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SUMMARY 19 

  20 

Pyrophosphate (PPi), a byproduct of macromolecule biosynthesis is maintained at low levels 21 

by soluble inorganic pyrophosphatases (sPPase) found in all eukaryotes. In plants, H+-22 

pumping pyrophosphatases (H+-PPase) convert the substantial energy present in PPi into 23 

an electrochemical gradient. We show here, that both cold- and heat stress sensitivity of 24 

fugu5 mutants lacking the major H+-PPase isoform AVP1 is caused by reduced 25 

SUMOylation. In addition, we show that increased PPi concentrations interfere with 26 

SUMOylation in yeast and we provide evidence that SUMO activating E1-enzymes are 27 

inhibited by micromolar concentrations of PPi in a non-competitive manner. Taken together, 28 

our results do not only provide a mechanistic explanation for the beneficial effects of AVP1 29 

overexpression in plants but they also highlight PPi as an important integrator of metabolism 30 

and stress tolerance. 31 

 32 
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 35 

 36 
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INTRODUCTION 1 

Reshaping of metabolic networks under stress conditions enables the synthesis of protective 2 

compounds while metabolic homeostasis needs to be maintained. In about 200 metabolic 3 

reactions ATP is not used as a phosphorylating but as an adenylating reagent leading to the 4 

release of inorganic pyrophosphate (PPi). Most prominently, the biosynthesis of many 5 

macromolecules including DNA, RNA, proteins and polysaccharides releases large amounts 6 

of PPi (Ferjani et al., 2014; Heinonen, 2001). Given the substantial free energy of PPi, the 7 

efficient biosynthesis of macromolecules requires that PPi is immediately destroyed to 8 

prevent the respective back-reactions (Kornberg, 1962). In all eukaryotes PPi is hydrolysed 9 

by soluble inorganic pyrophosphatases (sPPase; EC 3.6.1.1) in a highly exergonic reaction. 10 

Loss of sPPase function causes lethality in yeast (Lundin et al., 1991) and C. elegans (Ko et 11 

al., 2007) presumably due to accumulation of PPi inhibiting the biosynthesis of 12 

macromolecules. Arabidopsis encodes six sPPase-paralogs (PPa1-PPa6) of which only 13 

PPa6 is localized in plastids whereas all others are cytosolic (Gutiérrez-Luna et al., 2016; 14 

Segami et al., 2018). However, their PPase activity is rather low and even the loss of the 15 

four ubiquitously expressed isoforms does not cause phenotypic alterations (Segami et al., 16 

2018). In contrast, expression of E. coli sPPase severely affects plant growth via alterations 17 

in carbon partitioning between source and sink organs caused by the inhibition of several 18 

plant enzymes involved in carbohydrate metabolism that use PPi as an energy source 19 

(Geigenberger et al., 1998; Sonnewald, 1992). Importantly, in addition to soluble PPases, 20 

plants contain membrane-bound proton-pumping pyrophosphatases (H+-PPase) at the 21 

tonoplast and in the Golgi that convert the energy otherwise lost as heat into a proton-22 

gradient (Maeshima, 2000; Segami et al., 2010). Fugu5 mutants lacking the tonoplast H+-23 

PPase AVP1 were identified based on their phenotype characterised by compensatory cell 24 

enlargement due to a decrease in cell number (Ferjani et al., 2011). The fact that the fugu5 25 

phenotype could be rescued either by growth in the presence of exogenous sucrose or the 26 

expression of the yeast sPPase IPP1 showed clearly that altered PPi levels and not reduced 27 

H+-pumping are causative (Asaoka et al., 2016; Ferjani et al., 2011). Indeed, vacuolar pH is 28 

only mildly affected in fugu5 mutants indicating that the H+-pumping ATPase (V-ATPase) 29 

present at the tonoplast is largely sufficient for vacuolar acidification (Ferjani et al., 2011; 30 

Kriegel et al., 2015). However, loss of both vacuolar proton-pumps leads to a much more 31 

severe phenotype and defect in vacuolar acidification than loss of the tonoplast V-ATPase 32 

alone (Kriegel et al., 2015). It has indeed been discussed that AVP1 serves as a backup 33 

system for the V-ATPase in particular under ATP-limiting conditions like anoxia or cold 34 

stress (Maeshima, 2000). During cold acclimation plants accumulate cryoprotectants 35 

including sugars in their vacuoles and activity of both proton-pumps is upregulated leading to 36 

improved freezing tolerance (Schulze et al., 2012; Thomashow, 1999). Overexpression of 37 
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AVP1 has been shown to cause increased plant growth under various abiotic stress 1 

conditions including salinity, drought and phosphate starvation but the underlying 2 

mechanism remained unclear (Gaxiola et al., 2012; Park et al., 2005; Schilling et al., 2017). 3 

Attachment of the small ubiquitin-related modifier SUMO to substrate proteins plays a central 4 

role in the response to a broad set of stress responses including the ones affected by AVP1 5 

overexpression (Castro et al., 2012). Modification of target proteins by SUMO-conjugation 6 

proceeds via a three-step mechanism. First the SUMO moiety is adenylated and then bound 7 

via a high-energy thioester linkage to the heterodimeric SUMO-activating enzyme (E1) 8 

leading to the release of PPi. Next, the activated SUMO is transferred to the SUMO-9 

conjugating enzyme E2 and finally, assisted by SUMO-protein ligase (E3), donated to a 10 

large set of substrate proteins (Flotho and Melchior, 2013; Johnson, 2004). In Arabidopsis, 11 

the key transcriptional regulator of the cold response INDUCER OF CBF EXPRESSION 1 12 

(ICE1) as well as the heat shock factor A2 (HSFA2) have been shown to be positively 13 

regulated by SUMOylation (Cohen-Peer et al., 2010; Miura et al., 2007). In this study, we 14 

report that AVP1 contributes to both cold acclimation and heat tolerance and we show that 15 

the rapid increase in SUMOylation common to both stress responses is missing in the 16 

absence of AVP1. Furthermore, we provide evidence that accumulation of PPi in plants, 17 

yeast and mammals inhibits the SUMO E1 activating enzyme in turn affecting the fate, 18 

localization or function of a large number of proteins during cellular stress responses. Our 19 

results provide a mechanistic explanation for the beneficial effects of AVP1 overexpression 20 

in plants and highlight PPi as an important integrator of metabolism and stress tolerance. 21 

  22 

RESULTS 23 

  24 

Lack of V-PPase activity impairs cold acclimation 25 

We have shown previously that upregulation of ATP-hydrolysis by the V-ATPase during cold 26 

acclimation depends on the presence and the activity of the V-PPase (Kriegel et al., 2015). 27 

To complete the data-set for vacuolar proton-pump activity during cold acclimation, we 28 

performed parallel measurements of ATP- and PPi- hydrolysis, H+-pumping as well as cell 29 

sap pH in wild-type (Col-0), the fugu5-1 mutant and a UBQ:AVP1 overexpression line. Both 30 

ATP- and PPi-dependent proton-pumping are increased in wt and UBQ:AVP1 during cold-31 

acclimation (Supplemental Figure 1A+B). As expected PPi-dependent proton-pumping was 32 

undetectable in fugu5-1, but ATP-dependent proton-pumping was also reduced in fugu5-1 33 

compared to wt and increased only marginally upon cold-acclimation (Supplemental Figure 34 

1B). As a consequence of cold-induced proton-pump stimulation, vacuolar pH drops by 0.1 35 

pH-units in wt and UBQ:AVP1 but not in fugu5-1 (Supplemental Figure 1C). 36 
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Whereas the seedling phenotype of fugu5-1 is rescued by expression of the yeast soluble 1 

PPase IPP1 under control of the AVP1-promoter during the seedling stage (Ferjani et al., 2 

2011), the adult growth phenotype of plants grown in short day (SD) was not rescued 3 

(Supplemental Figure 2A). We thus expressed the constitutively expressed Arabidopsis 4 

soluble pyrophosphatase PPa5 fused to GFP under the control of the UBQ10-promoter and 5 

could show that it is located in the cytosol as well as in the nucleus (Supplemental Figure 6 

2B) and fully rescues the seedling (Supplemental Figure 2C) as well as the adult phenotype 7 

(Supplemental Figure 2D+E) of fugu5-1. For further analysis, two lines in the wild-type and in 8 

the fugu5-1 background that showed protein expression of PPa5-GFP (Supplemental Figure 9 

2F) and comparable increased total soluble pyrophosphatase activity (Supplemental Figure 10 

2G) in the wild-type and in the fugu5-1 background were chosen. We next asked if cold-11 

acclimation is affected in fugu5-1 and if so, whether this could be rescued by overexpression 12 

of a soluble pyrophosphatase.  13 

Both survival rate and ion release as a measure of freezing tolerance was 14 

comparable in all genotypes exposed to freezing without prior cold acclimation (Figure 1A + 15 

