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SUMMARY

Pyrophosphate (PPi), a byproduct of macromolecule biosynthesis is maintained at low levels
by soluble inorganic pyrophosphatases (sPPase) found in all eukaryotes. In plants, H+-
pumping pyrophosphatases (H+-PPase) convert the substantial energy present in PPi into
an electrochemical gradient. We show here, that both cold- and heat stress sensitivity of
fugub mutants lacking the major H+-PPase isoform AVP1 is caused by reduced
SUMOylation. In addition, we show that increased PPi concentrations interfere with
SUMOylation in yeast and we provide evidence that SUMO activating E1-enzymes are
inhibited by micromolar concentrations of PPi in a non-competitive manner. Taken together,
our results do not only provide a mechanistic explanation for the beneficial effects of AVP1
overexpression in plants but they also highlight PPi as an important integrator of metabolism

and stress tolerance.
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INTRODUCTION

Reshaping of metabolic networks under stress conditions enables the synthesis of protective
compounds while metabolic homeostasis needs to be maintained. In about 200 metabolic
reactions ATP is not used as a phosphorylating but as an adenylating reagent leading to the
release of inorganic pyrophosphate (PPi). Most prominently, the biosynthesis of many
macromolecules including DNA, RNA, proteins and polysaccharides releases large amounts
of PPi (Ferjani et al., 2014; Heinonen, 2001). Given the substantial free energy of PPi, the
efficient biosynthesis of macromolecules requires that PPi is immediately destroyed to
prevent the respective back-reactions (Kornberg, 1962). In all eukaryotes PPi is hydrolysed
by soluble inorganic pyrophosphatases (sPPase; EC 3.6.1.1) in a highly exergonic reaction.
Loss of sPPase function causes lethality in yeast (Lundin et al., 1991) and C. elegans (Ko et
al.,, 2007) presumably due to accumulation of PPi inhibiting the biosynthesis of
macromolecules. Arabidopsis encodes six sPPase-paralogs (PPa1-PPa6) of which only
PPa6 is localized in plastids whereas all others are cytosolic (Gutiérrez-Luna et al., 2016;
Segami et al., 2018). However, their PPase activity is rather low and even the loss of the
four ubiquitously expressed isoforms does not cause phenotypic alterations (Segami et al.,
2018). In contrast, expression of E. coli sPPase severely affects plant growth via alterations
in carbon partitioning between source and sink organs caused by the inhibition of several
plant enzymes involved in carbohydrate metabolism that use PPi as an energy source
(Geigenberger et al., 1998; Sonnewald, 1992). Importantly, in addition to soluble PPases,
plants contain membrane-bound proton-pumping pyrophosphatases (H'-PPase) at the
tonoplast and in the Golgi that convert the energy otherwise lost as heat into a proton-
gradient (Maeshima, 2000; Segami et al., 2010). Fugu5 mutants lacking the tonoplast H'-
PPase AVP1 were identified based on their phenotype characterised by compensatory cell
enlargement due to a decrease in cell number (Ferjani et al., 2011). The fact that the fugub
phenotype could be rescued either by growth in the presence of exogenous sucrose or the
expression of the yeast sPPase IPP1 showed clearly that altered PPi levels and not reduced
H*-pumping are causative (Asaoka et al., 2016; Ferjani et al., 2011). Indeed, vacuolar pH is
only mildly affected in fugu5 mutants indicating that the H*-pumping ATPase (V-ATPase)
present at the tonoplast is largely sufficient for vacuolar acidification (Ferjani et al., 2011;
Kriegel et al., 2015). However, loss of both vacuolar proton-pumps leads to a much more
severe phenotype and defect in vacuolar acidification than loss of the tonoplast V-ATPase
alone (Kriegel et al., 2015). It has indeed been discussed that AVP1 serves as a backup
system for the V-ATPase in particular under ATP-limiting conditions like anoxia or cold
stress (Maeshima, 2000). During cold acclimation plants accumulate cryoprotectants
including sugars in their vacuoles and activity of both proton-pumps is upregulated leading to

improved freezing tolerance (Schulze et al., 2012; Thomashow, 1999). Overexpression of
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AVP1 has been shown to cause increased plant growth under various abiotic stress
conditions including salinity, drought and phosphate starvation but the underlying
mechanism remained unclear (Gaxiola et al., 2012; Park et al., 2005; Schilling et al., 2017).
Attachment of the small ubiquitin-related modifier SUMO to substrate proteins plays a central
role in the response to a broad set of stress responses including the ones affected by AVP1
overexpression (Castro et al., 2012). Modification of target proteins by SUMO-conjugation
proceeds via a three-step mechanism. First the SUMO moiety is adenylated and then bound
via a high-energy thioester linkage to the heterodimeric SUMO-activating enzyme (E1)
leading to the release of PPi. Next, the activated SUMO is transferred to the SUMO-
conjugating enzyme E2 and finally, assisted by SUMO-protein ligase (E3), donated to a
large set of substrate proteins (Flotho and Melchior, 2013; Johnson, 2004). In Arabidopsis,
the key transcriptional regulator of the cold response INDUCER OF CBF EXPRESSION 1
(ICE1) as well as the heat shock factor A2 (HSFA2) have been shown to be positively
regulated by SUMOylation (Cohen-Peer et al., 2010; Miura et al., 2007). In this study, we
report that AVP1 contributes to both cold acclimation and heat tolerance and we show that
the rapid increase in SUMOylation common to both stress responses is missing in the
absence of AVP1. Furthermore, we provide evidence that accumulation of PPi in plants,
yeast and mammals inhibits the SUMO E1 activating enzyme in turn affecting the fate,
localization or function of a large number of proteins during cellular stress responses. Our
results provide a mechanistic explanation for the beneficial effects of AVP1 overexpression

in plants and highlight PPi as an important integrator of metabolism and stress tolerance.

RESULTS

Lack of V-PPase activity impairs cold acclimation

We have shown previously that upregulation of ATP-hydrolysis by the V-ATPase during cold
acclimation depends on the presence and the activity of the V-PPase (Kriegel et al., 2015).
To complete the data-set for vacuolar proton-pump activity during cold acclimation, we
performed parallel measurements of ATP- and PPi- hydrolysis, H"-pumping as well as cell
sap pH in wild-type (Col-0), the fugu5-1 mutant and a UBQ:AVP1 overexpression line. Both
ATP- and PPi-dependent proton-pumping are increased in wt and UBQ:AVP1 during cold-
acclimation (Supplemental Figure 1A+B). As expected PPi-dependent proton-pumping was
undetectable in fugu5-1, but ATP-dependent proton-pumping was also reduced in fugu5-1
compared to wt and increased only marginally upon cold-acclimation (Supplemental Figure
1B). As a consequence of cold-induced proton-pump stimulation, vacuolar pH drops by 0.1
pH-units in wt and UBQ:AVP1 but not in fugub-1 (Supplemental Figure 1C).


https://doi.org/10.1101/504373
http://creativecommons.org/licenses/by/4.0/

0 N O 0 B~ WO N -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

bioRxiv preprint doi: https://doi.org/10.1101/504373; this version posted December 22, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Whereas the seedling phenotype of fugub-1 is rescued by expression of the yeast soluble
PPase IPP1 under control of the AVP1-promoter during the seedling stage (Ferjani et al.,
2011), the adult growth phenotype of plants grown in short day (SD) was not rescued
(Supplemental Figure 2A). We thus expressed the constitutively expressed Arabidopsis
soluble pyrophosphatase PPa5 fused to GFP under the control of the UBQ10-promoter and
could show that it is located in the cytosol as well as in the nucleus (Supplemental Figure
2B) and fully rescues the seedling (Supplemental Figure 2C) as well as the adult phenotype
(Supplemental Figure 2D+E) of fugu5-1. For further analysis, two lines in the wild-type and in
the fugu5-1 background that showed protein expression of PPa5-GFP (Supplemental Figure
2F) and comparable increased total soluble pyrophosphatase activity (Supplemental Figure
2G) in the wild-type and in the fugub-1 background were chosen. We next asked if cold-
acclimation is affected in fugu5-1 and if so, whether this could be rescued by overexpression
of a soluble pyrophosphatase.

