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Abstract

Auditory attention decoding (AAD) through a brain-computer interface has had a flowering of developments
since it was first introduced by Mesgarani and Chang (2012) using electrocorticograph recordings. AAD has
been pursued for its potential application to hearing-aid design in which an attention-guided algorithm
selects, from multiple competing acoustic sources, which should be enhanced for the listener and which
should be suppressed. Traditionally, researchers have separated the AAD problem into two stages:
reconstruction of a representation of the attended audio from neural signals, followed by determining the
similarity between the candidate audio streams and the reconstruction. In this work, we compare the
traditional two-stage approach with a novel neural-network architecture that subsumes the explicit similarity
step. We compare this new architecture against linear and non-linear (neural-network) baselines using both
wet and dry electroencephalogram (EEG) systems. Our results indicate that the wet and dry systems can
deliver comparable results despite the latter having one third as many EEG channels as the former, and that
the new architecture outperforms the baseline stimulus-reconstruction methods for both EEG modalities.
The 14-subject, wet-electrode AAD dataset for two competing, co-located talkers, the 11-subject,
dry-electrode AAD dataset, and our software are available to download for further validation,
experimentation, and modification.

1 Introduction

Hearing loss, and the associated use of hearing-aids, is rising among the general population [1], and as shown
by recent statistics from the US Dept. of Veterans Affairs, is particularly prevalent among retired military
personnel |2]. Despite widespread use of hearing aids, and the incorporation of spatial and spectral
algorithms for noise reduction, hearing-aids often are considered unsatisfactory in regard to their performance
in noisy environments [3H5]. Particularly when background noise includes other talkers, hearing aids suffer
because they have difficulty separating the “signal” (i.e., the talker of interest to the listener) from the
“noise” (i.e., all other talkers) due to similarities in spectro-temporal characteristics. The failure of hearing
aids to improve listening ability in complex acoustic environments, either due to poor device performance, or
lack of use triggered by poor performance, is associated with social isolation and various forms of cognitive
decline such as depression [6H8]. Therefore, solving the problem of assisted listening in multi-talker
environments could have wide societal benefits in terms of communication and mental health. Auditory
attention decoding (AAD) is a recent approach aimed at such a solution, one which exploits knowledge of the
listener’s auditory intent (attention) to isolate and enhance the desired audio stream and suppress others.
Evidence for neural encoding of speech has been shown with various sensing modalities including
electroencephalography (EEG) [9], magnetoencephalography (MEG) [10], and electrocorticography
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Fig 1. System architectures for auditory attention decoding: backward model. The temporal
response function (TRF) can be linear (least squares, see Eq. |1)) or non-linear (neural network, see Fig [3)).

(ECoG) |11]. The exploitation of such encoding for AAD in a two-talker paradigm was initially demonstrated
by Mesgarani and Chang [12], through a classifier acting on speech spectrograms reconstructed from ECoG
data. Comparison of the predicted spectrograms with those from the actual speech sources provided the
identity of the attended talker with 93% accuracy when the subjects were known to be attending to the
instructed stimulus. Since then, AAD has been achieved successfully with many variations on this initial
technique.

The most common approach to AAD, first described in [13] and depicted in Fig[l] involves EEG for
capturing neural data as a more practical and less invasive modality than ECoG. The approach uses a linear
least-squares method for stimulus (broadband speech envelope) reconstruction and correlation of actual and
predicted speech envelopes to identify the attended talker. Stimulus reconstruction is also known as the
“backward” problem in AAD, as the mapping from EEG to stimulus is the reverse of the natural auditory
stimulus/response phenomenon. By contrast, predicting EEG from the stimulus is known as the “forward”
problem.

The attention decision typically is between two simultaneous, spatially separated talkers. This approach
has been modified to evaluate: sensitivity to number of EEG channels and size of training data [14];
robustness to noisy reference stimuli [15,|16]; the use of auditory-inspired stimulus pre-processing including
subband envelopes with amplitude compression [17]; cepstral processing of EEG and speech signals for
improved correlations [18]; the effects of speaker (spatial) separation and additional speech-like background
noise [19]; the effects of (simulated) reverberation [20]; and potential performance improvements through
various regularization methods [21].

