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Abstract
The genetic basis of sporadic amyotrophic lateral sclerosis (ALS) is not well understood. Using
large genome-wide association studies and validated tools to quantify genetic overlap, we
systematically identified single nucleotide polymorphisms (SNPs) associated with ALS
conditional on genetic data from 65 different traits and diseases from >3 million people. We
found strong genetic enrichment between ALS and a number of disparate traits including
frontotemporal dementia, coronary artery disease, C-reactive protein, celiac disease and memory
function. Beyond C9ORF72, we detected novel genetic signal within numerous loci including
GIPC1, ELMO1 and COL16A and confirmed previously reported variants, such as ATXN2,
KIF5A, UNC13A and MOBP. We found that ALS variants form a small-world co-expression
network characterized by highly inter-connected ‘hub’ genes. This network clustered into smaller
sub-networks, each associated with a unique function. Altered gene expression of several sub-
networks and hubs was over-represented in neuropathological samples from ALS patients and
SOD1 G93A mice. Our collective findings indicate that the genetic architecture of ALS can be
partitioned into distinct components where some genes are highly important for developing
disease. These findings have implications for stratification and enrichment strategies for ALS

clinical trials.
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Introduction

Sporadic amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease
characterized by progressive muscle paralysis from selective loss of upper and lower motor
neurons. Spreading rapidly, ALS can lead to respiratory failure and death in 3-5 years®. Given
the paucity of disease modifying treatments, elucidating the genetic basis of ALS can delineate
putative pharmacological targets and highlight molecular mechanisms underlying disease.
Importantly, refining the genetic landscape of ALS can inform cohort stratification and
enrichment strategies for clinical trials.

ALS is increasingly recognized as a complex disorder with an incompletely understood
genetic architecture. Prior work suggests that sporadic ALS is genetically characterized by a few
rare variants, each explaining a substantial portion of the inherited risk (oligogenic)?*. However,
more recent evidence indicates that low-risk, common variants underlie ALS (polygenic) °.
Importantly, several ALS-associated variants have been implicated in other diseases suggesting
genetic pleiotropy®2. Furthermore, it is not known whether certain ALS genes are more
important than others for influencing disease etiology.

Here, our goal was to elucidate the genetic architecture of ALS by leveraging statistical
power from large GWAS from 65 distinct traits and diseases. Using these methods, we have
discovered novel genetic risk loci and shown abundant genetic pleiotropy between several
neurodegenerative diseases including ALS, FTD, progressive supranuclear palsy (PSP),

corticobasal degeneration (CBD), Parkinson’s disease (PD), and Alzheimer’s disease (AD) 812,
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Results
Selective shared genetic risk between ALS and 65 distinct traits

Using previously published stratified FDR methods (see Methods), we assessed genetic
overlap between ALS and 65 distinct traits and diseases. We identified genetic enrichment in
ALS SNPs across different levels of significance with 65 distinct traits and diseases (Fig. 1).
Consistent with prior work®, we found that the highest level of pleiotropic enrichment was
between ALS and FTD (700-fold enrichment). Surprisingly, we also found robust genetic
enrichment in ALS SNPs as a function of coronary artery disease (CAD; 300-fold enrichment),
memory (225-fold enrichment), C-reactive protein (CRP; 50-fold enrichment), and PSP (50-fold
enrichment). We found weaker genetic enrichment with celiac disease (CeD), CBD, body mass
index (BMI), rheumatoid arthritis (RA), schizophrenia (SCZ), verbal numeric reasoning (VNR),
and putamen volume (PUT). We found no enrichment between ALS and the other phenotypes.
We note that these analyses reflect genetic enrichment after removing all SNPs within
chromosome 9.

