
 1 

Partitioning the genetic architecture of amyotrophic lateral sclerosis 

Iris J. Broce,1* Chun C. Fan,2 Nicholas T. Olney,3 Catherine Lomen-Hoerth,3 Steve Finkbeiner,3 

Nazem Atassi,4 Merit E. Cudkowicz,4  Sabrina Paganoni,5 Jennifer S. Yokoyama,3  Aimee Kao,3 

William P. Dillon,1 Christine M. Glastonbury,1 Christopher P. Hess,1 Wouter van Rheenen,6 Jan 

H. Veldink,6 Ammar Al-Chalabi,7 Ole A. Andreassen,8 Anders M. Dale,2,9,10 William W. 

Seeley,3 Leo P. Sugrue,1 Aaron Ofori-Kuragu,11 Celeste M. Karch,11 Bruce L. Miller,3* and Rahul 

S. Desikan1*  

 
1Department of Radiology and Biomedical Imaging, University of California, San Francisco, 

CA, USA. 
2Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA, USA. 
3Department of Neurology, University of California, San Francisco, CA, USA. 
4Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, 

MA, USA. 
5Neurological Clinical Research Institute (NCRI) Massachusetts General Hospital (MGH) 

Boston, MA, USA. 
6Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, 

Utrecht, the Netherlands. 
7King’s College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic 

and Clinical Neuroscience and Department of Neurology, King’s College Hospital, London, UK. 
8Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, 

University of Oslo, Oslo, Norway. 
9Department of Radiology, University of California, San Diego, La Jolla, CA, USA 
10Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA 
11Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA. 

 

 

* rahul.desikan@ucsf.edu (RSD), iris.broce@ucsf.edu (IJB), bruce.Miller@ucsf.edu (BLM) 

 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/505693doi: bioRxiv preprint 

mailto:rahul.desikan@ucsf.edu
mailto:iris.broce@ucsf.edu
mailto:bruce.Miller@ucsf.edu
https://doi.org/10.1101/505693
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 

The genetic basis of sporadic amyotrophic lateral sclerosis (ALS) is not well understood. Using 

large genome-wide association studies and validated tools to quantify genetic overlap, we 

systematically identified single nucleotide polymorphisms (SNPs) associated with ALS 

conditional on genetic data from 65 different traits and diseases from >3 million people. We 

found strong genetic enrichment between ALS and a number of disparate traits including 

frontotemporal dementia, coronary artery disease, C-reactive protein, celiac disease and memory 

function. Beyond C9ORF72, we detected novel genetic signal within numerous loci including 

GIPC1, ELMO1 and COL16A and confirmed previously reported variants, such as ATXN2, 

KIF5A, UNC13A and MOBP. We found that ALS variants form a small-world co-expression 

network characterized by highly inter-connected ‘hub’ genes. This network clustered into smaller 

sub-networks, each associated with a unique function. Altered gene expression of several sub-

networks and hubs was over-represented in neuropathological samples from ALS patients and 

SOD1 G93A mice. Our collective findings indicate that the genetic architecture of ALS can be 

partitioned into distinct components where some genes are highly important for developing 

disease. These findings have implications for stratification and enrichment strategies for ALS 

clinical trials. 
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Introduction 

Sporadic amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease 

characterized by progressive muscle paralysis from selective loss of upper and lower motor 

neurons. Spreading rapidly, ALS can lead to respiratory failure and death in 3-5 years1. Given 

the paucity of disease modifying treatments, elucidating the genetic basis of ALS can delineate 

putative pharmacological targets and highlight molecular mechanisms underlying disease. 

Importantly, refining the genetic landscape of ALS can inform cohort stratification and 

enrichment strategies for clinical trials. 

ALS is increasingly recognized as a complex disorder with an incompletely understood 

genetic architecture. Prior work suggests that sporadic ALS is genetically characterized by a few 

rare variants, each explaining a substantial portion of the inherited risk (oligogenic)2-4. However, 

more recent evidence indicates that low-risk, common variants underlie ALS (polygenic) 5. 

Importantly, several ALS-associated variants have been implicated in other diseases suggesting 

genetic pleiotropy6-8. Furthermore, it is not known whether certain ALS genes are more 

important than others for influencing disease etiology. 

Here, our goal was to elucidate the genetic architecture of ALS by leveraging statistical 

power from large GWAS from 65 distinct traits and diseases.  Using these methods, we have 

discovered novel genetic risk loci and shown abundant genetic pleiotropy between several 

neurodegenerative diseases including ALS, FTD, progressive supranuclear palsy (PSP), 

corticobasal degeneration (CBD), Parkinson’s disease (PD), and Alzheimer’s disease (AD) 8-12.  
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Results 

Selective shared genetic risk between ALS and 65 distinct traits 

Using previously published stratified FDR methods (see Methods), we assessed genetic 

overlap between ALS and 65 distinct traits and diseases. We identified genetic enrichment in 

ALS SNPs across different levels of significance with 65 distinct traits and diseases (Fig. 1). 

Consistent with prior work8, we found that the highest level of pleiotropic enrichment was 

between ALS and FTD (700-fold enrichment). Surprisingly, we also found robust genetic 

enrichment in ALS SNPs as a function of coronary artery disease (CAD; 300-fold enrichment), 

memory (225-fold enrichment), C-reactive protein (CRP; 50-fold enrichment), and PSP (50-fold 

enrichment). We found weaker genetic enrichment with celiac disease (CeD), CBD, body mass 

index (BMI), rheumatoid arthritis (RA), schizophrenia (SCZ), verbal numeric reasoning (VNR), 

and putamen volume (PUT). We found no enrichment between ALS and the other phenotypes. 

We note that these analyses reflect genetic enrichment after removing all SNPs within 

chromosome 9. 

