

1 **Structures of the PKA RI α holoenzyme with the FLHCC driver J-PKA α or wild type**

2 **PKA α**

3 Baohua Cao^{1,†}, Tsan-Wen Lu^{2,†}, Juliana A. Martinez Fiesco^{1,†}, Michael Tomasini⁴, Lixin Fan⁵,

4 Sanford M. Simon⁴, Susan S. Taylor^{2,3} and Ping Zhang^{1,*}

5

6 ¹Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute,
7 Frederick, Maryland, USA

8 ²Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla,
9 California, USA

10 ³Department of Pharmacology, University of California, San Diego, La Jolla, California, USA

11 ⁴Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, USA

12 ⁵Small-Angle X-ray Scattering Core Facility, Center for Cancer Research of the National Cancer
13 Institute, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc.,
14 Frederick, Maryland, USA

15

16 [†]These authors contributed equally to this manuscript.

17 ^{*}To whom correspondence should be addressed. Email: ping.zhang@nih.gov.

18

19

20

21 **Summary**

22 Fibrolamellar hepatocellular carcinoma (FLHCC) is driven by J-PKAc α , a kinase fusion chimera
23 of the J-domain of DnaJB1 with PKAc α , the catalytic subunit of Protein Kinase A (PKA). Here
24 we report the crystal structures of the chimeric fusion RI α_2 :J-PKAc α_2 holoenzyme formed by J-
25 PKAc α and the PKA regulatory (R) subunit RI α , and the wild type (wt) RI α_2 :PKAc α_2
26 holoenzyme. The chimeric and wt RI α holoenzymes have quaternary structures different from
27 the previously solved wt RI β and RII β holoenzymes. The chimeric holoenzyme shows an
28 isoform-specific interface dominated by antiparallel interactions between the N3A-N3A' motifs
29 of RI α that serves as an anchor for RI α structural rearrangements during cAMP activation. The
30 wt RI α holoenzyme showed the same configuration as well as a distinct second conformation. In
31 the structure of the chimeric fusion RI α_2 :J-PKAc α_2 holoenzyme, the presence of the J-domain
32 does not prevent formation of the holoenzymes, and is positioned away from the symmetrical
33 interface between the two RI α :J-PKAc α heterodimers in the holoenzyme. The J-domains have
34 significantly higher temperature factors than the rest of the holoenzyme, implying a large degree
35 of conformational flexibility. Furthermore molecular dynamics simulations were applied to
36 analyze the conformational states of chimeric fusion and wt RI α holoenzymes, and showed an
37 ensemble of conformations in the majority of which the J-domain was dynamic and rotated away
38 from the R:J-PKAc α interface. Thus, rather than affecting the interactions with the regulatory
39 subunits, the fusion of the J-domain to the PKAc α alters the conformational landscape of the
40 chimeric fusion holoenzymes and potentially, as result, the interactions with other molecules.
41 The structural and dynamic features of these holoenzymes enhance our understanding of the
42 fusion chimera protein J-PKAc α that drives FLHCC as well as the isoform specificity of PKA.

43

44 **Introduction**

45 FLHCC is a rare liver cancer that predominantly affects adolescent and young adults with
46 no history of liver disease (Craig et al., 1980; Eggert et al., 2013; Honeyman et al., 2014; Kakar
47 et al., 2005; Lazar and Simon, 2018; Torbenson, 2012) . It does not respond well to
48 chemotherapy and the overall five year survival rate of FLHCC patients is only 30-45% (El-
49 Serag and Davila, 2004; Kakar et al., 2005; Katzenstein et al., 2003; Lim et al., 2014; Mavros et
50 al., 2012; Weeda et al., 2013). The chimeric gene *DNAJB1-PRKACA*, ubiquitously and
51 exclusively found in almost all FLHCC patients, is the result of a ~400 kb deletion in one copy
52 of chromosome 19 (Darcy et al., 2015; Engelholm et al., 2017; Honeyman et al., 2014;
53 Kastenhuber et al., 2017; Oikawa et al., 2015; Riggle et al., 2016a, 2016b; Simon et al., 2015).
54 This produces an enzymatically active chimeric protein J-PKA α . The tumor is driven not by the
55 deletion but by the formation of the J-PKA α fusion protein, and the tumorigenicity of J-PKA α
56 is dependent on its kinase activity (Kastenhuber et al., 2017). The fusion chimera protein has the
57 first 69 residues of the N-terminus of DnaJB1, namely the J-domain, and the C-terminal 336
58 residues of PKA α (Cheung et al., 2015; Honeyman et al., 2014) (Figure 1A). In its inactive state
59 in cells, PKA exists as a holoenzyme composed of two catalytic subunits and one regulatory (R)
60 subunit homodimer (Taylor et al., 2012). Cyclic adenosine monophosphate (cAMP) binding to
61 the R subunits unleashes the PKA α activity. Each R subunit is composed of an N-terminal
62 dimerization/docking (D/D) domain followed by a flexible linker and two tandem highly
63 conserved cyclic nucleotide-binding domains (CNB-A and CNB-B) (Figure 1A). There are four
64 functionally non-redundant R isoforms, RI α , RI β , RII α , and RII β with similar domain
65 organization (Taylor et al., 2012). The engineered R:PKA α heterodimers where one PKA α
66 subunit is bound to a truncated monomeric form of the R subunit all appear to be very similar

67 (Boettcher et al., 2011; Ilouz et al., 2012; Zhang et al., 2012). However, when the two R:PKA α
68 heterodimers, linked to the D/D domain by the flexible linkers are assembled into holoenzymes,
69 each forms a unique symmetry-related interface between the two heterodimers and thus creates
70 isoform-specific quaternary structures, as shown by the solved structures of the RI β and RII β
71 holoenzymes and the RI α holoenzyme model (Boettcher et al., 2011; Ilouz et al., 2012; Zhang et
72 al., 2012) (Figure S1). Among the four R isoforms, RI α can be considered as a master regulator
73 for PKA signaling in mammalian cells. Deletion of RI α , for example, is embryonically lethal in
74 mice and leads to unregulated PKA activity (Amieux et al., 1997). RI α also compensates when
75 other R subunits are depleted or when PKA α is overexpressed (Amieux and McKnight, 2002).
76 It is the only upregulated R isoform in FLHCC cancer cells (Riggle et al., 2016b; Simon et al.,
77 2015). Haploinsufficiency of RI α leads to a wide range of disease states, including Carney
78 Complex (CNC) disease (Linglart et al., 2012; Park et al., 2012; Veugelers et al., 2004) as the
79 other R subunit isoforms cannot compensate(Greene et al., 2008). Interestingly, recent studies
80 (Graham et al., 2017; Terracciano et al., 2004) identified three individual patients with FLHCC
81 and a personal history of CNC disease although the majority of CNC patients have no history of
82 FHLCC.

83 Structural studies of the J-PKA α chimera (Cheung et al., 2015) showed that it has all the
84 structural hallmarks of wt PKA α with the conserved bilobal kinase core shared by all kinase
85 superfamily members. The only structural alteration is the fused J-domain, which replaces the
86 myristylation motif (residues 1-14). In the crystal structure the J-domain is tucked underneath the
87 C-lobe of the conserved kinase core (Cheung et al., 2015). However, in molecular dynamics
88 (MD) simulations and NMR assays the fused J-domain explores a large diffusional space
89 (Tomasini et al., 2018). Though J-PKA α is overexpressed relative to PKA α in FLHCC cells

90 (Honeyman et al., 2014; Simon et al., 2015), overexpression of PKAc α alone is insufficient to
91 recapitulate the oncogenic effect of J-PKAc α (Kastenhuber et al., 2017). Compensatory
92 expression of RI α mRNA and protein were detected in FLHCC tumors while both the mRNA
93 and protein levels of RII β are down-regulated (Riggle et al., 2016b; Simon et al., 2015). J-
94 PKAc α can interact with truncated RI α and RII β to form R:J-PKAc α heterodimers *in vitro*
95 (Cheung et al., 2015), suggesting that both wt PKAc α and the chimeric J-PKAc α can form
96 holoenzymes. To understand how PKA signaling might be disrupted by the FLHCC chimera it is
97 essential to appreciate the architecture of the chimeric and wt holoenzymes as well as knowledge
98 of their dynamics. In this study, we show that the J-PKAc α chimera is inhibited by full-length
99 RI α and capable of forming the canonical holoenzyme with activation still under the control of
100 cAMP. We report the crystal structures of the oncogenic RI α chimeric holoenzyme and the wt
101 holoenzyme at 3.66 Å and 4.75 Å resolution, respectively (Figure S2). To explore whether the
102 addition of the J-domain affects the conformational landscape of each holoenzyme, we
103 furthermore report on MD simulations of the chimeric and wt RI α holoenzymes. We found states
104 where the J-domain of J-PKAc α is able to interact with the C-terminal CNB-B domain of the RI α
105 subunits; however, in the majority of MD states, the J-domain was dynamic and rotated away
106 from the R:PKAc α interface. Altogether, these structural and dynamic descriptions of the driver
107 of FLHCC enhance our understanding the molecular mechanism of this disease as well as our
108 understanding of the dynamic allosteric mechanisms that couple cAMP binding to PKA
109 activation.

110 **Results**

111 **Overall structure of the FLHCC driver RI α_2 :J-PKAc α_2 chimeric fusion holoenzyme**

112 The complex of the full-length RI α and J-PKA α chimera was formed *in vitro* by mixing
113 the individually purified subunits followed by gel filtration (Figure S3). The full-length
114 holoenzyme structure was determined at 3.66 Å resolution (Figures. 1B, S4 and Table 1). Each
115 asymmetric unit (ASU) contains one holoenzyme molecule consisting of an RI α homodimer and
116 two chimeric J-PKA α subunits, thus the chimeric holoenzyme has the same stoichiometry as the
117 previously published wt holoenzymes (Taylor et al., 2012). The presence of the J-domain does
118 not prevent formation of the holoenzymes, and is positioned away from the symmetrical
119 interface between the two RI α :J-PKA α heterodimers in the holoenzyme. The J-domain can be
120 easily accommodated spatially in the holoenzyme complex; there appears to be no steric
121 constraints. The interface between the two heterodimers in the chimeric holoenzyme is strictly
122 two-fold symmetry-related and created solely by the two RI α subunits, which pack against each
123 other in an antiparallel orientation that includes a four-helical bundle involving the N3A motifs
124 of the RI α subunits (Figure 1B). The PKA α part of the chimera is almost identical to the PKI-
125 bound wt PKA α structure (Zheng et al., 1993), with a C α root mean square deviation (RMSD)
126 of 0.42 Å. The only structural alteration is a more linear and extended A-helix fused with the J-
127 domain (Figure S5A). Additionally, J-PKA α in the chimeric holoenzyme is superimposable to
128 the previously reported (Cheung et al., 2015) structure of the PKI-bound chimera with a C α
129 RMSD of 0.39 Å (Figure S5B). The fused J-domain is similarly tucked underneath the C-lobe,
130 and the contact area for the J-domain in the chimera is ~380 Å². The J-domain in the chimeric
131 holoenzyme has significantly higher temperature factors (B factor) than the rest of the
132 holoenzyme, even at this medium resolution, suggesting that it retains a high degree of flexibility
133 in the holoenzyme, similar to its PKI-bound state in solution based on NMR experiments
134 (Tomasini et al., 2018) (Figure 1C and Table S1). The heterodimer in the chimeric holoenzyme

135 is also structurally similar to the previously solved R: PKAc α heterodimers (Figure S5C) (Taylor
136 et al., 2012) , showing the J-domain fusion to the PKAc α does not alter the PKAc α interactions
137 with the RI α subunit.. The J-domains in the holoenzyme locate close to the CNB-B domain of
138 the adjacent RI α subunit, with the shortest C α atoms distance at ~8 Å (Figure 1D). Residues 1-
139 91 of RI α are missing in the electron density although by SDS-PAGE and silver staining, we
140 validated that full-length RI α and J-PKAc α are present in the protein crystal (Figure S3). This
141 absence of electron density for the D/D domain and part of the following N-linker is likely
142 related to the flexible nature of this region (Li et al., 2000).

143 **Highly dynamic J-domains in the chimeric fusion RI α ₂:J-PKAc α ₂ holoenzyme**

144 Small Angle X-ray Scattering (SAXS) results (Figure S6 A-D) are in general consistent
145 with the observed shape of the chimeric holoenzyme in solution. The calculated solution
146 scattering data from the crystal structure fit to the SAXS solution experimental data reasonably
147 well with a χ^2 of 1.44. The chimeric holoenzyme in solution displays larger R_g and D_{max} values
148 (Figure S6D, Table S2) than those calculated for the crystal structure. The dynamic D/D domain
149 with the N-linker regions or the dynamic nature of the J-domain may account for the observed
150 larger dimension of the chimeric RI α holoenzyme in SAXS experiments compared to the crystal
151 structure (Figure S6D).

152 Previous MD simulations of isolated J-PKAc α (Tomasini et al., 2018) identified two
153 representative conformational states (Figure 2A). In the highest occupied state, the J-domain was
154 positioned beneath the C-lobe of the kinase core in a J-in state, which is similar to what we
155 observe in our chimeric holoenzyme structure. A second state showed the J-domain rotated away
156 from the core to form an extended J-out conformation, and this flexibility of the J-domain was
157 confirmed by NMR studies (Tomasini et al., 2018). To probe the possible motions of the J-

158 domain in the chimeric holoenzyme, we performed three 1 μ s MD simulations of the chimeric
159 holoenzyme starting from either the crystal structure, or from a conformation with the J-domain
160 modeled onto the holoenzyme crystal structure in the J-in or J-out state. The simulations from the
161 chimeric crystal structure showed the majority of conformations in an extended J-out state, and
162 far from the RI α subunit (Figure 2B). This is in contrast to the simulation performed with free J-
163 PKAc α (Tomasini et al., 2018), where the J-in state was the highest occupied state. In the
164 simulation started from the J-in state model, the J-domain from one chimera rotated to an
165 extended conformation while that of the other remained in a J-in state (Figure S7A) to form
166 stable interactions with its adjacent R subunit (Figure S7B). The minimum distances between C α
167 atoms in the J-domain to any C α atom in the adjacent RI α subunit over all simulations ranged
168 from 5.1 \AA to 31.2 \AA , emphasizing the flexibility of the J-domain (Figure 2C). In the simulation
169 starting from the J-out state model, the J-domains of both chimeric subunits remained in the J-out
170 state throughout the 1 μ s simulation and did not show any interaction with the R subunits (Figure
171 S8). The calculated data from the three final MD simulation conformations of the chimeric
172 holoenzyme (Figure S9 and Table S2), with one copy or both of the J-domain sampling the “out”
173 state, are generally in agreement with the experimentally obtained SAXS solution data despite
174 the lack of electron density for the D/D domain. The R_g and D_{max} values of these three MD
175 simulation conformations of the chimeric holoenzyme are also closer to the SAXS solution data
176 than that of the crystal structure, suggesting the extended J-out state is a likely conformation of
177 the J-domain in the chimeric holoenzyme in solution.

178 **Isoform-specific interface between the RI α :J-PKAc α heterodimers**

179 The interface between the chimeric heterodimers is solely created by the antiparallel
180 alignment of the CNB-A and CNB-B domains in the RI α dimer, with a contact area of \sim 970 \AA^2

181 (Figure 3A). Wedged against each other from the two-fold symmetry-related RI α subunits are
182 the two CNB-A N3A motifs (Figure S10) which include the α N and α A helices as well as the
183 connecting 3₁₀-loop. A similar N3A-N3A' interface was first reported in the cAMP-bound RI α
184 homodimeric RI α_2 (cAMP)₄ structure (Figure 3B) (Bruystens et al., 2014). Each α A-helix is
185 perpendicular to the opposing α N'-helix, thus creating a rectangular shaped four-helical bundle
186 interface. The RI α -RI α ' interface also contains two identical salt bridge contacts between E179
187 in the RI α CNB-A domain and R315' and R340' in the RI α ' CNB-B' domain (Figure 3A).
188 Similar to the cAMP-bound RI α dimer (Bruystens et al., 2014), the N3A-N3A' helical bundle is
189 mostly hydrophobic, involving residues M123, Y120 and F148 from each N3A motif. These
190 hydrophobic interactions are generally stable throughout the course of the MD simulations. The
191 helical bundle with its two-fold symmetry also includes two identical hydrogen bond networks.
192 Residues Y120 and K121 in the α N-helix form hydrogen bonds with N142', S145' and D149' in
193 the α A'-helix. While not directly involved in interactions at the N3A-N3A' interface, R144 in
194 the α A-helix forms hydrogen bonds with the backbone oxygens of F136 and L139 from the 3₁₀-
195 loop. These hydrogen bonds break during cAMP activation as a consequence of outward motion
196 of the 3₁₀-loop. Mutations of residues R144 and S145 are associated with CNC disease, which
197 creates a holoenzyme that is poorly regulated and more easily activated by cAMP (Park et al.,
198 2012). Substitutions of R144, S145 and N3A interface residues Y120 and F148 caused increased
199 sensitivity for cAMP activation of the corresponding RI α holoenzymes and reduced
200 cooperativity for cAMP binding (Bruystens et al., 2014). The Hill Coefficient for R144S and
201 S145G were reduced to 1.4-1.5 while the Hill Coefficient was 1.0-1.1 for the Y120A and F148A
202 mutants. The N3A-N3A' helical bundle was also seen in truncated RI α monomer structures as an
203 interaction site for crystal packing (Badireddy et al., 2011; Wu et al., 2004a, 2004b). However,

204 this interface is not observed in any structures associated with RII α or RII β . Sequence alignment
205 also shows that RII subunits lack most of the key residues involved in forming the N3A-N3A'
206 interface (Figure 3A), emphasizing again that the N3A-N3A' four-helical bundle is isoform-
207 specific.