To identify novel ALS risk loci, we used a stratified approach. First, we computed
conditional FDR, a statistical framework that is well suited for gene detection®*3, Conditional
FDR analysis at a FDR p-value < 0.05 revealed 180 SNPs across 21 chromosomes (Fig. 2,
Supplementary Table 1). Next, we performed extensive LD analyses to identify the variants
underlying the genetic signals (see Supplemental Information). After accounting for LD, we
identified 89 risk loci and annotated each ALS risk SNP with the closest gene(s), resulting in a
total of 92 closest genes (Fig. 2, Table 1). Of these, 30 SNPs were either previously reported or
were in LD with a previously reported SNP (Table 1, Supplementary Fig. 1). An additional 59

SNPs were novel or were not in LD with SNPs within previously reported loci (Table 1,
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Supplementary Fig. 1). We found independent hits from SNPs previously reported within
CRIM1, NAF1, TNIPI, PARKIN, ELP3, MRSA, C90RF72, PCDH9, A2BP1, and CPNE7 (Table
1).

To determine whether the ALS risk genes were associated with a single trait or multiple
traits, we plotted the minimum conditional FDR associated with all traits and closest genes. As
shown in Supplementary Fig. 2, across all 65 traits and diseases, we found that the ALS risk
variants are associated with multiple traits and diseases. Genetic variants within C9ORF72 were
identified on 46 traits. Genetic variants within KIAA0524 (also known as SARM1) were
identified on 64 traits, UNC13A on 62 traits, MOB3B on 58 traits, TBK1 on 34 traits, and CAT
and C210RF2 on 27 traits.

These findings suggest that ALS has a polygenic component where several genes
potentially contribute to disease risk. Genetic pleiotropy with traits like FTD and CAD can be
leveraged for ALS gene detection. Importantly, there are several ALS susceptibility loci that are

also associated with numerous other traits and diseases.

cis-eQTL expression

To determine the functional effects of the ALS pleiotropic risk SNPs, we evaluated cis-
expression quantitative loci (cis-eQTL) in human brains free of neuropathology (Supplementary
Table 2). In total, the ALS risk SNPs produced significant cis-eQTLs (below 1.5 x 10-%) within
41 genes. Of these, SNPs within SMARCA2, GGNBP2, NUP50, and TNIP1 showed overlapping
annotation between the eQTL and the closest genes. Thirteen SNPs showed significant cis-

eQTLs with multiple genes.
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Biological networks associated with ALS genetic risk genes

Using GeneMANIA (www.genemania.org), an online web-portal for bioinformatic
assessment of gene networks'4, we conducted a network analysis to explore the interaction and
co-expression patterns associated with the ALS risk genes defined as the combination of the 1)
closest genes to the SNP and 2) functional genes (i.e., SNPs with significant cis-eQTLs). We
found that a large number of these genes showed physical protein-protein interactions (42.93%),
were co-expressed (29.33%), and showed genetic interactions (13.28%) (Fig. 3). Few ALS
genetic risk genes shared pathways (9.36%), were co-localized (2.60%), or predicted functional

interactions between genes based on orthology (2.50%) (Supplementary Table 3).

Properties of the ALS biological networks

We assessed the network structure of the physical protein-protein interaction network, co-
expression network, and genetic interactions network. Specifically, we asked whether some
genes play a more influential role than others. Most complex networks have a small-world
property characterized by relatively short paths between any pair of nodes (genes) °. In small-
world networks, perturbing any given node is thought to also perturb neighboring nodes and the
entire network in general. Quantitatively, a network is considered small-world if its “small-
worldness” index is higher than one (a stricter rule is small-worldness >=3)€. Further, the
clustering coefficient for the target small-world network should be higher than the clustering
coefficient of a comparable random network. Also, the average shortest path length of the target
network should be similar or higher (but not substantially higher) than a comparable random