Both survival rate and ion release as a measure of freezing tolerance was
comparable in all genotypes exposed to freezing without prior cold acclimation (Figure 1A +
B). Cold acclimation via exposure to 4°C for 4 days significantly improved freezing tolerance
in wild-type to a much higher extent than in fugub-1 plants and expression of PPa5 fully
rescued the hypersensitivity to cold (Figure 1C). Accumulation of soluble sugars during
exposure to low temperatures contributes to freezing tolerance and could be directly affected
by PPi-accumulation (Ferjani et al., 2018). We thus next compared the accumulation of
glucose, fructose and sucrose and found that cold-induced sugar accumulation is indeed
strongly reduced in the fugu5-1 mutant but restored by UBQ:PPa5-GFP (Figure 1D-1F)
suggesting that accumulation of PPi and not a lack of H*-pumping is responsible for the
impaired cold acclimation in fugu5-1. In agreement with this hypothesis, we found that PPi
levels are reduced in the wt during cold-acclimation whereas they increase in fugub-1

resulting in 2-fold higher levels compared to wt after cold acclimation (Figure 1G).

PPi controls cold-acclimation via SUMOylation

Low temperature triggers the expression of the CBF (C-repeat binding factor) family of
transcription factors, which in turn activate downstream genes that confer chilling and
freezing tolerance (Chinnusamy et al., 2007). We used gqRT-PCR to profile the expression of
members of the PPa-gene family over 24h after exposure to low temperature (4°C) and
found that PPa1 and PPa4 are rapidly induced after cold exposure whereas transcripts of
PPa2 and PPa5 accumulated at later time points (Figure 2A). Upregulation of sPPase genes
suggests that PPi-levels are actively controlled during the early cold acclimation response
and we thus next compared the expression levels of the core transcriptional regulators
CBF1-3 as well as the three downstream response genes COR15A, COR78 and GolS3.
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Whereas expression of CBF2 was nearly unaffected, CBF1 and in particular CBF3 induction
was found to be strongly reduced in the fugub-1 mutant (Figure 2 B). Similarly, induction of
all three target genes was found to be strongly reduced throughout the cold response
(Figure 2 C). Cold-induction was restored when PPa5 was constitutively expressed in the
fugub-1 background (Figure 2 B+C) indicating that the observed changes in gene expression
are caused by reduced PPi-hydrolysis and not by reduced H*-pumping.

The fast transcriptional response to cold is initiated by ICE1 (Inducer of CBF
expression 1), a direct activator that is negatively regulated by ubiquitination-mediated
proteolysis and positively regulated by SUMOylation (Dong et al., 2006; Miura et al., 2007);
Figure 3 A). Using a specific antibody to detect ICE1 in total seedling protein extracted in the
presence of NEM to inhibit deSUMOylation, we observed two bands in wild-type that are
both absent in ice 7-2 indicating that they correspond to a non-modified (100kD) and modified
(130kD) dimer of ICE1. The ICE1 monomer (50kD) was only observed when proteins were
extracted in the presence of DTT and without NEM (Supplemental Figure 3).

In fugu5-1 the modified dimer was barely detectable indicating that either
ubiquitination or sumoylation of ICE1 are affected (Figure 3 B). We next compared levels of
ICE1 during cold acclimation and found that ICE1 accumulated after exposure to 4°C for 3h
in wild-type but was strongly reduced in fugub-1 (Figure 3 C). We thus next asked if overall
cold-induced SUMOylation was affected in fugu5. Whereas cold exposure let to a rapid and
massive accumulation SUMO1/2 conjugates in the wild-type, this response was absent in
fugubs-1 (Figure 3 D). Quantification of SUMO levels in two independent fugub-alleles
showed that it is already reduced to 60% of wt in plants grown at 22°C and levels drop to
20% of wt after incubation at 4°C for 3h (Figure 3 E). SUMOylation is restored to wild-type
levels in UBQ:PPa5-GFP and slightly enhanced in UBQ:AVP1 plants indicating that low PPi

levels are critical for efficient SUMOylation (Figure 3 D).

PPi inhibits heat-stress induced SUMOylation in both plants and yeast

Rapid and reversible accumulation of SUMO conjugates does not only occur during cold
stress but also during heat stress (Miller et al., 2010; Rytz et al., 2018) and accumulation of
PPi should thus also inhibit the heat stress response. Indeed, survival rate of fugub
seedlings was strongly reduced by exposure to 40°C for 30 min but restored in the
UBQ:PPa5 complementation line. Of note, the survival rate of the UBQ:AVP1
overexpression line was increased compared to the wt (Figure 4 A and 4B). We therefore
analysed next if heat induced SUMO1/2 conjugate accumulation was affected. Exposure to
40°C for 30 min led to accumulation of SUMO1/2 conjugates in the wt, whereas the
response was strongly reduced in fugub-1 (Figure 4 C). Consistently, a reduction of SUMO

levels after heat stress was also observed for fugu5-3 are reduced to 20% of wt after
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incubation 40°C for 30’ in both fugu5-1 and fugu5-3 but was restored to wt levels in
UBQ:PPa5-GFP and UBQ:AVP1 plants (Figure 4 D).

SUMO plays an important role in stress responses across all eukaryotes (Enserink,
2015; Hannich et al., 2005). Therefore, we asked whether PPi accumulation has a
comparable effect in the yeast S. cerevisiae. We employed a strain in which the sole and
essential sPPase IPP1 is expressed under the control of the GAL7 promoter (Serrano-
Bueno et al., 2013) so that switching the carbon source from galactose to glucose led to a
depletion of IPP1 (Figure 5 A) after 6h that was almost complete after 15h (Figure 5 A).
When wt yeast was subjected to heat stress (40 °C, 1 h), SUMOylation increased by a factor
of two (Figure 5B). Heat-induced SUMOylation was strongly diminished by depletion of IPP1
depletion phase (Figure 5C) indicating that inhibition of SUMOylation by PPi is not limited to

plants.

What is the mechanistic link between PPi accumulation and SUMOylation?
Conjugation of SUMO to target proteins is initiated by E1 enzymes through adenylation, a
reaction that releases PPi and could thus be inhibited by increased cytosolic PPi levels
(Haas et al., 1982; Lois and Lima, 2005) . To test the direct effect of PPi on SUMOylation,
we employed an in vitro assay in which conjugation of YFP-SUMO to RanGAP1-CFP can be
measured as a change in FRET efficiency if the E1 and E2 enzymes as well as ATP are
provided (Bossis et al., 2005). Addition of micromolar concentrations of PPi caused a strong
inhibition of RanGAP1-CFP SUMOylation by the human E1 (Uba2/Aos1) and E2 (Ubc 9)
which could be released by addition of a soluble pyrophosphatase (Figure 6B + 6C). To
determine the mode of inhibition, we determined Vmax and Km in the absence as well as in
the presence of PPi (Figure 6B) leading to the conclusion that inhibition of E1E2 activity by
PPi follows a mixed mode (Figure 6D). We purified the Arabidopsis E1 heterodimer SAE1b
SAE2 but could not detect activity in the FRET assay (Supplemental Figure 3) and thus
analysed SAE2~SUMO thioester formation in the presence and absence of PPi. In
accordance with the results for the human enzyme, the Arabidopsis SUMO E1-activity is
inhibited by 10uM PPi (Figure 6E).

DISCUSSION

It has long been assumed that the combined action of V-ATPase and V-PPase enables
plants to maintain transport into the vacuole even under stressful conditions (Maeshima,
2000). We have shown previously that the increased activity of the V-ATPase during cold
acclimation is largely dependent on the presence of the V-PPase (Kriegel et al., 2015).

