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Abstract 

 Recent work examining astrocytic physiology centers on fluorescence imaging approaches, due to 

development of sensitive fluorescent indicators and observation of spatiotemporally complex calcium and 

glutamate activity. However, the field remains hindered in fully characterizing these dynamics, both 

within single cells and at the population-level, because of the insufficiency of current region-of-interest-

based approaches to describe activity that is often spatially unfixed, size-varying, and propagative. Here, 

we present a paradigm-shifting analytical framework that releases astrocyte biologists from ROI-based 

tools. Astrocyte Quantitative Analysis (AQuA) software enables users to take an event-based approach to 

accurately capture and quantify the irregular activity observed in astrocyte imaging datasets. We apply 

AQuA to a range of ex vivo and in vivo imaging data, and uncover previously undescribed physiological 

phenomena in each. Since AQuA is data-driven and based on machine learning principles, it can be 

applied across model organisms, fluorescent indicators, experimental modes, and imaging resolutions and 

speeds, enabling researchers to elucidate fundamental astrocyte physiology.   

 

Introduction 

 With increased prevalence of multiphoton imaging and optical probes to study the physiology of 

astrocytes1-3, many groups now have the tools to study fundamental functions that previously remained 

unclear. Recent work has focused on new ways to decipher how astrocytes respond to neurotransmitter 

and neuromodulator circuit signals4-7 and how the spatiotemporal patterns of their activity shape local 

neuronal activity8-10. Recording astrocytic dynamics with the goal of decoding their disparate roles in 

neural circuitry has largely centered on cell type-specific expression of genetically encoded probes to 

carry out calcium (Ca2+) imaging using variants of GCaMP3, and glutamate imaging using GluSnFR2. 

Compared to neuronal Ca2+ imaging, astrocytic Ca2+ imaging using GCaMP presents particular challenges 

due to their complex spatiotemporal dynamics. Thus, astrocyte-specific analysis software has been 

developed to capture these dynamics, including techniques that divide the cell into distinct subcellular 

regions corresponding to their anatomy4 or apply a watershed algorithm to identify regions-of-interest 

(ROIs)11. Likewise, GluSnFR imaging analysis techniques are based on manually or semi-manually 

selected ROIs, or by analyzing the entire imaging field together as one ROI. It is worth noting that these 

and other current techniques rely on the conceptual framework of ROIs for image analysis. However, 

astrocytic Ca2+ and GluSnFR fluorescence dynamics are particularly ill-suited for ROI-based approaches, 

because the concept of the ROI has several inherent assumptions that cannot be satisfied for astrocytic 

activity data. Astrocytic Ca2+ signals, for example, can occupy regions that change size or location across 

time, can propagate within or across cells, and can spatially overlap with other Ca2+ signals that are 

temporally distinct. ROI-based approaches assume that for a given ROI, all signals have a fixed size and 
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shape, and all locations within the ROI undergo the same dynamics, without propagation. Accordingly, 

ROI-based techniques may over- or under-sample these data, thus obscuring true dynamics and hindering 

physiological discovery in these cells. An ideal imaging analysis framework for astrocytes would take 

into account, and quantify, all of these dynamic features and be free of these ROI-based analytical 

restrictions. In addition, the ideal tool would be applicable to astrocyte imaging data across spatial scales, 

encompassing subcellular, cellular, and population-wide fluorescence dynamics.  

 In this work, we set out to design an image analysis toolbox that would capture the complex, wide-

ranging fluorescent signals observed in most dynamic astrocyte imaging datasets. We reasoned that a 

non-ROI-based approach would best describe the observed fluorescent dynamics, and applied probability 

theory, machine learning, and computational optimization techniques to generate an algorithm to do so. 

We name this resulting software package Astrocyte Quantitative Analysis (AQuA) and validate its utility 

by applying it to simulated datasets that reflect the specific features that make analyzing astrocyte data 

challenging. We next apply AQuA to three experimental two-photon (2P) imaging datasets—ex vivo Ca2+ 

imaging of GCaMP6 from acute cortical slices, in vivo Ca2+ imaging of GCaMP6 in primary visual cortex 

(V1) of awake, head-fixed mice, and ex vivo glutamate imaging of both astrocytic and neuronal 

expression of GluSnFR. In these test cases, we find that AQuA accurately detects fluorescence dynamics 

by capturing fluorescence events as they change in space and time, rather than the activity from a single 

location in space, as in ROI-based approaches. AQuA outputs a comprehensive set of biologically 

relevant parameters from these datasets, including propagation speed, propagation direction, area, shape, 

and spatial frequency. Using these detected events and associated output features, we uncover 

neurobiological phenomena that have not been previously described in astrocytes. A wide variety of 

cellular and circuit functions have been ascribed to astrocytes, and a key question currently under 

examination in the field is whether certain classes of Ca2+ or glutamate activities observed in these cells 

correspond to particular neurobiological functions. The framework we describe here allows for a rigorous, 

in-depth dissection of astrocyte physiology across spatial and temporal imaging scales, and sets the stage 

for a comprehensive categorization of heterogeneous astrocyte activities both at baseline and after 

experimental manipulations.  

 

Results 

Design principles of the AQuA algorithm 

 To move away from ROI-based analysis approaches and accurately capture heterogeneous astrocyte 

fluorescence dynamics, we designed an algorithm to decompose raw dynamic astrocyte imaging data into 

a set of quantifiable events (Supp. Fig. 1–2). An event is a signal transient occurring in a certain region, 

but this region is defined by the fluorescent dynamics, not a priori by the user or the cell morphology. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2018. ; https://doi.org/10.1101/504217doi: bioRxiv preprint 

https://doi.org/10.1101/504217
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

Since an event is defined by transient changes in fluorescence, a location in the imaging field can be 

associated with multiple events over the course of the imaging period, as the same location may undergo 

multiple fluorescence transients. Importantly, this definition means that events are not necessarily 

spatially fixed; they may occupy different regions over time. Methodologically, ROI-based analyses 

restrict multiple transients to the same region. We argue that this restriction is too strong and thus not 

matched to dynamic astrocyte fluorescence data, as evidenced by the well documented observation that 

Ca2+ activity may involve the whole astrocyte (including soma and all processes), or may be constrained 

to a small segment of a process6,8,12. Here, we directly model these unfixed events in the algorithm, which 

omits the concept of ROI entirely. Our event-based approach not only resolves difficulties inherent in 

ROI-based analyses, but it also provides richer information with which to characterize relevant astrocytic 

physiology since the dynamic regions associated with different events are quantifiable.  

 We mathematically define an event as a cycle of a signal increase and decrease that coherently 

occurs in a spatially connected region, and therefore is specified jointly by its spatial and temporal 

properties. Importantly, our definition can flexibly accommodate the common phenomenon of 

fluorescence propagation in astrocyte imaging data, because transients at different locations are required 

to be coherent but not necessarily synchronized. In our algorithm, an event must satisfy the following two 

rules: 1) the temporal trajectory for an event contains only one peak (single-cycle rule, Fig. 1a) and 2) 

adjacent locations in the same event have similar trajectories (smoothness rule, Fig. 1a). Briefly, our 

strategy of event-detection is to a) explore the single-cycle rule to find peaks, which are used to specify 

the time window and temporal trajectory, b) explore the smoothness rule to group spatially adjacent 

peaks, whose locations specify the occupied region, c) apply machine learning and optimization 

techniques to iteratively refine the spatial and temporal properties of the event to best fit the data, and d) 

apply statistical theory to determine whether a detected event is true or due to noise (Fig. 1). Full 

statistical and computational details are provided in the Methods, but we want to highlight one technical 

innovation and one new concept that jointly enable a nuanced analysis of astrocyte fluorescence dynamics 

as shown below in application to experimental datasets. The technical innovation is our development of 

the mathematical model Graphical Time Warping13 (GTW), with which we are able to consider 

fluorescent signal propagation as integrated into each modeled event. To the best of our knowledge, 

signal propagation has never been rigorously accounted for and has been considered an obstacle to 

analysis. With GTW, we can estimate and quantify propagation patterns in the data. In addition, we 

introduce a third rule (single-source rule (Fig. 1a)) such that each event only contains a single initiation 

source. With the single-source rule, we can separate events that are initiated at different locations but 

meet in the middle. The single-source rule also allows us to divide large bursts that occur across a field-

of-view into individual events, each with a single initiation location.    
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 The output of the AQuA algorithm is a list of detected events, each associated with three categories 

of parameters: 1) the spatial map indicating where the event occurs, 2) the dynamic curve corresponding 

to fluorescence change over time (dF/F), and 3) the propagation map indicating signal propagation. For 

each event, we use the spatial map to compute the event area, diameter and shape of the domain it 

occupies (Fig 1b). Using the dynamic curve, we can calculate maximum ∆𝐹𝐹/𝐹𝐹, duration, onset-time, rise-

time and decay-time. Using the propagation map, we extract event initiation location, as well as 

propagation path, direction, and speed. A complete list of features is in the Methods section.  