B). Cold acclimation via exposure to 4°C for 4 days significantly improved freezing tolerance 16 

in wild-type to a much higher extent than in fugu5-1 plants and expression of PPa5 fully 17 

rescued the hypersensitivity to cold (Figure 1C). Accumulation of soluble sugars during 18 

exposure to low temperatures contributes to freezing tolerance and could be directly affected 19 

by PPi-accumulation (Ferjani et al., 2018). We thus next compared the accumulation of 20 

glucose, fructose and sucrose and found that cold-induced sugar accumulation is indeed 21 

strongly reduced in the fugu5-1 mutant but restored by UBQ:PPa5-GFP (Figure 1D-1F) 22 

suggesting that accumulation of PPi and not a lack of H+-pumping is responsible for the 23 

impaired cold acclimation in fugu5-1. In agreement with this hypothesis, we found that PPi 24 

levels are reduced in the wt during cold-acclimation whereas they increase in fugu5-1 25 

resulting in 2-fold higher levels compared to wt after cold acclimation (Figure 1G). 26 

  27 

PPi controls cold-acclimation via SUMOylation 28 

Low temperature triggers the expression of the CBF (C-repeat binding factor) family of 29 

transcription factors, which in turn activate downstream genes that confer chilling and 30 

freezing tolerance (Chinnusamy et al., 2007). We used qRT-PCR to profile the expression of 31 

members of the PPa-gene family over 24h after exposure to low temperature (4°C) and 32 

found that PPa1 and PPa4 are rapidly induced after cold exposure whereas transcripts of 33 

PPa2 and PPa5 accumulated at later time points (Figure 2A). Upregulation of sPPase genes 34 

suggests that PPi-levels are actively controlled during the early cold acclimation response 35 

and we thus next compared the expression levels of the core transcriptional regulators 36 

CBF1-3 as well as the three downstream response genes COR15A, COR78 and GolS3. 37 
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Whereas expression of CBF2 was nearly unaffected, CBF1 and in particular CBF3 induction 1 

was found to be strongly reduced in the fugu5-1 mutant (Figure 2 B). Similarly, induction of 2 

all three target genes was found to be strongly reduced throughout the cold response 3 

(Figure 2 C). Cold-induction was restored when PPa5 was constitutively expressed in the 4 

fugu5-1 background (Figure 2 B+C) indicating that the observed changes in gene expression 5 

are caused by reduced PPi-hydrolysis and not by reduced H+-pumping.  6 

The fast transcriptional response to cold is initiated by ICE1 (Inducer of CBF 7 

expression 1), a direct activator that is negatively regulated by ubiquitination-mediated 8 

proteolysis and positively regulated by SUMOylation (Dong et al., 2006; Miura et al., 2007); 9 

Figure 3 A). Using a specific antibody to detect ICE1 in total seedling protein extracted in the 10 

presence of NEM to inhibit deSUMOylation, we observed two bands in wild-type that are 11 

both absent in ice1-2 indicating that they correspond to a non-modified (100kD) and modified 12 

(130kD) dimer of ICE1. The ICE1 monomer (50kD) was only observed when proteins were 13 

extracted in the presence of DTT and without NEM (Supplemental Figure 3). 14 

In fugu5-1 the modified dimer was barely detectable indicating that either 15 

ubiquitination or sumoylation of ICE1 are affected (Figure 3 B). We next compared levels of 16 

ICE1 during cold acclimation and found that ICE1 accumulated after exposure to 4°C for 3h 17 

in wild-type but was strongly reduced in fugu5-1 (Figure 3 C). We thus next asked if overall 18 

cold-induced SUMOylation was affected in fugu5. Whereas cold exposure let to a rapid and 19 

massive accumulation SUMO1/2 conjugates in the wild-type, this response was absent in 20 

fugu5-1 (Figure 3 D). Quantification of SUMO levels in two independent fugu5-alleles 21 

showed that it is already reduced to 60% of wt in plants grown at 22°C and levels drop to 22 

20% of wt after incubation at 4°C for 3h (Figure 3 E). SUMOylation is restored to wild-type 23 

levels in UBQ:PPa5-GFP and slightly enhanced in UBQ:AVP1 plants indicating that low PPi 24 

levels are critical for efficient SUMOylation (Figure 3 D). 25 

  26 

PPi inhibits heat-stress induced SUMOylation in both plants and yeast 27 

Rapid and reversible accumulation of SUMO conjugates does not only occur during cold 28 

stress but also during heat stress (Miller et al., 2010; Rytz et al., 2018) and accumulation of 29 

PPi should thus also inhibit the heat stress response. Indeed, survival rate of fugu5 30 

seedlings was strongly reduced by exposure to 40°C for 30 min but restored in the 31 

UBQ:PPa5 complementation line. Of note, the survival rate of the UBQ:AVP1 32 

overexpression line was increased compared to the wt (Figure 4 A and 4B). We therefore 33 

analysed next if heat induced SUMO1/2 conjugate accumulation was affected. Exposure to 34 

40°C for 30 min led to accumulation of SUMO1/2 conjugates in the wt, whereas the 35 

response was strongly reduced in fugu5-1 (Figure 4 C). Consistently, a reduction of SUMO 36 

levels after heat stress was also observed for fugu5-3 are reduced to 20% of wt after 37 
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 7 

incubation 40°C for 30’ in both fugu5-1 and fugu5-3 but was restored to wt levels in 1 

UBQ:PPa5-GFP and UBQ:AVP1 plants (Figure 4 D).  2 

SUMO plays an important role in stress responses across all eukaryotes (Enserink, 3 

2015; Hannich et al., 2005). Therefore, we asked whether PPi accumulation has a 4 

comparable effect in the yeast S. cerevisiae. We employed a strain in which the sole and 5 

essential sPPase IPP1 is expressed under the control of the GAL1 promoter (Serrano-6 

Bueno et al., 2013) so that switching the carbon source from galactose to glucose led to a 7 

depletion of IPP1 (Figure 5 A) after 6h that was almost complete after 15h (Figure 5 A). 8 

When wt yeast was subjected to heat stress (40 °C, 1 h), SUMOylation increased by a factor 9 

of two (Figure 5B). Heat-induced SUMOylation was strongly diminished by depletion of IPP1 10 

depletion phase (Figure 5C) indicating that inhibition of SUMOylation by PPi is not limited to 11 

plants. 12 

  13 

What is the mechanistic link between PPi accumulation and SUMOylation? 14 

Conjugation of SUMO to target proteins is initiated by E1 enzymes through adenylation, a 15 

reaction that releases PPi and could thus be inhibited by increased cytosolic PPi levels 16 

(Haas et al., 1982; Lois and Lima, 2005) . To test the direct effect of PPi on SUMOylation, 17 

we employed an in vitro assay in which conjugation of YFP-SUMO to RanGAP1-CFP can be 18 

measured as a change in FRET efficiency if the E1 and E2 enzymes as well as ATP are 19 

provided (Bossis et al., 2005). Addition of micromolar concentrations of PPi caused a strong 20 

inhibition of RanGAP1-CFP SUMOylation by the human E1 (Uba2/Aos1) and E2 (Ubc 9) 21 

which could be released by addition of a soluble pyrophosphatase (Figure 6B + 6C). To 22 

determine the mode of inhibition, we determined Vmax and Km in the absence as well as in 23 

the presence of PPi (Figure 6B) leading to the conclusion that inhibition of E1E2 activity by 24 

PPi follows a mixed mode (Figure 6D). We purified the Arabidopsis E1 heterodimer SAE1b 25 

SAE2 but could not detect activity in the FRET assay (Supplemental Figure 3) and thus 26 

analysed SAE2~SUMO thioester formation in the presence and absence of PPi. In 27 

accordance with the results for the human enzyme, the Arabidopsis SUMO E1-activity is 28 

inhibited by 10uM PPi (Figure 6E). 29 

 30 

 31 

DISCUSSION 32 

It has long been assumed that the combined action of V-ATPase and V-PPase enables 33 

plants to maintain transport into the vacuole even under stressful conditions (Maeshima, 34 

2000). We have shown previously that the increased activity of the V-ATPase during cold 35 

acclimation is largely dependent on the presence of the V-PPase (Kriegel et al., 2015). 36 

During cold acclimation fugu5 mutants thus should not able to adjust their tonoplast proton-37 
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 8 

pumping activity to the increased demand caused by the accumulation of soluble sugars, 1 

organic acids and other osmoprotectants in the vacuole (Schulze et al., 2012). We show 2 

here that lack of the V-PPase indeed limits cold acclimation severely. However 3 

complementation by overexpression of the soluble pyrophosphatase PPa5 shows clearly 4 

that this phenotype is not caused by a reduced proton-gradient limiting cold-induced 5 

accumulation of solutes in the vacuole (Figure 1). Accumulation of PPi has been shown to 6 

be causative for the developmental phenotype of fugu5 seedlings (Ferjani et al., 2018, 2011) 7 

and our results show that this also applies to the freezing tolerance and heat stress 8 

phenotypes caused by the lack of AVP1 that we report here for the first time. Although 9 

overexpression of AVP1 has been shown to result in increased stress tolerance and yield in 10 

multiple crop plants, reduced stress tolerance of fugu5 mutants has so far not been reported. 11 