During cold acclimation fugub mutants thus should not able to adjust their tonoplast proton-
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pumping activity to the increased demand caused by the accumulation of soluble sugars,
organic acids and other osmoprotectants in the vacuole (Schulze et al., 2012). We show
here that lack of the V-PPase indeed limits cold acclimation severely. However
complementation by overexpression of the soluble pyrophosphatase PPa5 shows clearly
that this phenotype is not caused by a reduced proton-gradient limiting cold-induced
accumulation of solutes in the vacuole (Figure 1). Accumulation of PPi has been shown to
be causative for the developmental phenotype of fugu5 seedlings (Ferjani et al., 2018, 2011)
and our results show that this also applies to the freezing tolerance and heat stress
phenotypes caused by the lack of AVP1 that we report here for the first time. Although
overexpression of AVP1 has been shown to result in increased stress tolerance and yield in
multiple crop plants, reduced stress tolerance of fugu5 mutants has so far not been reported.
The fact that the seedling phenotype observable during the heterotrophic phase of fugub
seedlings could be rescued by supply of exogenous sucrose pointed to an inhibition of
gluconeogenesis. The Glc1P/UDP-Glc reaction is reversible and it has been shown that
UGP-GIc pyrophosphorylase is a major target of PPi-inhibition during seedling establishment
(Ferjani et al., 2018). Similarly, PPi accumulation could inhibit sugar accumulation during
cold acclimation but the fact that the early transcriptional response to cold is dampened in
the fugub mutant is not easily explained solely by a shift in sugar metabolism (Gutiérrez-
Luna et al., 2018). PPi is not only released by many anabolic reactions but also by E1
enzymes that initiate the attachment of ubiquitin or ubiquitin-like proteins (UBLs) including
SUMO. Activation of UBLs requires ATP and occurs via carboxy-terminal adenylation and
thiol transfer leading to the release of AMP and PPi and would thus be prone to inhibition by
PPi accumulation (Desterro et al., 1999; Schulman and Harper, 2009). The MYC-like bHLH
transcriptional activator ICE1 is subject to ubiquitination-mediated proteolysis under ambient
temperature that is counteracted by SUMOylation during the cold response (Miura and
Hasegawa, 2008). We have shown here that the compromised cold acclimation of fugu5 is
caused by the failure to stabilize ICE1 and that the overall levels of SUMO-conjugates that
rapidly increase upon cold exposure in the wild-type fail to increase in fugu5 (Figure 3). As
we cannot exclude that the altered sugar metabolism of fugu5 indirectly impinges
SUMOylation during cold acclimation, we extended our analysis to the heat stress response.
The rapid and reversible accumulation of SUMO conjugates is one of the fastest molecular
responses observed during heat stress (Kurepa et al., 2003; Rytz et al., 2018). The fact that
this response is dampened in both plants and yeast when PPi accumulates (Figures 4 and
5) argues strongly against a secondary metabolic effect. Evidence for a direct inhibitory
effect of PPi on SUMOylation was obtained in an in vitro FRET-based assay that allowed us
to determine that the SUMOylation of RanGAP catalysed by human E1 and E2 enzymes

was inhibited by micromolar concentrations of PPi following a mixed mode of inhibition
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(Figure 6). Although we cannot exclude that PPi could inhibit the action of the E2 enzyme,
the reaction catalysed by the heterodimeric E1 activating enzyme releases PPi and is thus
most likely inhibited when PPi accumulates. Indeed, we could show that E1 subunit
SAE2~SUMO thioester formation is inhibited in the presence of micromolar PPi, raising the
question how exactly PPi inhibits E1-activity (Figure 6).

For adenylation of the SUMO C-terminus to occur, the E1 enzyme adopts an open
conformation that allows binding of ATP. In this conformation, the catalytic cysteine of E1 is
too far away and unavailable to become linked to SUMO. Thioester bond formation between
E1 and SUMO requires structural remodelling to a closed conformation in which the catalytic
cysteine moves adjacent to the C terminus of SUMO~AMP, via unfolding of structures
associated with ATP binding and SUMO adenylation (Lois and Lima, 2005; Olsen et al.,
2010). It has been suggested that active site remodelling pushes the E1 reaction forward by
promoting the release of pyrophosphate to prevent the reverse reaction, the attack of the
adenylate by pyrophosphate leading to the reformation of ATP. Not only is the adenylation
step rate limiting, once the thioester bond is formed and AMP is released, E1 switches back
to the open conformation and a second adenylation reaction occurs, resulting in the
formation of a ternary complex, with an E1 molecule binding to one SUMO molecule at the
adenylation active site and to a second via a thioester bond through the catalytic cysteine
(Olsen et al., 2010). As E1 enzymes are potential targets for therapeutic intervention in
cancer and other diseases understanding their enzymatic activity as well as inhibitory
mechanisms at the atomic level may provide leads for the development of novel drugs. A
novel allosteric inhibitor that targets a cryptic pocket distinct from the active site and locks
the enzyme in a previously unobserved inactive conformation has recently been identified
(Lv et al., 2018) and it will be of great interest to determine how accumulation off PPi affects
the conformation of E1.

Although the exact mechanism remains to be determined, the fact that E1 activity is
classically measured as ATP:PPi (Haas et al., 1982; Haas and Rose, 1982) exchange
clearly reflects that inhibition of E1 enzymes by PPi is not novel per se. Although cytosolic
PPi concentrations reported in the literature, in particular for plants, strongly suggest that
relevant concentrations occur not only in mutant backgrounds or under stress conditions the
relevance of inhibition by PPi in vivo has so far not been addressed. Cytosolic PPi
concentrations of 0.2-0.3 mM as reported for spinach leaves (Weiner et al., 1987) would
clearly not be compatible with E1 activity suggesting that PPi levels are maintained at
substantially lower levels at least in the immediate environment of E1 enzymes. Many
nuclear proteins are modified by SUMOylation (Rytz et al., 2018) and the SUMO conjugation
complex self-assembles into nuclear bodies (Mazur et al., 2018). Information regarding the

nuclear concentration of PPi is lacking, but the fact that DNA and RNA synthesis occurs
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against such high concentrations of PPi argues not only that soluble pyrophosphatases play
an important role in the nucleus but could also suggest that nuclear PPase activity is higher
than in the cytosol. However, the fact that a quadruple knockout mutant lacking four of five
PPa-isoforms showed no obvious phenotype whereas the combined loss of the H*-PPase
AVP1 and a single PPa-isoform causes severe dwarfism due to high PPi concentrations
(Segami et al., 2018) shows clearly that cytosolic and nuclear pools of PPi are controlled by
the combined action of soluble and H*-PPase.

At least for plants, converting the substantial energy present in PPi into a proton-gradient
seems preferable to releasing it as heat and the soluble PPases might thus only function as
emergency valves. But is accumulation of PPi to inhibitory levels only occurring in mutant
backgrounds or is there evidence that it is actively prevented under stress conditions in the
wild-type? The fact that four PPa-isoforms are transcriptionally up-regulated during the first
six hours of the cold acclimation response (Figure 2) indicates that control of PPi levels is an
integral part of the cold stress response and it remains to be determined if this is also true for
other responses in particular for heat stress. Constitutive overexpression of AVP1 has been
shown to cause increased growth of diverse crop plants under various abiotic stress
conditions. Greater vacuolar ion sequestration, increased auxin transport, enhanced
heterotrophic growth, and increased source to sink transport of sucrose have all been
proposed to explain individual aspects of the phenotypes observed in plants lacking or over-
expressing AVP1 (Park et al., 2005; Pasapula et al., 2011; Schilling et al., 2017; Yang et al.,
2014). Here, we propose modulation of SUMOylation by cellular pyrophosphate levels as a
unifying hypothesis that might explain both, the stress-related as well as the developmental
aspects of the multifaceted AVP1 loss- and gain-of function phenotypes. Although our
hypothesis needs further experimental validation in particular regarding the developmental
phenotypes, it seems obvious that a combination of tissue-specific and inducible expression
of PPi-hydrolysing enzymes might turn out to be an efficient way of generating stress-

tolerant crops for the future.

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

Arabidopsis thaliana Col-0 ecotype was used in all experiments as control. The two V-PPase
mutant lines fugub-1 and fugu5-3 and the yeast soluble pyrophosphatase overexpression
line (AVP1:IPP1 / fugu5-1) were previously described (Ferjani et al., 2011). Transgenic
UBQ:AVP1 #18-4 was described in (Kriegel et al., 2015). ice1-2 (SALK_003155) mutant was
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obtained from the SALK population (http://signal.salk.edu; Alonso et al., 2003). Seeds were
surface sterilized with ethanol and stratified for 48h at 4°C. For the heat shock tolerance
assays, seedlings were grown on plates with standard growth medium (0.5% Murashige and
Skoog (MS), 0.5% phyto agar, and 10mM MES, pH 5.8) for 10 days under long day
conditions (16 h light/8 h dark) at 22°C at 125 umol-m?-s™. At day 10, treatment plates were
exposed to 40°C for 4 hours while the control plates were kept in growth conditions. For
freezing tolerance assay, electrolyte leakage assay, PPi and sugar determination and real
time RT-PCR, plants were grown for 6-weeks on soil under short day conditions at 22°C at
125 pymol-m?-s™ Afterwards they were cold acclimated for 4 days at 4°C. Untreated plants
were maintained in the same conditions as the growth period. To determine SUMO and
ICE1 protein amounts upon cold and heat treatments, seedlings were grown in liquid culture
(0.5% Murashige and Skoog (MS), 0.5% sucrose, 10mM MES, pH5.8) under long day
conditions (16 h light/8 h dark) at 22°C at 125 pmol-m™?s™ . Growth period was 10 days in
50ml liquid culture in a 300ml flask on a horizontal shaker with 100 rpm speed. After 10
days, part of flasks was either subjected to 30 min 40°C or 3 hours 4°C. Control samples

were kept at growth conditions.