 

Validation of AQuA using simulated data 

 To validate AQuA, we designed three simulation datasets for which we have complete knowledge of 

when, where, and how each event occurred. These three datasets correspond to the three key ROI-

approach-incompatible phenomena: size-variability, location-variability, and propagation. While these 

three phenomena usually co-occur in real datasets, we simulated each phenomenon independently to 

examine their individual impact and test AQuA’s performance relative to other fluorescence image 

analysis tools, including CaImAn14, Suite2P15, CaSCaDe11, and GECI-quant4. CaImAn and Suite2P are 

widely used for neuronal Ca2+ imaging analysis while CaSCaDe and GECI-quant were designed 

specifically for Ca2+ activity in astrocytes. Although CaSCaDe can output events, all four methods are 

ROI-based.  

 We first studied the impact of size-varying events (Fig. 2a), in which multiple events occur at the 

same location and the event centers remain fixed, but event sizes change. The degree of size change is 

quantified using size-change odds (see Methods) where a size-change odds of 1 indicates events with the 

same size, while an odds of 5 is the largest size change we simulated. When we set the odds at 5, we 

simulate events with sizes randomly distributed between 0.2 and 5 times the baseline size, with an SNR of 

10dB, chosen to closely match the noise level in real experimental data. Two measures, IoU and event 

count, were then used to evaluate the performance on all simulated datasets. IoU (intersection over union) 

indicates the overlap between detected and the ground-truth events, and takes into account both the spatial 

and temporal accuracy of detected events. An IoU of 1 is the best performance possible, while an IoU of 0 

is the worst. When there is no size change (odds=1), all methods have good IoU performance around 

0.95, with CaSCaDe and CaImAn slightly worse than others (Fig. 2a). When the degree of size change is 

increased, AQuA still performs well (IoU=0.95), while all other methods quickly drop to 0.4–0.5. We 

then changed our analysis to study the impact of different SNRs on performance by varying SNR, but 

fixing the size-change odds. AQuA performed better with increasing SNR and achieved nearly perfect 

detection accuracy (IoU=1) at 20dB. In comparison, all other methods had an IoU below 0.6, even at high 

SNR (Fig. 2a). We also examined the results by visualizing event counts for each pixel (Supp. Fig. 3–4). 
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With size change odds of 3 or 5, the map of ground truth event-counts did not show clear ROI boundaries, 

because events from the same ROI had various sizes, and because events from different ROIs can overlap 

at some spatial locations (Supp. Fig. 3). It is clear from these maps that AQuA reported faithfully the 

events under various SNRs but all other methods had erroneous event counts and produced artificial 

patterns. The visualization also informed us different types of errors in other methods. CaSCaDe tends to 

over-segment, as it is based on watershed segmentation. GECI-quant, especially its soma-segmentation 

step, is particularly challenged by noise, causing many signals to be lost (Supp. Fig. 4).  

 We next focused on the impact of shifting the event locations. In these simulated datasets, event size 

is fixed but event location changes, and degree of change is represented by a location change ratio (Fig. 

2b). A ratio of zero indicates no location change. Here, results are similar to changing size, as above. 

AQuA modeled the location change well and its performance was not affected by degree of location 

change. Likewise, AQuA reached near perfect results when SNR was high. In contrast, all other analysis 

methods performed poorly with changing locations. In particular, the other astrocyte-specific methods 

(CaSCaDe and GECI-quant) missed many signals. Even though the overall conclusion is similar for both 

the size- and location-changing events, the peer methods had more variation of IoU performance among 

themselves and the event count map showed distinct patterns (Supp. Fig. 3). In general, changing event 

locations is more challenging for ROI-based methods because when the location change is large, two 

events may have no spatial overlap, which is never true for size-varying events. This accounts for results 

seen when applying GECI-quant for example, including the result that GECI-quant is not able to detect 

anything when the SNR is low (Fig. 2b, right).  

 In our third simulated dataset, we asked how the phenomenon of fluorescence signal propagation 

impacts the performance of AQuA compared to the other methods. Two propagation types—growing and 

moving—were simulated in this dataset (Fig. 2c), although they were also separately evaluated (Supp. Fig 

5). Propagation frame number denotes the difference between the earliest and latest onset times within a 

single event. When propagation frame number is zero, all signals within one ROI, but not necessarily 

across ROIs, are synchronized and there is no propagation. Similar results to the two scenarios discussed 

above were obtained here, with AQuA out-performing all the other methods by a large margin. These 

results indicate that AQuA can handle various types of propagation well, while the performance of other 

methods degrades rapidly when propagation is introduced. We note that although all events are 

constrained in the same ROI, propagation caused ROI-based approaches to quickly decline in 

performance. GECI-quant was again influenced by noise level, while CaSCaDe’s assumption of 

synchronized signals did not allow accurate capture of the event dynamics.  

 In all, when any of the three ROI-violating factors—size-variability, location-variability, and 

propagation—is introduced, other methods do not accurately capture the signal dynamics, and AQuA 
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outperforms them by a large margin. We expect that the performance margins on experimental data is 

larger than those quantified in the simulation studies here, since real data exhibits multiple ROI-violating 

factors and the performance of the ROI-based methods is over-estimated in our simulations (see 

Methods).  

 

AQuA enables identification of single-cell physiological heterogeneities 

 To test AQuA’s performance on real astrocyte fluorescence imaging data, we first ran AQuA’s 

event-detection on Ca2+ activity recorded from astrocytes in acute cortical slices from mouse V1 using 2P 

microscopy. We used a viral approach to express the genetically encoded Ca2+ indicator GCaMP6f3 in 

layer 2/3 (L2/3) astrocytes. Unlike ROI-based approaches that use arbitrarily sized shapes to extract 

fluorescence, AQuA detects both propagative and non-propagative activity, revealing Ca2+ events with a 

variety of shapes and sizes (Fig. 3a, left). Further, since AQuA not only detects Ca2+ events' spatial 

footprint but also their time-course, we can apply AQuA to measure the propagation direction each event 

travels over its lifetime. Imaging single cells, we used the soma as a landmark, and classified events as 

traveling toward the soma (pink), away from the soma (purple), or static (blue) for the majority of its 

lifetime (Fig. 3a, right). We used AQuA’s automatic feature-extraction and combined multiple 

measurements (size, propagation direction, duration, and minimum proximity to soma) into one 

spatiotemporal summary plot (Fig. 3b). Since astrocytes exhibit a wide diversity of Ca2+ activities across 

subcellular compartments6,16,17, plotting the signals this way rather than standard dF/F  transients 

highlights these heterogeneities, allows us to map the spatial location of the Ca2+ signals, and enables a 

quick, visual impression of a large amount of complex data (Supp. Fig. 6). 

 We next asked whether some subcellular regions of astrocytes have more dynamic activity than 

others across all analyzed cells (n=11 cells). Although we detected more static events than dynamic 

overall (Supp. Fig. 7a), we observed a higher proportion of dynamic events than static events in the soma 

(59%, Fig. 3c, Supp. Fig. 7b). We then characterized events by propagation direction and event initiation 

location (Fig. 3d). Events that begin close to the soma (≤50th percentile) and propagate away (purple) 

were on average larger than the events propagating toward the soma (pink, two-tailed t-test). Similarly, 

those events that began close to the soma and propagated away had on average a longer duration than 

events propagating toward the soma (two-tailed t-test, Fig. 3e, Supp. Fig. 7). 

 One of AQuA’s strengths is its ability to automatically extract large numbers of features. These 

features can be used to form a comprehensive Ca2+  measurement matrix. Dimensionality reduction 

applied to this matrix can, in turn, be used to visualize each cell’s Ca2+ signature (Supp. Fig. 8). To do 

this, we applied t-distributed Stochastic Neighbor Embedding (t-SNE)18, followed by k-means clustering 

to assign the cells to groups (Supp. Fig. 8), revealing two clusters marked by cells with large differences 
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in median frequency (Fig. 3f). Astrocytic Ca2+ frequency is commonly measured as the number of 

transients that occur over time within an ROI. Here, we instead define frequency from an event-based 

perspective in two ways: 1) for each event, the number of other events that overlap in time, and 2) for 

each event, the number of other events that overlap in space. We used these two measures (temporal and 

spatial overlap) and several other extracted measures (Supp. Fig. 8) to construct the matrix used for t-SNE 

visualization and clustering. We next tested how well our AQuA-specific features perform at clustering 

the heterogeneity between cells compared to two ROI-based methods (Fig. 3g), and found that the AQuA-

based method outperformed the others. In fact, even when we only use AQuA-specific features for this 

analysis—area, temporal overlap, spatial overlap, and propagation speed—and remove all features that 

can be extracted from ROI-based methods, AQuA still significantly outperforms in clustering cells (Supp. 

Fig. 8g–i)). AQuA-extracted features that correspond only to those that can be obtained by ROI-based 

methods—frequency, amplitude, duration—do not allow clustering significantly better than the ROI-

based approaches themselves (Supp. Fig. 8g–i), suggesting that the AQuA-specific features are those that 

best capture dynamic fluorescence features that vary among single cells. This indicates that  

AQuA can be used to extract data from existing ex vivo Ca2+ imaging datasets to reveal previously 

uncovered dynamics and sort cells into functionally relevant clusters. 

