bioRxiv preprint doi: https://doi.org/10.1101/504472; this version posted December 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Extended field-of-view ultrathin microendoscopes with built-in aberration correction for
high-resolution imaging with minimal invasiveness
Running title: ultrathin microendoscopes with extended FOV

Andrea Antonint®, Serena Bovettj Claudio Morett}, Francesca SuccpVijayakumar P.
Rajamanickarh®3 Andrea Bertoncirij Carlo Liberalé®, Tommaso Fellih

!Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
“Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy

®Biological and Environmental Sciences and Engineering Division (BES&),Abdullah

University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

andrea.antonini@iit.jitserena.bovetti@iit.jclaudio.moretti@iit.it francesca.succol @iit; it
vijayakumar.rajamanickam@kaust.edusadrea.bertoncini@kaust.edy.sa
carlo.liberale@kaust.edu;gammaso.fellin@iit.it

*Corresponding author:

Tommaso Fellin,

Dept. of Neuroscience and Brain Technologies
Istituto Italiano di Tecnologia (IIT)

Via Morego 30, 16163 Genova, ltaly

tel: +39 010 71781 549/ 742

fax:+39 010 71781230

We present a novel approach to correct optical aberrations in ultrathin gradient-index rod lens-based
endoscopes using microfabricated aspherical lenses. Cormeictegndoscopes have up to 9 folds

larger field-of-view compared to uncorrected probes. Using extended field-of.ef@V)
microendoscopes, we report two-photon imaging of GCaMP6 signals in the mouse hippdacampus

vivo with unprecedented combination of high spatiotemporal resolution and minimal invasiveness.
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Introduction

Two-photon fluorescence imaging allows high resolution anatomical and functional visualization of
neuronal circuits several hundred of micrometers deep into the intact mammalian brain (1). Light
scattering within the brain, however, strongly affects the propagation of excitation and emission
photons, making effective imaging increasingly difficult with tissue depth (2, 3). Various strategies
have been developed to improve imaging depth in multi-photon fluorescence microscopy (4-11),
allowing the visualization of regions 1-1.6 mm below the brain surface. However, deeper imaging
requires the use of implantable microendoscopic probes, which allow optical investigation of neural
circuits in brain regions that would otherwise remain inaccessible (12-16). Ideally, microendoscopic
devices should have small radial dimensions and, at the same time, maintain sub-cellular resolution
across a large field-of-view (FOV). This would allow high-resolution population imaging, while
minimizing tissue damage. Current microendoscopes for deep imaging are frequently based on
gradient-index (GRIN) rod lenses which typically have diameter between 0.35-1.5 mm and are
characterized by intrinsic optical aberrations (14). These aberrations are detrimental in two-photon
imaging because they decrease the spatial resolution and lower the excitation efficiency, leading to
degraded image quality and restricted FOV (17, 18). This is especially relevant when ultrathin
microendoscopes (diamete500um) are used, because the size of the FOV decreases with the
diameter of the optical probe. Optical aberrations in GRIN microendoscopes can be corrected with
adaptive optics which, however, requires significant modification of the optical path (17, 19, 20)
and may limit the temporal resolution of functional imaging over large FOVs (17). Alternatively,

the combination of GRIN lenses of specific design with plano-convex lenses within the same
microendoscopic probe has been used to increase the Numerical Aperture (NA) and to correct for
aberrations on the optical axis (14). However, technical limitations in manufacturing high-precision
optics with small lateral dimensions have so far prevented improvements in the performances of

GRIN microendoscopes with lateral diameter < 1 mm using corrective optical microelements (21).
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Here we report the development and application of a new approach to correct aberrations and
extend the FOV in ultrathin GRIN-based endoscopes using microfabricated aspheric lenses. This
method has no limitations on the size of the corrective lenses for current GRIN-based
microendoscopes and requires no modification of the microscope optical path. Corrective lenses
were optically designed based on ray trace simulations and microfabricated using two-photon
polymerization (TPP) (22). We developed four types of extended field-of{ee@V) ultrathin
microendoscopes, differing in length and diameter, which enable optimized optical performances at
various depths within biological tissue. Finally, we validaE®V-microendoscopes performing
functional imaging on hundreds of hippocampal cells expressing the genetically-encoded calcium
indicator GCaMP6 (23) in the intact mouse biiainivo with an unprecedented combination of

high resolution, FOV extension and minimal invasiveness.

Materials and Methods

Optical design and simulation

Simulations were run with OpticStudiol5 (Zemax, Kirkland, WA) to define the profile of the
aspheric corrective lens to be integrated ineF®V-microendoscopes, with the aim to achiayex
full-width half maximum (FWHM) lateral resolution < 1 um at the center of the FQ¥;FWHM
axial resolution below < 10 pnij) a working distance between 150 pm and 220 pm into living
brain tissue. The wavelength used for simulationsma®$20 nm since the devices were developed
for two-photon functional microscopy applications using GCaMP6s (23).

