bioRxiv preprint doi: https://doi.org/10.1101/505891; this version posted February 26, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ADHD Symptoms are Associated with the Modular Structure of Intrinsic

Brain Networks in a Representative Sample of Healthy Adults

Short Title: ADHD symptoms are Associated with Brain Network Modularity

Kirsten Hilger'*, Christian J. Fiebach!->?

! Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
2 IDeA Center for Individual Development and Adaptive Education, Frankfurt am Main,
Germany

3 Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany

* Corresponding author:

Dr. Kirsten Hilger

Goethe University

Department of Psychology
Theodor-W.-Adorno-Platz 6, PEG

D-60323 Frankfurt am Main


https://doi.org/10.1101/505891
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/505891; this version posted February 26, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common
neurodevelopmental disorders with significant and often lifelong effects on social, emotional,
and cognitive functioning. Influential neurocognitive models of ADHD link behavioral
symptoms to altered connections between and within functional brain networks. Here, we
investigate whether network-based theories of ADHD can be generalized to understanding
variations in ADHD-related behaviors within the normal (i.e., clinically unaffected) adult
population. In a large and representative sample, self-rated presence of ADHD symptoms
varied widely; only eight out of 291 participants scored in the clinical range. Subject-specific
brain-network graphs were modeled from functional MRI resting-state data and revealed
significant associations between (non-clinical) ADHD symptoms and region-specific profiles
of between-module and within-module connectivity. Effects were located in brain regions
associated with multiple neuronal systems including the default-mode network, the salience
network, and the central executive system. Our results are consistent with network
perspectives of ADHD and provide further evidence for the relevance of an appropriate
information transfer between task-negative (default-mode) and task-positive brain regions.
More generally, our findings support a dimensional conceptualization of ADHD and
contribute to a growing understanding of cognition as an emerging property of functional

brain networks.
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Author Summary

Neurocognitive models of ADHD link behavioral symptoms to altered connections between
and within functional brain networks. We investigate whether these network-based theories of
ADHD can be generalized to ADHD-related behaviors within the normal adult population.
Subject-specific brain graphs were modeled from functional MRI resting-state data of a large
and representative sample (N = 291). Significant associations between ADHD-related
behaviors and region-specific profiles of between-module and within-module connectivity
were observed in brain regions associated with multiple functional systems including the
default-mode network, the salience network, and the central executive system. Our results
support a dimensional conceptualization of ADHD and enforce network-based models of
ADHD by providing further evidence for the relevance of an appropriate information transfer

between task-negative (default-mode) and task-positive brain regions.
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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the most commonly diagnosed
neurodevelopmental disorders with a world-wide prevalence of ~ 5.3% (Polanczyk et al.,
2007). Affected patients suffer from symptoms of inattention, impulsivity, and hyperactivity.
Although symptoms typically start in childhood, ~ 30-50% of patients are also affected during
adult life (Balint et al., 2008), showing persistent problems in social functioning, lower
academic success, and higher risk for psychiatric problems (Bussing et al., 2010; Fischer et
al., 1990). ADHD has long been treated as categorical concept ignoring considerable
symptom variability across (Mostert et al., 2015) and within persons over time (Biederman et
al., 2000). In line with a more dimensional conceptualization of ADHD (Marcus et al., 2012),
recent research however demonstrates that even non-clinical variations in ADHD symptoms
significantly impact cognitive functioning and psychological wellbeing (Brown & Casey,

2016; Groen et al., 2018).

Neuroimaging studies identified associations between ADHD and a wide range of variations
in brain structure and function. Reductions in gray matter volume are frequent and most
consistently found in prefrontal regions, basal ganglia, and cerebellum (Frodl & Skokauskas,
2012; Konrad et al., 2018). ADHD-related reductions in structural brain connections were
observed in cortico-striato-thalamico-cortical loops (Cortese et al., 2013; Konrad et al., 2010),
corpus callosum (Pastura et al., 2016; van Ewijk et al., 2014), and the cerebellar peduncles
(Ashtari et al., 2005; Nagel et al., 2011). Functional neuroimaging (see Cortese et al., 2012;
McCarthy et al., 2014; Norman et al., 2016 for meta-analyses) additionally indicates altered
patterns of neural activation during different cognitive tasks, most prominently reduced
activation in task-positive regions (executive control network, ventral attention/salience
network, striatum; Seeley et al., 2007) and lower levels of task-related deactivation in task-
negative regions (default-mode network; Raichle et al., 2001). Investigations of task-free (i.e.,

resting-state) fMRI have demonstrated disturbed functional connectivity patterns (Rubia,
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2018; Konrad et al., 2018), which have been proposed as an intrinsic neural characteristic of

ADHD (Castellanos & Aoki, 2016).

Current neurocognitive models of ADHD focus on altered connectivity patterns between
functional brain networks: The default-mode interference hypothesis (Sonuga-Barke &
Castellanos, 2007) postulates that ADHD-related fluctuations and variability in attention and
cognition (Castellanos et al., 2005) result from an inadequate regulation of the default-mode
network by task-positive networks — which according to this model increases the likelihood of
spontaneous and distracting intrusions of introspective thought into ongoing cognitive
processes. Empirical support comes from studies reporting increased interactions (decreased
anti-correlations) between the default-mode and task-positive networks (Sun et al., 2012;
Mills et al., 2018; Mowinckel et al., 2017) as well as systematic hyperactivation in default-
mode regions during cognitive tasks (Cortese et al., 2012; see also the systems-neuroscience
model of ADHD proposed by these authors). Recent studies broadened the focus towards
three-network models of ADHD, proposing that stronger interactions between salience and
default-mode network relative to weaker interactions between salience and central executive
network reflect a deficient ability of the salience network to adaptively switch between central

executive and default-mode network in response to current task demands (Choi et al., 2013).

Graph-theoretical network analysis has emerged as a valuable method for studying network
properties of the human brain (Sporns, 2011a,b). Brain networks can be partitioned into sub-
networks (communities/modules) that share topological properties and supposedly fulfill
specific cognitive or behavioral functions (Sporns & Betzel, 2016). Taking into account this
modular structure of the human brain makes it possible to examine region-specific
interactions between and within different networks in a quantifiable manner — and to test
neurocognitive models of ADHD. First graph-theoretical investigations of ADHD-related

network organization (Lin et al., 2014; Barttfeld et al., 2014), however, studied modularity
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only at a whole-brain level, i.e., as global property of the entire brain. Accordingly, this work
cannot inform about altered connection patterns between or within different
networks/modules as postulated by neurocognitive theories of ADHD. Here, we aim at
relating graph-theoretical network analysis more directly to network models of ADHD by
analyzing two local graph-theoretical measures that provide complementary information

about a brain region’s connections within and between different modules.