Considering the AAD pipeline as comprising steps for neural data acquisition, stimulus representation,
signal processing (e.g., forward or backward predictive modeling), and attention determination, alternate
techniques have been described with variations of each of these components. MEG [22] and ECoG [23]
continue to serve as neural sensing modalities, while EEG channels have been reduced in number in an effort
to move toward less obtrusive, portable systems [24,/25]. Speech stimuli have been represented with
spectrograms [23] and frequency-dependent envelopes after gammatone filtering |26]. To exploit the power
and biological relevance of non-linear processing, effective implementations of the backward model with
neural networks have been shown [27], and while much less popular, linear versions of the forward model
(predicting EEG from the stimuli) are described in [21}[25]. As an alternative to both forward and backward
modeling, canonical correlation analysis, which involves transforming both stimulus and response to
maximize mutual projections and thus improve correlations, has been applied to EEG and audio data, both
with various filters, to enhance AAD performance [28]. Finally, state-space models have been applied as a

final step in AAD systems to smooth noisy attention decisions and allow for near real-time update rates |29).

Measuring the performance of AAD systems typically involves an intuitive computation of decoding
accuracy, i.e., the percentage of decoding opportunities for which the system correctly identifies the attended
talker. Overall results often are generated with a leave-one-out cross-validation scheme iterated over the
collected dataset. This approach is used in both the backward [13H15,[17,[21] and forward [25] modeling
paradigms. System accuracy also has been reported for predicting the unattended talker [13,20], but in both
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Fig 2. System architectures for auditory attention decoding: DNN binary classification. See
Fig ] for a specific instance of the DNN.

cases performance is worse than that for predicting the attended talker. In [29], the £;-norm of the attended
and unattended decoder coefficients are used as “attention markers” to generate a smooth, near real-time
(~2-second latency) attentional probability through a state-space estimator. Talker classification is
considered correct if the probability estimate and its 90% confidence interval for the attended talker are
above 0.5, and accuracy is again measured as the percentage of correctly classified opportunities. In [21}27],
performance is reported as an information transfer rate, i.e., the number of correct decoding decisions per
minute.

Comparison of performance statistics across different published results, even those using the same
decoding approach and performance metric, is hampered by variations in experimental parameters including
talker number, angular separation, and gender, as well as number/placement of EEG electrodes, and by
variations in processing parameters such as EEG or speech-envelope bandwidths, and correlation lags and
window sizes. To address these barriers, in this paper we describe two datasets and three decoding
algorithms along with results from each of the six combinations. The datasets include wet and dry EEG data
collected from 14 and 11 subjects, respectively, during an auditory-attention experiment with two
simultaneous, co-located talkers (one female, one male). The algorithms include a linear least-squares
stimulus-reconstruction decoder described in [13], a neural-network stimulus-reconstruction decoder
described in [27], and a novel convolutional neural-network classifier that predicts the attended talker
without explicit forward or backward prediction (Fig|[2).

2 Methods

2.1 AAD Experimental Collection
2.1.1 Protocol

Speech from two co-located talkers, one male, and one female, was presented to each subject in a quiet,
electrically shielded audiometric booth. The audio was presented from a single loudspeaker directly in front
of the subject, with the stimuli lasting approximately 30 minutes. The stimuli consisted of four
“wikiHow.com” instructions lasting approximately 5 minutes each: “How to Make Waffles”, “How to Take
Care of a Dog”, “How to be a Shepherd”, and “How to Identify Birds”. Each story (attended audio) was
heard twice, once read by the male and once by the female talker, with a different story by the opposite
gender presented simultaneously as the distractor (unattended) audio stream. The order of the two talkers,
as well as the attended and distractor audio streams were randomized for each subject. Participants were
instructed as to which gender talker to focus on at the start of each story on a screen in front of them
throughout the experiment. Each story was interrupted randomly after 5-10 sentences were presented, and
the participant was asked to repeat the last sentence of the attended talker. We term each uninterrupted
listening interval as a “part”. A subset of subjects also participated in an auditory oddball task, but that
data is not part of this analysis.
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2.1.2 Subjects

Fourteen MIT Lincoln Laboratory employees (9 male, 5 female) gave written, informed consent to participate
in the experiment, in a protocol approved by the MIT Committee on the Use of Humans as Experimental
Subjects and the US Army Medical Research and Materiel Command (USAMRMC) Human Research
Protection Office. Eleven subjects, partially overlapping with the original fourteen, agreed to participate in a
second experiment with the same protocol as the first. The first experiment used a wet EEG system, and the
second used a dry EEG system (see Section below). Most participants self-reported normal hearing; two
subjects reported known hearing loss.

