

1 Full title: Symptoms of fatigue and depression is reflected in altered default mode
2 network connectivity in multiple sclerosis
3 Short title: Altered default mode network connectivity in multiple sclerosis patients with
4 fatigue and depression

5

6 Authors: Einar August Høgestøl¹, Gro Owren Nygaard², Dag Alnæs³, Mona K. Beyer⁴, Lars
7 T. Westlye^{3, 5, *}, Hanne F. Harbo^{1,2, *}

8

9 ¹Department of Neurology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway

10 ²Department of Neurology, Oslo University Hospital, Oslo, Norway

11 ³KG Jebsen Centre for Psychosis Research, NORMENT, Division of Mental Health and
12 Addiction, Oslo University Hospital, Oslo, Norway & Institute for Clinical Medicine,
13 University of Oslo, Oslo, Norway

14 ⁴Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway

15 ⁵Department of Psychology, University of Oslo, Oslo, Norway

16 *These authors contributed equally to this work

17

18 *Corresponding author*

19 Einar August Høgestøl

20 Department of Neurology, Neuroscience Research Unit, Multiple Sclerosis Research Group

21 University of Oslo / Oslo University Hospital

22 Domus Medica 4, room L-268, Gaustadalleén 34

23 0372 Oslo, Norway

24 E-mail: e.a.hogestol@medisin.uio.no, Mobile: +47 41 10 89 81

25 Abstract

26 *Background:* Fatigue and depression are frequent and often co-occurring symptoms in
27 multiple sclerosis (MS). Resting-state functional magnetic resonance imaging (rs-fMRI)
28 represents a promising tool for disentangling differential associations between depression and
29 fatigue and brain network function and connectivity. In this study we tested for associations
30 between symptoms of fatigue and depression and DMN connectivity in patients with MS.

31 *Materials and methods:* Seventy-four MS patients were included on average 14 months after
32 diagnosis. They underwent MRI scanning of the brain including rs-fMRI, and symptoms of
33 fatigue and depression were assessed with Fatigue Severity Scale (FSS) and Beck Depression
34 Inventory II (BDI). A principal component analysis (PCA) on FSS and BDI scores was
35 performed, and the component scores were analysed using linear regression models to test for
36 associations with default mode network (DMN) connectivity.

37 *Results:* We observed higher DMN connectivity with higher scores on the primary principal
38 component reflecting common symptom burden for fatigue and depression (Cohen's
39 $f^2=0.075$, $t=2.17$, $p=0.03$). The secondary principal component reflecting a pattern of low
40 fatigue scores with high scores of depression was associated with lower DMN connectivity
41 (Cohen's $f^2=0.067$, $t=-2.1$, $p=0.04$). Using continuous mean scores of FSS we also observed
42 higher DMN connectivity with higher symptom burden ($t=3.1$, $p=0.003$), but no significant
43 associations between continuous sum scores of BDI and DMN connectivity ($t=0.8$, $p=0.4$).

44 *Conclusion:* Multivariate decomposition of FSS and BDI data supported both overlapping and
45 unique manifestation of fatigue and depression in MS patients. Rs-fMRI analyses showed that
46 symptoms of fatigue and depression was reflected in altered DMN connectivity, and that
47 higher DMN activity was seen in MS patients with fatigue even with low depression scores.

48 Introduction

49 MS is a heterogeneous disease of the central nervous system (CNS) with typical age of
50 disease onset between 28 and 31 years (1). One of the most common symptoms in multiple
51 sclerosis (MS) is fatigue, affecting up to 90 % of all MS patients (2-4). Fatigue may have a
52 large impact on the daily life of MS patients and may impair both quality of life and ability to
53 work (2-4). Depression is also a common symptom in MS; the lifetime prevalence is reported
54 to be 40-60 % (2, 3, 5). The pathophysiology of these symptoms in MS is not fully understood
55 (2-4, 6).

56 Magnetic resonance imaging (MRI) is an essential tool in diagnosis and clinical
57 evaluation of MS patients, including follow-up of disease modifying therapies (DMT) (7).
58 Structural MRI studies have shown different patterns of cortical thickness in MS patients who
59 have either fatigue, depression both depression and fatigue. However, these cortical
60 underpinnings only explained 17.3 % of the total variance of the neuropsychiatric symptoms
61 (8). Diverse results are reported concerning the presence and severity of fatigue in relation
62 structural MRI findings in MS (lesions, normal appearing white matter damage or grey matter
63 damage) (3). Some have reported changes in cortico-subcortical pathways such as in the
64 prefrontal cortex, thalamus and basal ganglia in patients with MS-related fatigue (4). Both
65 structural MRI and functional MRI (fMRI) have been applied in many studies with the aim to
66 understand mechanisms responsible for clinical disability, depression, fatigue and cognitive
67 impairment in MS (3).

68 fMRI studies have shown that the brain is organized in distinct functional networks,
69 and their interplay is central for optimal functioning and health of the brain. Functional
70 connectivity can be conceptualized as the interaction between two different brain regions.
71 Disconnection caused by white matter damage in MS leads to brain network dysfunction,
72 named a disconnection syndrome (3). Both damage to the white and grey matter in MS

73 patients is likely to disrupt brain network connectivity within cortical and sub-cortical
74 networks (9). fMRI has made it possible to assess the integration of activity across distant
75 brain regions and has provided insight into the intrinsic connectivity network. Resting-state
76 (rs) fMRI in MS has mainly been used to study the intrinsic functional architecture and
77 connectivity of the brain and relation to disease progression and clinical impairment (9, 10).

78 In particular, rs-fMRI has highlighted the role of the default mode network (DMN) as
79 a critical hub for both integration and flow of information (11). The DMN comprises the
80 precuneus, the posterior cingulate cortex (PCC), the angular gyrus, the medial prefrontal
81 cortex (mPFC) and the inferior parietal regions (3, 9). The DMN is most active when a person
82 is not focused on a specific task, often referred to as wakeful rest (11). The DMN has been
83 studied in a wide range of neurological and neuropsychiatric disorders and has provided
84 insights into disease pathophysiology (11). Assuming a role of the DMN in introspection and
85 rumination, DMN changes in MS patients have been proposed to be linked with cognitive
86 dysfunction and depression (11-13). Some fMRI studies have reported cortico-subcortical
87 dysfunction in MS patients with fatigue, also specifically involving fronto-parietal regions
88 and the basal ganglia (3, 4, 14). A recent rs-fMRI study found that specific thalamo-cortical
89 connections explained different components of fatigue in MS patients (14). Thus, there is
90 evidence of altered DMN connectivity in MS patients with symptoms of both depression and
91 fatigue. Although related, these symptoms do not always co-occur, and little is known about
92 the different patterns of DMN alterations with different symptom burden (8). On this
93 background, we aimed to study the common and differential associations between symptoms
94 of fatigue and depression and DMN connectivity using rs-fMRI in MS.