The surface profile of corrective aspheric lenses has been descr{@éy as
Z(r)=L+Z a,r" (1)

1+/1-(1+k)c2r2 n=n
Since GRIN lenses have intrinsic spherical aberration, the optimization for the shape of the

corrective lenses started with the profile of a Schmidt corrector plate (25) as initial guess; the

parameters c, ki, (with n = 1-8) in equation (1) were then automatically varied in order to
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maximize the Strehl ratio (26) over the largest possible area of the FOV (Supplementary table 1). A

fine manual tuning of the parameters was performed for final optimization

Corrective lens manufacturing and endoscope assembly

The optimized aspheric lens structure obtained with simulations was exported into a 3D mesh
processing software and converted into a point cloud dataset fitting the lens surface (with ~ 300 nm
distance among first neighborhood points). Two-photon polymerization with a custom set-up (22)
including a dry semi-apochromatic microscope objective (LUCPlanFLN 60x, NA 0.7, Olympus
Corp., Tokyo, JP) and a near infrared pulsed laser beam (duration, 100 fs; repetition rate, 80 MHz;
wavelength, 780 nm; FemtoFiber pro NIR, Toptica Photonics, Graefelfing, DE) was used for the
fabrication of the corrective lenses. A drop of resin’{Bjd(diethylamino)benzophenone

photoinitiator mixed with a diacrylate monomer), sealed between two coverslips, was moved by a
piezo-controlled stage (model P-563.3CD, PI GmbH, Karlsruhe, DE) with respect to the fixed laser
beam focus, according to the 3D coordinates of the previously determined point cloud, with
precision of 20 nm. Output laser power was ~ 15 mW at the sample. Once the surface was
polymerized, the lens was dipped for ~ 2 minutes in methanol followed by ~ 1 minute immersion in
isopropyl alcohol, and finally exposed to UV light£ 365 nm; 3 Joule / cihto fully polymerize

the bulk of the structure. In the second stage of the project, a commercial TPP fabrication system

(Photonic Professional GT, Nanoscribe GmbH, DE) was also used for corrective lens fabrication.

For fast generation of multiple lens replicas, a molding (27) technique was used. To this end,
polydimethylsiloxane (PDMS, Sylgard 164, 10:1 A:B, Dow Corning, Auburn, MI) was casted onto
the lens and hardened by heat cure in a circulating oven at 80°C for approximately 30 minutes. The
resulting bulked structure of solid PDMS was then used as negative mold. A drop of a UV-curable
optically-clear adhesive with low fluorescent emissivity (NOA63, Norland Products Inc., Cranbury,

NJ) was deposited on the negative mold, pressured against a coverslip (5 mm diameter) of
4
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appropriate thickness (100-20n thick depending on the=OV-microendoscope type, Fig. 1) and
hardened by UV exposure. The coverglass with the lens attached was detached from the mold and
glued onto a metal ring. One end of the appropriate GRIN rod (NEM-050-25-10-860-S; NEM-050-
43-00-810-S-1.0p; GT-IFRL-035-cus-50-NC; NEM-035-16air-10-810-S-1.0p , all purchased from
Grintech GmbH, Jena, DE) was attached perpendicularly to the coverslip surface using NOAG3.
Alignment of the corrective lens and the GRIN rod was performed under visual guidance using an
opto-mechanical stage (Supplementary Fig. 1a). An additional and removable coverglass (No. 1.5)
was glued on the top of every support ring (Supplementary Fig. 1d) to keep the polymeric
corrective lens clean and to protect it from mechanical damage. The GRIN rods were finally coated

with a thin (< 30 nm) layer of polytetrafluoroethene using reactive ion etching.

Optical characterization

Optical characterization @OV-microendoscopes was carried out with a two-photon laser-
scanning microscope equipped with a wavelength-tunable, ultrashort-pulsed, mode-locked
Ti:Sapphire laser source (Ultra Il Chameleon, pulse duration, 160 fs; repetition rate, 80 MHz;
wavelength, 920 nm; Coherent Inc., Santa Clara, CA), a commercial Prairie Ultima IV scanhead
(Bruker Corporation, Milan, IT, former Prairie Technologies) and an upright epi-fluorescence
microscope (BX61 Olympus Corp., Tokyo, JP). For all measurements, the wavelength was set at
920 nm. The optomechanical assembly used for the microendoscope characterization is shown in
Supplementary Fig. 1c. Two infinity-corrected objectives were used: RMS20X-PF-20X, and
LUCPLFLN 60X, 0.7NA (Olympus Corp., Tokyo, JP). Measurement of maximal resolution was
performed with the LUCPLFLN 60X objective to overfill teBEOV-microendoscope numerical
aperture and reach diffraction limited performances in accordance with optical simulations, whereas
other characterizations were done with the RMS20X-PF-20X objective. The maximal resolution of

eacheFOV-microendoscope was evaluated using subresolution spherical fluorescent beads
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(diameter: 200 nm, Polyscience, Warrington, PA), following a previous spatial calibration using a
custom fluorescent ruler.

To evaluate the radial profile of the fluorescence intensity across the FOV and the extent of the
aberration-corrected FOV, we used thin (thickness: 300 nm) fluorescent slices (28) and acquired z-
series of images (512 pixels x 512 pixels) with 1 um axial step. Image analysis was carried out
following previous reports (28) using the ImageJ/Fiji software (29) and custom Python code. In X,z
projections, we first fitted the fluorescence intensity profile with a circular section. We then

averaged the fitting circular section across x,z projections obtained from different z-stacks for the
same GRIN rod. We finally measured the mean curvature of the FOV of that specific GRIN rod

from the average circular section. The axial projection of each z-stack was remapped onto the fitting

circular section to optimally estimate radial distances.

For fluorescence intensity measurements, in each z-stack we measured the fluorescence intensity
alongN randomly chosen radial directiori$ £ 400). Fluorescence intensity along a given direction
was initially smoothed with a ~7 um flat moving window, averaged att@sgl normalized to the
maximal intensity value. In these experiments, the diameter of the FOV was measured based on a
threshold set at 80%. Intensity variations < 5% below the threshold were not considered if restricted

to <100 pum.