The fact that the seedling phenotype observable during the heterotrophic phase of fugu5 12 

seedlings could be rescued by supply of exogenous sucrose pointed to an inhibition of 13 

gluconeogenesis. The Glc1P/UDP-Glc reaction is reversible and it has been shown that 14 

UGP-Glc pyrophosphorylase is a major target of PPi-inhibition during seedling establishment 15 

(Ferjani et al., 2018). Similarly, PPi accumulation could inhibit sugar accumulation during 16 

cold acclimation but the fact that the early transcriptional response to cold is dampened in 17 

the fugu5 mutant is not easily explained solely by a shift in sugar metabolism (Gutiérrez-18 

Luna et al., 2018). PPi is not only released by many anabolic reactions but also by E1 19 

enzymes that initiate the attachment of ubiquitin or ubiquitin-like proteins (UBLs) including 20 

SUMO. Activation of UBLs requires ATP and occurs via carboxy-terminal adenylation and 21 

thiol transfer leading to the release of AMP and PPi and would thus be prone to inhibition by 22 

PPi accumulation (Desterro et al., 1999; Schulman and Harper, 2009). The MYC-like bHLH 23 

transcriptional activator ICE1 is subject to ubiquitination-mediated proteolysis under ambient 24 

temperature that is counteracted by SUMOylation during the cold response (Miura and 25 

Hasegawa, 2008). We have shown here that the compromised cold acclimation of fugu5 is 26 

caused by the failure to stabilize ICE1 and that the overall levels of SUMO-conjugates that 27 

rapidly increase upon cold exposure in the wild-type fail to increase in fugu5 (Figure 3). As 28 

we cannot exclude that the altered sugar metabolism of fugu5 indirectly impinges 29 

SUMOylation during cold acclimation, we extended our analysis to the heat stress response. 30 

The rapid and reversible accumulation of SUMO conjugates is one of the fastest molecular 31 

responses observed during heat stress (Kurepa et al., 2003; Rytz et al., 2018). The fact that 32 

this response is dampened in both plants and yeast when PPi accumulates (Figures 4 and 33 

5) argues strongly against a secondary metabolic effect. Evidence for a direct inhibitory 34 

effect of PPi on SUMOylation was obtained in an in vitro FRET-based assay that allowed us 35 

to determine that the SUMOylation of RanGAP catalysed by human E1 and E2 enzymes 36 

was inhibited by micromolar concentrations of PPi following a mixed mode of inhibition 37 
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 9 

(Figure 6). Although we cannot exclude that PPi could inhibit the action of the E2 enzyme, 1 

the reaction catalysed by the heterodimeric E1 activating enzyme releases PPi and is thus 2 

most likely inhibited when PPi accumulates. Indeed, we could show that E1 subunit 3 

SAE2~SUMO thioester formation is inhibited in the presence of micromolar PPi, raising the 4 

question how exactly PPi inhibits E1-activity (Figure 6). 5 

For adenylation of the SUMO C-terminus to occur, the E1 enzyme adopts an open 6 

conformation that allows binding of ATP. In this conformation, the catalytic cysteine of E1 is 7 

too far away and unavailable to become linked to SUMO. Thioester bond formation between 8 

E1 and SUMO requires structural remodelling to a closed conformation in which the catalytic 9 

cysteine moves adjacent to the C terminus of SUMO~AMP, via unfolding of structures 10 

associated with ATP binding and SUMO adenylation (Lois and Lima, 2005; Olsen et al., 11 

2010). It has been suggested that active site remodelling pushes the E1 reaction forward by 12 

promoting the release of pyrophosphate to prevent the reverse reaction, the attack of the 13 

adenylate by pyrophosphate leading to the reformation of ATP. Not only is the adenylation 14 

step rate limiting, once the thioester bond is formed and AMP is released, E1 switches back 15 

to the open conformation and a second adenylation reaction occurs, resulting in the 16 

formation of a ternary complex, with an E1 molecule binding to one SUMO molecule at the 17 

adenylation active site and to a second via a thioester bond through the catalytic cysteine 18 

(Olsen et al., 2010). As E1 enzymes are potential targets for therapeutic intervention in 19 

cancer and other diseases understanding their enzymatic activity as well as inhibitory 20 

mechanisms at the atomic level may provide leads for the development of novel drugs.  A 21 

novel allosteric inhibitor that targets a cryptic pocket distinct from the active site and locks 22 

the enzyme in a previously unobserved inactive conformation has recently been identified 23 

(Lv et al., 2018) and it will be of great interest to determine how accumulation off PPi affects 24 

the conformation of E1. 25 

Although the exact mechanism remains to be determined, the fact that E1 activity is 26 

classically measured as ATP:PPi (Haas et al., 1982; Haas and Rose, 1982) exchange 27 

clearly reflects that inhibition of E1 enzymes by PPi is not novel per se. Although cytosolic 28 

PPi concentrations reported in the literature, in particular for plants, strongly suggest that 29 

relevant concentrations occur not only in mutant backgrounds or under stress conditions the 30 

relevance of inhibition by PPi in vivo has so far not been addressed. Cytosolic PPi 31 

concentrations of 0.2–0.3 mM as reported for spinach leaves (Weiner et al., 1987) would 32 

clearly not be compatible with E1 activity suggesting that PPi levels are maintained at 33 

substantially lower levels at least in the immediate environment of E1 enzymes. Many 34 

nuclear proteins are modified by SUMOylation (Rytz et al., 2018) and the SUMO conjugation 35 

complex self-assembles into nuclear bodies (Mazur et al., 2018). Information regarding the 36 

nuclear concentration of PPi is lacking, but the fact that DNA and RNA synthesis occurs 37 
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 10 

against such high concentrations of PPi argues not only that soluble pyrophosphatases play 1 

an important role in the nucleus but could also suggest that nuclear PPase activity is higher 2 

than in the cytosol. However, the fact that a quadruple knockout mutant lacking four of five 3 

PPa-isoforms showed no obvious phenotype whereas the combined loss of the H+-PPase 4 

AVP1 and a single PPa-isoform causes severe dwarfism due to high PPi concentrations 5 

(Segami et al., 2018) shows clearly that cytosolic and nuclear pools of PPi are controlled by 6 

the combined action of soluble and H+-PPase. 7 

At least for plants, converting the substantial energy present in PPi into a proton-gradient 8 

seems preferable to releasing it as heat and the soluble PPases might thus only function as 9 

emergency valves. But is accumulation of PPi to inhibitory levels only occurring in mutant 10 

backgrounds or is there evidence that it is actively prevented under stress conditions in the 11 

wild-type? The fact that four PPa-isoforms are transcriptionally up-regulated during the first 12 

six hours of the cold acclimation response (Figure 2) indicates that control of PPi levels is an 13 

integral part of the cold stress response and it remains to be determined if this is also true for 14 

other responses in particular for heat stress. Constitutive overexpression of AVP1 has been 15 

shown to cause increased growth of diverse crop plants under various abiotic stress 16 

conditions. Greater vacuolar ion sequestration, increased auxin transport, enhanced 17 

heterotrophic growth, and increased source to sink transport of sucrose have all been 18 

proposed to explain individual aspects of the phenotypes observed in plants lacking or over-19 

expressing AVP1 (Park et al., 2005; Pasapula et al., 2011; Schilling et al., 2017; Yang et al., 20 

2014). Here, we propose modulation of SUMOylation by cellular pyrophosphate levels as a 21 

unifying hypothesis that might explain both, the stress-related as well as the developmental 22 

aspects of the multifaceted AVP1 loss- and gain-of function phenotypes. Although our 23 

hypothesis needs further experimental validation in particular regarding the developmental 24 

phenotypes, it seems obvious that a combination of tissue-specific and inducible expression 25 

of PPi-hydrolysing enzymes might turn out to be an efficient way of generating stress-26 

tolerant crops for the future.  27 

 28 

 29 

 30 

EXPERIMENTAL PROCEDURES 31 

  32 

Plant material and growth conditions 33 

Arabidopsis thaliana Col-0 ecotype was used in all experiments as control. The two V-PPase 34 

mutant lines fugu5-1 and fugu5-3 and the yeast soluble pyrophosphatase overexpression 35 

line (AVP1:IPP1 / fugu5-1) were previously described (Ferjani et al., 2011). Transgenic 36 

UBQ:AVP1 #18-4 was described in (Kriegel et al., 2015). ice1-2 (SALK_003155) mutant was 37 
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 11 

obtained from the SALK population (http://signal.salk.edu; Alonso et al., 2003). Seeds were 1 

surface sterilized with ethanol and stratified for 48h at 4°C. For the heat shock tolerance 2 

assays, seedlings were grown on plates with standard growth medium (0.5% Murashige and 3 

Skoog (MS), 0.5% phyto agar, and 10mM MES, pH 5.8) for 10 days under long day 4 

conditions (16 h light/8 h dark) at 22°C at 125 µmol·m-2·s-1. At day 10, treatment plates were 5 

exposed to 40°C for 4 hours while the control plates were kept in growth conditions. For 6 

freezing tolerance assay, electrolyte leakage assay, PPi and sugar determination and real 7 

time RT-PCR, plants were grown for 6-weeks on soil under short day conditions at 22°C at 8 