95 Materials and methods

96 *Participants*

97 We included in total 74 MS patients at Oslo University Hospital for a prospective longitudinal
98 study. Some other data from this study have been published earlier (15, 16). All participants
99 were diagnosed between January 2009 and October 2012 with relapsing-remitting MS
100 (RRMS) according to the revised McDonald Criteria (17) and were referred to brain MRI
101 between January 2012 and January 2013. Seven participants did not perform the rs-fMRI
102 sequence, and the remaining 67 participants were used in the current imaging analyses.
103 Exclusion criteria included age < 18 years or > 50 years, uncertain diagnosis, non-fluency in
104 Norwegian, neurological or psychiatric disease, drug abuse, head trauma, pregnancy and
105 previous adverse gadolinium reaction. The project was approved by the regional ethical
106 committee of South Eastern Norway (REC ID:2011/1846), and all participants received oral
107 and written information and gave their written informed consent.

108 All participants completed a comprehensive neurological examination, including
109 expanded disability status scale (EDSS) by a Neurostatus certified medical doctor
110 (<http://www.neurostatus.net/>) and symbol digits modalities test (SDMT) within the same
111 week as their MRI examination. All participants also completed self-reported questionnaires
112 concerning fatigue (Fatigue Severity Scale, FSS; 18), with 9 subscores covering the different
113 dimensions of fatigue, and depressive symptoms (Beck Depressive Inventory II, BDI; 19)
114 with a total of 21 subscores to encompass various features of depression. FSS mean score ≥ 4
115 was categorized as clinically significant fatigue, while BDI sum score ≥ 14 was categorized as
116 clinically significant depressive symptoms (19).

117

118 *MRI acquisition*

119 The participants were scanned using the same 1.5 T scanner (Avanto, Siemens Medical
120 Solutions; Erlangen, Germany) equipped with a 12-channel head coil. For rs-fMRI we used a
121 T_2^* weighted echo-planar imaging (EPI) sequence (repetition time (TR) = 3000 milliseconds
122 (ms), echo time (TE) = 70 ms, flip angle (FA) = 90°, voxel size = 3.44 x 3.44 x 4 millimetre
123 (mm), field-of-view (FOV) = 220, descending acquisition, GeneRalized Autocalibrating
124 Partial Acquisition (GRAPPA) acceleration factor = 2), 28 transversally oriented slices, no
125 gap, with a scan time of 7 minutes and 30 seconds, yielding 150 volumes. Three dummy
126 volumes were collected to avoid T1 saturation effects. Structural MRI data were collected
127 using a three dimensional T1-weighted Magnetization Prepared Rapid Gradient Echo (MP-
128 RAGE) sequence with the following parameters: TR / TE / time to inversion / FA = 2400 ms /
129 3.61 ms / 1000 ms / 8°, matrix 192 x 192, field of view = 240. Each scan lasted 7 minutes and
130 42 seconds and consisted of 160 sagittal slices with a voxel size of 1.20 x 1.25 x 1.25 mm.

131

132 *fMRI pre-processing and analysis*

133 fMRI analysis was performed using FMRI Expert Analysis Tool (FEAT) Version 6.00, from
134 FMRIB's Software Library (20, 21). Head motion was corrected using MCFLIRT (22) before
135 linear trends and low-frequency drifts were removed (high-pass filter of 0.01 Hertz). Image
136 sequences were examined for excessive head motion causing image artefacts. FSL Brain
137 extraction tool (23) was used to remove non-brain tissue. Spatial smoothing was performed
138 using a Gaussian kernel filter with a full width at half maximum (FWHM) of 6 mm (24).
139 FMRIB's Nonlinear Image Registration tool (FNIRT) was used to register the participants
140 fMRI volumes to Montreal Neurological Institute (MNI) 152 standard template using the T1-
141 weighted scan as an intermediate, which had the non-brain tissue removed using procedures

142 for automated volumetric segmentation in Freesurfer 5.3 (<http://surfer.nmr.mgh.harvard.edu/>)
143 (25).

144 Single-session independent component analysis (ICA) was performed for all runs
145 using Multivariate Exploratory Linear Optimized Decomposition into Independent
146 Components (MELODIC) (26). The single-session ICA were submitted to FIX (27) for
147 automatic classification into signal and noise components, in order to remove noise
148 components from fMRI data. Data cleaning also included correction based on the estimated
149 motion parameters for each run, using linear regression. FIX has been shown to effectively
150 reduce motion induced variability, outperforming methods based on regression of motion
151 parameters or spikes in the dataset (28).

152 The cleaned and MNI-conformed rs-fMRI datasets were submitted to temporal
153 concatenation group independent component analysis (gICA) using MELODIC (26) with a
154 model order of 30. These group level spatial components were then used as spatial repressors
155 against the original rs-fMRI datasets to estimate subject-specific components and associated
156 time series (dual regression (29)). The second group ICA component, encompassing the
157 regions of the canonical DMN including the PCC, angular gyrus and mPFC, was thresholded
158 at $z>4$ and used as a mask for extracting the mean DMN connectivity value from the subject
159 specific dual-regression maps (Fig 1). The threshold $z>4$ ($p=0.00006$) was pragmatically
160 chosen based on previous experience.

161

162 **Fig 1. Associations between clinical symptoms and DMN connectivity.**

163 The correlation between adjusted DMN connectivity with the PCA components in A and B, and between
164 adjusted DMN connectivity with FSS and BDI continuous scores in C and D. The grey tones for each subject
165 represent clinical categories in C and D as described and shown in Table 1, and individual subject scores in A
166 and B. (A) Increased PCA1 (high burden of both fatigue and depression) is positively correlated with DMN
167 connectivity. (B) Decreased PCA2 (low burden of fatigue and high burden of depression) is negatively

168 correlated with DMN connectivity. (C) Mean FSS correlated with DMN connectivity. (D) BDI sum scores
169 correlated with DMN connectivity. Shown in E is the DMN component from the group independent component
170 analysis (gICA). The component z-statistic map was thresholded at $z>4$. Depicted in three axial slices the
171 posterior cingulate cortex (PCC) and the medial prefrontal cortex (mPFC) are masked out in red and yellow
172 colours bilaterally.