For measurements of the axial sectioning capability, at every X,y position the fluorescence intensity
distribution along the direction perpendicular to endoscope wa@d/ffitted with a Gaussian curve.

The FWHM was used as measurement of the z-resolution (FYWHF this analysis, the

ImageJ/Fiji plug-in MetroloJ (30) and a Python code was used. We operationally defined the usable
FOV as the area in which the FWHKkémained < 1.5 x FWHMnmin,, where FWHM min is the

FWHM, at the center of the FOV.
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Animal surgery, viral injection and microendoscope implant

Experimental procedures involving animals have been approved by the Istituto Italiano di
Tecnologia Animal Health Regulatory Committee, by the National Council on Animal Care of the
Italian Ministry of Health (authorization # 1134/2015-PR) and carried out according to the
guidelines of the European Communities Council Directivemals were housed under a 12-hour
light:dark cycle in individually ventilated cages. Experiments were performed on adult (8-10 week
old) C57BL/6J (Charles River, Calco, IT), and Scnnla-Cre (B6;C3-Tg(Scnnla-cre)3Aibs/J, Jackson
Laboratory, Bar Harbor, USA) mice. Adeno-associated viruses (AAVS)
AAV1.Syn.GCaMP6s.WPRE.SV40, AAV1.Syn.flex. GCaMP6s.WPRE.SV40,
AAV1.CAG.Flex.eGFP.WPRE.bGH, AAV1.CaMKII0.4.Cre.SV40 were purchased from the
University of Pennsylvania Viral Vector Core. Viral injections aR@V-microendoscopes

insertion were performed during a single surgical procedure. Animals were anesthetized with 2%
isoflurane, placed into a stereotaxic apparatus (Stoelting Co, Wood Dale, IL) and maintained on a
warm platform at 37°C. A small hole was drilled through the skull and 0.5 - 1 ul (30 nl/min,
UltraMicroPump UMP3, WPI, Sarasota, FL) of AAVs containing solution was injected at
stereotaxic coordinates: 1.4 mm posterior to bregma (P), 1 mm lateral to the sagittal sinus (L) and 1
mm deep (D) to target the hippocampal CA1 region; 1 mm anterior to bregma (A), 2 mm L and 2
mm D to target the dorsal striatum; 1.7 mm P, 1.6 mm L and 3 mm D to target the ventral
posteromedial thalamic nucleus (VPM). Co-injection of AAV1.Syn.flex. GCaMP6s.WPRE.SV40
and AAV1.CaMKII0.4.Cre.SV40 (1:1) was performed to express GCaMP6s in hippocampus CA1l
pyramidal cells. Injection of AAV1.Syn.GCaMP6s.WPRE.SV40 was performed to express
GCaMP&6s in the dorsal striatum. Injection of AAV1.Syn.flex. GCaMP6s.WPRE.SV40 in the
Scnnla-Cre mouse line was performed to express GCaMP6s in the VPM. Layer IV expression of
GFP was achieved by injecting AAV1.CAG.Flex.eGFP.WPRE.bGH in the somatosensory cortical
area of Scnnla-Cre mice. Following virus injection a craniotomy (~ 600 x 600400 x 400

unt depending on the endoscope size) was performed over the neocortex at stereotaxic coordinates:
7
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1.8 mm P and 1.5 mm L to image the hippocampus; 0.7 mm A and 1.8 mm L to reach the dorsal
striatum; 2.3 mm P and 2 mm L to reach the VPM. A thin column of tissue was suctioned with a
glass cannula (ID, 300 um and OD, 500 um:; Vitrotubs, Vitrocom Inc., Mounting Lakes, NJ) glued
onto the lateral side of transparent supports.eH@V/-microendoscope was slowly inserted in the
cannula track, down to the depth of interest and secured by acrylic adhesive and dental cement to
the skull. If necessary, metal spacers (thickness: ~ 100 um) were glued on the flat coverslip surface
to obtain the desired protrusion distance of the GRIN rod. After surgery, animals were positioned
under a heat lamp and monitored until recovery. Three to five weeks after injection, mice were
anesthetized with urethane (2 g/kg) and placed into a stereotaxic apparatus to proceed with imaging
experiments. Body temperature was kept at 37 °C and depth of anesthesia was assured by
monitoring respiration rate, eyelid reflex, vibrissae movements, and reactions to pinching the tail
and toe. In some experiments, oxygen saturation was controlled by a pulseoxymeter (MouseOx,

Starr Life Sciences Corp., Oakmont, PA).

Functional imaging with e=OV microendoscopes in vivo

For scanning imaging of GCaMP6-expressing neuriiessame microscope set-up used for the
optical characterization &OV-microendoscopes was used. GCaMP6 fluorescence was excited at
920 nm (laser power: 28-64 mW). For high-speed scanless imaging experiments, a liquid crystal
spatial light modulator (SLM, X10468-07, Hamamatsu, Milan, IT) was placed in a plane optically
conjugated with the galvanometric mirror aperture and detection of fluorescence signals was
performed with a camera (SciMeasure NeuroCCD-SMQ, Redshirt Imaging, Decatur, GA), as
previously described (31-33). Laser power point was ~ 18 mW / point measured as the total
power value under the endoscope divided by the number of projected points. Experiments were

performed using an Olympus RMS20X-PF - 20X 0.5 NA Plan Fluorite Objective.
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Temporal series recorded in the scanning configuration were imported into the open source

ImageJ/Fiji (29) software and movement correction was performed using the plugin Image

Stabilizer. Calcium traces were analyzed using a custom code based on the open-source CellSort

MATLAB toolbox (34). Briefly, the motion-corrected image stack was normalized and analyzed by

principal components analysis (PCA) to find and discard dimensions that mainly represented noise.