208 The overall structure of the N3A-N3A' helical bundle is also conserved in the cAMP-bound
209 RI α homodimer (Figure 3B). Thus, the N3A-N3A' bundle likely serves as a structural anchor
210 and contributes to the activation of the holoenzyme by cAMP activation and the following
211 dissociation of R and C subunits. By contrast, the extended α B/C-helix that connects the CNB-A
212 and CNB-B domains in the holoenzyme adopts a bent configuration in the cAMP-bound RI α
213 homodimer with the CNB-B domain rotated dramatically to a position underneath the relatively
214 stable CNB-A domain (Figure 3B). Moreover, the R315'-E179-R340' salt bridge interactions
215 observed in the holoenzyme (Figure 3A) between the RI α dimer become broken in the cAMP-
216 bound RI α homodimer.

217 **Overall structure of wt RI α :PKA α ₂ demonstrates two distinct holoenzyme conformations**

218 To determine if the structure of the chimeric holoenzyme is unique to the fusion chimera
219 protein, the wt RI α holoenzyme was formed *in vitro* by mixing the individually purified subunits
220 followed by gel filtration, and its structure was determined at 4.75 Å resolution. It required
221 different crystallization conditions (Figure 4 and Table 1) and has a distinct space group
222 (P2₁2₁2₁) compared to the chimeric RI α ₂:J-PKA α ₂ holoenzyme and the previously solved
223 structures of the wt tetrameric RI β ₂:PKA α ₂ or RII β :PKA α ₂ holoenzymes (Ilouz et al., Zhang et
224 al., 2012). Each ASU contains four RI α :PKA α heterodimers. The presence of full-length
225 proteins in the crystals was confirmed by SDS gel analysis and silver staining, as described
226 earlier (Figure S11). Analysis of the crystal packing showed that each ASU has two

227 RI α_2 :PKA α_2 holoenzyme molecules with distinct quaternary structures. While holoenzyme 1
228 has a conformation almost identical to the chimeric holoenzyme (Figures. 4A, S12A and S13A),
229 holoenzyme 2 has a much smaller N3A-N3A' interface with an area of \sim 370 Å² created only by
230 the α N-helices (Figure 4B and S13B) and thus has a conformation distinct from holoenzyme 1.
231 Both of the holoenzyme molecules contain two RI α :PKA α heterodimers with a rotational two-
232 fold symmetry through the N3A-N3A' interface. The heterodimers of RI α :PKA α are almost
233 identical in the two different tetrameric holoenzyme conformations (Figure S12B) with a C α
234 RMSD of 0.26 Å and also resemble the previously published structure of a truncated RI α (91-
235 379):PKA α heterodimer (Figure S12C) with a C α RMSD of 0.86 Å (Kim et al., 2007). Similar
236 to that in the chimeric holoenzyme, in both of the wt conformations, CNB-A is juxtapa-positioned
237 against CNB-B' thus supporting the enhanced allostery that is associated with the RI α_2 :PKA α_2
238 holoenzyme compared to the RI α :PKA α heterodimer (Taylor et al., 2012). RI α competition
239 assay results showed that the chimera and wt PKA α have similar ability for RI α association
240 (Figure 4C). In addition, the chimeric and wt RI α holoenzymes have no significant differences in
241 cAMP activation nor its cooperativity (Figure 4C).

242 The PKA α subunits in holoenzyme 2 become closer to the heterodimer interface and to the
243 symmetry-related RI α subunit than in holoenzyme 1 (Figure S12D). During the MD simulation,
244 PKA α in holoenzyme 2 is capable of interacting further with RI α ' (Figure S12E). MD
245 simulations of each of the two conformations of the wt RI α_2 :PKA α_2 holoenzyme indicates that
246 over the 1 μ s of the simulation they are stable and do not interconvert (Figure S14A). The
247 interfacial area between the RI α dimer in the wt holoenzyme 1 crystal structure resembles that of
248 the chimeric holoenzyme simulations. The contact area in holoenzyme 2 is slightly increased

249 (Figure S14B), which is largely due to a slight rotation of the RI α -RI α' interface during the MD
250 simulation.

251 **Isoform-specific quaternary structures of PKA holoenzymes**

252 The chimeric and wt RI α holoenzymes have quaternary structures different from the
253 previously solved wt RI β and RII β holoenzymes, even though the structures of all PKA
254 heterodimers are remarkably similar (Figure 5). The quaternary structure isoform diversity is
255 essential for each holoenzyme to create a distinct signaling hub that can respond to local levels of
256 second messengers such as cAMP, and allows formation of distinct macromolecular complexes
257 with local substrates and accessory proteins at different cellular sites.

258 The RI α holoenzymes and the view of CNB-B movement in these holoenzymes reported in
259 this study (Figures. 1 and 4) are distinct from the earlier model of the RI α holoenzyme that was
260 based on crystal packing of two truncated RI α (73-244):PKA α heterodimers (Boettcher et al.,
261 2011). The earlier RI α holoenzyme model showed the two R:PKA α heterodimers have cross
262 talks between the CNB-A domain of one R: PKA α dimer with the PKA α' of the other dimer
263 and also allowed the modeled-in CNB-B domain movement. Such mobility of the CNB-B
264 domain is consistent with previously obtained SAXS data of the RI α (91-379):PKA α
265 heterodimer and led to a suggestion that the CNB-B domain of RI α is mobile and moves away
266 from PKA α with Gly235 serving as a hinge point (Cheng et al., 2009). Recent studies have
267 shown that CNB-B domain flexibility is linked to cAMP activation in the RI α (91-379):PKA α
268 truncated heterodimer (Hirakis et al., 2017; Barros et al., 2017). However, this view of CNB-B
269 movement in the holoenzyme is different from the packing observed here in the full-length
270 chimeric and wt RI α holoenzymes (Figures. 1 and 4) where the CNB-B domain interacts with the
271 opposite CNB-A' domain; this interaction would prevent the suggested hinge motion in the

272 holoenzyme. Consistent with our full-length RI α holoenzyme structure, MD simulations
273 monitoring the dynamics of the α B/C-helix indicate it to be stable in the full-length holoenzyme
274 with a near linear average of \sim 162° in all simulations (Figure S15).

275 **Effects of the J-domain on PKAc α function**

276 The discovery that J-PKAc α is an oncogenic driver of FLHCC and thus a therapeutic target
277 represents a significant breakthrough for FLHCC research (Honeyman et al., 2014). The fusion
278 of the J-domain to PKAc α (Honeyman et al., 2014; Kastenhuber et al., 2017) may lead to
279 alterations in kinase activity, substrates, dynamics, location or regulation at the level of the
280 kinase subunit, holoenzyme and/or even higher molecular complexity level. As shown in the RI α
281 competition as well as the cAMP activation assays, no significant differences were observed in
282 terms of RI α association with either the chimera or wt PKAc α (Figure 4C) and the addition of
283 the J-domain does not impact the sensitivity of the chimeric holoenzyme to cAMP activation
284 (Figure 4C). As suggested by a thermostability assay (Figure 6A), the dynamic J-domain does
285 not introduce a significant destabilizing effect on the chimera, nor on the chimeric RI α
286 holoenzyme (Table S3). Similarly, J-PKAc α displayed unaltered binding affinities for ATP and
287 inhibitor peptide (Figure 6B). Additionally, in agreement with previous reports (Cheung et al.,
288 2015), the chimeric protein was slightly more active than its wt counterpart with unchanged
289 enzymatic efficiency as shown by k_{cat}/K_m values (Figure 6C), suggesting that the J-domain may
290 affect PKAc α enzyme dynamics. In the crystal structure of the chimeric fusion RI α_2 :J-PKAc α_2
291 holoenzyme, the presence of the J-domain does not prevent formation of the holoenzymes, and
292 the C-subunit, where the J-domain fusion occurs, is not at the symmetrical interface in the
293 holoenzyme between the two RI α :J-PKAc α heterodimers (Figure 1). Thus, rather than affecting
294 the PKAc α interactions with the regulatory subunits, it is possible that addition of the J-domain

295 alters the conformational landscape of the chimeric fusion holoenzymes, impacting interactions
296 with other molecules. The higher B-factors in the J-domain suggested a large degree of
297 conformational flexibility (Figure 1C, Table S1). MD simulations indicate a wide range in the
298 conformational diversity of the J-domain appendage both in isolated J-PKAc α and in the
299 holoenzyme, perhaps influencing enzyme dynamics through allosteric networks or holoenzyme
300 interaction with other proteins.

301 **Discussion**

302 The oncogenic J-PKAc α has been crystallized here for the first time in one of its most
303 important physiological states where it is associated in a holoenzyme complex with the RI α
304 subunit. This structure demonstrates that the N-terminal fusion does not interfere with the
305 general organization of the R₂:PKAc α ₂ holoenzyme, and this also has relevance for the various
306 PKAc α isoforms some of which have large extensions at the N-terminus (Søberg et al., 2017).
307 Comparing the conformational states of the wt and chimeric RI α holoenzymes that display some
308 novel interfaces may guide the development of drugs that selectively target not only to the J-
309 domain and catalytic core to directly block chimera activity, but also regions present only at the
310 holoenzyme level to block holoenzyme activation. The presence of alternate conformations of
311 the holoenzymes may constitute a way to target the chimera selectively, as the conserved activity
312 site of the wt PKAc α and the chimeric fusion J-PKAc α have little structural differences and the
313 enzyme function is barely affected by the J-domain fusion. The enhanced dynamics of the
314 chimeric holoenzyme may also expose some sites that are otherwise too transient to target. It
315 may also be possible to trap a dynamic state independent of whether the holoenzyme is
316 dissociated or not. Using a strategy that simultaneously blocks the activity of the oncogenic
317 driver kinase and/or its holoenzyme dissociation would significantly reduce the possibility that a

318 random mutation in the driver enables the tumor cells to escape treatment. RI α is a critical master
319 switch for regulating PKA activity in cells, and it is likely that unregulated PKA activity is
320 important, at least in part, for driving FLHCC. The importance of RI α is further supported by the
321 recent finding that in a few rare cases, CNC mutations in RI α can drive FLHCC. Most CNC
322 mutations, including the haplo-insufficiency caused by nonsense mediated decay of the RI α
323 messenger RNA, do not drive FLHCC, so the unregulated phenotype associated with CNC is not
324 in itself sufficient to explain these rare CNC mutations that are associated with FLHCC.

325 MD simulations show that the J-domain is highly dynamic in the chimeric RI α holoenzyme. The
326 presence of the J-domain will likely also alter the phosphor-proteome of the tumor cells. At this
327 point it is not clear how the presence of the J-domain influences the function of the PKA
328 holoenzymes in cells. The wt PKA α is also myristylated at its N-terminus and we have shown
329 previously that this can be important for targeting the RI β holoenzymes to membranes (Zhang et
330 al., 2015). This acylation site is missing in the fusion chimera protein and may also contribute to
331 dysfunctional PKA signaling. Interestingly, the striking similarity on the overall structures and
332 biochemical properties of the wt and chimeric RI α holoenzymes suggests the specificity of
333 chimeric holoenzyme in its role in FLHCC need to be further sought at another level. It will be
334 extremely important to elucidate how the conformational state and abundance of the different
335 holoenzymes in the tumor cells and the holoenzymes communicate with their neighbors and
336 substrates. In particular, it is important to determine how these macromolecular assemblies are
337 altered in FLHCC by comparing paired tumor and adjacent normal liver samples. Understanding
338 in detail how J-PKA α signaling pathways drive disease will shed light on understanding its
339 transformation to FLHCC and is expected to improve diagnosis and therapeutic treatment for this
340 cancer.

341 **Methods**

342 **Protein expression, purification and crystallization.** Bovine wt full-length RI α was expressed
343 in *Escherichia coli* (*E. coli*) BL21 (DE3) pLysS and purified as described before (Barros et al.,
344 2017) Both human full-length J-PKAc α and PKAc α were engineered with an N-terminal
345 His₆SUMO tag. The constructs were then transformed into *E. coli* BL21 (DE3) for protein
346 expression. The starter cultures were grown in LB media with 50 μ g/mL kanamycin overnight at
347 37 °C and then 1:100 diluted into the same media. The cultures were grown at 37 °C until the
348 cell density reached 0.5-0.6 OD₆₀₀, after which the temperature was lowered to 24 °C and protein
349 expression was induced overnight by adding isopropyl β -D-thiogalactoside to a final
350 concentration of 0.5 mM. Cells were harvested by centrifugation, resuspended in lysis buffer
351 containing 20 mM Tris-HCl pH 8.0, 100 mM NaCl, 5 mM β -mercaptoethanol and lysed by
352 microfluidizer. The lysates were centrifuged, and collected supernatants were incubated with Ni-
353 nitritotriacetic (Ni-NTA) agarose beads overnight at 4 °C. The beads were rinsed with lysis
354 buffer and then 10X bed volume of wash buffer (lysis buffer plus 20 mM imidazole). The
355 proteins were eluted with 3X bed volume of elution buffer 1 (lysis buffer plus 50 mM imidazole)
356 and elution buffer 2 (lysis buffer plus 100 mM imidazole). The eluates were spin dialyzed into
357 the lysis buffer, after which NP-40 was added to them to a final concentration of 0.1%, and
358 subjected to U1P1 (an engineered SUMO protease) digestion for 1 h at 25 °C at a molar ratio of
359 200:1 (protein:enzyme) to remove the His₆SUMO tag. The cleaved tag and the protease were
360 then removed from the proteins using Ni-NTA beads. Then the full-length RI α_2 :J-PKAc α_2 and
361 RI α_2 :PKAc α_2 holoenzymes were formed by mixing RI α with J-PKAc α or PKAc α in a 1:1.5
362 molar ratio and spin dialyzed into a holoenzyme buffer containing 50 mM MOPS pH 7.0, 50 mM
363 NaCl, 1 mM TCEP, 1 mM MgCl₂ and 0.1 mM ATP. The formed complexes were loaded onto

364 Hiload 16/600 Superdex 200 pg size exclusion column preequilibrated with the same buffer.

365 Proteins from the peak fractions corresponding to the holoenzymes were collected, concentrated

366 to ~10 mg/mL and subjected to extensive crystallization screening or used for biochemical

367 assays. Crystallization was conducted at 20 °C using the hanging drop vapor diffusion method by

368 mixing the protein and precipitants at a ratio of 1:1. The RI α ₂:J-PKA α ₂ crystals were grown in a

369 buffer containing 100 mM NaCl, 16-18% pentaerythritol propoxylate and 10% dimethyl

370 sulfoxide and to their final size in ~2 weeks. The RI α ₂:PKA α ₂ crystals were grown in a buffer

371 containing 100 mM HEPES sodium-MOPS (acid) pH 7.5, 90 mM NPS (30 mM sodium nitrate,

372 30 mM sodium phosphate dibasic, 30 mM ammonium sulfate), 40-42% Precipitant Mix 2 (40%

373 ethylene glycol; 20% PEG 8000), 3% D-(+)-glucose monohydrate and to their final size in ~3

374 weeks.