Finally, it is noteworthy that empirical support for network models of ADHD so far primarily
comes from categorical studies of ADHD, i.e., group-level comparisons between patients and
controls (Sun et al., 2012; Choi et al., 2013). As outlined above, this approach ignores recent
advances towards a more dimensional understanding of ADHD (Marcus et al., 2012). As of
now, it accordingly remains unclear whether network models of ADHD are valid only for
clinically affected persons or whether they may also inform more generally about mechanisms
linking between-person variation in brain network organization to variation in cognition. To
address this question, we applied graph-theoretical modularity analyses to a large and

representative sample of N =291 adults.

Methods

The current study was conducted with data acquired at the Nathan S. Kline Institute for
Psychiatric Research and online distributed as part of the 1000 Functional Connectomes
Project INDI (Enhanced NKI Rockland Sample, Nooner et al., 2012,
http://fcon_1000.projects.nitrc.org/indi/enhanced/). Experimental procedures were approved
by the Nathan S. Kline Institute Institutional Review Board (#239708), and informed written
consent was obtained from all participants. Note that data acquisition, preprocessing, and
graph-theoretical analyses are to a large degree identical with a previous publication from our

research group, which however focused on a different outcome measure (Hilger et al., 2017b).
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The code used in the current study has been deposited on github at https://github.com/

KirstenHilger/ADHD-Modularity (https://doi.org/10.5281/zenodo.2574588).

Participants

301 participants with complete phenotypical and neuroimaging data were selected from the
Enhanced NKI Rockland sample. Two participants were excluded due to medication with
methylphenidate, which can alter neural activation related to ADHD symptoms (e.g., Shafritz
et al., 2004); eight participants were excluded due to high in-scanner motion, i.e., mean
framewise displacement (FD) > 0.2 mm. Thus, our final sample comprises 291 participants
(18-60 years, M = 39.34, SD = 13.80; 189 females; handedness: 251 right, 21 left, 19
ambidextrous). ADHD symptoms were assessed with the Conners’ Adult ADHD Rating
Scales (Conners et al., 1999; Self Report, Short Version/CAARS-S:S), from which four
subscale scores (Inattention/Memory Problems, Hyperactivity/Restlessness,
Impulsivity/Emotional Lability, and Problems with Self-Concept) as well as the total Index of
ADHD symptoms were computed. The ADHD Index was used as variable of interest in all
graph analyses. Potential differences in brain network organization due to different levels of
intelligence (e.g., Hilger et al., 2017a; van den Heuvel et al., 2009) were controlled by using
the Full Scale Intelligence Quotient (FSIQ; Wechsler Abbreviated Scale of Intelligence,

WASI, Wechsler, 1999; range 68 to 135, M =99.22, SD =12.50) as covariate of no interest.

fMRI Data Acquisition

Resting-state fMRI data were acquired on a 3 Tesla whole-body MRI scanner (MAGNETOM
Trio Tim, Siemens, Erlangen, Germany). A T2*-weighted BOLD-sensitive gradient-echo EPI
sequence was measured with the following parameter: 38 transversal axial slices of 3mm
thickness, 120 volumes, field of view [FOV] 216x216mm, repetition time [TR] 2500ms, echo
time [TE] 30ms, flip angle 80°, voxel size 3x3x3mm, acquisition time 5.05min. Further,
three-dimensional high-resolution anatomical scans were obtained for coregistration with a

sagittal T1-weighted, Magnetization Prepared-Rapid Gradient Echo sequence (176 sagittal
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slices, FOV 250x50mm, TR 1900ms, TE 2.5ms; flip angle 9°, voxel size 1x1xImm,

acquisition time 4.18min).

fMRI Data Preprocessing

Preprocessing of neuroimaging data was conducted using the freely available software
packages AFNI (http://afni.nimh.nih.gov/afni) and FSL (http://www.fmrib.ox.ac.uk/fsl/). The
first four EPI volumes were discarded to allow for signal equilibration. Next steps comprised
slice-time correction, three-dimensional motion correction, time-series despiking, and spatial
smoothing (6mm FWHM Gaussian kernel). Four-dimensional mean-based intensity
normalization was performed and data were temporally filtered with a bandpass filter of
0.005—0.1Hz. Linear and quadratic trends were removed and all individual EPI volumes were
normalized to the MNI152 template (3x3x3mm resolution) using nonlinear transformations
and each individual’s anatomical scan. Finally, nine nuisance signals were regressed out, i.e.,
six motion parameters (rigid body transformation) as well as regressors for cerebrospinal fluid
(intra-axial), white matter, and global mean signal that were calculated by averaging (AFNI,
3dmaskave) voxel-wise BOLD time series within subject-specific masks resulting from FSL’s
automatic segmentation (FAST) of the anatomical image. Framewise displacement (F D) was
calculated on the basis of the six motion parameters indicating translation/rotation in three
directions between two consecutive volumes, FD;= |Ady|+|4dy|+|4d;:|+|Aoi|+|AB:|+|Ayi|
(Power et al., 2012); subjects with mean FD > 0.2 mm were excluded (N = 8; see above). In-
scanner motion (mean D) was not significantly related to the variable of interest, i.e., ADHD
Index (r = -.05, p = .409). Nevertheless, to further minimize potential remaining influences of
head motion on the observed effects, we added mean F'D as control variable in all individual
difference analyses. For subsequent graph analyses, data were downsampled by factor two,
resulting in individual maps of 6x6x6mm resolution. The preprocessing scripts used in the
current study were released by the 1000 Functional Connectomes Project and are available for

download at http://www.nitrc.org/projects/fcon_1000.
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Graph-theoretical Analyses of Intrinsic Connectivity

Individual brain graphs were constructed on the base of all 5,411 gray matter voxels in the
brain, which served as nodes for the respective graphs. Network edges were modeled between
nodes showing high positive correlations of BOLD signal time series. Edges between
physically close nodes (< 20 mm) were excluded, as they may result from motion artifacts
and spuriously high correlations induced by shared nonbiological signals (Power et al, 2011).
Community detection and the subsequent graph metrics were calculated for five separate
graphs defined by five proportional thresholds (representing the top 10%, 15%, 20%, 25%,
and 30% of strongest edges, i.e., highest correlations), which also excluded all negative
network edges (Murphy et al., 2009). The subject-specific averages of graph metrics across
these five thresholds were used in all following analyses (see also Hilger et al., 2017b).
Finally, all graphs were binarized (as recommended for individual difference analyses; van

Wijk et al., 2010).