Construct design and plant transformation

UBQ:PPa5-GFP construct was generated using GreenGate (GG) cloning (Lampropoulos et
al., 2013). The 1097 base pairs coding sequence of PPa5 was amplified from Arabidopsis
thaliana Col-0 cDNA with primers listed in table 1, attaching Bsal recognition sites and
specific GG-overhangs. To prevent cutting, the internal Bsal site was mutated by site
directed mutagenesis. Thereafter, the PCR product and the empty entry module (pGGCO000)
were digested with Bsal, the digestion was purified and then ligated. After test digestion
positive clones were checked by sequencing. The final construct was assembled in a GG
reaction from modules listed in table 2 and transformed into Agrobacterium tumefaciens ASE
strain harbouring the pSOUP plasmid. Arabidopsis thaliana ecotype Col-0 and fugu5-1

plants were used for transformation via floral dipping (Clough and Bent, 1998).

Yeast strain generation and growth

To replace the endogenous IPP1 promoter with the inducible GAL1 promoter and
simultaneously introduce an N-terminal HA-tag, plasmid pFA6a-His3MX6-PGAL1 was
amplified with primers Ipp1-F4/lpp1-R3 (Longtine et al., 1998). The resulting PCR product
was used for transformation of a wild type S. cerevisiae W303 strain (SSY122; (Szoradi et
al., 2018). Correct promoter replacement in the resulting IPP1prA::HIS3-GAL1pr-HA-IPP1
strain (SSY2542) was confirmed by colony PCR and lack of growth on glucose-containing

medium. Cells were grown on synthetic complete medium (CSM —Uracil (MP #4511212),
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Difco™ yeast nitrogen base (BD #233520), Uracil (Sigma #U1128), Adenine Hemisulfate
(Sigma #A9126)) supplemented with appropriate carbon sources. All determinations were

done on exponentially growing cells (Ago < 0.5). To maintain cultures for several hours
below an Agy of 0.5, they were diluted with fresh medium every two hours until the end of

the experiment (semi-continuous culture). A pre-culture containing galactose was grown at
28°C shaking until Aey 0.5, then divided to four, for temperature and carbon resource
manipulation: Glucose / 28°C, Galactose / 28°C , Galactose / 40°C, Glucose / 40°C.
Samples were taken at indicated time points (0, 6, 15 hours). For heat treatment samples
were taken from 28°C one hour before the indicated time point and incubated at 40°C for an

hour.

Protein preparation and immunoblotting analysis

To determine total sumoylation amount in Arabidopsis, total proteins were extracted from
liquid grown wt, V-PPase mutants, UBQ:PPa5/fugu5-1 and UBQ:AVP1 as described in
(Castano-Miquel et al., 2013). 15 pg protein was loaded to 7.5%, 1.5 mM SDS-gels. Anti-
SUMO1 (1:1000; Agrisera) was used as primary antibody. To measure ICE1 protein, liquid
grown Col-0 and fugub-1 and ice1-2 were used for total protein extraction as described in
Castano-Miquel et al., 2013. Anti-ICE1 (1:1000; Agrisera) was used as primary antibody.
Anti-cFBPase (Agrisera ; 1:5000) was used as loading control for both SUMO and ICE1. For
all immunoblots, HRP-anti-rabbit was used as secondary antibody (1:10000; Promega). To
determine the amount of soluble pyrophosphatase and the amount of total sumoylated
proteins in yeast, total protein extraction was performed as described in Szoradi et al., 2018
with addition of 20 mM NEM. 15 ug protein was loaded to 7.5%, 1.5 mM SDS-gels. Anti-
IPP1 (ABIN459215, Antibodies-online GmbH, 1:1000) and anti-SUMO1 (1:1000; Agrisera)
were used as primary antibodies. HRP anti-rabbit was used as secondary antibody. Anti-
PGK1 (Abcam, 1:100000) was used as the loading control. An anti-mouse antibody was
used as secondary antibody (GE Healtcare UK, 1:5000).

Determination of PPi and soluble sugar levels via ion-chromatography

6-weeks old short day grown rosettes were ground in liquid nitrogen and aliquots of ~200-
400 mg were used to quantify PPi and soluble sugars. Compounds were extracted with 0.5
ml ultra-pure water for 20 min at 95°C with vigorous shaking, and insoluble material was
removed by centrifugation at 20,800 g for 20 min. PPi was measured using an lonPac AS11-
HC (2 mm, Thermo Scientific) column connected to an ICS-5000 system (Thermo Scientific)
and quantified by conductivity detection after cation suppression (ASRS-300 2 mm,

suppressor current 29-78 mA). Prior separation, the column was heated to 30°C and
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equilibrated with 5 column volumes of ultra-pure water at a flow rate of 0.3 ml/min. Soluble
sugars were separated on a CarboPac PA1 column (Thermo Scientific) connected to the
ICS-5000 system and quantified by pulsed amperometric detection (HPAEC-PAD). Column
temperature was kept constant at 25°C and equilibrated with five column volumes of ultra-
pure water at a flow rate of 1 ml min-1. Data acquisition and quantification was performed

with Chromeleon 7 (Thermo Scientific).

Freezing tolerance assay

Plant freezing tolerance was determined with 6-weeks old short-day grown plants. For cold
acclimation, 6-week-old plants were incubated at 4°C for 4 days with same photoperiod.
Non-acclimated plants were kept at 22°C during this period. Plants were wetted thoroughly
to promote freezing, then placed in a controlled temperature chamber (Polyklima, MN2-
WLED). First they were kept at 0°C for 1h. Afterwards, they were subjected to temperatures
from -1 to -10°C, reduced 1°C every 30 min. After thawing at 4°C overnight, plants were
moved back to 22°C. Images were taken before cold treatment and 1 week after the freezing

treatment. Dead and alive leaves were counted after the photos were taken.

Electrolyte leakage from leaves

Electrolyte leakage was measured from fully developed rosette leaves of 6-week-old plants.
For each temperature five leaves were collected from each genotype. Each leaf (5th or 6th
rosette leaf) was placed into a tube containing 3 mL deionized water, then placed to 0 °C at
a temperature-controlled climate chamber. Temperature was decreased by 2 °C every hour.
At -2 °C an ice chip was added to initiate nucleation. Tubes were collected at -2, -4, -6, -8
and -10 °C and placed to 4 °C to thaw overnight. Next day 2 ml deionized water was added
and tubes were placed overnight on a horizontal shaker (100 rpm) at 4 °C. Conductivity after
freezing was measured with a conductivity meter (Mettler-Toledo, FiveEasy), which was
calibrated with the Mettler-Toledo Buffer solution 1413 uS. Then, samples were placed to a
100 °C water bath and boiled for 2 hours. Conductivity was again measured after boiling. lon
leakage was determined as the percent ratio of the measurement of conductivity before and

after boiling.

RNA isolation and cDNA synthesis

For the analysis of transcript levels 6 weeks old Col-0, fugu5-1 and UBQ:PPa5-GFP/fugu5-1
was collected after exposure to 4°C for indicated time points. RNA was isolated using the
RNeasy Plant Mini Kit (Qiagen) according to manufacturer's instructions. cDNA was
synthesized from 1 pg of total RNA using M-MuLV reverse transcriptase (Thermo) and an

oligo dT primer.
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Real-time RT PCR

For quantitative analysis of gene expression real-time RT PCR was applied. cDNA samples
were diluted 1:50 in nuclease-free water. Real-time PCR reactions were performed using the
DNA Engine Opticon System (DNA Engine cycler and Chromo4 detector, BioRad) and SG
gPCR mastermix 2X (Roboklon). The real-time PCR reaction mixture with a final volume of
20 pl contained 0.5 uM of each forward and reverse primer, 10 pl SYBR Green Mix, 4 pl
cDNA and 4 pl of RNase-free water. The thermal cycling conditions were composed of an
initial denaturation step at 95°C for 15 min followed by 40 cycles at 95°C for 15 sec, 60°C for
30 sec and 72°C for 15 sec and ended with a melting curve. For the analysis of each sample
three analytical replicas were used. Target genes were normalized to the expression of

Actin2. Primer sequences are listed in Table 2.