To ensure that subjects were on task, as well as potentially to exclude subjects that were unwilling or
unable to attend to the target speaker, we checked the randomized interruptions of the stimuli presentations
for a qualitative measure of attention. No subjects were excluded due to performance concerns.

2.1.3 EEG Instrumentation and Preprocessing

Wet electrode EEG data were collected using a Neuroscan 64-channel Quik-Cap and a SynAmps RT
amplifier with a sampling rate of 1000 Hz, and recorded in Curry data-acquisition software (Compumedics,
Charlotte, NC). Additional electrodes were placed on both mastoids, as well as above, below, and next to the
left eye. The reference electrode was located halfway between CZ and CPZ. Dry electrode EEG data were
collected using a Wearable Sensing DSI-24 system (San Diego, CA), a joint sensor platform and signal
amplifier. The system records from 18 scalp channels and two reference channels attached to the subject’s
earlobes. Data were collected at a 300 Hz sampling rate using DSI-Streamer software.

Prior to analysis, all EEG data were down-sampled to 100 Hz using MATLAB’s resample function
(Mathworks, Natick, MA), which applies an anti-aliasing low-pass filter with a cutoff frequency of 50 Hz.
EEG data were band-pass filtered with a passband frequency of 2 to 32 Hz.

2.1.4 Audio Preprocessing

For both the stimulus reconstruction and binary classification methods, we pre-processed the two clean,
audio streams to extract their broadband envelopes using the iterative algorithm in [30]. Envelopes were
subsequently downsampled to a 100-Hz sampling rate.

2.2 Linear Decoding

To recreate the linear, stimulus-reconstruction approach in |13] (see Fig , we implemented a regularized,
least-squares transform (LSQ) from EEG response data to audio envelope according to the ridge regression
equation:

arg min Loss(w) = [|[Aw — y||% + «o||w||2 (1)

EEG data segments are stacked in rows of the A matrix. Each row vector contains all the time points of the
context window for all the EEG channels. y is a column vector of the audio envelope. Each EEG row vector
is transformed or decoded by a weight vector w into the audio envelope sample that corresponds to the most
recent time sample in the row vector.

The LSQ weights, w, are often called the temporal response function (TRF) from the response-prediction
EEG literature in which the EEG is seen as a response to the audio stimulus. Strictly speaking, when
attention decoding is formulated in the backwards direction, the weights represent an inverse TRF.

The regularization parameter, a, was selected on a per-subject, per-test-part basis from a set of three
heuristically chosen values. A robust standard scaling was applied to the training and testing audio and EEG
data, also on a per-subject, per-test-part basis, using the estimated median and inter-quartile range of the
training data. Each segment of data used for the LSQ method (and the DNN correlation-based method) was
26 samples long (approximately 250 ms given the 100-Hz sampling rate). Estimation was performed using
Scikit-learn’s 1inear_model.RidgeCV method [31]. Separate models were trained for each subject; no
transfer learning across subjects was used in this analysis.
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2.3 Nonlinear Decoding

The motivation for applying a deep neural network (DNN) to the AAD problem is that a non-linear decoder
may provide improved performance relative to a linear decoder due to the inherent non-linear processing of
acoustic signals along the auditory pathway. A DNN is a prototypical non-linear method flexible enough to
handle multi-dimensional time series data. We use a neural network inspired by [27] for the correlation-based
classifier, and a novel convolutional DNN for the integrated classification decision architecture.

2.3.1 Neural Network for Stimulus Reconstruction

A simple neural-network architecture comprising a single hidden layer with two nodes was shown in [27] to
yield the best performance from a group of more complicated networks considered. Our adaptation of that
network, shown in Fig [3] includes batch normalization [32] before the inputs to each layer, and a hard
hyperbolic tangent (as opposed to a linear function) for the output layer’s activation to enforce our prior
expectation that the audio envelope be bounded.

BN FC,
Batch
NN Tanh  Dropout Norm FC, HTanh
Multi-channel EEG
PAY Y ave
X b / > > - - _/_—>y
PAYaVa Ve &
N~~~ Predicted
Audio

Fig 3. The neural network architecture for stimulus reconstruction, based on the design

in [27]. There is one hidden layer with two nodes (FCy) to enforce significant compression of EEG data
before being transformed to a predicted audio stimulus (see Fig for the system architecture). BN = batch
normalization, FC = fully connected.