Global Modularity

To study the modular organization of intrinsic brain networks, each individual network graph
was parcellated into several functionally distant communities or modules. To this end, we
applied the standard Louvain algorithm (Blondel et al., 2008), which finds the optimal
modular partition in an iterative procedure by maximizing the global modularity Q (Newman

& Girwan, 2004):

(1) Q =z; llil”‘ (57)2]

Here, m represents the number of modules, /i, s is the number of edges inside module s, L
reflects the total number of edges in the network, and 4 represents the total degree of the
nodes in module s. Thus, the first term of formula (1) represents the actual fraction of within-

9
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module edges relative to all edges in the network, whereas the second term represents the
expected fraction of within-module edges. When the first term (actual within-module edges)
is much higher than the second term (expected within-module edges), many more edges are
present inside module s than expected by chance. In this case, the global modularity O, which
results from summing up these differences over all modules m in the network, increases.
Usually, modularity values above 0.3 are taken as indicator of a network’s modular
organization (Fortunato & Barthélemy, 2007). In addition to global modularity Q, we
calculated three further whole-brain measures of modular network organization for the final
module partition of each participant, i.e., number of modules, average module size, and

variability in module size.

Node-specific modularity measures
Node-specific analyses of network modularity were conducted using participation coefficient
pi and within-module degree z.. The participation coefficient p; assesses the diversity of each

node’s connections across all modules in the brain (Bertolero et al., 2017) and is defined as:

@ p=1-y  (4my

Here, £; is the degree of node i and thus represents the number of edges directly attached to
node i. ki(m) refers to the subset of edges linking node 7 to other nodes within the same
module m (Rubinov & Sporns, 2010; Guimera & Amaral, 2005). The participation coefficient
piis 1 when a node is equally connected to all modules within the network, while it is 0 when
all of its connections are to one single module (Bertolero et al., 2015, 2017, 2018; Sporns &
Betzel, 2016). Within-module degree z;, in contrast, represents within-module connectivity

and is defined as:

10
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ki (mp)—k (m;)
3) z = SRy

Here, m; is the module of node i. &; (m;) represents the number of connections within the
node’s own module (i.e., the within-module degree of node i), and £ (m;) and o Xm are the
mean and standard deviation of the within-module degree distribution of module m; (Guimera
& Amaral, 2005). Nodes that are highly connected to nodes within their own module receive
positive values of within-module degree z;, whereas nodes with low levels of connectivity
within their own module are characterized by negative values (Sporns & Betzel, 2016). All
graph-theoretical network analyses were conducted in python using the open-source software

network-tools (Ekman & Linssen, 2015).

Node-type analysis

Functional cartography (Guimera & Amaral, 2005) relies on the above-described node-
specific metrics (i.e., participation coefficient p;, within-module degree z;) and can be used to
assign each network node into one of seven different classes, which are in turn characteristic
for the node’s role in within- and between-module communication (see Figure 1C). As
suggested in the original work of Guimera and Amaral (2005) and used in previous studies
(e.g., Sporns et al., 2011), nodes with within-module degree z; > 1 were classified as hubs
(17,86% of all nodes) and nodes with z; < 1 were classified as non-hubs. On the basis of the
participation coefficient p;, non-hubs were further classified as ultra-peripheral (p; < 0.05),
peripheral (0.05 < p;<0.62), non-hub connector (0.62 < p;< 0.80), or non-hub kinless nodes
(pi> 0.80), whereas hubs were classified as provincial (p; < 0.30), connector (0.30 < p; <

0.75), or kinless hubs (p; > 0.75).

ADHD symptoms and differences in modular network organization
The primary aim of the present study was to examine whether or not individual differences in

11
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the strength of ADHD-related behavior, in a non-clinical sample, are associated with
individual differences in modular brain network organization. To this end, partial correlations
were calculated between the Conners” ADHD Index and global measures of modular brain
organization, i.e., global modularity Q, number of modules, average module size, and
variability in module size, as well as whole-brain proportions of the seven node types. In these
analyses, we controlled for effects of age, sex, handedness, FSIQ, and mean D, and excluded
outliers, i.e., subjects with values > 3 SD above/below the mean of the respective variable of
interest. Statistical significance was accepted at p < .05, however correcting for multiple
comparisons using Bonferroni correction, resulting in p-thresholds of .013 for global
modularity measures (4 analyses) and .007 for node-type proportions (7 analyses). To
quantify the evidence in favor of the null hypothesis (i.e., absence of an association) for non-
significant correlation results, we calculated Bayes Factors (BFoi; Jeffreys, 1961; Wetzels &
Wagenmakers, 2012) using Bayesian linear regression and the default prior (Rouder &
Morey, 2012) as implemented in JASP (Version 0.8.6; https://jasp-stats.org). Substantial

evidence for the null was accepted at BFo1 > 3 (Jeffreys, 1961).

Finally, associations between Conners’ ADHD Index and node-specific (i.e., voxel-wise)
measures of modular network organization (i.e., within-module degree z;, participation
coefficient p;) were examined using regression models in the Statistic Parametric Mapping
software (Welcome Department of Imaging Neuroscience, London, UK), again controlling
for age, sex, handedness, intelligence (FSIQ), and mean FD. The resultant p-values were
FWE-corrected for multiple comparisons with Monte Carlo-based cluster-level thresholding
as implemented in AFNI (Forman et al., 1995), whereby an overall threshold of p < .05 was
achieved by combining a voxel threshold of p < .005 with a cluster-based extent threshold of
k> 26 voxels (3dClustSim; AFNI version August 2016; voxel size 3x3x3mm; 10,000

permutations; Ward, 2000).