In vitro FRET- based sumoylation assay

Sumoylation of CFP-RanGAPtail with YFP-SUMO was carried out using a FRET-based
high-throughput assay as previously described with minor changes (Werner et al.,
2009)Bossis et al., 2005). Final concentrations of the FRET components were Uba2/Aos1
(E1, 20 nM), Ubc9 (E2, 30 nM), YFP-SUMO3 and CFP-RanGAPtail (300 nM). ATP substrate
was prepared as a stock solution of 300 mM ATP-BTP (pH 8.0). 1 mM ATP was used for the
assays unless stated otherwise. For the PPi application, 30 mM PPi-BTP (pH 7.5) stock
solution was prepared. To determine the effects of PPi hydrolysis on the FRET assay, 0.8U
E. coli inorganic pyrophosphatase (NEB) was used and the buffer solution that the
pyrophophatase includes was added to the control wells (20 mM Tris-HCI, 100 mM NacCl, 1
mM Dithiothreitol, 0.1 mM EDTA, 50% Glycerol, pH 8.0). Michealis-Menten fittings and Vmax
and Km calculations were done in Origin software according to the ATP titration (0-10 pM)

performed with different PPi concentrations (0, 7.5 and 15 uM).

Cloning, expression and protein purification of Arabidopsis E1 ligase and SUMO1

Conjugation-competent AtSUMO1 (1-93) was amplified from cDNA, using the primers
AtSUMO1-Ndel-Fw and AtSUMO1-Xhol-Rv, and cloned in the bacteria expression vector
pET28b(+). The coding sequence of SAE1a was amplified from A. thaliana cDNA ligated into
pET28a via Nhel and BamHI sites in-frame behind the coding sequence for a 6xHis-tag.
SAE2 was amplified from A. thaliana cDNA and ligated into the pCR™-Blunt [I-TOPO®
vector. pET11d was cut with BamHI and the TOPO-vector was cut with Nhel. Both linear
DNA fragments were blunt ended with T4 polymerase. Both DNA fragments were

subsequently restricted with Ncol. The DNA fragment carrying the SAE2 coding sequence
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was ligated into pET11d via the Ncol cohesive end and the blunt end. Recombinant proteins

were purified as previously described (Werner et al., 2009).

In vitro E1-Thioester Assay
E1-Thioester assay was performed as previously described in Castano-Miquel et al., 2013
with addition of final concentrations of 1-10 yM PPi. 1 mM of ATP was used for all reactions

unless stated otherwise.
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FIGURE LEGENDS

Figure 1. PP; hydrolysis is required to rescue the freezing sensitive phenotype of
fugu5-1

(A) and (B) Freezing tolerance assay. Wt, fugu5-1, UBQ:AVP1 and UBQ:PPa5-GFP in wt
and fugub-1 background were grown for 6 weeks at 22 °C and were then moved to 4°C for
cold-acclimation, or kept at 22 °C for 4 days. Afterwards plants were subjected to a 5-h
freezing temperature regime (0 to -10 °C). After thawing at 4 °C overnight, plants were
moved back to 22 °C. (A) Images were taken before cold-acclimation and one week after the
freezing treatment. (B) Quantification of dead and alive leaves was done one week after the
freezing treatment with n = 75 leaves. 3 independent experiments were performed. (C)
Electrolyte leakage assay of Wi, fugub-1, UBQ:AVP1 and UBQ:PPa5-GFP in Wt and fugu5b-
1 background was performed on leaf material of acclimated and non-acclimated plants at
indicated freezing temperatures. Error bars represent SD of the mean of n=3 biological
replicates. (D-G) Sugar and PPi measurements were done from extracts of acclimated (4 °C)
and non-acclimated (22 °C) 6-week old rosette leaves. Error bars show SD of the mean with

n=3 samples of one representative experiments. 3 biological replicates were performed.
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Significant differences are indicated by different letters (Two-way ANOVA followed by
Tukey’s test, p<0.05).

Figure 2. sPPase expression is induced upon cold exposure to control PP; that affects

expression of CBFs and CBF target genes

(A) gqRT-PCR for the analysis of expression of sPPase 1,2,4 and 5. (B) Measurement of
expression of CBF, COR and GolS3 genes in Col-0, fugu5-1 and UBQ:PPa5-GFP/fugu5b-1
by qRT-PCR . (A) and (B) Plants were grown for six weeks under short-day conditions at
22°C. Afterwards, they were exposed to 4°C for indicated time periods. Whole rosettes were
used for total RNA extraction. Actin2 expression was used for normalization. Error bars
represent SD of the mean of n=3 biological replicates. Data analysis was performed using
the AAC; method

Figure 3. Modification of ICE1 and general SUMOylation upon cold exposure are
inhibited fugu5

(A) Cold acclimation induces ICE1 sumoylation which then activates CBFs and leads to the
expression downstream targets for the establishment of freezing tolerance. (B)
Determination of the amount of ICE1 in Col-0, fugub-1 and ice1-2 seedlings. Amount of
TUBULIN was detected as loading control. (C) Comparison of the amount of the ICE1 under
normal conditions (22°C) and after cold treatment (4°C, 3h) in Col-0 and fugu5-1 seedlings.
(B) and (C) 10 days old liquid grown seedlings were used for total protein extraction. Anti-
ICE1 was used as primary antibody. (D) Western blots comparing sumoylation levels of Col-
0 and fugu5-1 under normal conditions (22°C) and after cold treatment (4°C, 3h). (E)
Western blots demonstrating the total sumoylation in Wt, fugu5-1, fugu5-3, UBQ:AVP1 and
UBQ:PPa5-GFP under normal conditions (22°C) and after cold treatment (4°C, 3h). (D) and
(E) 10 days old liquid grown seedlings were used for total protein extraction. Anti-SUMO1/2
was used as primary antibody. Whole lanes were measured for the calculation of protein
amounts using ImagedJ. cFBPase detection was used for normalization. Error bars represent

SD of n=2 biological replicates.

Figure 4. Heat shock-induced SUMOylation is also reduced in fugu5
(A) Phenotypic analysis of 10 days old Col-0, fugub-1, UBQ:PPa5-GFP in Col-0 and fugu5-1
backgrounds and UBQ:AVP1 seedlings analysis before and after heat. Representative

pictures of seedlings before and 4 days after completion of heat shock treatment are
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depicted. (B) Seedling survival was determined 4 days after the heat shock. Alive and dead
seedlings were counted and survival is shown as the percentage of the living seedlings.
Error bars show SD of the mean with n=24 samples of one representative experiments. 2
biological experiments were performed. (C) Sumoylation levels of Col-0 and V-PPase mutant
fugub-1 were analysed with western blot under normal conditions (22°C) and after heat
shock treatment (40°C, 30 min). (D) Measurement of the SUMO amount of Col-0, V-PPase
mutants, UBQ:PPa5-GFP/fugub-1 and UBQ:AVP1 seedlings after heat shock treatment
(40°C, 30 min). (C) and (D) 10 days old liquid grown seedlings are used for total protein
extraction. Anti-SUMO1/2 (Agrisera) was used as primary antibody. Whole lanes were
measured for the calculation of protein amounts using ImagedJ. cFBPase detection was used

for normalization. Error bars represent SD of n=2 biological replicates.

Figure 5. Increased PPi levels interfere with SUMOylation in yeast

(A) Amount of the soluble pyrophosphatase protein in a conditional Ipp1 mutant of S.
cerevisiae (GAL:HA-IPP1). Wt strain (W303) is used as a control. (B) Amount of total
sumoylation in W303 determined before and after heat stress. (C) Measurement of total
SUMO protein in conditional IPP1 mutant of S. cerevisiae (GAL:HA-IPP1). (A-C) Yeast is
grown in synthetic complete medium supplemented with galactose at 28°C. After growing
until ODgge 0.5, part of the Ipp1 conditional mutant is switched to glucose supplemented
medium to suppress the promoter and samples are collected at the indicated time points.
For the heat treatment, cultures are switched to 40°C incubator for 1 hour. Error bars

represent SD of n=2 biological replicates.