Principal components displaying a variance greater than noise were then analyzed with an iterative

independent component analysis (ICA) algorithm to identify active cells. Manual validation of

extracted traces was performed. SigiSa{s) were standardized &5 ;(t) = (Si(8) = 5 a(S;)
l

whereS, anda (S;) are respectively the mean of the signal and its standard deviationA@.d.).

scanless imaging, t-series were imported into the open source ImageJ/Fiji software and the regions

of interest (ROIs) were manually identified. The fluorescence signals corresponding to the ROIs
were computed a%; ;(t) as described above. In some cases, traces were filtered with an

exponential weighted moving average=(100 ms).

I mmunohi stochemistry

Deeply anesthetized animals were transcardially perfused with 0.01 M PBS (pH 7.4) followed by 4

% paraformaldehyde. Brains were post-fixed for 6 h, cryoprotected with 30 % sucrose solution in
0.1 M PBS and serially cut in coronal sections (thickness: 40 - 50 pum). Sections were then

counterstained with Hoechst (1:300, Sigma Aldrich, Milan, IT), mounted and coverslipped with a
DABCO [1,4-diazobicyclo-(2,2,2)octane]-based antifade mounting medium. Fluorescence images

were acquired with a Leica SP5 inverted confocal microscope (Leica Microsystems, Milan, IT).

Statistics
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Values are expressed as mean + standard deviation, unless otherwise stated. A Kolmogorov-
Smirnov normality test was run on each experimental sample. When comparing two populations of

data, Student’stest was used to calculate statistical significance in case of Gaussian distribution.

Results and Discussion

Four types (type I-IV) o€FOV-microendoscopes of various length and lateral dimensions were
developed, all composed of a GRIN rod, a glass coverslip and a microfabricated corrective aspheric
lens (Fig.1). One end of the GRIN rod was directly in contact with the glass coverslip and the GRIN
rod was different in each of the four typeebDV-microendoscopes (lateral diameter, 0.35-0.5

mm; length, 1.1-4.1 mm; all 0.5 NA, table 1). The glass coverslip was 100 pum thick for type I, 1l

IV eFOV-microendoscopes and 200 um thick for typeFOV-microendoscopes. This design did

not require additional cannulas or clamping devices (35, 36) that would increase the lateral size of

the microendoscope assembly or reduce it usable length, respectively.

Corrective lenses were fabricated by TPP (22) and plastic molding replication (27) directly onto the
glass coverslip. For each type of GRIN rod used ireE@V-microendoscope, ray trace simulations
determined the lens profile (Fig. 1) that corrected optical aberrations and maximized the FOV (Fig.
2). In the representative case of tymEOV-microendoscope, the coefficients used in equation (1)
were: c: -2.579E-1, k:-1.74: 8.575E-10,:-5.297E103: 5.952E304: -2.765E505: 7.258E606: -
8.914E7 a7: 2.469E80s: 2.193E9. For type dFOV-microendoscopes the corrective lens had a
diameter of 0.5 mm and height < 40 um. For this typeF@iV-microendoscopes, the simulated
diffraction point-spread-functions (PSFs) at incremental radial distances (from Opon2®@®m

the optical axis showed that the Strehl ratio of the system was > 80% (diffraction-limited condition
according to the Maréchal criterion (37)) at a distance up to ~ 165 um from the optical axis with the
corrective lens, while up to ~ 70 um for the same optical system without the corrective lens (Fig.

2a), leading to an increase in the area of the diffraction-limited FOV of ~ 5 times. The coefficients
10
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used in equation (1) for all other typesebOV-microendoscope are reported in Supplementary
table 1. Fig. 2b-d reports the Strehl ratio for corrected and uncorrected typeHON/
microendoscopes. The enlargement of the area of the FOV was ~ 2-9 times for these other types of

eFOV-microendoscopes, compared to microendoscopes without the corrective lens.

To experimentally validate the optical performanatthe eFOV-microendoscopes, we first

coupled them with a standard two-photon laser scanning system using a customized mount (Fig. 3a-
b, Supplementary Fig. 1). We measured the spatial resolution by imaging subresolution
fluorescence beads (diameter: 200 nm) at 920 nm. We founeF@&tmicroendoscopes had

significantly improved axial resolution compared to uncorrected probes. Foréfyd/}
microendoscopes, for example, the minimal value of FW&& 6.7 £ 0.2 um for corrected

endoscopes and 8.5 + 0.4 um for uncorrected probes (Fig. 3d-e, table 1; Stueshtjs = 2.6E-

10; N = 10). The radial resolution was also slightly increased for type | eFOV-microendoscopes
(Table 1). Experimental measures of radial and axial resolution for typecHOY-

microendoscopes are reported in Table 1. Importantly the axial resolution was significantly

increased in all correctedFOV-microendoscopes compared to uncorrected probes.

We then evaluated the profile of fluorescence intensity across the FOV for both uncorrected and
corrected probes using a subresolution thin fluorescent layer (thickness: 300 nm) as detailed in (28).
Supplementary Figure 2 shows the spatial intensity maps (Supplementary Fig. 2a, c, e, g) and the
average fluorescence intensity along the radial direction (Supplementary Fig. 2b, d, f, h) for
uncorrected and corrected type 14F¥OV-microendoscopes. The diameter of the FOV (measured

at radial distances at which the measured fluorescence drops below 80%) was significantly higher
for corrected compared to uncorrected microendoscopes (356.5 + 8131818 + 83.4 um for

corrected and uncorrected type | probes, respectively, p = 9E-4, N = 7; 360.3 + s 31/M9 +

4.8 um for corrected and uncorrected type Il probes, p = 2E-14, N = 8-9; 163.8 + ¥s3 Ainl +
11
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6.0 um, for corrected and uncorrected type Il probes, p = 4E-8, N = 9; 234.3 £ 2d1iih3 +
3.1 um, for corrected and uncorrected type IV probes, p = 7E-18, N = 8-9. All p-values were

obtained with Student'stest).