To identify novel ALS risk loci, we used a stratified approach. First, we computed 

conditional FDR, a statistical framework that is well suited for gene detection9,13. Conditional 

FDR analysis at a FDR p-value < 0.05 revealed 180 SNPs across 21 chromosomes (Fig. 2, 

Supplementary Table 1). Next, we performed extensive LD analyses to identify the variants 

underlying the genetic signals (see Supplemental Information). After accounting for LD, we 

identified 89 risk loci and annotated each ALS risk SNP with the closest gene(s), resulting in a 

total of 92 closest genes (Fig. 2, Table 1). Of these, 30 SNPs were either previously reported or 

were in LD with a previously reported SNP (Table 1, Supplementary Fig. 1). An additional 59 

SNPs were novel or were not in LD with SNPs within previously reported loci (Table 1, 
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Supplementary Fig. 1). We found independent hits from SNPs previously reported within 

CRIM1, NAF1, TNIPI, PARKIN, ELP3, MRSA, C9ORF72, PCDH9, A2BP1, and CPNE7 (Table 

1).  

To determine whether the ALS risk genes were associated with a single trait or multiple 

traits, we plotted the minimum conditional FDR associated with all traits and closest genes. As 

shown in Supplementary Fig. 2, across all 65 traits and diseases, we found that the ALS risk 

variants are associated with multiple traits and diseases. Genetic variants within C9ORF72 were 

identified on 46 traits. Genetic variants within KIAA0524 (also known as SARM1) were 

identified on 64 traits, UNC13A on 62 traits, MOB3B on 58 traits, TBK1 on 34 traits, and CAT 

and C21ORF2 on 27 traits.  

These findings suggest that ALS has a polygenic component where several genes 

potentially contribute to disease risk. Genetic pleiotropy with traits like FTD and CAD can be 

leveraged for ALS gene detection. Importantly, there are several ALS susceptibility loci that are 

also associated with numerous other traits and diseases. 

 

cis-eQTL expression  

To determine the functional effects of the ALS pleiotropic risk SNPs, we evaluated cis-

expression quantitative loci (cis-eQTL) in human brains free of neuropathology (Supplementary 

Table 2). In total, the ALS risk SNPs produced significant cis-eQTLs (below 1.5 x 10-3) within 

41 genes. Of these, SNPs within SMARCA2, GGNBP2, NUP50, and TNIP1 showed overlapping 

annotation between the eQTL and the closest genes. Thirteen SNPs showed significant cis-

eQTLs with multiple genes.  
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Biological networks associated with ALS genetic risk genes  

Using GeneMANIA (www.genemania.org), an online web-portal for bioinformatic 

assessment of gene networks14, we conducted a network analysis to explore the interaction and 

co-expression patterns associated with the ALS risk genes defined as the combination of the 1) 

closest genes to the SNP and 2) functional genes (i.e., SNPs with significant cis-eQTLs). We 

found that a large number of these genes showed physical protein-protein interactions (42.93%), 

were co-expressed (29.33%), and showed genetic interactions (13.28%) (Fig. 3). Few ALS 

genetic risk genes shared pathways (9.36%), were co-localized (2.60%), or predicted functional 

interactions between genes based on orthology (2.50%) (Supplementary Table 3).  

 

Properties of the ALS biological networks 

We assessed the network structure of the physical protein-protein interaction network, co-

expression network, and genetic interactions network. Specifically, we asked whether some 

genes play a more influential role than others. Most complex networks have a small-world 

property characterized by relatively short paths between any pair of nodes (genes) 15. In small-

world networks, perturbing any given node is thought to also perturb neighboring nodes and the 

entire network in general. Quantitatively, a network is considered small-world if its “small-

worldness” index is higher than one (a stricter rule is small-worldness >=3)16. Further, the 

clustering coefficient for the target small-world network should be higher than the clustering 

coefficient of a comparable random network. Also, the average shortest path length of the target 

network should be similar or higher (but not substantially higher) than a comparable random 

network.  
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First, we evaluated the degree to which each network assumed a small-work network 

structure. The co-expression interaction network consisted of 95 nodes and 132 edges, had a 

small-world index of 6.06, a diameter of 13, and average shortest path length of 5.12. The 

clustering coefficient was 0.102, which is higher than the clustering coefficient of a random 

graph with the same number of indices (0.031). The physical protein-protein interaction network 

consisted of 85 nodes and 41 edges, had a small-world index of 4.43, a diameter of 5, and 

average shortest path length of 82.03. The clustering coefficient was 0.326, which is also higher 

than the clustering coefficient of a random network with the same number of indices (0.06). 

Lastly, the genetic interaction network consists of 98 nodes and 472 edges, had a low small-

world network index of 1.11, a diameter of 5, and average shortest path length of 2.33. The 

clustering coefficient for this network (0.197) was similar to the clustering coefficient of a 

random network with the same number of indices (0.192). Of the three networks, the co-

expression network showed robust small-world network properties - the physical protein-protein 

interactions network had a substantially large shortest path length and the genetic-interactions 

network clustering coefficient did not differ from random. Therefore, in subsequent network 

analysis we focused on the co-expression network.  

To further assess the structure of the co-expression network, we evaluated various 

network centrality measures, including degree centrality, eigenvector centrality, and edge-

betweenness centrality. Centrality network measures define how important each node is within a 

given network. The degree centrality is the number of edges connected to a node. Eigenvector 

centrality is the extent to which a node is connected to other highly influential “hub” nodes. 