12
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Results

ADHD-related behavior

A descriptive characterization of the distribution of self-rated ADHD symptoms as assessed
with the Conners’ Adult ADHD Rating Scale (CAARS) is presented in Figure 1A,B (see also
Table 1A). As expected for a representative adult sample, the distribution is positively (i.e.,
right) skewed and the majority of participants exhibited ADHD Index values clearly below
the threshold for ADHD diagnosis, i.e., t-scores < 65 (Conners et al., 1999). Nevertheless, we
observed considerable variation between participants in the global ADHD Index (Figure 1A)
and its four subscales, i.e., inattention, impulsivity, hyperactivity, problems with self-concept
(Figure 1B), suggesting that the CAARS is well suited for describing non-clinical between-
person variations in ADHD-related behavior. Note that although eight participants reported a
clinical diagnosis of ADHD, only one of them fulfilled the CAARS’ ADHD criteria.
Nevertheless, all participants with clinical diagnosis fell within the upper half of the

distribution (Figure 1A).

Table 1. Descriptive statistics of the CAARS scales and global modularity measures

M SD Median Min Max
ADHD symptoms
ADHD Index 8.36 5.13 8.00 0 28
inattention 3.82 3.83 4.00 0 13
hyperactivity 4.42 2.65 4.00 0 12
impulsivity 3.07 2.32 2.00 0 12
self-concept problems 4.24 3.22 4.00 0 15
Whole-brain modularity measures
global modularity 37 .03 .30 48
number of modules 3.54 0.33 2.80 4.80
average module size 1572.35 137.98 1149.01 2073.07
variability in module size 371.04 161.55 94.49 1105.95

M, mean; SD, standard deviation; Min, minimum value observed across all participants; Max, maximum value
observed across all participants. Statistics for the whole-brain modularity measures refer to subject-specific
values after averaging across all graph-defining thresholds, i.e., 10%, 15%, 20%, 25%, 30%. The variables
average module size and variability in module size were measures in nodes.

13
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Modular brain network organization

Table 1B reports descriptive statistics for global characteristics of modular network
organization, i.e., global modularity Q, number of modules, average module size, and
variability in module size. Mean values for global modularity Q were all greater than .3,
indicating a clear modular organization in all participants (Fortunato & Barthélemy, 2007).
The proportions of functionally different node types (Figure 1C,D) are likely to influence the
global information flow (van den Heuvel & Spons, 2013), and are thus also considered as
global properties of modular network organization. As we would assume for a network whose
overall organization is characterized by substantial modularity and small-worldness (Gallos et
al., 2012; Sporns & Betzel, 2016), only a minority of nodes were characterized as hubs (i.e.,
connector, provincial, or kinless hubs; in total 17.86%) and the most common node types

were peripheral nodes and non-hub connector nodes.

For most participants, the anatomical distribution of node types matched observations of
previous studies (see e.g., Meunier et al., 2010): For example, connector hubs were localized
along the midline and on the borders between anatomically segregated cortices, whereas less
important nodes were observed in more peripheral and functionally specialized regions.
Figure 1E visualizes this anatomical distribution for one randomly selected participant (see

also Hilger et al., 2017b).

The group-average spatial distribution of the two nodal measures, participation coefficient p;
and within-module degree z;, matched nearly perfectly the distribution we recently published
for a slightly larger sub-sample from the same dataset (see Figure 1 in Hilger et al., 2017b),
and is therefore not visualized again. Network nodes with high values of participation
coefficient p; were located in medial prefrontal (i.e., anterior and mid-cingulate) cortex,

anterior insula, inferior frontal gyrus, superior temporal gyrus, medial temporal structures

14
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(amygdala, hippocampus), inferior parietal lobule, posterior cingulate cortex/precuneus, and
in the thalamus. Nodes with high within-module degree z; were observed in large parts of
medial prefrontal cortex (again including anterior and mid-cingulate cortex), supplementary
motor area, lateral superior and middle frontal gyri, anterior insula, postcentral gyrus,
temporo-parietal junction, posterior cingulate cortex/precuneus, middle occipital/lingual

gyrus, and in the cuneus.
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Figure 1. Frequency plots of CAARS subscales and illustration of node-type analysis. (A) Frequency histogram
of Conners’ ADHD Index -scores. Values > 65 describe the 95-98" percentile, are interpreted as “much above
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average”, and suggest the presence of ADHD (Conners et al., 1999). The respective area is depicted in light red.
Subjects with clinical ADHD diagnosis are illustrated as small black diamonds in the histogram. (B) Frequency
histograms of #-scores of CAARS subscales. (C) Seven node types defined as a function of their profile of
between-module and within-module connectivity, i.e., participation coefficient p; and within-module degree zi.
Adapted from Guimera and Amaral (2005; functional cartography; see Methods). (D) Proportions of node types
within the whole brain and across all subjects. The proportions of node types were calculated for each subject
separately and averaged across all participants afterwards. (E) Anatomical distribution of node types within the
whole brain, depicted here for exemplary purposes for one subject. Hubs (z; > 1) are illustrated in warm colors
(yellow to red), non-hub nodes (z; < 1) are illustrated in cool colors (green to blue). Subject-specific values of
participation coefficient p: and within-module degree zi as well as the respective proportions of node types within
the whole brain were calculated for proportionally thresholded and binarized graphs (five different cut-offs, i.e.,
the top 10%, 15%, 20%, 25%, or 30% of strongest edges were used to model the graph). Individual node-type
proportions were calculated by averaging across the five thresholds and averaged across all subjects afterwards.
The x- and z-coordinates represent coordinates of the Montreal Neurological Institute template brain (MNI152).

Local but not global measures of modular brain network organization are associated
with ADHD symptoms

Neither global measures of modular organization (global modularity Q, number of modules,
average module size, and variability in module size) nor the whole-brain proportions of node
types were significantly associated with Conners” ADHD Index (Table 2). Bayes Factors
exceeded 3 in only two out of 11 analyses, indicating that despite the relatively large sample

of almost 300 participants, further evidence would be needed to achieve robust support

against an association between ADHD symptoms and global modularity measures.