375 **Structure determination.** Diffraction data were collected at the 22ID beamline of the Advanced

376 Photon Source (APS), Argonne National Laboratory (ANL). Data were indexed, integrated and

377 scaled using the HKL2000 program (Otwinowski et al., 1997). The best RI α ₂:J-PKA α ₂ and

378 RI α ₂:PKA α ₂ holoenzyme crystals diffracted to 3.66 and 4.75 Å, respectively. The initial phase

379 of RI α ₂:J-PKA α ₂ was determined using program PHASER (McCoy et al., 2007) with the

380 structures of PKA α Δexon1 (from PDB ID 4WB8) (Cheung et al., 2015) and RI α (from PDB

381 ID 2QCS) (Barros et al., 2017) as search models. Refinement of the molecular replacement

382 model was performed with PHENIX (Adams et al., 2010) and COOT (Emsley et al., 2004)

383 alternatively. Initially, three rounds of Cartesian, individual B-factors, atomic occupancies and

384 Cartesian simulated annealing (start temperature 5,000 K) refinement were performed in

385 PHENIX, with the restraints of torsion-angle non-crystallographic symmetry (NCS), reference

386 models and secondary structures. The reference models were J-PKA α (from PDB ID 4WB7)

387 (Cheung et al., 2015) and RI α (from PDB ID 2QCS) (Barros et al., 2017). In addition,
388 stereochemistry and atomic displacement parameters weights were optimized during the
389 refinement. The final refinement protocol included three rounds of Cartesian, individual B-
390 factors and atomic occupancies refinement. The final RI α_2 :J-PKA α_2 model has 92.5% of
391 residues in the favored Ramachandran region and 7.5% in the allowed region. The initial phase
392 of RI α_2 :PKA α_2 was determined using program PHASER with the refined structure of the J-
393 domain omitted RI α :J-PKA α as the search model. Refinement of the molecular replacement
394 model was carried out with REFMAC5 (Nicholls et al., 2012), PHENIX and COOT. First, rigid
395 body refinement was performed using REFMAC5. Then 10 rounds of Cartesian, group B-factors
396 (single residues were divided into mainchain and sidechain), atomic occupancies and Cartesian
397 simulated annealing (start temperature 5,000 K) refinement were performed in PHENIX, with
398 the restraints of global NCS, reference models (from PDB ID 2QCS) and secondary structures.
399 The final refinement protocol included three rounds of Cartesian, individual B-factors and
400 atomic occupancies refinement with the global NCS restraint. The final RI α_2 :PKA α_2 model has
401 84.6% of residues in the favored Ramachandran region and 15.4% in the allowed region. Data
402 collection and refinement statics are summarized in Table 1. Models were evaluated using the
403 MolProbity web server (molprobity.biochem.duke.edu/).

404 **Small angle X-ray scattering (SAXS) experiment.** SAXS measurements were performed at the
405 12ID-B beamline of APS, ANL. Photon energy was 13.3 KeV, and sample-to-detector distance
406 was 3.6 m. To minimize radiation damage, thirty image frames were recorded with an
407 exposure time of 1-2 s for each buffer and sample solution using a flow cell. The 2D images
408 were reduced to 1D scattering profiles, and then grouped by sample and averaged using the
409 MatLab software package at the beamlines. Concentration series measurements for the same

410 sample were carried out to remove the scattering contribution due to interparticle interactions
411 and to extrapolate the data to infinite dilution. The concentrations were 0.5, 0.7 and 0.9 mg/ml
412 for RI α_2 :J-PKA α_2 in the buffer containing 50 mM MOPS pH 7.0, 50 mM NaCl, 1 mM TCEP, 1
413 mM MgCl₂ and 0.1 mM ATP. The buffer background subtraction and intensity extrapolation to
414 infinite dilution were carried out using NCI in-house developed MatLab script NCI-SAXS.
415 Theoretical scattering profiles were generated from crystal structure and models and compared
416 with the experimental SAXS data at $q < 0.5 \text{ \AA}^{-1}$ using the CRYSTAL software (Svergun et al.,
417 1995). The pair-distance distribution function P(r) and maximum dimension (D_{max}) were
418 generated using GNOM (Svergun et al., 1992).

419 **Kinase activity assay.** The enzymatic activity of wt PKA α or J-PKA α was measured
420 spectrophotometrically with a coupled enzyme assay (Cook et al., 1982). The ADP formation is
421 coupled to the pyruvate kinase (PK) and lactate dehydrogenase (LDH) reactions. The reaction
422 rate is determined by following the decrease in absorbance at 340 nm at 25 °C on a Photodiode
423 Array Lambda 465 UV/Vis Spectrophotometer (PerkinElmer). The Michaelis-Menten
424 parameters for ATP were determined by fixing Kemptide substrate (LRRASLG) at saturating
425 concentrations while varying the concentrations of ATP. Reactions were pre-equilibrated at room
426 temperature and initiated by adding ATP. The kinase reaction mixture contained 100 mM MOPS
427 pH 7.1, 50 mM KCl, 6 mM phosphoenolpyruvate, 0.5 mM nicotinamide adenine dinucleotide
428 (NADH), 100 μM of Kemptide, 15 units of LDH, 7 units of PK, and varying concentrations of
429 ATP from 0 to 250 μM . MgCl₂ was present in a constant 1 mM excess over ATP. The data was
430 analyzed and fitted to the Michaelis-Menten equation using SigmaPlot software.

431 **Inhibitor peptide PKI binding assay.** Fluorescence anisotropy was used to measure PKI to
432 PKA α or J-PKA α . 0.9 nM FAM-labeled PKI (5-24) peptide was mixed with 0-2000 nM

433 PKAc α or J-PKAc α in buffer containing 20 mM MOPS pH 7.0, 150 mM NaCl, 10 mM MgCl₂, 1
434 mM ATP, and 0.01% Triton X-100. Fluorescence anisotropy was measured by using GENios
435 Pro micro-plate reader (Tecan) in black flat-bottom costar assay plates with 485 nm excitation
436 and 535 nm emission. The data was analyzed and fitted to the anisotropy single association
437 hyperbolic equation using Prism software.

438 **RI α competition assay for catalytic subunit binding.** Fluorescence polarization assay was used
439 to measure the competition of RI α subunit with IP20 for wt PKAc α or J-PKAc α . 2 nM N-
440 terminus FAM-labeled PKI peptide (5-24), and 10 nM PKAc α or J-PKAc α were mixed in the
441 buffer containing 20 mM HEPES pH 7.0, 75 mM KCl, 0.005% Triton X-100, 10 mM MgCl₂, 1
442 mM ATP, and 1 mM DTT. Two-fold serial dilutions of RI α from 30 nM to 0 nM were added to
443 the PKI-bound catalytic subunits, followed by fluorescence polarization measurements using
444 GENios Pro micro-plate reader (Tecan) in black flat-bottom costar assay plates with 485 nm
445 excitation and 535 nm emission. The data was analyzed and fitted to the EC50 dose-response
446 equation using Prism software.

447 **Stability assay.** ThermoFluor assay was used to measure the stabilities of apo PKAc α or J-
448 PKAc α subunits and its ATP and/or peptide binding forms. The reaction was conducted with 5
449 μ M of proteins in 45 μ L of the buffer containing 20 mM MOPS pH 7.0, 150 mM NaCl. Ligands
450 were used at the following concentrations 1 mM ATP, 10 mM MgCl₂, and 25 μ M PKI peptide
451 (5-24). For each ligand, triplicate reactions were measured in a 96-well plate. After proteins and
452 ligands were mixed and incubated for 5 min on ice, 5 μ L of 200X SYPRO Orange dye was
453 added to each reaction. The samples were heated from 20 to 85 °C with a 0.5 °C/min heating rate
454 by using CFX96 Real-Time PCR Detection System (Bio-Rad) in temperature scanning mode.
455 The fluorescence signals were measured using the ROX channel.

456 **ATP binding assay.** ATP dissociation constants were determined using the ThermoFluor assay.
457 Similar condition as thermostability assay was used for ATP binding. The reactions were carried
458 out in the buffer containing 20 mM MOPS pH 7.0, 150 mM NaCl with a range of ATP
459 concentrations from 0 to 0.75 mM. After mixed with PKA α or J-PKA α , and incubated for 5
460 min on ice, 5 μ L of 200X SYPRO Orange dye was added to each reaction. The samples were
461 heated from 20 to 85 °C with a 0.5 °C/min heating rate by using CFX96 Real-Time PCR
462 Detection System (Bio-Rad) in temperature scanning mode. The final concentration 4.5 μ M of
463 catalytic subunits was used to fit the data. The fluorescence signals were measured using the
464 ROX channel. Each melting temperature was recorded and plotted versus ATP concentration.

465 **PKA cAMP activation assay.** Fluorescence polarization assay was used to measure the
466 activation of wt and chimeric RI α holoenzymes. 2 nM N-terminus FAM-labeled PKI peptide (5-
467 24), 7.2 nM RI α_2 , and 12 nM catalytic subunit (wt or chimera) were mixed in the buffer
468 containing 20 mM HEPES pH 7.0, 75 mM KCl, 0.005% Triton X-100, 10 mM MgCl₂, 1 mM
469 ATP and 1 mM DTT. To activate PKA catalytic subunits, 2-fold serial dilutions of cAMP from
470 3000 nM to 0 nM were added. The fluorescence polarization was measure by using GENios Pro
471 micro-plate reader (Tecan) in black flat-bottom costar assay plates with 485 nm excitation and
472 535 nm emission. The data was analyzed and fitted to the EC50 dose-response equation using
473 Prism software.

474 **Molecular dynamics simulations.** MD simulations were performed to probe the dynamics of
475 the RI α holoenzyme complexes. As previous simulations of the isolated J-PKA α indicated a
476 wide ensemble of conformations for the J-domain appendage (Tomasini et al., 2018), we
477 performed three different simulations of RI α_2 :J-PKA α_2 with differing initial positions of the J-
478 domain: the crystal structure, a J-in state model in which the J-domain was positioned close to

479 the core of the catalytic subunit, and a J-out state model in which the J-domain was rotated away
480 from the core of the catalytic subunit and the R:J-PKAc α interface. The J-domain conformations
481 of the J-in and J-out states were those found in Tomasini *et al.* (Tomasini et al., 2018) as the top
482 two representative conformations in a series of simulations performed on the isolated J-PKAc α .
483 These two conformations of the J-domain were modeled onto the RI α_2 :J-PKAc α_2 crystal
484 structure. A similar methodology was used to model the first 14 amino acids and myristoylation
485 motif which were missing from both conformations of RI α_2 :PKAc α_2 .

486 Structures were processed using the Protein Preparation Wizard in Maestro, solvated in a
487 rectangular box with ~60,000 SPC waters and 150 mM sodium and chloride ions. Simulations
488 were performed using the Desmond MD Package (Bowers et al., 2006) using the OPLS3 force
489 field (Harder et al., 2016). Each system was subject to energy minimization using the steepest
490 decent method succeeded by 100 ps of Brownian Dynamics simulation at constant volume and a
491 temperature of 10 K with heavy atoms constrained. Subsequent equilibration included a 12 ps
492 simulation at constant volume and at 10 K with heavy atoms restrained, followed by a 12 ps
493 simulation at constant pressure with heavy atoms restrained, and finally a heating simulation in
494 which the restraints were gradually relaxed and the system heated to 300 K over 24 ps. For
495 production runs, the temperature was kept at 300 K using a Nose-Hoover Chain thermostat with
496 a relaxation time of 1 ps (Martyna et al., 1992). The pressure was controlled at 1 bar using the
497 Martyna-Tobias-Klein barostat with a relaxation time of 2 ps (Tuckerman et al., 2006). An
498 integration time-step of 2 fs was used. Production simulations were performed for 1 μ s saving
499 system snapshots every 25 ps.

500 **References**

501 Adams, P. D., Afonine, P. V., Bunkóczki, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J.,
502 Hung, L.W., Kapral, G. J., Grosse-Kunstleve, R. W., et al. (2010). PHENIX \square : a comprehensive
503 Python-based system for macromolecular structure solution. *Acta Crystallogr Sect D Biol
504 Crystallogr.* 66, 213–221.

505 Amieux, P.S., and McKnight, G.S. (2002). The essential role of RI alpha in the maintenance of
506 regulated PKA activity. *Ann. N. Y. Acad. Sci.* 968, 75–95.

507 Amieux, P.S., Cummings, D.E., Motamed, K., Brandon, E.P., Wailes, L.A., Le, K., Idzerda, R.L.,
508 and Stanley McKnight, G. (1997). Compensatory regulation of RI?? protein levels in protein
509 kinase A mutant mice. *J. Biol. Chem.* 272, 3993–3998.

510 Badireddy, S., Yunfeng, G., Ritchie, M., Akamine, P., Wu, J., Kim, C.W., Taylor, S.S.,
511 Qingsong, L., Swaminathan, K., and Anand, G.S. (2011). Cyclic AMP analog blocks kinase
512 activation by stabilizing inactive conformation: conformational selection highlights a new
513 concept in allosteric inhibitor design. *Mol. Cell. Proteomics* 10.

514 Boettcher, A.J., Wu, J., Kim, C., Yang, J., Bruystens, J., Cheung, N., Pennypacker, J.K.,
515 Blumenthal, D.A., Kornev, A.P., and Taylor, S.S. (2011). Realizing the Allosteric Potential of
516 the Tetrameric Protein Kinase A RI α Holoenzyme. *Structure* 19, 265–276.

517 Brown, S.H.J., Wu, J., Kim, C., Alberto, K., and Taylor, S.S. (2009). Novel isoform-specific
518 interfaces revealed by PKA RIIbeta holoenzyme structures. *J. Mol. Biol.* 393, 1070–1082.

519 Bruystens, J.G.H., Wu, J., Fortezzo, A., Kornev, A.P., Blumenthal, D.K., and Taylor, S.S. (2014).
520 PKA RI α homodimer structure reveals an intermolecular interface with implications for
521 cooperative cAMP binding and Carney complex disease. *Structure* 22, 59–69.

522 Cheng, C.Y., Yang, J., Taylor, S.S., and Blumenthal, D.K. (2009). Sensing domain dynamics in

523 protein kinase A-I α complexes by solution x-ray scattering. *J. Biol. Chem.* **284**, 35916–35925.

524 Cheung, J., Ginter, C., Cassidy, M., Franklin, M.C., Rudolph, M.J., Robine, N., Darnell, R.B.,
525 and Hendrickson, W.A. (2015). Structural insights into mis-regulation of protein kinase A in
526 human tumors. *Proc. Natl. Acad. Sci. U. S. A.* **112**, 1374–1379.

527 Craig, J.R., Peters, R.L., Edmondson, H.A., and Omata, M. (1980). Fibrolamellar carcinoma of
528 the liver: A tumor of adolescents and young adults with distinctive clinico-pathologic features.
529 *Cancer* **46**, 372–379.

530 Darcy, D.G., Chiaroni-Clarke, R., Murphy, J.M., Honeyman, J.N., Bhanot, U., LaQuaglia, M.P.,
531 and Simon, S.M. (2015). The genomic landscape of fibrolamellar hepatocellular carcinoma:
532 whole genome sequencing of ten patients. *Oncotarget* **6**, 755–770.

533 Eggert, T., McGlynn, K.A., Duffy, A., Manns, M.P., Greten, T.F., and Altekruse, S.F. (2013).
534 Epidemiology of fibrolamellar hepatocellular carcinoma in the USA, 2000-10. *Gut* **62**, 1667–
535 1668.

536 El-Serag, H.B., and Davila, J.A. (2004). Is fibrolamellar carcinoma different from hepatocellular
537 carcinoma? A US population-based study. *Hepatology* **39**, 798–803.

538 Engelholm, L.H., Riaz, A., Serra, D., Dagnæs-Hansen, F., Johansen, J. V., Santoni-Rugiu, E.,
539 Hansen, S.H., Niola, F., and Frödin, M. (2017). CRISPR/Cas9 Engineering of Adult Mouse
540 Liver Demonstrates That the Dnajb1 – Prkaca Gene Fusion Is Sufficient to Induce Tumors
541 Resembling Fibrolamellar Hepatocellular Carcinoma. *Gastroenterology* **153**, 1662–1673.

542 Graham, R., Lackner, K., Terracciano, L., González-Cantú, Y., Maleszewski, J.J., Greipp, P.T.,
543 Simon, S.M., and Torbenson, M.S. (2017). Fibrolamellar Carcinoma in the Carney Complex:
544 PRKAR1A Loss Instead of the Classic DNAJB1-PRKACA Fusion. *Hepatology*.

545 Greene, E.L., Horvath, A.D., Nesterova, M., Giatzakis, C., Bossis, I., and Stratakis, C.A. (2008).
546 In vitro functional studies of naturally occurring pathogenic PRKAR1A mutations that are not
547 subject to nonsense mRNA decay. *Hum. Mutat.* **29**, 633–639.

548 Hirakis, S.P., Malmstrom, R.D., and Amaro, R.E. (2017). Molecular Simulations Reveal an
549 Unresolved Conformation of the Type IA Protein Kinase A Regulatory Subunit and Suggest Its
550 Role in the cAMP Regulatory Mechanism. *Biochemistry* **56**, 3885–3888.