network.
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First, we evaluated the degree to which each network assumed a small-work network
structure. The co-expression interaction network consisted of 95 nodes and 132 edges, had a
small-world index of 6.06, a diameter of 13, and average shortest path length of 5.12. The
clustering coefficient was 0.102, which is higher than the clustering coefficient of a random
graph with the same number of indices (0.031). The physical protein-protein interaction network
consisted of 85 nodes and 41 edges, had a small-world index of 4.43, a diameter of 5, and
average shortest path length of 82.03. The clustering coefficient was 0.326, which is also higher
than the clustering coefficient of a random network with the same number of indices (0.06).
Lastly, the genetic interaction network consists of 98 nodes and 472 edges, had a low small-
world network index of 1.11, a diameter of 5, and average shortest path length of 2.33. The
clustering coefficient for this network (0.197) was similar to the clustering coefficient of a
random network with the same number of indices (0.192). Of the three networks, the co-
expression network showed robust small-world network properties - the physical protein-protein
interactions network had a substantially large shortest path length and the genetic-interactions
network clustering coefficient did not differ from random. Therefore, in subsequent network
analysis we focused on the co-expression network.

To further assess the structure of the co-expression network, we evaluated various
network centrality measures, including degree centrality, eigenvector centrality, and edge-
betweenness centrality. Centrality network measures define how important each node is within a
given network. The degree centrality is the number of edges connected to a node. Eigenvector
centrality is the extent to which a node is connected to other highly influential “hub” nodes.
Edge-betweenness centrality is the extent to which a node lies on the shortest path between other

nodes (see Methods). Fig. 4a shows the co-expression network. The size of each node is defined
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by its eigenvector centrality (EC) value. Genes with a high EC and high degree centrality can be
characterized as hubs'>6, Within the co-expression network, genes with high degree centrality
(Supplementary Fig. 3) and high EC (Supplementary Fig. 4) were GIPC1 (n=8, EC=1.00),
ELMO1 (n=6, EC = 0.994), UGCG (n=7, EC = 0.978), SMARCA2 (n=6, EC = 0.924), ATXN2
(n=6, EC = 0.765), and SETD2 (n=6, EC = 0.729). In addition to these, DOCK2 (n=5, EC =
0.809), KIAA0917/SCFD1 (n=5, EC = 0.752), HTR2A (n=4, EC = 0.695), and COL16A1 (n=5,
EC = 0.645) were also highly influential based on EC values.

Next, we explored whether the co-expression network could be partitioned into
potentially meaningful subnetworks (Fig. 4a,b). The network was partitioned into subnetworks
by removing edges with high edge-betweenness centrality (see Methods). The result was a
hierarchical map, called a dendrogram (Fig. 4b). We identified a total of 8 clusters. Five clusters
contained the most influential hub genes. The yellow cluster contained 5 hub genes (HTR2A,
GIPC1, SMARCA2, ELMO1, and DOCK?2). The purple cluster contained two hub genes (UGCG
and SETD?2), and the teal, orange, and red clusters contained a single hub gene (COL16A1,
ATXNZ2, KIAA0917, respectively).

Collectively, these findings suggest that ALS genes that are co-expressed form networks
with small-world properties and can be further partitioned into different clusters. Importantly,
specific genes, such as GIPC1 and ATXN2, act like hubs, characterized by a high degree of

connectivity with other genes; perturbing these hub genes may disrupt the entire network.

Biological pathways associated with ALS risk genes within co-expression network
We used bioinformatics approaches to identify distinct and common biological pathways

associated with the 8 subnetworks within the ALS co-expression network (see Methods). The top
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5 functional annotations for each subnetwork are shown in Fig. 5a. The blue subnetwork was
enriched for developmental processes, including neuron projection development and regulation
of cell growth. The gray subnetwork was enriched for apoptotic signaling pathway, cell death,
and protein phosphorylation. The green subnetwork was enriched for cell-cell signaling,
response to external stimuli, and metabolic processes. The purple cluster was enriched for
vascular morphology and angiogenesis. The orange, red, teal, and yellow subnetworks were
enriched for vesicle-mediated processes. Lastly, the orange and red networks were also enriched
for organelle membrane fusion and disassembly processes, and the teal subnetwork was also
enriched for oxidative reduction and androgen metabolic processes.