 

In vivo astrocytic Ca2+ bursts display anatomical directionality 

 Recent interest in astrocytic activity at the mesoscale has been driven by population-level, multi-

cellular astrocytic Ca2+ imaging1,5,7,8,12,19,20. To test the power of AQuA-based event detection, we next 

applied it to populations of in vivo astrocyte Ca2+
 activity. Previous studies have described temporal 

details of astrocyte activation4,5,7,8,12, yet have left largely unaddressed the combined spatiotemporal 

properties of Ca2+ activity at the circuit-level. Here, we explored whether AQuA can uncover spatial 

patterns within populations of cortical astrocytes in an awake animal, and carried out head-fixed, 2P 

imaging of GCaMP6f activity in V1, L2/3 astrocytes. To minimize motion artifacts, we first registered 

our imaging sets using non-rigid motion correction21. Populations of in vivo cortical astrocytes exhibit 

both small, focal, desynchronized Ca2+
 activity, and large, synchronous activities4,5. AQuA detected both 

of these classes of Ca2+ activity (Movie 2, Fig. 4a). Similar to previous studies, we observed many (but 

not all) of the synchronous bursts co-occurring with locomotion periods (Fig. 4b, pink), and many events 

within these burst periods displayed propagation (Fig. 4c, top). These propagative events were larger in 

area and had greater propagation distances compared to the events that occurred during the inter-burst 

periods (Fig. 4c, bottom). Here, to examine a distinct type of neurobiological phenomenon and test 

whether AQuA could help us analyze discrete features of this phenomenon, we focused our investigation 

only on these events occurring during the burst periods (Supp. Fig. 9).   
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 To analyze burst-period Ca2+ events, we first interrogated the consistency of event propagation 

direction across all burst periods. To do so, we divided our field-of-view into 16 equivalently sized, 

regional tiles (Fig. 4d). Within a single burst, plotting individual event direction within the entire field of 

view did not reveal a consistent propagation direction (Fig. 4e). However, within a single region, the 

major propagation direction across bursts was consistent (Fig. 4f). When we plot the cumulative count of 

the percentage of bursts with regions that propagate in the same direction, we indeed observe that this 

curve is right-shifted compared to a simulated random assignment of majority regional propagation 

direction (Fig. 4g). Thus, local, small-scale fluorescence activity exhibits directional consistency across 

bursts.  

 Because the percentage of the active field of view varied across burst periods (Fig. 4b), with a wide 

variability from few to hundreds of events (Fig. 4h), we also measured the propagation direction of the 

events within each burst period, now using each event’s onset time to calculate a single burst-wide 

propagation direction (Fig. 4h, black arrow). Doing so revealed a consistent posterior-medial 

directionality of population Ca2+ activity in L2/3 V1 astrocytes (Fig. 4i). Although Ca2+ bursts have been 

previously observed using GCaMP6 imaging in awake mice4,5, consistent spatial directionality with 

respect to the underlying anatomy has never been described. This observed posterior-medial directionality 

may be revealing anatomical and physiological underpinnings of these bursts, and since they have been 

shown to be at least partly mediated by norepinephrine5,7, they could be reflective of the response of 

groups of cortical astrocytes to incoming adrenergic axons originating in locus coeruleus.  

 

Astrocytic and neuronal expression of GluSnFR reveals differential glutamate dynamics 

 We next asked whether AQuA could be used to detect astrocytic fluorescent activities with very 

different spatiotemporal dynamics than we observe when measuring intracellular Ca2+. We decided to 

carry out GluSnFR imaging22 to measure extracellular glutamate dynamics, since GluSnFR has been 

widely used for glutamate imaging2,6,8 and one canonical function of astrocytes is to regulate extracellular 

glutamate. While GluSnFR has been expressed both in astrocytes and in neurons previously2,20,212,8,22,23, 

how cell type-specific expression determines its fluorescent dynamics has not been fully explored. No 

previously applied analytical tools have been reported to automatically detect GluSnFR-based glutamate 

events to accommodate differential event sizes and shapes. Here, we explored whether application of 

AQuA could be used to detect cell type-specific differences in glutamate dynamics and help reveal 

heterogeneities of glutamate events based on various underlying biological mechanisms.  

 We expressed GluSnFR in either astrocytes or neurons using injections of cell type-specific viruses 

(AAV1-GFA(ABC(1)D)-iGluSnFR and AAV1-hsyn-iGluSnFR, respectively) and carried out 2P imaging of 

spontaneous activity in acute cortical slices. Distinct morphological differences between astrocytic and 
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neuronal expression of GluSnFR were evident, as has been observed previously8,24,25 (Fig. 5a). We next 

applied AQuA to these datasets to detect significant increases in GluSnFR fluorescence, and were able to 

detect events that were too small and dim to detect by eye (Movie 3). Indeed, 62% of astrocytic events 

(n=157) had an area less than the size of a single astrocyte (100 μm2), and 8% of astrocytic (n=157) and 

35% of neuronal glutamate events (n=107) had a maximum dF/F less than 0.5. Because GluSnFR events 

have previously been detected by spatially averaging within a single cell or across broader areas of tissue, 

or by manual detection, the events that AQuA detects are missed by these other methods (Supp. Fig. 10).  

 Because AQuA is designed to detect events independent of shape or size, events of heterogeneous 

size and shape were revealed when analyzing the GluSnFR data (Fig. 5a–b). A large proportion of 

GluSnFR events changed size over the course of the event, with 42% of total astrocytic and 32% of total 

neuronal glutamate events exhibiting changes in area (Fig. 5c). On average, astrocytic GluSnFR events 

were significantly larger (274 ± 39.56 μm2) than neuronal events (172 ± 57.06 μm2), sometimes 

encompassing an entire astrocyte (Supp. Fig. 10). Neuronal GluSnFR events were significantly more 

circular (Figure 6b–d), reflecting morphological differences between cell types. We also found that 

between cell types, GluSnFR events exhibited different size dynamics (Fig. 5b–d). While there was no 

difference in the rate of increase in event size between astrocytes and neurons, we did observe that the 

rate of size decrease of astrocytic events between frames was larger than that of neuronal events (Fig. 5d).  

 To investigate size differences between cell types more thoroughly, we extracted dF/F from each 

event by calculating the average fluorescence intensity of the maximum area of each event over its 

lifetime (Fig. 5e). When we compared these curves, we found that the amplitude of astrocytic events was 

significantly larger than that of neuronal events (1.2 ± 0.05 vs. 0.79 ± 0.05, Fig. 5e, f [top]), whereas the 

dF/F rise times and decay times showed no significant difference between cell types (Fig. 5f, bottom). 

However, we noticed a large spread in the amplitude and kinetics of both cell types (Fig. 5f) and next 

asked whether the size of each event correlates with these features, and whether these correlations could 

differentially describe each cell type. We observed some significant correlations of event size with 

amplitude, rise time, and decay time (Fig. 5g). Specifically, astrocytic GluSnFR event size positively 

correlated with amplitude and decay time and negatively correlated with rise time (Fig. 5g, red). On the 

other hand, neuronal GluSnFR event sizes were positively correlated with rise and decay times, but 

showed no significant relationship with amplitude (Fig. 5g, blue). These correlations indicate that 

variations in dF/F features within each cell type were size-dependent. 

To further explore the entire population of glutamate events for each cell type, we set a size 

threshold to separate small and large events (Figure 5g, black dashed lines, Supp. Fig. 10). When we do 

this, we find that the larger amplitude observed in astrocytic glutamate events (Figure 5f, top) is 

dominated by significantly higher amplitudes in large-size astrocytic events, whereas small-size events 
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were not significantly different in amplitude between the two cell types (Fig. 5h). In contrast, while we 

find no significant difference between cell types in rise and decay time for all events (Fig. 5f, bottom), we 

do observe some significant differences in rise and decay times in the small- or large-size groups 

separately. In fact, when separating out small and large events, we observe opposite rise-time patterns: 

small astrocytic events have longer rise times than neuronal events, but large astrocytic events have 

shorter rise times than neuronal events. Together, these data demonstrate that application of AQuA to 

GluSnFR images uncovered a class of small extracellular glutamate events. Separation of these small 

events from their larger counterparts revealed temporal differences between GluSnFR expressed on 

astrocytes and neurons, suggesting that these differences may reflect different cellular, or cell-type, 

mechanisms that lead to these extracellular glutamate flux.  

 

Discussion 

 With the development and application of a powerful, event-based analysis tool for astrocyte imaging 

datasets, we have opened the door for quantifying observed fluorescence dynamics, including those that 

are un-fixed, propagative, and vary in size. We demonstrate that AQuA performs better than other image 

analysis methods—including those designed for astrocytic and neuronal applications—on these types of 

simulated datasets, and describe previously unknown phenomena in three types of commonly acquired 

datasets using the genetically encoded GCaMP or GluSnFR indicators. Because AQuA is data-driven, it 

can be applied to datasets that have not been directly tested here, including those captured under different 

imaging magnifications and spatial resolutions. In addition, since the AQuA algorithm functions 

independently from frame rate, datasets captured with faster frame rates12,26 are also just as amenable to 

an event-based analysis with AQuA as those shown here. Further, AQuA is applicable to fluorescent 

indicators, particularly those that exhibit complex dynamics, other the ones tested here.   