The network was trained with the Adam optimizer using a batch size of 8192*8 samples, weight decay of
10, a learning rate of 10~ for the first 150 steps, and then a learning rate of 10~* for the remaining steps for
a total of 250 steps. These parameters were heuristically chosen by inspecting intermediate train and
validation-set loss curves where two additional parts were reserved from within the train set for validation.
Following [27] we also employed a correlation-based loss function rather than a mean-squared error-loss
function to exploit the prior knowledge that we ultimately will be testing the reconstructed waveform and
AAD performance with a correlation metric.

2.3.2 Neural Network for Direct Classification

Our novel end-to-end classification network with integrated similarity computation between EEG signals and
a candidate audio envelope is pictured in Fig[dl It comprises two convolutional layers, the first of which uses
a kernel of three samples, and the second of which uses a kernel of one sample. The convolutional layers are
followed by a set of four, fully connected layers that decrease in size in the later stages. We use batch

normalization and dropout [33] throughout, and the exponential linear unit [34] for the non-linearity.

Training includes a binary cross-entropy loss function, batch size of 1024, Adam optimizer, no weight decay,
and a learning rate of 1073, We terminated the optimization process if the loss on the training set declined
to below 0.09 or if the optimizer had run for 2400 steps. Because of computational limits on our computers,

we randomly downsampled the 10-second set of samples over which a frame was evaluated by a factor of four.
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Fig 4. The convolutional architecture used for integrated similarity computation between
EEG and a candidate audio stream. Components include batch normalization (BN), convolution layers
(Conv;), exponential linear units (ELU), drop-outs (DO), and fully connected layers (FC;). Wet EEG (kernel,
num ch in, num ch out): Convy: 3x65x64, Convs: 1x64x2, Dry EEG: Convy: 3x19x19, Convsy: 1x19x2, Both:
FC;: 246x200, FCy: 200x200, FC3: 200x100, FC4:100x1, MaxPool 1D, stride:2. See Fig[2| for the system
architecture.

2.4 Methods of Evaluation
2.4.1 Correlation-Based Evaluation

Algorithm performance was evaluated in a leave-one-out cross-validation paradigm across all audio parts
presented to the subject. Multi-part training was performed by concatenating the presented audio data and
recorded EEG response data. The concatenation was performed after each part was converted into a data
matrix for the algorithm estimation to avoid discontinuities. The LSQ (linear) and DNN (non-linear)
estimators were trained to reconstruct the attended audio using the training audio and EEG. Then, given the
test EEG, each algorithm attempted to reconstruct the attended audio stimulus.

The estimated audio was then compared to the two candidate audio streams (attended and unattended)
using Pearson correlation. The correlation was computed for ten-second, non-overlapping windows for the
test part. If the left-out part was less than ten seconds, it was not evaluated. Decoding accuracy was
computed as the percentage of 10-second windows for which the correlation coefficient with the attended
audio envelope was higher than the correlation coefficient with the unattended audio envelope.

2.4.2 Classification-Based Evaluation

In the DNN classification architecture, the algorithm directly makes a similarity prediction between the
recorded EEG and each of the candidate audio streams. In other words, the similarity metric is learned by
the network during the training rather than dictated by the user. Given the similarity scores for each
candidate audio stream, the attended stream is declared as the one with the highest score. To keep the
decision rate the same between the two network architectures, we provide the classification algorithm data
segments that are ten seconds in duration.
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3 Results

3.1 Decoding Accuracy

Decoding results for the wet EEG system are shown in Fig[5] and for the dry EEG in Fig[6] Each figure
shows the per-subject average decoding accuracy using the linear correlation, neural-network based
correlation, and DNN classification methods. Chance-level performance, indicated by the black stars, was
computed as the 95" percentile point of a binomial distribution with p = 0.5 and n equal to the number of
non-overlapping 10-second windows. Mean decoding accuracies across subjects are summarized in Table[l} A
2-way mixed-model ANOVA (EEG Type by Algorithm Type) was performed with subjects modeled as a
random factor. We found a main effect for the choice of algorithm type (F(2,56) = 73.5,p < 0.0001) but not
for EEG type (F(1,56) = 0.02,p = 0.89). The interaction between algorithm choice and EEG type was also
significant (F'(2,56) = 5.8, p < 0.01). Bonferroni corrections were used for post-hoc multiple comparisons,
and revealed statistically significant differences between the DNN classifier and both stimulus-reconstruction
algorithms for both wet and dry EEG. There was no significant pairwise effect of the EEG type for any of
three algorithms tested.

