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Abstract

Auditory attention decoding (AAD) through a brain-computer interface has had a flowering of developments
since it was first introduced by Mesgarani and Chang (2012) using electrocorticograph recordings. AAD has
been pursued for its potential application to hearing-aid design in which an attention-guided algorithm
selects, from multiple competing acoustic sources, which should be enhanced for the listener and which
should be suppressed. Traditionally, researchers have separated the AAD problem into two stages:
reconstruction of a representation of the attended audio from neural signals, followed by determining the
similarity between the candidate audio streams and the reconstruction. In this work, we compare the
traditional two-stage approach with a novel neural-network architecture that subsumes the explicit similarity
step. We compare this new architecture against linear and non-linear (neural-network) baselines using both
wet and dry electroencephalogram (EEG) systems. Our results indicate that the wet and dry systems can
deliver comparable results despite the latter having one third as many EEG channels as the former, and that
the new architecture outperforms the baseline stimulus-reconstruction methods for both EEG modalities.
The 14-subject, wet-electrode AAD dataset for two competing, co-located talkers, the 11-subject,
dry-electrode AAD dataset, and our software are available to download for further validation,
experimentation, and modification.

1 Introduction 1

Hearing loss, and the associated use of hearing-aids, is rising among the general population [1], and as shown 2

by recent statistics from the US Dept. of Veterans Affairs, is particularly prevalent among retired military 3

personnel [2]. Despite widespread use of hearing aids, and the incorporation of spatial and spectral 4

algorithms for noise reduction, hearing-aids often are considered unsatisfactory in regard to their performance 5

in noisy environments [3–5]. Particularly when background noise includes other talkers, hearing aids suffer 6

because they have difficulty separating the “signal” (i.e., the talker of interest to the listener) from the 7

“noise” (i.e., all other talkers) due to similarities in spectro-temporal characteristics. The failure of hearing 8

aids to improve listening ability in complex acoustic environments, either due to poor device performance, or 9

lack of use triggered by poor performance, is associated with social isolation and various forms of cognitive 10

decline such as depression [6–8]. Therefore, solving the problem of assisted listening in multi-talker 11

environments could have wide societal benefits in terms of communication and mental health. Auditory 12

attention decoding (AAD) is a recent approach aimed at such a solution, one which exploits knowledge of the 13

listener’s auditory intent (attention) to isolate and enhance the desired audio stream and suppress others. 14

Evidence for neural encoding of speech has been shown with various sensing modalities including 15

electroencephalography (EEG) [9], magnetoencephalography (MEG) [10], and electrocorticography 16
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Fig 1. System architectures for auditory attention decoding: backward model. The temporal
response function (TRF) can be linear (least squares, see Eq. 1) or non-linear (neural network, see Fig 3).

(ECoG) [11]. The exploitation of such encoding for AAD in a two-talker paradigm was initially demonstrated 17

by Mesgarani and Chang [12], through a classifier acting on speech spectrograms reconstructed from ECoG 18

data. Comparison of the predicted spectrograms with those from the actual speech sources provided the 19

identity of the attended talker with 93% accuracy when the subjects were known to be attending to the 20

instructed stimulus. Since then, AAD has been achieved successfully with many variations on this initial 21

technique. 22

The most common approach to AAD, first described in [13] and depicted in Fig 1, involves EEG for 23

capturing neural data as a more practical and less invasive modality than ECoG. The approach uses a linear 24

least-squares method for stimulus (broadband speech envelope) reconstruction and correlation of actual and 25

predicted speech envelopes to identify the attended talker. Stimulus reconstruction is also known as the 26