173

174 *Statistical analyses*

175 We used MATLAB version 9.2 (The MathWorks Inc., Natick, MA, 2017) and R (30) (R Core
176 Team, Vienna, 2018) for statistical analyses. BDI and FSS subscores for all participants were
177 submitted to PCA, decomposing the data into orthogonal components. To increase the
178 statistical power of the PCA, we kept the seven MS patients missing fMRI data. The PCA
179 yielded component loading coefficients for each questionnaire as well as component subject
180 scores, resulting in a ranked list of PCA components with their associations to each BDI and
181 FSS subscores (Fig 2). The subject scores for the two highest ranked PCA components were
182 extracted for further analysis to test for associations with DMN connectivity.

183

184 **Fig 2. PCA from FSS and BDI subscores.**

185 PCA based on 30 clinical subscores (nine FSS and 21 BDI) for all participants. Left: The cumulative and
186 individual explained variance of each PCA of the total variation in the clinical subscores. Right: A heatmap
187 showing the first six PCA factors and their item loading on each component. Yellow and green boxes indicate
188 association with high scores, while the blue boxes indicate association with low scores. The first PCA
189 component (PCA1) captures common variance across BDI and FSS, while the second PCA component (PCA2)
190 captures a pattern of covarying low FSS with high BDI scores.

191

192 Associations between DMN connectivity and clinical PCA scores were investigated using
193 linear models, adjusting for age and sex. To evaluate effect sizes, we calculated Cohen's f^2 ,
194 also taking into account age and sex. For Cohen's f^2 test, effect sizes are considered small ($>$

195 0.02), medium (> 0.15) and large (> 0.35). For clinical validation and comparison, we also
196 estimated associations between DMN connectivity and the BDI and FSS continuous sum
197 scores using multiple regression, adjusting for age and sex, and compared extreme groups
198 based on conventional clinical thresholds (see above). To account for disability and cognitive
199 impairment we also investigated the associations from the previously mentioned linear
200 models with SDMT and EDSS scores.

201

202 *Data availability*

203 Data cannot be shared publicly because of local restrictions for sensitive data.

204 Results

205 *Participant demographics and characteristics*

206 Table 1 summarizes demographic and clinical characteristics of the 74 included MS patients.

207 The majority of the participants were women (70 %), mean age was 35.0 years (range 21-49
208 years). The majority of the participants received DMT, whereas 20 % of the participants were
209 never treated. The participants were included on average 14.1 months after the date of
210 diagnosis and disease duration was on average 73.0 months (range 5-272 months).

211

212 **Table 1. Demographic and clinical characteristics of the participants.**

<i>(a) Demographic characteristics</i>	<i>Patients (n = 74)</i>
Female, n (%)	52 (70)
Age, mean years (range)	35.0 (21-49)
Education	
Years, mean (range)	14.9 (9-21)
≥ 15 years education n (%)	51 (69)
Working status	
Unemployed or 100 % sick leave, n (%)	7 (9)
Working (part- og full-time), student or maternity leave, n (%)	67 (91)
<i>(b) Clinical characteristics</i>	<i>Patients (n = 74)</i>
Neurological disability	
EDSS, mean (range)	2.0 (0-6.0)
Number of total attacks, mean (range)	1.8 (0-5)
DMT	
No DMT, n (%)	15 (20)
Active DMTs, n (%)	48 (65)
Highly active DMTs, n (%)	11 (15)
Months on treatment before study, mean (range)	9.4 (0-34)
Months since diagnosis, mean (range)	14.1 (1-34)
Disease duration, mean months (range)	73.0 (5-272)
Cognitive disability	
SDMT, mean (range)	52.4 (30-80)
<i>(c) Self-reported questionnaires</i>	<i>Patients (n = 74)</i>
FSS	
FSS, mean (standard deviation (SD))	4.2 (1.7)
Clinically significant fatigue (FSS mean ≥ 4), n (%)	41 (55)
BDI	
BDI sum, mean (SD)	9.1 (6.7)

Clinically significant depressive symptoms (BDI sum ≥ 14), n (%)	23 (31)
FSS and BDI status	
No fatigue (FSS mean < 4) and no depression (BDI sum < 14), n (%)	32 (43)
Fatigue (FSS mean ≥ 4) and no depression (BDI sum < 14), n (%)	19 (26)
No fatigue (FSS mean < 4) and depression (BDI sum ≥ 14), n (%)	1 (1)
Fatigue (FSS mean ≥ 4) and depression (BDI sum ≥ 14), n (%)	22 (30)

EDSS, Expanded Disability Status Scale; DMT, disease modifying treatment; SDMT, symbol digits modalities test; FSS, Fatigue Severity Scale; BDI, Beck Depression Inventory

213

214 Fifty-five percent of all participants had clinically significant fatigue based on the FSS mean
215 scores (FSS ≥ 4), and 31 % of all participants had clinically significant depressive symptoms
216 based on BDI sum scores (BDI > 14). There were no significant differences in FSS and BDI
217 scores between patients with and without rs-fMRI. The first PCA component (PCA1), which
218 reflected common variance across depression and fatigue (high FSS and BDI scores),
219 explained 34 % of the total variance in all FSS and BDI items (Fig 2). The second PCA
220 component (PCA2), which reflected a characteristic pattern of low FSS with high BDI scores,
221 explained 10 % of the total variance in all FSS and BDI subscores (Fig 2).

222

223 *Associations between clinical scores and DMN connectivity*

224 Linear models revealed a significant positive correlation between PCA1 and DMN
225 connectivity with small effect size (Cohen's $f^2=0.075$, $t=2.17$, $p=0.03$), indicating higher
226 DMN connectivity with higher symptom burden. PCA2, which reflected a characteristic
227 pattern of low FSS scores with high BDI scores, showed a significant negative correlation
228 with DMN connectivity with small effect size (Cohen's $f^2=0.067$, $t=-2.1$, $p=0.04$) (Fig 1).

229 Linear models revealed a significant positive correlation between FSS continuous mean
230 scores correlated with DMN connectivity ($t=3.1$, $p=0.003$), and a non-significant positive
231 association for BDI continuous sum scores correlated with DMN connectivity ($t=0.8$, $p=0.39$).

