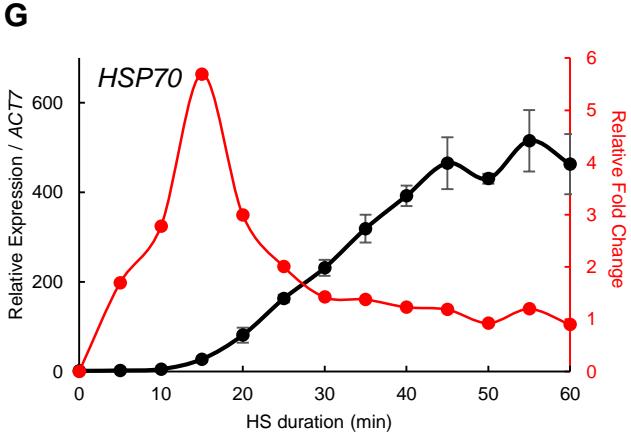
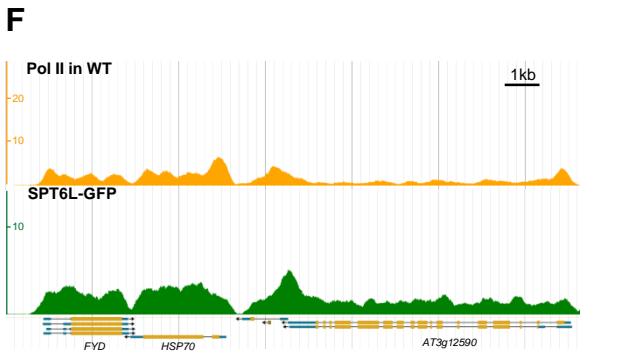
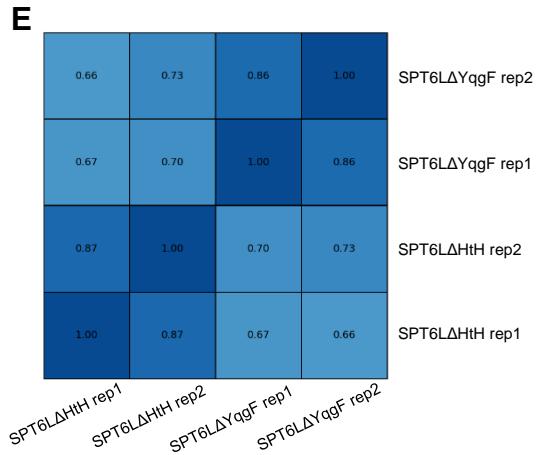



Figure 4





Figure 4S related to Figure 4

D
Segregation ratio of F1 progenies*:

Genotypes	Total	WT	<i>spt6l</i> like	SPT6LΔSH 2 like	Ratio (%)
<i>spt6^{l-/-}</i> (self-pollination)	385	292	93	0	24.2
<i>spt6^{l-/-}</i> <i>SPT6LΔSH2</i> (self-pollination)	280	209	0	71	25.4
<i>spt6^{l-/-}</i> <i>SPT6LΔSH2</i> x <i>spt6^{l-/-}</i> <i>SPT6LΔHtH</i>	276	210	0	66	23.9
<i>spt6^{l-/-}</i> <i>SPT6LΔSH2</i> x <i>spt6^{l-/-}</i> <i>SPT6LΔYqgF</i>	205	156	0	49	23.9

* All transgenes are homozygous

