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Abstract

Recent work examining astrocytic physiology centers on fluorescence imaging approaches, due to
development of sensitive fluorescent indicators and observation of spatiotemporally complex calcium and
glutamate activity. However, the field remains hindered in fully characterizing these dynamics, both
within single cells and at the population-level, because of the insufficiency of current region-of-interest-
based approaches to describe activity that is often spatially unfixed, size-varying, and propagative. Here,
we present a paradigm-shifting analytical framework that releases astrocyte biologists from ROI-based
tools. Astrocyte Quantitative Analysis (AQuA) software enables users to take an event-based approach to
accurately capture and quantify the irregular activity observed in astrocyte imaging datasets. We apply
AQUA to a range of ex vivo and in vivo imaging data, and uncover previously undescribed physiological
phenomena in each. Since AQUA is data-driven and based on machine learning principles, it can be
applied across model organisms, fluorescent indicators, experimental modes, and imaging resolutions and

speeds, enabling researchers to elucidate fundamental astrocyte physiology.

Introduction

With increased prevalence of multiphoton imaging and optical probes to study the physiology of
astrocytes, many groups now have the tools to study fundamental functions that previously remained
unclear. Recent work has focused on new ways to decipher how astrocytes respond to neurotransmitter
and neuromodulator circuit signals*” and how the spatiotemporal patterns of their activity shape local
neuronal activity®1°, Recording astrocytic dynamics with the goal of decoding their disparate roles in
neural circuitry has largely centered on cell type-specific expression of genetically encoded probes to
carry out calcium (Ca?*) imaging using variants of GCaMP?, and glutamate imaging using GluSnFRZ,
Compared to neuronal Ca?*" imaging, astrocytic Ca?* imaging using GCaMP presents particular challenges
due to their complex spatiotemporal dynamics. Thus, astrocyte-specific analysis software has been
developed to capture these dynamics, including techniques that divide the cell into distinct subcellular
regions corresponding to their anatomy* or apply a watershed algorithm to identify regions-of-interest
(ROIs)!. Likewise, GIuSnFR imaging analysis techniques are based on manually or semi-manually
selected ROIs, or by analyzing the entire imaging field together as one ROI. It is worth noting that these
and other current techniques rely on the conceptual framework of ROIs for image analysis. However,
astrocytic Ca?* and GluSnFR fluorescence dynamics are particularly ill-suited for ROI-based approaches,
because the concept of the ROI has several inherent assumptions that cannot be satisfied for astrocytic
activity data. Astrocytic Ca?* signals, for example, can occupy regions that change size or location across
time, can propagate within or across cells, and can spatially overlap with other Ca?* signals that are

temporally distinct. ROI-based approaches assume that for a given ROI, all signals have a fixed size and
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shape, and all locations within the ROI undergo the same dynamics, without propagation. Accordingly,
ROI-based techniques may over- or under-sample these data, thus obscuring true dynamics and hindering
physiological discovery in these cells. An ideal imaging analysis framework for astrocytes would take
into account, and quantify, all of these dynamic features and be free of these ROI-based analytical
restrictions. In addition, the ideal tool would be applicable to astrocyte imaging data across spatial scales,
encompassing subcellular, cellular, and population-wide fluorescence dynamics.

In this work, we set out to design an image analysis toolbox that would capture the complex, wide-
ranging fluorescent signals observed in most dynamic astrocyte imaging datasets. We reasoned that a
non-ROI-based approach would best describe the observed fluorescent dynamics, and applied probability
theory, machine learning, and computational optimization techniques to generate an algorithm to do so.
We name this resulting software package Astrocyte Quantitative Analysis (AQuA) and validate its utility
by applying it to simulated datasets that reflect the specific features that make analyzing astrocyte data
challenging. We next apply AQUA to three experimental two-photon (2P) imaging datasets—ex vivo Ca?*
imaging of GCaMP6 from acute cortical slices, in vivo Ca?* imaging of GCaMP6 in primary visual cortex
(V1) of awake, head-fixed mice, and ex vivo glutamate imaging of both astrocytic and neuronal
expression of GIuSnFR. In these test cases, we find that AQUA accurately detects fluorescence dynamics
by capturing fluorescence events as they change in space and time, rather than the activity from a single
location in space, as in ROI-based approaches. AQUA outputs a comprehensive set of biologically
relevant parameters from these datasets, including propagation speed, propagation direction, area, shape,
and spatial frequency. Using these detected events and associated output features, we uncover
neurobiological phenomena that have not been previously described in astrocytes. A wide variety of
cellular and circuit functions have been ascribed to astrocytes, and a key question currently under
examination in the field is whether certain classes of Ca?* or glutamate activities observed in these cells
correspond to particular neurobiological functions. The framework we describe here allows for a rigorous,
in-depth dissection of astrocyte physiology across spatial and temporal imaging scales, and sets the stage
for a comprehensive categorization of heterogeneous astrocyte activities both at baseline and after

experimental manipulations.

Results
Design principles of the AQUA algorithm

To move away from ROI-based analysis approaches and accurately capture heterogeneous astrocyte
fluorescence dynamics, we designed an algorithm to decompose raw dynamic astrocyte imaging data into
a set of quantifiable events (Supp. Fig. 1-2). An event is a signal transient occurring in a certain region,

but this region is defined by the fluorescent dynamics, not a priori by the user or the cell morphology.
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Since an event is defined by transient changes in fluorescence, a location in the imaging field can be
associated with multiple events over the course of the imaging period, as the same location may undergo
multiple fluorescence transients. Importantly, this definition means that events are not necessarily
spatially fixed; they may occupy different regions over time. Methodologically, ROI-based analyses
restrict multiple transients to the same region. We argue that this restriction is too strong and thus not
matched to dynamic astrocyte fluorescence data, as evidenced by the well documented observation that
Ca?* activity may involve the whole astrocyte (including soma and all processes), or may be constrained
to a small segment of a process®®12, Here, we directly model these unfixed events in the algorithm, which
omits the concept of ROI entirely. Our event-based approach not only resolves difficulties inherent in
ROI-based analyses, but it also provides richer information with which to characterize relevant astrocytic
physiology since the dynamic regions associated with different events are quantifiable.

We mathematically define an event as a cycle of a signal increase and decrease that coherently
occurs in a spatially connected region, and therefore is specified jointly by its spatial and temporal
properties. Importantly, our definition can flexibly accommodate the common phenomenon of
fluorescence propagation in astrocyte imaging data, because transients at different locations are required
to be coherent but not necessarily synchronized. In our algorithm, an event must satisfy the following two
rules: 1) the temporal trajectory for an event contains only one peak (single-cycle rule, Fig. 1a) and 2)
adjacent locations in the same event have similar trajectories (smoothness rule, Fig. 1a). Briefly, our
strategy of event-detection is to a) explore the single-cycle rule to find peaks, which are used to specify
the time window and temporal trajectory, b) explore the smoothness rule to group spatially adjacent
peaks, whose locations specify the occupied region, c) apply machine learning and optimization
techniques to iteratively refine the spatial and temporal properties of the event to best fit the data, and d)
apply statistical theory to determine whether a detected event is true or due to noise (Fig. 1). Full
statistical and computational details are provided in the Methods, but we want to highlight one technical
innovation and one new concept that jointly enable a nuanced analysis of astrocyte fluorescence dynamics
as shown below in application to experimental datasets. The technical innovation is our development of
the mathematical model Graphical Time Warping®® (GTW), with which we are able to consider
fluorescent signal propagation as integrated into each modeled event. To the best of our knowledge,
signal propagation has never been rigorously accounted for and has been considered an obstacle to
analysis. With GTW, we can estimate and quantify propagation patterns in the data. In addition, we
introduce a third rule (single-source rule (Fig. 1a)) such that each event only contains a single initiation
source. With the single-source rule, we can separate events that are initiated at different locations but
meet in the middle. The single-source rule also allows us to divide large bursts that occur across a field-

of-view into individual events, each with a single initiation location.
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The output of the AQUA algorithm is a list of detected events, each associated with three categories
of parameters: 1) the spatial map indicating where the event occurs, 2) the dynamic curve corresponding
to fluorescence change over time (dF/F), and 3) the propagation map indicating signal propagation. For
each event, we use the spatial map to compute the event area, diameter and shape of the domain it
occupies (Fig 1b). Using the dynamic curve, we can calculate maximum AF /F, duration, onset-time, rise-
time and decay-time. Using the propagation map, we extract event initiation location, as well as

propagation path, direction, and speed. A complete list of features is in the Methods section.

Validation of AQUA using simulated data

To validate AQUA, we designed three simulation datasets for which we have complete knowledge of
when, where, and how each event occurred. These three datasets correspond to the three key ROI-
approach-incompatible phenomena: size-variability, location-variability, and propagation. While these
three phenomena usually co-occur in real datasets, we simulated each phenomenon independently to
examine their individual impact and test AQuA’s performance relative to other fluorescence image
analysis tools, including CalmAn?4, Suite2P*®, CaSCaDe!!, and GECI-quant*. CalmAn and Suite2P are
widely used for neuronal Ca?* imaging analysis while CaSCaDe and GECI-quant were designed
specifically for Ca?* activity in astrocytes. Although CaSCaDe can output events, all four methods are
ROI-based.