“backward” problem in AAD, as the mapping from EEG to stimulus is the reverse of the natural auditory 27

stimulus/response phenomenon. By contrast, predicting EEG from the stimulus is known as the “forward” 28

problem. 29

The attention decision typically is between two simultaneous, spatially separated talkers. This approach 30

has been modified to evaluate: sensitivity to number of EEG channels and size of training data [14]; 31

robustness to noisy reference stimuli [15, 16]; the use of auditory-inspired stimulus pre-processing including 32

subband envelopes with amplitude compression [17]; cepstral processing of EEG and speech signals for 33

improved correlations [18]; the effects of speaker (spatial) separation and additional speech-like background 34

noise [19]; the effects of (simulated) reverberation [20]; and potential performance improvements through 35

various regularization methods [21]. 36

Considering the AAD pipeline as comprising steps for neural data acquisition, stimulus representation, 37

signal processing (e.g., forward or backward predictive modeling), and attention determination, alternate 38

techniques have been described with variations of each of these components. MEG [22] and ECoG [23] 39

continue to serve as neural sensing modalities, while EEG channels have been reduced in number in an effort 40

to move toward less obtrusive, portable systems [24,25]. Speech stimuli have been represented with 41

spectrograms [23] and frequency-dependent envelopes after gammatone filtering [26]. To exploit the power 42

and biological relevance of non-linear processing, effective implementations of the backward model with 43

neural networks have been shown [27], and while much less popular, linear versions of the forward model 44

(predicting EEG from the stimuli) are described in [21, 25]. As an alternative to both forward and backward 45

modeling, canonical correlation analysis, which involves transforming both stimulus and response to 46

maximize mutual projections and thus improve correlations, has been applied to EEG and audio data, both 47

with various filters, to enhance AAD performance [28]. Finally, state-space models have been applied as a 48

final step in AAD systems to smooth noisy attention decisions and allow for near real-time update rates [29]. 49

Measuring the performance of AAD systems typically involves an intuitive computation of decoding 50

accuracy, i.e., the percentage of decoding opportunities for which the system correctly identifies the attended 51

talker. Overall results often are generated with a leave-one-out cross-validation scheme iterated over the 52

collected dataset. This approach is used in both the backward [13–15,17,21] and forward [25] modeling 53

paradigms. System accuracy also has been reported for predicting the unattended talker [13, 20], but in both 54
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Fig 2. System architectures for auditory attention decoding: DNN binary classification. See
Fig 4 for a specific instance of the DNN.

cases performance is worse than that for predicting the attended talker. In [29], the `1-norm of the attended 55

and unattended decoder coefficients are used as “attention markers” to generate a smooth, near real-time 56

(∼2-second latency) attentional probability through a state-space estimator. Talker classification is 57

considered correct if the probability estimate and its 90% confidence interval for the attended talker are 58

above 0.5, and accuracy is again measured as the percentage of correctly classified opportunities. In [21, 27], 59

performance is reported as an information transfer rate, i.e., the number of correct decoding decisions per 60

minute. 61

Comparison of performance statistics across different published results, even those using the same 62

decoding approach and performance metric, is hampered by variations in experimental parameters including 63

talker number, angular separation, and gender, as well as number/placement of EEG electrodes, and by 64

variations in processing parameters such as EEG or speech-envelope bandwidths, and correlation lags and 65

window sizes. To address these barriers, in this paper we describe two datasets and three decoding 66

algorithms along with results from each of the six combinations. The datasets include wet and dry EEG data 67

collected from 14 and 11 subjects, respectively, during an auditory-attention experiment with two 68

simultaneous, co-located talkers (one female, one male). The algorithms include a linear least-squares 69

stimulus-reconstruction decoder described in [13], a neural-network stimulus-reconstruction decoder 70

described in [27], and a novel convolutional neural-network classifier that predicts the attended talker 71

without explicit forward or backward prediction (Fig 2). 72

2 Methods 73

2.1 AAD Experimental Collection 74

2.1.1 Protocol 75

Speech from two co-located talkers, one male, and one female, was presented to each subject in a quiet, 76

electrically shielded audiometric booth. The audio was presented from a single loudspeaker directly in front 77

of the subject, with the stimuli lasting approximately 30 minutes. The stimuli consisted of four 78

“wikiHow.com” instructions lasting approximately 5 minutes each: “How to Make Waffles”, “How to Take 79