232

233 *Confounding effects of SDMT and EDSS*

234 SDMT showed no significant association with DMN connectivity ($t=1.7$, $p=0.09$). The
235 positive association between PCA1 and DMN connectivity remained significant ($t=3.0$,
236 $p=0.0045$) when including SDMT in the model. The same model revealed a positive
237 association between DMN connectivity and SDMT ($t=2.6$, $p=0.011$). The association between
238 PCA2 and DMN became non-significant ($t=-1.9$, $p=0.061$) when including SDMT in the
239 model. The same model revealed a non-significant positive association between DMN
240 connectivity and SDMT ($t=1.6$, $p=0.12$).

241

242 EDSS showed no significant association with DMN connectivity ($t=0.3$, $p=0.77$). The positive
243 association between PCA1 and DMN connectivity remained significant ($t=2.2$, $p=0.031$)
244 when including EDSS in the model. The same model showed a non-significant association
245 between DMN connectivity and EDSS ($t=-0.51$, $p=0.61$). The negative association between
246 PCA2 and DMN connectivity remained significant ($t=-2.0$, $p=0.049$) when including EDSS in
247 the model. The same model revealed a non-significant positive association between DMN
248 connectivity and EDSS ($t=0.25$, $p=0.81$).

249

250 A linear model with FSS revealed a significant positive association with EDSS ($t=2.5$,
251 $p=0.014$). The same model showed a non-significant association with SDMT ($t=-1.0$, $p=0.32$).
252 A linear model with BDI revealed non-significant associations with EDSS ($t=1.6$, $p=0.12$) and
253 SDMT ($t=-1.4$, $p=0.17$).

254 Discussion

255 This study is to our knowledge among the first to study the complex interaction of fatigue and
256 depression in patients with MS by multivariate decomposition analyses of these symptoms in
257 relation to DMN connectivity measured by rs-fMRI. To understand the variability and
258 mechanisms of both fatigue and depression is a key clinical question in MS.

259 Fatigue and depression represent common and strong predictors for quality of life in
260 patients with MS, yet the pathophysiological mechanisms of fatigue and depression in MS
261 patients are poorly understood. Converging lines of evidence have suggested associations
262 between different symptoms (such as fatigue, cognitive impairment, depression) and the
263 organization and synchronization of large-scale brain networks as measured by fMRI (3).

264 Here, using multivariate decomposition of symptoms scores and rs-fMRI data we report
265 significant association between DMN connectivity and both common and unique symptoms
266 of depression and fatigue in patients with MS. The symptoms presenting in MS patients vary
267 between individuals and is assumed to result primarily from demyelination and microscopic
268 CNS tissue damage (3). Structural MRI studies have found diverse patterns of cortical
269 thickness to be associated with different MS symptoms (8). Our results show correlation
270 between DMN functional connectivity and FSS and BDI scores in MS, which support and
271 further adds to previous knowledge.

272 One third of the participants in our study had both fatigue and depression, in line with
273 other studies of MS patients (8). It is important to underline, that in this study, as in most MS
274 papers, depressive symptoms are evaluated by self-reported psychometric scales, and no
275 formal diagnosis of depressive mood disorder has been made (5). We found a significant
276 positive correlation between DMN connectivity and the burden of fatigue and depression
277 (PCA1 in Fig 1). DMN hyperconnectivity has been demonstrated in depression (31). A recent
278 study investigated functional connectivity changes in MS patients with depression and

279 suggested a functional link between depression and cognitive impairment (13). A functional
280 link between depression and Alzheimer's disease has also been reported (32). The same study
281 proposed that depression in MS patients is a result of the demyelination and microscopic CNS
282 tissue damage itself, and not a secondary symptom (13). A study on primary and secondary
283 progressive MS patients found associations between cognitive impairment and reduction in
284 resting state connectivity (33). Our findings support the hypothesis that symptoms of
285 depression and fatigue are associated with altered DMN connectivity in MS, possibly
286 influencing the normal function of the DMN as a critical hub of integration and flow of
287 information.

288 We identified a second PCA component (PCA2) to be associated with a low burden of
289 fatigue and a high burden of depressive symptoms. The second PCA component was
290 negatively correlated with DMN connectivity, indicating that the clinical presentation of
291 fatigue with no depression was associated with DMN hyperconnectivity. DMN
292 hyperconnectivity in fatigue has been demonstrated in a group of breast cancer survivors,
293 where enhanced intrinsic DMN connectivity with the frontal gyrus was associated with
294 persistent fatigue after completed treatment (34). Our results indicate that there is
295 hyperconnectivity in fatigued MS patients unrelated to depression, possibly caused by the
296 inflammation or structural damage in the brain. Our findings of different DMN patterns
297 depending on the symptom burden of fatigue and depression, may reflect the heterogeneity of
298 symptoms in MS patients, reported in a recent review (4).

299 When adjusting our findings for cognitive impairment, the positive correlation of the
300 first PCA component with DMN connectivity increased while the negative correlation with
301 the second PCA component were slightly decreased. Disability did not have a confounding
302 effect on the correlation between the PCA components and DMN connectivity. Yet we found
303 a significant positive correlation between FSS and EDSS, in the way that higher disability

304 was associated with higher symptoms of fatigue. Adjusting for cognitive impairment therefore
305 seemed to only strengthen our results, while when adjusting for disability our results remained
306 the same.

307 Our sample size is modest, but the participants were very thoroughly characterized
308 and comprise a relatively homogenous group in terms of age, cognitive and physical
309 disability, disease duration, education and clinical course. Concerning fatigue, the participants
310 in our study scored a mean of 4.2 for FSS, which is lower than reported in some larger studies
311 (35). However, the FSS scores for the participants included in this study were in line with a
312 recent Norwegian MS study (6). Fatigue may impair the quality of life and contribute to the
313 establishment and maintenance of depressive symptoms (4). The mean BDI sum score in our
314 dataset was 9.1, which is lower than reported in some studies (5), but comparable with a
315 Swedish study (36). Possible reasons for the relatively low BDI sum score in our sample
316 include the low age, newly diagnosed RRMS, short disease duration and few brain lesions in
317 our MS patients (15).