551 Honeyman, J.N., Simon, E.P., Robine, N., Chiaroni-Clarke, R., Darcy, D.G., Lim, I.I.P., Gleason,
552 C.E., Murphy, J.M., Rosenberg, B.R., Teegan, L., et al. (2014). Detection of a Recurrent
553 DNAJB1-PRKACA Chimeric Transcript in Fibrolamellar Hepatocellular Carcinoma. *Science*
554 (80-). **343**, 1010–1014.

555 Ilouz, R., Bubis, J., Wu, J., Yim, Y.Y., Deal, M.S., Kornev, A.P., Ma, Y., Blumenthal, D.K., and
556 Taylor, S.S. (2012). Localization and quaternary structure of the PKA RI β holoenzyme. *Proc.*
557 *Natl. Acad. Sci. U. S. A.* **109**, 12443–12448.

558 Kakar, S., Burgart, L.J., Batts, K.P., Garcia, J., Jain, D., and Ferrell, L.D. (2005).
559 Clinicopathologic features and survival in fibrolamellar carcinoma: Comparison with
560 conventional hepatocellular carcinoma with and without cirrhosis. *Mod. Pathol.* **18**, 1417–1423.

561 Kastenhuber, E.R., Lalazar, G., Houlihan, S.L., Tschaharganeh, D.F., Baslan, T., Chen, C.-C.,
562 Requena, D., Tian, S., Bosbach, B., Wilkinson, J.E., et al. (2017). DNAJB1-PRKACA fusion
563 kinase interacts with β -catenin and the liver regenerative response to drive fibrolamellar
564 hepatocellular carcinoma. *Proc. Natl. Acad. Sci. U. S. A.* **13076**–13084.

565 Katzenstein, H.M., Krailo, M.D., Malogolowkin, M.H., Ortega, J.A., Qu, W., Douglass, E.C.,
566 Feusner, J.H., Reynolds, M., Quinn, J.J., Newman, K., et al. (2003). Fibrolamellar hepatocellular

567 carcinoma in children and adolescents. *Cancer* *97*, 2006–2012.

568 Kim, C., Cheng, C.Y., Saldanha, S.A., and Taylor, S.S. (2007). PKA-I holoenzyme structure
569 reveals a mechanism for cAMP-dependent activation. *Cell* *130*, 1032–1043.

570 Lazar, G., and Simon, S.M. (2018). Fibrolamellar Carcinoma: Recent Advances and
571 Unresolved Questions on the Molecular Mechanisms. *Semin. Liver Dis.* *38*, 51–59.

572 Li, F., Milind Gangal, Jones, J.M., Jason Deich, Kimberly E. Lovett, Susan S. Taylor, A., and
573 David A. Johnson (2000). Consequences of cAMP and Catalytic-Subunit Binding on the
574 Flexibility of the A-Kinase Regulatory Subunit. *39*, 15626–15632.

575 Lim, I., Farber, B., and LaQuaglia, M. (2014). Advances in Fibrolamellar Hepatocellular
576 Carcinoma: A Review. *Eur. J. Pediatr. Surg.* *24*, 461–466.

577 Linglart, A., Fryssira, H., Hiort, O., Holterhus, P.-M., Perez de Nanclares, G., Argente, J.,
578 Heinrichs, C., Kuechler, A., Mantovani, G., Leheup, B., et al. (2012). *PRKAR1A* and *PDE4D*
579 Mutations Cause Acrodysostosis but Two Distinct Syndromes with or without GPCR-Signaling
580 Hormone Resistance. *J. Clin. Endocrinol. Metab.* *97*, E2328–E2338.

581 Mavros, M.N., Mayo, S.C., Hyder, O., and Pawlik, T.M. (2012). A Systematic Review:
582 Treatment and Prognosis of Patients with Fibrolamellar Hepatocellular Carcinoma. *J. Am. Coll.*
583 *Surg.* *215*, 820–830.

584 Oikawa, T., Wauthier, E., Dinh, T.A., Selitsky, S.R., Reyna-Neyra, A., Carpino, G., Levine, R.,
585 Cardinale, V., Klimstra, D., Gaudio, E., et al. (2015). Model of fibrolamellar hepatocellular
586 carcinomas reveals striking enrichment in cancer stem cells. *Nat. Commun.* *6*, 8070.

587 P. Barros, E., Malmstrom, R.D., Nourbakhsh, K., Del Rio, J.C., Kornev, A.P., Taylor, S.S., and
588 Amaro, R.E. (2017). Electrostatic Interactions as Mediators in the Allosteric Activation of

589 Protein Kinase A RI α . *Biochemistry* *56*, 1536–1545.

590 Park, K.U., Kim, H.-S., Lee, S.K., Jung, W.-W., and Park, Y.-K. (2012). Novel Mutation in

591 PRKAR1A in Carney Complex. *Korean J. Pathol.* *46*, 595–600.

592 Riggle, K.M., Riehle, K.J., Kenerson, H.L., Turnham, R., Homma, M.K., Kazami, M., Samelson,

593 B., Bauer, R., McKnight, G.S., Scott, J.D., et al. (2016a). Enhanced cAMP-stimulated protein

594 kinase A activity in human fibrolamellar hepatocellular carcinoma. *Pediatr. Res.* *80*, 110–118.

595 Riggle, K.M., Turnham, R., Scott, J.D., Yeung, R.S., and Riehle, K.J. (2016b). Fibrolamellar

596 Hepatocellular Carcinoma: Mechanistic Distinction From Adult Hepatocellular Carcinoma.

597 *Pediatr. Blood Cancer* *63*, 1163–1167.

598 Simon, E.P., Freije, C.A., Farber, B.A., Lazar, G., Darcy, D.G., Honeyman, J.N., Chiaroni-

599 Clarke, R., Dill, B.D., Molina, H., Bhanot, U.K., et al. (2015). Transcriptomic characterization of

600 fibrolamellar hepatocellular carcinoma. *Proc. Natl. Acad. Sci. U. S. A.* *112*, E5916–E5925.

601 Søberg, K., Moen, L.V., Skålhegg, B.S., and Laerdahl, J.K. (2017). Evolution of the cAMP-

602 dependent protein kinase (PKA) catalytic subunit isoforms. *PLoS One*.

603 Taylor, S.S., Ilouz, R., Zhang, P., and Kornev, A.P. (2012). Assembly of allosteric

604 macromolecular switches: lessons from PKA. *Nat. Rev. Mol. Cell Biol.* *13*, 646–658.

605 Terracciano, L.M., Tornillo, L., Avoledo, P., Von Schweinitz, D., Kühne, T., and Bruder, E.

606 (2004). Fibrolamellar hepatocellular carcinoma occurring 5 years after hepatocellular adenoma

607 in a 14-year-old girl: a case report with comparative genomic hybridization analysis. *Arch.*

608 *Pathol. Lab. Med.* *128*, 222–226.

609 Tomasini, M.D., Wang, Y., Karamafrooz, A., Li, G., Beuming, T., Gao, J., Taylor, S.S., Veglia,

610 G., and Simon, S.M. (2018). Conformational Landscape of the PRKACA-DNAJB1 Chimeric

611 Kinase, the Driver for Fibrolamellar Hepatocellular Carcinoma. *Sci. Rep.* **8**, 720.

612 Torbenson, M. (2012). Fibrolamellar carcinoma: 2012 update. *Scientifica* (Cairo). **2012**, 743790.

613 Veugelers, M., Wilkes, D., Burton, K., McDermott, D.A., Song, Y., Goldstein, M.M., La Perle,
614 K., Vaughan, C.J., O'Hagan, A., Bennett, K.R., et al. (2004). Comparative PRKAR1A genotype-
615 phenotype analyses in humans with Carney complex and *prkar1a* haploinsufficient mice. *Proc.
616 Natl. Acad. Sci. U. S. A.* **101**, 14222–14227.

617 Weeda, V.B., Murawski, M., McCabe, A.J., Maibach, R., Brugières, L., Roebuck, D., Fabre, M.,
618 Zimmermann, A., Otte, J.B., Sullivan, M., et al. (2013). Fibrolamellar variant of hepatocellular
619 carcinoma does not have a better survival than conventional hepatocellular carcinoma--results
620 and treatment recommendations from the Childhood Liver Tumour Strategy Group (SIOPEL)
621 experience. *Eur. J. Cancer* **49**, 2698–2704.

622 Wu, J., Jones, J.M., Xuong, N.H., Ten Eyck, L.F., and Taylor, S.S. (2004a). Crystal structures of
623 RI α subunit of cyclic adenosine 5'-monophosphate (cAMP)-dependent protein kinase complexed
624 with (R p)-adenosine 3',5'-cyclic monophosphothioate and (S p)-adenosine 3',5'-cyclic
625 monophosphothioate, the phosphothioate analogues of cAMP. *Biochemistry* **43**, 6620–6629.

626 Wu, J., Brown, S., Xuong, N.-H., and Taylor, S.S. (2004b). RI α subunit of PKA: a cAMP-
627 free structure reveals a hydrophobic capping mechanism for docking cAMP into site B. *Structure*
628 **12**, 1057–1065.

629 Wu, J., Brown, S.H.J., von Daake, S., and Taylor, S.S. (2007). PKA type II α holoenzyme
630 reveals a combinatorial strategy for isoform diversity. *Science* **318**, 274–279.

631 Zhang, P., Smith-Nguyen, E. V., Keshwani, M.M., Deal, M.S., Kornev, A.P., and Taylor, S.S.
632 (2012). Structure and Allostery of the PKA RII Tetrameric Holoenzyme. *Science* (80). **335**,

633 712–716.

634 Zhang, P., Ye, F., Bastidas, A.C., Kornev, A.P., Wu, J., Ginsberg, M.H., and Taylor, S.S. (2015).

635 An Isoform-Specific Myristylation Switch Targets Type II PKA Holoenzymes to Membranes.

636 Structure.

637 Zheng, J., Trafny, E.A., Knighton, D.R., Xuong, N.H., Taylor, S.S., Ten Eyck, L.F., and

638 Sowadski, J.M. (1993). 2.2 Å refined crystal structure of the catalytic subunit of cAMP-

639 dependent protein kinase complexed with MnATP and a peptide inhibitor. *Acta Crystallogr. D.*

640 *Biol. Crystallogr.* *49*, 362–365.

641

642 **Acknowledgments**

643 We thank Drs. Alexandre Kornev, Di Xia, and Kylie Walters for critical reading of the manuscript

644 and helpful discussions. We acknowledge use of the SAXS Core facility of Center for Cancer

645 Research (CCR), National Cancer Institute (NCI) which is funded by FNLCR contract

646 HHSN261200800001E and the intramural research program of the NIH, NCI, CCR. X-ray

647 diffraction and SAXS data were collected at the 22ID and 12ID-B beamlines of the Advanced

648 Photon Source, Argonne National Laboratory, respectively. We thank the Biophysics Resource

649 in the Structural Biophysics Laboratory, NCI at Frederick for assistance. This work was

650 supported by the National Institutes of Health grant GM34921 (S.S.T.), the Department of

651 Defense grant CA160446 (S.M.S.), and NIH grant 5R56CA207929 (S.M.S.), and the Intramural

652 Research Program of the NIH, NCI, CCR (Zhang lab).

653 **Author contributions**

654 B.C. carried out the protein purification, crystallization and structure determination work with
655 help from J.M.F; TW.L. prepared plasmids and developed the protein purification protocol under
656 the guidance of S.S.T. and P.Z; TW.L. and J.M.F did kinetic experiments; M.T. and S.M.S.
657 performed the molecular dynamics simulation; L.F. and J.M.F. performed the SAXS
658 experiments; B.C., J.M.F., TW.L., M.T. and P.Z. analyzed the data and wrote the paper with
659 comments from all authors; P.Z. supervised all aspects of the project.

660 **Data availability**

661 Coordinates and structure factors have been deposited in the Protein Data Bank with accession
662 numbers 6BYR (RI α ₂:J-PKA α ₂) and 6BYS (RI α ₂:PKA α ₂).

663 **Additional information**

664 Authors declare no competing interests.

665

666

667

668

669

670

671

672

673

674

675

Table 1. Data Collection and Refinement Statistics

	RI α_2 :J-PKA α_2	RI α_2 :PKA α_2
Data collection		
Space group	P6 ₅ 22	P2 ₁ 2 ₁ 2 ₁
No. of molecules in one asymmetric unit	1	2
Cell dimensions		
a, b, c (Å)	166.50, 166.50, 332.70	140.50, 186.16, 186.67
α , β , γ (°)	90, 90, 120	90, 90, 90
Resolution (Å)	50-3.66 (3.79-3.66)	50-4.75 (4.92-4.75)
R _{sym} (%)	13.5 (49.8)	10.9 (41.2)
I / σ I	29.5 (8.7)	16.3 (2.7)
Completeness (%)	100.0 (100.0)	97.2 (80.5)
Redundancy	21.3 (22.2)	6.7 (4.6)
Refinement		
Resolution (Å)	50-3.66	50-4.75
No. reflections	30810	24239
R _{work} / R _{free} ^a (%)	20.0/25.0	21.2/25.5
No. atoms		
Protein	11292	20336
Ligand/ion	66	None
Water	None	None
B-factors		
Protein	110.69	269.92
Ligand/ion	91.06	None
R.m.s deviations		
Bond lengths (Å)	0.003	0.014
Bond angles (°)	0.623	1.570

676 Values in parentheses are for the highest resolution shell.

677 ^aR_{free} was calculated by using a 5% of randomly selected reflections.

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692 **Table S1.** Averaged B factors for the J-domain and the rest of J-PKA α bound with RI α or PKI

	B _J ^a	B _C ^b	Ratio of B _J :B _C
RI α_2 :J-PKA α_2	203.45	94.09	2.16:1
J-PKA α :PKI ^c	63.54	34.39	1.85:1

693 ^a B_J: Averaged B factors of the J-domain (residues 1-69)

694 ^b B_C: Averaged B factors of the rest of J-PKA α (residues 70-405)

695 ^c from PDB ID 4WB7 (Cheung et al., 2015)

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735 **Table S2.** SAXS structural parameters

Holoenzyme conformation	R_g (Å) in reciprocal space	R_g (Å) in real space	D_{max} (Å)	χ^2 ^c
SAXS solution scattering	48.8 ± 2.0 ^d	50.0 ± 1.0	177	N/A
Crystal ^a	44.6	44.7 ± 0.5	142	1.44
Jout-Jout1 ^b	44.6	44.6 ± 0.5	149	1.63
Jout-Jout2 ^b	46.7	46.9 ± 0.7	176	1.30
Jout-Jin ^b	45.3	45.4 ± 0.5	151	1.37

736 ^aCalculated from the crystal structure

737 ^b Calculated from the final conformations of MD simulations

738 ^c Compared to experimental SAXS solution data

739 ^d Obtained from Guinier plot. The other R_g values were obtained from GNOM.