125 µmol·m-2·s-1 Afterwards they were cold acclimated for 4 days at 4°C. Untreated plants 9 

were maintained in the same conditions as the growth period. To determine SUMO and 10 

ICE1 protein amounts upon cold and heat treatments, seedlings were grown in liquid culture 11 

(0.5% Murashige and Skoog (MS), 0.5% sucrose, 10mM MES, pH5.8) under long day 12 

conditions (16 h light/8 h dark) at 22°C at 125 µmol·m-2·s-1 . Growth period was 10 days in 13 

50ml liquid culture in a 300ml flask on a horizontal shaker with 100 rpm speed. After 10 14 

days, part of flasks was either subjected to 30 min 40°C or 3 hours 4°C. Control samples 15 

were kept at growth conditions. 16 

  17 

Construct design and plant transformation 18 

UBQ:PPa5-GFP construct was generated using GreenGate (GG) cloning (Lampropoulos et 19 

al., 2013). The 1097 base pairs coding sequence of PPa5 was amplified from Arabidopsis 20 

thaliana Col-0 cDNA with primers listed in table 1, attaching BsaI recognition sites and 21 

specific GG-overhangs. To prevent cutting, the internal BsaI site was mutated by site 22 

directed mutagenesis. Thereafter, the PCR product and the empty entry module (pGGC000) 23 

were digested with BsaI, the digestion was purified and then ligated. After test digestion 24 

positive clones were checked by sequencing. The final construct was assembled in a GG 25 

reaction from modules listed in table 2 and transformed into Agrobacterium tumefaciens ASE 26 

strain harbouring the pSOUP plasmid. Arabidopsis thaliana ecotype Col-0 and fugu5-1 27 

plants were used for transformation via floral dipping (Clough and Bent, 1998). 28 

  29 

Yeast strain generation and growth 30 

To replace the endogenous IPP1 promoter with the inducible GAL1 promoter and 31 

simultaneously introduce an N-terminal HA-tag, plasmid pFA6a-His3MX6-PGAL1 was 32 

amplified with primers Ipp1-F4/Ipp1-R3 (Longtine et al., 1998). The resulting PCR product 33 

was used for transformation of a wild type S. cerevisiae W303 strain (SSY122; (Szoradi et 34 

al., 2018). Correct promoter replacement in the resulting IPP1prΔ::HIS3-GAL1pr-HA-IPP1 35 

strain (SSY2542) was confirmed by colony PCR and lack of growth on glucose-containing 36 

medium. Cells were grown on synthetic complete medium (CSM –Uracil (MP #4511212), 37 
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DifcoTM yeast nitrogen base (BD #233520), Uracil (Sigma #U1128), Adenine Hemisulfate 1 

(Sigma #A9126)) supplemented with appropriate carbon sources. All determinations were 2 

done on exponentially growing cells (A600 ≤ 0.5). To maintain cultures for several hours 3 

below an A600 of 0.5, they were diluted with fresh medium every two hours until the end of 4 

the experiment (semi-continuous culture). A pre-culture containing galactose was grown at 5 

28°C shaking until A600 0.5, then divided to four, for temperature and carbon resource 6 

manipulation: Glucose / 28°C, Galactose / 28°C , Galactose / 40°C, Glucose / 40°C. 7 

Samples were taken at indicated time points (0, 6, 15 hours). For heat treatment samples 8 

were taken from 28°C one hour before the indicated time point and incubated at 40°C for an 9 

hour. 10 

  11 

Protein preparation and immunoblotting analysis 12 

To determine total sumoylation amount in Arabidopsis, total proteins were extracted from 13 

liquid grown wt, V-PPase mutants, UBQ:PPa5/fugu5-1 and UBQ:AVP1 as described in 14 

(Castaño-Miquel et al., 2013). 15 µg protein was loaded to 7.5%, 1.5 mM SDS-gels. Anti-15 

SUMO1 (1:1000; Agrisera) was used as primary antibody. To measure ICE1 protein, liquid 16 

grown Col-0 and fugu5-1 and ice1-2 were used for total protein extraction as described in 17 

Castano-Miquel et al., 2013. Anti-ICE1 (1:1000; Agrisera) was used as primary antibody. 18 

Anti-cFBPase (Agrisera ; 1:5000) was used as loading control for both SUMO and ICE1. For 19 

all immunoblots, HRP-anti-rabbit was used as secondary antibody (1:10000; Promega). To 20 

determine the amount of soluble pyrophosphatase and the amount of total sumoylated 21 

proteins in yeast, total protein extraction was performed as described in Szoradi et al., 2018 22 

with addition of 20 mM NEM. 15 µg protein was loaded to 7.5%, 1.5 mM SDS-gels. Anti-23 

IPP1 (ABIN459215, Antibodies-online GmbH, 1:1000) and anti-SUMO1 (1:1000; Agrisera) 24 

were used as primary antibodies. HRP anti-rabbit was used as secondary antibody. Anti-25 

PGK1 (Abcam, 1:100000) was used as the loading control. An anti-mouse antibody was 26 

used as secondary antibody (GE Healtcare UK, 1:5000). 27 

  28 

Determination of PPi and soluble sugar levels via ion-chromatography 29 

6-weeks old short day grown rosettes were ground in liquid nitrogen and aliquots of ~200-30 

400 mg were used to quantify PPi and soluble sugars. Compounds were extracted with 0.5 31 

ml ultra-pure water for 20 min at 95°C with vigorous shaking, and insoluble material was 32 

removed by centrifugation at 20,800 g for 20 min. PPi was measured using an IonPac AS11-33 

HC (2 mm, Thermo Scientific) column connected to an ICS-5000 system (Thermo Scientific) 34 

and quantified by conductivity detection after cation suppression (ASRS-300 2 mm, 35 

suppressor current 29-78 mA). Prior separation, the column was heated to 30°C and 36 
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equilibrated with 5 column volumes of ultra-pure water at a flow rate of 0.3 ml/min. Soluble 1 

sugars were separated on a CarboPac PA1 column (Thermo Scientific) connected to the 2 

ICS-5000 system and quantified by pulsed amperometric detection (HPAEC-PAD). Column 3 

temperature was kept constant at 25°C and equilibrated with five column volumes of ultra-4 

pure water at a flow rate of 1 ml min-1. Data acquisition and quantification was performed 5 

with Chromeleon 7 (Thermo Scientific). 6 

  7 

Freezing tolerance assay 8 

Plant freezing tolerance was determined with 6-weeks old short-day grown plants. For cold 9 

acclimation, 6-week-old plants were incubated at 4°C for 4 days with same photoperiod. 10 

Non-acclimated plants were kept at 22°C during this period. Plants were wetted thoroughly 11 

to promote freezing, then placed in a controlled temperature chamber (Polyklima, MN2-12 

WLED). First they were kept at 0°C for 1h. Afterwards, they were subjected to temperatures 13 

from -1 to -10°C, reduced 1°C every 30 min. After thawing at 4°C overnight, plants were 14 

moved back to 22°C. Images were taken before cold treatment and 1 week after the freezing 15 

treatment. Dead and alive leaves were counted after the photos were taken. 16 

  17 

Electrolyte leakage from leaves 18 

Electrolyte leakage was measured from fully developed rosette leaves of 6-week-old plants. 19 

For each temperature five leaves were collected from each genotype. Each leaf (5th or 6th 20 

rosette leaf) was placed into a tube containing 3 mL deionized water, then placed to 0 °C at 21 

a temperature-controlled climate chamber. Temperature was decreased by 2 °C every hour. 22 

At -2 °C an ice chip was added to initiate nucleation. Tubes were collected at -2, -4, -6, -8 23 

and -10 °C and placed to 4 °C to thaw overnight. Next day 2 ml deionized water was added 24 

and tubes were placed overnight on a horizontal shaker (100 rpm) at 4 °C. Conductivity after 25 

freezing was measured with a conductivity meter (Mettler-Toledo, FiveEasy), which was 26 

calibrated with the Mettler-Toledo Buffer solution 1413 µS. Then, samples were placed to a 27 

100 °C water bath and boiled for 2 hours. Conductivity was again measured after boiling. Ion 28 

leakage was determined as the percent ratio of the measurement of conductivity before and 29 

after boiling. 30 

  31 

RNA isolation and cDNA synthesis 32 

For the analysis of transcript levels 6 weeks old Col-0, fugu5-1 and UBQ:PPa5-GFP/fugu5-1 33 

was collected after exposure to 4°C for indicated time points. RNA was isolated using the 34 

RNeasy Plant Mini Kit (Qiagen) according to manufacturer's instructions. cDNA was 35 

synthesized from 1 µg of total RNA using M-MuLV reverse transcriptase (Thermo) and an 36 

oligo dT primer. 37 
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  1 

Real-time RT PCR 2 

For quantitative analysis of gene expression real-time RT PCR was applied. cDNA samples 3 

were diluted 1:50 in nuclease-free water. Real-time PCR reactions were performed using the 4 