Table 2. ADHD symptoms and global modularity measures

Fpart. Dpart. BFoi-Reg.
Whole-brain modularity measures
global modularity 1 .056 0.62
number of modules -.09 150 1.36
average module size .08 213 1.95
variability in module size -.02 781 3.47
Whole-brain proportions of node types
ultra-peripheral nodes .01 813 3.78
peripheral nodes .06 363 2.29
non-hub connector nodes -.07 229 2.30
non-hub kinless nodes -.10 .103 0.98
provincial hubs .09 .148 1.33
connector hubs -.07 252 2.56
kinless hubs -.07 255 2.58
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rpare., Pearson’s correlation coefficient for the partial correlation controlling for effects of age, sex, handedness,
and FSIQ; ppar., p-value of significance for the partial-correlation; BFoi1-Reg., Bayes Factor in favor of the null
hypothesis (i.e., absence of correlation). Bayes Factors were calculated for linear regression models predicting
ADHD Index values by the respective whole-brain measure of modular network organization or whole-brain
proportions of node types, respectively, while effects of age, sex, handedness, mean FD, and FSIQ were
controlled.

However, we observed significant associations between Conners’ ADHD Index and node-
specific characteristics (Tables 3-5; Figures 2,3). Thus, although individual variation in
ADHD-related behaviors did not relate to global properties of modularity, there was a
systematic association with the embedding of specific brain regions into the communication
between and within different modules. Positive associations between ADHD Index and
participation coefficient p; were observed in five clusters, i.e., in left and right posterior insula
(extending laterally into the superior temporal gyri), anterior cingulate cortex, posterior-
medial superior frontal gyrus (supplementary motor area), as well as in the left inferior
parietal lobe (primarily supramarginal gyrus). Negative associations were observed in eight
clusters, including anterior cingulate gyrus, right lateral middle frontal gyrus, left
supplementary motor area, left posterior fusiform gyrus, right intraparietal sulcus, right

posterior cingulate cortex/precuneus, posterior middle temporal gyrus adjacent to the occipital

cortex, and in the right inferior parietal lobe (Table 3, Figure 2).

Concerning within-module connectivity, ADHD Index was positively associated with within-
module degree z; in six clusters of nodes (see Table 4, Figure 3). Two extensive temporal
clusters were observed bilaterally, comprising not only lateral temporal cortices but also the
amygdalae, hippocampi, and anterior fusiform gyri. Further, two large central clusters were
identified that extended across central and postcentral sulci, from precentral and postcentral
gyri to the supramarginal gyri and anterior parts of intraparietal sulci. Smaller clusters were
observed in supplementary motor area and superior portions of left post- and precentral gyri

(paracentral lobule).
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. positive association between ADHD symptoms and participation coefficient

. negative association between ADHD symptoms and participation coefficient

Figure 2. Significant associations between Conners’ ADHD Index and participation coefficient (see also Table
3). Participation coefficient p; (see Methods for details) was calculated for binarized and proportionally
thresholded graphs using five thresholds (graphs were defined by the top 10%, 15%, 20%, 25%, or 30% of
strongest edges). Input for analyses were the individual mean maps for participation coefficient pi, which were
calculated by averaging across these five thresholds for each participant separately. Statistic parametric maps of
participation coefficient p; are shown at a voxel-level threshold of p <.005 (uncorrected) combined with a
cluster-level threshold of k> 26 voxels, corresponding to an overall family-wise error corrected threshold of

p <.05 (see Methods). Clusters with effects in both (between-module and within-module connectivity, i.e., p: and
z;) are marked with an asterisk (see also Table 5). (A) Slice view, the x-, y-, and z-coordinates represent
coordinates of the Montreal Neurological Institute template brain (MNI152). (B) Render view, projection to the
surface of the brain, search depth 12 voxels. PI, posterior insula; IPL, inferior parietal lobe; IPS, intraparietal
sulcus; ACC, anterior cingulate cortex; MFG, middle frontal gyrus; SMA, supplementary motor area; pFusi,
posterior fusiform gyrus; PCC, posterior cingulate cortex; MTG, middle temporal gyrus; smFG, superior medial
frontal gyrus.
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Table 3. ADHD symptoms and participation coefficient

Brain Region BA Hem X y z tmax k

positive association

posterior inula* 13 L -33 -9 9 3.78 325
posterior inula, putamen*® 13 R 33 18 0 3.48 207
anterior cingulate cortex 24 L -6 18 24 3.26 44
superior medial frontal gyrus* 6 L -18 -3 69 3.27 38
inferior parietal lobe* 40 L -57 -36 21 491 250
negative association
anterior cingulate cortex 32,9 L -9 36 30 3.27 37
middle frontal gyrus 6 R 33 -12 45 3.22 53
supplementary motor area 8,6 L -6 18 57 3.65 49
posterior fusiform gyrus 20, 36 L -51 -36 -27 4.08 49
intraparietal sulcus* 40 R 33 -36 48 3.33 90
posterior cingulate cortex R 12 -39 9 3.71 26
middle temporal gyrus 37,19 R 57 -63 0 3.77 91
inferior parietal lobe 40 R 57 -39 51 3.08 36

BA, approximate Brodmann’s area; Hem, hemisphere; L, left; R, right; regions with significant effects in both
measures (between-module and within-module connectivity) are marked with an asterisk and separately listed in
Table 5; coordinates refer to the Montreal Neurological Institute template brain (MNI); #mar, maximum ¢ statistic
in the cluster; £, cluster size in voxels of size 3 x 3 x 3 mm.

Negative associations between ADHD Index and within-module degree z; were observed in
13 node clusters. Four of those clusters were located medially, in inferior parts of medial
frontal gyrus (border to rostral anterior cingulate cortex), in superior parts of postero-medial
frontal gyrus, dorsal anterior cingulate cortex, and the precuneus. More laterally located
clusters comprised nearly the entire bilateral insulae and reached laterally into the inferior
frontal, superior temporal, and inferior parietal lobes (supramarginal gyri), as well as medially
into the putamen. Further negatively associated node clusters were observed in right middle
and inferior temporal gyri, bilateral thalami, bilateral posterior fusiform gyri, left posterior
cingulate cortex, and right inferior occipital cortex. In general, the spatial distribution of

significantly associated network nodes showed a surprisingly high degree of inter-

hemispheric symmetry for both measures.
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. positive association between ADHD symptoms and within-module connectivity