Further, we explored whether genes within the distinct subnetworks were selectively
enriched for neuron-specific biological, chemical, or molecular processes. As shown in Fig. 5b,
the blue, green, teal, and yellow subnetworks were selectively enriched for neuronal processes,
particularly involved in neuron differentiation, projection, guidance, and development. We also
found that several hub genes within the yellow subnetwork (GIPC1, SMARC2, HTR2A) were
over-represented in these processes (Supplementary Fig. 5). Taken together, these findings
highlight that the ALS co-expression subnetworks are involved in distinct and overlapping

biological pathways.

Differential expression of ALS risk genes in tissue from ALS patients and SOD1 G93A
transgenic mice

We investigated whether particular clusters or hub genes were enriched in pathological
samples from ALS patients. To do this, we assessed the differential expression of genes within

the ALS co-expression network in the gray matter of motor neurons isolated from spinal cords of
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patients with familial and sporadic ALS and controls (Fig. 6a, see Methods). We found that 2
genes within the teal subnetwork (COL16A1 and GPX3) and one gene within the purple
subnetwork (UGCG) were differentially expressed in tissue from controls compared to familial
ALS patients. COL16A1 was also differentially expressed in tissue from controls compared to
sporadic ALS patients. Importantly, COL16A1 and UGCG are hub genes.

To validate the genes identified in ALS human tissue, we evaluated expression data from
a well-characterized mouse model'’. The RNA expression data were analyzed in non-transgenic
SOD1 WT and SOD1 G93A mice at 75 and 110 days (GEO accession number GSE4390).
Differential expression of UGCG was independently replicated in the SOD1 G93A mice (Fig.
6b). Additionally, we found that TBK1 within the purple cluster, NDSTI and WIPI2 within the
orange cluster, and KIF5A within the green cluster were enriched in SOD1 G93A mice (Fig. 6b).

Discussion

We sought to elucidate the genetic basis of sporadic ALS. By exploiting statistical power
from several large GWAS of >3 million people, we identified novel susceptibility loci, each
associated with a small increase in ALS risk. We found that ALS variants form a small-world co-
expression network characterized by highly inter-connected ‘hub’ genes. This network clustered
into smaller sub-networks, each with a unique function. Altered gene expression of several sub-
networks and hubs was over-represented in neuropathological samples from ALS patients and
SOD1 G93A mice. Our collective findings indicate that the genetic architecture of ALS can be
partitioned into distinct components where some genes are highly important for developing
disease.

We found that ALS has a robust polygenic component. By leveraging genetic studies

from 65 different traits and diseases, we identified 89 ALS risk loci across 21 chromosomes of
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which 59 are novel. Beyond C90ORF72, our pleiotropy analyses detected novel genetic signal
within numerous loci including GIPC1, ELMO1 and COL16A and confirmed previously reported
variants, such as ATXN2, KIF5A, UNC13A and MOBP #%. Neither as polygenic as
schizophrenia'® or Alzheimer's disease®® nor purely oligogenic?, it is likely that the genetic
architecture of ALS is a continuum of common low-risk variants and rare high-risk variants.
Although each of the ALS susceptibility loci we detected was associated with a small effect,
when aggregated together into a polygenic score they may explain a substantial portion of the
inherited risk underlying ALS?.

We found genetic pleiotropy between ALS and a number of diseases and traits. In line
with previous reports, we show strong genetic enrichment in ALS conditional on FTD and
PSP&2122 Building on prior work showing a relationship between inflammation/immune
dysfunction and motor neuron disease?*-?%, we found enrichment in ALS SNPs as a function of
CRP and celiac disease. Surprisingly, we also identified strong genetic overlap between ALS and
CAD, and memory function. Clinically, these findings suggest that a subset of ALS patients are
at elevated genetic risk for FTD whereas another (potentially overlapping) group of ALS
individuals may be at high risk for CAD or immune dysfunction. Therefore, development of
multiple pathway specific polygenic scores may identify individuals at risk for developing ALS
who are ‘enriched’ for FTD, cardiovascular or immune mediated processes.