318 The structural underpinnings in the brain of the observed associations are not known,
319 and future studies combining structural MRI and fMRI data could give further insights into
320 the pathophysiology of depression and fatigue in MS. However, the associations between
321 symptoms of fatigue and depression with DMN connectivity identified by rs-fMRI in our
322 study suggest different pathophysiology for the two most prominent components revealed by
323 the multivariate decomposition analysis of symptoms of fatigue and depression. Previous
324 studies assessing cortical morphometry in an overlapping patient sample reported regional
325 associations between cortical surface areas and several clinical manifestations, where the most
326 prominent structural association were smaller cortical surface area and volume significantly
327 associated with depressive symptoms (15).

328 In addition to our modest sample size, other limitations should be considered when
329 interpreting our results. We did not include lesion filling as part of the fMRI analysis pipeline,
330 as this was not implemented. In MS patients, permanent damage affects the white matter of
331 the CNS and can cause disconnection syndromes (3). The functional connectivity and large-
332 scale networks depend on structural connections, and inter-individual variability in DMN
333 connectivity, and its association with clinical traits, might be mediated by degree of
334 demyelination, atrophy of both the grey and white matter and microscopic CNS damage (12).
335 We did not have access to a healthy control sample. Yet, our results only focus on the DMN
336 connectivity changes in relation to neuropsychiatric symptoms within the MS group. Future
337 studies are needed to test if our results can be generalized to other populations.

338

339 Conclusion

340 In conclusion, multivariate decomposition of FSS and BDI symptom data supported that the
341 clinical manifestations of fatigue and depression in patients with MS reflect both overlapping
342 and unique variability in the FSS and BDI subscores. The observed differential correlations
343 between symptoms of fatigue and depression and DMN connectivity underline the
344 heterogeneity and complexity of fatigue and depression in MS. Our analyses revealed that
345 high burden of both fatigue and depression was associated with DMN hyperconnectivity,
346 while we also found hyperconnectivity in DMN to be associated with high burden of fatigue
347 in absence of depression. Effect sizes were in general relatively small, and further
348 investigations into the mechanisms of fatigue and depression in MS are warranted.
349 Multivariate decomposition analyses of MS symptoms in relation to default mode network
350 (DMN) connectivity measured by resting-state-fMRI (rs-fMRI) is a promising method to
351 pursue these questions.

352 Acknowledgment and funding

353 We thank all the patients who participated in our study. The project was supported by grants

354 from The Research Council of Norway (240102,) and the South-Eastern Norway Regional

355 Health Authority (2011059/ ES563338/Biotek 2021, 2014097) (Principal Investigator for both

356 grants: HFH). The funders had no role in study design, data collection and analysis, decision

357 to publish or preparation of the manuscript.

358

359 Competing Interests

360 The authors have declared that no competing interests exist.

361 References

362 1. Goodin DS. The epidemiology of multiple sclerosis: insights to disease pathogenesis. Handb Clin Neurol. 2014;122:231-66.

363 2. Janardhan V, Bakshi R. Quality of life in patients with multiple sclerosis: the impact of fatigue and depression. J Neurol Sci. 2002;205(1):51-8.

364 3. Filippi M, Preziosa P, Rocca MA. Brain mapping in multiple sclerosis: Lessons learned about the human brain. Neuroimage. 2017.

365 4. Penner IK, Paul F. Fatigue as a symptom or comorbidity of neurological diseases. Nat Rev Neurol. 2017.

366 5. Feinstein A, Magalhaes S, Richard JF, Audet B, Moore C. The link between multiple sclerosis and depression. Nat Rev Neurol. 2014;10(9):507-17.

367 6. Lerdal A, Celius EG, Krupp L, Dahl AA. A prospective study of patterns of fatigue in multiple sclerosis. Eur J Neurol. 2007;14(12):1338-43.

368 7. Filippi M, Rocca MA, Ciccarelli O, De Stefano N, Evangelou N, Kappos L, et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016;15(3):292-303.

369 8. Hanken K, Eling P, Klein J, Klaene E, Hildebrandt H. Different cortical underpinnings for fatigue and depression in MS? Mult Scler Relat Disord. 2016;6:81-6.

370 9. Basile B, Castelli M, Monteleone F, Nocentini U, Caltagirone C, Centonze D, et al. Functional connectivity changes within specific networks parallel the clinical evolution of multiple sclerosis. Mult Scler. 2014;20(8):1050-7.

371 10. Sbardella E, Petsas N, Tona F, Pantano P. Resting-State fMRI in MS: General Concepts and Brief Overview of Its Application. Biomed Res Int. 2015;2015:212693.

372 11. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1-38.

373 12. Rocca MA, Valsasina P, Martinelli V, Misci P, Falini A, Comi G, et al. Large-scale neuronal network dysfunction in relapsing-remitting multiple sclerosis. Neurology. 2012;79(14):1449-57.

374 13. Bonavita S, Sacco R, Esposito S, d'Ambrosio A, Della Corte M, Corbo D, et al. Default mode network changes in multiple sclerosis: a link between depression and cognitive impairment? Eur J Neurol. 2017;24(1):27-36.

375 14. Hidalgo de la Cruz M, d'Ambrosio A, Valsasina P, Pagani E, Colombo B, Rodegher M, et al. Abnormal functional connectivity of thalamic sub-regions contributes to fatigue in multiple sclerosis. Mult Scler. 2017;1352458517717807.

376 15. Nygaard GO, Celius EG, de Rodez Benavent SA, Sowa P, Gustavsen MW, Fjell AM, et al. A Longitudinal Study of Disability, Cognition and Gray Matter Atrophy in Early Multiple Sclerosis Patients According to Evidence of Disease Activity. PLoS One. 2015;10(8):e0135974.

377 16. Nygaard GO, Walhovd KB, Sowa P, Chepkoech JL, Bjornerud A, Due-Tonnessen P, et al. Cortical thickness and surface area relate to specific symptoms in early relapsing-remitting multiple sclerosis. Mult Scler. 2015;21(4):402-14.

378 17. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292-302.

379 18. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121-3.

380 19. Beck AT SR, Brown GK. Manual for the Beck Depression Inventory-II. San Antonio, TX: The Psychological Corporation; 1996.

410 20. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg
411 H, et al. Advances in functional and structural MR image analysis and implementation as
412 FSL. *Neuroimage*. 2004;23 Suppl 1:S208-19.

413 21. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL.
414 *Neuroimage*. 2012;62(2):782-90.

415 22. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust
416 and accurate linear registration and motion correction of brain images. *Neuroimage*.
417 2002;17(2):825-41.