Care of a Dog”, “How to be a Shepherd”, and “How to Identify Birds”. Each story (attended audio) was 80

heard twice, once read by the male and once by the female talker, with a different story by the opposite 81

gender presented simultaneously as the distractor (unattended) audio stream. The order of the two talkers, 82

as well as the attended and distractor audio streams were randomized for each subject. Participants were 83

instructed as to which gender talker to focus on at the start of each story on a screen in front of them 84

throughout the experiment. Each story was interrupted randomly after 5-10 sentences were presented, and 85

the participant was asked to repeat the last sentence of the attended talker. We term each uninterrupted 86

listening interval as a “part”. A subset of subjects also participated in an auditory oddball task, but that 87

data is not part of this analysis. 88
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2.1.2 Subjects 89

Fourteen MIT Lincoln Laboratory employees (9 male, 5 female) gave written, informed consent to participate 90

in the experiment, in a protocol approved by the MIT Committee on the Use of Humans as Experimental 91

Subjects and the US Army Medical Research and Materiel Command (USAMRMC) Human Research 92

Protection Office. Eleven subjects, partially overlapping with the original fourteen, agreed to participate in a 93

second experiment with the same protocol as the first. The first experiment used a wet EEG system, and the 94

second used a dry EEG system (see Section 2.1.3 below). Most participants self-reported normal hearing; two 95

subjects reported known hearing loss. 96

To ensure that subjects were on task, as well as potentially to exclude subjects that were unwilling or 97

unable to attend to the target speaker, we checked the randomized interruptions of the stimuli presentations 98

for a qualitative measure of attention. No subjects were excluded due to performance concerns. 99

2.1.3 EEG Instrumentation and Preprocessing 100

Wet electrode EEG data were collected using a Neuroscan 64-channel Quik-Cap and a SynAmps RT 101

amplifier with a sampling rate of 1000 Hz, and recorded in Curry data-acquisition software (Compumedics, 102

Charlotte, NC). Additional electrodes were placed on both mastoids, as well as above, below, and next to the 103

left eye. The reference electrode was located halfway between CZ and CPZ. Dry electrode EEG data were 104

collected using a Wearable Sensing DSI-24 system (San Diego, CA), a joint sensor platform and signal 105

amplifier. The system records from 18 scalp channels and two reference channels attached to the subject’s 106

earlobes. Data were collected at a 300 Hz sampling rate using DSI-Streamer software. 107

Prior to analysis, all EEG data were down-sampled to 100 Hz using MATLAB’s resample function 108

(Mathworks, Natick, MA), which applies an anti-aliasing low-pass filter with a cutoff frequency of 50 Hz. 109

EEG data were band-pass filtered with a passband frequency of 2 to 32 Hz. 110

2.1.4 Audio Preprocessing 111

For both the stimulus reconstruction and binary classification methods, we pre-processed the two clean, 112

audio streams to extract their broadband envelopes using the iterative algorithm in [30]. Envelopes were 113

subsequently downsampled to a 100-Hz sampling rate. 114

2.2 Linear Decoding 115

To recreate the linear, stimulus-reconstruction approach in [13] (see Fig 1), we implemented a regularized, 116

least-squares transform (LSQ) from EEG response data to audio envelope according to the ridge regression 117

equation: 118

arg min
w

Loss(w) = ‖Aw− y‖22 + α‖w‖22 (1)

EEG data segments are stacked in rows of the A matrix. Each row vector contains all the time points of the 119

context window for all the EEG channels. y is a column vector of the audio envelope. Each EEG row vector 120

is transformed or decoded by a weight vector w into the audio envelope sample that corresponds to the most 121

recent time sample in the row vector. 122

The LSQ weights, w, are often called the temporal response function (TRF) from the response-prediction 123

EEG literature in which the EEG is seen as a response to the audio stimulus. Strictly speaking, when 124

attention decoding is formulated in the backwards direction, the weights represent an inverse TRF. 125