Edge-betweenness centrality is the extent to which a node lies on the shortest path between other 

nodes (see Methods). Fig. 4a shows the co-expression network. The size of each node is defined 
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by its eigenvector centrality (EC) value. Genes with a high EC and high degree centrality can be 

characterized as hubs15,16. Within the co-expression network, genes with high degree centrality 

(Supplementary Fig. 3) and high EC (Supplementary Fig. 4) were GIPC1 (n=8, EC=1.00), 

ELMO1 (n=6, EC = 0.994), UGCG (n=7, EC = 0.978), SMARCA2 (n=6, EC = 0.924), ATXN2 

(n=6, EC = 0.765), and SETD2 (n=6, EC = 0.729). In addition to these, DOCK2 (n= 5, EC = 

0.809), KIAA0917/SCFD1 (n=5, EC = 0.752), HTR2A (n=4, EC = 0.695), and COL16A1 (n=5, 

EC = 0.645) were also highly influential based on EC values.  

Next, we explored whether the co-expression network could be partitioned into 

potentially meaningful subnetworks (Fig. 4a,b). The network was partitioned into subnetworks 

by removing edges with high edge-betweenness centrality (see Methods). The result was a 

hierarchical map, called a dendrogram (Fig. 4b). We identified a total of 8 clusters. Five clusters 

contained the most influential hub genes. The yellow cluster contained 5 hub genes (HTR2A, 

GIPC1, SMARCA2, ELMO1, and DOCK2). The purple cluster contained two hub genes (UGCG 

and SETD2), and the teal, orange, and red clusters contained a single hub gene (COL16A1, 

ATXN2, KIAA0917, respectively).  

Collectively, these findings suggest that ALS genes that are co-expressed form networks 

with small-world properties and can be further partitioned into different clusters. Importantly, 

specific genes, such as GIPC1 and ATXN2, act like hubs, characterized by a high degree of 

connectivity with other genes; perturbing these hub genes may disrupt the entire network.  

 

Biological pathways associated with ALS risk genes within co-expression network 

We used bioinformatics approaches to identify distinct and common biological pathways 

associated with the 8 subnetworks within the ALS co-expression network (see Methods). The top 
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5 functional annotations for each subnetwork are shown in Fig. 5a. The blue subnetwork was 

enriched for developmental processes, including neuron projection development and regulation 

of cell growth. The gray subnetwork was enriched for apoptotic signaling pathway, cell death, 

and protein phosphorylation. The green subnetwork was enriched for cell-cell signaling, 

response to external stimuli, and metabolic processes. The purple cluster was enriched for 

vascular morphology and angiogenesis. The orange, red, teal, and yellow subnetworks were 

enriched for vesicle-mediated processes. Lastly, the orange and red networks were also enriched 

for organelle membrane fusion and disassembly processes, and the teal subnetwork was also 

enriched for oxidative reduction and androgen metabolic processes.  

Further, we explored whether genes within the distinct subnetworks were selectively 

enriched for neuron-specific biological, chemical, or molecular processes. As shown in Fig. 5b, 

the blue, green, teal, and yellow subnetworks were selectively enriched for neuronal processes, 

particularly involved in neuron differentiation, projection, guidance, and development. We also 

found that several hub genes within the yellow subnetwork (GIPC1, SMARC2, HTR2A) were 

over-represented in these processes (Supplementary Fig. 5). Taken together, these findings 

highlight that the ALS co-expression subnetworks are involved in distinct and overlapping 

biological pathways.   

 

Differential expression of ALS risk genes in tissue from ALS patients and SOD1 G93A 

transgenic mice 

 We investigated whether particular clusters or hub genes were enriched in pathological 

samples from ALS patients. To do this, we assessed the differential expression of genes within 

the ALS co-expression network in the gray matter of motor neurons isolated from spinal cords of 
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patients with familial and sporadic ALS and controls (Fig. 6a, see Methods). We found that 2 

genes within the teal subnetwork (COL16A1 and GPX3) and one gene within the purple 

subnetwork (UGCG) were differentially expressed in tissue from controls compared to familial 

ALS patients. COL16A1 was also differentially expressed in tissue from controls compared to 

sporadic ALS patients. Importantly, COL16A1 and UGCG are hub genes. 

  To validate the genes identified in ALS human tissue, we evaluated expression data from 

a well-characterized mouse model17. The RNA expression data were analyzed in non-transgenic 

SOD1 WT and SOD1 G93A mice at 75 and 110 days (GEO accession number GSE4390). 

Differential expression of UGCG was independently replicated in the SOD1 G93A mice (Fig. 

6b). Additionally, we found that TBK1 within the purple cluster, NDSTI and WIPI2 within the 

orange cluster, and KIF5A within the green cluster were enriched in SOD1 G93A mice (Fig. 6b).  

Discussion 

 We sought to elucidate the genetic basis of sporadic ALS. By exploiting statistical power 

from several large GWAS of >3 million people, we identified novel susceptibility loci, each 

associated with a small increase in ALS risk. We found that ALS variants form a small-world co-

expression network characterized by highly inter-connected ‘hub’ genes. This network clustered 

into smaller sub-networks, each with a unique function. Altered gene expression of several sub-

networks and hubs was over-represented in neuropathological samples from ALS patients and 

SOD1 G93A mice. Our collective findings indicate that the genetic architecture of ALS can be 

partitioned into distinct components where some genes are highly important for developing 

disease.  

 We found that ALS has a robust polygenic component. By leveraging genetic studies 

from 65 different traits and diseases, we identified 89 ALS risk loci across 21 chromosomes of 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/505693doi: bioRxiv preprint 

https://doi.org/10.1101/505693
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

which 59 are novel. Beyond C9ORF72, our pleiotropy analyses detected novel genetic signal 

within numerous loci including GIPC1, ELMO1 and COL16A and confirmed previously reported 

variants, such as ATXN2, KIF5A, UNC13A and MOBP 4-6. Neither as polygenic as 

schizophrenia18 or Alzheimer's disease19 nor purely oligogenic5, it is likely that the genetic 

architecture of ALS is a continuum of common low-risk variants and rare high-risk variants. 