418 23. Smith SM. Fast robust automated brain extraction. *Hum Brain Mapp*. 2002;17(3):143-
419 55.

420 24. Smith SM, Brady JM. SUSAN—A New Approach to Low Level Image Processing.
421 *International Journal of Computer Vision*. 1997;23(1):45-78.

422 25. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and
423 surface reconstruction. *Neuroimage*. 1999;9(2):179-94.

424 26. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state
425 connectivity using independent component analysis. *Philos Trans R Soc Lond B Biol Sci*.
426 2005;360(1457):1001-13.

427 27. Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ, Douaud G, Sexton CE,
428 et al. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state
429 network imaging. *Neuroimage*. 2014;95:232-47.

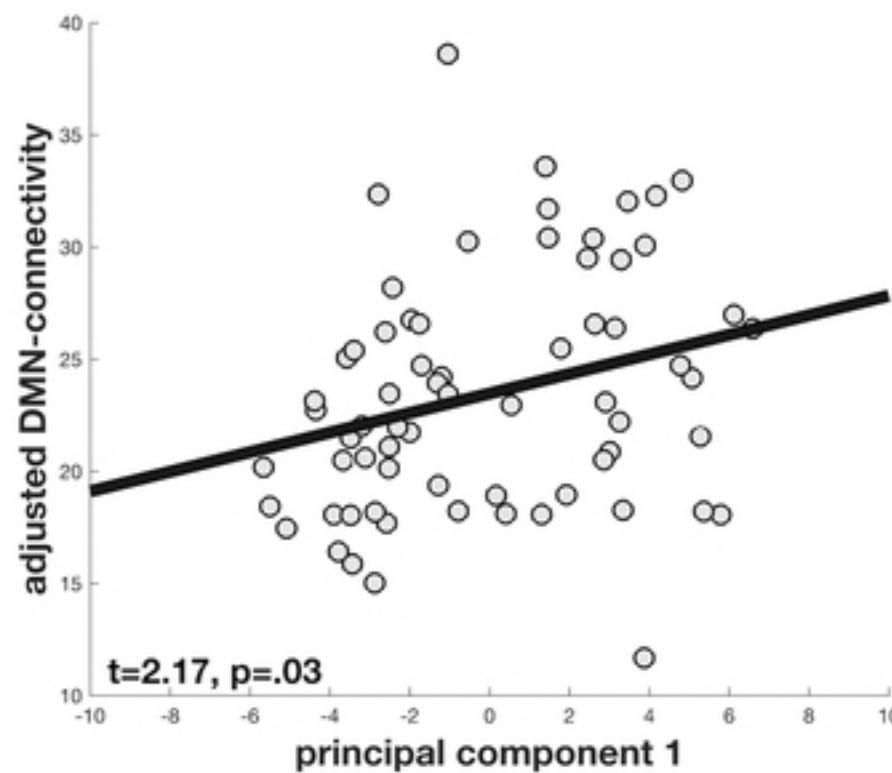
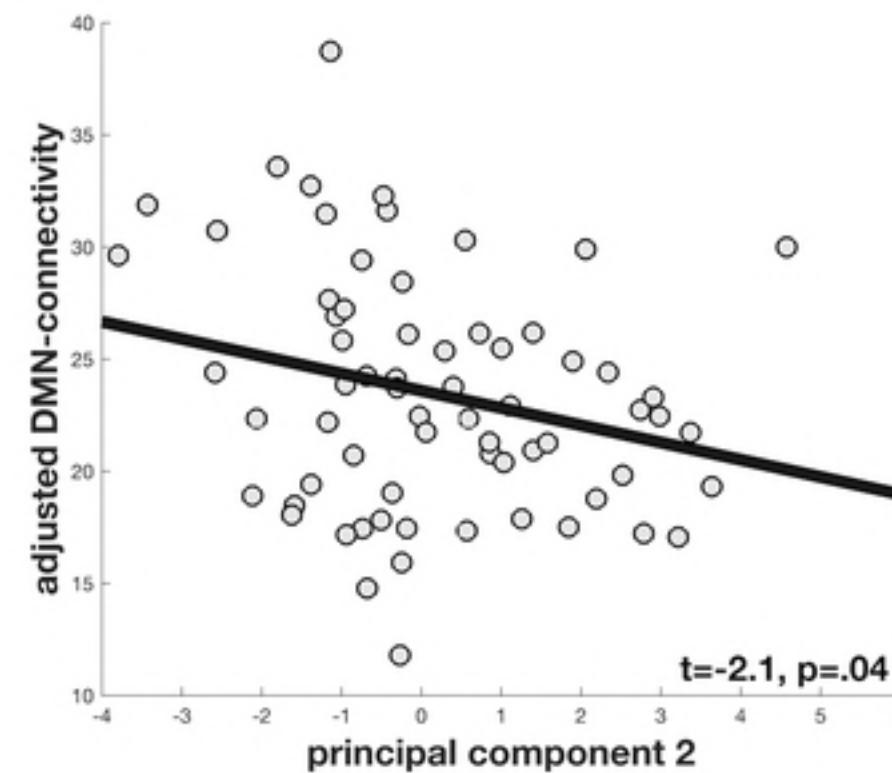
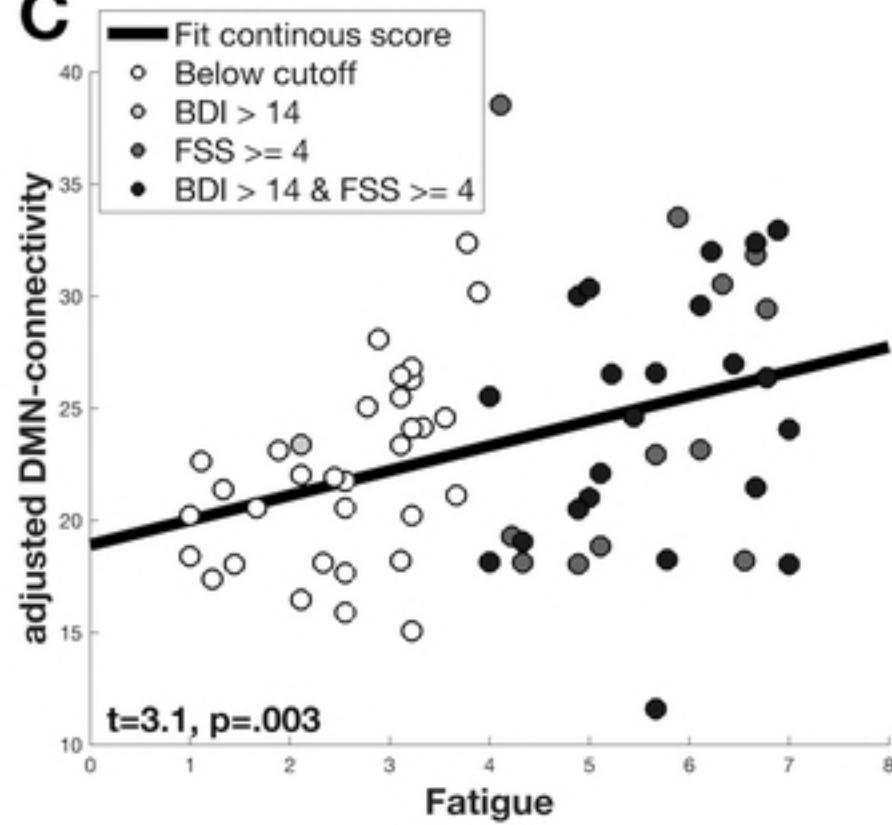
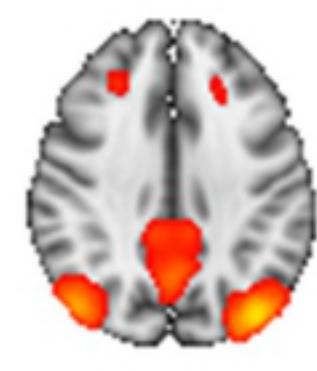
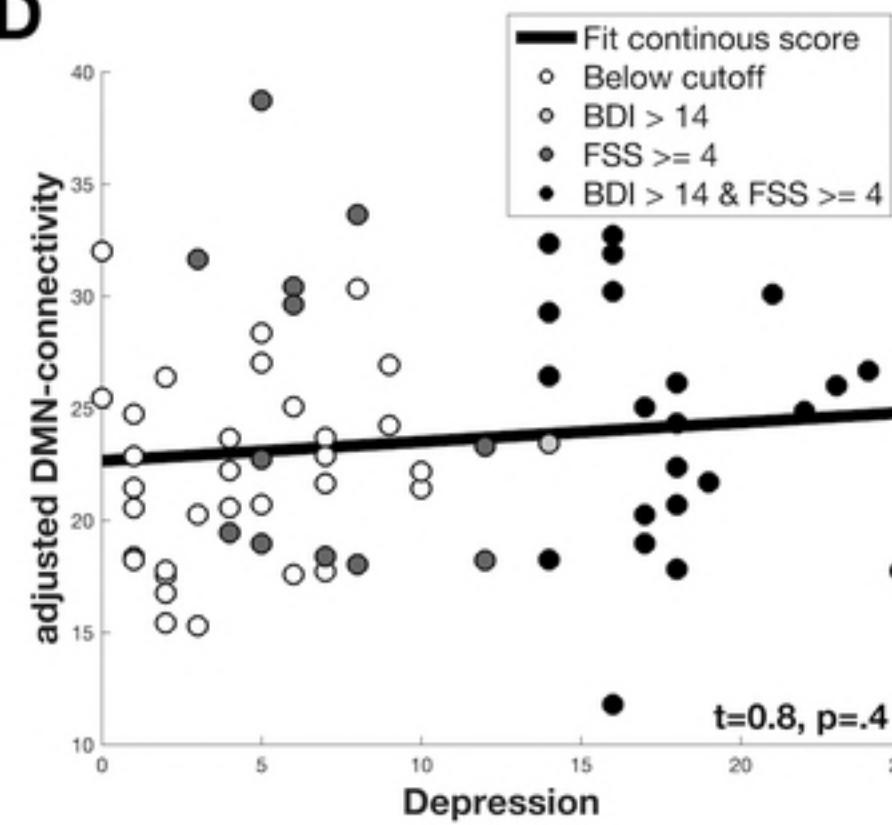
430 28. Pruim RH, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-
431 AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data.
432 *Neuroimage*. 2015;112:267-77.