The regularization parameter, α, was selected on a per-subject, per-test-part basis from a set of three 126

heuristically chosen values. A robust standard scaling was applied to the training and testing audio and EEG 127

data, also on a per-subject, per-test-part basis, using the estimated median and inter-quartile range of the 128

training data. Each segment of data used for the LSQ method (and the DNN correlation-based method) was 129

26 samples long (approximately 250 ms given the 100-Hz sampling rate). Estimation was performed using 130

Scikit-learn’s linear_model.RidgeCV method [31]. Separate models were trained for each subject; no 131

transfer learning across subjects was used in this analysis. 132
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2.3 Nonlinear Decoding 133

The motivation for applying a deep neural network (DNN) to the AAD problem is that a non-linear decoder 134

may provide improved performance relative to a linear decoder due to the inherent non-linear processing of 135

acoustic signals along the auditory pathway. A DNN is a prototypical non-linear method flexible enough to 136

handle multi-dimensional time series data. We use a neural network inspired by [27] for the correlation-based 137

classifier, and a novel convolutional DNN for the integrated classification decision architecture. 138

2.3.1 Neural Network for Stimulus Reconstruction 139

A simple neural-network architecture comprising a single hidden layer with two nodes was shown in [27] to 140

yield the best performance from a group of more complicated networks considered. Our adaptation of that 141

network, shown in Fig 3, includes batch normalization [32] before the inputs to each layer, and a hard 142

hyperbolic tangent (as opposed to a linear function) for the output layer’s activation to enforce our prior 143

expectation that the audio envelope be bounded. 144

BN

Tanh Dropout

Batch

Norm HTanh

X

Multi-channel EEG

FC
1

FC
2

y

Predicted

Audio

Fig 3. The neural network architecture for stimulus reconstruction, based on the design
in [27]. There is one hidden layer with two nodes (FC1) to enforce significant compression of EEG data
before being transformed to a predicted audio stimulus (see Fig 1 for the system architecture). BN = batch
normalization, FC = fully connected.

The network was trained with the Adam optimizer using a batch size of 8192*8 samples, weight decay of 145

10, a learning rate of 10−3 for the first 150 steps, and then a learning rate of 10−4 for the remaining steps for 146

a total of 250 steps. These parameters were heuristically chosen by inspecting intermediate train and 147

validation-set loss curves where two additional parts were reserved from within the train set for validation. 148

Following [27] we also employed a correlation-based loss function rather than a mean-squared error-loss 149

function to exploit the prior knowledge that we ultimately will be testing the reconstructed waveform and 150

AAD performance with a correlation metric. 151

2.3.2 Neural Network for Direct Classification 152

Our novel end-to-end classification network with integrated similarity computation between EEG signals and 153

a candidate audio envelope is pictured in Fig 4. It comprises two convolutional layers, the first of which uses 154

a kernel of three samples, and the second of which uses a kernel of one sample. The convolutional layers are 155

followed by a set of four, fully connected layers that decrease in size in the later stages. We use batch 156

normalization and dropout [33] throughout, and the exponential linear unit [34] for the non-linearity. 157

Training includes a binary cross-entropy loss function, batch size of 1024, Adam optimizer, no weight decay, 158

and a learning rate of 10−3. We terminated the optimization process if the loss on the training set declined 159

to below 0.09 or if the optimizer had run for 2400 steps. Because of computational limits on our computers, 160

we randomly downsampled the 10-second set of samples over which a frame was evaluated by a factor of four. 161
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Fig 4. The convolutional architecture used for integrated similarity computation between
EEG and a candidate audio stream. Components include batch normalization (BN), convolution layers
(Convi), exponential linear units (ELU), drop-outs (DO), and fully connected layers (FCi). Wet EEG (kernel,
num ch in, num ch out): Conv1: 3x65x64, Conv2: 1x64x2, Dry EEG: Conv1: 3x19x19, Conv2: 1x19x2, Both:
FC1: 246x200, FC2: 200x200, FC3: 200x100, FC4:100x1, MaxPool 1D, stride:2. See Fig 2 for the system
architecture.