Figure 6. PPi regulates SUMOylation activity in vitro

(A) Schematic illustration of the FRET-based sumoylation assays. Upon addition of ATP, the
human SUMO E1 activating enzyme Aos1/Uba2 and the E2 conjugating enzyme Ubc9 form
an isopeptide bond between the CFP-tagged human model substrate GAP; and YFP-
tagged mature SUMO2. This can be detected via FRET measurements: Following the
excitation of CFP, energy is transferred onto YFP. YFP and CFP emission are recorded
upon excitation at 430 nm. Measurements are calculated as the ratio of the A, (SUMO2-
YFP, 527 nm) to Ao (CFP-GAP,;, 485 nm). (B) PP; titration showing that the increasing PP,
concentration inhibits the sumoylation activity. TmM ATP used for all the measurements. (C)
In vitro sumoylation assay showing that the E. coli soluble PPase is able to remove the
inhibitory effect of PPi. After 10 min of measurement, one of the 8 yM PPi containing wells
were supplied with 0.8 U of E.coli soluble PPase and control buffer was added to the rest of

the wells. Measurements were continued for 20 more minutes. (D) PP; addition results in
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mixed inhibition of sumoylation activity. Michaelis-Menten fittings of the measurements
shown in Supplement figure 3. Fittings are done in Origin software and V.« and K, are
calculated accordingly. (E) /n vitro thioester bond formation assay showing Arabidopsis E1
(SAE2/SAE1a) and SUMO conjugation under different PPi concentrations. (B-D)

Experiments were repeated 4 times, one representative image is shown.

Supp. Figure 1. Increased Proton Transport Activity of V-ATPase upon Cold

Acclimation Requires an Active V-PPase

(A) Enriched tonoplast proteins were used to determine K*-stimulated PP; hydrolysis and H*
transport activity of V-PPase. (B) Enriched tonoplast proteins were used to determine KNO3-
inhibited ATP hydrolysis and H* transport activity of V-ATPase. (C) Cell sap pH
measurement of rosette leaves. Error bars show SD of the mean with n=12 samples of 3
biological replicates. (A-C) Col-0, fugu5-1 and UBQ:AVP1 were grown for 6 weeks under
short-day conditions then were cold acclimated for 4 days at 4°C. Untreated plants were
maintained in the same conditions as the growth period. Error bars represent SD of n=3
biological replicates. Significant differences are indicated by different letters (Two-way
ANOVA followed by Tukey’s test, p<0.05).

Supp. Figure 2. Overexpression of the Arabidopsis soluble pyrophosphatase PPa5 is
sufficient to complement fugu5-1

(A) Comparison of 6-week old rosettes phenotypes of Col-0, fugu5-1 and overexpression
lines of Arabidopsis vacuolar pyrophosphatase AVP1 and yeast soluble pyrophosphatase
IPP1. (B) Representative images showing the localization of UBQ:PPa5-GFP to cytosol and
nuclues in shoot (upper panel) and root cells (lower panel). Scale bars: 10um. (C) Cotyledon
phenotypes of 5 days old seedlings of Col-0, fugu5-1 and UBQ:PPa5-GFP in Col-0 and
fugub-1 backgrounds. (D) Comparison of 6-week old short day grown rosette phenotypes of
Col-0, fugub-1 and UBQ:PPa5-GFP in Col-0 and fugub-1 backgrounds. (E) Measurements
of fresh weight and whole rosette area of Col-0, fugu5-1 and UBQ:PPa5-GFP in Col-0 and
fugu5-1 backgrounds. Plants were grown for 6 weeks under short-day conditions. To
determine rosette area Rosette Tracker plug-in of Imaged is used. Error bars represent SD
of the mean of n=20 of 3 biological replicates. (F) Analysis of UBQ:PPa5-GFP protein
amount in Col-0 and fugu5-1 background with anti-GFP. Soluble proteins from 6-week old
rosettes grown under short-day conditions were extracted. An internal control provided by
SPL detection kit (DyeAGNOSTICS) was used for normalization. One representative image
from three biological replicates is depicted. (G) Soluble proteins of Col-0, fugu5-1 and
UBQ:PPa5-GFP in Col-0 and fugu5-1 backgrounds were used to determine K'-stimulated
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PP; hydrolysis. Plants were grown for 6 weeks under short-day conditions. Error bars
represent SD of n=3 biological replicates. Significant differences are indicated by different
letters (Two-way ANOVA followed by Tukey’s test, p<0.05).

Supp. Figure 3. Western blot detection of ICE1 in protein extracted in the presence of
DTT

(A) Comparison of total protein of 10 days old Col-0 and fugu5-1 seedlings extracted +/-
DTT (5 mM) and NEM (20 mM).

Supp. Figure 4. Elevated PPi concentrations leads to mixed inhibition of SUMOylation
in vitro
(A) Sumoylation assays demonstrating the effect of increasing amounts of PP, to the speed

of the reaction in a range of 0-10uM ATP concentration. Experiments were repeated 4 times.

Supp. Figure 5. AtSAE1/2 purification and its activity in in vitro FRET based
SUMOylation assay

(A) Gel picture after purification of AtSAE1 and AtSAE2. Highlighted fractions from the final
gel filtration step were combined, dialysed and used for subsequent experiments. (B) The
purified Arabidopsis E1 activating enzyme is not functional in the FRET based sumoylation
assay. Assays were set up as described for Figure 6, but with recombinant Arabidopsis E1

enzyme. Human E1 activating enzyme was used in a positive control.
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Figure 1. PP; hydrolysis is required to rescue the freezing sensitive phenotype of fugu5-1

(A) and (B) Freezing tolerance assay. Wt, fugu5-1, UBQ:AVP1 and UBQ:PPa5-GFP in wt and fugu5-1
background were grown for 6 weeks at 22 °C and were then moved to 4°C for cold-acclimation, or kept at
22 °C for 4 days. Afterwards plants were subjected to a 5-h freezing temperature regime (0 to -10 °C). After
thawing at 4 °C overnight, plants were moved back to 22 °C. (A) Images were taken before cold-acclimation
and one week after the freezing treatment. (B) Quantification of dead and alive leaves was done one week
after the freezing treatment with n = 75 leaves. 3 independent experiments were performed. (C) Electrolyte
leakage assay of Wt, fugu5-1, UBQ:AVP1 and UBQ:PPa5-GFP in Wt and fugu5-1 background was
performed on leaf material of acclimated and non-acclimated plants at indicated freezing temperatures. Error
bars represent SD of the mean of n=3 biological replicates. (D-G) Sugar and PPi measurements were done
from extracts of acclimated (4 °C) and non-acclimated (22 °C) 6-week old rosette leaves. Error bars show
SD of the mean with n=3 samples of one representative experiments. 3 biological replicates were performed.

Significant differences are indicated by different letters (Two-way ANOVA followed by Tukey’s test, p<0.05).
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Figure 2. sPPase expression is induced upon cold exposure to control PP; that affects expression
of CBFs and CBF target genes

(A) gRT-PCR for the analysis of expression of sPPase 1,2,4 and 5. (B) Measurement of expression of CBF,
COR and GolS3 genes in Col-0, fugu5-1 and UBQ:PPa5-GFP/fugu5-1 by gRT-PCR . (A) and (B) Plants
were grown for six weeks under short-day conditions at 22°C. Afterwards, they were exposed to 4°C for
indicated time periods. Whole rosettes were used for total RNA extraction. Actin2 expression was used for
normalization. Error bars represent SD of the mean of n=3 biological replicates. Data analysis is performed
with AACtmethod.
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Figure 3. Modification of ICE1 and general SUMOylation upon cold exposure are inhibited fugu5

(A) Cold acclimation induces ICE1 sumoylation which then activates CBFs and leads to the expression
downstream targets for the establishment of freezing tolerance. (B) Determination of the amount of ICE1
in Col-0, fugu5-1 and icel-2 seedlings. Amount of TUBULIN was detected as loading control. (C)
Comparison of the amount of the ICE1 under normal conditions (22°C) and after cold treatment (4°C, 3h)
in Col-0 and fugu5-1 seedlings. (B) and (C) 10 days old liquid grown seedlings were used for total protein
extraction. Anti-ICE1 was used as primary antibody. (D) Western blots comparing sumoylation levels of
Col-0 and fugu5-1 under normal conditions (22°C) and after cold treatment (4°C, 3h). (E) Western blots
demonstrating the total sumoylation in Wt, fugu5-1, fugu5-3, UBQ:AVP1 and UBQ:PPa5-GFP under
normal conditions (22°C) and after cold treatment (4°C, 3h). (D) and (E) 10 days old liquid grown seedlings
were used for total protein extraction. Anti-SUMO1/2 was used as primary antibody. Whole lanes were
measured for the calculation of protein amounts using ImageJ. cFBPase detection was used for

normalization. Error bars represent SD of n=2 biological replicates.
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Figure 4. Heat shock-induced SUMOylation is also reduced in fugu5