We first studied the impact of size-varying events (Fig. 2a), in which multiple events occur at the
same location and the event centers remain fixed, but event sizes change. The degree of size change is
quantified using size-change odds (see Methods) where a size-change odds of 1 indicates events with the
same size, while an odds of 5 is the largest size change we simulated. When we set the odds at 5, we
simulate events with sizes randomly distributed between 0.2 and 5 times the baseline size, with an SNR of
10dB, chosen to closely match the noise level in real experimental data. Two measures, loU and event
count, were then used to evaluate the performance on all simulated datasets. loU (intersection over union)
indicates the overlap between detected and the ground-truth events, and takes into account both the spatial
and temporal accuracy of detected events. An loU of 1 is the best performance possible, while an loU of 0
is the worst. When there is no size change (odds=1), all methods have good loU performance around
0.95, with CaSCaDe and CalmAn slightly worse than others (Fig. 2a). When the degree of size change is
increased, AQUA still performs well (1oU=0.95), while all other methods quickly drop to 0.4-0.5. We
then changed our analysis to study the impact of different SNRs on performance by varying SNR, but
fixing the size-change odds. AQUA performed better with increasing SNR and achieved nearly perfect
detection accuracy (loU=1) at 20dB. In comparison, all other methods had an loU below 0.6, even at high

SNR (Fig. 2a). We also examined the results by visualizing event counts for each pixel (Supp. Fig. 3-4).
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With size change odds of 3 or 5, the map of ground truth event-counts did not show clear ROl boundaries,
because events from the same ROI had various sizes, and because events from different ROIs can overlap
at some spatial locations (Supp. Fig. 3). It is clear from these maps that AQUA reported faithfully the
events under various SNRs but all other methods had erroneous event counts and produced artificial
patterns. The visualization also informed us different types of errors in other methods. CaSCaDe tends to
over-segment, as it is based on watershed segmentation. GECI-quant, especially its soma-segmentation
step, is particularly challenged by noise, causing many signals to be lost (Supp. Fig. 4).

We next focused on the impact of shifting the event locations. In these simulated datasets, event size
is fixed but event location changes, and degree of change is represented by a location change ratio (Fig.
2b). A ratio of zero indicates no location change. Here, results are similar to changing size, as above.
AQUuA modeled the location change well and its performance was not affected by degree of location
change. Likewise, AQUA reached near perfect results when SNR was high. In contrast, all other analysis
methods performed poorly with changing locations. In particular, the other astrocyte-specific methods
(CaSCaDe and GECI-quant) missed many signals. Even though the overall conclusion is similar for both
the size- and location-changing events, the peer methods had more variation of loU performance among
themselves and the event count map showed distinct patterns (Supp. Fig. 3). In general, changing event
locations is more challenging for ROI-based methods because when the location change is large, two
events may have no spatial overlap, which is never true for size-varying events. This accounts for results
seen when applying GECI-quant for example, including the result that GECI-quant is not able to detect
anything when the SNR is low (Fig. 2b, right).

In our third simulated dataset, we asked how the phenomenon of fluorescence signal propagation
impacts the performance of AQUA compared to the other methods. Two propagation types—growing and
moving—were simulated in this dataset (Fig. 2¢), although they were also separately evaluated (Supp. Fig
5). Propagation frame number denotes the difference between the earliest and latest onset times within a
single event. When propagation frame number is zero, all signals within one ROI, but not necessarily
across ROIs, are synchronized and there is no propagation. Similar results to the two scenarios discussed
above were obtained here, with AQUA out-performing all the other methods by a large margin. These
results indicate that AQUA can handle various types of propagation well, while the performance of other
methods degrades rapidly when propagation is introduced. We note that although all events are
constrained in the same ROI, propagation caused ROI-based approaches to quickly decline in
performance. GECI-quant was again influenced by noise level, while CaSCaDe’s assumption of
synchronized signals did not allow accurate capture of the event dynamics.

In all, when any of the three ROI-violating factors—size-variability, location-variability, and

propagation—is introduced, other methods do not accurately capture the signal dynamics, and AQUA
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outperforms them by a large margin. We expect that the performance margins on experimental data is
larger than those quantified in the simulation studies here, since real data exhibits multiple ROI-violating
factors and the performance of the ROI-based methods is over-estimated in our simulations (see
Methods).

AQUA enables identification of single-cell physiological heterogeneities

To test AQUA’s performance on real astrocyte fluorescence imaging data, we first ran AQUA’s
event-detection on Ca?* activity recorded from astrocytes in acute cortical slices from mouse V1 using 2P
microscopy. We used a viral approach to express the genetically encoded Ca?* indicator GCaMP6f3 in
layer 2/3 (L2/3) astrocytes. Unlike ROI-based approaches that use arbitrarily sized shapes to extract
fluorescence, AQUA detects both propagative and non-propagative activity, revealing Ca?* events with a
variety of shapes and sizes (Fig. 3a, left). Further, since AQUA not only detects Ca?* events' spatial
footprint but also their time-course, we can apply AQUA to measure the propagation direction each event
travels over its lifetime. Imaging single cells, we used the soma as a landmark, and classified events as
traveling toward the soma (pink), away from the soma (purple), or static (blue) for the majority of its
lifetime (Fig. 3a, right). We used AQUA’s automatic feature-extraction and combined multiple
measurements (size, propagation direction, duration, and minimum proximity to soma) into one
spatiotemporal summary plot (Fig. 3b). Since astrocytes exhibit a wide diversity of Ca?* activities across
subcellular compartments®*¢27, plotting the signals this way rather than standard dF/F transients
highlights these heterogeneities, allows us to map the spatial location of the Ca?* signals, and enables a
quick, visual impression of a large amount of complex data (Supp. Fig. 6).

We next asked whether some subcellular regions of astrocytes have more dynamic activity than
others across all analyzed cells (n=11 cells). Although we detected more static events than dynamic
overall (Supp. Fig. 7a), we observed a higher proportion of dynamic events than static events in the soma
(59%, Fig. 3c, Supp. Fig. 7b). We then characterized events by propagation direction and event initiation
location (Fig. 3d). Events that begin close to the soma (<50th percentile) and propagate away (purple)
were on average larger than the events propagating toward the soma (pink, two-tailed t-test). Similarly,
those events that began close to the soma and propagated away had on average a longer duration than
events propagating toward the soma (two-tailed t-test, Fig. 3e, Supp. Fig. 7).

One of AQuA’s strengths is its ability to automatically extract large numbers of features. These
features can be used to form a comprehensive Ca?* measurement matrix. Dimensionality reduction
applied to this matrix can, in turn, be used to visualize each cell’s Ca?* signature (Supp. Fig. 8). To do
this, we applied t-distributed Stochastic Neighbor Embedding (t-SNE)*8, followed by k-means clustering

to assign the cells to groups (Supp. Fig. 8), revealing two clusters marked by cells with large differences
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in median frequency (Fig. 3f). Astrocytic Ca?* frequency is commonly measured as the number of
transients that occur over time within an ROI. Here, we instead define frequency from an event-based
perspective in two ways: 1) for each event, the number of other events that overlap in time, and 2) for
each event, the number of other events that overlap in space. We used these two measures (temporal and
spatial overlap) and several other extracted measures (Supp. Fig. 8) to construct the matrix used for t-SNE
visualization and clustering. We next tested how well our AQuA-specific features perform at clustering
the heterogeneity between cells compared to two ROI-based methods (Fig. 3g), and found that the AQUA-
based method outperformed the others. In fact, even when we only use AQuA-specific features for this
analysis—area, temporal overlap, spatial overlap, and propagation speed—and remove all features that
can be extracted from ROI-based methods, AQUA still significantly outperforms in clustering cells (Supp.
Fig. 8g-i)). AQuA-extracted features that correspond only to those that can be obtained by ROI-based
methods—frequency, amplitude, duration—do not allow clustering significantly better than the ROI-
based approaches themselves (Supp. Fig. 8g—i), suggesting that the AQuA-specific features are those that
best capture dynamic fluorescence features that vary among single cells. This indicates that

AQUA can be used to extract data from existing ex vivo Ca?* imaging datasets to reveal previously

uncovered dynamics and sort cells into functionally relevant clusters.

In vivo astrocytic Ca®* bursts display anatomical directionality

Recent interest in astrocytic activity at the mesoscale has been driven by population-level, multi-
cellular astrocytic Ca?* imaging>57.82229.2°, To test the power of AQUA-based event detection, we next
applied it to populations of in vivo astrocyte Ca?" activity. Previous studies have described temporal
details of astrocyte activation*5782 yet have left largely unaddressed the combined spatiotemporal
properties of Ca?* activity at the circuit-level. Here, we explored whether AQUA can uncover spatial
patterns within populations of cortical astrocytes in an awake animal, and carried out head-fixed, 2P
imaging of GCaMP6f activity in V1, L2/3 astrocytes. To minimize motion artifacts, we first registered
our imaging sets using non-rigid motion correction®. Populations of in vivo cortical astrocytes exhibit
both small, focal, desynchronized Ca?* activity, and large, synchronous activities*5. AQUA detected both
of these classes of Ca?* activity (Movie 2, Fig. 4a). Similar to previous studies, we observed many (but
not all) of the synchronous bursts co-occurring with locomotion periods (Fig. 4b, pink), and many events
within these burst periods displayed propagation (Fig. 4c, top). These propagative events were larger in
area and had greater propagation distances compared to the events that occurred during the inter-burst
periods (Fig. 4c, bottom). Here, to examine a distinct type of neurobiological phenomenon and test
whether AQUA could help us analyze discrete features of this phenomenon, we focused our investigation

only on these events occurring during the burst periods (Supp. Fig. 9).
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To analyze burst-period Ca?* events, we first interrogated the consistency of event propagation
direction across all burst periods. To do so, we divided our field-of-view into 16 equivalently sized,
regional tiles (Fig. 4d). Within a single burst, plotting individual event direction within the entire field of
view did not reveal a consistent propagation direction (Fig. 4e). However, within a single region, the
major propagation direction across bursts was consistent (Fig. 4f). When we plot the cumulative count of
the percentage of bursts with regions that propagate in the same direction, we indeed observe that this
curve is right-shifted compared to a simulated random assignment of majority regional propagation
direction (Fig. 4g). Thus, local, small-scale fluorescence activity exhibits directional consistency across
bursts.

Because the percentage of the active field of view varied across burst periods (Fig. 4b), with a wide
variability from few to hundreds of events (Fig. 4h), we also measured the propagation direction of the
events within each burst period, now using each event’s onset time to calculate a single burst-wide
propagation direction (Fig. 4h, black arrow). Doing so revealed a consistent posterior-medial
directionality of population Ca?* activity in L2/3 V1 astrocytes (Fig. 4i). Although Ca?* bursts have been
previously observed using GCaMP6 imaging in awake mice*®, consistent spatial directionality with
respect to the underlying anatomy has never been described. This observed posterior-medial directionality
may be revealing anatomical and physiological underpinnings of these bursts, and since they have been
shown to be at least partly mediated by norepinephrine®’, they could be reflective of the response of

groups of cortical astrocytes to incoming adrenergic axons originating in locus coeruleus.