Attention Decoding Performance with a Wet EEG System
10— T T T T T T T T T T T T T
I LsQ, Corr. 65%
[ DNN, Corr. 65%
90 [~ ] DNN, CIt. 80% -

80— m!

70

a -]
o o

Accuracy (%)

'
o

30

20

666 263 991 555 437 336 536 512 894 275 285 880 732 505
Subject

Fig 5. Per-subject attention-decoding accuracy using a wet EEG system. 10-second evaluation
window, three algorithms: linear stimulus reconstruction (LSQ Corr.), non-linear stimulus reconstruction
(DNN Corr.), and DNN classification (DNN Clf.). Chance performance is indicated by the black stars.

3.2 Relationship between LSQ Regularization and Subject Decoding Accuracy

Consistent with , we found that regularization positively impacted LSQ decoding accuracy. While the
decoding accuracies shown above were chosen from a set of three regularization values by examining one
subject, post-hoc, we evaluated subject-level regularization values across a much larger range of candidate
values. Fig[7] contains the median regularization values chosen by the internal cross validation loop plotted as
a function of the decoding accuracy of the subject as determined using the optimal regularization value from
the limited set of three values. There is a negative relationship between the subject’s median regularization
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100 Attention Decoding Performance with a Dry EEG System
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Fig 6. Per-subject attention-decoding accuracy using a dry EEG system. 10-second evaluation
window, three algorithms: linear stimulus reconstruction (LSQ Corr.), non-linear stimulus reconstruction
(DNN Corr.), and DNN classification (DNN Clf.). Chance performance is indicated by the black stars.

Stimulus Reconstruction Classifier

Linear Nonlinear (DNN) | Nonlinear (DNN)
Wet EEG | 65% (10.3%) 65% (9.7%) 80% (5.5%)
Dry EEG | 59% (7.7%) 64% (11.6%) 87% (6.3%)

Table 1. Mean decoding accuracy for the three architectures and two EEG types. Standard
deviations are shown in parentheses.

parameter and the part accuracy achieved by the subject that is preserved across wet and dry modalities
(p = 0.04,p = 0.13, respectively). Subjects with high performance required less weight penalization in the
TRF construction process.

3.3 Visualization of LSQ TRF

Through the larger sweep in regularization parameter « described above we found that subjects with a
higher « tended to have smoother TRFs. Although performance on the test data drops as a result of
increasing « beyond the value used in the results section, the spatial progression of TRF intensity across
time is more easily interpreted. For visualization, TRFs were constructed using a fixed regularization

parameter of 10? using LSQ estimation. The kernel length was expanded from 26 to 51 samples in order to
ensure capturing the full temporal evolution of the transform, but on average only the first half of the TRF's
showed substantial non-zero activity. As shown in Fig[8|as a 2D image and in Fig[J] as a series of headmaps,

a TRF peak occurs at 200ms in the center of the head and dissipates afterwards. This timing is consistent
with that reported in where peaks near 200 ms also are shown.
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Fig 7. Median LSQ regularization parameters. Regularization parameter o was taken across folds for
both wet and dry EEG modalities, as a function of decoding performance.

3.4 Channel Importance in the Convolutional DNIN 216

While obtaining insight into why a DNN performs as it does remains a challenging research question, we can a7
gain some understanding of the convolutional DNN by examining the filter weights of the first convolutional 2

layer. Essentially, this convolution is creating a set of linear combinations of the input EEG and audio 210
channels. The full convolutional weight matrix is 3-dimensional (kernel by input channel by output channel), 20
but we can collapse the 3D matrix into one dimension in order to visualize it. First, we select the middle 21

element of the three-point temporal kernel, and then take the absolute value of the weights. Next, we sum 2
the convolutional weights along the input channel. Taking the wet EEG as an example, there are 64 EEG 23
channels and an audio channel as the input and 64 channels as the output from the first convolutional layer. 22
We renormalize the 64 EEG weights of the 65-element vector so the minimum weight is 0 and the maximum s

weight is 1 and then apply that normalization to the 65" audio element. We compute the normalization 26
separately for the wet and dry systems and per subject. Then, we average across the subjects and 27
re-normalize again to a 0-1 range. 228