Our findings inform cohort stratification and enrichment strategies for ALS clinical trials.
We found that the ALS pleiotropic and functional risk genes form a small-world co-expression
network. This network can be partitioned into 8 subnetworks, each enriched for distinct
biological pathways. Similar to previous research, we found functional enrichment of ALS risk

genes for oxidative-mediated (teal subnetwork), neuronal (teal, blue, yellow, and green
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subnetworks), and endoplasmic reticulum processes (orange subnetwork)?%27. Additionally,
genes within the blue subnetwork were enriched for developmental and growth pathways while
genes within the gray subnetwork were enriched for cell-death and apoptotic processes. Altered
gene expression within the teal subnetwork was over-represented in postmortem spinal cord
samples from familial and sporadic ALS patients, whereas abnormal expression of genes in the
orange and purple clusters was present in SOD1 G93A mice. Clinically, these results suggest that
partitioning genetic susceptibility may help identify individuals who have a higher likelihood of
responding to therapies with a specific mechanism of action and support including DNA
collection and sequencing in ALS clinical trials. For example, ALS patients who are enriched for
genetic abnormalities within the teal subnetwork may respond to therapies targeting oxidation
reduction or steroid catabolism (Fig. 5). On the other hand, vascular treatments may be effective
in ALS individuals with an overabundance of altered purple cluster genes (Fig. 5).

Not all ALS genes are created equal. We show that particular genes within the ALS co-
expression network are characteristic of hubs. Playing a central role within a biological system,
perturbation of a hub can cause rapid degeneration of the whole network?®, We found that these
hub genes were key drivers of biological enrichment. Specifically, HTR2A, SMARCA2, and
GIPC1 were enriched for neuronal processes (Supplementary Fig. 5), and ELMO1 and DOCK2
were enriched for vesicle-mediated transport (Supplementary Fig. 6). Therapeutically targeting
hub genes may be most effective for altering an entire biological pathway. However, given
abundant pleiotropy with other traits (Supplementary Fig. 2), comprehensive biological and
experimental evaluation of the entire network of a hub gene will be necessary prior to therapeutic

evaluation.
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This study should be interpreted within the context of its limitations. First, the ALS
GWAS used contained people predominantly of European descent, while the other GWAS
included people of both European and non-European descent. Therefore, these results may not be
generalizable to ALS patients from other populations. Second, like most GWAS, a major
limitation of our study is that we could not determine with certainty the causal genes underlying
our genetic signal. Although we performed extensive LD and cis-eQTL analyses and included
the combination of closest and functional genes in our network analyses, it is likely that genetic
fine mapping and experimental approaches, such as CRISPR/Cas9 gene editing, will be needed
to isolate the causal variants. Finally, given evidence that a substantial proportion of coronary
disease is associated with inflammation?®, future work should evaluate whether CAD influences
ALS risk through inflammation or other mediator variables.

In summary, we show that the genetic architecture of ALS has a robust polygenic
component that can be partitioned into distinct subnetworks, each enriched for divergent
biological pathways. We also identify several hub genes that may be key drivers of ALS
pathobiology. Our findings are compatible with the hypothesis that ALS is a multi-step, non-
uniform disease process. These results have implications for cohort stratification and enrichment

strategies for ALS clinical trials.

Methods
Participant samples
We conducted a meta-analysis of summary data obtained from published data. We
evaluated complete GWAS results in the form of summary statistics (p-values and odds ratios)

for ALS and 65 distinct traits and diseases (see Supplementary Table 4). We obtained ALS
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GWAS summary statistic data from 12,577 ALS cases and 23,475 controls at 18,741,501 SNPs
(see Supplementary Table 4 for additional details). The ALS GWAS summary statistics and
sequenced variants are publicly available through the Project MinE data browser:

http://databrowser.projectmine.com. We also obtained GWAS summary statistic data for the 65

distinct traits and diseases (for additional details, please see Supplementary Table 4). The
relevant institutional review boards or ethics committees approved the research protocol of the
individual GWASs used in the current analysis, and all participants gave written informed

consent.