. negative association between ADHD symptoms and within-module connectivity

Figure 3. Significant associations between Conners’ ADHD Index and within-module degree (see also Table 4).
Within-module degree z:(see Methods for details) was calculated for binarized and proportionally thresholded
graphs using five thresholds (graphs were defined by the top 10%, 15%, 20%, 25%, or 30% of strongest edges).
Input for analyses were the individual mean maps for within-module degree z:, which were calculated by
averaging across these five thresholds for each participant separately. Statistic parametric maps of within-module
degree z; are shown at a voxel-level threshold of p <.005 (uncorrected) combined with a cluster-level threshold
of k> 26 voxels, corresponding to an overall family-wise error corrected threshold of p <.05 (see Methods).
Clusters with effects in both (between-module and within-module connectivity, i.e., p: and z;) are marked with an
asterisk (see also Table 5). (A) Slice view, the x-, y-, and z-coordinates represent coordinates of the Montreal
Neurological Institute template brain (MNI152). (B) Render view, projection to the surface of the brain, search
depth 12 voxel. TC, temporal cluster comprising also amygdala, hippocampus, and parts of fusiform gyrus; Cen,
central cluster spreading across central and postcentral sulci from precentral gyri and postcentral gyri to the
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inferior parietal lobes (comprising supramarginal gyri and anterior parts of intraparietal sulci); PCL, paracentral
lobule; mFG, medial frontal gyrus; Ins, insular cluster comprising also parts of putamen, superior temporal
gyrus, inferior frontal gyrus and inferior parietal lobe; MTG, middle temporal gyrus; pFusi, posterior fusiform
gyrus; Pre, precuneus; I0G, inferior occipital gyrus; smFG, superior medial frontal gyrus; Thal, Thalamus;
SMA, supplementary motor area.

Table 4. ADHD symptoms and within-module degree

Brain Region BA Hem X y z tmax k

positive association

supplementary motor area 8,6 R/L 0 30 60 3.50 49

temporal cortex, amygdala, 38,20,28 R 27 6 -33 5.31 577
hippocampus, fusiform gyrus

temporal cortex, amygdala, 20, 38 L -33 -21 -33 4.63 606
hippocampus, fusiform gyrus

precentral gyrus, postcentral gyrus, 3, 40 R 42 -33 51 6.28 619
inferior parietal lobe*

precentral gyrus, postcentral gyrus, 3, 40 L -45 -33 51 5.22 397
inferior parietal lobe

paracentral lobule 6,4 L -12 -42 72 3.73 171

negative association

medial frontal gyrus 11,32,25 R 3 30 -15 3.96 119
anterior cingulate cortex 24 R 9 18 24 3.70 27
insula, putamen, superior temporal 13,22,40 L -48 9 -3 5.23 862

gyrus, inferior frontal gyrus,
inferior parietal lobule*
insula, putamen, superior temporal 13,47,22 R 33 0 15 5.54 606
gyrus, inferior frontal gyrus,
inferior parietal lobule*

superior medial frontal gyrus* 6,32,24 L -12 -3 63 5.37 497
midde temporal gyrus 21,20 R 63 -6 -21 3.93 43
thalamus R 15 -18 9 4.02 29
thalamus L -28 -24 6 3.44 30
posterior fusiform gyrus 37,19 L -36 -48 -12 4.38 187
posterior fusiform gyrus R 36 -57 -6 3.27 33
posterior cingulate cortex 30 L -24 -66 21 3.70 47
precuneus 19,7, 31 R/L 6 -78 33 3.79 57
inferior occipital gyrus 18 R 27 -84 -12 4.09 79

BA, approximate Brodmann’s area; Hem, hemisphere; L, left; R, right; regions with significant effects in both
measures (between-module and within-module connectivity) are marked with an asterisk and separately listed in
Table 5; coordinates refer to the Montreal Neurological Institute template brain (MNI); #mar, maximum ¢ statistic
in the cluster; £, cluster size in voxels of size 3 x 3 x 3 mm.

In several brain regions, self-rated ADHD-related behaviors were associated with both, i.e.,
participation coefficient and within-module degree. These involve nine of the above-

described clusters (marked with an asterisk in Figures 2,3; cf. also Table 5). In participants
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with higher ADHD Index, posterior insulae, left postero-medial superior frontal gyrus, and
left inferior parietal lobe showed higher participation coefficient along with relatively lower
within-module degree. The opposite pattern, i.e., lower participation coefficient and higher

within-module degree was observed in the right intraparietal sulcus.

Table 5. ADHD symptoms and effects in both participation coefficient and within-module degree

Brain Region BA Hem X y z k

positive association with p; and negative association with zi

posterior insula, superior temporal 13,22 L -57 0 9 237
gyrus, putamen

posterior insula, putamen 13 R 27 -15 9 137

superior medial frontal gyrus 6 L -21 -6 69 29

inferior parietal lobe 40 L -69 -39 24 67

positive association with z; and negative association with p;

intraparietal sulcus 40 R 27 -36 45 79

BA, approximate Brodmann’s area; Hem, hemisphere; L, left; R, right; coordinates refer to the Montreal
Neurological Institute template brain (MNI); fmax, maximum ¢ statistic in the cluster; £, cluster size in voxels of
size 3 x 3 x 3 mm.

Similar effects were observed for the four subscales of the CAARS (see Supplementary

Tables S1 and S2 for associations with global measures).

Post-hoc analyses

One of the few studies that so far investigated the association between ADHD and graph-
theoretical brain network characteristics observed higher global modularity in patients with
ADHD (Lin et al., 2014) — which is not consistent with our results. In order to understand if
choices of analysis strategies (here: group comparison vs. correlative approach) may have
caused this difference, we compared in a post-hoc analysis the 20 subjects with the highest
ADHD Index with those 20 participants exhibiting the lowest score, in our sample. Also here,

we found no significant differences in global modularity Q (¢t =1.46; p =.15) or any of the
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other global measures reported above (number of modules: t = .71, p = .48; average module

size: t = .60, p = .54; variability in module size: t = .67, p =.50).