 We envision the AQuA software and its underlying algorithm as enabling problem-solving for a 

wide range of astrocyte physiological questions, both because AQuA more accurately captures dynamics 

exhibited by commonly used fluorescent indicators than other methods and because there are many more 

features extracted by AQuA that can be analyzed than those extracted by existing methods. In the current 

work, we use these multiple features to describe the baseline, or spontaneous, astrocyte physiology in a 

particular neurobiological circuit, but with varying spatial scale, molecular probe, and experimental 

preparation. In future work, we and others can apply AQuA-based analyses to circuits in other brain 

regions and layers to describe potential functional heterogeneities across astrocytes27. Beyond baseline 

differences, we expect that AQuA will be a powerful tool to quantify physiological effects of 

pharmacological, genetic, and optogenetic manipulations, among others. These manipulations and 
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subsequent analyses would allow researchers to examine both astrocyte-intrinsic and -extrinsic 

physiology, depending on whether astrocytes, neurons, or another brain cell type is being changed.  

 There remains significant disagreement in the field about basic physiological functions of astrocytes. 

Perhaps the most outstanding issue is whether astrocytes undergo vesicular release of transmitters such as 

glutamate. While we don’t address this controversial topic in the current work, we expect that the 

heterogeneous activities that we uncover using an AQuA-based analysis of GluSnFR may be key in 

determining different sources of glutamate in neural circuits under different conditions, and could help 

untangle some of the conflicting data in this arena. Our tool enabled us to identify extracellular glutamate 

changes not only by cell type, but also by event size and shape dynamics, demonstrating the most in-

depth analysis of GluSnFR data—whether astrocytic or neuronally expressed—than ever before. The 

event-based analytical tools presented here may be particularly useful as next-generation GluSnFR 

variants become available and make multiplexed imaging experiments increasingly accessible28.  

 As demonstrated by its utility with both Ca2+ and glutamate data, AQuA also has the potential to be 

applied to other fluorescence imaging datasets that exhibit non-static or propagative activity. Although we 

designed AQuA specifically to study dynamic astrocyte fluorescence, it is user-tunable, and we anticipate 

that experimentalists will find it advantageous in other contexts in which neuronal or non-neuronal cells 

exhibit non-static or propagative fluorescence activity. For example, recently described Ca2+ activity in 

oligodendrocytes displays some similar properties to that in astrocytes29,30 and AQuA-based analysis may 

be useful. Likewise, subcellular compartments in neurons, such as dendrites or dendritic spines, have also 

been shown to exhibit propagative, wave-like signals31 and large-scale, whole-brain neuronal imaging can 

capture burst-like, population-wide events32 as observed in astrocytes in vivo. While we predict that the 

potential applications are wide, it is also important to note the limitations of AQuA, and be clear about 

when it will not be the most effective approach. Since AQuA detects local fluorescence changes as 

events, it is not well suited to strictly morphological dynamics, such as those observed in microglia, and it 

does not improve on the many excellent tools built for analyzing somatic neuronal Ca2+ activity14,15, 

where ROI assumptions are well satisfied. In addition, AQuA is designed to analyze 2D datasets only, as 

these comprise the majority of ongoing dynamic imaging experiments. In the future, AQuA can be 

adapted to accommodate 3D imaging experiments, including those currently being performed in 

astrocytes26.  

 When surveying dynamic astrocyte imaging data, particularly Ca2+ imaging data, experimental 

regimes can largely be grouped into two categories: single-cell, usually ex vivo imaging and population-

wide, in vivo imaging focusing on large-scale activity of many cells. Experimental data and 

neurobiological conclusions from these two groups can differ quite widely, or even conflict with each 

other. This may be due, in part, to the large, population-wide bursts observed with the onset of 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2018. ; https://doi.org/10.1101/504217doi: bioRxiv preprint 

https://doi.org/10.1101/504217
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

locomotion in vivo. Many techniques used to analyze these bursting events—all ROI-based—can under-

sample events that occur between bursts by swamping out smaller or shorter signals. Here, we present a 

technique that can be used to sample small- and large-scale activity in the same dataset, or across datasets, 

allowing researchers to bridge spatiotemporal scales robustly in these types of data for the first time. We 

believe that this event-based analysis tool will enable astrocyte biologists not only to resolve outstanding 

physiological problems, but also identify and tackle new ones.  
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Methods 

Viral injections and surgical procedures 

 For slice experiments, neonatal mice (Swiss Webster, P0–P4) were anesthetized by crushed ice 

anesthesia for 3 minutes and injected with 90nL total virus of AAV5-GFaABC1D.Lck-GCaMP6f, AAV5-

GFaABC1D.cyto-GCaMP6f, AAV1-GFAP-iGluSnFR, or AAV1-hsyn-iGluSnFR at a rate of 2–3nL/sec. Six 

injections 0.5μm apart in a 2x3 grid pattern with 15nL/injection into assumed V1 were performed 0.2μm 

below pial surface using a UMP-3 microsyringe pump (World Precision Instruments). Mice were used for 

slice imaging experiments at P10–P23. 

 For in vivo experiments, adult mice (C57Bl/6, P50–P100) were given dexamethasone (5mg/kg) 

subcutaneously prior to surgery and then anesthetized under isoflurane. A titanium headplate was attached 

to the skull using C&B Metabond (Parkell) and a 3mm diameter craniotomy was cut over the right 
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hemisphere ensuring access to visual cortex. Two 300nL injections (600nL total virus) of AAV5-

GFaABC1D.cyto-GCaMP6f were made into visual cortex (0.5–1.0mm anterior and 1.75–2.5mm lateral of 

bregma) at a depth of 0.2–0.3mm and 0.5mm from the pial surface, respectively. Virus was injected at a 

rate of 2nL/s, with a 10min wait following each injection to allow for diffusion. Following viral injection, 

a glass cranial window was implanted to allow for chronic imaging and secured using C&B metabond33. 

Mice were given at least ten days to recover, followed by habituation for three days to head fixation on a 

circular treadmill, prior to imaging. 

  

Two-photon imaging  

All 2P imaging experiments were carried out on a microscope (Bruker Ultima IV) equipped with a 

Ti:Sa laser (MaiTai, SpectraPhysics). The laser beam was intensity-modulated using a Pockels cell 

(Conoptics) and scanned with galvonometers (or resonant scanners). Images were acquired with a 16x, 

0.8 N.A. (Nikon, in vivo) or 40x, 0.8. N.A. objective (Nikon, ex vivo) via a photomultiplier tube 

(Hamamatsu) using PrairieView (Bruker) software. For imaging, 950nm (GCaMP) or 910nm (GluSnFR) 

excitation and 510/84 emission filter was used.  

 

Ex vivo GCaMP and GluSnFR imaging 

 Coronal, acute neocortical slices (400μm thick) from P10–P23 mice were cut with a vibratome (VT 

1200, Leica) in ice-cold cutting solution (in mM): 27 NaHCO3, 1.5 NaH2PO4, 222 sucrose, 2.6 KCl, 2 

MgSO4, 2 CaCl2. Slices were incubated in standard continuously aerated (95% O2/5% CO2) artificial 

cerebrospinal fluid (ACSF) containing (in mM): 123 NaCl, 26 NaHCO3, 1 NaH2PO4, 10 dextrose, 3 KCl, 

2 CaCl2, 2 MgSO4, heated to 37°C and removed from water bath immediately before introducing slices. 

Slices were held in ACSF at room temperature until imaging. Experiments were performed in 

continuously aerated, standard ACSF. 2P scanning and acquisition were carried out at 1.06Hz at 512 x 

512 pixel resolution. For TTX experiments, 0.5μM of Tetrodotoxin Citrate (Hello Bio) was added to 

aerated, standard ACSF. 8 minutes elapsed before resuming imaging. 

 

In vivo GCaMP imaging 

 At least two weeks following surgery mice were head-fixed to a circular treadmill and astrocyte 

calcium activity was visualized at ~2hz effective frame rate from layers 2/3 of visual cortex with a 

512x512 pixel resolution at 0.8 microns/pixel. Locomotion speed was monitored using an optoswitch 

(Newark Element 14) connected to an Arduino.  

 

AQuA algorithm and event detection 
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Overview of the AQuA algorithm 

 Astrocytic events are heterogeneous and varying with respect to many aspects of their properties. In 

AQuA, we extensively applied machine learning techniques to flexibly model these events, so that our 

approach is data-driven and physiologically relevant parameters are extracted from the data instead of 

imposing a priori assumptions. Probability theory and numerical optimization techniques were applied to 

optimally extract fluorescent signals from background fluctuations. Here, we first delineate the eight 

major steps in AQuA (Supp. Fig. 1) and then describe key technical considerations in further detail.  