Genetic Enrichment Statistical Analyses

The pleiotropic enrichment strategies implemented here were derived from previously
published stratified FDR methods!3%0, For given phenotypes A and B, pleiotropic ‘enrichment’
of phenotype A with phenotype B exists if the proportion of SNPs or genes associated with
phenotype A increases as a function of increased association with phenotype B. To assess for
enrichment, we constructed fold-enrichment plots of nominal —logio(p) values for all ALS SNPs
and for subsets of SNPs determined by the significance of their association with the 65 distinct
traits and diseases. In fold-enrichment plots, the presence of enrichment is reflected as an upward
deflection of the curve for phenotype A with increasing strength of association with phenotype
B. To assess for polygenic effects below the standard GWAS significance threshold, we focused
the fold-enrichment plots on SNPs with nominal —logzo(p) < 7.3 (corresponding to p > 5x1078).
The enrichment seen can be directly interpreted in terms of true discovery rate (TDR = 1 — False
Discovery Rate (FDR)). Given prior evidence that several genetic variants within chromosome 9

are associated with increased ALS risk, one concern is that random pruning may not sufficiently

14


https://doi.org/10.1101/505693
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/505693; this version posted February 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

account for these large LD blocks, resulting in artificially inflated genetic enrichment®?. To better
account for these large LD blocks, in our genetic enrichment analyses, we removed all SNPs

within chromosome 9.

To identify novel ALS risk loci as a function of genetic variants associated with the 65
traits and diseases, we computed conditional FDRs'3%, a statistical framework that is well suited
for gene detection. The standard FDR framework is based on Bayesian statistics and follows the
assumption that SNPs are either associated with the phenotype (non-null) or are not associated
with the phenotype (null SNPs). Within a Bayesian statistical framework, the FDR is then the
posterior probability of the SNP being null given its p-value is as small as or smaller than the
observed one. The conditional FDR is an extension of the standard FDR, which incorporates
information from GWAS summary statistics of a second phenotype to adjust its significance
level. The conditional FDR is defined as the probability that a SNP is null in the first phenotype
given that the p-values in the first and second phenotypes are as small as or smaller than the
observed ones. Ranking SNPs by the standard FDR or by p-values gives the same ordering of
SNPs. In contrast, if the primary and secondary phenotypes are related genetically, the
conditional FDR reorders SNPs and results in a different ranking than that based on p-values
alone. We used an overall FDR threshold of p < .05 to indicate statistical significance, meaning 5
expected false discoveries per 100 reported. In addition, we constructed Manhattan plots based
on the ranking of the conditional FDR to illustrate the genomic location. In all analyses, we
controlled for the effects of genomic inflation. Detailed information on the conditional FDR can

be found in prior reports®<°,
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Functional evaluation of shared risk loci

To assess whether the SNPs associated with ALS and the 65 traits and diseases modify
gene expression, we identified cis-expression quantitative loci (eQTLs, defined as variants
within 1 Mb of a gene's transcription start site) associated with the identified ALS pleiotropic
SNPs and measured their regional brain expression in a publicly available dataset of normal

control brains (UK Brain Expression Consortium, http://braineac.org/)3t. To minimize multiple

comparisons, we analyzed cis-eQTL for the mean p-value obtained from the following brain
regions: the cerebellum, frontal cortex, hippocampus, medulla, occipital cortex, putamen,
substantia nigra, temporal cortex, thalamus, and white matter. To minimize false positives, we

applied a Bonferroni-corrected p-value of 1.5 x 103,

Biological networks associated with ALS genetic risk genes

To evaluate potential protein and genetic interactions, co-expression, co-localization, and
protein domain similarity for the combined pleiotropic (i.e. closest genes from the pleiotropy
analyses) and functionally expressed ALS genes (i.e., with significant cis-eQTLS), we used