DNA Engine Opticon System (DNA Engine cycler and Chromo4 detector, BioRad) and SG 5 

qPCR mastermix 2X (Roboklon). The real-time PCR reaction mixture with a final volume of 6 

20 µl contained 0.5 µM of each forward and reverse primer, 10 µl SYBR Green Mix, 4 µl 7 

cDNA and 4 µl of RNase-free water. The thermal cycling conditions were composed of an 8 

initial denaturation step at 95°C for 15 min followed by 40 cycles at 95°C for 15 sec, 60°C for 9 

30 sec and 72°C for 15 sec and ended with a melting curve. For the analysis of each sample 10 

three analytical replicas were used. Target genes were normalized to the expression of 11 

Actin2. Primer sequences are listed in Table 2. 12 

  13 

In vitro FRET- based sumoylation assay 14 

Sumoylation of CFP-RanGAPtail with YFP-SUMO was carried out using a FRET-based 15 

high-throughput assay as previously described with minor changes (Werner et al., 16 

2009)Bossis et al., 2005). Final concentrations of the FRET components were Uba2/Aos1 17 

(E1, 20 nM), Ubc9 (E2, 30 nM), YFP-SUMO3 and CFP-RanGAPtail (300 nM). ATP substrate 18 

was prepared as a stock solution of 300 mM ATP-BTP (pH 8.0). 1 mM ATP was used for the 19 

assays unless stated otherwise. For the PPi application, 30 mM PPi-BTP (pH 7.5) stock 20 

solution was prepared. To determine the effects of PPi hydrolysis on the FRET assay, 0.8U 21 

E. coli inorganic pyrophosphatase (NEB) was used and the buffer solution that the 22 

pyrophophatase includes was added to the control wells (20 mM Tris-HCl, 100 mM NaCl, 1 23 

mM Dithiothreitol, 0.1 mM EDTA, 50% Glycerol, pH 8.0). Michealis-Menten fittings and Vmax 24 

and Km calculations were done in Origin software according to the ATP titration (0-10 µM) 25 

performed with different PPi concentrations (0, 7.5 and 15 µM). 26 

  27 

 Cloning, expression and protein purification of Arabidopsis E1 ligase and SUMO1 28 

Conjugation-competent AtSUMO1 (1-93) was amplified from cDNA, using the primers 29 

AtSUMO1-NdeI-Fw and AtSUMO1-XhoI-Rv, and cloned in the bacteria expression vector 30 

pET28b(+). The coding sequence of SAE1a was amplified from A. thaliana cDNA ligated into 31 

pET28a via NheI and BamHI sites in-frame behind the coding sequence for a 6xHis-tag. 32 

SAE2 was amplified from A. thaliana cDNA and ligated into the pCR™-Blunt II-TOPO® 33 

vector. pET11d was cut with BamHI and the TOPO-vector was cut with NheI. Both linear 34 

DNA fragments were blunt ended with T4 polymerase. Both DNA fragments were 35 

subsequently restricted with NcoI. The DNA fragment carrying the SAE2 coding sequence 36 
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was ligated into pET11d via the NcoI cohesive end and the blunt end. Recombinant proteins 1 

were purified as previously described (Werner et al., 2009). 2 

  3 

In vitro E1-Thioester Assay 4 

E1-Thioester assay was performed as previously described in Castano-Miquel et al., 2013 5 

with addition of final concentrations of 1-10 µM PPi. 1 mM of ATP was used for all reactions 6 

unless stated otherwise. 7 

 8 

 9 

 10 
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 18 

FIGURE LEGENDS 19 

  20 

Figure 1. PPi hydrolysis is required to rescue the freezing sensitive phenotype of 21 

fugu5-1 22 

(A) and (B) Freezing tolerance assay. Wt, fugu5-1, UBQ:AVP1 and UBQ:PPa5-GFP in wt 23 

and fugu5-1 background were grown for 6 weeks at 22 °C and were then moved to 4°C for 24 

cold-acclimation, or kept at 22 °C for 4 days. Afterwards plants were subjected to a 5-h 25 

freezing temperature regime (0 to -10 °C). After thawing at 4 °C overnight, plants were 26 

moved back to 22 °C. (A) Images were taken before cold-acclimation and one week after the 27 

freezing treatment.  (B) Quantification of dead and alive leaves was done one week after the 28 

freezing treatment with n ≥ 75 leaves. 3 independent experiments were performed. (C) 29 

Electrolyte leakage assay of Wt, fugu5-1, UBQ:AVP1 and UBQ:PPa5-GFP in Wt and fugu5-30 

1 background was performed on leaf material of acclimated and non-acclimated plants at 31 

indicated freezing temperatures. Error bars represent SD of the mean of n=3 biological 32 

replicates. (D-G) Sugar and PPi measurements were done from extracts of acclimated (4 °C) 33 

and non-acclimated (22 °C) 6-week old rosette leaves. Error bars show SD of the mean with 34 

n=3 samples of one representative experiments. 3 biological replicates were performed. 35 
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Significant differences are indicated by different letters (Two-way ANOVA followed by 1 

Tukey’s test, p<0.05). 2 

 3 

Figure 2. sPPase expression is induced upon cold exposure to control PPi that affects 4 

expression of CBFs and CBF target genes 5 

(A) qRT-PCR for the analysis of expression of sPPase 1,2,4 and 5. (B) Measurement of 6 

expression of CBF, COR and GolS3 genes in Col-0, fugu5-1 and UBQ:PPa5-GFP/fugu5-1 7 

by qRT-PCR . (A) and (B) Plants were grown for six weeks under short-day conditions at 8 

22°C. Afterwards, they were exposed to 4°C for indicated time periods. Whole rosettes were 9 

used for total RNA extraction. Actin2 expression was used for normalization. Error bars 10 

represent SD of the mean of n=3 biological replicates. Data analysis was performed using 11 

the ΔΔCt method. 12 

 13 

Figure 3. Modification of ICE1 and general SUMOylation upon cold exposure are 14 

inhibited fugu5 15 

(A) Cold acclimation induces ICE1 sumoylation which then activates CBFs and leads to the 16 

expression downstream targets for the establishment of freezing tolerance. (B) 17 

Determination of the amount of ICE1 in Col-0, fugu5-1 and ice1-2 seedlings. Amount of 18 

TUBULIN was detected as loading control. (C)  Comparison of the amount of the ICE1 under 19 

normal conditions (22°C) and after cold treatment (4°C, 3h) in Col-0 and fugu5-1 seedlings. 20 

(B) and (C) 10 days old liquid grown seedlings were used for total protein extraction. Anti-21 

ICE1 was used as primary antibody. (D) Western blots comparing sumoylation levels of Col-22 

0 and fugu5-1 under normal conditions (22°C) and after cold treatment (4°C, 3h). (E) 23 

Western blots demonstrating the total sumoylation in Wt, fugu5-1, fugu5-3, UBQ:AVP1 and 24 

UBQ:PPa5-GFP under normal conditions (22°C) and after cold treatment (4°C, 3h). (D) and 25 

(E) 10 days old liquid grown seedlings were used for total protein extraction. Anti-SUMO1/2 26 

was used as primary antibody. Whole lanes were measured for the calculation of protein 27 

amounts using ImageJ. cFBPase detection was used for normalization. Error bars represent 28 

SD of n≥2 biological replicates. 29 

 30 

Figure 4. Heat shock-induced SUMOylation is also reduced in fugu5 31 

(A) Phenotypic analysis of 10 days old Col-0, fugu5-1, UBQ:PPa5-GFP in Col-0 and fugu5-1 32 

backgrounds and UBQ:AVP1 seedlings analysis before and after heat. Representative 33 

pictures of seedlings before and 4 days after completion of heat shock treatment are 34 
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depicted. (B) Seedling survival was determined 4 days after the heat shock. Alive and dead 1 

seedlings were counted and survival is shown as the percentage of the living seedlings. 2 

Error bars show SD of the mean with n≥24 samples of one representative experiments. 2 3 

biological experiments were performed. (C) Sumoylation levels of Col-0 and V-PPase mutant 4 

fugu5-1 were analysed with western blot under normal conditions (22°C) and after heat 5 

shock treatment (40°C, 30 min). (D) Measurement of the SUMO amount of Col-0, V-PPase 6 

mutants, UBQ:PPa5-GFP/fugu5-1 and UBQ:AVP1 seedlings after heat shock treatment 7 

(40°C, 30 min). (C) and (D) 10 days old liquid grown seedlings are used for total protein 8 

extraction. Anti-SUMO1/2 (Agrisera) was used as primary antibody. Whole lanes were 9 

measured for the calculation of protein amounts using ImageJ. cFBPase detection was used 10 

for normalization. Error bars represent SD of n=2 biological replicates. 11 

  12 

Figure 5. Increased PPi levels interfere with SUMOylation in yeast  13 

(A) Amount of the soluble pyrophosphatase protein in a conditional Ipp1 mutant of S. 14 

cerevisiae (GAL:HA-IPP1). Wt strain (W303) is used as a control. (B) Amount of total 15 

sumoylation in W303 determined before and after heat stress. (C) Measurement of total 16 