Astrocytic and neuronal expression of GIuSnFR reveals differential glutamate dynamics

We next asked whether AQUA could be used to detect astrocytic fluorescent activities with very
different spatiotemporal dynamics than we observe when measuring intracellular Ca*. We decided to
carry out GIuSnFR imaging?? to measure extracellular glutamate dynamics, since GIuSnFR has been
widely used for glutamate imaging®®® and one canonical function of astrocytes is to regulate extracellular
glutamate. While GluSnFR has been expressed both in astrocytes and in neurons previously?20.212.8.:22.23
how cell type-specific expression determines its fluorescent dynamics has not been fully explored. No
previously applied analytical tools have been reported to automatically detect GluSnFR-based glutamate
events to accommodate differential event sizes and shapes. Here, we explored whether application of
AQUA could be used to detect cell type-specific differences in glutamate dynamics and help reveal
heterogeneities of glutamate events based on various underlying biological mechanisms.

We expressed GIuSnFR in either astrocytes or neurons using injections of cell type-specific viruses
(AAV1-GFA(ABC(1)D)-iGluSnFR and AAV1-hsyn-iGIuSnFR, respectively) and carried out 2P imaging of

spontaneous activity in acute cortical slices. Distinct morphological differences between astrocytic and
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neuronal expression of GIuSnFR were evident, as has been observed previously®242° (Fig. 5a). We next
applied AQUA to these datasets to detect significant increases in GIuSnFR fluorescence, and were able to
detect events that were too small and dim to detect by eye (Movie 3). Indeed, 62% of astrocytic events
(n=157) had an area less than the size of a single astrocyte (100 um?), and 8% of astrocytic (n=157) and
35% of neuronal glutamate events (n=107) had a maximum dF/F less than 0.5. Because GIuSnFR events
have previously been detected by spatially averaging within a single cell or across broader areas of tissue,
or by manual detection, the events that AQUA detects are missed by these other methods (Supp. Fig. 10).

Because AQUA is designed to detect events independent of shape or size, events of heterogeneous
size and shape were revealed when analyzing the GIuSnFR data (Fig. 5a—b). A large proportion of
GluSnFR events changed size over the course of the event, with 42% of total astrocytic and 32% of total
neuronal glutamate events exhibiting changes in area (Fig. 5¢). On average, astrocytic GIuSnFR events
were significantly larger (274 + 39.56 um?) than neuronal events (172 + 57.06 pm?), sometimes
encompassing an entire astrocyte (Supp. Fig. 10). Neuronal GluSnFR events were significantly more
circular (Figure 6b—d), reflecting morphological differences between cell types. We also found that
between cell types, GluSnFR events exhibited different size dynamics (Fig. 5b—d). While there was no
difference in the rate of increase in event size between astrocytes and neurons, we did observe that the
rate of size decrease of astrocytic events between frames was larger than that of neuronal events (Fig. 5d).

To investigate size differences between cell types more thoroughly, we extracted dF/F from each
event by calculating the average fluorescence intensity of the maximum area of each event over its
lifetime (Fig. 5e). When we compared these curves, we found that the amplitude of astrocytic events was
significantly larger than that of neuronal events (1.2 £ 0.05 vs. 0.79 £ 0.05, Fig. 5e, f [top]), whereas the
dF/F rise times and decay times showed no significant difference between cell types (Fig. 5f, bottom).
However, we noticed a large spread in the amplitude and kinetics of both cell types (Fig. 5f) and next
asked whether the size of each event correlates with these features, and whether these correlations could
differentially describe each cell type. We observed some significant correlations of event size with
amplitude, rise time, and decay time (Fig. 5g). Specifically, astrocytic GluSnFR event size positively
correlated with amplitude and decay time and negatively correlated with rise time (Fig. 5g, red). On the
other hand, neuronal GIuSnFR event sizes were positively correlated with rise and decay times, but
showed no significant relationship with amplitude (Fig. 5g, blue). These correlations indicate that
variations in dF/F features within each cell type were size-dependent.

To further explore the entire population of glutamate events for each cell type, we set a size
threshold to separate small and large events (Figure 5g, black dashed lines, Supp. Fig. 10). When we do
this, we find that the larger amplitude observed in astrocytic glutamate events (Figure 5f, top) is

dominated by significantly higher amplitudes in large-size astrocytic events, whereas small-size events
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were not significantly different in amplitude between the two cell types (Fig. 5h). In contrast, while we
find no significant difference between cell types in rise and decay time for all events (Fig. 5f, bottom), we
do observe some significant differences in rise and decay times in the small- or large-size groups
separately. In fact, when separating out small and large events, we observe opposite rise-time patterns:
small astrocytic events have longer rise times than neuronal events, but large astrocytic events have
shorter rise times than neuronal events. Together, these data demonstrate that application of AQUA to
GluSnFR images uncovered a class of small extracellular glutamate events. Separation of these small
events from their larger counterparts revealed temporal differences between GluSnFR expressed on
astrocytes and neurons, suggesting that these differences may reflect different cellular, or cell-type,

mechanisms that lead to these extracellular glutamate flux.

Discussion

With the development and application of a powerful, event-based analysis tool for astrocyte imaging
datasets, we have opened the door for quantifying observed fluorescence dynamics, including those that
are un-fixed, propagative, and vary in size. We demonstrate that AQUA performs better than other image
analysis methods—including those designed for astrocytic and neuronal applications—on these types of
simulated datasets, and describe previously unknown phenomena in three types of commonly acquired
datasets using the genetically encoded GCaMP or GluSnFR indicators. Because AQUA is data-driven, it
can be applied to datasets that have not been directly tested here, including those captured under different
imaging magnifications and spatial resolutions. In addition, since the AQuA algorithm functions
independently from frame rate, datasets captured with faster frame rates!226 are also just as amenable to
an event-based analysis with AQUA as those shown here. Further, AQUA is applicable to fluorescent
indicators, particularly those that exhibit complex dynamics, other the ones tested here.

We envision the AQUA software and its underlying algorithm as enabling problem-solving for a
wide range of astrocyte physiological questions, both because AQUA more accurately captures dynamics
exhibited by commonly used fluorescent indicators than other methods and because there are many more
features extracted by AQUA that can be analyzed than those extracted by existing methods. In the current
work, we use these multiple features to describe the baseline, or spontaneous, astrocyte physiology in a
particular neurobiological circuit, but with varying spatial scale, molecular probe, and experimental
preparation. In future work, we and others can apply AQuA-based analyses to circuits in other brain
regions and layers to describe potential functional heterogeneities across astrocytes?’. Beyond baseline
differences, we expect that AQUA will be a powerful tool to quantify physiological effects of

pharmacological, genetic, and optogenetic manipulations, among others. These manipulations and

11


https://doi.org/10.1101/504217
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/504217; this version posted December 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

subsequent analyses would allow researchers to examine both astrocyte-intrinsic and -extrinsic
physiology, depending on whether astrocytes, neurons, or another brain cell type is being changed.

There remains significant disagreement in the field about basic physiological functions of astrocytes.
Perhaps the most outstanding issue is whether astrocytes undergo vesicular release of transmitters such as
glutamate. While we don’t address this controversial topic in the current work, we expect that the
heterogeneous activities that we uncover using an AQuA-based analysis of GIuSnFR may be key in
determining different sources of glutamate in neural circuits under different conditions, and could help
untangle some of the conflicting data in this arena. Our tool enabled us to identify extracellular glutamate
changes not only by cell type, but also by event size and shape dynamics, demonstrating the most in-
depth analysis of GluSnFR data—whether astrocytic or neuronally expressed—than ever before. The
event-based analytical tools presented here may be particularly useful as next-generation GluSnFR
variants become available and make multiplexed imaging experiments increasingly accessible?.

As demonstrated by its utility with both Ca?" and glutamate data, AQUA also has the potential to be
applied to other fluorescence imaging datasets that exhibit non-static or propagative activity. Although we
designed AQUA specifically to study dynamic astrocyte fluorescence, it is user-tunable, and we anticipate
that experimentalists will find it advantageous in other contexts in which neuronal or non-neuronal cells
exhibit non-static or propagative fluorescence activity. For example, recently described Ca?* activity in
oligodendrocytes displays some similar properties to that in astrocytes?®2° and AQuA-based analysis may
be useful. Likewise, subcellular compartments in neurons, such as dendrites or dendritic spines, have also
been shown to exhibit propagative, wave-like signals®! and large-scale, whole-brain neuronal imaging can
capture burst-like, population-wide events®? as observed in astrocytes in vivo. While we predict that the
potential applications are wide, it is also important to note the limitations of AQUA, and be clear about
when it will not be the most effective approach. Since AQUA detects local fluorescence changes as
events, it is not well suited to strictly morphological dynamics, such as those observed in microglia, and it
does not improve on the many excellent tools built for analyzing somatic neuronal Ca?* activity4*°,
where ROI assumptions are well satisfied. In addition, AQUA is designed to analyze 2D datasets only, as
these comprise the majority of ongoing dynamic imaging experiments. In the future, AQUA can be
adapted to accommodate 3D imaging experiments, including those currently being performed in
astrocytes?®.

When surveying dynamic astrocyte imaging data, particularly Ca?* imaging data, experimental
regimes can largely be grouped into two categories: single-cell, usually ex vivo imaging and population-
wide, in vivo imaging focusing on large-scale activity of many cells. Experimental data and
neurobiological conclusions from these two groups can differ quite widely, or even conflict with each

other. This may be due, in part, to the large, population-wide bursts observed with the onset of
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locomotion in vivo. Many techniques used to analyze these bursting events—all ROI-based—can under-
sample events that occur between bursts by swamping out smaller or shorter signals. Here, we present a
technique that can be used to sample small- and large-scale activity in the same dataset, or across datasets,
allowing researchers to bridge spatiotemporal scales robustly in these types of data for the first time. We
believe that this event-based analysis tool will enable astrocyte biologists not only to resolve outstanding

physiological problems, but also identify and tackle new ones.
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Methods
Viral injections and surgical procedures

For slice experiments, neonatal mice (Swiss Webster, PO—P4) were anesthetized by crushed ice
anesthesia for 3 minutes and injected with 90nL total virus of AAV5-GFaABC1D.Lck-GCaMP6f, AAV5-
GFaABC1D.cyto-GCaMP6f, AAV1-GFAP-iGIuSnFR, or AAV1-hsyn-iGluSnFR at a rate of 2-3nL/sec. Six
injections 0.5um apart in a 2x3 grid pattern with 15nL/injection into assumed V1 were performed 0.2pm
below pial surface using a UMP-3 microsyringe pump (World Precision Instruments). Mice were used for
slice imaging experiments at P10-P23.