433 29. Nickerson LD, Smith SM, Ongur D, Beckmann CF. Using Dual Regression to
434 Investigate Network Shape and Amplitude in Functional Connectivity Analyses. *Front
435 Neurosci*. 2017;11:115.

436 30. R Core Team. R: A Language and Environment for Statistical Computing. Vienna,
437 Austria: R Foundation for Statistical Computing; 2017.

438 31. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-Scale Network
439 Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional
440 Connectivity. *JAMA Psychiatry*. 2015;72(6):603-11.

441 32. Damoiseaux JS, Prater KE, Miller BL, Greicius MD. Functional connectivity tracks
442 clinical deterioration in Alzheimer's disease. *Neurobiol Aging*. 2012;33(4):828 e19-30.






443 33. Rocca MA, Valsasina P, Absinta M, Riccitelli G, Rodegher ME, Misci P, et al.
444 Default-mode network dysfunction and cognitive impairment in progressive MS. *Neurology*.
445 2010;74(16):1252-9.

446 34. Hampson JP, Zick SM, Khabir T, Wright BD, Harris RE. Altered resting brain
447 connectivity in persistent cancer related fatigue. *Neuroimage Clin*. 2015;8:305-13.

448 35. The Goldman Consensus statement on depression in multiple sclerosis. *Mult Scler*.
449 2005;11(3):328-37.

450 36. Sundgren M, Maurex L, Wahlin A, Piehl F, Brismar T. Cognitive impairment has a
451 strong relation to nonsomatic symptoms of depression in relapsing-remitting multiple
452 sclerosis. *Arch Clin Neuropsychol*. 2013;28(2):144-55.