SUMO protein in conditional IPP1 mutant of S. cerevisiae (GAL:HA-IPP1). (A-C) Yeast is 17 

grown in synthetic complete medium supplemented with galactose at 28°C. After growing 18 

until OD600 0.5, part of the Ipp1 conditional mutant is switched to glucose supplemented 19 

medium to suppress the promoter and samples are collected at the indicated time points. 20 

For the heat treatment, cultures are switched to 40°C incubator for 1 hour. Error bars 21 

represent SD of n≥2 biological replicates. 22 

 23 

Figure 6. PPi regulates SUMOylation activity in vitro 24 

(A) Schematic illustration of the FRET-based sumoylation assays. Upon addition of ATP, the 25 

human SUMO E1 activating enzyme Aos1/Uba2 and the E2 conjugating enzyme Ubc9 form 26 

an isopeptide bond between the CFP-tagged human model substrate GAPtail and YFP-27 

tagged mature SUMO2. This can be detected via FRET measurements: Following the 28 

excitation of CFP, energy is transferred onto YFP. YFP and CFP emission are recorded 29 

upon excitation at 430 nm. Measurements are calculated as the ratio of the λem (SUMO2-30 

YFP, 527 nm) to λex (CFP-GAPtail, 485 nm). (B) PPi titration showing that the increasing PPi 31 

concentration inhibits the sumoylation activity. 1mM ATP used for all the measurements. (C) 32 

In vitro sumoylation assay showing that the E. coli soluble PPase is able to remove the 33 

inhibitory effect of PPi. After 10 min of measurement, one of the 8 µM PPi containing wells 34 

were supplied with 0.8 U of E.coli soluble PPase and control buffer was added to the rest of 35 

the wells. Measurements were continued for 20 more minutes. (D) PPi addition results in 36 
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mixed inhibition of sumoylation activity. Michaelis-Menten fittings of the measurements 1 

shown in Supplement figure 3. Fittings are done in Origin software and Vmax and Km are 2 

calculated accordingly. (E) In vitro thioester bond formation assay showing Arabidopsis E1 3 

(SAE2/SAE1a) and SUMO conjugation under different PPi concentrations. (B-D) 4 

Experiments were repeated 4 times, one representative image is shown. 5 

Supp. Figure 1. Increased Proton Transport Activity of V-ATPase upon Cold 6 

Acclimation Requires an Active V-PPase 7 

 (A) Enriched tonoplast proteins were used to determine K+-stimulated PPi hydrolysis and H+ 8 

transport activity of V-PPase. (B) Enriched tonoplast proteins were used to determine KNO3-9 

inhibited ATP hydrolysis and H+ transport activity of V-ATPase. (C) Cell sap pH 10 

measurement of rosette leaves. Error bars show SD of the mean with n=12 samples of 3 11 

biological replicates. (A-C) Col-0, fugu5-1 and UBQ:AVP1 were grown for 6 weeks under 12 

short-day conditions then were cold acclimated for 4 days at 4°C. Untreated plants were 13 

maintained in the same conditions as the growth period. Error bars represent SD of n=3 14 

biological replicates. Significant differences are indicated by different letters (Two-way 15 

ANOVA followed by Tukey’s test, p<0.05). 16 

 17 

Supp. Figure 2. Overexpression of the Arabidopsis soluble pyrophosphatase PPa5 is 18 

sufficient to complement fugu5-1  19 

(A) Comparison of 6-week old rosettes phenotypes of Col-0, fugu5-1 and overexpression 20 

lines of Arabidopsis vacuolar pyrophosphatase AVP1 and yeast soluble pyrophosphatase 21 

IPP1. (B) Representative images showing the localization of UBQ:PPa5-GFP to cytosol and 22 

nuclues in shoot (upper panel) and root cells (lower panel). Scale bars: 10µm. (C) Cotyledon 23 

phenotypes of 5 days old seedlings of Col-0, fugu5-1 and UBQ:PPa5-GFP in Col-0 and 24 

fugu5-1 backgrounds. (D) Comparison of 6-week old short day grown rosette phenotypes of 25 

Col-0, fugu5-1 and UBQ:PPa5-GFP in Col-0 and fugu5-1 backgrounds. (E) Measurements 26 

of fresh weight and whole rosette area of Col-0, fugu5-1 and UBQ:PPa5-GFP in Col-0 and 27 

fugu5-1 backgrounds. Plants were grown for 6 weeks under short-day conditions. To 28 

determine rosette area Rosette Tracker plug-in of ImageJ is used. Error bars represent SD 29 

of the mean of n=20 of 3 biological replicates. (F) Analysis of UBQ:PPa5-GFP protein 30 

amount in Col-0 and fugu5-1 background with anti-GFP. Soluble proteins from 6-week old 31 

rosettes grown under short-day conditions were extracted. An internal control provided by 32 

SPL detection kit (DyeAGNOSTICS) was used for normalization. One representative image 33 

from three biological replicates is depicted. (G) Soluble proteins of Col-0, fugu5-1 and 34 

UBQ:PPa5-GFP in Col-0 and fugu5-1 backgrounds were used to determine K+-stimulated 35 
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PPi hydrolysis. Plants were grown for 6 weeks under short-day conditions. Error bars 1 

represent SD of n=3 biological replicates. Significant differences are indicated by different 2 

letters (Two-way ANOVA followed by Tukey’s test, p<0.05). 3 

 4 

Supp. Figure 3. Western blot detection of ICE1 in protein extracted in the presence of 5 

DTT 6 

(A) Comparison of total protein of 10 days old Col-0 and fugu5-1 seedlings extracted +/- 7 

DTT (5 mM) and NEM (20 mM). 8 

 9 

Supp. Figure 4. Elevated PPi concentrations leads to mixed inhibition of SUMOylation 10 

in vitro 11 

(A) Sumoylation assays demonstrating the effect of increasing amounts of PPi to the speed 12 

of the reaction in a range of 0-10µM ATP concentration. Experiments were repeated 4 times.  13 

 14 

Supp. Figure 5. AtSAE1/2 purification and its activity in in vitro FRET based 15 

SUMOylation assay 16 

(A) Gel picture after purification of AtSAE1 and AtSAE2. Highlighted fractions from the final 17 

gel filtration step were combined, dialysed and used for subsequent experiments. (B) The 18 

purified Arabidopsis E1 activating enzyme is not functional in the FRET based sumoylation 19 

assay. Assays were set up as described for Figure 6, but with recombinant Arabidopsis E1 20 

enzyme. Human E1 activating enzyme was used in a positive control. 21 

 22 

 23 

 24 
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Figure 1. PPi hydrolysis is required to rescue the freezing sensitive phenotype of fugu5-1 

(A) and (B) Freezing tolerance assay. Wt, fugu5-1, UBQ:AVP1 and UBQ:PPa5-GFP in wt and fugu5-1 

background were grown for 6 weeks at 22 °C and were then moved to 4°C for cold-acclimation, or kept at 

22 °C for 4 days. Afterwards plants were subjected to a 5-h freezing temperature regime (0 to -10 °C). After 

thawing at 4 °C overnight, plants were moved back to 22 °C. (A) Images were taken before cold-acclimation 

and one week after the freezing treatment.  (B) Quantification of dead and alive leaves was done one week 

after the freezing treatment with n ≥ 75 leaves. 3 independent experiments were performed. (C) Electrolyte 

leakage assay of Wt, fugu5-1, UBQ:AVP1 and UBQ:PPa5-GFP in Wt and fugu5-1 background was 

performed on leaf material of acclimated and non-acclimated plants at indicated freezing temperatures. Error 

bars represent SD of the mean of n=3 biological replicates. (D-G) Sugar and PPi measurements were done 

from extracts of acclimated (4 °C) and non-acclimated (22 °C) 6-week old rosette leaves. Error bars show 

SD of the mean with n=3 samples of one representative experiments. 3 biological replicates were performed. 