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774 **Table S3.** Thermal stability of the RI α_2 :J-PKA α_2 and RI α_2 :PKA α_2 holoenzymes

Tm ^a (°C)	- MgATP	+ MgATP
RI α_2 :PKA α_2	52.93 ± 0.02	59.40 ± 0.03
RI α_2 :J-PKA α_2	51.70 ± 0.01	58.90 ± 0.03
ΔTm (wt/mutant)	1.23 ± 0.02	0.50 ± 0.03

775 ^aTm: temperature at which the protein denatures

776 All data are mean ± s.d. (n = 2 independent experiments).

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

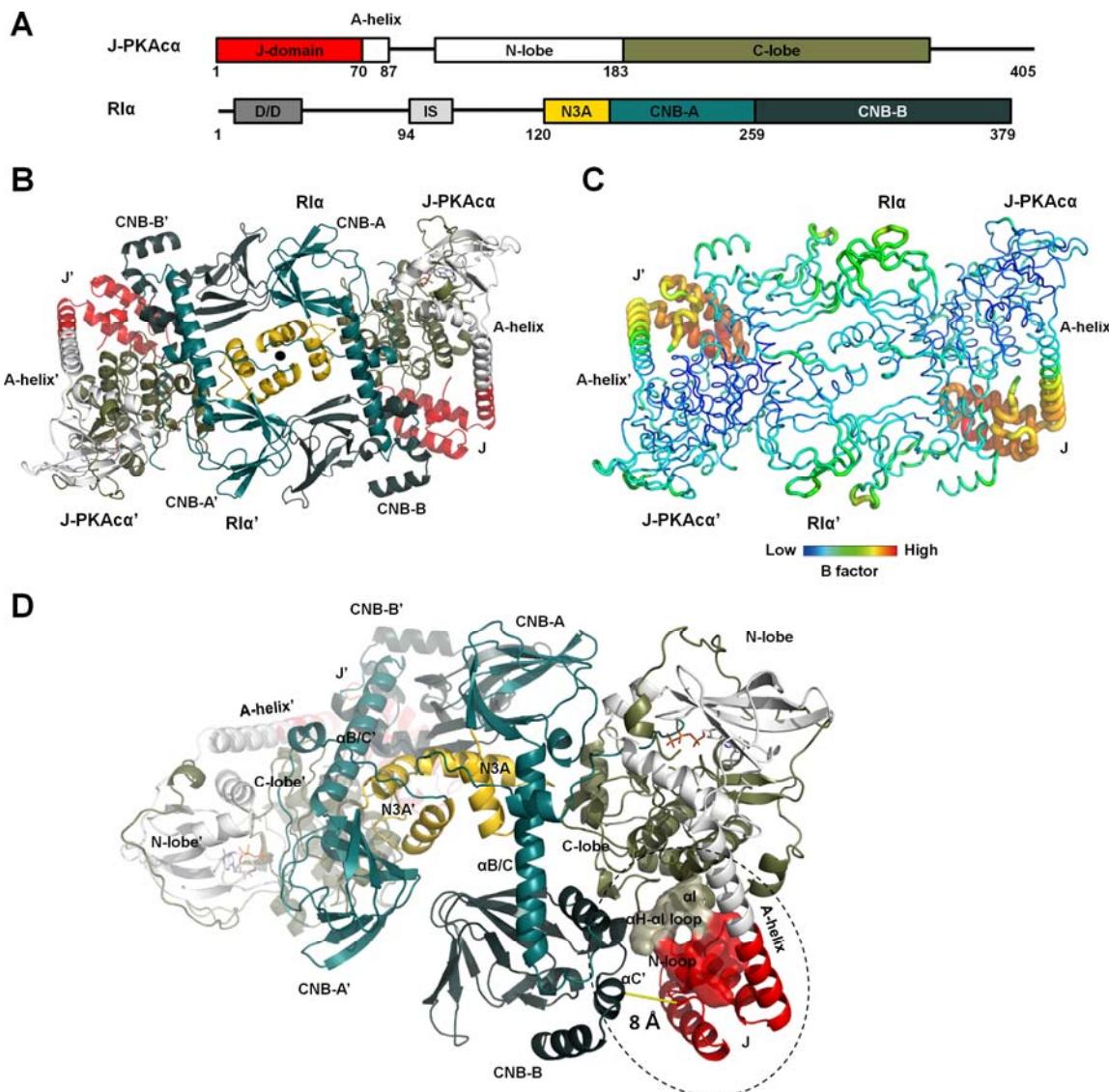
806

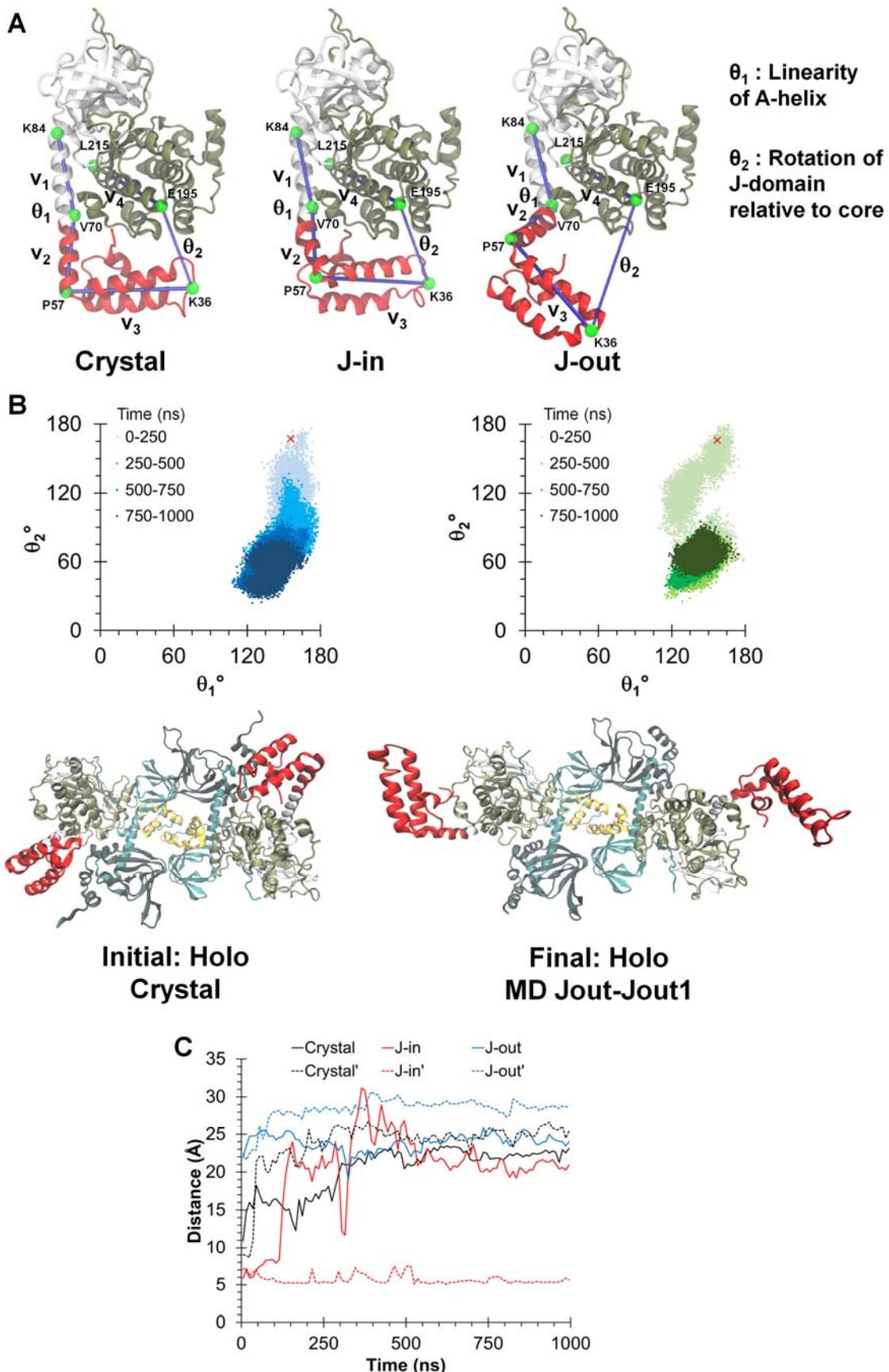
807

808

809

810


811


812

813

814

815

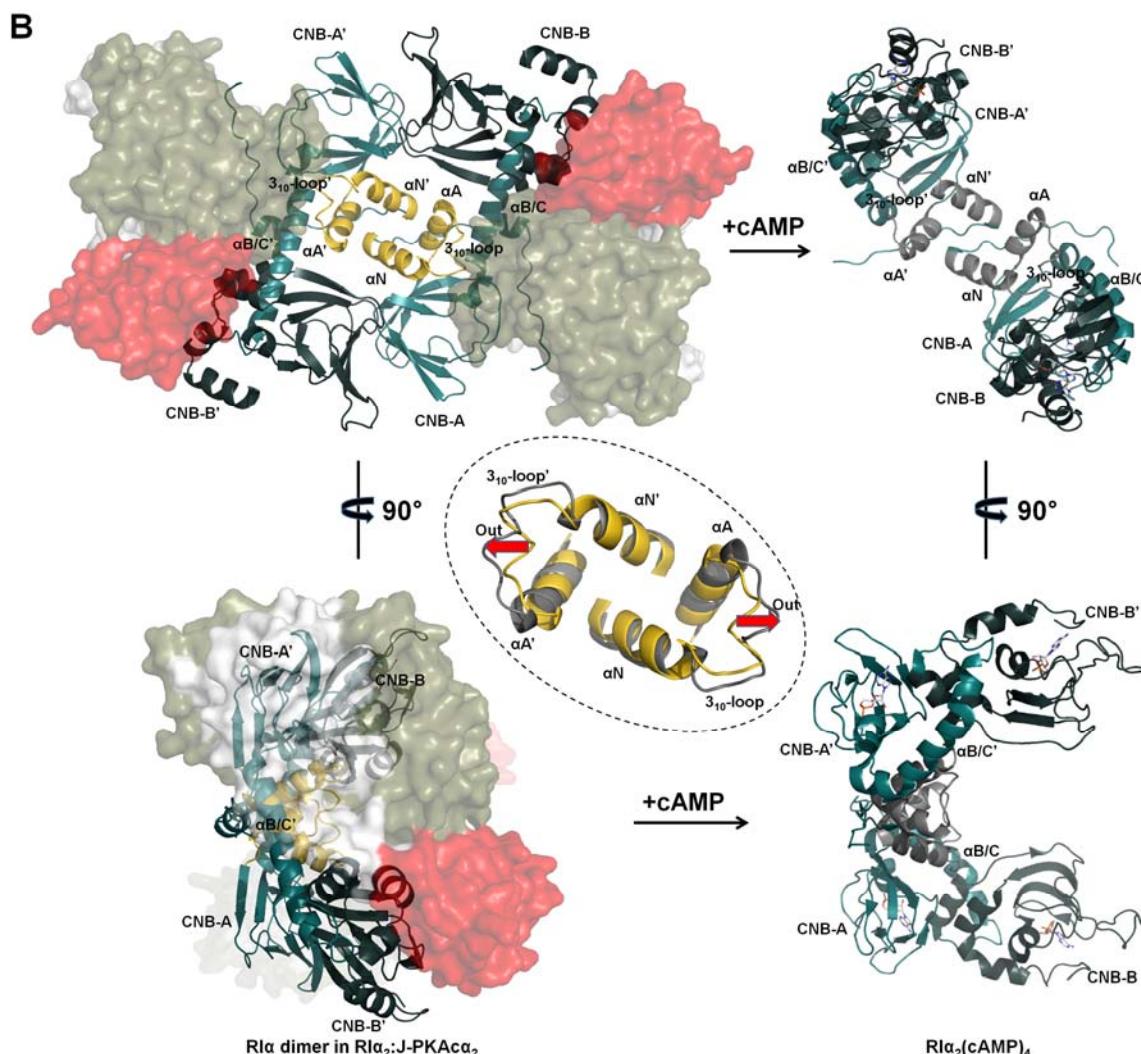
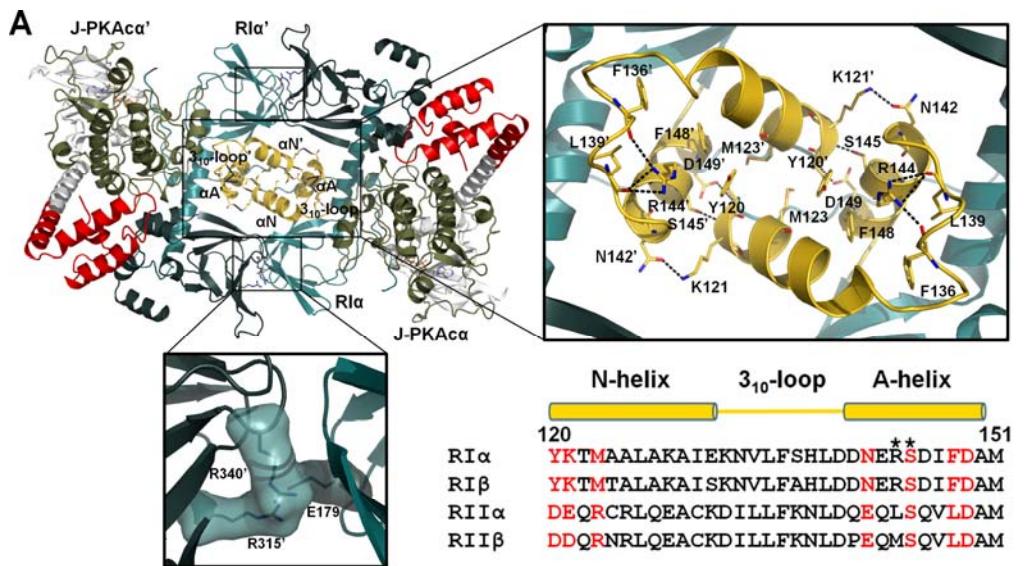
825 **Figure 2. Dynamic conformations of J-domains in the chimeric holoenzyme during MD**
826 **simulations**

827 (A) Three different simulations were initiated from: the chimeric crystal structure (crystal), the J-
828 in and J-out states. θ_1 and θ_2 are angles defined to probe the dynamics of the J-domain.

829 (B) Top: Orientation of the J-domain for both copies of the chimera in the RI α_2 :J-PKA α_2
830 holoenzyme, as given by θ_1 and θ_2 over a 1 μ s simulation of the chimeric holoenzyme starting
831 from the crystal structure. The red 'x' indicates the position of the J-domain at the beginning of
832 the simulation. Darker colors indicate later in time. Larger values of θ_2 indicate a conformation
833 in which the J-domain is tucked underneath the PKA α core while smaller values indicate an
834 extended conformation. Bottom: Initial and final conformations of the RI α_2 :J-PKA α_2 simulation
835 started from the crystal structure.

836 (C) Minimum C α distances between the J-domain and the adjacent RI α subunit for the three
837 simulations. Solid and dotted lines indicate each copy of the J-domain in the holoenzyme
838 respectively.

839



840

841

842

843

844

845

846 **Figure 3. Interactions of the two R α :J-PKA α heterodimers in the chimeric holoenzyme**

847 (A) Overall interface of the two heterodimers consists of a large N3A-N3A' interface and two
848 identical small interfaces with salt bridges. Sequence alignment of the N3A motifs from different
849 R isoforms is shown at the right bottom. Interface residues at the N3A motif are labeled in red.
850 CNC mutations are marked with asterisks.

851 (B) The N3A-N3A' four-helical bundle acts as a structural anchor during cAMP activation. The
852 α B/C-helix and the CNB-B domain of RI α undergo dramatic conformational changes upon
853 cAMP binding, while the N3A-N3A' helical bundle is almost unaltered except the move-out of
854 the 3_{10} -loops shown by the red arrows. The superimposition of the N3A-N3A' interfaces in the
855 chimeric holoenzyme and the cAMP-bound RI α dimer (gray, PDB ID 4MX3) is shown in the
856 dashed circle.

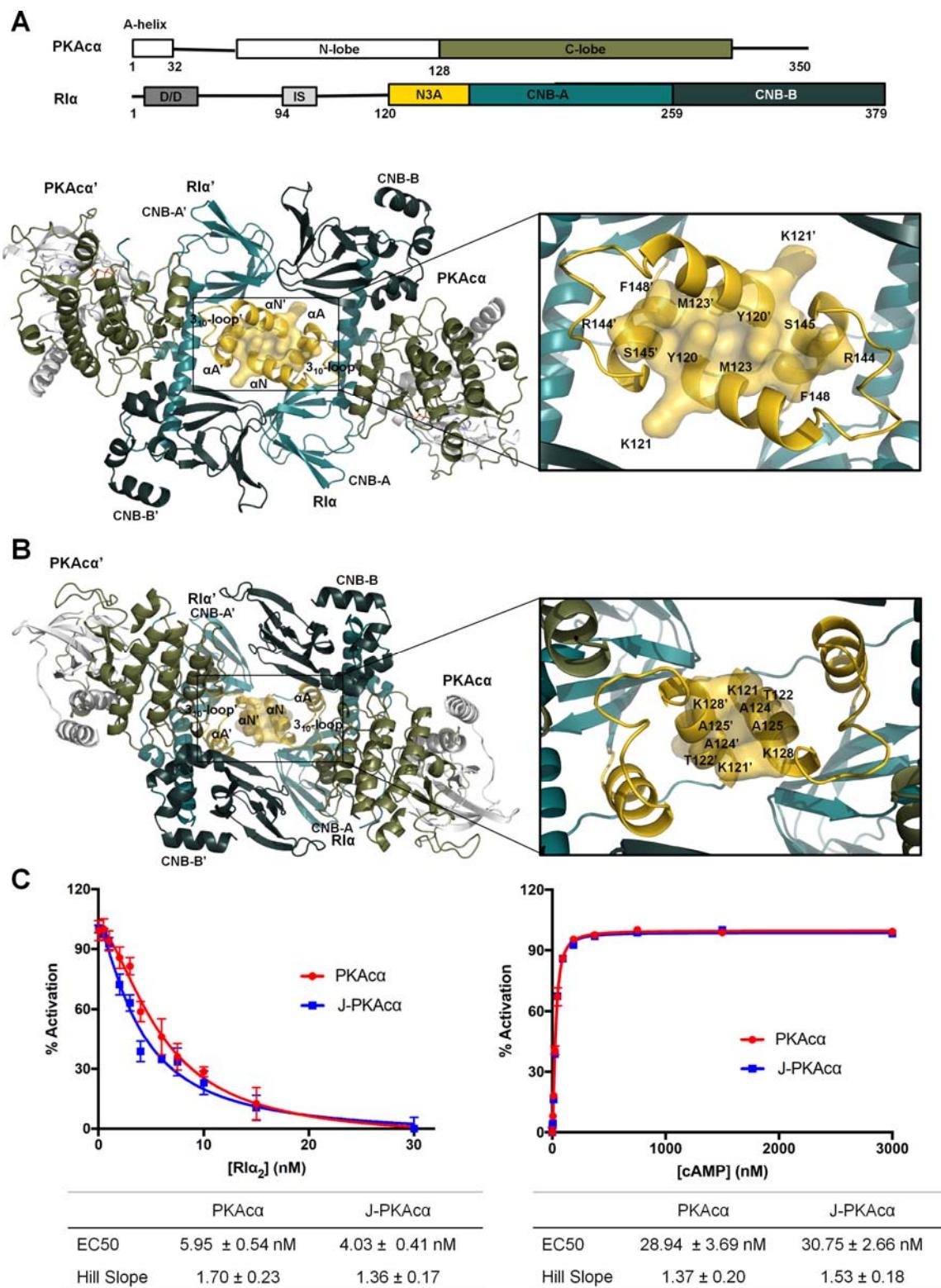
857

858

859

860

861


862

863

864

865

866

867

868 **Figure 4. Interactions of the two Rl α :PKAc α heterodimers in the wt holoenzyme**

869 (A) Interface of the two heterodimers in the wt holoenzyme 1. Domain organization and color
870 coding of the PKAc α and RI α subunits are shown on the top.