We next characterized the effect of aberration correction on the axial resolution across the FOV.
From the acquired z-stacks of a subresolution thin fluorescent layer described above, we measured
the FWHM, across the FOV. As expected by ray trace simulations (Fig-@)/-microendoscopes
displayed a more pronounced curvature of the focal plane (Fig. 3f, Supplementary Fig. 3) compared
to uncorrected probes. Moreover, the x,z projection of the z-stacks showed higher axial resolution
in eFOV-microendoscopes in an area that was ~ 1.2 - 9.3 folds wider (depending on
microendoscope type) compared to uncorrected probes (Fig. 3f-g, Supplementary Fig. 3, table 1),
further demonstrating extended FOV in corrected microendoscopes. Noteworthy, we found good
agreement between the experimental measurements (Fig. 3, table 1) and the prediction of the optical
simulations (Fig. 2). Since aberrations generally increase with the length of the GRIN rod used in
the microendoscope (38), aberration correction resulted in larger improvements in optical
performances ieFOV-microendoscopes with longer rather than shorter GRIN rods (Supplementary
Fig. 3, table 1). The ability af~OV-microendoscopes to image effectively larger FOV compared to
uncorrected probes was further confirmed in biological tissue by imaging neurons expressing the

green fluorescence protein (GFP) in fixed brain slices (Fig. 3h, Supplementary Fig. 4).

To validateeFOV-microendoscopes performances for functional measurenmant®, we

expressed the genetically-encoded calcium indicator GCaMP6s in the mouse hippocampal region
(Supplementary Fig. 5a)sand implante@FOV-microendoscopes above the injected area
(Supplementary Fig. 6a, c). It is worth noting that an advantage of the customized mount that we
developed to holéFOV-microendoscopes (Fig. 3a-b) is that it allows their full-length insertion

within the tissue. As compared to the most common microendoscopes configurations described in
12
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the literature (14, 16, 17, 19, 39), our solution thus enables the use of shorter probes, which are less

sensitive to aberrations.

We appliedeFOV-microendoscopes to perfolimvivo population imaging in injected mice in the
raster scanning configuration at 0.5-0.7 Hz (Fig. 4, Supplementary Figs. 7-8). Spontaneous
activities in the CA1 hippocampal region were imaged with tyggedV-microendoscopes (Fig. 4,
Supplementary Fig. 7) and type éFOV-microendoscopes (Supplementary Fig. 8). Using a cell-
sorting algorithm based on PCA/ICA analysis (34), tens to hundreds of active ROIs were identified
and could be imaged on a single FOV usR@V-microendoscopes, confirming efficient

population imaging (Fig. 4, Supplementary Figs. 7-8). Moreover, neuronal processes and dendritic
spines could be reliably monitored in lateral parts of the FOV, demonstrating high-resolution
imaging across the whole extended FidWivo and proving the effectivenessefOV-
microendoscopes for imaging neuronal activity at both cellular and synaptic level. ebér
microendoscopes for imaging of deeper brain areas, such as the dorsal striatum and the ventral

posteromedial thalamic nucleus (Supplementary Figs. 5-6), were also successfully implanted.

Finally, because the built-in aberration correction method adopttOM-microendoscopes does

not interfere with the temporal resolution of the optical system, we coep{@dmicroendoscopes
with the scanless imaging technique (31, 40) to improve temporal resolution in endoscopic
functional imaging. A SLM (Supplementary Fig. 9a) (31-33, 40) was used to generate an array of
points in the focal plane, each stimulating a neuron expressing GCaMP6s with a near diffraction
limited spot. Simultaneously excited fluorescence at multiple locations was collected through a
camera, decoupling the maximal acquisition frequency from the number of imaged points. Using
this experimental configuration, we performed simultaneous imaging from multiple hippocampal
CA1 pyramidal cell$n vivo at two orders of magnitude higher speed (125 Hz, Supplementary Fig.

9) compared to scanning imaging (0.5-0.7 Hz, Fig. 4 and Supplementary Figs. 7-8).
13
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Major efforts in the development of technology for imaging neuronal activitivo are directed to

access deep brain regions with minimal tissue damage while maximizing the area over which
imaging can be performed with single cell resolution and high sampling speed. GRIN lenses, alone
or in combination with fiber-bundles, have been used to perform one- and two-photon imaging in
deep brain areas, such as the hippocampus (39, 41), the striatum (16) and the hypothalamus (16, 42,
43). GRIN microendoscopes have also been used to perform simultaneous functional imaging of

two different brain regions (44), allowing concurrent monitoring of neuronal dynamics in areas

otherwise not accessible with single FOV systems.