GeneMANIA (www.genemania.org), an online web-portal for bioinformatic assessment of gene

networks!4. To visualize the composite gene network, we also assessed the weights of individual
components within the network32. Further, we evaluated whether the biological networks fell into
the class of a small-world network using several diagnostic criteria. First, we computed the
“small-worldness” index, using the R package ‘qgraph’. The function computes the global
transitivity of the target network and its average shortest path length!33, It then computes the
same indices on 1000 random networks. The small-worldness index is then equal to the

transitivity of the target network (normalized by the random transitivity) over the average
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shortest path of the target network (normalized by the random average shortest path length). A
network was considered small-world if the “small-worldness” index was >= 3; 1. In addition to
the small-worldness index, we inspected whether the network had a transitivity substantially
higher than comparable random networks and that its average shortest path length was similar or
higher (but not substantially higher) than that computed on random networks.

Further, to determine whether some genes play a more influential role than others, we
evaluated various network centrality measures, including degree centrality, eigenvector
centrality, and edge-betweenness centrality. We used the R package ‘igraph’ for all network
centrality analysis and visualization3*. The degree of a node corresponds to the sum of its
adjacent edges (i.e., connections). The eigenvector centrality of a node corresponds to the values
of the first eigenvector of the graph adjacency matrix. In general, nodes with high eigenvector
centralities are also connected to many other nodes which are, in turn, connected to many other
nodes. Consequently, eigenvector centrality corresponds to the degree to which a node is
connected to other highly influential nodes. Lastly, we partitioned the co-expression network, in
particular, into subnetworks based on edge-betweenness centrality. Edge-betweenness centrality
is defined by the number of shortest-paths going through an edge. Here, a subnetwork is
analogous to modules within a network. Nodes within a module are densely connected to
themselves (e.g., cluster) but sparsely connected to other modules. To create modules, we
gradually remove the edge with the highest edge-betweenness score, since all the shortest paths
from one module to another typically pass through them. The result is a hierarchical map, called
a dendrogram. The leaves of the tree are the individual nodes and the root of the tree represents

the whole graph.

17


https://doi.org/10.1101/505693
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/505693; this version posted February 24, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Lastly, to evaluate biological pathways of the ALS pleiotropic genes (i.e. closest genes
from the pleiotropy analyses) and functionally expressed ALS genes (i.e., with significant cis-
eQTLs), we used FUMA (http://fuma.ctglab.nl/), a web-based platform that integrates
information from multiple biological resources to facilitate functional annotation of GWAS

results®.

Gene expression alterations in tissue from ALS patients and SOD1 G93A transgenic mice

To determine whether the ALS genetic risk genes were differentially expressed in tissue
from patients with ALS, we analyzed the gene expression of the target genes from postmortem
spinal cord gray matter from 11 individuals (2 patients with familial ALS, 5 patients with
sporadic ALS, and 4 controls; Gene Expression Omnibus [GEO] accession number GDS412%).
Details about this dataset and analysis—including the human brain samples used, RNA extraction
and hybridization methods, microarray quality control, and microarray data analysis— are
described in the original manuscript®. To validate the genes identified in ALS human tissue, we
also analyzed RNA expression data in non-transgenic SOD1 WT (n=2) and SOD1 G93A (n=2)
mice at 75 and 110 days (GEO accession number GSE4390). SOD1 G93A mice are pre-

symptomatic at 75 days and exhibit hindlimb paralysis at 110 days"*'.

Code availability

Code and scripts available by request from authors.