2.4 Methods of Evaluation 162

2.4.1 Correlation-Based Evaluation 163

Algorithm performance was evaluated in a leave-one-out cross-validation paradigm across all audio parts 164

presented to the subject. Multi-part training was performed by concatenating the presented audio data and 165

recorded EEG response data. The concatenation was performed after each part was converted into a data 166

matrix for the algorithm estimation to avoid discontinuities. The LSQ (linear) and DNN (non-linear) 167

estimators were trained to reconstruct the attended audio using the training audio and EEG. Then, given the 168

test EEG, each algorithm attempted to reconstruct the attended audio stimulus. 169

The estimated audio was then compared to the two candidate audio streams (attended and unattended) 170

using Pearson correlation. The correlation was computed for ten-second, non-overlapping windows for the 171

test part. If the left-out part was less than ten seconds, it was not evaluated. Decoding accuracy was 172

computed as the percentage of 10-second windows for which the correlation coefficient with the attended 173

audio envelope was higher than the correlation coefficient with the unattended audio envelope. 174

2.4.2 Classification-Based Evaluation 175

In the DNN classification architecture, the algorithm directly makes a similarity prediction between the 176

recorded EEG and each of the candidate audio streams. In other words, the similarity metric is learned by 177

the network during the training rather than dictated by the user. Given the similarity scores for each 178

candidate audio stream, the attended stream is declared as the one with the highest score. To keep the 179

decision rate the same between the two network architectures, we provide the classification algorithm data 180

segments that are ten seconds in duration. 181
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3 Results 182

3.1 Decoding Accuracy 183

Decoding results for the wet EEG system are shown in Fig 5, and for the dry EEG in Fig 6. Each figure 184

shows the per-subject average decoding accuracy using the linear correlation, neural-network based 185

correlation, and DNN classification methods. Chance-level performance, indicated by the black stars, was 186

computed as the 95th percentile point of a binomial distribution with p = 0.5 and n equal to the number of 187

non-overlapping 10-second windows. Mean decoding accuracies across subjects are summarized in Table 1. A 188

2-way mixed-model ANOVA (EEG Type by Algorithm Type) was performed with subjects modeled as a 189

random factor. We found a main effect for the choice of algorithm type (F (2, 56) = 73.5, p < 0.0001) but not 190

for EEG type (F (1, 56) = 0.02, p = 0.89). The interaction between algorithm choice and EEG type was also 191

significant (F (2, 56) = 5.8, p < 0.01). Bonferroni corrections were used for post-hoc multiple comparisons, 192

and revealed statistically significant differences between the DNN classifier and both stimulus-reconstruction 193

algorithms for both wet and dry EEG. There was no significant pairwise effect of the EEG type for any of 194

three algorithms tested. 195

Attention Decoding Performance with a Wet EEG System
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Fig 5. Per-subject attention-decoding accuracy using a wet EEG system. 10-second evaluation
window, three algorithms: linear stimulus reconstruction (LSQ Corr.), non-linear stimulus reconstruction
(DNN Corr.), and DNN classification (DNN Clf.). Chance performance is indicated by the black stars.

3.2 Relationship between LSQ Regularization and Subject Decoding Accuracy 196

Consistent with [21], we found that regularization positively impacted LSQ decoding accuracy. While the 197

decoding accuracies shown above were chosen from a set of three regularization values by examining one 198

subject, post-hoc, we evaluated subject-level regularization values across a much larger range of candidate 199

values. Fig 7 contains the median regularization values chosen by the internal cross validation loop plotted as 200

a function of the decoding accuracy of the subject as determined using the optimal regularization value from 201

the limited set of three values. There is a negative relationship between the subject’s median regularization 202
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Attention Decoding Performance with a Dry EEG System
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Fig 6. Per-subject attention-decoding accuracy using a dry EEG system. 10-second evaluation
window, three algorithms: linear stimulus reconstruction (LSQ Corr.), non-linear stimulus reconstruction
(DNN Corr.), and DNN classification (DNN Clf.). Chance performance is indicated by the black stars.