For in vivo experiments, adult mice (C57BI/6, P50-P100) were given dexamethasone (5mg/kg)
subcutaneously prior to surgery and then anesthetized under isoflurane. A titanium headplate was attached

to the skull using C&B Metabond (Parkell) and a 3mm diameter craniotomy was cut over the right
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hemisphere ensuring access to visual cortex. Two 300nL injections (600nL total virus) of AAV5-
GFaABC1D.cyto-GCaMP6f were made into visual cortex (0.5-1.0mm anterior and 1.75-2.5mm lateral of
bregma) at a depth of 0.2-0.3mm and 0.5mm from the pial surface, respectively. Virus was injected at a
rate of 2nL/s, with a 10min wait following each injection to allow for diffusion. Following viral injection,
a glass cranial window was implanted to allow for chronic imaging and secured using C&B metabond3:.
Mice were given at least ten days to recover, followed by habituation for three days to head fixation on a

circular treadmill, prior to imaging.

Two-photon imaging

All 2P imaging experiments were carried out on a microscope (Bruker Ultima 1V) equipped with a
Ti:Sa laser (MaiTai, SpectraPhysics). The laser beam was intensity-modulated using a Pockels cell
(Conoptics) and scanned with galvonometers (or resonant scanners). Images were acquired with a 16x,
0.8 N.A. (Nikon, in vivo) or 40x, 0.8. N.A. objective (Nikon, ex vivo) via a photomultiplier tube
(Hamamatsu) using PrairieView (Bruker) software. For imaging, 950nm (GCaMP) or 910nm (GIuSnFR)

excitation and 510/84 emission filter was used.

Ex vivo GCaMP and GluSnFR imaging

Coronal, acute neocortical slices (400um thick) from P10-P23 mice were cut with a vibratome (VT
1200, Leica) in ice-cold cutting solution (in mM): 27 NaHCQs, 1.5 NaH,PO., 222 sucrose, 2.6 KCI, 2
MgSQs., 2 CaCl,. Slices were incubated in standard continuously aerated (95% O2/5% CO,) artificial
cerebrospinal fluid (ACSF) containing (in mM): 123 NaCl, 26 NaHCOs, 1 NaH,PO., 10 dextrose, 3 KCl,
2 CaCly, 2 MgSO0., heated to 37°C and removed from water bath immediately before introducing slices.
Slices were held in ACSF at room temperature until imaging. Experiments were performed in
continuously aerated, standard ACSF. 2P scanning and acquisition were carried out at 1.06Hz at 512 x
512 pixel resolution. For TTX experiments, 0.5uM of Tetrodotoxin Citrate (Hello Bio) was added to

aerated, standard ACSF. 8 minutes elapsed before resuming imaging.

In vivo GCaMP imaging

At least two weeks following surgery mice were head-fixed to a circular treadmill and astrocyte
calcium activity was visualized at ~2hz effective frame rate from layers 2/3 of visual cortex with a
512x512 pixel resolution at 0.8 microns/pixel. Locomotion speed was monitored using an optoswitch

(Newark Element 14) connected to an Arduino.

AQUA algorithm and event detection
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Overview of the AQUA algorithm

Astrocytic events are heterogeneous and varying with respect to many aspects of their properties. In
AQUA, we extensively applied machine learning techniques to flexibly model these events, so that our
approach is data-driven and physiologically relevant parameters are extracted from the data instead of
imposing a priori assumptions. Probability theory and numerical optimization techniques were applied to
optimally extract fluorescent signals from background fluctuations. Here, we first delineate the eight
major steps in AQUA (Supp. Fig. 1) and then describe key technical considerations in further detail.

Step 1: data normalization and preprocessing. This step removes experimental artifacts such as
motion effects, and processes the data so that noise can be well approximated by a standard Gaussian
distribution. Particular attention is paid to the variance stabilization, estimate of baseline fluorescence,
and variance. Step 2: detect active voxels. Step 3: identify seeds for peak detection. Step 4: detect peaks
and their spatiotemporal extension. These three steps work together to achieve peak detection. To detect
peaks we start from a seed, which is modeled as a spatiotemporal local maximum. However, since
random fluctuations due to background noise can also result in local maxima, we need to detect active
voxels such that only the local maxima on the active voxels are considered as seeds. Here, active voxels
are those likely to have signals. Step 5: cluster peaks to identify candidates for super-events. Temporarily
ignoring the single-source requirement, the set of spatially-adjacent and temporally-close peaks is defined
as a super-event. However, clustering results of spatially adjacent peaks are not super-events themselves,
because a peak group may consist of noise voxels and temporally distant events. Step 6: estimate the
signal propagation patterns. Step 7: Detect super-events. To get super-events from peak clusters, we
compute the temporal closeness between spatially adjacent peaks by estimating signal propagation
patterns. The propagation pattern for each event is also important for its own sake, by providing a new
way to quantify activity patterns. Step 8: split super-event into individual events with different sources. A
super-event is split into individual events by further exploiting propagation patterns. Based on
propagation patterns within a super-event, the locations of event initiation are identified as local minima
of the onset time map. Each initiation location serves as the event seed. Individual events are obtained by

assigning each pixel to an event based on spatial connectivity and temporal similarity.

Step 1(Data normalization and preprocessing): We correct for motion artifacts in the in vivo dataset using
standard image registration techniques?* before applying AQuA. However, AQUA does not necessarily
require motion correction because it performs event-based analysis, which is localized temporally and
thus less prone to motion artifacts.

We perform data normalization and preprocessing to approximate noise by a Gaussian distribution

with mean=0 and standard deviation=1. To achieve this, we first apply a square-root transformation to the
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data to ensure that the noise variance after transformation is not related to the intensity itself, an operation
also known as variance stabilization. Second, the noise variance of the transformed data for each pixel is
estimated as half of the median of the square of differences between two adjacent values in the time series
at the pixel. Mathematically, denote X; the time series at the ith pixel, where X;[t] is the value of the tth

time point. Then, the noise variance o7 at the ith pixel is estimated as
1 .
of = median,—p 1 {(X;[t] — X;[t — 1])?}.
We do not use the conventional sample variance %ZLl(XL- [t] — mean(X;))? as the estimate. Otherwise,

it is inclined to inflate the variance when signals exist in the time series. Third, to estimate the baseline
fluorescence F,, for each pixel, we compute the minimum of the moving average of 25 time-points in a
user-specified local time window (default=200 in our experiments). We do not use the full time series to
identify the minimum, in order to be robust to image degradation or other long-term trends. Considering
the minimum is a biased estimate of the baseline fluorescence, we add a pre-determined quantity to the
minimum to serve as the estimate of F,. Here, the pre-determined quantity depends on the extent of the
moving average and the size of the time window, and is found through simulation. Denote V;[t] as the
value of ith pixel at the tth frame in the raw video data. In the following, all analysis is performed on the

normalized data,

JVilt]l-{Fy
Zi[t] = 0—‘/_0

L

where the subscript i denotes that the baseline fluorescence and noise variance are location- and pixel-

specific.

Step 2 (Detecting active voxels): A voxel is defined as a pixel of a certain frame. For example, voxel
(x,y,t) denotes the pixel at location (x, y) in the tth frame in the movie. An active voxel is the voxel that
contains an activity signal. If a voxel is not associated with any event, it is not considered active. Since an
event often occupies multiple pixels and extends several frames, we first apply 3D Gaussian filtering to
smooth the data to reduce the impact of noise. Then, we calculate the z-scores for each voxel in the
smoothed data. Here, z-score is computed as the value of the voxel divided by its standard deviation,
which can be estimated as in the normalization procedure above, but now on the smoothed data. All
voxels that have z-scores larger than a given threshold are considered tentative active voxels. A liberal
threshold is used here to retain most signals, often at a z-score of 3. We next calculate the size of groups
of connected tentative active voxels, with spatially connected tentative active belonging to the same group
and a minimum size threshold (often 4). If a group of tentative active voxels is less than the threshold, all

voxels in this group are removed, resulting in a final list of active voxels.
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Step 3 (Identifying seeds for peak detection): Similar to the detection of active voxels, we apply 3D
Gaussian smoothing to the normalized data and then find all local maxima, defined as connected
components of pixels with a constant intensity value and with all neighboring pixels having a lower value.
Considering our time-lapse images as three-dimensional arrays (2D space plus 1D time), each single pixel
has 26 neighbors. Although each local maximum generally occupies one pixel due to random fluctuation
inherent in the data, this definition allows a local maximum to occupy multiple pixels of the same
intensity value. This is helpful for the rare case in which some pixels have saturated values. Because pure
random fluctuation can also lead to local maxima, we restrict the search of local maxima to active voxels
only. The resultant local maxima are considered seeds for the purpose of peak detection, the subsequent

step in the algorithm.

Step 4 (Detecting peaks and their spatiotemporal extent): We partially and temporally extend each seed
detected above to all voxels that are potentially associated with each event. We call the seed and its
potential extended voxels the super voxel. Seeds are processed one-by-one, with higher intensity seeds
processed first. Each seed is first extended temporally, then spatially.