 Step 1: data normalization and preprocessing. This step removes experimental artifacts such as 

motion effects, and processes the data so that noise can be well approximated by a standard Gaussian 

distribution. Particular attention is paid to the variance stabilization, estimate of baseline fluorescence, 

and variance. Step 2: detect active voxels. Step 3: identify seeds for peak detection. Step 4: detect peaks 

and their spatiotemporal extension. These three steps work together to achieve peak detection. To detect 

peaks we start from a seed, which is modeled as a spatiotemporal local maximum. However, since 

random fluctuations due to background noise can also result in local maxima, we need to detect active 

voxels such that only the local maxima on the active voxels are considered as seeds. Here, active voxels 

are those likely to have signals. Step 5: cluster peaks to identify candidates for super-events. Temporarily 

ignoring the single-source requirement, the set of spatially-adjacent and temporally-close peaks is defined 

as a super-event. However, clustering results of spatially adjacent peaks are not super-events themselves, 

because a peak group may consist of noise voxels and temporally distant events. Step 6: estimate the 

signal propagation patterns. Step 7: Detect super-events. To get super-events from peak clusters, we 

compute the temporal closeness between spatially adjacent peaks by estimating signal propagation 

patterns. The propagation pattern for each event is also important for its own sake, by providing a new 

way to quantify activity patterns. Step 8: split super-event into individual events with different sources. A 

super-event is split into individual events by further exploiting propagation patterns. Based on 

propagation patterns within a super-event, the locations of event initiation are identified as local minima 

of the onset time map. Each initiation location serves as the event seed. Individual events are obtained by 

assigning each pixel to an event based on spatial connectivity and temporal similarity.  

 

Step 1(Data normalization and preprocessing): We correct for motion artifacts in the in vivo dataset using 

standard image registration techniques21 before applying AQuA. However, AQuA does not necessarily 

require motion correction because it performs event-based analysis, which is localized temporally and 

thus less prone to motion artifacts. 

 We perform data normalization and preprocessing to approximate noise by a Gaussian distribution 

with mean=0 and standard deviation=1. To achieve this, we first apply a square-root transformation to the 
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data to ensure that the noise variance after transformation is not related to the intensity itself, an operation 

also known as variance stabilization. Second, the noise variance of the transformed data for each pixel is 

estimated as half of the median of the square of differences between two adjacent values in the time series 

at the pixel. Mathematically, denote 𝑋𝑋𝑖𝑖 the time series at the 𝑖𝑖th pixel, where 𝑋𝑋𝑖𝑖[𝑡𝑡] is the value of the 𝑡𝑡th 

time point. Then, the noise variance 𝜎𝜎𝑖𝑖2 at the 𝑖𝑖th pixel is estimated as 

     𝜎𝜎𝑖𝑖2 = 1
2

median𝑡𝑡=2,…,T {(𝑋𝑋𝑖𝑖[𝑡𝑡] − 𝑋𝑋𝑖𝑖[𝑡𝑡 − 1])2} .  

We do not use the conventional sample variance 1
𝑇𝑇
∑ (𝑋𝑋𝑖𝑖[𝑡𝑡] − mean(𝑋𝑋𝑖𝑖))2𝑇𝑇
𝑡𝑡=1  as the estimate. Otherwise,  

it is inclined to inflate the variance when signals exist in the time series. Third, to estimate the baseline 

fluorescence 𝐹𝐹0 for each pixel, we compute the minimum of the moving average of 25 time-points in a 

user-specified local time window (default=200 in our experiments). We do not use the full time series to 

identify the minimum, in order to be robust to image degradation or other long-term trends. Considering 

the minimum is a biased estimate of the baseline fluorescence, we add a pre-determined quantity to the 

minimum to serve as the estimate of 𝐹𝐹0. Here, the pre-determined quantity depends on the extent of the 

moving average and the size of the time window, and is found through simulation. Denote 𝑉𝑉𝑖𝑖[𝑡𝑡] as the 

value of 𝑖𝑖th pixel at the 𝑡𝑡th frame in the raw video data. In the following, all analysis is performed on the 

normalized data, 

       𝑍𝑍𝑖𝑖[𝑡𝑡] = �𝑉𝑉𝑖𝑖[𝑡𝑡]−�𝐹𝐹𝑖𝑖0
𝜎𝜎𝑖𝑖

, 

where the subscript 𝑖𝑖 denotes that the baseline fluorescence and noise variance are location- and  pixel-

specific.  

 

Step 2 (Detecting active voxels): A voxel is defined as a pixel of a certain frame. For example, voxel 

(𝑥𝑥,𝑦𝑦, 𝑡𝑡) denotes the pixel at location (𝑥𝑥,𝑦𝑦) in the 𝑡𝑡th frame in the movie. An active voxel is the voxel that 

contains an activity signal. If a voxel is not associated with any event, it is not considered active. Since an 

event often occupies multiple pixels and extends several frames, we first apply 3D Gaussian filtering to 

smooth the data to reduce the impact of noise. Then, we calculate the z-scores for each voxel in the 

smoothed data. Here, z-score is computed as the value of the voxel divided by its standard deviation, 

which can be estimated as in the normalization procedure above, but now on the smoothed data. All 

voxels that have z-scores larger than a given threshold are considered tentative active voxels. A liberal 

threshold is used here to retain most signals, often at a z-score of 3. We next calculate the size of groups 

of connected tentative active voxels, with spatially connected tentative active belonging to the same group 

and a minimum size threshold (often 4). If a group of tentative active voxels is less than the threshold, all 

voxels in this group are removed, resulting in a final list of active voxels.  
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Step 3 (Identifying seeds for peak detection): Similar to the detection of active voxels, we apply 3D 

Gaussian smoothing to the normalized data and then find all local maxima, defined as connected 

components of pixels with a constant intensity value and with all neighboring pixels having a lower value. 

Considering our time-lapse images as three-dimensional arrays (2D space plus 1D time), each single pixel 

has 26 neighbors. Although each local maximum generally occupies one pixel due to random fluctuation 

inherent in the data, this definition allows a local maximum to occupy multiple pixels of the same 

intensity value. This is helpful for the rare case in which some pixels have saturated values. Because pure 

random fluctuation can also lead to local maxima, we restrict the search of local maxima to active voxels 

only. The resultant local maxima are considered seeds for the purpose of peak detection, the subsequent 

step in the algorithm.   

 

Step 4 (Detecting peaks and their spatiotemporal extent): We partially and temporally extend each seed 

detected above to all voxels that are potentially associated with each event. We call the seed and its 

potential extended voxels the super voxel. Seeds are processed one-by-one, with higher intensity seeds 

processed first. Each seed is first extended temporally, then spatially.  

 The spatiotemporal index (𝑥𝑥0,𝑦𝑦0, 𝑡𝑡0) denotes the seed. When we temporally extend the seed 

backwards and forwards (Supp. Fig 2b), we encounter two main scenarios. In the first, a voxel before 

(𝑥𝑥0,𝑦𝑦0, 𝑡𝑡0) has a value close to the baseline 𝐹𝐹0, and a voxel after (𝑥𝑥0,𝑦𝑦0, 𝑡𝑡0) also is close to 𝐹𝐹0. If a voxel 

has an intensity <20% of the seed value, it is defined as close to baseline. In this scenario, the seed is 

extended temporally until it reaches these two voxels. In the second scenario, extension in either direction 

never meets a voxel with value that is considered close to the baseline before meeting another seed. To 

determine whether we these two seeds should be merged, we denote 𝑉𝑉min the minimum value between the 

two seeds and calculate the difference between 𝑉𝑉min and value at the seed (𝑥𝑥0,𝑦𝑦0, 𝑡𝑡0). If the difference is 

larger than the threshold Δ𝑡𝑡𝑡𝑡, which is 2𝜎𝜎0 by default for most data, the minimum is considered the end 

of the extension. Otherwise, these two seeds are merged and the extension continues. For very high peaks, 

this threshold is too low for perceptually meaningful separation. To split two adjacent high Δ𝐹𝐹 peaks, a 

strong decrease between them is needed and the threshold is changed to  Δ𝑡𝑡𝑡𝑡 =

max(0.3𝛥𝛥𝛥𝛥(𝑥𝑥,𝑦𝑦, 𝑡𝑡0), 2𝜎𝜎0).  

 Once each seed 𝑖𝑖 is temporally extended from (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 , 𝑡𝑡𝑖𝑖) to a peak (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , (𝑡𝑡𝑖𝑖 − 𝑎𝑎𝑖𝑖): (𝑡𝑡𝑖𝑖 + 𝑏𝑏𝑖𝑖)), (𝑡𝑡𝑖𝑖 −

𝑎𝑎𝑖𝑖): (𝑡𝑡𝑖𝑖 + 𝑏𝑏𝑖𝑖) denotes a time window spanning from 𝑡𝑡𝑖𝑖 − 𝑎𝑎𝑖𝑖 to 𝑡𝑡𝑖𝑖 + 𝑏𝑏𝑖𝑖. We define reference curve 𝑐𝑐𝑖𝑖 as the 

average of nine pixels around (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) in that time window. To spatially extend each peak to cover most 

signals-of-interest, each seed becomes a set of voxels ⋃ �𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖 , (𝑡𝑡𝑖𝑖 − 𝑎𝑎𝑖𝑖): (𝑡𝑡𝑖𝑖 + 𝑏𝑏𝑖𝑖)�𝐾𝐾
𝑘𝑘=1  after extension. 