Significant differences are indicated by different letters (Two-way ANOVA followed by Tukey’s test, p<0.05). 
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Figure 2. sPPase expression is induced upon cold exposure to control PPi that affects expression 

of CBFs and CBF target genes 

(A) qRT-PCR for the analysis of expression of sPPase 1,2,4 and 5. (B) Measurement of expression of CBF, 

COR and GolS3 genes in Col-0, fugu5-1 and UBQ:PPa5-GFP/fugu5-1 by qRT-PCR . (A) and (B) Plants 

were grown for six weeks under short-day conditions at 22°C. Afterwards, they were exposed to 4°C for 

indicated time periods. Whole rosettes were used for total RNA extraction. Actin2 expression was used for 

normalization. Error bars represent SD of the mean of n=3 biological replicates. Data analysis is performed 

with ΔΔCt method. 
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Figure 3. Modification of ICE1 and general SUMOylation upon cold exposure are inhibited fugu5 

(A) Cold acclimation induces ICE1 sumoylation which then activates CBFs and leads to the expression 

downstream targets for the establishment of freezing tolerance. (B) Determination of the amount of ICE1 

in Col-0, fugu5-1 and ice1-2 seedlings. Amount of TUBULIN was detected as loading control. (C)  

Comparison of the amount of the ICE1 under normal conditions (22°C) and after cold treatment (4°C, 3h) 

in Col-0 and fugu5-1 seedlings. (B) and (C) 10 days old liquid grown seedlings were used for total protein 

extraction. Anti-ICE1 was used as primary antibody. (D) Western blots comparing sumoylation levels of 

Col-0 and fugu5-1 under normal conditions (22°C) and after cold treatment (4°C, 3h). (E) Western blots 

demonstrating the total sumoylation in Wt, fugu5-1, fugu5-3, UBQ:AVP1 and UBQ:PPa5-GFP under 

normal conditions (22°C) and after cold treatment (4°C, 3h). (D) and (E) 10 days old liquid grown seedlings 

were used for total protein extraction. Anti-SUMO1/2 was used as primary antibody. Whole lanes were 

measured for the calculation of protein amounts using ImageJ. cFBPase detection was used for 

normalization. Error bars represent SD of n≥2 biological replicates. 
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Figure 4. Heat shock-induced SUMOylation is also reduced in fugu5 

(A) Phenotypic analysis of 10 days old Col-0, fugu5-1, UBQ:PPa5-GFP in Col-0 and fugu5-1 

backgrounds and UBQ:AVP1 seedlings analysis before and after heat. Representative pictures of 

seedlings before and 4 days after completion of heat shock treatment are depicted. (B) Seedling survival 

was determined 4 days after the heat shock. Alive and dead seedlings were counted and survival is 

shown as the percentage of the living seedlings. Error bars show SD of the mean with n≥24 samples of 

one representative experiments. 2 biological experiments were performed. (C) Sumoylation levels of 

Col-0 and V-PPase mutant fugu5-1 were analysed with western blot under normal conditions (22°C) and 

after heat shock treatment (40°C, 30 min). (D) Measurement of the SUMO amount of Col-0, V-PPase 

mutants, UBQ:PPa5-GFP/fugu5-1 and UBQ:AVP1 seedlings after heat shock treatment (40°C, 30 min). 

(C) and (D) 10 days old liquid grown seedlings are used for total protein extraction. Anti-SUMO1/2 

(Agrisera) was used as primary antibody. Whole lanes were measured for the calculation of protein 

amounts using ImageJ. cFBPase detection was used for normalization. Error bars represent SD of n=2 

biological replicates. 
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Figure 5. Increased PPi levels interfere with SUMOylation in yeast  

(A) Amount of the soluble pyrophosphatase protein in a conditional Ipp1 mutant of S. cerevisiae (GAL:HA-

IPP1). Wt strain (W303) is used as a control. (B) Amount of total sumoylation in W303 determined before 

and after heat stress. (C) Measurement of total SUMO protein in conditional IPP1 mutant of S. cerevisiae 

(GAL:HA-IPP1). (A-C) Yeast is grown in synthetic complete medium supplemented with galactose at 

28°C. After growing until OD600 0.5, part of the Ipp1 conditional mutant is switched to glucose 

supplemented medium to suppress the promoter and samples are collected at the indicated time points. 

For the heat treatment, cultures are switched to 40°C incubator for 1 hour. Error bars represent SD of n≥2 

biological replicates. 
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Figure 6. PPi regulates SUMOylation activity in vitro 

(A) Schematic illustration of the FRET-based sumoylation assays. Upon addition of ATP, the human 

SUMO E1 activating enzyme Aos1/Uba2 and the E2 conjugating enzyme Ubc9 form an isopeptide bond 

between the CFP-tagged human model substrate GAPtail and YFP-tagged mature SUMO2. This can be 

detected via FRET measurements: Following the excitation of CFP, energy is transferred onto YFP. YFP 

and CFP emission are recorded upon excitation at 430 nm. Measurements are calculated as the ratio of 

the λem (SUMO2-YFP, 527 nm) to λex (CFP-GAPtail, 485 nm). (B) PPi titration showing that the increasing 

PPi concentration inhibits the sumoylation activity. 1mM ATP used for all the measurements. (C) In vitro 

sumoylation assay showing that the E. coli soluble PPase is able to remove the inhibitory effect of PPi. 

After 10 min of measurement, one of the 8 µM PPi containing wells were supplied with 0.8 U of E.coli 

soluble PPase and control buffer was added to the rest of the wells. Measurements were continued for 

20 more minutes. (D) PPi addition results in mixed inhibition of sumoylation activity. Michaelis-Menten 

fittings of the measurements shown in Supplement figure 3. Fittings are done in Origin software and Vmax 

and Km are calculated accordingly. (E) In vitro thioester bond formation assay showing Arabidopsis E1 

(SAE2/SAE1a) and SUMO conjugation under different PPi concentrations. (B-D) Experiments were 

repeated 4 times. One representative data is depicted. 
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Supp. Figure 1. Increased Proton Transport Activity of V-ATPase upon Cold Acclimation Requires 

an Active V-PPase 

 (A) Enriched tonoplast proteins were used to determine K+-stimulated PPi hydrolysis and H+ transport 

activity of V-PPase. (B) Enriched tonoplast proteins were used to determine KNO3-inhibited ATP hydrolysis 

and H+ transport activity of V-ATPase. (C) Cell sap pH measurement of rosette leaves. Error bars show 

SD of the mean with n=12 samples of 3 biological replicates. (A-C) Col-0, fugu5-1 and UBQ:AVP1 were 

grown for 6 weeks under short-day conditions then were cold acclimated for 4 days at 4°C. Untreated 

plants were maintained in the same conditions as the growth period. Error bars represent SD of n=3 

biological replicates. Significant differences are indicated by different letters (Two-way ANOVA followed 

by Tukey’s test, p<0.05). 
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Supp. Figure 2. Overexpression of the Arabidopsis soluble pyrophosphatase PPa5 is sufficient to 

complement fugu5-1  

(A) Comparison of 6-week old rosettes phenotypes of Col-0, fugu5-1 and overexpression lines of 

Arabidopsis vacuolar pyrophosphatase AVP1 and yeast soluble pyrophosphatase IPP1. (B) 

Representative images showing the localization of UBQ:PPa5-GFP to cytosol and nuclues in shoot (upper 

panel) and root cells (lower panel). Scale bars: 10µm. (C) Cotyledon phenotypes of 5 days old seedlings 

of Col-0, fugu5-1 and UBQ:PPa5-GFP in Col-0 and fugu5-1 backgrounds. (D) Comparison of 6-week old 

short day grown rosette phenotypes of Col-0, fugu5-1 and UBQ:PPa5-GFP in Col-0 and fugu5-1 

backgrounds. (E) Measurements of fresh weight and whole rosette area of Col-0, fugu5-1 and UBQ:PPa5-

GFP in Col-0 and fugu5-1 backgrounds. Plants were grown for 6 weeks under short-day conditions. To 

determine rosette area Rosette Tracker plug-in of ImageJ is used. Error bars represent SD of the mean of 

n=20 of 3 biological experiments. (F) Analysis of UBQ:PPa5-GFP protein amount in Col-0 and fugu5-1 

background with anti-GFP. Soluble proteins from 6-week old rosettes grown under short-day conditions 

were extracted. An internal control provided by SPL detection kit (DyeAGNOSTICS) was used for 

normalization. One representative image from three biological replicates is depicted. (G) Soluble proteins 

of Col-0, fugu5-1 and UBQ:PPa5-GFP in Col-0 and fugu5-1 backgrounds were used to determine K+-

stimulated PPi hydrolysis. Plants were grown for 6 weeks under short-day conditions. Error bars represent 

SD of n=3 biological replicates. Significant differences are indicated by different letters (Two-way ANOVA 

followed by Tukey’s test, p<0.05). 

 

Supp. Figure 3. Western blot detection of ICE1 in protein extracted in the presence of DTT 

(A)  Comparison of total protein of 10 days old Col-0 and fugu5-1 seedlings extracted +/- DTT (5 mM) and 

NEM (20 mM).  
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Supp. Figure 4. Elevated PPi concentrations leads to mixed inhibition of SUMOylation in vitro 

(A) Sumoylation assays demonstrating the effect of increasing amounts of PPi to the speed of the reaction 

in a range of 0-10µM ATP concentration. Experiments were repeated 4 times.  