The spatiotemporal index (x,, ¥, to) denotes the seed. When we temporally extend the seed
backwards and forwards (Supp. Fig 2b), we encounter two main scenarios. In the first, a voxel before
(x0, Y0, to) has a value close to the baseline Fy, and a voxel after (x,, o, to) also is close to F,. If a voxel
has an intensity <20% of the seed value, it is defined as close to baseline. In this scenario, the seed is
extended temporally until it reaches these two voxels. In the second scenario, extension in either direction
never meets a voxel with value that is considered close to the baseline before meeting another seed. To
determine whether we these two seeds should be merged, we denote V,;,, the minimum value between the
two seeds and calculate the difference between V,,,;,, and value at the seed (x,, yo, to). If the difference is
larger than the threshold A,,,, which is 20, by default for most data, the minimum is considered the end
of the extension. Otherwise, these two seeds are merged and the extension continues. For very high peaks,
this threshold is too low for perceptually meaningful separation. To split two adjacent high AF peaks, a
strong decrease between them is needed and the threshold is changed to A;,, =
max(0.34F (x,y,ty), 20,).

Once each seed i is temporally extended from (x;, y;, t;) to a peak (x;, y;, (t; — a;): (t; + b)), (t; —
a;): (t; + b;) denotes a time window spanning from t; — a; to t; + b;. We define reference curve c; as the
average of nine pixels around (x;, y;) in that time window. To spatially extend each peak to cover most
signals-of-interest, each seed becomes a set of voxels UR_, (xix, yir, (¢; — a;): (¢; + b;)) after extension.
The corresponding spatial footprint, K pixels {(x;x, yix), k = 1 ... K}, is spatially connected. During this

process, each seed is associated with two sets. The first is Q;, which are pixels already associated with
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seed i. Each pixel in this set, (x;1, ¥;1), e. g., corresponds to a set of voxels: (x;q,yi1, t; — a;: t; + b;). The
second set is ©;, the set of pixels to avoid. Initially, Q; = {(x;, y;)} and ©; is empty.

The spatial extension operation for each seed is repeated a maximum of 40 rounds. For each seed, Q;
is spatially dilated with a 3x3 square, thus only testing pixels adjacent to the Q;boundary. Next, ©; is re-
moved from the dilated region. We then test whether each new pixel should be added to Q; or not. Be-
cause for each given new pixel and each time window we have a time series, we can calculate the Pearson
correlation coefficient between this time series and c;. The correlation coefficient is converted to a z-score
using the Fisher transform. If the z-score is higher than the user-defined given threshold, the pixel is add-
ed to Q;. Otherwise, it is added to ©;. Because all seeds are local maxima, no time alignment is needed
here.

During the extension process, different super voxels can meet. We want to stop the extension process
of one super voxel only when it meets the bright part of other super voxels (50% rising to 50% decaying).
For example, we have two peaks from two seeds: (xy, v, (t; — a;): (t; + by)) and (x2, y,, (¢, —
ay): (t, + bz)). Assume the first seed has already occupied pixel (x3,y3). When the second seed tries to
determine whether it should extend to (x3, y3) or not, we calculate whether (t; — a,:t; + by) and (¢, —
a,:t, + b,) sufficiently overlap. Two peaks sufficient overlap if the 50% rising to 50% decay ranges of
the two peaks overlap. Thus, if (t; — aq:t; + by) and (t, — a,: t, + by) sufficiently overlap, seed two
will not include pixel (x5, y3) and it is added to ®,. Otherwise, it is added to Q,. After spatial extension is

complete, we remove super voxels with Q; < 4 pixels or total voxels < 8 pixels.

Step 5 (Clustering peaks to identify candidates for super-events): A super-event is defined as a group of
events connected spatially but originating from different initiation locations. One example is a large burst
in the in vivo dataset, where multiple events start at different places but at similar time. Another example
is a set of two events originating from different places, propagating and meeting each other in the middle.
Thus, in a spatial direction, we may encounter multiple events within the super-event. However, we never
encounter two or more events in the temporal direction. To identify candidates for super events, we next
cluster peaks, but these results are identical to super-events, because voxels extended to be associated
with the peak may have some errors. As discussed below, the candidate super-event must be purified to
resolve the final super-event.

Since each super-voxel extends from its seed (representative peak), we also call the process of
clustering super-voxels as clustering peaks for conceptual convenience. If two super-voxels are connected
and their rise-time difference is less than a given threshold (as discussed below), they are considered
neighbors. For two super-voxels, if 10% of pixels of either super-voxel is also occupied by the other, they
are a conflicting pair. For each super-voxel, we list all its neighbors and conflicting counterparts. To
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cluster peaks/super-voxels (Supp. Fig. 2b), we begin with the earliest occurring super-voxel and check
each of its neighbors. If a neighbor is not conflicting with that super-voxel, it is combined with the super-
voxel. This process is repeated until no new super-voxel can be added. Then we move to the next earliest
super-voxel that is not added to any others, and repeat this process. An iterative approach prioritizes
events that are close to each other. Supposing the largest rising time difference for super-voxels that is
allowed to be neighbors is 10, we start the procedure with the allowed difference as 0 and merge the super
voxels. Then we increment the allowed difference by 1 and repeat the step above, until the rising time

difference allowed reaches 10.

Step 6 (Estimating signal propagation patterns): For each spatial location/pixel, an associated time series
indicates the signal dynamics. Estimation of propagation patterns is formulated as a mathematical
problem of time alignment between the time series at each location and a representative/reference time
series. Time alignment results directly relay the delay of a given pixel at a time frame with respect to the
representative dynamics. Conventionally, time alignment is accomplished by dynamic time warping
(DTW)34, However, DTW is notoriously prone to noise, which leads to unreliable propagation estimation.
Since two adjacent pixels have more similar propagation patterns than two distant pixels, we impose a
smoothness constraint on neighboring pixels using our recently developed mathematical model—
Graphical Time Warping (GTW)—to explicitly incorporate this constraint*®. However, since we do not
have a representative time series at the very beginning, our strategy is to guess a reference time series
from the data and align time series at each pixel to this reference. Then, we use alignment results to obtain
an updated reference, and iterate the process of alignment and update of reference until it converges
(Supp. Fig. 2b).

To initialize the reference time series, we search for the voxel with the largest AF /F value and
record that voxel’s location. The initial reference is then estimated as the average time series of the pixels
in the 5x5 square around that location, with the square size a user-tunable parameter. The voxel with the
largest AF /F value is used because it has the best signal-to-noise ratio. We do not use the time series at a
single pixel to initiate the reference because it is noisy, nor do we use the average time series over all the
pixels, because the average would be a large distortion to the representative dynamics due to signal
propagation. Next, we supply the neighborhood graph and the reference time series to GTW to calculate
the time alignment between all pixels and the reference. For each pixel, we consider the 8 pixels around
the 3x3 grid as neighbors. A GTW parameter controls the balance between fitness and smoothness of the
alignment. We empirically found 1 to be a good value. To control computational complexity, GTW has
another parameter corresponding to the maximum time delay allowed. In all our experiments, we found

no time delay induced by propagation is larger than 11. So, we set that parameter to 11.
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Step 7 (Detecting super-events): Once the time alignment between the representative dynamics and the
time series at each pixel is obtained, we refine candidate super-events to obtain final super-events. A
super-event is defined as detected when the representative dynamics and all voxels are associated with the
super-event. Since each voxel is jointly specified by spatial location and time frame, we next determine
which pixels and time frames jointly belong to the super-event. Since representative dynamics are already
obtained in the previous step of propagation estimation, here we focus on how to determine which pixels
and which time frames are covered by the super-event.

Because each pixel corresponds to a time series, if a pixel belongs to a super-event, its time series
should be highly correlated to the representative dynamics of the super-event. Note that the correlation is
calculated based on the aligned time series to account for the time distortion due to signal propagation.
Thus, we first obtain a new time series for each pixel based on the time alignment obtained previously.
Then, we calculate the Pearson correlation between each new time series and the representative dynamics,
leading to a correlation map. We further convert the Pearson correlation to z-score using Fisher’s
transform. Here, we do not use a threshold for each z-score to determine whether that pixel is statistically
significantly associated with the super-event because that ignores the neighborhood information in the
correlation map and is less statistically powerful. Instead, incorporating the information from the
neighboring pixels, we apply our recently developed order-statistics-based region-growing method to
determine which pixels should be associated with the super-event (Supp. Fig. 2b)*°.

To determine which time frames are associated with the super-event, we now examine the
representative time series, calculating the maximum intensity along the curve and considering all time
frames with intensity >10% of the maximum to be associated with the super-event. Different pixels may
have different time frames associated with the super-event. We use the time alignment results above to
identify the time frames associated with the super-event for each pixel. A time frame at a given pixel is
associated with the super-event as long as its corresponding time frame in the representative curve is

associated with the super-event.

Step 8 (Splitting super-events into individual events with different sources): For each super-event, we
have a 2D map of rise-time for each pixel by re-aligning the super-event using GTW. The local minima in
this map are potential originating locations for events in this super-event. However, noise may produce
random local minima, which do not correspond to true originating locations and are removed by merging
with spatially adjacent local minima. We use rise-time to determine whether two local minima should be
merged. This idea can be illustrated with the following 1D example: [1 2 4 2 2]. The two local minima are

the first and the last pixel (pixel i and j, respectively), occurring at time 1 (t,) and 2 (t;), respectively. To
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determine whether they should be merged, we find all paths connecting them. In this example, there is
only one path and the pixel with the latest rise-time in this path is the third pixel (rise-time=4 (t,,)). The
distance between pixel i and pixel j induced by this path is therefore defined as max(t,, — to, t;, — £1). If
the distance induced by any path is less than the given threshold, these two local minima are merged.

We next separate super-events into individual events by simultaneously extending all remaining lo-
cal minima. Each remaining local minimum corresponds to one event. Pixels attached to a local minimum
are defined as growing. With each iteration, we add the earliest-occurring pixel to a growing event. If the
pixel under examination is adjacent to a growing event, it is done, and then we find the next earliest oc-
curring pixels. Otherwise, we add it to the waitlist and continue with the next earliest occurring one. Each
time a pixel is successfully added to a growing event, pixels in the waitlist are checked as to whether they

can be added to growing events. When the growing process ends, all individual events are obtained.

Generation of simulation data sets
Spatial footprint templates: We built a set of templates for event footprints from real ex vivo data which
serve as the basis for the ROl maps in the subsequent step. Footprints are processed by morphology clos-

ing, hole filling, and morphology opening to clean boundaries, with 1683 templates generated total.