453

A**B****E****C****D**

DMN
 $z > 4$

Figure 1

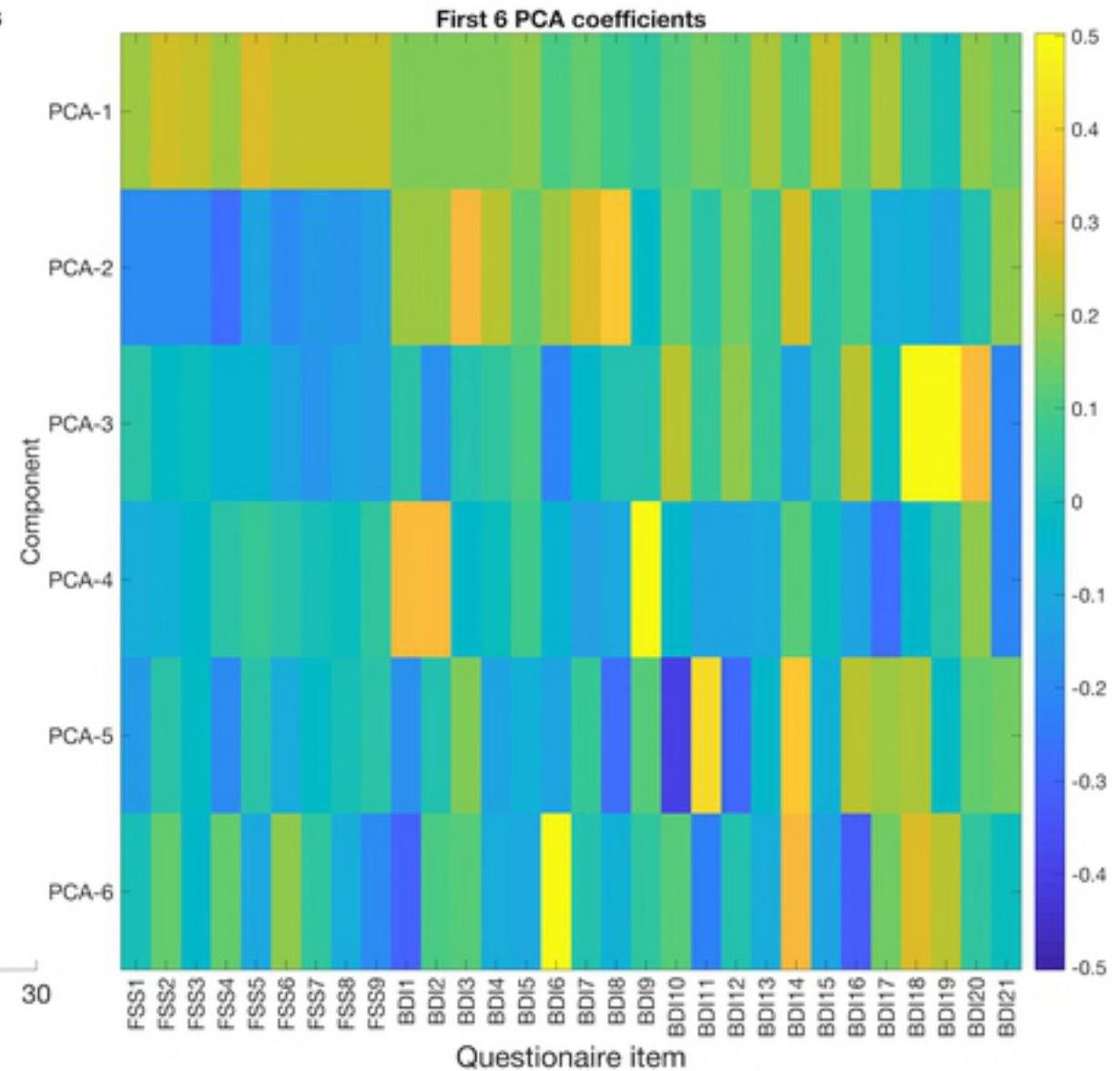
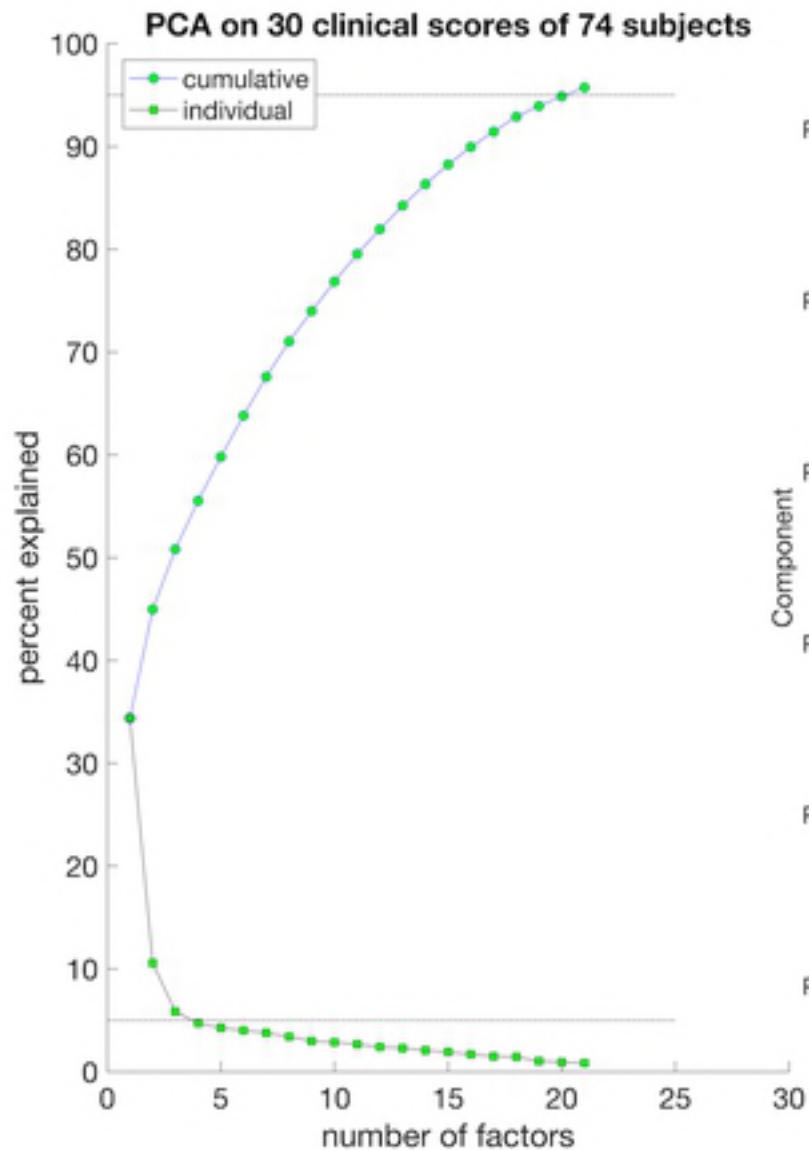



Figure 2