Stimulus Reconstruction Classifier

Linear Nonlinear (DNN) Nonlinear (DNN)

Wet EEG 65% (10.3%) 65% (9.7%) 80% (5.5%)

Dry EEG 59% (7.7%) 64% (11.6%) 87% (6.3%)

Table 1. Mean decoding accuracy for the three architectures and two EEG types. Standard
deviations are shown in parentheses.

parameter and the part accuracy achieved by the subject that is preserved across wet and dry modalities 203

(p = 0.04, p = 0.13, respectively). Subjects with high performance required less weight penalization in the 204

TRF construction process. 205

3.3 Visualization of LSQ TRF 206

Through the larger sweep in regularization parameter α described above we found that subjects with a 207

higher α tended to have smoother TRFs. Although performance on the test data drops as a result of 208

increasing α beyond the value used in the results section, the spatial progression of TRF intensity across 209

time is more easily interpreted. For visualization, TRFs were constructed using a fixed regularization 210

parameter of 109 using LSQ estimation. The kernel length was expanded from 26 to 51 samples in order to 211

ensure capturing the full temporal evolution of the transform, but on average only the first half of the TRFs 212

showed substantial non-zero activity. As shown in Fig 8 as a 2D image and in Fig 9 as a series of headmaps, 213

a TRF peak occurs at 200ms in the center of the head and dissipates afterwards. This timing is consistent 214

with that reported in [13,14,20] where peaks near 200 ms also are shown. 215

November 29, 2018 8/16

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2018. ; https://doi.org/10.1101/504522doi: bioRxiv preprint 

https://doi.org/10.1101/504522
http://creativecommons.org/licenses/by-nc/4.0/


45 50 55 60 65 70 75 80 85

Accuracy (%)

4

6

8

10

12

lo
g

1
0
 

Wet: R
2
 = 0.30, p = .004

Dry: R
2
 = 0.24, p = 0.13

Fig 7. Median LSQ regularization parameters. Regularization parameter α was taken across folds for
both wet and dry EEG modalities, as a function of decoding performance.

3.4 Channel Importance in the Convolutional DNN 216

While obtaining insight into why a DNN performs as it does remains a challenging research question, we can 217

gain some understanding of the convolutional DNN by examining the filter weights of the first convolutional 218

layer. Essentially, this convolution is creating a set of linear combinations of the input EEG and audio 219

channels. The full convolutional weight matrix is 3-dimensional (kernel by input channel by output channel), 220

but we can collapse the 3D matrix into one dimension in order to visualize it. First, we select the middle 221

element of the three-point temporal kernel, and then take the absolute value of the weights. Next, we sum 222

the convolutional weights along the input channel. Taking the wet EEG as an example, there are 64 EEG 223

channels and an audio channel as the input and 64 channels as the output from the first convolutional layer. 224

We renormalize the 64 EEG weights of the 65-element vector so the minimum weight is 0 and the maximum 225

weight is 1 and then apply that normalization to the 65th audio element. We compute the normalization 226

separately for the wet and dry systems and per subject. Then, we average across the subjects and 227

re-normalize again to a 0-1 range. 228

Fig 10 shows the mean absolute weights assigned to the wet and dry EEG datasets visualized as a 229

headmap, with the weight for the audio channel indicated by the colored boxes below. Activated regions 230

show some similarity to the LSQ TRF values in Fig 9. Specifically, for the wet-EEG case, the central peak 231

for the DNN headmap is roughly co-located with the 200 ms peak for the LSQ TRF. For the dry-EEG case, 232

the elongated activation area to the right of the mid-sagittal plane resembles that for the 250 ms LSQ TRF 233

(although the central peak at 200 ms is not evident in the DNN weights). Since the DNN classifier takes both 234

audio (envelope) and EEG as an input, the audio channel should be weighted highly, and we see this is the 235

case with the wet electrode system yielding an audio weight of 1.0 and the dry electrode system yielding an 236

audio weight of 0.95. This indicates that the network is utilizing both EEG and audio signals to make a 237

decision. The electrodes with the highest weights were M1 and T8 for the wet and dry EEG systems, 238

respectively. 239
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Fig 8. Grand average values of the LSQ TRFs across subjects. Top: 64-channel wet EEG; Bottom:
18-channel dry EEG.