Even though the combination of GRIN lenses with two-photon imaging benefits of improved

optical sectioning, most GRIN endoscopes have been operating with lower resolution even in two-
photon excitation modality due to optical aberrations lying on and off the optical axis. These
aberrations derive from the intrinsic nonaplanatic properties of GRIN rods (45) and limit the usable
FOV (14, 17, 19, 21). Aberrations increase with the length and NA of the GRIN lens, making high-
resolution imaging of large FOV in deep areas a challenging goal. Aberrations can be partially
compensated by adding additional optical elements, such as a cover glass (38), a single high
refractive index planoconvex lens (14), and multiple planoconvex lenses combined with diffractive
optical elements (21). By adding a single planoconvex ball lens to the distal end of a customized
GRIN rod (rod diameter: 1 mm), Barretto et al. increased the NA up to 0.82 correcting on-axis
aberrations and they imaged neuronal dendritic spines in GFP-expressing hippocampal pyramidal
neurons in live mice (14). To correct off-axis aberrations while maintaining high NA, at least a
second planoconvex lens was needed (21). Fabrication of high performances multi-element optical
systems for on-axis and off-axis aberration correction, however, imposes to respect strict tolerances
in the assembly and needs the use of external metal cannulas to hold the various optical elements

aligned and provide mechanical stability to the optical system. This, so far, limited the applicability
14
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of aberration correction with built-in optical elements to GRIN lenses of diareretenm and

overall endoscopic probe diameter (GRIN + cannul&) D% mm (14, 21). Since the insertion of

the probe irreversibly damages the tissue above the target area, reducing the size of the probe and
consequently its invasiveness is of outmost importance when imaging deep brain regions. However,
due to their small radial dimensions, improving optical performances in ultrathin (dian@eger

mm) microendoscopes with built-in optical elements is a major challenge. In this study, we devised
a new approach to solve this problem and used TPP (22, 46) to microfabricate polymeric aspheric
lenses that effectively corrected aberrations in ultrathin GRIN-based endoscopes. Corrective lenses
were first fabricated on glass coverslips which were aligned and assembled with the GRIN rod to
form an aberration-corrected microendoscope. Importantly, this optical design resulted in improved
axial resolution and extended FOV without increasing the lateral size of the probe and thus

minimizing tissue damage in biological applications.

Aberration correction in GRIN microedoscopes can be achieved using adaptive optics (AO) (17, 19,
20, 45). For example, using pupil-segmentation methods for AO diffraction-limited performance
across an enlarged FOV was obtained in GRIN-based endoscopes with diameter of 1.4 mm (17, 19)
and, in principle, this approach could be extended to probes with smaller diameter. AO through
pupil segmentation requires significant modification of the optical setup and the use of an active
wavefront modulation system (e.g. deformable mirror device or liquid crystal spatial light
modulator) which needs the development of ad-hoc software control. Moreover, AO through pupil
segmentation may limit the temporal resolution of the system, since multiple AO corrective patterns
must be applied to obtain an aberration-corrected extended FOV (17). Compared to AO
approaches, the technique developed in this study does not necessitate modification of the optical
path nor the development of heavy computational approaches. Moreover, it is easily coupled to

standard two-photon set ups, and does not introduce limitations in the temporal resolution of the

15
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imaging system, allowing fast endoscopic microscopy when coupled with the scanless imaging

modality (Supplementary Fig. 9).

Despite these advantages, the approach presented in this study is limited to the correction of
aberration introduced by the GRIN lens and was not developed to correct aberrations introduced by
other elements along the optical path or by the sample. Moreover, in contrast to AO our approach
does not correct for aberrations that may vary over time, such as those due to intrinsic properties of
the biological sample that may dynamically change over the course of the experiment. AO
approaches could, for example, be applie@fe@V-microendoscopes to address this limitation.

Future development of the method described in this study may also include the realization of
corrective elements composed of compound microfabricated lenses (22, 46) that could extend the
degrees of freedom in the correction design process and lead to improved performances of

miniaturized optical probes.

Conclusions

We developed a new methodology to correct for aberrations and extend the FOV in ultrathin
microendoscopes using microfabricated aspheric lenses. Corrective lenses are specifically designed
for each type of GRIN rod used in the endoscope and are fabricated by TPP. This method is flexible
and can be applied to the GRIN rods of different diameters and lengths that are required to access
the numerous deep regions of the mammalian brain. CorresteExdcopes showed improved axial
resolution and up to 9 folds extended FOV, allowing efficiantvo population imaging with

minimally invasiveness. Moreovesf-OV-microendoscopes can be efficiently coupled to fast

imaging approaches to increase the temporal resolution of aberration-corrected endoscopic imaging

by almost two orders of magnitude.
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Although eFOV-microendoscopes have been primarily applied for functional imaging in this study,
we expect that their use can be extended to other applications. For exekii@de,

microendoscopes could be combined with optical systems for two-photon patterned optogenetic
manipulations (47-49) and for simultaneous functional imaging and optogenetic perturbation (50-
52). Moreover, besides its applications in the neurosciencedigll/-microendoscopes can be

used in a large variety of optical applications requiring minimally invasive probes, ranging from
cellular imaging (35, 53) to tissue diagnostic (54, 55). Importantly, applications of ule&dif
microendoscopes to other fields of research will be greatly facilitated by the built-in aberration
correction method that we developed. This provides a unique degree of flexibility that allows using
ready-to-use devices in a large variety existing optical systems with no major modification of their

optical path.
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Tablel
Type Diam. Length FWHM, y FWHM, FOV diam.
(mm) (mm) (Lm) (Hm) (Hm)
N =10 N =10 N=7
I 0.t 1.8¢ uncor.: 0.89 £ 0.C | uncor.: 8.5+0. | uncor.: 169 +1
cor.:0.82+0.01 |cor.:.6.7+0.2 |cor.:398+18
p=1.2E-4 p = 2.6E-10 p = 5.0E-12
Il 0.t 4.07 uncor.: 0.88 £ 0.C | uncor.: 9.7 £0. | uncor.:120 * ¢
cor.:0.88+0.03 |cor.:7.3+0.2 |cor.:365+14
p = 8.5E-1 p = 1.5E-9 p=1.4E-14
Il 0.35 1.1 uncor.: 0.81 + 0.09 uncor.: 8.1 + 0.3 uncor.: 168 + 4
cor.:0.76 £0.02 |cor.:6.3+0.3 |cor.:187+4
p = 9.5E-2 p=7.8E-11 p=1.8E-5
v 0.3t 2.6z uncor.: 0.82 £ 0.C | uncor.:8.0 £ 0.« | uncor.: 133 +
cor.:0.77+0.08 |cor..6.4+0.5 |cor.:233+10
p=9.7E-2 p = 4.8E-7 p=1.1E-11