Fig [10| shows the mean absolute weights assigned to the wet and dry EEG datasets visualized as a 229
headmap, with the weight for the audio channel indicated by the colored boxes below. Activated regions 230

show some similarity to the LSQ TRF values in Fig[] Specifically, for the wet-EEG case, the central peak 2u
for the DNN headmap is roughly co-located with the 200 ms peak for the LSQ TRF. For the dry-EEG case, 2»
the elongated activation area to the right of the mid-sagittal plane resembles that for the 250 ms LSQ TRF 2
(although the central peak at 200 ms is not evident in the DNN weights). Since the DNN classifier takes both 2.
audio (envelope) and EEG as an input, the audio channel should be weighted highly, and we see this is the 23
case with the wet electrode system yielding an audio weight of 1.0 and the dry electrode system yielding an 23

audio weight of 0.95. This indicates that the network is utilizing both EEG and audio signals to make a 237
decision. The electrodes with the highest weights were M1 and T8 for the wet and dry EEG systems, 238
respectively. 230
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Fig 8. Grand average values of the LSQ TRFs across subjects. Top: 64-channel wet EEG; Bottom:
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Fig 9. Grand average headmaps of the LSQ TRF values across subjects.
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Audio Input Weight D Audio Input Weight D

Fig 10. Grand average headmaps of the normalized mean convolutional weights for the wet
and dry EEG systems for the DNN classifier network. The audio channel weights (bottom), also an
input to the network, were 1.0 and 0.95 for the wet and dry systems, respectively.

4 Discussion

As shown in Figs 5] and [6] and Table [T} both the nonlinear and linear approaches yielded comparable
performance under the stimulus-reconstruction architecture. Decoding accuracy in our study varied more
with the subject than with the choice of these algorithms. Typically, either both approaches performed well
on a subject (e.g., Subj. 555), or both performed poorly (e.g., Subj. 437). The DNN classifier approach
dramatically outperformed the traditional segregated architecture in decoding accuracy (80% wet, 87% dry)
with a performance advantage in all of the dry EEG cases and all but one of the wet EEG cases, and shows a
smaller variance among the subjects. While the exact reason for this is unclear, future work includes further
analysis of the DNN’s weights to better understand its learned similarity metric. In addition, comparison of
the DNN classifier to a logistic-regression classifier could yield insight into the importance of non-linearities
in the decoding process.

In regard to the two EEG systems, overall decoding performance is comparable between the wet electrode
and dry electrode systems. This result is somewhat surprising given that the wet system contains more than
three times as many channels (64 vs. 18), although earlier work has shown a channel reduction from 96 to 20
had limited effect on decoding accuracy . Given these results, and recent studies that suggest that wet
and dry EEG systems can deliver similar signal qualities (albeit with different systems than we used) , a
practical integration of AAD into an unobtrusive, wearable hearing device seems to be an achievable,
long-term goal.

Of the three approaches we considered, two explicitly involve a backward model, i.e., stimulus
reconstruction. We did not test the forward decoding architecture in this paper for both empirical and
theoretical reasons. In regard to the former, the forward decoding approach has shown slightly worse
performance than the backward decoding approach . Theoretically, this performance loss is
understandable because the auditory stimulus is just one of many internal and external factors, none of which
is known other than the audio, that influence the corresponding EEG waveform. By contrast, because the
neural activity represented in the EEG data is at least in part due to an auditory stimulus, it is reasonable to
filter out the non-auditory components but retain the auditory component. As an extreme example, assume a
model for the transform from audio to a specific EEG channel as the envelope of the audio plus additive noise,
with the noise independent at each lead. In this case, the forward problem requires predicting noise, whereas
the backward problem allows averaging out the noise across all the leads to recover the auditory envelope.