871 (B) Interface of the two heterodimers in the wt holoenzyme 2.

872 (C) Fluorescence polarization assays to measure RI α inhibition (left) by PKAc α (red) and J-
873 PKAc α (blue) as well as holoenzyme activation by cAMP (right). All data points are mean \pm s.d.
874 (n = 3 independent experiments).

875

876

877

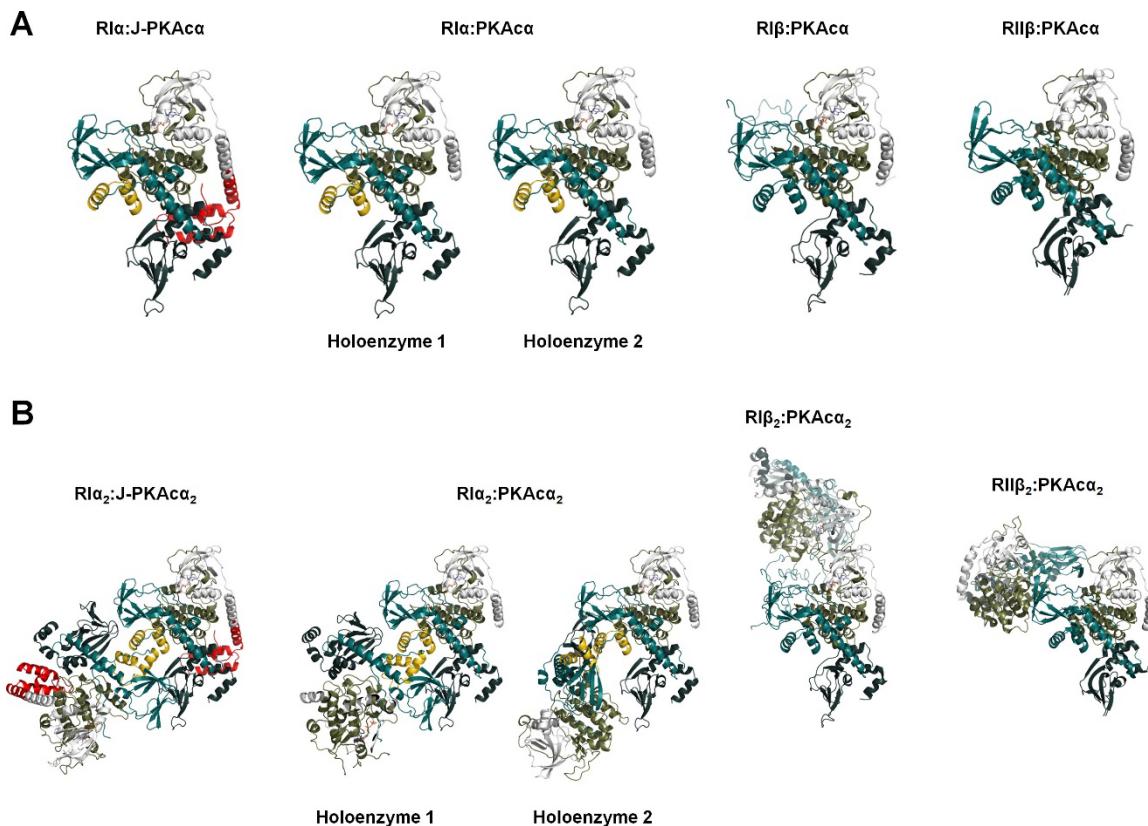
878

879

880

881

882


883

884

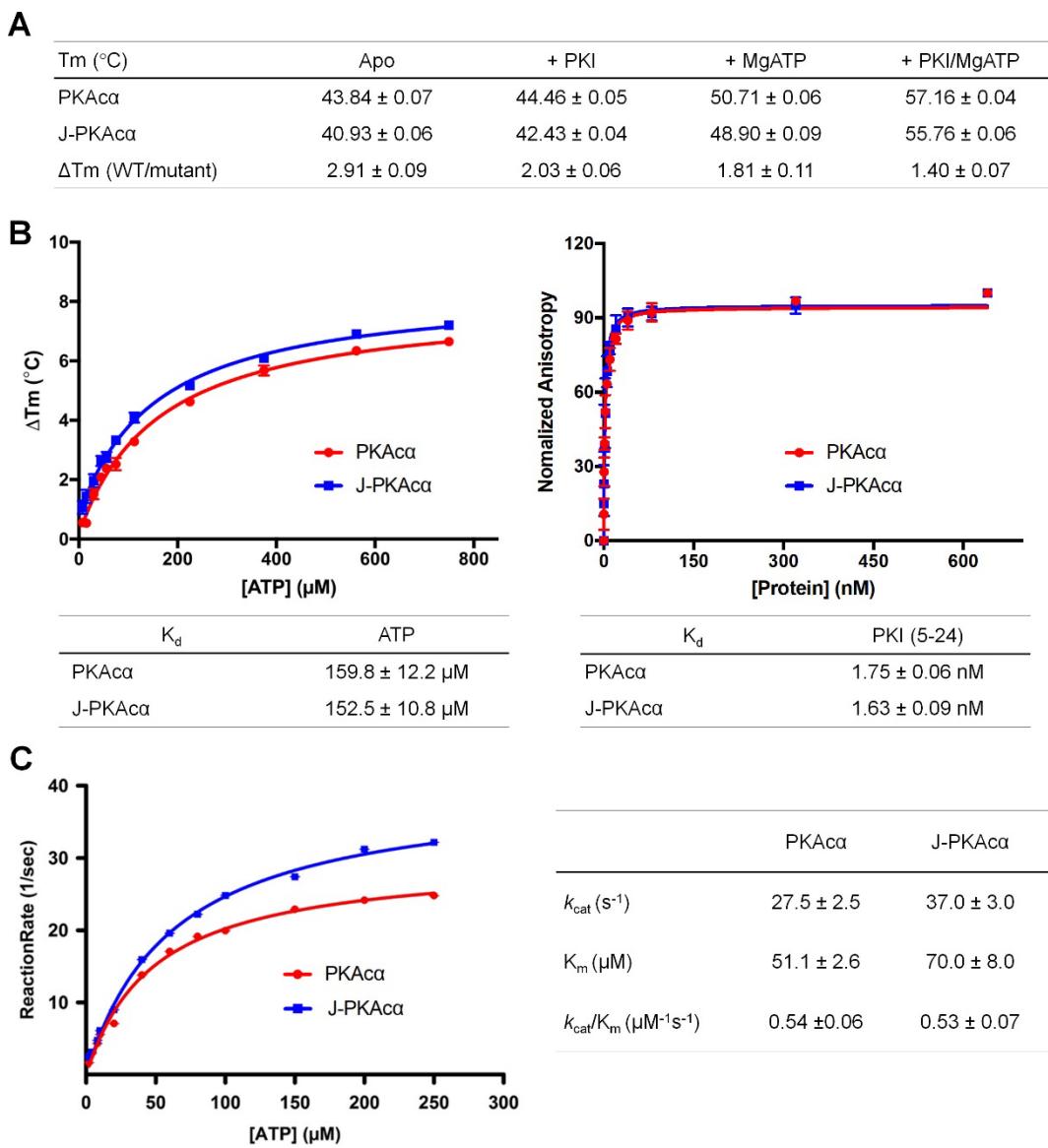
885

886

887

889 **Figure 5. Structural comparison of PKA holoenzymes**

890 (A) Side-by-side view of heterodimers at the same orientation: structures of RI α :J-PKA α ,
891 RI α :PKA α , RI β :PKA α (PDB ID 4DIN) and RII β :PKA α (PDB ID 3TNP) heterodimers in the
892 respective PKA holoenzymes.


893 (B) Structure comparison of the chimeric RI α_2 :J-PKA α_2 and wt RI α , RI β and RII β holoenzymes.

894

895

896

897

898

899 **Figure 6. Stability, ATP binding and kinetic studies of J-PKA α and PKA α**

900 (A) Stability of J-PKA α and PKA α (apo, with ATP, and/or with PKI binding) measured by
901 thermofluor assay.

902 (B) ATP and PKI binding affinities of J-PKA α (blue) and wt PKA α (red). ATP binding (left)
903 and PKI binding (right) were measured by thermofluor and fluorescence anisotropy assay
904 respectively.

905 (C) Steady-state kinetics of phosphotransfer reaction of J-PKA α (blue) and wt PKA α (red). All
906 data points are mean \pm s.d. (n = 3 (panels a and b) and 2 (panel c) independent experiments).

907

908

909

910

911

912

913

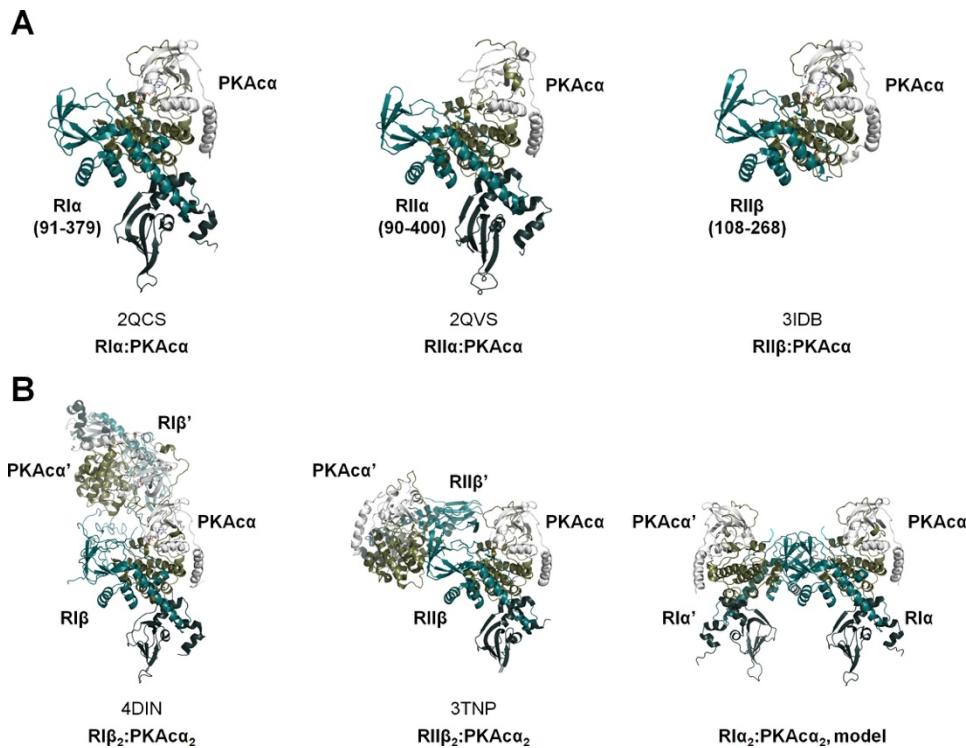
914

915

916

917

918


919

920

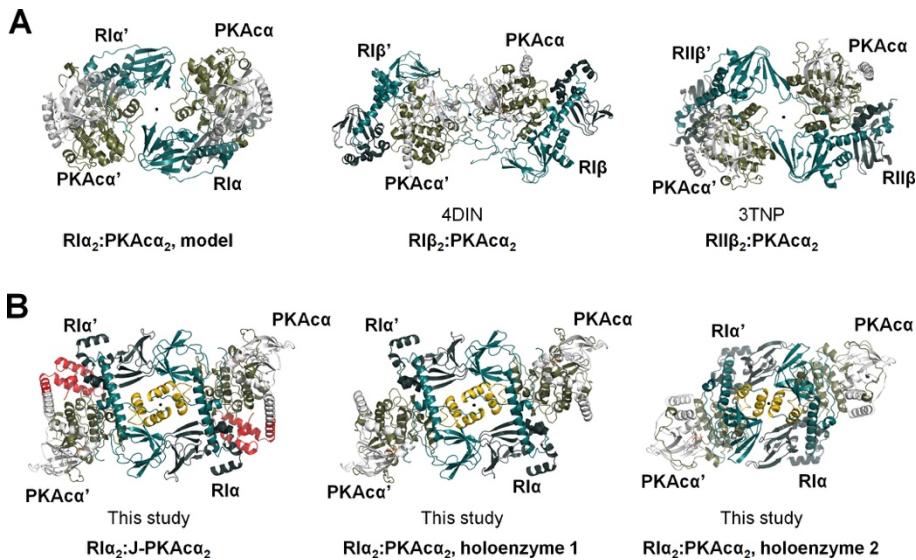
921

922

923

924

925 **Figure S1. Summary of the previously determined structures of truncated PKA R:PKAcα
926 heterodimers and wt R₂:PKAcα₂ holoenzymes**


927 (A) Structures of truncated PKA R:PKAcα heterodimers: RΙα (91-379):PKAcα (PDB ID 2QCS,
928 left) (Kim et al., 2007), RΙΙα (90-400):PKAcα (PDB ID 2QVS, middle) (Wu et al., 2007) and
929 RΙΙβ (108-268):PKAcα (PDB ID 3IDB, right) (Brown et al., 2009).

930 (B) Structures of the wt R₂:PKAcα₂ holoenzymes: RΙΙβ₂:PKAcα₂ (PDB ID 4DIN, left) (Ilouz et
931 al., 2012), RΙΙβ₂:PKAcα₂ (PDB ID 3TNP, middle) (Zhang et al., 2012) holoenzymes which are
932 determined by X-ray crystallography and the RΙα₂:PKAcα₂ model (right) (Boettcher et al., 2011)
933 based on crystal packing of two truncated RΙα(73-244):PKAcα heterodimers. The right
934 R:PKAcα heterodimers are aligned at the same orientation in all of the three holoenzymes.

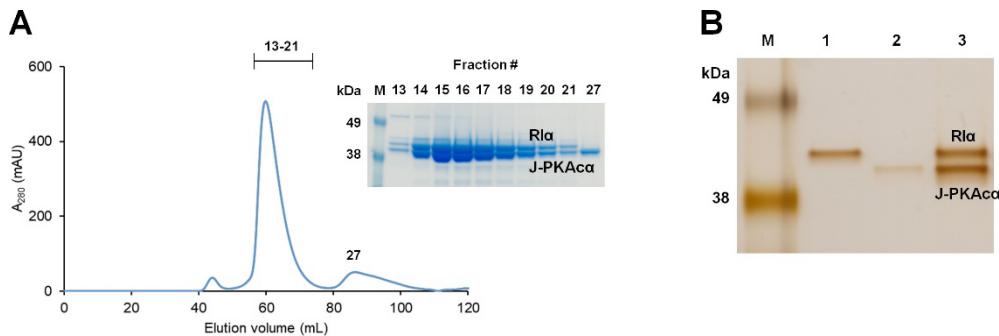
935

936

937

938

939 **Figure S2. Bird-eye view of the structures of PKA R₂:PKAc_α₂ and R₂:J-PKAc_α₂ tetrameric**
940 **holoenzymes determined previously and in this study**


941 (A) Previously determined RIα₂:PKAc_α₂ model (left) (Boettcher et al., 2011), RIβ₂:PKAc_α₂
942 (PDB ID 4DIN, middle) (Ilouz et al., 2012), and RIIβ₂:PKAc_α₂ (PDB ID 3TNP, right) (Zhang et
943 al., 2012) tetrameric holoenzyme structures.