Although each of the ALS susceptibility loci we detected was associated with a small effect, 

when aggregated together into a polygenic score they may explain a substantial portion of the 

inherited risk underlying ALS20. 

 We found genetic pleiotropy between ALS and a number of diseases and traits. In line 

with previous reports, we show strong genetic enrichment in ALS conditional on FTD and 

PSP8,21,22. Building on prior work showing a relationship between inflammation/immune 

dysfunction and motor neuron disease23-25, we found enrichment in ALS SNPs as a function of 

CRP and celiac disease. Surprisingly, we also identified strong genetic overlap between ALS and 

CAD, and memory function. Clinically, these findings suggest that a subset of ALS patients are 

at elevated genetic risk for FTD whereas another (potentially overlapping) group of ALS 

individuals may be at high risk for CAD or immune dysfunction. Therefore, development of 

multiple pathway specific polygenic scores may identify individuals at risk for developing ALS 

who are ‘enriched’ for FTD, cardiovascular or immune mediated processes. 

 Our findings inform cohort stratification and enrichment strategies for ALS clinical trials. 

We found that the ALS pleiotropic and functional risk genes form a small-world co-expression 

network. This network can be partitioned into 8 subnetworks, each enriched for distinct 

biological pathways. Similar to previous research, we found functional enrichment of ALS risk 

genes for oxidative-mediated (teal subnetwork), neuronal (teal, blue, yellow, and green 
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subnetworks), and endoplasmic reticulum processes (orange subnetwork)26,27. Additionally, 

genes within the blue subnetwork were enriched for developmental and growth pathways while 

genes within the gray subnetwork were enriched for cell-death and apoptotic processes. Altered 

gene expression within the teal subnetwork was over-represented in postmortem spinal cord 

samples from familial and sporadic ALS patients, whereas abnormal expression of genes in the 

orange and purple clusters was present in SOD1 G93A mice. Clinically, these results suggest that 

partitioning genetic susceptibility may help identify individuals who have a higher likelihood of 

responding to therapies with a specific mechanism of action and support including DNA 

collection and sequencing in ALS clinical trials. For example, ALS patients who are enriched for 

genetic abnormalities within the teal subnetwork may respond to therapies targeting oxidation 

reduction or steroid catabolism (Fig. 5). On the other hand, vascular treatments may be effective 

in ALS individuals with an overabundance of altered purple cluster genes (Fig. 5).  

 Not all ALS genes are created equal. We show that particular genes within the ALS co-

expression network are characteristic of hubs. Playing a central role within a biological system, 

perturbation of a hub can cause rapid degeneration of the whole network28. We found that these 

hub genes were key drivers of biological enrichment. Specifically, HTR2A, SMARCA2, and 

GIPC1 were enriched for neuronal processes (Supplementary Fig. 5), and ELMO1 and DOCK2 

were enriched for vesicle-mediated transport (Supplementary Fig. 6). Therapeutically targeting 

hub genes may be most effective for altering an entire biological pathway. However, given 

abundant pleiotropy with other traits (Supplementary Fig. 2), comprehensive biological and 

experimental evaluation of the entire network of a hub gene will be necessary prior to therapeutic 

evaluation. 
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 This study should be interpreted within the context of its limitations. First, the ALS 

GWAS used contained people predominantly of European descent, while the other GWAS 

included people of both European and non-European descent. Therefore, these results may not be 

generalizable to ALS patients from other populations. Second, like most GWAS, a major 

limitation of our study is that we could not determine with certainty the causal genes underlying 

our genetic signal. Although we performed extensive LD and cis-eQTL analyses and included 

the combination of closest and functional genes in our network analyses, it is likely that genetic 

fine mapping and experimental approaches, such as CRISPR/Cas9 gene editing, will be needed 

to isolate the causal variants. Finally, given evidence that a substantial proportion of coronary 

disease is associated with inflammation29, future work should evaluate whether CAD influences 

ALS risk through inflammation or other mediator variables. 

 In summary, we show that the genetic architecture of ALS has a robust polygenic 

component that can be partitioned into distinct subnetworks, each enriched for divergent 

biological pathways. We also identify several hub genes that may be key drivers of ALS 

pathobiology. Our findings are compatible with the hypothesis that ALS is a multi-step, non-

uniform disease process. These results have implications for cohort stratification and enrichment 

strategies for ALS clinical trials. 

 

Methods 

Participant samples  

We conducted a meta-analysis of summary data obtained from published data. We 

evaluated complete GWAS results in the form of summary statistics (p-values and odds ratios) 

for ALS and 65 distinct traits and diseases (see Supplementary Table 4). We obtained ALS 
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GWAS summary statistic data from 12,577 ALS cases and 23,475 controls at 18,741,501 SNPs 

(see Supplementary Table 4 for additional details).  The ALS GWAS summary statistics and 

sequenced variants are publicly available through the Project MinE data browser: 

http://databrowser.projectmine.com. We also obtained GWAS summary statistic data for the 65 

distinct traits and diseases (for additional details, please see Supplementary Table 4). The 

relevant institutional review boards or ethics committees approved the research protocol of the 

individual GWASs used in the current analysis, and all participants gave written informed 

consent. 

 

Genetic Enrichment Statistical Analyses 

The pleiotropic enrichment strategies implemented here were derived from previously 

published stratified FDR methods13,30. For given phenotypes A and B, pleiotropic ‘enrichment’ 

of phenotype A with phenotype B exists if the proportion of SNPs or genes associated with 

phenotype A increases as a function of increased association with phenotype B. To assess for 

enrichment, we constructed fold-enrichment plots of nominal –log10(p) values for all ALS SNPs 

and for subsets of SNPs determined by the significance of their association with the 65 distinct 

traits and diseases. In fold-enrichment plots, the presence of enrichment is reflected as an upward 

deflection of the curve for phenotype A with increasing strength of association with phenotype 

B. To assess for polygenic effects below the standard GWAS significance threshold, we focused 

the fold-enrichment plots on SNPs with nominal –log10(p) < 7.3 (corresponding to p > 5×10-8). 