The corresponding spatial footprint, 𝐾𝐾 pixels {(𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖),𝑘𝑘 = 1 …𝐾𝐾}, is spatially connected. During this 

process, each seed is associated with two sets. The first is Ω𝑖𝑖, which are pixels already associated with 
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seed 𝑖𝑖. Each pixel in this set, (𝑥𝑥𝑖𝑖1,𝑦𝑦𝑖𝑖1), e. g., corresponds to a set of voxels: (𝑥𝑥𝑖𝑖1,𝑦𝑦𝑖𝑖1, 𝑡𝑡𝑖𝑖 − 𝑎𝑎𝑖𝑖: 𝑡𝑡𝑖𝑖 + 𝑏𝑏𝑖𝑖). The 

second set is Θ𝑖𝑖, the set of pixels to avoid. Initially, Ω𝑖𝑖 = {(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)} and Θ𝑖𝑖 is empty. 

The spatial extension operation for each seed is repeated a maximum of 40 rounds. For each seed, Ω𝑖𝑖 

is spatially dilated with a 3x3 square, thus only testing pixels adjacent to the Ω𝑖𝑖boundary. Next, Θ𝑖𝑖 is re-

moved from the dilated region. We then test whether each new pixel should be added to Ω𝑖𝑖 or not. Be-

cause for each given new pixel and each time window we have a time series, we can calculate the Pearson 

correlation coefficient between this time series and 𝑐𝑐𝑖𝑖. The correlation coefficient is converted to a z-score 

using the Fisher transform. If the z-score is higher than the user-defined given threshold, the pixel is add-

ed to Ω𝑖𝑖. Otherwise, it is added to Θ𝑖𝑖. Because all seeds are local maxima, no time alignment is needed 

here. 

During the extension process, different super voxels can meet. We want to stop the extension process 

of one super voxel only when it meets the bright part of other super voxels (50% rising to 50% decaying). 

For example, we have two peaks from two seeds: �𝑥𝑥1,𝑦𝑦1, (𝑡𝑡1 − 𝑎𝑎1): (𝑡𝑡1 + 𝑏𝑏1)� and �𝑥𝑥2,𝑦𝑦2, (𝑡𝑡2 −

𝑎𝑎2): (𝑡𝑡2 + 𝑏𝑏2)�. Assume the first seed has already occupied pixel (𝑥𝑥3,𝑦𝑦3). When the second seed tries to 

determine whether it should extend to (𝑥𝑥3,𝑦𝑦3) or not, we calculate whether (𝑡𝑡1 − 𝑎𝑎1: 𝑡𝑡1 + 𝑏𝑏1) and (𝑡𝑡2 −

𝑎𝑎2: 𝑡𝑡2 + 𝑏𝑏2) sufficiently overlap. Two peaks sufficient overlap if the 50% rising to 50% decay ranges of 

the two peaks overlap. Thus, if (𝑡𝑡1 − 𝑎𝑎1: 𝑡𝑡1 + 𝑏𝑏1) and (𝑡𝑡2 − 𝑎𝑎2: 𝑡𝑡2 + 𝑏𝑏2) sufficiently overlap, seed two 

will not include pixel (𝑥𝑥3,𝑦𝑦3) and it is added to Θ2. Otherwise, it is added to Ω2. After spatial extension is 

complete, we remove super voxels with Ω𝑖𝑖 < 4 pixels or total voxels < 8 pixels.  

 

Step 5 (Clustering peaks to identify candidates for super-events): A super-event is defined as a group of 

events connected spatially but originating from different initiation locations. One example is a large burst 

in the in vivo dataset, where multiple events start at different places but at similar time. Another example 

is a set of two events originating from different places, propagating and meeting each other in the middle. 

Thus, in a spatial direction, we may encounter multiple events within the super-event. However, we never 

encounter two or more events in the temporal direction. To identify candidates for super events, we next 

cluster peaks, but these results are identical to super-events, because voxels extended to be associated 

with the peak may have some errors. As discussed below, the candidate super-event must be purified to 

resolve the final super-event.  

 Since each super-voxel extends from its seed (representative peak), we also call the process of 

clustering super-voxels as clustering peaks for conceptual convenience. If two super-voxels are connected 

and their rise-time difference is less than a given threshold (as discussed below), they are considered 

neighbors. For two super-voxels, if 10% of pixels of either super-voxel is also occupied by the other, they 

are a conflicting pair. For each super-voxel, we list all its neighbors and conflicting counterparts. To 
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cluster peaks/super-voxels (Supp. Fig. 2b), we begin with the earliest occurring super-voxel and check 

each of its neighbors. If a neighbor is not conflicting with that super-voxel, it is combined with the super-

voxel. This process is repeated until no new super-voxel can be added. Then we move to the next earliest 

super-voxel that is not added to any others, and repeat this process. An iterative approach prioritizes 

events that are close to each other. Supposing the largest rising time difference for super-voxels that is 

allowed to be neighbors is 10, we start the procedure with the allowed difference as 0 and merge the super 

voxels. Then we increment the allowed difference by 1 and repeat the step above, until the rising time 

difference allowed reaches 10.  

 

Step 6 (Estimating signal propagation patterns): For each spatial location/pixel, an associated time series 

indicates the signal dynamics. Estimation of propagation patterns is formulated as a mathematical 

problem of time alignment between the time series at each location and a representative/reference time 

series. Time alignment results directly relay the delay of a given pixel at a time frame with respect to the 

representative dynamics. Conventionally, time alignment is accomplished by dynamic time warping 

(DTW)34. However, DTW is notoriously prone to noise, which leads to unreliable propagation estimation. 

Since two adjacent pixels have more similar propagation patterns than two distant pixels, we impose a 

smoothness constraint on neighboring pixels using our recently developed mathematical model—

Graphical Time Warping (GTW)—to explicitly incorporate this constraint13. However, since we do not 

have a representative time series at the very beginning, our strategy is to guess a reference time series 

from the data and align time series at each pixel to this reference. Then, we use alignment results to obtain 

an updated reference, and iterate the process of alignment and update of reference until it converges 

(Supp. Fig. 2b). 

 To initialize the reference time series, we search for the voxel with the largest Δ𝐹𝐹/𝐹𝐹 value and 

record that voxel’s location. The initial reference is then estimated as the average time series of the pixels 

in the 5x5 square around that location, with the square size a user-tunable parameter. The voxel with the 

largest Δ𝐹𝐹/𝐹𝐹 value is used because it has the best signal-to-noise ratio. We do not use the time series at a 

single pixel to initiate the reference because it is noisy, nor do we use the average time series over all the 

pixels, because the average would be a large distortion to the representative dynamics due to signal 

propagation. Next, we supply the neighborhood graph and the reference time series to GTW to calculate 

the time alignment between all pixels and the reference. For each pixel, we consider the 8 pixels around 

the 3x3 grid as neighbors. A GTW parameter controls the balance between fitness and smoothness of the 

alignment. We empirically found 1 to be a good value. To control computational complexity, GTW has 

another parameter corresponding to the maximum time delay allowed. In all our experiments, we found 

no time delay induced by propagation is larger than 11. So, we set that parameter to 11.  
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Step 7 (Detecting super-events): Once the time alignment between the representative dynamics and the 

time series at each pixel is obtained, we refine candidate super-events to obtain final super-events. A 

super-event is defined as detected when the representative dynamics and all voxels are associated with the 

super-event. Since each voxel is jointly specified by spatial location and time frame, we next determine 

which pixels and time frames jointly belong to the super-event. Since representative dynamics are already 

obtained in the previous step of propagation estimation, here we focus on how to determine which pixels 

and which time frames are covered by the super-event. 

 Because each pixel corresponds to a time series, if a pixel belongs to a super-event, its time series 

should be highly correlated to the representative dynamics of the super-event. Note that the correlation is 

calculated based on the aligned time series to account for the time distortion due to signal propagation. 

Thus, we first obtain a new time series for each pixel based on the time alignment obtained previously. 

Then, we calculate the Pearson correlation between each new time series and the representative dynamics, 

leading to a correlation map. We further convert the Pearson correlation to z-score using Fisher’s 

transform. Here, we do not use a threshold for each z-score to determine whether that pixel is statistically 

significantly associated with the super-event because that ignores the neighborhood information in the 

correlation map and is less statistically powerful. Instead, incorporating the information from the 

neighboring pixels, we apply our recently developed order-statistics-based region-growing method to 

determine which pixels should be associated with the super-event (Supp. Fig. 2b)35.  

 To determine which time frames are associated with the super-event, we now examine the 

representative time series, calculating the maximum intensity along the curve and considering all time 

frames with intensity >10% of the maximum to be associated with the super-event. Different pixels may 

have different time frames associated with the super-event. We use the time alignment results above to 

identify the time frames associated with the super-event for each pixel. A time frame at a given pixel is 

associated with the super-event as long as its corresponding time frame in the representative curve is 

associated with the super-event.  