944 (B) In this study determined RIα₂:J-PKAc_α₂ and RIα₂:J-PKAc_α₂ tetrameric holoenzyme
945 structures.

946 The twofold axis position for each holoenzyme is shown as a black dot in the middle..

947

948

951 (A) Analytical gel filtration profile showing formation of RI α ₂:J-PKAc α ₂.

952 (B) The diffracting crystals contain the full-length RI α ₂:J-PKAc α ₂ complex that was used for

953 crystallization. The purified proteins RI α (lane 1), J-PKAc α (lane 2) and the dissolved diffracting

954 crystals (lane 3) were run on a 7% tris-acetate SDS-PAGE gel and silver stained.

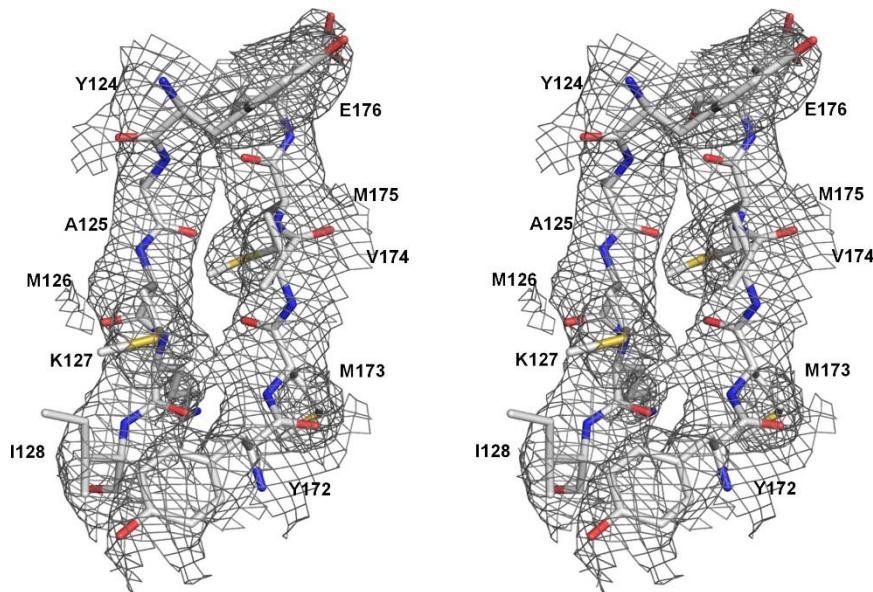
955

956

957

958

959


960

961

962

963

964

965

966 **Figure S4. Cross-eyed stereo view of part of the RI α ₂:J-PKA α ₂ holoenzyme structure in**
967 **the 3.66 Å resolution 2Fo-Fc map at 1 σ**

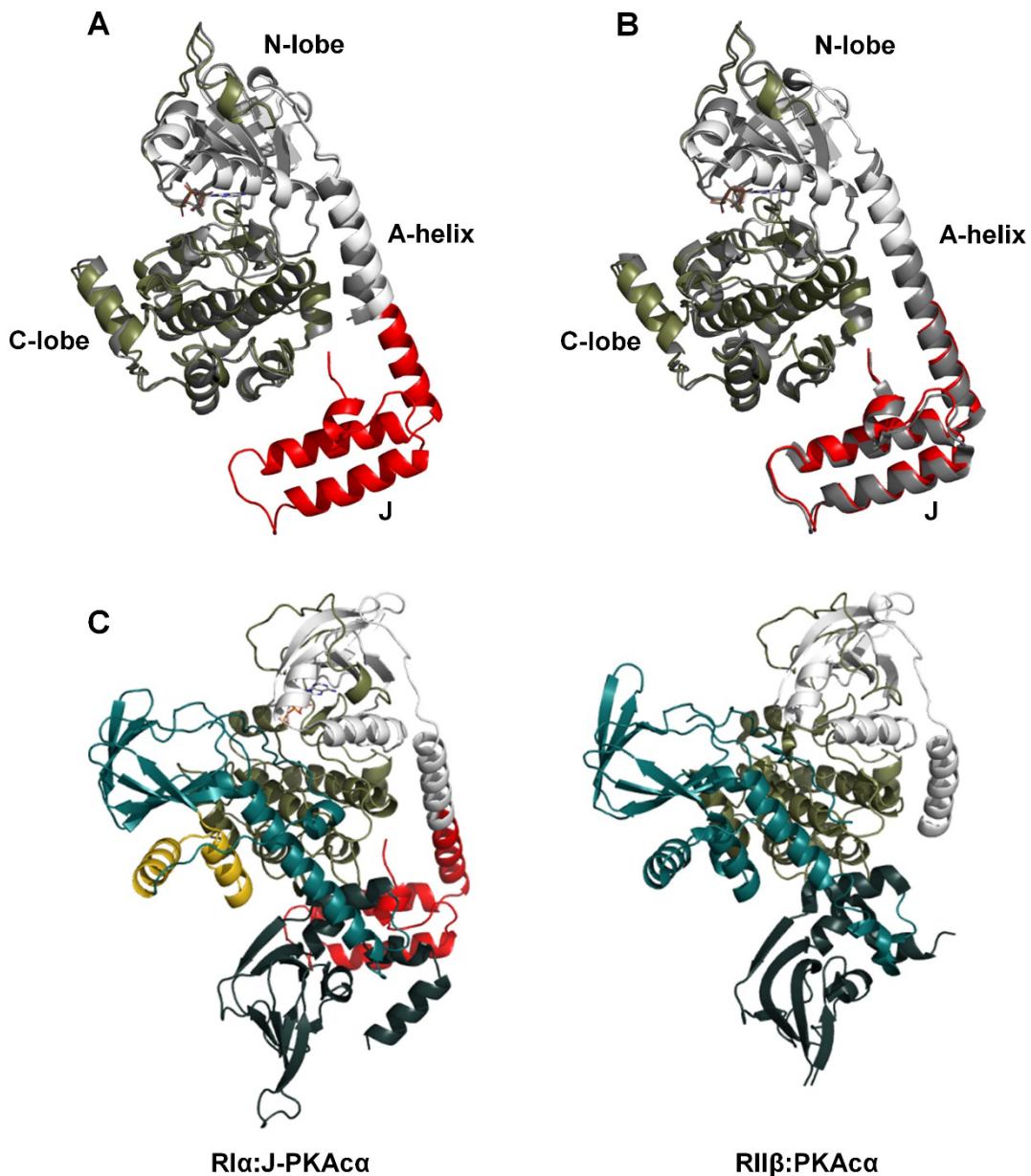
968

969

970

971

972


973

974

975

976

977

979 **Figure S5. Addition of the J-domain does not significantly affect the structure of PKAc α**
980 **and its binding with RI α**

981 (A) Overlay of J-PKAc α (colored) in the chimeric holoenzyme and PKI-bound PKAc α (gray,
982 PDB ID 1ATP).

983 (B) Overlay of J-PKAc α in the chimeric holoenzyme (colored) and PKI-bound J-PKAc α (gray,
984 PDB ID 4WB7).

985 (C) Side-by-side comparison of RI α :J-PKA α in the chimeric holoenzyme and a canonical
986 R:PKA α heterodimer in the RII β_2 :PKA α_2 holoenzyme (PDB ID 3TNP).

987

988

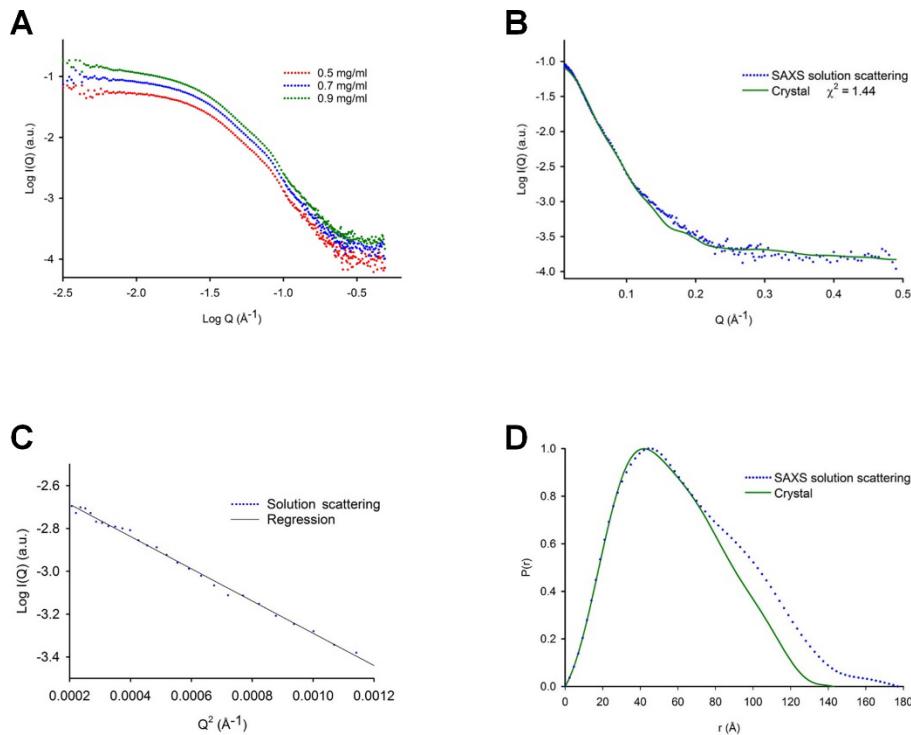
989

990

991

992

993


994

995

996

997

998

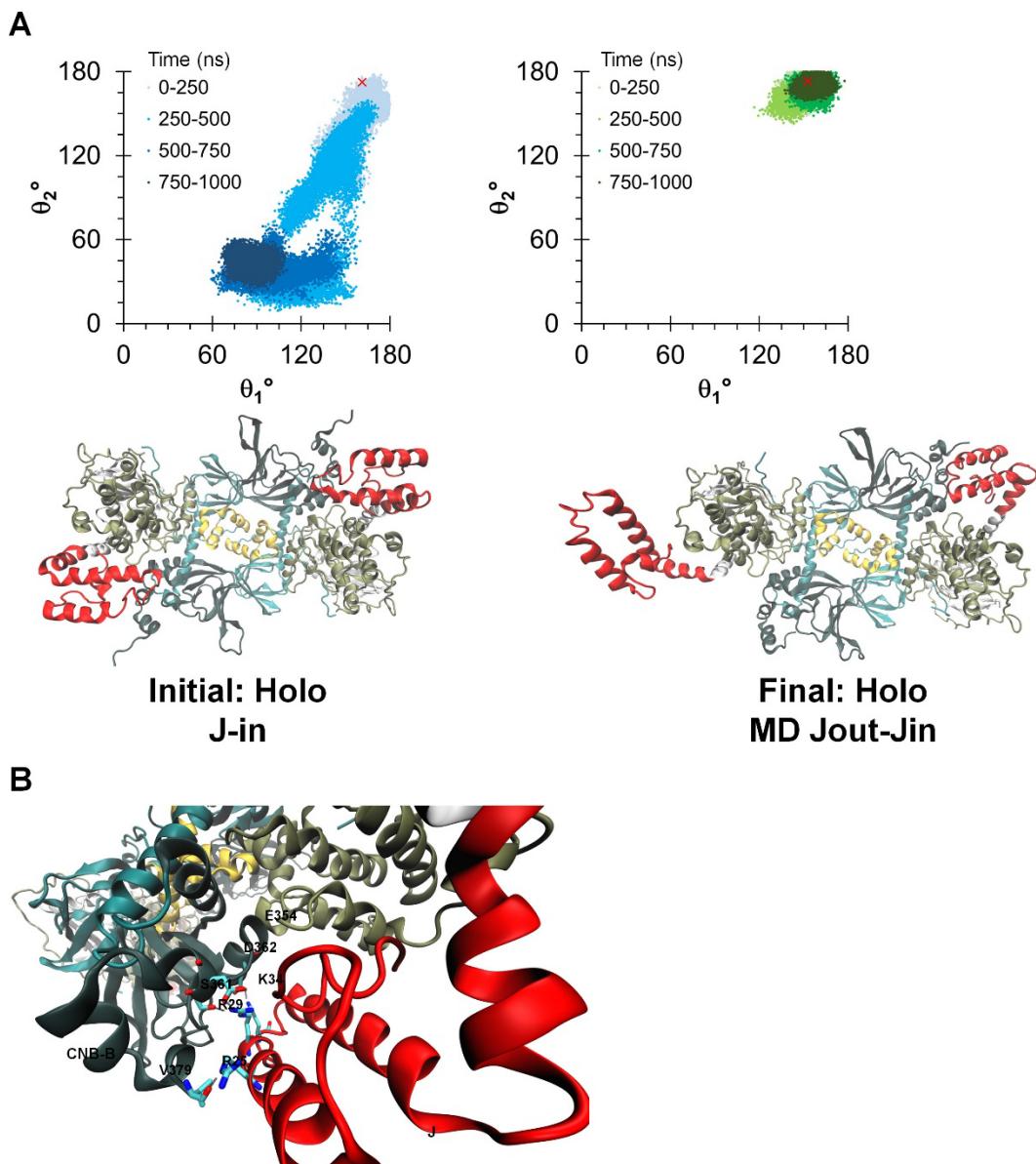
999

1000 **Figure S6. SAXS results from RI α_2 :J-PKA α_2**

1001 (A) SAXS profiles of RI α_2 :J-PKA α_2 at different concentrations.

1002 (B) Calculated scattering curve from crystal structure in continuous green line and SAXS
1003 experimental curve extrapolated to infinity dilution in blue dots.

1004 (C) Guinier plot, I_0 : 0.081, R_g : $48.8 \pm 2.0 \text{ \AA}$ and $Q_{\max} \cdot R_g$: 1.26.


1005 (D) The P(r) functions from the crystal structure of RI α_2 :J-PKA α_2 in continuous solid green line
1006 and SAXS experimental data for the chimeric holoenzyme in blue dots.

1007

1008

1009

1010

1012 **Figure S7. The J-domain configurations during the MD simulation started from the J-in**
1013 **state model**

1014 (A) Top: Simulation of RI α_2 :J-PKA α_2 showing the orientation of the J-domain for each copy of
1015 the chimera in the holoenzyme. The angles are the same as those defined in Figure 2. The red 'x'
1016 indicates the initial conformation of the J-domain. Bottom: Initial (left) and final (right)
1017 configurations of the J-domain in the holoenzyme.

1018 (B) Hydrogen bonds that formed between the J-domain and CNB-B domain during the
1019 simulation.