Table 1. Physical and optical characteristics of eFOV-microendoscopic probes. For statistical

comparison of corrected uncorrected microendoscopgtident’'st-test was used.
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Figure 1. Optical design of eFOV-microendoscopes. a-d) Images showing ray trace simulations
for the four differeneFOV-microendoscopes (type I-IV) developed in this study. The insets show

the profiles of corrective polymeric lenses used in the diffesfe@d/-microendoscopes.
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Figure 2. Corrective lensesimprove the simulated optical performances of ultrathin

micr oendoscopes. a) Simulated diffraction PSFs of type | microendoscopes without the corrective
lens (uncorrected, left) and with the corrective lens (corrected, right). PSFs are shown color coded
according to their radial positions (Rad. Pos.) from the optical axis. The black dotted line represents
the diffraction-limited condition that was set at 80 % (Maréchal criterion). The red asterisks indicate
the radial positions at which the maximal normalized irradiance of the corresponding PSF was > 80

%. b-d) Same as in a) for type Il (b), type Il (c), and type IV (d) microendoscopes.
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Figure 3. Aberration correction using microfabricated lenses extends the FOV in ultrathin

micr oendoscopes. a-b) Schematic of theFOV-microendoscope mount for head implant. The

GRIN rod is attached to one side of the glass coverslip, the microfabricated polymeric lens to the
other side of the coverslip. The coverslip is glued on a circular metal ring that facilitates fixation of
the animal’s skull. The detail of the coupling between optical elements is shown at an expanded
scale in bc) Top: side profile of the corrective lens for typeFIOV-microendoscopes. Bottom:

bright field image (top view) of the same corrective ledRRepresentative images in the x,y plane
(top) and in the x,z plane (bottom) of a subresolution fluorescent bead (diameter: 0.2 um) imaged
with a type leFOV-microendoscope without (uncorrected, left) and with (corrected, right) the
microfabricated corrective lensx. = 920 nme) Normalized intensity profiles along the radial

(left) and axial (right) directions of the images shown in d) for uncorrected (black) and corrected
(red) type | microendoscopes. Data are normalized to the maximum of the Gaussian fit (solid line).
f) x,z projections of a z-stack of two-photon laser scanning images of a subresolution fluorescent

layer (thickness: 300 nm) obtained using a tygeQV-microendoscope without (uncorrected, top)
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and with (corrected, bottom) the microfabricated corrective gnSverage axial resolution as a
function of the position in the FOV for uncorrected (left) and corrected (right) type |
microendoscopes. The pseudocolor scale indicates axial resolution values in micronf)N = 7.
Representative images of fixed cortical tissue expressing GFP in neuronal cells, acquired with the
same microendoscope used in d without (uncorrected, left panel) and with (corrected, right panel)

the microfabricated corrective lens.
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Figure 4. Large FOV functional imaging of hippocampal networkswith minimal invasiveness.

a-c) Two-photon image showing GCaMP6s expressing hippocampal neurons recorded using type |
eFOV-microendoscopes. Identified active ROIs are shown in b). The fluorescence signal over time
for 20 representative ROIs (red in b) are displayed in c). Traces of fluorescence signals for all active

ROIs (green in b) are displayed in Supplementary Figure 7.
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SUPPLEMENTARY MATERIAL

Extended field-of-view ultrathin microendoscopes with built-in aberration correction
for high-resolution imaging with minimal invasiveness

Andrea Antonini, Serena Bovetti, Claudio Moretti, Francesca Succol, Vijayakumar P.
Rajamanickam, Andrea Bertoncini, Carlo Liberale, Tommaso Fellin

Supplementary Figure 1
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Supplementary figure 1. Set upsfor the assembly and char acterization of eFOV-

microendoscopes. a) Optomechanical stage used for microendoscope assembly. Arrows indicate
key components: camera (DCC1645C), fine z control (SM1Z), coarse z control (L200/M), and xyz
control (MAX313D/M). All items were purchased from Thorlabs. The blue line indicates the part of
the set up whose section is shown at an expanded scald)rSekction of a portion (A-A) of the

set up shown in c). Key components were: high power UV LED (M375L3, Thorlabs), long pass
dichroic mirror (FF409-Di02, Semrock), tube lens (AC254-150-A, Thorlabs), objective (UPlanFLN
4x 0.13NA, Olympus), xy control (CXY1, Thorlabs), custom GRIN rod holder, fiber optic holder
(HCSO004, Thorlabsk) Schematic of the optomechanical assembly used for microendoscopic
imaging. The coupling objectives were RMS20X-PF-20X and LUCPLFLN 60X (Olympus). The z
control (SM1Z) and xy control (CXY2) were purchased from Thorldp3he self-supported
eFOV-microendoscope (highlighted with the red dotted line in c) is shown at an expanded scale.
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Supplementary figure 2. Aberration correction increasesthe FOV. a) Pseudocolor images

showing the spatial distribution of fluorescence of uncorrected (left image) and corrected (right
image) type | microendoscopes. Images are obtained monitoring a thin homogeneous fluorescence
layer athexc = 920 nm and were resampled (pixel dimension: 20 um) to suppress sharp fluorescence
variations.b) Fluorescence intensity profile along a line crossing the optical axis for uncorrected
(green line) and corrected (red line) type | microendoscopes. Traces are shown as mean * sem
across different experiments (N = @d) Same as in a-b) for type 1l microendoscopes. In d), N =