To explore the possibility that alterations in global modularity may be restricted to clinically
affected subjects (as observed, e.g., for autism: Rudie et al., 2013, or Alzheimer’s disease: De
Haan et al., 2012), we conducted a further post-hoc analysis on the current data and compared
global modularity Q values of the eight subjects with a clinical ADHD diagnosis with those
of all other subjects. Also here, we did not observe a significant difference (Mann-Whitney U
Test, one-tailed, z = .62, p = .27). However, this test relies on a comparison of 283 healthy
subjects with only eight affected patients. Thus, we finally compared also the eight subjects
with ADHD diagnosis with the 20 subjects of the first post-hoc analysis (20 persons with
lowest ADHD Index). Also here, there was no significant difference (Mann-Whitney U Test,
one-tailed, z = .08, p = .47). Similar results were obtained for all other global network
measures (number of modules: z=1.16., p = .12; average module size: z= .62, p = .27;

variability in module size: z = .53, p = .58).

For comparability with studies that investigated the relationship between ADHD and
functional connectivity strength within or between standard (i.e., group-average) brain
networks (e.g., Sidlauskaite et al., 2016), we applied a canonical 400-node parcellation
(Schaefer et al., 2018) to each individual’s functional MR scan and then assigned each node
to one of seven well-established functional brain networks, i.¢., visual, somato-motor, dorsal
attention, ventral attention, limbic, frontoparietal, or default-mode network (Yeo et al., 2011).
Examining the relationship of connectivity strength between/within these networks and
ADHD-related behaviors, we observed no significant effects (Pearson correlation controlled
for effects of age, sex, handedness, FSIQ, and mean FD; all » < .11, p > .056; Bonferroni

corrected threshold: p =.0018; see Supplementary Table S3).
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To assess the possibility that our estimates of functional connectivity (and thus also our
graph-theoretical measures) may have been affected by distance-dependent motion artifacts
which could remain in the data even after motion correction (Power et al., 2012; Ciric et al.,
2017), we calculated for each edge the correlation between a) the association of its functional
connectivity strength with mean framewise displacement, and b) the Euclidean distance
between the two nodes of this respective edge (Ciric et al., 2018; note that for computational
reasons this analysis is also based on the 400-node parcellation of Schaefer et al., 2018; see
also above). As illustrated in Supplementary Figure S1, we observed no indications of
distance-dependent artefacts. As further post-hoc control analysis addressing potential
influences of head-motion, we tested whether there is a relationship between the ADHD index
and the number of low-motion frames (FD<.2mm) in our sample. This was not the case
(=.01; p=.93). Nevertheless, we repeated all our analyses with the number of low-motion
frames as covariate of no interest (rather than mean framewise displacement) and observed
that the graph-theoretical results were almost unchanged, i.e., only slight changes were
observed in respect to p;and z; (see Supplementary Table S5-7 and Supplementary Figure
S2,3). Thus, these control analyses provide no evidence for influences of residual, distance-

dependent motion artifacts on our results.

Lastly, to further characterize the functional role of the areas significantly associated with
ADHD, i.e., we examined whether a) ADHD-related brain regions have generally higher
participation coefficient than other regions of the brain (which would make them important
as inter-module connectors in the sense of, e.g., the so-called diverse club; Bertolero et al.,
2017) and b) whether ADHD-related brain regions have generally higher within-module
degree than other regions of the brain, which would indicate a function as local hubs within
their own modules. To this end, we extracted mean (group-average) values of participation
coefficient p;and within-module degree z; from all significant clusters (Table 3,4) and

determined their rank position within the whole-brain (group-average) distributions. In
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respect to participation coefficient all ADHD-associated regions scored around the center
(rank positions between 20 and 80%), i.e., not in the extremes of the whole-brain p;-
distribution (see Supplementary Table S4). Although most ADHD-related brain regions were
also located around the center of the zi-distribution, we observed very high z; values (rank
position > 80%) in middle frontal gyrus, anterior cingulate cortex, precuneus, and in both
central clusters, and very low z; values (rank position < 20%) in posterior cingulate cortex, left

posterior fusiform gyrus, and in both temporal clusters.

Discussion

The current study investigated whether ADHD-related behaviors are associated with one of
the key determinants of human brain function, i.e., brain network modularity. In contrast to
previous studies that relied on ADHD vs. control group comparisons, we here applied a
correlative approach investigating the appearance of ADHD symptoms across a broad range
of variation. These ADHD-related behaviors correlated with region-specific but not global
aspects of modularity, consistent with neurocognitive models of ADHD relating intrinsic
connectivity between functional brain networks to ADHD. Our results extend these models to

the non-clinical range of attention and executive functions.

No association between ADHD symptoms and global modularity

The default-mode interference hypothesis (Sonuga-Barke & Castellanos, 2007) postulates
stronger connectivity between the default-mode network and task-positive regions, i.e., a shift
towards more integration and less segregation between these networks. This assumption was
recently supported by two group-comparison studies that observed higher connectivity
between default-mode network and task-positive regions in ADHD patients during cognitive
tasks (Mills et al., 2018; Mowinckel et al., 2017). We found no direct support for this
assumption in our non-clinical sample (post-hoc analysis; functional connectivity between

standard networks). The graph-theoretical measure of global modularity considers
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simultaneously all connections within the entire network and indicates the general level of
network segregation. Changes in global modularity can therefore occur in the presence of
stronger or weaker connectivity between particular networks. Lin and colleagues (2014)
reported higher global modularity of intrinsic functional brain networks in ADHD. This
result, however, could not be replicated by Barttfeld and colleagues (2014), and further
evidence from clinical ADHD samples is currently lacking. In our study focusing on
behavioral variation across a broad non-clinical range, we also did not find support for an
association with global modularity. However, despite the relatively large sample size, our
data cannot be considered as strong evidence (in terms of Bayes Factors) against the presence

of such associations.

While previous studies reported significant alterations in global modularity in patients with
psychiatric conditions (Rudie et al., 2013; De Haan et al., 2012), it is still unclear whether
global modularity relate to individual differences in cognitive abilities in the unimpaired brain
(Stevens et al., 2012; Liang et al., 2016). We therefore speculated previously (Hilger et al.,
2017b) that differences in modular network organization might become pronounced at a
global level only in persons with severe neurological or psychiatric diseases. However, a post-
hoc analysis on the current data (albeit underpowered) suggests that the eight ADHD-
diagnosed subjects in the present sample did not differ in terms of global modularity from

subjects without diagnosis.

Region-specific connectivity profiles are associated with ADHD symptoms

In general, modular brain networks are organized in a way that balances functional integration
and functional segregation (Gallos et al., 2012). Whereas the coordination and integration of
different cognitive processes has been suggested to rely on exchange of information between
different modules (high participation coefficient), the effectiveness of specific cognitive

functions may be supported by less diverse, more focused processing of information within
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only one or between only few circumscribed modules (low participation coefficient; Bertolero

et al., 2015, 2017; Gratton et al., 2012; Warren et al., 2014).