1020

1021

1022

1023

1024

1025

1026

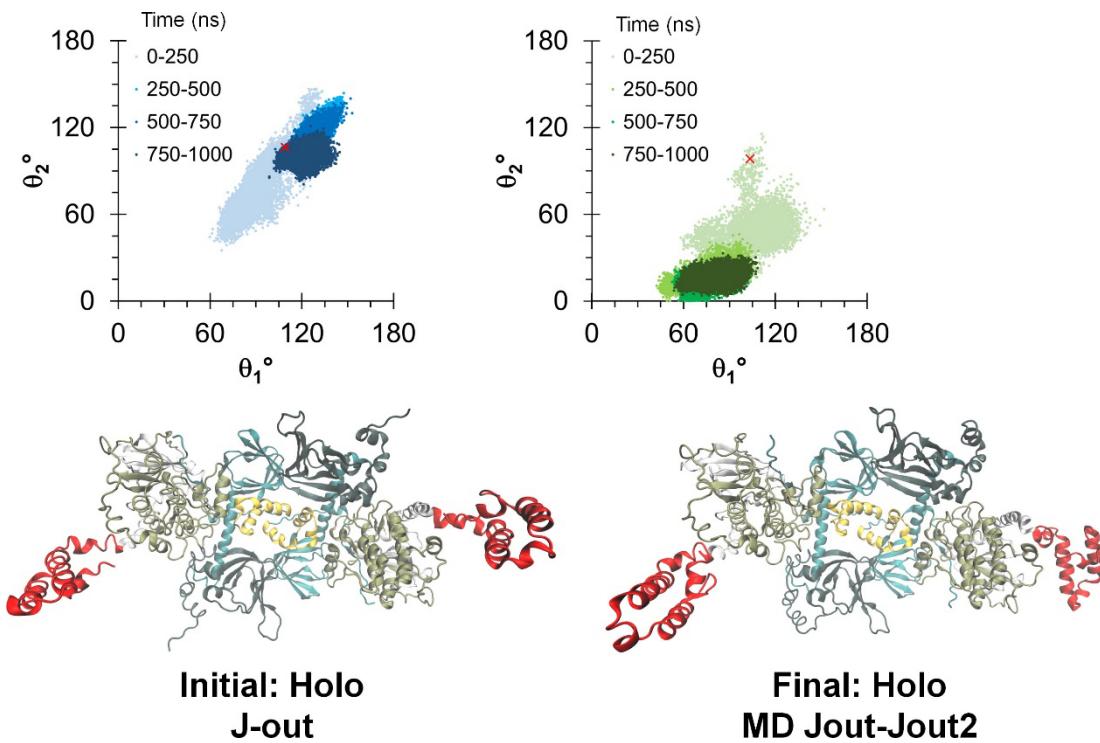
1027

1028

1029

1030

1031


1032

1033

1034

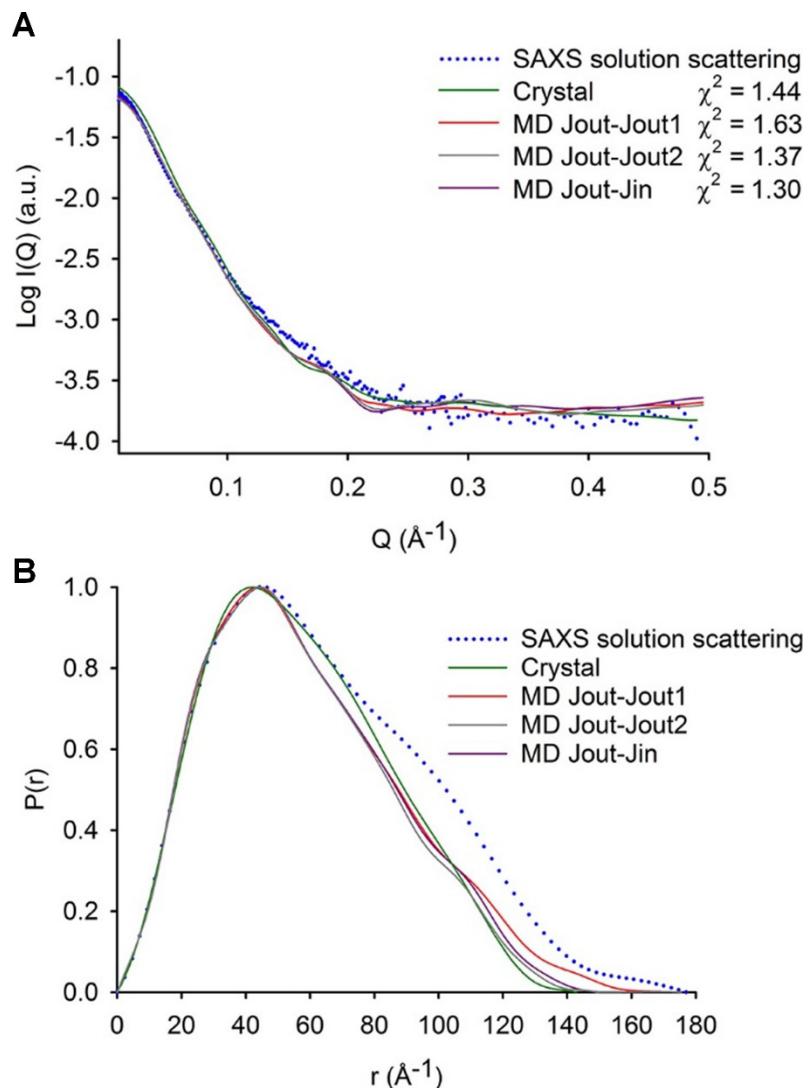
1035

1036

1037

1038 **Figure S8. The J-domain configurations during the MD simulation started from the J-out**
1039 **state model**

1040 Top: Simulation of RI α_2 :J-PKA α_2 showing the orientation of the J-domain for each copy of the
1041 chimera in the holoenzyme. The angles are the same as those defined in Figure 2. The red 'x'
1042 indicates the initial conformation of the J-domain. Bottom: Initial (left) and final (right)
1043 configurations of the J-domain in the holoenzyme.

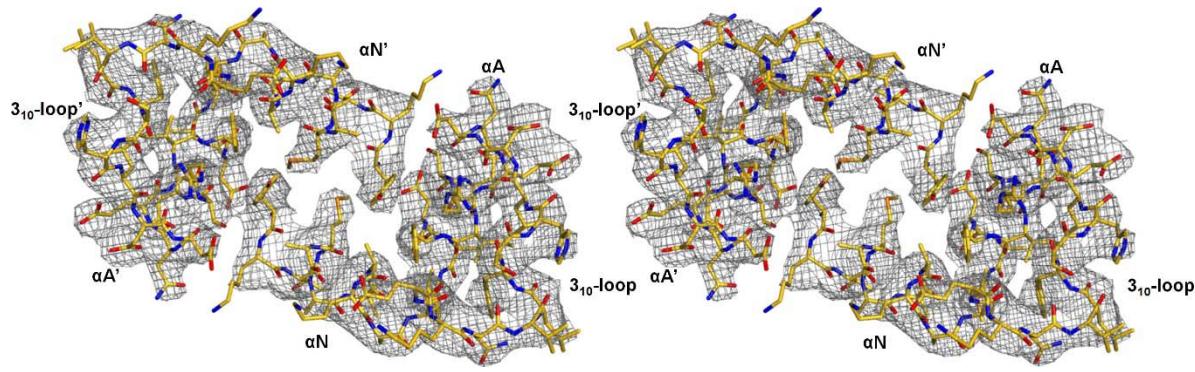

1044

1045

1046

1047

1048



1049

1050 **Figure S9. Comparison among the final conformations from holo MD simulations, holo
1051 crystal and SAXS experimental curves**

1052 (A) Calculated scattering curves from holo crystal and final conformations of MD simulations in
1053 solid lines and SAXS experimental curve extrapolated to infinity dilution in blue dots.

1054 (B) The $P(r)$ functions from MD final conformations and holo crystal in solid lines and SAXS
1055 experimental data for the chimeric holoenzyme in blue dots. Calculated χ^2 , R_g and D_{\max} values
1056 are reported in Table S2.

1057

1058 **Figure S10. Cross-eyed stereo view of the N3A-N3A' interface in the RIα₂:J-PKAα₂**
1059 **holoenzyme structure in the 3.66 Å resolution 2Fo-Fc map at 1 σ**

1060

1061

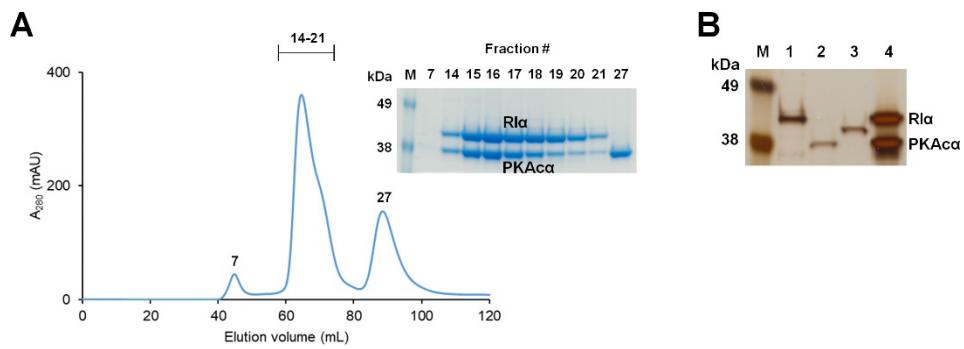
1062

1063

1064

1065

1066


1067

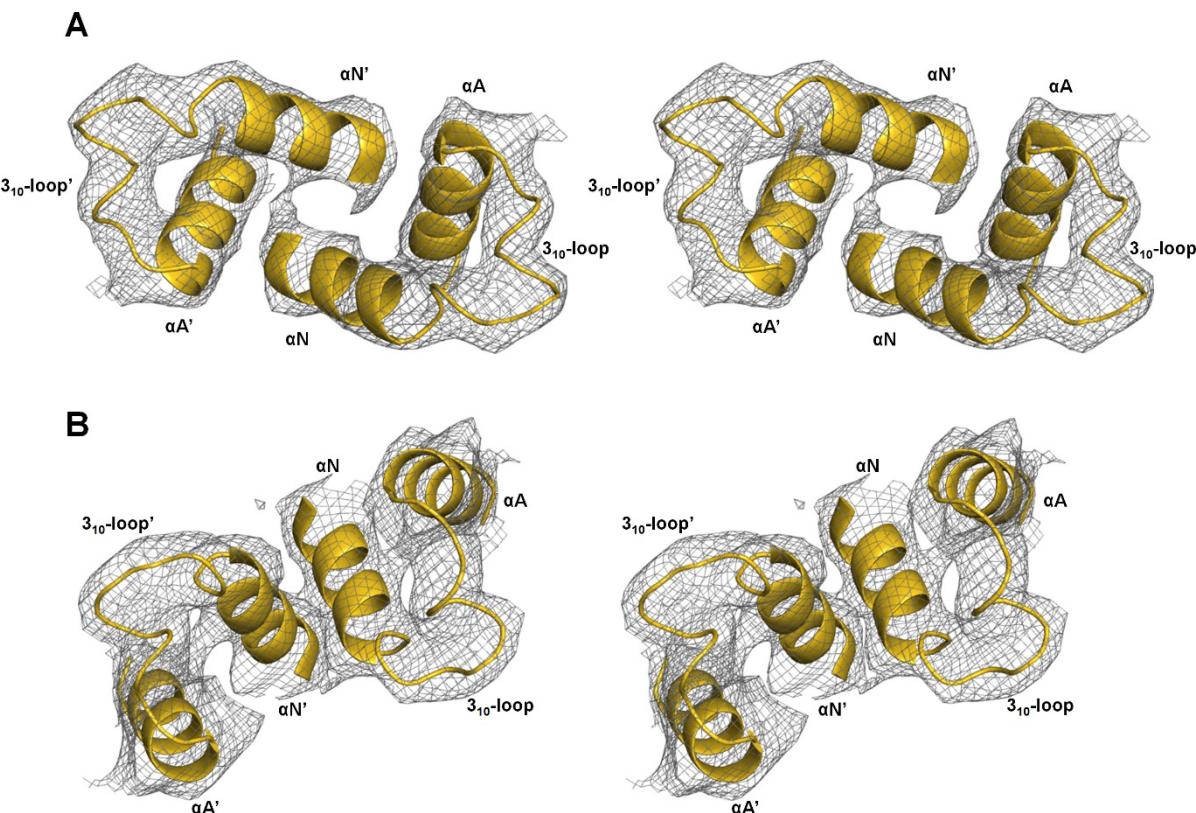
1068

1069

1070

1071

1089 **Figure S12. Wt holoenzyme 1 and 2**


1090 (A) Overlay of the RI α_2 :PKAc α_2 holoenzyme 1 (gray) and chimeric RI α_2 :J-PKAc α_2 holoenzyme
1091 (colored).

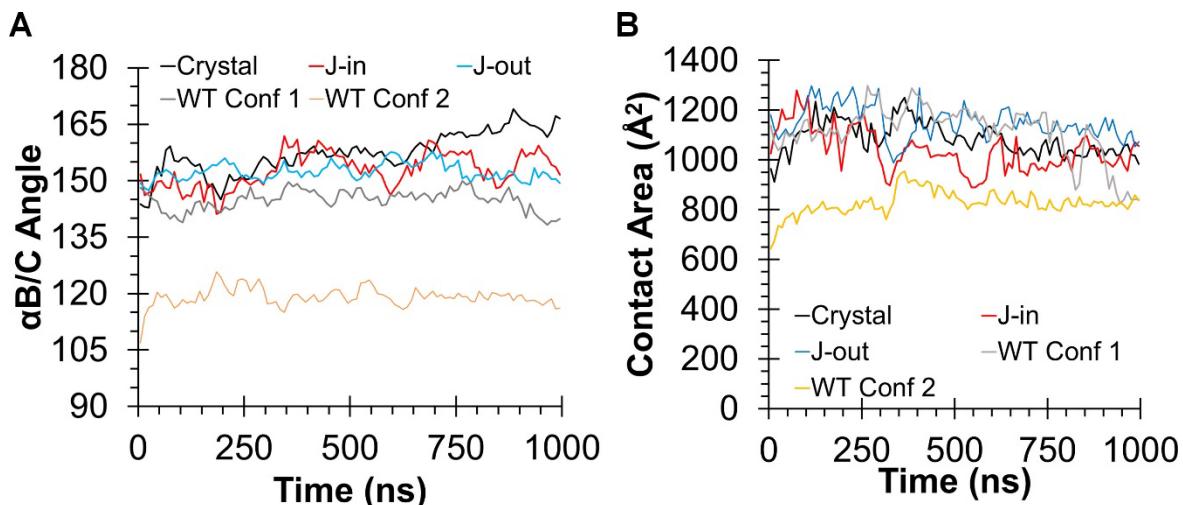
1092 (B) Overlay of the RI α :PKAc α heterodimers in the wt holoenzyme 1 (colored) and 2 (gray).

1093 (C) Overlay of RI α :PKAc α in the wt holoenzyme 1 (colored) and the previously reported
1094 RI α :PKAc α heterodimer (gray, PDB ID 2QCS).

1095 (D) The minimum C α distances between PKAc α and RI α' in wt holoenzyme 1 (left) and 2 (right).

1096 (E) Formation of salt bridges between the C-lobe of PKAc α and the CNB-B' domain of RI α' in
1097 wt holoenzyme 2 during MD simulation.

1099 **Figure S13. Cross-eyed stereo view of the N3A-N3A' interfaces in the conformations 1 and**
1100 **2 of the RI α_2 :J-PKA α_2 holoenzyme structure in the 3.66 Å resolution 2Fo-Fc map at 1 σ ,**
1101 **respectively**


1102 (A) Cross-eyed stereo view of the N3A-N3A' interface in the conformation 1 of the RI α_2 :J-
1103 PKA α_2 holoenzyme structure.

1104 (B) Cross-eyed stereo view of the N3A-N3A' interface in the conformation 2 of the RI α_2 :J-
1105 PKA α_2 holoenzyme structure.

1106

1107

1108

1109

1110 **Figure S14. The RIα-RIα' interfaces in the RIα chimeric holoenzyme (Crystal), models of**
1111 **the chimeric holoenzyme with both J-domains in J-in state (J-in) and with both J-domains**
1112 **in J-out state (J-out), and wt holo (WT) during MD simulations**

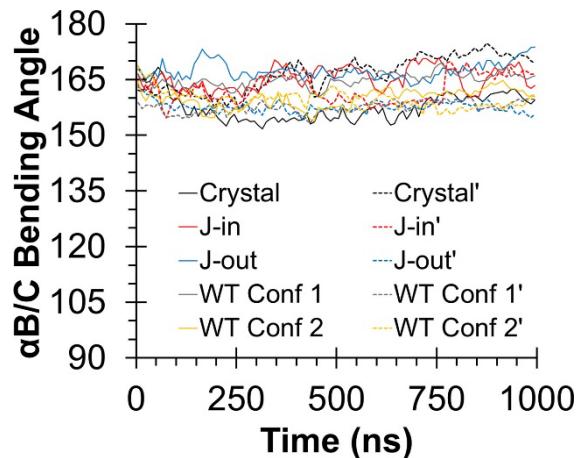
1113 (A) Orientation between the two αB/C-helices in the RIα dimers as a function of time.

1114 (B) Contact area of the RIα-RIα' interfaces.

1115

1116

1117


1118

1119

1120

1121

1122

1123
1124 **Figure S15. Dynamics of the α B/C-helix in the RI α chimeric holoenzyme (Crystal), models**
1125 **of the chimeric holoenzyme with both J-domains in J-in state (J-in) and with both J-**
1126 **domains in J-out state (J-out), and wt holo (WT) during MD simulations**

1127 Linearity of the α B/C-helices as defined by the C α atoms of D225-G235-K250. The α B/C-
1128 helices in simulations do not sample the bent conformation that is observed in the cAMP-bound
1129 RI α homodimer. Solid lines indicate the α B/C bending angle in one R subunit while dashed lines
1130 indicate those in the symmetry-related R subunit in the holoenzyme.

1131

1132

1133

1134

1135

1136

1137