100 ms 150 ms 200 ms 250 ms 300 ms 350 ms

0

0.2

0.4

0.6

0.8

1

Wet

Dry

Fig 9. Grand average headmaps of the LSQ TRF values across subjects.
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Fig 10. Grand average headmaps of the normalized mean convolutional weights for the wet
and dry EEG systems for the DNN classifier network. The audio channel weights (bottom), also an
input to the network, were 1.0 and 0.95 for the wet and dry systems, respectively.

4 Discussion 240

As shown in Figs 5 and 6, and Table 1, both the nonlinear and linear approaches yielded comparable 241

performance under the stimulus-reconstruction architecture. Decoding accuracy in our study varied more 242

with the subject than with the choice of these algorithms. Typically, either both approaches performed well 243

on a subject (e.g., Subj. 555), or both performed poorly (e.g., Subj. 437). The DNN classifier approach 244

dramatically outperformed the traditional segregated architecture in decoding accuracy (80% wet, 87% dry) 245

with a performance advantage in all of the dry EEG cases and all but one of the wet EEG cases, and shows a 246

smaller variance among the subjects. While the exact reason for this is unclear, future work includes further 247

analysis of the DNN’s weights to better understand its learned similarity metric. In addition, comparison of 248

the DNN classifier to a logistic-regression classifier could yield insight into the importance of non-linearities 249

in the decoding process. 250

In regard to the two EEG systems, overall decoding performance is comparable between the wet electrode 251

and dry electrode systems. This result is somewhat surprising given that the wet system contains more than 252

three times as many channels (64 vs. 18), although earlier work has shown a channel reduction from 96 to 20 253

had limited effect on decoding accuracy [14]. Given these results, and recent studies that suggest that wet 254

and dry EEG systems can deliver similar signal qualities (albeit with different systems than we used) [36], a 255

practical integration of AAD into an unobtrusive, wearable hearing device seems to be an achievable, 256

long-term goal. 257

Of the three approaches we considered, two explicitly involve a backward model, i.e., stimulus 258

reconstruction. We did not test the forward decoding architecture in this paper for both empirical and 259

theoretical reasons. In regard to the former, the forward decoding approach has shown slightly worse 260

performance than the backward decoding approach [21]. Theoretically, this performance loss is 261

understandable because the auditory stimulus is just one of many internal and external factors, none of which 262

is known other than the audio, that influence the corresponding EEG waveform. By contrast, because the 263

neural activity represented in the EEG data is at least in part due to an auditory stimulus, it is reasonable to 264

filter out the non-auditory components but retain the auditory component. As an extreme example, assume a 265

model for the transform from audio to a specific EEG channel as the envelope of the audio plus additive noise, 266

with the noise independent at each lead. In this case, the forward problem requires predicting noise, whereas 267

the backward problem allows averaging out the noise across all the leads to recover the auditory envelope. 268

The performance of the linear approach in our study was lower than that reported in previous studies, 269

potentially due to differences in the experimental design and decoding parameters. One significant difference 270

between the results reported here and in other publications is that our talkers were co-located, i.e., combined 271

digitally and delivered from a single loudspeaker in front of the subject. Reduced spatial separation (down to 272
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10◦) has been shown to have a detrimental effect on decoding accuracy in low (-1.1, -4.1, and -7.1 dB) but 273

not high (20 dB) SNR conditions [19], so it is not clear how strong an effect co-location had in this work. 274

Other studies have included talkers at ±90◦ azimuth [13,15–17,19], ±60◦ [20, 21], ±30◦ [14], or ±10◦ [19]. 275

We chose to use co-located talkers because this would provide a lower bound on decoding accuracy (from a 276

spatial perspective) without extrapolating from an arbitrary separation angle. 277