High within-module connectivity reflects that a node or brain region has strong influence on
(or is highly influenced by) other nodes within the same functional module, and is therefore
thought to facilitate more segregated specific cognitive functions (Warren et al., 2014;
Gratton et al., 2012). In contrast, low values reflect less influence and more flexible (or
independent) coupling to nodes within their modules. We observed region-specific patterns of
positive and negative associations between non-clinical ADHD symptoms and within-module
degree, suggesting that not only between-module interactions but also the quality of
information flow within specific modules may be relevant for ADHD. Recent empirical
evidence suggests further that both higher and lower levels of integration or segregation are
important for cognitive performance (Cohen & D’Esposito, 2016; Hilger et al., 2017b). Our
results support this and provide converging evidence from the domain of ADHD-associated
behaviors. However, our outcome measure spans a wide range of behaviors and cognitive
attitudes from impulsivity to self-esteem, and thus lacks the specificity needed to relate

specific cognitive sub-functions to specific patterns of connectivity.

Nine mostly bilaterally located brain regions demonstrated significant effects in both
participation coefficient and within-module degree. Interestingly, these associations were of
opposite directions in all cases, i.e., high p;/low z;, or vice versa. This may indicate that in
persons with higher ADHD Index the connectivity profile of these regions may be biased
towards one type of information flow (distributed across modules or focused within modules).
ADHD-associated regions, however, do not seem to have particular node-properties (post-hoc
analysis). The mechanisms linking individual variations in modular brain network

organization and subclinical variations in attention and executive functioning are thus not
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localized to particularly integrative (members of the diverse club; Bertolero et al., 2017) or

particularly locally central regions.

Partial support for network models of ADHD

ADHD is a complex phenomenon, involving atypical neural activation in distributed brain
regions (Cortese et al., 2012; Dickstein et al., 2006), dysfunction of specific neural networks
(Sidlauskaite et al., 2016; Konrad & Eickhoff, 2010), and fundamental alterations in intrinsic
connectivity (Zhang et al., 2016; Di Martinos et al., 2013). To reiterate, both two- and three-
network theories specifically suggest altered connectivity between the default-mode and task-
positive brain networks (Sonuga-Barke & Castellanos, 2007; Cortese at al., 2012). At the
most general level, our results support these network-based models by demonstrating
significant and systematic relationships between functional brain network organization and
variations in ADHD-related behaviors. General support for existing models also comes from
our observation of localized rather than global effects, which is consistent with the focus on
specific inter-module connection patterns in the current literature (Sripada et al., 2014; Choi
et al., 2013). Although we did not observe associations of between-module connectivity
strength with ADHD when using a standard network partition (post-hoc analysis), in our main
analyses (based on individual partitions) we found lower within-module connectivity in
circumscribed clusters adjacent to classical default-mode networks in persons with higher
ADHD Index. This is in line with previous studies with ADHD samples (e.g., Kessler et al.,
2014; Castellanos et al., 2008; Sripada et al., 2014) and suggests that altered DMN
connectivity profiles might also exist in subjects with non-clinical difficulties in attention and
executive function. It is plausible to assume that this association is less pronounced within the
healthy range, and the use of individualized network partitions might have helped to detect
such covariations within our non-clinical sample. Future research will be required to clarify

how this alteration of within-module connectivity may relate to the diminished suppression of
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DMN activation that was suggested as cause of distracting intrusions and attentional lapses in

ADHD (Sonuga-Barke & Castellanos, 2007).

Our results can also be related to recent three-network theories of ADHD, which propose
stronger interactions between salience network and default-mode network, relative to weaker
interactions between salience network and central executive network (Choi et al., 2013, for
review see Castellanos & Aoki, 2016). As we observed significant associations in regions
associated with the default-mode, salience, and central executive networks, in general our
results support three-network theories. Nonetheless, both metrics studied here allow no
conclusions about directionality of these connections, e.g., to which brain regions the salience

network is connected more strongly.

Importantly, the associations reported in the current study were observed across a broad and
continuous range of non-clinical behavioral variations. They may thus represent more general
mechanisms linking intrinsic network organization to variations in behaviors that in ‘extreme’
expressions are associated with ADHD. This supports continuous conceptualizations of
ADHD (Marcus et al., 2012) and suggests that ADHD is not only the extreme end in terms of

behavioral variations (Levy et al., 1997) but also in terms of biological variations.

Limitations

The CAARS ADHD Index has a high validity (Kooij et al., 2008; Erhardt et al., 1999).
Nevertheless, there was no perfect match between those participants with highest ADHD
Index and those reporting a clinical diagnosis. Further, it has been demonstrated that different
ADHD measures can lead to slightly different results (Kooij et al., 2008), so that the
dependency on the predictor measure may be addressed by future research. A second
limitation is the rather short duration of the resting-state scan. While similar scan lengths are

common in current functional connectivity research and while it has been shown that even
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less than 2min of fMRI can be used to build robust individual connectotypes (Miranda-
Dominguez et al., 2014), it has recently been demonstrated that short scan durations can lead
to systematic biases in graph-theoretical measures, e.g., reduced global modularity estimates
(Gordon et al., 2017). Our rather large dataset may compensate for this problem to a certain
degree, but future work will have to replicate the present results in datasets with longer scan
durations. Finally, even though resting-state connectivity supposedly reflects fundamental
organizational principles of the human brain (Biswal et al., 1995), and functional connectivity
during cognitive demands may rely on these intrinsic properties (Cole et al., 2014, 2016), we
consider it an important issue for future research to investigate whether the same associations

persist in the presence of cognitive tasks.

Conclusion

We demonstrate that non-clinical variations in ADHD symptoms relate significantly to the
modular organization of human functional brain networks. Even though ADHD-related
behaviors seem to vary independent of global modularity differences, region-specific profiles
of between-module and within-module connectivity covary with the self-rated presence of
(non-clinical) ADHD symptoms. Our results support a network perspective of ADHD and
suggest that intrinsic functional connections between and within neuronal systems are
relevant for a comprehensive understanding of individual variations in ADHD-related

cognition and behavior.
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