(A) Phenotypic analysis of 10 days old Col-0, fugu5-1, UBQ:PPa5-GFP in Col-0 and fugu5-1
backgrounds and UBQ:AVP1 seedlings analysis before and after heat. Representative pictures of
seedlings before and 4 days after completion of heat shock treatment are depicted. (B) Seedling survival
was determined 4 days after the heat shock. Alive and dead seedlings were counted and survival is
shown as the percentage of the living seedlings. Error bars show SD of the mean with n=24 samples of
one representative experiments. 2 biological experiments were performed. (C) Sumoylation levels of
Col-0 and V-PPase mutant fugu5-1 were analysed with western blot under normal conditions (22°C) and
after heat shock treatment (40°C, 30 min). (D) Measurement of the SUMO amount of Col-0, V-PPase
mutants, UBQ:PPa5-GFP/fugu5-1 and UBQ:AVP1 seedlings after heat shock treatment (40°C, 30 min).
(C) and (D) 10 days old liquid grown seedlings are used for total protein extraction. Anti-SUMO1/2
(Agrisera) was used as primary antibody. Whole lanes were measured for the calculation of protein
amounts using ImageJ. cFBPase detection was used for normalization. Error bars represent SD of n=2

biological replicates.
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Figure 5. Increased PPi levels interfere with SUMOQylation in yeast

(A) Amount of the soluble pyrophosphatase protein in a conditional Ipp1l mutant of S. cerevisiae (GAL:HA-
IPP1). Wt strain (W303) is used as a control. (B) Amount of total sumoylation in W303 determined before
and after heat stress. (C) Measurement of total SUMO protein in conditional IPP1 mutant of S. cerevisiae
(GAL:HA-IPP1). (A-C) Yeast is grown in synthetic complete medium supplemented with galactose at
28°C. After growing until ODeoo 0.5, part of the Ippl conditional mutant is switched to glucose
supplemented medium to suppress the promoter and samples are collected at the indicated time points.
For the heat treatment, cultures are switched to 40°C incubator for 1 hour. Error bars represent SD of n=2

biological replicates.


https://doi.org/10.1101/504373
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/504373; this version posted December 22, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.


https://doi.org/10.1101/504373
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/504373; this version posted December 22, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 6. PPi regulates SUMOQylation activity in vitro

(A) Schematic illustration of the FRET-based sumoylation assays. Upon addition of ATP, the human
SUMO E1 activating enzyme Aos1/Uba2 and the E2 conjugating enzyme Ubc9 form an isopeptide bond
between the CFP-tagged human model substrate GAPwi and YFP-tagged mature SUMO2. This can be
detected via FRET measurements: Following the excitation of CFP, energy is transferred onto YFP. YFP
and CFP emission are recorded upon excitation at 430 nm. Measurements are calculated as the ratio of
the Aem (SUMO2-YFP, 527 nm) to Aex (CFP-GAPai, 485 nm). (B) PP titration showing that the increasing
PPi concentration inhibits the sumoylation activity. 1mM ATP used for all the measurements. (C) In vitro
sumoylation assay showing that the E. coli soluble PPase is able to remove the inhibitory effect of PPi.
After 10 min of measurement, one of the 8 uM PPi containing wells were supplied with 0.8 U of E.coli
soluble PPase and control buffer was added to the rest of the wells. Measurements were continued for
20 more minutes. (D) PP; addition results in mixed inhibition of sumoylation activity. Michaelis-Menten
fittings of the measurements shown in Supplement figure 3. Fittings are done in Origin software and Vmax
and Km are calculated accordingly. (E) In vitro thioester bond formation assay showing Arabidopsis E1
(SAE2/SAEla) and SUMO conjugation under different PPi concentrations. (B-D) Experiments were

repeated 4 times. One representative data is depicted.
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Supp. Figure 1. Increased Proton Transport Activity of V-ATPase upon Cold Acclimation Requires
an Active V-PPase

(A) Enriched tonoplast proteins were used to determine K*-stimulated PPi hydrolysis and H* transport
activity of V-PPase. (B) Enriched tonoplast proteins were used to determine KNOs-inhibited ATP hydrolysis
and H*transport activity of V-ATPase. (C) Cell sap pH measurement of rosette leaves. Error bars show
SD of the mean with n=12 samples of 3 biological replicates. (A-C) Col-0, fugu5-1 and UBQ:AVP1 were
grown for 6 weeks under short-day conditions then were cold acclimated for 4 days at 4°C. Untreated
plants were maintained in the same conditions as the growth period. Error bars represent SD of n=3
biological replicates. Significant differences are indicated by different letters (Two-way ANOVA followed
by Tukey’s test, p<0.05).


https://doi.org/10.1101/504373
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/504373; this version posted December 22, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.


https://doi.org/10.1101/504373
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/504373; this version posted December 22, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supp. Figure 2. Overexpression of the Arabidopsis soluble pyrophosphatase PPa5 is sufficient to
complement fugu5-1

(A) Comparison of 6-week old rosettes phenotypes of Col-0, fugu5-1 and overexpression lines of
Arabidopsis vacuolar pyrophosphatase AVP1 and yeast soluble pyrophosphatase IPP1. (B)
Representative images showing the localization of UBQ:PPa5-GFP to cytosol and nuclues in shoot (upper
panel) and root cells (lower panel). Scale bars: 10um. (C) Cotyledon phenotypes of 5 days old seedlings
of Col-0, fugu5-1 and UBQ:PPa5-GFP in Col-0 and fugu5-1 backgrounds. (D) Comparison of 6-week old
short day grown rosette phenotypes of Col-0, fugu5-1 and UBQ:PPa5-GFP in Col-0 and fugu5-1
backgrounds. (E) Measurements of fresh weight and whole rosette area of Col-0, fugu5-1 and UBQ:PPa5-
GFP in Col-0 and fugu5-1 backgrounds. Plants were grown for 6 weeks under short-day conditions. To
determine rosette area Rosette Tracker plug-in of ImageJ is used. Error bars represent SD of the mean of
n=20 of 3 biological experiments. (F) Analysis of UBQ:PPa5-GFP protein amount in Col-0 and fugu5-1
background with anti-GFP. Soluble proteins from 6-week old rosettes grown under short-day conditions
were extracted. An internal control provided by SPL detection kit (DyeAGNOSTICS) was used for
normalization. One representative image from three biological replicates is depicted. (G) Soluble proteins
of Col-0, fugu5-1 and UBQ:PPa5-GFP in Col-0 and fugu5-1 backgrounds were used to determine K*-
stimulated PP; hydrolysis. Plants were grown for 6 weeks under short-day conditions. Error bars represent
SD of n=3 biological replicates. Significant differences are indicated by different letters (Two-way ANOVA
followed by Tukey'’s test, p<0.05).

Supp. Figure 3. Western blot detection of ICE1 in protein extracted in the presence of DTT
(A) Comparison of total protein of 10 days old Col-0 and fugu5-1 seedlings extracted +/- DTT (5 mM) and
NEM (20 mM).
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Supp. Figure 4. Elevated PPi concentrations leads to mixed inhibition of SUMOylation in vitro
(A) Sumoylation assays demonstrating the effect of increasing amounts of PPito the speed of the reaction

in a range of 0-10uM ATP concentration. Experiments were repeated 4 times.

Supp. Figure 5. AtSAE1/2 purification and its activity in in vitro FRET based SUMOylation assay

(A) Gel picture after purification of AtSAE1 and AtSAE2. Highlighted fractions from the final gel filtration
step were combined, dialysed and used for subsequent experiments. (B) The purified Arabidopsis E1
activating enzyme is not functional in the FRET based sumoylation assay. Assays were set up as
described for Figure 6, but with recombinant Arabidopsis E1 enzyme. Human E1 activating enzyme was
used in a positive control.
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Supplementary Material and Methods

Plant material and growth conditions

Same plant material described in the main section was used. Seedling growth medium and
conditions for the confocal imaging was the same as the conditions described for the heat
shock tolerance assay. The plant material used for enzyme assays, cell sap measurements
and phenotypic assays were grown the same as described for material for freezing tolerance
assay. Cold acclimation conditions were also the same. For analysis of cotyledon
phenotypes seeds were surface sterilized with ethanol and stratified for 48h at 4°C in 0.5%
agar solution then planted on single pots individually (n=10). Pictures are taken at day 5.
Liquid culture conditions to grow the material for ICE1 determination is the same as

described in the main section.