ROI maps: 2D ROI maps generated from spatial footprint are used to generate events in subsequent steps.
Different simulation types have a different preference for the size of the ROIs. Maximum number of ROIs

is set at 100; ROIs are randomly chosen and placed onto a 2D map <5 pixels from existing ROIs.

Simulation dataset 1 (size-varying events): To simulate event size changes, we generate events for each
ROI and then alter them to have different sizes so that each ROl in the 2D map will be related to multiple
events whose centers are inside that ROI, but whose sizes are different. The degree of size change is char-
acterized by the odds ratio (maximum = 5) between the maximum and the minimum allowable sizes of
the events associated with that ROI. For example, with an odds ratio of 2, the size of the event will range
from 50-200% of the ROI area. The chances for the event size to be larger or smaller than the area of the
ROI are the same. To achieve this, we generate a random number between 1 and 2, then randomly assign
whether to enlarge size by multiplying or shrink by dividing by this factor. Event duration is four frames.
To determine the frames at which the event occurs, we first put the event 10-30 frames (randomly)
after the ROI occurs. Spatial distance of this event from others must be >3 pixels and temporal distance
>4 frames. Part of the event may be inside the spatial footprint of other ROIs, as long as its spatiotem-
poral distance to other events is larger than the threshold set above. Events are generated for each ROI; on

average, we simulate 250 frames with 800 events on 90 ROls.
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Simulation dataset 2 (location-changing events): To simulate event location changes, we generate events
with the same size for each ROI and shift them to nearby locations. Thus, each ROI (450-550 pixel size)
is related to multiple events near to that ROI. Denote dist the distance between the event center and the
ROI center. Denote diam the diameter of the ROI. The degree of location change is quantified by the ra-
tio between dist and diam. For example, if we set 0.5 as the maximum degree of location change, the
distance of the center of a new event to the ROI will be 0-0.5 times the diameter of the ROI. If the ratio is
0, we simulate a pure ROI dataset. The new event may be located any direction from the ROI, randomly
picked from 0-2x. Shapes of new events are randomly picked from the templates, so may be different
from the ROI while size is constant. Event duration is four frames, and the remaining steps are the same

as above. On average, we simulate 250 frames with 800 events on 90 ROls.

Simulation dataset 3 (propagating events): We simulated two types of propagation: growing and moving,
leading to three types of synthetic datasets: growing only, moving only, and mixed. These three types are
generated similarly. The ROI map is generated as above, and ROI sizes are 4,000-10,000 pixels, with
events generated inside each ROI. In comparison, events in the size-change and location-change simula-
tions can be (fully or partially) outside their corresponding ROIs. We simulate only one seed (starting
propagation point) in each ROI. For each event, we generate a rise-time map (for each pixel in the ROI)
and construct event-propagation based on the map. We obtain this map by simulating a growing process
starting from the seed pixel, with the seed pixel active at the first time-point. At the next time point, its
neighboring pixels are active with a variable success probability. Growth continues until >90% of pixels
in the ROI are included in the event. Based on the rise-time map, we identify frames at which pixels be-
come active in the event. To determine when the event ends, we treat growing and moving propagation
differently. In growing propagation, all pixels are inactive simultaneously 2 frames after the last pixel be-
comes active. For moving propagation, the duration is 5 frames. Typically, we generate approximately

140 events in 14 ROIs for each synthetic dataset.

Simulate various SNRs: Gaussian noise is added to the synthetic data to achieve various SNRs. We define

the signal intensity as the average of all active pixels in all frames. SNR is defined as

average signal intensity

20 x logyg

noise standard deviation’

When we change the degree of location change, size change, and propagation duration, we add noise with
10 dB SNR. To study the impact of SNR on size changes, size-change degree is 3. For location changes,
distance-change ratio is 0.5 while varying SNRs. For propagation, propagation duration is 5 frames. Sev-
en SNRs are tested: 0, 2.5, 5, 7.5, 10, 15, 20 (all in dB).
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Post-processing simulated data: We set the average signal intensity at 0.2, with a range from 0-1. Syn-
thetic data is spatially filtered to mimic blurred boundaries in real data. The smoothing is performed with
a Gaussian filter with a standard deviation of 1. Signals with intensity <0.05 after smoothing are removed.
Remaining signals are temporally filtered with a kernel with a decay t of 0.6 frames. The rising kernel is
linear. For propagation simulation, data is down-sampled by five. Next, we perform a cleaning step. For
each pixel in each event, we find the highest intensity (x_peak) across frames. For that pixel, we set sig-
nals that are <0.2 times of x_peak to 0. Finally, a uniform background intensity of 0.2 is added (except for

GECI-quant, where no background is added; see below).

Application of AQUA and peer methods on the simulation data sets

Based on our knowledge about simulated datasets, we apply specific considerations for each
analytical method in order to set optimal parameters for each. In this way, we aim to assess the
methodological limit of each method, rather than suboptimal performance due to inadequate parameter-
setting. We expect that the performance of the peer methods on simulation data is an overestimate of their
performance on real experimental data, because here we take advantage of the ground-truth knowledge,

which is not available for experimental astrocyte data.

Event detection using peer methods: AQUA and CasCaDe report detected events, while other methods
report detected ROIs. For a consistent comparison, we detect events from those methods that use ROIs.
Once ROIs are detected, we calculate the average dF/F curve for each ROI, as follows: The curve is
temporally smoothed with a time-window of 20. The minimum value in the smoothed curve is considered
baseline. Assume the minimum value occurs at time t,,.. The baseline is then subtracted to obtain the
dF curve. The noise standard deviation o is estimated using 40 frames around t,.. We then obtain a z-
score curve as dF/c. A large z-score indicates an event; we use a z-score threshold of z,. The value z, is
set according to ground-truth knowledge, so that the smallest-size event in the simulation data is detected
by this threshold. Denote x, and s, the peak intensity and the size for the smallest event in the ground
truth. We also denote the ground truth noise level as a,. Then, the threshold is calculated as,

Zy = min(%, 10).
0

We clip the score to 10 to avoid setting large values for high SNR. For CaSCaDe, we supply this
value as the peak intensity threshold parameter.
Using the z-score curves and threshold, we detect events from ROIs for CalmAn, Suite2P, and

GECI-quant. For each z-score curve, we find all frames with values >z,. Each frame is a seed for an
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event. Assume the z-score for that frame is z; and we search before and after that frame. If the intensity
of the frame is > 0.2z, the frame is associated with the event. If we meet frames with intensities <
0.2z, we stop searching that direction. Once finished, we obtain all frames associated with the event. We
continue with another seed frame to find another event. Note that if a frame is considered part of an event,
we do not consider it as a seed for another event, even if it is >z,. The spatial footprint is fixed for all
frames in an event, based on the ROI detected. Combining spatial footprint and frames, we obtain events

for each ROI and identify all voxels belonging to an event.

Parameter setting for AQUA: The parameters of AQUA are based on the ex-vivo-GCaMP-cyto preset with
the following modifications: For different noise levels, we apply different smoothness levels. The
smoothing is performed only spatially and values are empirically chosen. The smoothness parameter is

the standard deviation of the Gaussian smoothing kernel used.

SNR (dB) 0 2.5 5 7.5 10 15 20
Smoothness | 1 0.9 0.8 0.7 0.6 0.5 0.1

We do not simulate motion of the field-of-view, so we do not discard any boundary pixels, and we set
regMaskGap = 0. We do not simulate Poisson Gaussian noise; we use additional Gaussian noise only, so
PG = 0. Event sizes in the simulation are >200 pixels, so we set the minimum event size to be a value
much smaller: minSize = 16. An event may not have more than one peak, so we set cOver = 0. We do not
simulate temporally adjacent events, so we set thrTWScl = 4. We do not use proofreading, so we choose a

more stringent z-score of events: zThr = 5.

Specific considerations for CaSCaDe: We use the following parameters for CaSCaDe: According to the
duration and temporal distances of the simulated events, we can safely set peak distance
p.min_peak_dist_ed = 3 and minimum peak length p.min_peak_length = 2. We set the spatial smoothing
filter size in the 3D smoothing function (bpass3d_v1) according to the size of the event, so we set p.hb
equal to 2x median of the radius of the spatial footprint of all events. We use this setting because the
default settings could not detect larger events on the simulation data sets. For temporal smoothing, we set
p.zhb=21. We do not need to correct background, so we set p.int_correct= 0. The minimum peak intensity
is p.peak_int_ed = z0, as discussed above. Minimum event intensity is p.min_int_ed = min(2,
p.peak_int_ed *0.2). We modified the low-frequency part of the watershed segmentation step to allow
larger events to be detected, by changing the function bpassW inside the function domain_segment. We

replaced the noise estimator in CaSCaDe (function estibkg) with the more robust one used by AQUA.
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CaSCaDe uses a supervised approach to classify detected events. Instead of manually labeling a
large number of events and training many SVM models, we directly use ground truth to perform training.
For example, for each event detected by CaSCaDe, we check the ground-truth data to test whether it is

(part of) a true event. If so, it is retained; otherwise, it is discarded.

Specific considerations for GECI-quant: GECI-quant requires user input at each step. Here, we describe
how to automate these steps by taking advantage of ground-truth information. This allows us to test many
conditions and repeat many times.

First, we do not add background signals to the synthetic data, so background subtraction is ignored.
The domain- and the soma-detection steps require manual thresholding. We estimate the best threshold
using the ground-truth data for each simulation. To do so, we scan 255 thresholds and use the one that
leads to the best correlation between binarized data and ground truth. We next cleaned the binarized
signals with sizes <4 pixels. The data here is also smoothed as it is in GECI-quant (3x3 spatial averaging).
Events with spatial footprints < 1,000 pixels are treated as domains and others are treated as somas. The
soma segmentation step also uses a threshold. We first process the data as in GECI-quant: for every three
frames, a standard-deviation map is calculated so that each voxel in ground-truth data is associated with a
standard deviation value. The average of all standard deviations from the ground-truth data is used as the
threshold.

We next made the entire analysis pipeline automatic. Fiji is called from the command line in each
step and parameters are passed as well. The final ROIs from Fiji are brought back into MATLAB. ROIs
are > 15 pixels in area. All other parameters are unchanged, including those for the particle detector. Note
that this modification cannot be used as an automated version of GECI-quant for real applications since it

relies on ground-truth information.