 

Step 8 (Splitting super-events into individual events with different sources): For each super-event, we 

have a 2D map of rise-time for each pixel by re-aligning the super-event using GTW. The local minima in 

this map are potential originating locations for events in this super-event. However, noise may produce 

random local minima, which do not correspond to true originating locations and are removed by merging 

with spatially adjacent local minima. We use rise-time to determine whether two local minima should be 

merged. This idea can be illustrated with the following 1D example: [1 2 4 2 2]. The two local minima are 

the first and the last pixel (pixel 𝑖𝑖 and 𝑗𝑗, respectively), occurring at time 1 (𝑡𝑡0) and 2 (𝑡𝑡1), respectively. To 
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determine whether they should be merged, we find all paths connecting them. In this example, there is 

only one path and the pixel with the latest rise-time in this path is the third pixel (rise-time=4 (𝑡𝑡𝑚𝑚)). The 

distance between pixel 𝑖𝑖 and pixel 𝑗𝑗 induced by this path is therefore defined as max (𝑡𝑡𝑚𝑚 − 𝑡𝑡0, 𝑡𝑡𝑚𝑚 − 𝑡𝑡1). If 

the distance induced by any path is less than the given threshold, these two local minima are merged. 

We next separate super-events into individual events by simultaneously extending all remaining lo-

cal minima. Each remaining local minimum corresponds to one event. Pixels attached to a local minimum 

are defined as growing. With each iteration, we add the earliest-occurring pixel to a growing event. If the 

pixel under examination is adjacent to a growing event, it is done, and then we find the next earliest oc-

curring pixels. Otherwise, we add it to the waitlist and continue with the next earliest occurring one. Each 

time a pixel is successfully added to a growing event, pixels in the waitlist are checked as to whether they 

can be added to growing events. When the growing process ends, all individual events are obtained.  

  

Generation of simulation data sets 

Spatial footprint templates: We built a set of templates for event footprints from real ex vivo data which 

serve as the basis for the ROI maps in the subsequent step. Footprints are processed by morphology clos-

ing, hole filling, and morphology opening to clean boundaries, with 1683 templates generated total. 

 

ROI maps: 2D ROI maps generated from spatial footprint are used to generate events in subsequent steps. 

Different simulation types have a different preference for the size of the ROIs. Maximum number of ROIs 

is set at 100; ROIs are randomly chosen and placed onto a 2D map <5 pixels from existing ROIs.  

 

Simulation dataset 1 (size-varying events): To simulate event size changes, we generate events for each 

ROI and then alter them to have different sizes so that each ROI in the 2D map will be related to multiple 

events whose centers are inside that ROI, but whose sizes are different. The degree of size change is char-

acterized by the odds ratio (maximum = 5) between the maximum and the minimum allowable sizes of 

the events associated with that ROI. For example, with an odds ratio of 2, the size of the event will range 

from 50–200% of the ROI area. The chances for the event size to be larger or smaller than the area of the 

ROI are the same. To achieve this, we generate a random number between 1 and 2, then randomly assign 

whether to enlarge size by multiplying or shrink by dividing by this factor. Event duration is four frames.  

To determine the frames at which the event occurs, we first put the event 10–30 frames (randomly) 

after the ROI occurs. Spatial distance of this event from others must be ≥3 pixels and temporal distance 

≥4 frames. Part of the event may be inside the spatial footprint of other ROIs, as long as its spatiotem-

poral distance to other events is larger than the threshold set above. Events are generated for each ROI; on 

average, we simulate 250 frames with 800 events on 90 ROIs.  
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Simulation dataset 2 (location-changing events): To simulate event location changes, we generate events 

with the same size for each ROI and shift them to nearby locations. Thus, each ROI (450–550 pixel size) 

is related to multiple events near to that ROI. Denote 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 the distance between the event center and the 

ROI center. Denote 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 the diameter of the ROI. The degree of location change is quantified by the ra-

tio between 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. For example, if we set 0.5 as the maximum degree of location change, the 

distance of the center of a new event to the ROI will be 0–0.5 times the diameter of the ROI. If the ratio is 

0, we simulate a pure ROI dataset. The new event may be located any direction from the ROI, randomly 

picked from 0–2π. Shapes of new events are randomly picked from the templates, so may be different 

from the ROI while size is constant. Event duration is four frames, and the remaining steps are the same 

as above. On average, we simulate 250 frames with 800 events on 90 ROIs. 

 

Simulation dataset 3 (propagating events): We simulated two types of propagation: growing and moving, 

leading to three types of synthetic datasets: growing only, moving only, and mixed. These three types are 

generated similarly. The ROI map is generated as above, and ROI sizes are 4,000–10,000 pixels, with 

events generated inside each ROI. In comparison, events in the size-change and location-change simula-

tions can be (fully or partially) outside their corresponding ROIs. We simulate only one seed (starting 

propagation point) in each ROI. For each event, we generate a rise-time map (for each pixel in the ROI) 

and construct event-propagation based on the map. We obtain this map by simulating a growing process 

starting from the seed pixel, with the seed pixel active at the first time-point. At the next time point, its 

neighboring pixels are active with a variable success probability. Growth continues until ≥90% of pixels 

in the ROI are included in the event. Based on the rise-time map, we identify frames at which pixels be-

come active in the event. To determine when the event ends, we treat growing and moving propagation 

differently. In growing propagation, all pixels are inactive simultaneously 2 frames after the last pixel be-

comes active. For moving propagation, the duration is 5 frames. Typically, we generate approximately 

140 events in 14 ROIs for each synthetic dataset. 

 

Simulate various SNRs: Gaussian noise is added to the synthetic data to achieve various SNRs. We define 

the signal intensity as the average of all active pixels in all frames. SNR is defined as 

20 × log10
average signal intensity
noise standard deviation

.  

When we change the degree of location change, size change, and propagation duration, we add noise with 

10 dB SNR. To study the impact of SNR on size changes, size-change degree is 3. For location changes, 

distance-change ratio is 0.5 while varying SNRs. For propagation, propagation duration is 5 frames. Sev-

en SNRs are tested: 0, 2.5, 5, 7.5, 10, 15, 20 (all in dB). 
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Post-processing simulated data: We set the average signal intensity at 0.2, with a range from 0–1. Syn-

thetic data is spatially filtered to mimic blurred boundaries in real data. The smoothing is performed with 

a Gaussian filter with a standard deviation of 1. Signals with intensity <0.05 after smoothing are removed. 

Remaining signals are temporally filtered with a kernel with a decay τ of 0.6 frames. The rising kernel is 

linear. For propagation simulation, data is down-sampled by five. Next, we perform a cleaning step. For 

each pixel in each event, we find the highest intensity (x_peak) across frames. For that pixel, we set sig-

nals that are <0.2 times of x_peak to 0. Finally, a uniform background intensity of 0.2 is added (except for 

GECI-quant, where no background is added; see below). 
 
Application of AQuA and peer methods on the simulation data sets 

 Based on our knowledge about simulated datasets, we apply specific considerations for each 

analytical method in order to set optimal parameters for each. In this way, we aim to assess the 

methodological limit of each method, rather than suboptimal performance due to inadequate parameter-

setting. We expect that the performance of the peer methods on simulation data is an overestimate of their 

performance on real experimental data, because here we take advantage of the ground-truth knowledge, 

which is not available for experimental astrocyte data.  

 

Event detection using peer methods: AQuA and CasCaDe report detected events, while other methods 

report detected ROIs. For a consistent comparison, we detect events from those methods that use ROIs. 

Once ROIs are detected, we calculate the average dF/F curve for each ROI, as follows: The curve is 

temporally smoothed with a time-window of 20. The minimum value in the smoothed curve is considered 

baseline. Assume the minimum value occurs at time 𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. The baseline is then subtracted to obtain the 

dF curve. The noise standard deviation σ is estimated using 40 frames around 𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. We then obtain a z-

score curve as dF/σ. A large z-score indicates an event; we use a z-score threshold of 𝑧𝑧0. The value 𝑧𝑧0 is 

set according to ground-truth knowledge, so that the smallest-size event in the simulation data is detected 

by this threshold. Denote 𝑥𝑥0 and 𝑠𝑠0 the peak intensity and the size for the smallest event in the ground 

truth. We also denote the ground truth noise level as 𝜎𝜎0. Then, the threshold is calculated as, 

    𝑧𝑧0 = min (0.9𝑥𝑥0�𝑠𝑠0
𝜎𝜎0

, 10).  

 We clip the score to 10 to avoid setting large values for high SNR. For CaSCaDe, we supply this 

value as the peak intensity threshold parameter. 

 Using the z-score curves and threshold, we detect events from ROIs for CaImAn, Suite2P, and 

GECI-quant. For each z-score curve, we find all frames with values >𝑧𝑧0. Each frame is a seed for an 
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event. Assume the z-score for that frame is 𝑧𝑧1 and we search before and after that frame. If the intensity 

of the frame is ≥ 0.2𝑧𝑧1, the frame is associated with the event. If we meet frames with intensities <

0.2𝑧𝑧1, we stop searching that direction. Once finished, we obtain all frames associated with the event. We 

continue with another seed frame to find another event. Note that if a frame is considered part of an event, 

we do not consider it as a seed for another event, even if it is >𝑧𝑧0. The spatial footprint is fixed for all 

frames in an event, based on the ROI detected. Combining spatial footprint and frames, we obtain events 

for each ROI and identify all voxels belonging to an event. 