The enrichment seen can be directly interpreted in terms of true discovery rate (TDR = 1 – False 

Discovery Rate (FDR)). Given prior evidence that several genetic variants within chromosome 9 

are associated with increased ALS risk, one concern is that random pruning may not sufficiently 
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account for these large LD blocks, resulting in artificially inflated genetic enrichment12. To better 

account for these large LD blocks, in our genetic enrichment analyses, we removed all SNPs 

within chromosome 9. 

 

To identify novel ALS risk loci as a function of genetic variants associated with the 65 

traits and diseases, we computed conditional FDRs13,30, a statistical framework that is well suited 

for gene detection. The standard FDR framework is based on Bayesian statistics and follows the 

assumption that SNPs are either associated with the phenotype (non-null) or are not associated 

with the phenotype (null SNPs). Within a Bayesian statistical framework, the FDR is then the 

posterior probability of the SNP being null given its p-value is as small as or smaller than the 

observed one. The conditional FDR is an extension of the standard FDR, which incorporates 

information from GWAS summary statistics of a second phenotype to adjust its significance 

level. The conditional FDR is defined as the probability that a SNP is null in the first phenotype 

given that the p-values in the first and second phenotypes are as small as or smaller than the 

observed ones. Ranking SNPs by the standard FDR or by p-values gives the same ordering of 

SNPs. In contrast, if the primary and secondary phenotypes are related genetically, the 

conditional FDR reorders SNPs and results in a different ranking than that based on p-values 

alone. We used an overall FDR threshold of p < .05 to indicate statistical significance, meaning 5 

expected false discoveries per 100 reported. In addition, we constructed Manhattan plots based 

on the ranking of the conditional FDR to illustrate the genomic location. In all analyses, we 

controlled for the effects of genomic inflation. Detailed information on the conditional FDR can 

be found in prior reports13,30. 
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Functional evaluation of shared risk loci 

To assess whether the SNPs associated with ALS and the 65 traits and diseases modify 

gene expression, we identified cis-expression quantitative loci (eQTLs, defined as variants 

within 1 Mb of a gene's transcription start site) associated with the identified ALS pleiotropic 

SNPs and measured their regional brain expression in a publicly available dataset of normal 

control brains (UK Brain Expression Consortium, http://braineac.org/)31. To minimize multiple 

comparisons, we analyzed cis-eQTL for the mean p-value obtained from the following brain 

regions: the cerebellum, frontal cortex, hippocampus, medulla, occipital cortex, putamen, 

substantia nigra, temporal cortex, thalamus, and white matter. To minimize false positives, we 

applied a Bonferroni-corrected p-value of 1.5 x 10-3. 

 

Biological networks associated with ALS genetic risk genes  

To evaluate potential protein and genetic interactions, co-expression, co-localization, and 

protein domain similarity for the combined pleiotropic (i.e. closest genes from the pleiotropy 

analyses) and functionally expressed ALS genes (i.e., with significant cis-eQTLs), we used 

GeneMANIA (www.genemania.org), an online web-portal for bioinformatic assessment of gene 

networks14. To visualize the composite gene network, we also assessed the weights of individual 

components within the network32. Further, we evaluated whether the biological networks fell into 

the class of a small-world network using several diagnostic criteria. First, we computed the 

“small-worldness” index, using the R package ‘qgraph’. The function computes the global 

transitivity of the target network and its average shortest path length16,33. It then computes the 

same indices on 1000 random networks. The small-worldness index is then equal to the 

transitivity of the target network (normalized by the random transitivity) over the average 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/505693doi: bioRxiv preprint 

http://braineac.org/
http://www.genemania.org/
https://doi.org/10.1101/505693
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

shortest path of the target network (normalized by the random average shortest path length). A 

network was considered small-world if the “small-worldness” index was >= 3; 16. In addition to 

the small-worldness index, we inspected whether the network had a transitivity substantially 

higher than comparable random networks and that its average shortest path length was similar or 

higher (but not substantially higher) than that computed on random networks.  

Further, to determine whether some genes play a more influential role than others, we 

evaluated various network centrality measures, including degree centrality, eigenvector 

centrality, and edge-betweenness centrality. We used the R package ‘igraph’ for all network 

centrality analysis and visualization34. The degree of a node corresponds to the sum of its 

adjacent edges (i.e., connections). The eigenvector centrality of a node corresponds to the values 

of the first eigenvector of the graph adjacency matrix. In general, nodes with high eigenvector 

centralities are also connected to many other nodes which are, in turn, connected to many other 

nodes. Consequently, eigenvector centrality corresponds to the degree to which a node is 

connected to other highly influential nodes. Lastly, we partitioned the co-expression network, in 

particular, into subnetworks based on edge-betweenness centrality. Edge-betweenness centrality 

is defined by the number of shortest-paths going through an edge. Here, a subnetwork is 

analogous to modules within a network. Nodes within a module are densely connected to 

themselves (e.g., cluster) but sparsely connected to other modules. To create modules, we 

gradually remove the edge with the highest edge-betweenness score, since all the shortest paths 

from one module to another typically pass through them. The result is a hierarchical map, called 

a dendrogram. The leaves of the tree are the individual nodes and the root of the tree represents 

the whole graph. 
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Lastly, to evaluate biological pathways of the ALS pleiotropic genes (i.e. closest genes 

from the pleiotropy analyses) and functionally expressed ALS genes (i.e., with significant cis-

eQTLs), we used FUMA (http://fuma.ctglab.nl/), a web-based platform that integrates 

information from multiple biological resources to facilitate functional annotation of GWAS 

results35. 