Specific considerations for CalmAn: We experimented with different parameters for CalmAn and found
the following set of parameters performed best on simulation data. As event size can be large, we enlarge
the patch size, so patch_size = [128,128] and overlap = [32,32]. Components to be found is set to K = 50.
The standard deviation of the Gaussian kernel (half size of a neuron) is enlarged to tau = 16. Maximum
size is 5,000 and the minimum size is 25. Decay time is 0.5. Other parameters are based on default
settings. No spatial or temporal down-sampling is used. Adjusting these parameters dis not impact results
on our simulated data. We used the 5/5/2018 version downloaded from
https://github.com/flatironinstitute/CalmAn-MATLAB.
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Specific consideration for Suite2P: The most critical parameter for Suite2P is neuron size. We set
db.diameter equal to the minimum between 50 and the median of the radius of the spatial footprint of all
events. Setting the diameter too large leads to an out-of-memory issue. We bypass the registration step.
We used the 6/4/18 version downloaded from https://github.com/cortex-lab/Suite2P.

Performance evaluation on the simulated data

To evaluate the accuracy of detected events, we quantify the intersection over the union (loU). We
consider all event voxels, not only pixels as in ROI-based methods. For each detected event i, we find all
the ground-truth events that have common voxels with event i. For each such ground-truth event, e.g.,
event j, we calculate an loU score (also known as Jaccard index) between this pair of events as the fol-
lowing,

Number(Voxels in event i N Voxels in event j)
IOUL"]' =

Number(Voxels in event i U Voxels in event j)’

When a detected event can be perfectly matched with a ground-truth event, its loU score is 1. A score of 0
indicates this pair of events has nothing in common. For each detected event i, we find the maximum loU
score among all pairs between this event and a ground-truth event. We denote this maximum score as
loU;. Similarly, we can compute a score [oU; for the ground truth event j. The final loU score is ob-
tained by averaging over all events, including detected and ground-truth events. Supposing we have | de-
tected events and J ground truth events, where I and J are not necessarily equal, we compute the final
score as the following,

I J
ToU = Zi:1IOUL' + Zj:llon

I+]

All simulation is performed on a workstation with 16 cores, 128 GB RAM and 6TB hard drive. We
use MATLAB 2018a on Windows 10 Enterprise Edition. GECI-quant is run on Fiji with ImageJ version
1.52h. Each simulation is repeated 10 times. The mean and 95% confidence interval (Cl) of loU score is
calculated and plotted. The Cl is calculated as [tsim — 205im» Usim + 205im ], Where g, 1S the estimat-

ed mean and ag;,, is the estimated standard deviation (oy;,,) based on 10 repetitive runs.

Open-source software for analyzing and visualizing dynamic fluorescent signals in astrocytes.
Applying software engineering principles, we developed an open-source toolbox for astrocyte
fluorescent imaging data with detailed user guidelines. The software not only implements the AQUA
algorithm for detecting events, but also provides an integrated environment for users to see the results,
interact with the analysis, and combine other types of data. There are two versions of the software with

the same functionality, based on MATLAB or Fiji. The software is freely available at
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https://github.com/yu-lab-vt/aqua. Detailed documents and example applications can be found there.
Here, we highlight several important functions of the software.

First, the software implements AQUA and provides several options to export the event-detection
results, including TIFF files with color-coded events, event features in Excel, and MATLAB or Java data
structures to be used by other programs. Second, the software can display analysis results by adding color
to the raw video, where color encodes the value of a user-defined extracted feature such as propagation
speed. Users can specify which feature to be displayed, either an existing feature in AQUA or a user-
designed feature based on features provided by AQUA. We provide several pre-defined colormaps, but
allow users to manually define colormaps as well. AQUA also provides a side-by-side view, to
simultaneously display two features or a raw video plus one feature. Third, the software provides a
convenient way to interactively view detected events and their associated features. By clicking on an
event, the dF/F curve for the event is shown in a separate panel below the video, and the time-frames
during which the event occurs are highlighted in red. The values of several other features for that event
are also shown in another panel. The software allows multiple events to be selected simultaneously, so
that their curves and features can be plotted together and compared. Fourth, the software provides both
automatic and manual ways to proofread the results. For automatic proofreading, events are filtered by
setting desired ranges for features-of-interest. Alternatively, users can choose the ‘delete/restore’ button
and manually click an event to remove it. Fifth, the software provides flexible ways to incorporate region
or landmark information. Users can manually supply regional information such as the cell boundary, or
landmark information such as the location of a pipette for pharmacological application. Users can also
load region or landmark information from other data sources, such as another fluorescence channel that
captures cell morphology. The software can extract landmark-related features for each event, including