The performance of the linear approach in our study was lower than that reported in previous studies,
potentially due to differences in the experimental design and decoding parameters. One significant difference
between the results reported here and in other publications is that our talkers were co-located, i.e., combined
digitally and delivered from a single loudspeaker in front of the subject. Reduced spatial separation (down to
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10°) has been shown to have a detrimental effect on decoding accuracy in low (-1.1, -4.1, and -7.1 dB) but 2
not high (20 dB) SNR conditions [19], so it is not clear how strong an effect co-location had in this work. 274
Other studies have included talkers at £90° azimuth [13[15H17,/19], £60° [20,21], £30° [14], or £10° |19]. =
We chose to use co-located talkers because this would provide a lower bound on decoding accuracy (from a 27
spatial perspective) without extrapolating from an arbitrary separation angle. 277

A second potential reason for our relatively low linear decoding accuracy is that our correlation window 2
(trial size) of 10s and kernel length of 250 ms are shorter than those in some other experiments. Decoding  2r

accuracy previously has been shown to deteriorate with shortening trial sizes [17}21},35], and 280
one-minute [13,/14] and 30-second [16.[19] windows are more common in the literature. Our choice of 10s was 2
motivated by the fact that, a smaller window, eventually coupled with temporal smoothing such as that 28

described in [29], will be necessary for use with a practical, low-latency AAD system. Least-squares kernels  os
ranging from 250ms [13,/17] to 500 ms [20}/21] have been reported, although no length has been shown to be 2
optimal. We chose a 250 ms kernel based on early pilot data that did not indicate a significant improvement  2ss
with an increase to 500 ms. Table [2| contains mean decoding accuracies for different correlation windows and  2s
kernel lengths to facilitate comparison to other AAD studies. Some improvement is seen with an increase in 2
the correlation window length, but as with our pilot data, the kernel length had a negligible effect on 288
performance. 289

Correlation Window

10s 30s

S Wet EEG: 65% (10.3%) | Wet EEG: 72% (12.5%)
21 250 ms
& Dry EEG: 59% (7.7%) | Dry EEG: 65% (14.4%)
[}
R Wet EEG: 66% (8.5%) | Wet EEG: 70% (13.6%)
500 ms
Dry EEG: 56% (8.1%) | Dry EEG: 62% (13.1%)

Table 2. Mean decoding accuracy for the linear least-squares architecture with variations in
the correlation window (10s, 30s) and the kernel size (250 ms, 500 ms). Standard deviations are
shown in parentheses.

There are still several considerations in translating the decoding performance we are achieving to clinical 20
utility. First, consistent with many other studies in the literature ( [37] is an exception), we focused on 201
normal hearing listeners and only included two hearing-impaired (HI) subjects. Interestingly, one of the HI = 2
subjects (with mild impairment) was in the top third of our cohort in terms of algorithm performance, while 20

the other was in the bottom third. We will need to recruit a substantial group of HI subjects to evaluate 204
these algorithms for their use. Second, there is significant variance in decoding performance across 205
individuals. In our study, participants were randomly prompted to repeat the last sentence from the 206
attended talker, but the recall accuracy was consistently high and does not explain the variation in 207
performance. In addition to traditional hearing loss, other potential factors that could affect AAD 208
performance include cochlear synaptopathy, cognitive ability (e.g., working memory), and fatigue. Such 209
factors have been considered in the context of the variability of traditional hearing-aid 300
performance/acceptance [38] and should be explored further in the context of AAD. 301
5 Conclusions 0
In conclusion, we have compared two different auditory decision architectures, one which employs a Pearson s
based similarity metric to compare the reconstructed stimulus with actual stimuli (using a linear or 304
DNN-based reconstruction approach), and a second, novel version in which the similarity transform is 305

learned as part of the optimization process in a convolutional neural network. Furthermore, we evaluated all 306
three algorithms with both a wet and dry electrode EEG system using a two-talker AAD protocol. We found 307
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that the integrated decision-making architecture using a convolutional neural network yielded results 308
comparable to state-of-the-art performance reported, and we have shown we can achieve this performance 300
with both a wet and dry system where the talkers are not spatially separated. Future work includes 310
evaluation of neural network architectures with around-the-ear [24] and in-ear [25] EEG electrodes. We also  su
plan to employ transfer learning of network knowledge across subjects, and consider end-to-end neural 312
network based architectures that combine both speaker separation and attention decoding, simply outputting s
the attended audio stream directly. This approach could be performed with single or multi-channel audio. 314

We plan to release both EEG datasets with baseline algorithms and benchmark performance metrics. We = 35
look forward to other research groups contributing their own analyses of this data in order to increase both s
the accuracy of decoding and shorten the latency of decoding. Improvements in both areas are needed for 317
AAD to fulfill its promise as part of a complete, hearing-assistive system. 318
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