 

Gene expression alterations in tissue from ALS patients and SOD1 G93A transgenic mice  

To determine whether the ALS genetic risk genes were differentially expressed in tissue 

from patients with ALS, we analyzed the gene expression of the target genes from postmortem 

spinal cord gray matter from 11 individuals (2 patients with familial ALS, 5 patients with 

sporadic ALS, and 4 controls; Gene Expression Omnibus [GEO] accession number GDS41236). 

Details about this dataset and analysis–including the human brain samples used, RNA extraction 

and hybridization methods, microarray quality control, and microarray data analysis– are 

described in the original manuscript36. To validate the genes identified in ALS human tissue, we 

also analyzed RNA expression data in non-transgenic SOD1 WT (n=2) and SOD1 G93A (n=2) 

mice at 75 and 110 days (GEO accession number GSE4390). SOD1 G93A mice are pre-

symptomatic at 75 days and exhibit hindlimb paralysis at 110 days17,37.  

 

Code availability 

Code and scripts available by request from authors. 

 

Data availability 
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Summary statistics from secondary GWAS of single disorders and traits are available upon 

request from the corresponding author. Cis-eqtl data from the UK Brain Expression Consortium 

are publicly available (http://braineac.org/). Findings from biological networks were obtained 

using GeneMANIA (www.genemania.org), an online web-portal for bioinformatic assessment of 

gene networks. Biological pathways were evaluated using FUMA (http://fuma.ctglab.nl/), a web-

based platform that integrates information from multiple biological resources to facilitate 

functional annotation of GWAS results. Expression data from sporadic and familial ALS patients 

and controls postmortem spinal cord gray matter are available in GEO with the accession number 

GDS412.  RNA expression data in non-transgenic SOD1 WT and SOD1 G93A mice at 75 and 

110 days are also available in GEO with the accession number GSE4390.  
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Figures 

Fig. 1: Fold enrichment plots of enrichment versus nominal -log10 p-values (corrected for 

inflation) in Amyotrophic lateral sclerosis (ALS). Fold enrichment plots of enrichment versus 

nominal -log10 p-values (corrected for inflation) in ALS below the standard GWAS threshold of 

p-value < 5x10-8 as a function of significance of association with 65 distinct traits and diseases 

and at the level of p-value ≤ 1, p-value ≤ 0.1, p-value ≤ 0.01, respectively. Blue line indicates all 

SNPs. 
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Fig. 2: ‘Conditional’ Manhattan plot of conditional –log10 (FDR) values for Amyotrophic 

lateral sclerosis (ALS) as a function of 65 distinct traits and diseases. SNPs with conditional       

–log10 FDR > 1.3 (i.e. FDR < 0.05) are shown with large points. A black line around the large 

points indicates the most significant SNP in each LD block and this SNP was annotated with the 

closest gene, which is listed above the symbols in each locus.  
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Fig. 3: Network interaction graph illustrating genetic interactions, physical interactions, 

and co-expression patterns associated with the ALS risk genes.  
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Fig. 4: Co-expression interaction network plot and dendrogram. a, Co-expression interaction 

network plot. Each node represents a single gene and the edges (lines between genes) represent 

co-expression interactions between genes. The size of each node corresponds to the eigenvector 

centrality score for that gene. The color of each node represents membership to a distinct 

subnetwork. b, Co-expression interaction dendrogram plot. The co-expression network was 

partitioned into 8 subnetworks by removing edges with high edge-betweenness centrality. Hub 

genes are annotated in brown and marked by a large point.  
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Fig. 5: Biological pathways associated with the ALS co-expression subnetworks. a, 

Biological pathways associated with each subnetwork of the ALS co-expression network 

classified using FUMA (http://fuma.ctglab.nl/). b, Neuron-specific biological pathways 

associated with each subnetwork also classified using FUMA. 

 

   

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/505693doi: bioRxiv preprint 

http://fuma.ctglab.nl/)
https://doi.org/10.1101/505693
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

 
  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/505693doi: bioRxiv preprint 

https://doi.org/10.1101/505693
http://creativecommons.org/licenses/by-nc-nd/4.0/


 41 

Fig. 6: Differential expression of ALS risk genes in diseased tissue.  a, Differential expression 

of ALS risk genes in tissues of patients with ALS. b, Differential expression of ALS risk genes 

in SOD1 G93A transgenic mouse. 
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Table 1  

 

Disease/Trait 
Pleiotropic 

SNP 
Closest 

Gene 
Chr Position 

ALS 

p-value 
Min 

CondFDR 

Previously 

Reported 

SNPs in LD 

Other SNPs 

within Gene 
Citation 

1 VNR rs10914464 COL16A1 1 32132319 1.26E-04 4.54E-02 Novel   

2 HV rs10443173 COL24A1 1 86533754 8.20E-06 8.11E-03 Novel   

3 PSP rs2068667 NFASC 1 204917680 3.39E-04 3.16E-02 rs2068667   [8] 

4 FTD rs515342 ASB1 2 239367296 6.22E-04 3.71E-02 rs515342   [8] 

5 ADHD rs896444 BC038566 

(NCK2) 
2 106241808 1.32E-04 3.89E-02 Novel   

6 TC rs6737916 BIRC6 2 32597985 2.82E-05 2.81E-02 Novel   

7 NEUR rs181357866 CRIM1 2 35863487 3.10E-05 1.92E-02 Independent rs139895660  [38] 

8 T2D rs13387347 G6PC2 2 169754846 2.95E-05 3.52E-02 Novel   

9 BMI rs7602576 IL37 2 113699617 6.79E-05 4.80E-02 Novel   

10 LUNG rs11695294 LOC375295 2 177473618 5.12E-05 1.62E-02 Novel   
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11 SMOKEONSET rs13417671 TMP LOCUS 39 