Data availability
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Summary statistics from secondary GWAS of single disorders and traits are available upon
request from the corresponding author. Cis-eqtl data from the UK Brain Expression Consortium
are publicly available (http://braineac.org/). Findings from biological networks were obtained

using GeneMANIA (www.genemania.org), an online web-portal for bioinformatic assessment of

gene networks. Biological pathways were evaluated using FUMA (http://fuma.ctglab.nl/), a web-
based platform that integrates information from multiple biological resources to facilitate
functional annotation of GWAS results. Expression data from sporadic and familial ALS patients
and controls postmortem spinal cord gray matter are available in GEO with the accession number
GDS412. RNA expression data in non-transgenic SOD1 WT and SOD1 G93A mice at 75 and

110 days are also available in GEO with the accession number GSE4390.
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Fig. 1: Fold enrichment plots of enrichment versus nominal -logio p-values (corrected for

inflation) in Amyotrophic lateral sclerosis (ALS). Fold enrichment plots of enrichment versus

nominal -logio p-values (corrected for inflation) in ALS below the standard GWAS threshold of

p-value < 5x10°8 as a function of significance of association with 65 distinct traits and diseases

and at the level of p-value < 1, p-value < 0.1, p-value < 0.01, respectively. Blue line indicates all

SNPs.
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Fig. 2: ‘Conditional’ Manhattan plot of conditional —logio (FDR) values for Amyotrophic
lateral sclerosis (ALS) as a function of 65 distinct traits and diseases. SNPs with conditional
—logi0 FDR > 1.3 (i.e. FDR < 0.05) are shown with large points. A black line around the large
points indicates the most significant SNP in each LD block and this SNP was annotated with the

closest gene, which is listed above the symbols in each locus.
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Fig. 3: Network interaction graph illustrating genetic interactions, physical interactions,

and co-expression patterns associated with the ALS risk genes.
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Fig. 4: Co-expression interaction network plot and dendrogram. a, Co-expression interaction
network plot. Each node represents a single gene and the edges (lines between genes) represent
co-expression interactions between genes. The size of each node corresponds to the eigenvector
centrality score for that gene. The color of each node represents membership to a distinct
subnetwork. b, Co-expression interaction dendrogram plot. The co-expression network was
partitioned into 8 subnetworks by removing edges with high edge-betweenness centrality. Hub

genes are annotated in brown and marked by a large point.
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Fig. 5: Biological pathways associated with the ALS co-expression subnetworks. a,
Biological pathways associated with each subnetwork of the ALS co-expression network

classified using FUMA (http://fuma.ctglab.nl/). b, Neuron-specific biological pathways

associated with each subnetwork also classified using FUMA.
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Fig. 6: Differential expression of ALS risk genes in diseased tissue. a, Differential expression
of ALS risk genes in tissues of patients with ALS. b, Differential expression of ALS risk genes

in SOD1 G93A transgenic mouse.
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Table 1

. . . Previously
Disease/Trait Pleiotropic Closest Chr  Position ALS Min Reported O_thgr SNPs Citation
SNP Gene p-value CondFDR . within Gene
SNPs in LD
1 VNR rs10914464 COL16A1 1 32132319  1.26E-04  4.54E-02 Novel
2 HV rs10443173  COL24A1 1 86533754  8.20E-06  8.11E-03 Novel
3 PSP rs2068667 NFASC 1 204917680 3.39E-04  3.16E-02 rs2068667 [8]
4 FTD rs515342 ASB1 2 239367296 6.22E-04  3.71E-02 rs515342 [8]
5 ADHD rs896444 BC038566 2 106241808 1.32E-04  3.89E-02 Novel
(NCK2)

6 TC rs6737916 BIRC6 2 32597985  2.82E-05  2.81E-02 Novel
7 NEUR rs181357866 CRIM1 2 35863487  3.10E-05  1.92E-02 Independent  rs139895660 [38]
8 T2D rs13387347  G6PC2 2 169754846 2.95E-05  3.52E-02 Novel
9 BMI rs7602576 1L37 2 113699617 6.79E-05  4.80E-02 Novel
10 LUNG rs11695294  LOC375295 2 177473618 5.12E-05  1.62E-02 Novel
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