A second potential reason for our relatively low linear decoding accuracy is that our correlation window 278

(trial size) of 10 s and kernel length of 250 ms are shorter than those in some other experiments. Decoding 279

accuracy previously has been shown to deteriorate with shortening trial sizes [17,21,35], and 280

one-minute [13, 14] and 30-second [16, 19] windows are more common in the literature. Our choice of 10s was 281

motivated by the fact that, a smaller window, eventually coupled with temporal smoothing such as that 282

described in [29], will be necessary for use with a practical, low-latency AAD system. Least-squares kernels 283

ranging from 250 ms [13,17] to 500 ms [20,21] have been reported, although no length has been shown to be 284

optimal. We chose a 250 ms kernel based on early pilot data that did not indicate a significant improvement 285

with an increase to 500 ms. Table 2 contains mean decoding accuracies for different correlation windows and 286

kernel lengths to facilitate comparison to other AAD studies. Some improvement is seen with an increase in 287

the correlation window length, but as with our pilot data, the kernel length had a negligible effect on 288

performance. 289

Correlation Window

10 s 30 s

K
er

n
el

S
iz

e

250 ms
Wet EEG: 65% (10.3%) Wet EEG: 72% (12.5%)

Dry EEG: 59% (7.7%) Dry EEG: 65% (14.4%)

500 ms
Wet EEG: 66% (8.5%) Wet EEG: 70% (13.6%)

Dry EEG: 56% (8.1%) Dry EEG: 62% (13.1%)

Table 2. Mean decoding accuracy for the linear least-squares architecture with variations in
the correlation window (10 s, 30 s) and the kernel size (250 ms, 500 ms). Standard deviations are
shown in parentheses.

There are still several considerations in translating the decoding performance we are achieving to clinical 290

utility. First, consistent with many other studies in the literature ( [37] is an exception), we focused on 291

normal hearing listeners and only included two hearing-impaired (HI) subjects. Interestingly, one of the HI 292

subjects (with mild impairment) was in the top third of our cohort in terms of algorithm performance, while 293

the other was in the bottom third. We will need to recruit a substantial group of HI subjects to evaluate 294

these algorithms for their use. Second, there is significant variance in decoding performance across 295

individuals. In our study, participants were randomly prompted to repeat the last sentence from the 296

attended talker, but the recall accuracy was consistently high and does not explain the variation in 297

performance. In addition to traditional hearing loss, other potential factors that could affect AAD 298

performance include cochlear synaptopathy, cognitive ability (e.g., working memory), and fatigue. Such 299

factors have been considered in the context of the variability of traditional hearing-aid 300

performance/acceptance [38] and should be explored further in the context of AAD. 301

5 Conclusions 302

In conclusion, we have compared two different auditory decision architectures, one which employs a Pearson 303

based similarity metric to compare the reconstructed stimulus with actual stimuli (using a linear or 304

DNN-based reconstruction approach), and a second, novel version in which the similarity transform is 305

learned as part of the optimization process in a convolutional neural network. Furthermore, we evaluated all 306

three algorithms with both a wet and dry electrode EEG system using a two-talker AAD protocol. We found 307
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that the integrated decision-making architecture using a convolutional neural network yielded results 308

comparable to state-of-the-art performance reported, and we have shown we can achieve this performance 309

with both a wet and dry system where the talkers are not spatially separated. Future work includes 310

evaluation of neural network architectures with around-the-ear [24] and in-ear [25] EEG electrodes. We also 311

plan to employ transfer learning of network knowledge across subjects, and consider end-to-end neural 312

network based architectures that combine both speaker separation and attention decoding, simply outputting 313

the attended audio stream directly. This approach could be performed with single or multi-channel audio. 314

We plan to release both EEG datasets with baseline algorithms and benchmark performance metrics. We 315

look forward to other research groups contributing their own analyses of this data in order to increase both 316

the accuracy of decoding and shorten the latency of decoding. Improvements in both areas are needed for 317

AAD to fulfill its promise as part of a complete, hearing-assistive system. 318
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