(RASGRP3) 
2 34043426 1.04E-05 1.36E-02 Novel   

12 EVERSMOKE rs17042645 CNTN6 3 1731848 1.26E-04 2.45E-02 rs149853584   [7] 

13 BMI rs11718653 HSPBAP1 3 122477858 9.41E-06 6.15E-03 Novel   

14 PSP rs9820623 MOBP 3 39493858 1.64E-05 1.89E-03 rs13079368 rs1768208 

rs616147 
 [8] 

 [5] 

 [7] 

15 T2D rs111970477 SETD2 3 47105581 6.55E-05 3.76E-02 Novel   

16 MDD rs10938692 ABLIM2 4 8118561 2.57E-05 4.21E-02 Novel   

17 AD rs1159918 ADH1A 4 100243009 1.98E-05 7.39E-03 Novel   

18 ALC rs78710307 BC034799 

(LOC105377671) 
4 59983437 1.07E-04 4.32E-02 Novel   

19 VNR rs12646225 RNF3A 4 696848 1.51E-04 4.91E-02 Novel   

20 BREAST rs430979 SH3BP2 4 2814698 2.41E-06 1.40E-03 Novel   

21 VNR rs10011222 SLC10A7 4 147441065 1.00E-04 3.84E-02 Novel   
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22 INSOMNIA rs61789437 ZFYVE28 4 2315630 2.08E-06 9.40E-03 Novel   

23 SCZ rs34384833 AK056485 

(GCNT4) 
5 91238155 1.65E-05 2.50E-02 rs6453104   [39] 

24 CRP rs7735726 ERGIC1 5 172347823 1.91E-05 7.56E-03 rs538622   [8] 

25 CHRONOTYPE rs10050775 GDNF 5 38008042 1.00E-05 3.61E-02 Novel   

26 CeD rs3828599 GPX3 

(TNIPI) 
5 150401796 2.45E-06 5.85E-04 rs10463311 

rs3828599 
  [40] 

[7] 

 [8] 

 [12] 

27 RT rs35318094 MAPK9 5 179672984 1.07E-05 3.53E-02 Novel   

28 WHR rs17326496 MCC 5 112676579 5.79E-05 1.70E-02 Novel   

29 VNR rs10463311 NAF1 5 150410835 7.85E-07 6.47E-03 Independent rs17111695  [8] 

 [40] 

30 LUNG rs150949995 NDST1 5 149898499 4.13E-06 1.01E-02 Novel   

31 PD rs7728741 SAR1B 5 133942492 2.55E-04 4.58E-02 Novel   

32 VITILIGO rs4958888 TNIP1 5 150472842 1.45E-05 9.80E-03 Independent rs10463311  [40] 

 [7] 

33 WHR rs1543705 AK127472 6 127197108 1.92E-04 4.43E-02 Novel   
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34 MDD rs145705679 C6ORF15 6 31069749 1.34E-04 4.30E-02 Novel   

35 TG rs4333390 PARKIN 

 
6 162330919 4.22E-05 1.45E-02 Independent rs16892673 

rs777468774 

rs956103217 

rs7740421 

rs7757630 

rs7764218 

rs6904956 

rs564053 

rs6931162 

 [41] 

 [42] 

36 CHRONOTYPE rs651001 TMEM170B 6 11569402 3.57E-05 1.48E-02 Novel   

37 PUT rs141730255 AKR1D1 7 137938550 5.24E-05 1.63E-02 Novel   

38 SMOKEONSET rs17171046 ELMO1 7 37477863 3.90E-05 3.88E-02 Novel   

39 COG rs141347161 GLI3 7 42417313 3.03E-05 2.69E-02 Novel   

40 PUT rs10488631 TNPO3 7 128594183 2.60E-05 7.66E-03 rs10488631   [12] 

[8] 

41 NEUR rs8180839 WIPI2 7 5239970 6.14E-05 2.41E-02 Novel   

42 PROSTATE rs6996532 BC045738 

 
8 2417678 2.52E-06 2.82E-03 rs17070492 rs7813314  [7] 

 [8] 

 [43] 

 [5] 
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43 SMOKEONSET rs11786174 ELP3 8 28038789 1.84E-04 3.75E-02 Independent rs12682496 

rs60024250 

rs2614046 

rs13268953 

rs6985069 

 [44] 

 [42] 

44 CRP rs11250002 MSRA 8 10257041 5.60E-05 1.42E-02 Independent rs968806172 

(not in 

database) 

 [45] 

45 AD rs79496463 TG (TGN) 8 133917088 7.02E-05 3.69E-02 Novel   

46 MDD rs117204439 C9ORF72 9 27607973 2.67E-10 2.78E-07 Independent rs2225389 

rs774352 

rs774351 

rs903603 

rs2814707 

rs3849942 

rs774359 

rs1752784 

rs2782931 

 [8] 

 [5] 

 [46] 

 [47] 
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47 FTD rs895021 MOB3B 

(MOBKL2B) 
9 27484911 6.02E-17 7.38E-09 rs3849943 

rs3849941 

rs2477523 

rs2453555 

rs774352 

rs774351 

rs3849942 

rs2814707 

rs774359 

rs7019847 

  [8] 

 [48] 

 [5] 

 [46] 

 [47] 