2
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8-9.ef) Same as in a-b) for type Ill microendoscopes. In f), Ng-9. Same as in a-b) for type IV
microendoscopes. In h), N = 8-9.
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Supplementary Figure 3
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Supplementary figure 3. Aberration correction with polymeric lensesincreasesthe FOV in
GRIN-based microendoscopes. a-C) X,z projections of a z-stack of two-photon laser scanning
images of a subresolution fluorescent layer (thickness: 300 nm) without (uncorrected, top) and with
(corrected, bottom) corrective lens for type Il (a), type Ill (b) and type I'éHOV-

microendoscopes. Excitation wavelengths 920 nm.
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Supplementary Figure 4
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Supplementary figure 4. Extended FOV in corrected micr oendoscopes. a-¢c) Representative
images of fixed cortical tissue expressing GFP in neuronal cells were acquired with type Il (a), type

[l (b) and type IV (c)eFOV-microendoscopes without (uncorrected, left panels) and with
(corrected, right panels) corrective lens.
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Supplementary Figure 5
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Supplementary figure 5. GCaM P6s expression in deep brain areas. a-a;) Confocal images of
hippocampal CA1 neurons expressing GCaMP6s (a). Nuclei were counterstained with Hgechst (a
Images are merged in.&cale bar in a applies tg-a. b-by) Same as in a;dor neurons in the

dorsal striatumc-cz) Same as in azdor neurons in the ventral posteromedial thalamic nucleus.
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Supplementary Figure 6

Supplementary figure 6. Implantation of different types of eFOV-microendoscopesin various

brain areas. a-d;) Confocal images showing coronal slices from mice implanted with type;),(a-a

type Il (b-h), type Il (c-g) and type IV (d-¢) eFOV-microendoscopes. Type | and ¢FOV-
microendoscopes were used to reach the hippocampus, type Il to reach the thalamus and type IV to
reach the striatum. Slices were counterstained with Hoechst. The probe track is highlighted with the
red dotted line in a, b, ¢, d and shown at a higher magnificatianbina, d;.
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Supplementary Figure 7
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Supplementary figure 7. Population imaging with ultrathin type | eFOV-microendoscopes. a-
b) Active ROIs are identified (a) and numbered (b) for the hippocampal field displayed in figure 4a.
c¢) Fluorescence signals over time for the ROIs displayed in a-b).
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Supplementary Figure 8

Supplementary figure 8. Population imaging with ultrathin type |11 eFOV-micr oendoscopes.
a-b) GCaMP6s expressing hippocampal neurons. Active ROIs are identified and numberell in b).
Fluorescence signals over time for the ROIs displayed in b).
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Supplementary Figure 9
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Supplementary figure 9. High-speed functional imaging with eFOV-micr oendoscopes. a)

Schematic of the experimental set-up for fast scanless microendoscopic imaging. A SLM is used to
spatially multiplex the laser beam and fluorescence signals are collected via a camera. A custom
code was written in LabView (National Instruments Corp, Austin, TX) to compute phase
modulation maps and to interface the SLM with the PrairieView acquisition software (Bruker
Corporation, Milan, IT). Excitation patterns with arrays of points were generated using the
Weighted Gerchberg-Saxton lterative Fourier Transform Algorithm. A calibration routine with sub-
micrometric precision was developed to map the FOV of the laser scanning system with the
projection plane of the SLM at the sample. The light of the zero-order diffraction component was
typically projected to a region where non-fluorescent structures were identified (e.g.: the lumen of a
blood vessel)b) Two-photon laser scanning image showing GCaMP6 expressing neurons in the
CAL1 hippocampal regiorA type 11l eFOV-microendoscope was used. Labelled neurons (red
crosses) were imaged in the scanless configuratjdfiuorescence signals over time for the

neurons displayed in biRaw traces are shown in grey; black lines represent a posteriori filtered
traces (see Materials and Methods).
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Supplementary Table 1

C k al 2 o3 o4 a5 06 a7 o8
Typel -2.58E-01 -1.74E+00 8.58E-01 -5.30E+01 5.95E+03 -2.77E+05 7.26E+06 -8.91E+07 2.47E+08 2.19E+09
Typell 1.02E+03 -2.37E+03 -1.46E+00 2.87E+01 -4.60E+01 -7.69E+03 1.96E+05 7.82E+06 -1.69E+08 -3.88E+08
Typelll -4.99E-01 8.20E+00 1.54E+00 -1.35E+02 3.67E+04 -3.92E+06 2.17E+08 -5.56E+09 3.34E+10 6.29E+11
TypelV | -2.41E-01 -1.17E+00 9.22E-01 -1.34E+02 4.36E+04 -4.28E+06 2.23E+08 -5.55E+09 3.48E+10 4.94E+11

Supplementary table 1. Coefficients used in equation 1 (see Materials and Metliodf)e
aspherical corrective lenses used in type EIRDV-microendoscopes.
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