Tonoplast vesicle preparation and enzyme assays

Rosette leaf material (75 g) from plants grown under short day conditions was harvested.
The leaf material was homogenized in homogenization buffer containing 0.4 M mannitol, 0.1
M Tris, 10% (vol/vol) glycerol, 3 mM Na,EDTA, 0.5% (wt/vol) BSA, 5% (vol/vol) PVP-10, 0.5
mM butylated hydroxytoluene, 0.3 mM dibucaine, 5 mM magnesium sulphate, 1 mM PMSF
(phenylmethylsulphonylfluoride), 1.3 mM benzamidine and 25 mM potassium metabisulfite.
The homogenate was filtered through two layers of miracloth and centrifuged at 10,000 g for
20 min at 4°C. The supernatant was then centrifuged at 100,000 g for 45 min at 4°C. The
microsomal membrane pellet was resuspended in resuspension buffer containing 0.4 M
mannitol, 6 mM Tris-MES (pH 8) and 10 (vol/vol) glycerol. Soluble part was kept for
measuring the soluble pyrophosphatase activity and quantification of PPa5-GFP protein
levels. Tonoplast vesicles were obtained by performing a sucrose gradient with 22%
sucrose. Centrifugation was performed at 97,000 g for 2 hours. Protein concentrations were
determined as reported previously (Bradford, 1976). ATP and PP; hydrolysis was measured
at 28°C as described previously (Krebs et al., 2010). Same method was also used for
measuring soluble pyrophosphatase activity with soluble proteins. The ATP and PP;-
dependent proton transport activities were estimated from the initial rate of ATP-dependent
fluorescence quenching in the presence of 3 mM ATP using the fluorescence dye ACMA (9-
Amino-6-Chloro-2-Methoxyacridine) with 50ug enriched tonoplast protein. Excitation
wavelength was 415 nm, and emission was measured at 485 nm in Jasco fluorescence
spectrometer. V-PPase H" transport medium includes 25mM HEPES-BTP (pH 7.2), 250 mM
Sorbitol, 1.5 mM MgS0O,4, 50 mM KCI and 0.3mM PP-BTP (pH 7.5) final concentration in 1
ml volume. V-ATPase H* transport medium includes 10 mM ATP-MES (pH 8.0),0.25 M
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Mannitol, 3 mM MgSO,4, 100 mM TMA-CI and 1.5 mM ATP-BTP (pH 7.5) final concentration

in 1 ml volume.

SDS-PAGE and immunoblotting analysis

To determine protein levels of V-ATPase and V-PPase at 22 and 4°C in tonoplast
membrane extracts of Col-0, fugu5-1 and UBQ:AVP1. The primary antibody against the V-
PPase was purchased from Cosmo Bio (1:10,000) and the primary antibody against VHA-C
is as previously described (Schumacher et al., 1999). To determine the UBQ:PPa5-GFP
levels in Col-0 and fugu5-1 background soluble proteins were extracted as described in
tonoplast vesicle preparation section. Anti-GFP (Agrisera, 1:10000) was used as primary
antibody. An internal control from SPL kit was used for normalization (NH, DyeAgnostics).
To measure ICE1 protein, Col-0 and fugu5-1 were grown in liquid culture. Material was split
in two for total protein extraction, same buffer described in Castafno-Miquel et al., 2013 was
used for one part, and same buffer without NEM and with addition of 5 mM DTT used for the
other. Anti-ICE1 (1:1000; Agrisera) was used as primary antibody. For all immunoblots,
HRP-anti-rabbit was used as secondary antibody (1:10000; Promega). Imaging was carried
out using a cooled CCD camera system (Intas ADVANCED Fluoreszenz u. ECL Imager).

Western blots were quantified with Fiji (based on Imaged 1.47t).

Cell sap pH measurements

Cell sap pH measurements were conducted as previously described (Krebs et al., 2010)

Confocal Microscopy

Localization of UBQ:PPa5-GFP construct was determined using a Leica TCS SP5ll
microscope equipped with a Leica HCX PL APO lambda blue 63.0 3 1.20 UV water
immersion objective. GFP was excited at 488 nm using a VIS-argon laser. Fluorescence
emission of GFP was detected between 500 and 555 nm. The Leica Application Suite
Advanced Fluorescence software was used for image acquisition. Post processing of images

were performed using Fiji.
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Table 1. Primers of UBQ:PPa5-GFP construct

Primer Name 5103 Sequence

Forward | AAC AGG TCT CAG GCT CAA CAA TGA ATG GAG AAG AAG TGA

PPa5 AA
Reverse
AAC AGG TCT CTC TGA TCT CCT CAG GGT GTG AAG AAT
PPa5, Eco31l | Forward
mutation AAC AGG TCT CAA CTC ATC AAG GTT GAT AGG AT
Reverse

AAC AGG TCT CTGAGT CCTGTTTTT TTG TCA AG

Table 2. List of GG modules

GG module name Type AGI Reference
UBIQUITIN 10 Lampropoulos et al.,
pGGA006 (UBQ10) promoter AT4G05320 2013
Lampropoulos et al.,
pGGB003 B-dummy na 2013
pGGC-PPa5 PPa5 AT4G01480 This work
Lampropoulos et al.,
pGGDO001 Linker-GFP na 2013
RBCS terminator (from Lampropoulos et al.,
pGGEO001 pea) na 2013
Lampropoulos et al.,
pGGF012 pUBQ10:Hyg":tOCS na 2013
Lampropoulos et al.,
pGGZ001 Vector backbone na 2013
Table 3. gRT primers
Primer Name 5t03 Sequence
CBF1 Forward GTC AAC ATG CGC CAAGGATA
Reverse TCG GCATCC CAAACATTGTC
CBF2 Forward GAA TCC CGG AAT CAACCT GT
Reverse CCC AACATCGCCTCTTCATC
CBF3 Forward CAA CTT GCG CTAAGG ACA
Reverse TCT CAAACATCG CCT CAT
COR15A Forward AAC GAG GCC ACA AAG AAAGC
Reverse CAG CTT CTT TAC CCAATGTATCTGC
COR78 Forward GCA CCA GGC GTAACAGGT AAAC
Reverse AAA CAC CTT TGT CCC TGG TGG
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GolS3 Forward | ACA GGC CAA GAA GGA AAT ATG G

Reverse GAT GGA GCTTTG GCA CAT TG

PPa1 Forward ACAATCGGCTGTTTC GTTTC

Reverse | TTC CTT TAG TGATCT CAACAACCAC

PPa2 Forward CAG TAG GAG CTT CTG GAC CAATC

Reverse | GCT TGG ATG GGAATG TCC TG

PPa3 Forward CAAATGCTCTGTTTITCTITCTGC

Reverse | CCTTTGTGATCT CAACCACCAC

PPa4 Forward TGAGATCTGTGCTTGCGTTT

Reverse | TGG GGC TTC AGG TCC TAT C

PPa5 Forward CTC CAC ACT TTC CGC AAG AT

Reverse | ACT GGA GCT CCA GGT CCG

PPa6 Forward GAG ACA AAC CAG CAA ACAAAG AC

Reverse | AAA CAA AAT CCA AAT CCC AAT G

Actin Forward TCTTCCGCTCTTTCTTTC CA

Reverse | TCA CCA TAC CGG TAC CAT TG

Table 3. Primers for protein purification

Primer Name 5103 Sequence

SAE1a Forward | TAT ATG GCT AGC ATG GAC GGA GAA GAG CTT ACC

Reverse | TAT ATG GGA TCC TTA AGA GGT AAA AGA GTC GGA AAT GTC

SAE2 Forward TAT ATG CCATGG CTA CGC AAC AACAG

Reverse | TAT ATG GCT AGC CTATTC AACTCT TATCTTCTT TTT GCT

AtSUMO1 Forward | AAC ACA TAT GTC TGC AAA CCA GGA GGA AG

Reverse | AAC ACT CGA GTC AGC CAC CAG TCT GAT GGA G
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