48 ALC rs7024326 SMARCA2 9 1903397 1.86E-05 3.28E-02 Novel   

49 PSOR rs7041171 UGCG 9 114701630 2.78E-05 4.72E-02 Novel   

50 CBD rs7944397 CAT 11 34455309 1.14E-05 8.81E-03 rs12803540 rs7118388  [8] 

51 INTELLIGENCE rs71472777 ENDOGENOUS 11 24142935 1.34E-05 2.54E-02 Novel rs12361953 LUPZP2 in AD 

52 BPD rs140988250 HCCA2 11 1489420 1.27E-05 3.51E-02 Novel   

53 CRP rs12369156 ACADS 12 121167675 7.70E-06 1.98E-03 Novel   

54 SCZ rs117704471 APOLD1 12 12904565 7.20E-05 3.91E-02 Novel   
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55 DBP rs593226 ATXN2 12 111993886 7.43E-05 1.94E-02 rs739496 

rs10849949 

rs2073950 

rs2301621 

rs6490162 

rs628825 

rs63051 

rs616513 

rs12369009 

rs695872 

rs695871 

rs2239194 

rs3184504 

rs2239194 

rs10774625 

rs10849952 

rs17805591 

rs16941541 

rs7969300 

 [49] 

56 MDD rs74654358 TBK1  

 
12 64881967 7.07E-07 2.68E-03 rs74654358 

rs75209514 
rs76805704 

rs41292021 

rs55824172 

rs149881816 

rs56196591 

rs34774243 

rs145905497 

rs138369490 

rs17857028 

rs138839127 

rs142030898 

rs35635889 

rs144424516 

rs151225287 

rs139195702 

rs186475789 

rs141727722 

rs144370662 

rs187122554 

rs185524052 

 [5] 

 [50] 

 [51] 

 [41] 

 [52] 

 [7] 

57 ADHD rs11171998 HSD17B6 12 57240444 1.04E-04 3.63E-02 Novel   
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58 PUT rs113247976 KIF5A 12 57975700 1.17E-05 2.45E-02 rs113247976 rs117027576 

rs118082508 

rs116900480 

 

rs142321490 

 [53] 

 [7] 

59 BIP rs144387708 LOC144742 

(HSPB8, 

HSP22) 

12 119702200 4.58E-06 3.27E-02 Novel rs104894345 

rs104894351 
 

60 CBD rs1578303 HTR2A 13 47963146 9.55E-05 3.63E-02 rs1578303   [8] 

61 EXTRA rs10492593 PCDH9 13 67494117 2.73E-05 2.64E-02 Independent rs35892541 

 

rs10492593 

 [54] 

 [8] 

62 SCZ rs6420358 SLITRK1 13 85289468 5.84E-05 3.35E-02 Novel   

63 SWB rs17446243 TTL/TEL 13 40748931 1.17E-05 3.41E-03 rs17446243   [8] 

64 ADHD rs447614 G2E3 

KIAA0917 

14 31080799 1.97E-05 5.47E-03 rs10139154 rs179552  [5] 

 [43] 

 [7] 

65 PD rs12886280 NUBPL 14 32298659 3.31E-06 2.18E-02 rs12886280   [8] 

66 MENOPAUSE rs2381030 BTBD1 15 83741876 2.35E-05 1.64E-02 rs6603044   [8] 

67 PROSTATE rs1877240 FSD2 15 83438878 1.04E-05 4.37E-02 Novel   
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68 CHRONOTYPE rs3098553 GABRG3 15 27876256 2.85E-05 3.82E-02 rs3097439   [7] 

69 VNR rs7193729 A2BP1 16 7145869 1.19E-04 4.76E-02 Independent rs1551960  [55] 

70 ADHD rs56024498 AK057218 16 76927135 8.24E-05 3.46E-02 Novel   

71 ICV rs62068675 CPNE7 16 89648291 1.51E-04 4.81E-02 Independent rs74213330  [45] 

72 AGREE rs192688752 PKD1L2 16 81152628 2.43E-05 3.63E-02 Novel   

73 VNR rs9903355 GGNBP2 

DHRS11 

PIGW 

17 34937221 4.93E-06 1.99E-03 rs2285642   [8] 

74 CAD rs35714695 KIAA0524 

(SARM1) 
17 26719788 1.16E-08 5.75E-06 rs739439 

rs35714695 
  [8] 

 [5] 

 [7] 

75 SCZ rs2240601 MSI2 17 55751112 4.82E-05 2.89E-02 rs2240601   [8] 

76 PSP rs7224296 NSF 17 44800046 5.78E-04 4.94E-02 rs7224296   [8] 

77 ASD rs9894834 NTN1 17 9129028 8.16E-05 2.83E-02 Novel   

78 HDL rs11652752 PITPNC1 17 65375892 7.01E-05 2.93E-02 rs11652752   [56] 

(chr17:65373923- 

65689644) 
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79 ALC rs7209200 ZFP3 17 4969940 6.44E-05 3.75E-02 Novel   

80 HV rs17187386 DOK6 18 67196957 6.19E-05 2.76E-02 Novel   

81 BREAST rs12967284 SPIRE1 18 12532098 1.62E-05 3.31E-02 Novel   

82 OPEN rs112183647 GIPC1 19 14612725 2.25E-05 4.26E-02 Novel   

83 BPD rs7258235 GNG7 19 2612118 1.38E-05 2.70E-02 Novel   

84 FTD rs12608932 UNC13A 19 17752689 1.91E-08 1.28E-06 rs78549703 

rs12608932 
  [8] 

 [5] 

85 PD rs6015322 APCDD1L 20 57206540 6.30E-05 4.09E-02 rs6015322   [7] 

86 FTD rs2425220 DLGAP4 20 34999440 1.30E-04 3.06E-02 rs2425220   [8] 

87 NEUR rs9653747 BC028044 21 20041418 4.34E-06 4.33E-03 Novel   

88 VNR rs75087725 C21ORF2 21 45753117 7.52E-11 1.65E-07 rs75087725   [5] 

89 AGREE rs2176039 NUP50 22 45585032 8.98E-05 3.82E-02 rs2176039   [7] 
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