 

 

 

 

Supp. Figure 5. AtSAE1/2 purification and its activity in in vitro FRET based SUMOylation assay 

(A) Gel picture after purification of AtSAE1 and AtSAE2. Highlighted fractions from the final gel filtration 

step were combined, dialysed and used for subsequent experiments. (B) The purified Arabidopsis E1 

activating enzyme is not functional in the FRET based sumoylation assay. Assays were set up as 

described for Figure 6, but with recombinant Arabidopsis E1 enzyme. Human E1 activating enzyme was 

used in a positive control. 
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 1 

Supplementary Material and Methods 1 

Plant material and growth conditions 2 

Same plant material described in the main section was used. Seedling growth medium and 3 

conditions for the confocal imaging was the same as the conditions described for the heat 4 

shock tolerance assay. The plant material used for enzyme assays, cell sap measurements 5 

and phenotypic assays were grown the same as described for material for freezing tolerance 6 

assay. Cold acclimation conditions were also the same. For analysis of cotyledon 7 

phenotypes seeds were surface sterilized with ethanol and stratified for 48h at 4°C in 0.5% 8 

agar solution then planted on single pots individually (n=10). Pictures are taken at day 5. 9 

Liquid culture conditions to grow the material for ICE1 determination is the same as 10 

described in the main section. 11 

Tonoplast vesicle preparation and enzyme assays 12 

Rosette leaf material (75 g) from plants grown under short day conditions was harvested. 13 

The leaf material was homogenized in homogenization buffer containing 0.4 M mannitol, 0.1 14 

M Tris, 10% (vol/vol) glycerol, 3 mM Na2EDTA, 0.5% (wt/vol) BSA, 5% (vol/vol) PVP-10, 0.5 15 

mM butylated hydroxytoluene, 0.3 mM dibucaine, 5 mM magnesium sulphate, 1 mM PMSF 16 

(phenylmethylsulphonylfluoride), 1.3 mM benzamidine and 25 mM potassium metabisulfite. 17 

The homogenate was filtered through two layers of miracloth and centrifuged at 10,000 g for 18 

20 min at 4°C. The supernatant was then centrifuged at 100,000 g for 45 min at 4°C. The 19 

microsomal membrane pellet was resuspended in resuspension buffer containing 0.4 M 20 

mannitol, 6 mM Tris-MES (pH 8) and 10 (vol/vol) glycerol. Soluble part was kept for 21 

measuring the soluble pyrophosphatase activity and quantification of PPa5-GFP protein 22 

levels. Tonoplast vesicles were obtained by performing a sucrose gradient with 22% 23 

sucrose. Centrifugation was performed at 97,000 g for 2 hours.  Protein concentrations were 24 

determined as reported previously (Bradford, 1976).	ATP and PPi hydrolysis was measured 25 

at 28°C as described previously (Krebs et al., 2010). Same method was also used for 26 

measuring soluble pyrophosphatase activity with soluble proteins. The ATP and PPi-27 

dependent proton transport activities were estimated from the initial rate of ATP-dependent 28 

fluorescence quenching in the presence of 3 mM ATP using the fluorescence dye ACMA (9-29 

Amino-6-Chloro-2-Methoxyacridine) with 50µg enriched tonoplast protein. Excitation 30 

wavelength was 415 nm, and emission was measured at 485 nm in Jasco fluorescence 31 

spectrometer. V-PPase H+ transport medium includes 25mM HEPES-BTP (pH 7.2), 250 mM 32 

Sorbitol, 1.5 mM MgSO4, 50  mM KCl and 0.3mM PPi-BTP (pH 7.5) final concentration in 1 33 

ml volume. V-ATPase H+ transport medium includes 10 mM ATP-MES (pH 8.0),0.25 M 34 
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 2 

Mannitol, 3 mM MgSO4, 100 mM TMA-Cl and 1.5 mM ATP-BTP (pH 7.5) final concentration 1 

in 1 ml volume. 2 

SDS-PAGE and immunoblotting analysis 3 

To determine protein levels of V-ATPase and V-PPase at 22 and 4°C in tonoplast 4 

membrane extracts of Col-0, fugu5-1 and UBQ:AVP1. The primary antibody against the V-5 

PPase was purchased from Cosmo Bio (1:10,000) and the primary antibody against VHA-C 6 

is as previously described (Schumacher et al., 1999). To determine the UBQ:PPa5-GFP 7 

levels in Col-0 and fugu5-1 background soluble proteins were extracted as described in 8 

tonoplast vesicle preparation section. Anti-GFP (Agrisera, 1:10000) was used as primary 9 

antibody.  An internal control from SPL kit was used for normalization (NH, DyeAgnostics). 10 

To measure ICE1 protein, Col-0 and fugu5-1 were grown in liquid culture. Material was split 11 

in two for total protein extraction, same buffer described in Castaño-Miquel et al., 2013 was 12 

used for one part, and same buffer without NEM and with addition of 5 mM DTT used for the 13 

other.  Anti-ICE1 (1:1000; Agrisera) was used as primary antibody. For all immunoblots, 14 

HRP-anti-rabbit was used as secondary antibody (1:10000; Promega). Imaging was carried 15 

out using a cooled CCD camera system (Intas ADVANCED Fluoreszenz u. ECL Imager). 16 

Western blots were quantified with Fiji (based on ImageJ 1.47t). 17 

Cell sap pH measurements 18 

Cell sap pH measurements were conducted as previously described (Krebs et al., 2010) 19 

Confocal Microscopy 20 

Localization of UBQ:PPa5-GFP construct was determined using a Leica TCS SP5II 21 

microscope equipped with a Leica HCX PL APO lambda blue 63.0 3 1.20 UV water 22 

immersion objective. GFP was excited at 488 nm using a VIS-argon laser. Fluorescence 23 

emission of GFP was detected between 500 and 555 nm. The Leica Application Suite 24 

Advanced Fluorescence software was used for image acquisition. Post processing of images 25 

were performed using Fiji. 26 

 27 

 28 
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Table 1. Primers of UBQ:PPa5-GFP construct 

 

Table 2. List of GG modules  

GG module name Type AGI Reference 

pGGA006 
UBIQUITIN 10 

(UBQ10) promoter 
 

AT4G05320 
Lampropoulos et al., 
2013 

pGGB003 B-dummy na 
Lampropoulos et al., 
2013 

pGGC-PPa5 PPa5  AT4G01480 This work 
 

pGGD001 
 

Linker-GFP 
 

na 
Lampropoulos et al., 
2013 

pGGE001 
RBCS terminator (from 

pea) na 
Lampropoulos et al., 
2013 

pGGF012 
 

pUBQ10:HygR:tOCS 
 

na 
Lampropoulos et al., 
2013 

pGGZ001 Vector backbone na 
Lampropoulos et al., 
2013 

 

Table 3. qRT primers 

Primer Name 5’ to 3’ Sequence 

Forward GTC AAC ATG CGC CAA GGA TA CBF1 

Reverse TCG GCA TCC CAA ACA TTG TC 

Forward GAA TCC CGG AAT CAA CCT GT CBF2 

Reverse CCC AAC ATC GCC TCT TCA TC 

Forward CAA CTT GCG CTA AGG ACA CBF3 

Reverse TCT CAA ACA TCG CCT CAT 

Forward AAC GAG GCC ACA AAG AAA GC COR15A 

Reverse CAG CTT CTT TAC CCA ATG TAT CTG C 

Forward GCA CCA GGC GTA ACA GGT AAA C COR78 

Reverse AAA CAC CTT TGT CCC TGG TGG 

Primer Name 5’ to 3’ Sequence 
Forward AAC AGG TCT CAG GCT CAA CAA TGA ATG GAG AAG AAG TGA 

AA PPa5 
Reverse  

AAC AGG TCT CTC TGA TCT CCT CAG GGT GTG AAG AAT 
Forward  

AAC AGG TCT CAA CTC ATC AAG GTT GAT AGG AT 
PPa5, Eco31I 

mutation 
Reverse  

AAC AGG TCT CTG AGT CCT GTT TTT TTG TCA AG 
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Forward ACA GGC CAA GAA GGA AAT ATG G GolS3 

Reverse GAT GGA GCT TTG GCA CAT TG 

Forward ACA ATC GGC TGT TTC GTT TC PPa1 

Reverse TTC CTT TAG TGA TCT CAA CAA CCA C 

Forward CAG TAG GAG CTT CTG GAC CAA TC PPa2 

Reverse GCT TGG ATG GGA ATG TCC TG 

Forward CAA ATG CTC TGT TTT CTT CTG C PPa3 

Reverse CCT TTG TGA TCT CAA CCA CCA C 

Forward TGA GAT CTG TGC TTG CGT TT PPa4 

Reverse TGG GGC TTC AGG TCC TAT C 

Forward CTC CAC ACT TTC CGC AAG AT PPa5 

Reverse ACT GGA GCT CCA GGT CCG 

Forward GAG ACA AAC CAG CAA ACA AAG AC PPa6 

Reverse AAA CAA AAT CCA AAT CCC AAT G 

Forward 
 
TCT TCC GCT CTT TCT TTC CA  Actin 

Reverse 
 
TCA CCA TAC CGG TAC CAT TG 

 

Table 3. Primers for protein purification 

Primer Name 5’ to 3’ Sequence 

Forward TAT ATG GCT AGC ATG GAC GGA GAA GAG CTT ACC SAE1a 

Reverse 
 
TAT ATG GGA TCC TTA AGA GGT AAA  AGA GTC GGA  AAT GTC 

Forward TAT ATG CCA TGG CTA CGC AAC AAC AG       SAE2 

Reverse 
 
TAT ATG GCT AGC CTA TTC AAC TCT TAT CTT CTT TTT GCT 

Forward AAC ACA TAT GTC TGC AAA CCA GGA GGA AG AtSUMO1 

Reverse AAC ACT CGA GTC AGC CAC CAG TCT GAT GGA G 
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