the direction of propagation relative to a landmark.
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Figures and Figure Legends
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Figure 1. AQuA algorithm. (a) Flowchart of AQUA algorithm. Raw data is visualized as a stack of
images across time with grey level indicating signal intensity. In the detect peaks panel, five peaks are
detected and highlighted by solid diamonds, each color denoting one peak. Based on the single-cycle rule
and spatial adjacency of the apexes of each peak, peaks are clustered into spatially disconnected groups.
Apexes are labelled as solid dots. Based on smoothness, propagation patterns are estimated for each peak
group. By applying the single-source rule, two events are detected for peak group 1. Three total events are
detected. (b) Feature extraction. Based on the event-detection results, AQUA outputs four sets of features
relevant to astrocytic activity: 1) propagation related (path, direction, and speed); 2) source of events,
indicating where an event is initiated; 3) features related to the event footprint, including area and shape.
Event 2 is plotted here; 4) features derived from the dF/F dynamics.
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Figure 2. Performance comparison among image-analysis methods. (a—c) Schematic (top) and results
(bottom) of performance of five image analysis methods (AQuUA, GECI-quant, CaSCaDe, CalmAn, and
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Suite2P) on simulated datasets, independently changing event size (a), location (b), and propagation
duration (c). In results, change of independent parameter is shown in left panel, and varying SNR in right.
For each result, the smallest value of the independent parameter corresponds to a simulation under pure
ROI assumptions. The larger the values, the greater the violation of the ROl assumptions. loU
(intersection over union) measures the overlap between detected and ground-truth events. An loU=1 is the
best achievable performance, meaning that all detected events are ground-truth and all ground-truth
events are detected. Error bars indicate the 95% confidence interval calculated from 10 independent
replications of simulation, where each simulation contains hundreds of events.
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Figure 3. AQUA features capture heterogeneities among single astrocytes. (a) Representative
GCaMP6f ex vivo image (left) with AQUA events overlaid from 1 min of a 5 min movie. Soma marked
with black s. (Scale bar = 50um; Supplemental movie 1). Right: Representative image sequence for each
propagation direction class (blue=static, pink=toward soma, purple=away from soma; scale bar=20pm.
Soma direction marked with s and white arrow. (b) Spatiotemporal plot of Ca?* activity from 1 min of
movie. Each event is represented by a polygon that is proportional to its area as it changes over its
lifetime. (c) Distribution of dynamic and static events as a function of minimum distance from soma (chi-
square test, ***p<0.001, n=5 slices, 11 cells). All bin widths calculated by Freedman-Diaconis’s rule. (d)
Left: Propagative event size versus starting distance from soma, segregated by propagation direction.
Dashed gray line denotes half the distance between the soma and the cell border. Right: Average event
area for those that start <50% (top) and >50% (bottom) of the distance from the soma, (one-tailed paired
t-test, *p<0.05). (e) Left: Event duration versus starting distance from soma. Right: Average event
duration for those that start <50% (top) and >50% (bottom) of the distance from the soma (one-tailed
paired t-test, *p<0.05). (f) Two event-based measurements of frequency: events with activity overlapping
in time (top) and in space (bottom; scale bar=50um). Median (red) and interquartile range (blue) from the
three cells in cluster 1 and the eight cells in cluster 2 (one-tailed Wilcoxon rank sum, ***p<0.001). (g)
After t-SNE plotting of Ca?" activity using features calculated from ROIs and 5x5um tiles (top),
guantification of centroid distances between cells from cluster 1 and cluster 2 (bottom, one-tailed paired t-
test, ***p<0.001).
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Figure 4. AQUA resolves astrocytic Ca?* propagation directionality across scales. (a) Representative
in vivo GCaMP6f images during a burst period (top) and inter-burst period (bottom) with overlaid AQUA-
detected events (scale bar=50um). (b) Population Ca?* events represented as percentage of the imaging
field active as a function of time. Burst periods (pink) are identified when Ca?" activity exceeds more than
1% of the active field of view and exceeds more than 10% of the maximum number of event onsets. (¢) In
vivo Ca?" events propagate with specific directionality. Top: representative propagative event that
occurred during the burst period in panel a. (scale bar=25um). The propagation direction (change of
centroid relative to its original location) for each frame is overlaid on the event (right). Bottom: Total
propagation distance versus event size for all events within bursts (n=6 mice, 66 bursts, 14,967 events).
(d) To test consistency of local directionality during bursts, sixteen 96x96um tiles are overlaid on images.
(e) Event propagation direction from all events over the entire field in the burst shown in d. Length of
arrow indicates propagation distance. (f) Top: All events within highlighted tile in d (red square) for five
burst periods, color-coded by propagation direction (top). Bottom: Event propagation direction
distributions (P=posterior; A=anterior; M=medial; L=lateral). (g) Cumulative distribution of percentage
of bursts with events (within individual tiles/regions) propagating in the same direction in actual (solid)
and simulated (dashed) data (one-tailed Wilcoxon rank sum, ***p<0.001) (h) Two representative maps of
population burst propagation direction with each event color-coded by their onset time relative to the
beginning of the burst period, demonstrating variability of burst size. (i) Burst propagation direction
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calculated from onset maps in h (n=66 bursts). Event locations from the first 20% of the frames after burst
onset are averaged together to determine burst origin. Event locations from 20% of the last frames after
burst onset are averaged together and the difference between this and the origin determines burst
propagation distance. Red arrow denotes average of all bursts.
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Figure 5. Extracellular glutamate event detection reveals differences between astrocytic and
neuronal expression of GIuSnFR. (a) Representative images of ex vivo slices with expression of
astrocytic (left) or neuronal (right) GluSnFR. Color indicates detected events. Those with dynamic shape
are shown in magenta, and static events in cyan. Scale bar = 50um. (b) Examples of timecourse of
astrocytic (left, top) and neuronal (right, top) glutamate events. Scale bar = 10um. Raster plot of area of
astrocytic (left, bottom) and neuronal (right, bottom) glutamate events (n = 15/cell type). (c) Ratio of
events that change shape over time (magenta) to events that do not (cyan). (d) Size dynamics (area
increase [left] and decrease [middle] per frame) and shape (circularity index, right) of glutamate events
when GIuSnFR is expressed on astrocytes (red) or neurons (blue). Same color scheme continues
throughout figure. (e) Representative small and large glutamate events and corresponding dF/F traces.
Scale bar = 10um. (f) Amplitude (top), rise time (bottom left), and decay time (bottom right) differences
between all astrocytic and neuronal GluSnFR events. (g) Correlations between event size and amplitude
(left), rise time (middle), and decay time (right). Dashed line represents size threshold dividing small
events from large (see Supp. Fig 11for details). (h) Summary quantification of differences in amplitude
and dynamics between small (left) and large (right) astrocytic (red) and neuronal (blue) GIuSnFR events.
Data are shown as mean + SEM.
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modules indicated by brackets below panels. The last three modules are further illustrated in Supp. Fig. 2.
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Supplemental Figure 2: Schematic illustration of three major modules in AQUA algorithm. Curves
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the seed location panel. One curve may have multiple peaks, which are detected one-by-one. Once a peak
is detected at a seed location, the peak is spatially extended to include its neighboring pixels as in the
grow to all pixels with signals panel. Clustering of peaks starts from the peak with the earliest onset time
and includes its spatially adjacent peaks based on the two inclusion rules shown in the grow to all pixels
with signals panel. Two peaks at one location are never clustered into one group. Once the greedy search
strategy can't find more peaks to include, it stops and one peak group is formed. Then, to find another
peak group, the greedy search restarts from the first onset in the remaining peaks. The process is repeated
until no peaks remain. (c) Propagation estimation and super-event detection: This module is applied to
each peak group. The five colored curves are the dynamics of the five exemplar pixels with corresponding
colors. The dashed curve is the representative or reference curve. In the graphical time warping model
panel, red arrows indicate how the reference curve can be warped to represent the curve at each location.
The graphical time warping model incorporates the information that nearby locations should have more
similar curves than distant locations. A double-headed arrow between two functions informs the model
that these curves should be warped similarly to the reference curve. As a comparison, if there is no
double-headed arrow between curves, dissimilar warping functions are allowed. Once the warping
function is calculated by the graphical time warping model, onset time is computed for each pixel,
resulting in an onset time map. Note discontinuity of onset time examples at black triangles. These pixels
are removed to obtain the final super-event, which may contain multiple events and are subject to the next
operation. (d) Propagation source and event detection: Local propagation sources are obtained by
finding local minima on the onset time map. According to the rules described in Methods, some local
sources will be combined/merged, resulting in global propagation sources. Briefly, if the path between
two local sources does not have to go through a location with a late onset time, these two local sources are
combined. Then, each global propagation source leads to an event. Each event is obtained by growing
each global source to include its neighboring pixels. In the event detection from sources panel, solid dots
are pixels already assigned to an event, white dots are unexplored pixels, and grey dots are explored but
await a later decision to be assigned to an event.
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Supplemental Figure 3: AQUA detects ground truth events across three types of simulated data.
Color represents event count for each pixel (note colors bars have different scales in each dataset). Red
borders show ROIs detected by ROI-based methods. (AQUA does not detect ROIs.) (a) Pure ROI. (b)
Size change odds of 5, indicating size changes 20-500% of ROI. (c) Location change ratio of 1. Average
distance to the center of the ROl is 100% the ROI diameter. (d) Mixed propagation with 10 frames.
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Supplemental Figure 4: Event counts under different SNRs. Study the impact of SNR change when
size change ratio is 3. The color shows the count of events on that pixel. All plots share the same scale.
The red lines are the boundaries of detected ROIs. (a) Ground truth event count and the color bar for all
plots. (b) The event count for all methods under four different SNRs.
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Supplemental Figure 5: Peer method performance on growing and moving propagation types.
Schematic (top) and results (bottom) of performance of five image-analysis methods (AQuA, GECI-
guant, CaSCaDe, CalmAn, and Suite2P) on simulated datasets with (a) growing propagation and (b)
moving propagation. Change of the propagation frame number is shown in the bottom left panel, and
varying SNR in the bottom right. When the number of propagation frames (not the event duration) is 0,
the simulation is under pure ROI assumptions. loU (intersection over union) measures the overlap
between detected and ground-truth events. An loU of 1 is the best performance achievable by any
method, meaning that all detected events are ground-truth and all ground-truth events are detected. The
bars on each curve indicate the 95% confidence interval calculated from 10 independent replications of
simulation, where each simulation contains hundreds of events.
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Supplemental Figure 6: AQUA features enable detailed Ca?* activity plots. (a) Spatiotemporal plot of
Ca?* activity from a five minute movie (the first minute of which is shown in Fig. 3b). Each event is rep-
resented by a polygon that is proportional to the area of the event as it changes over its lifetime, and col-
or-coded by propagation direction. (b) Example time series illustrating how propagation direction is de-
termined (left). A propagation direction score is calculated for each event by multiplying the Euclidian
distance between the event pixels’ proximity to the soma at each frame by each pixel’s intensity. The
overall score is the summation of this weighted pixel intensity distance over the lifetime of the event.
Therefore, if more pixels with higher intensity move toward the soma it will be classified as such (top).
While some events appear in the plot as moving toward the soma, they are actually calculated as moving
away from the soma (middle) since we are only displaying the minimum event proximity to the soma in
the spatiotemporal plot, but calculate each pixel’s proximity to the soma when generating propagation
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score (see Supplemental Movie 4). Further, pixel intensity is first thresholded at 0.3dF/F. Therefore,
events that move toward or away from the soma yet have pixel intensities below threshold (bottom) ap-
pear to have a propagation direction when plotted, yet have a zero propagation direction score when cal-
culated. (c) Additional events plotted for each propagation direction category to demonstrate range of de-
tected/plotted events. Scale is not equivalent to events shown in b, but is equivalent within entire group
shown here.
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Supplemental Figure 7: Distribution of Ca?* event features. (a) Left: total number of Ca?* events that
are dynamic (gray, propagation direction score > 0) and static (blue, propagation direction score = 0),
***p < 0.001, n=11 cells, chi-square test for independence. Middle: distribution of Ca?* event area for
dynamic and static events, ***p < 0.001, one-tailed Wilcoxon rank sum test. Right: distribution of Ca?*
event duration for dynamic and static events, ***p < 0.001, one-tailed Wilcoxon rank sum test (right). (b)
Distribution, average area, and average duration of events propagating toward soma (pink), away from
soma (purple), and static events (blue) compared to starting distance from soma (top row), ending dis-
tance from soma (middle row), and minimum distance from soma (bottom row). Bin widths calculated by
Freedman-Diaconis’s rule.
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Supplemental Figure 8: Cluster analysis on features generated from three spatial footprint meth-
ods. (a) Heatmap of z-scores for eight AQUA features (x-axis) describing each event. White boxes demar-
cate events and features from individual cells. (b—c) Top: heatmaps of z-scores for three features describ-
ing the Ca?* activity at each ROI (b) or tile (c) location. ROIs detected using average projection image
with a 5um square filter applied (for ROIs) or 5x5um tiles, based on fluorescence intensity and size. Ca*
events with signals > 0.03dF/F and two times the noise of each individual trace were selected. Pixels
within each ROI or tile were averaged and dF/F was calculated by dividing each value by the mean values
from the previous 25 seconds. (d-f) t-SNE visualizations of each cell’s Ca?* activity using features calcu-
lated using AQUA (d), ROIs (e), and tiles (f). k-means clustering boundary denoted as dashed line. (g—h)
t-SNE plots using only subsets of AQuA-calculated features from (a) and (d). (g) t-SNE plot of only the
features specific to AQUA and not shared with ROI or tile analysis. (h) Plot using only AQuA-extracted
features that correspond to those in ROI- or tile-based analyses. (i) Comparison of difference between two
clusters generated from the t-SNE analysis followed by k-means clustering. Note increased separation
using AQuA-specific features compared to others. (One-tailed paired t-test, ***p<0.001)
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Supplemental Figure 9: (a) Population Ca?* events represented as two temporal traces: percentage of
imaging field active (top) and number of AQUA event onsets (middle). Burst periods (pink) are defined
from the top trace as periods when Ca?* activity exceeds 1% of the active field of view (red dashed line,
top), and exceeds 10% of the maximum number of event onsets (red dashed line, middle). Burst periods
correlate with wheel velocity of the treadmill (bottom). (b) Burst onset is defined as the first frame in
which 10% of the peak is exceeded and burst offset is defined as the last frame exceeding 10% of the
peak. (c) The relationship between all interburst events’ total propagation distance and size, similar to the
burst events plotted in Fig 4c.
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Supplemental Figure 10: Comparison of AQUA and Caltracer for event detection of astrocytic
GIuSnFR signals. (a) Applied to the same data sets, AQUA detects 157 events, while Caltracer®®, using a
rising faces algorithm, detects 76 events with manually defined single-cell ROIs. (b) ROl example (left)
and temporal trace with detected events marked by black circle using Caltracer software. Scale bar =
50um. (c) AQuUA-detected events from the same cell as in (b), and corresponding temporal traces (black
dot, specific events shown above each trace). Scale bar = 10um.
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Supplemental Figure 11: Differences in astrocytic and neuronal glutamate events are robust to
varying size thresholds. Entire population (a) and distribution (b) of astrocytic and neuronal glutamate
event size. Exponential fit and expected decay value shown with fit error. (c) Size thresholds set to lower
(73.42, left) and upper (90.58, left) fit error bounds. Data are shown as mean + SEM.
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