  

Parameter setting for AQuA: The parameters of AQuA are based on the ex-vivo-GCaMP-cyto preset with 

the following modifications: For different noise levels, we apply different smoothness levels. The 

smoothing is performed only spatially and values are empirically chosen. The smoothness parameter is 

the standard deviation of the Gaussian smoothing kernel used. 

SNR (dB) 0 2.5 5 7.5 10 15 20 

Smoothness 1 0.9 0.8 0.7 0.6 0.5 0.1 
 

We do not simulate motion of the field-of-view, so we do not discard any boundary pixels, and we set 

regMaskGap = 0. We do not simulate Poisson Gaussian noise; we use additional Gaussian noise only, so 

PG = 0. Event sizes in the simulation are >200 pixels, so we set the minimum event size to be a value 

much smaller: minSize = 16. An event may not have more than one peak, so we set cOver = 0. We do not 

simulate temporally adjacent events, so we set thrTWScl = 4. We do not use proofreading, so we choose a 

more stringent z-score of events: zThr = 5. 

 

Specific considerations for CaSCaDe: We use the following parameters for CaSCaDe: According to the 

duration and temporal distances of the simulated events, we can safely set peak distance 

p.min_peak_dist_ed = 3 and minimum peak length p.min_peak_length = 2. We set the spatial smoothing 

filter size in the 3D smoothing function (bpass3d_v1) according to the size of the event, so we set p.hb 

equal to 2x median of the radius of the spatial footprint of all events. We use this setting because the 

default settings could not detect larger events on the simulation data sets. For temporal smoothing, we set 

p.zhb=21. We do not need to correct background, so we set p.int_correct= 0. The minimum peak intensity 

is p.peak_int_ed = z0, as discussed above. Minimum event intensity is p.min_int_ed = min(2, 

p.peak_int_ed *0.2). We modified the low-frequency part of the watershed segmentation step to allow 

larger events to be detected, by changing the function bpassW inside the function domain_segment. We 

replaced the noise estimator in CaSCaDe (function estibkg) with the more robust one used by AQuA. 
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 CaSCaDe uses a supervised approach to classify detected events. Instead of manually labeling a 

large number of events and training many SVM models, we directly use ground truth to perform training. 

For example, for each event detected by CaSCaDe, we check the ground-truth data to test whether it is 

(part of) a true event. If so, it is retained; otherwise, it is discarded. 

  

Specific considerations for GECI-quant: GECI-quant requires user input at each step. Here, we describe 

how to automate these steps by taking advantage of ground-truth information. This allows us to test many 

conditions and repeat many times. 

 First, we do not add background signals to the synthetic data, so background subtraction is ignored. 

The domain- and the soma-detection steps require manual thresholding. We estimate the best threshold 

using the ground-truth data for each simulation. To do so, we scan 255 thresholds and use the one that 

leads to the best correlation between binarized data and ground truth. We next cleaned the binarized 

signals with sizes <4 pixels. The data here is also smoothed as it is in GECI-quant (3x3 spatial averaging). 

Events with spatial footprints < 1,000 pixels are treated as domains and others are treated as somas. The 

soma segmentation step also uses a threshold. We first process the data as in GECI-quant: for every three 

frames, a standard-deviation map is calculated so that each voxel in ground-truth data is associated with a 

standard deviation value. The average of all standard deviations from the ground-truth data is used as the 

threshold.  

 We next made the entire analysis pipeline automatic. Fiji is called from the command line in each 

step and parameters are passed as well. The final ROIs from Fiji are brought back into MATLAB. ROIs 

are > 15 pixels in area. All other parameters are unchanged, including those for the particle detector. Note 

that this modification cannot be used as an automated version of GECI-quant for real applications since it 

relies on ground-truth information.  

 

Specific considerations for CaImAn: We experimented with different parameters for CaImAn and found 

the following set of parameters performed best on simulation data. As event size can be large, we enlarge 

the patch size, so patch_size = [128,128] and overlap = [32,32]. Components to be found is set to K = 50. 

The standard deviation of the Gaussian kernel (half size of a neuron) is enlarged to tau = 16. Maximum 

size is 5,000 and the minimum size is 25. Decay time is 0.5. Other parameters are based on default 

settings. No spatial or temporal down-sampling is used. Adjusting these parameters dis not impact results 

on our simulated data. We used the 5/5/2018 version downloaded from 

https://github.com/flatironinstitute/CaImAn-MATLAB. 
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Specific consideration for Suite2P: The most critical parameter for Suite2P is neuron size. We set 

db.diameter equal to the minimum between 50 and the median of the radius of the spatial footprint of all 

events. Setting the diameter too large leads to an out-of-memory issue. We bypass the registration step. 

We used the 6/4/18 version downloaded from https://github.com/cortex-lab/Suite2P. 

 
Performance evaluation on the simulated data 

To evaluate the accuracy of detected events, we quantify the intersection over the union (IoU). We 

consider all event voxels, not only pixels as in ROI-based methods. For each detected event 𝑖𝑖, we find all 

the ground-truth events that have common voxels with event 𝑖𝑖. For each such ground-truth event, e.g., 

event 𝑗𝑗, we calculate an IoU score (also known as Jaccard index) between this pair of events as the fol-

lowing, 

𝐼𝐼𝐼𝐼𝑈𝑈𝑖𝑖,𝑗𝑗 =
Number(Voxels in event 𝑖𝑖 ∩ Voxels in event 𝑗𝑗)
Number(Voxels in event 𝑖𝑖 ∪ Voxels in event 𝑗𝑗)

. 

When a detected event can be perfectly matched with a ground-truth event, its IoU score is 1. A score of 0 

indicates this pair of events has nothing in common. For each detected event 𝑖𝑖, we find the maximum IoU 

score among all pairs between this event and a ground-truth event. We denote this maximum score as 

𝐼𝐼𝐼𝐼𝑈𝑈𝑖𝑖.  Similarly, we can compute a score 𝐼𝐼𝐼𝐼𝑈𝑈𝑗𝑗  for the ground truth event 𝑗𝑗. The final IoU score is ob-

tained by averaging over all events, including detected and ground-truth events. Supposing we have I de-

tected events and 𝐽𝐽 ground truth events, where 𝐼𝐼 and 𝐽𝐽 are not necessarily equal, we compute the final 

score as the following, 

𝐼𝐼𝐼𝐼𝐼𝐼 =
∑ 𝐼𝐼𝐼𝐼𝑈𝑈𝑖𝑖𝐼𝐼
𝑖𝑖=1   +  ∑ 𝐼𝐼𝐼𝐼𝑈𝑈𝑗𝑗

𝐽𝐽
𝑗𝑗=1

𝐼𝐼+𝐽𝐽
. 

All simulation is performed on a workstation with 16 cores, 128 GB RAM and 6TB hard drive. We 

use MATLAB 2018a on Windows 10 Enterprise Edition. GECI-quant is run on Fiji with ImageJ version 

1.52h. Each simulation is repeated 10 times. The mean and 95% confidence interval (CI) of IoU score is 

calculated and plotted. The CI is calculated as [𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 − 2𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠, 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 + 2𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠], where 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 is the estimat-

ed mean and 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠 is the estimated standard deviation (𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠) based on 10 repetitive runs. 

 

Open-source software for analyzing and visualizing dynamic fluorescent signals in astrocytes.  

 Applying software engineering principles, we developed an open-source toolbox for astrocyte 

fluorescent imaging data with detailed user guidelines. The software not only implements the AQuA 

algorithm for detecting events, but also provides an integrated environment for users to see the results, 

interact with the analysis, and combine other types of data. There are two versions of the software with 

the same functionality, based on MATLAB or Fiji. The software is freely available at 
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https://github.com/yu-lab-vt/aqua. Detailed documents and example applications can be found there. 

Here, we highlight several important functions of the software.  

 First, the software implements AQuA and provides several options to export the event-detection 

results, including TIFF files with color-coded events, event features in Excel, and MATLAB or Java data 

structures to be used by other programs. Second, the software can display analysis results by adding color 

to the raw video, where color encodes the value of a user-defined extracted feature such as propagation 

speed. Users can specify which feature to be displayed, either an existing feature in AQuA or a user-

designed feature based on features provided by AQuA. We provide several pre-defined colormaps, but 

allow users to manually define colormaps as well. AQuA also provides a side-by-side view, to 

simultaneously display two features or a raw video plus one feature. Third, the software provides a 

convenient way to interactively view detected events and their associated features. By clicking on an 

event, the dF/F curve for the event is shown in a separate panel below the video, and the time-frames 

during which the event occurs are highlighted in red. The values of several other features for that event 

are also shown in another panel. The software allows multiple events to be selected simultaneously, so 

that their curves and features can be plotted together and compared. Fourth, the software provides both 

automatic and manual ways to proofread the results. For automatic proofreading, events are filtered by 

setting desired ranges for features-of-interest. Alternatively, users can choose the ‘delete/restore’ button 

and manually click an event to remove it. Fifth, the software provides flexible ways to incorporate region 

or landmark information. Users can manually supply regional information such as the cell boundary, or 

landmark information such as the location of a pipette for pharmacological application. Users can also 

load region or landmark information from other data sources, such as another fluorescence channel that 

captures cell morphology. The software can extract landmark-related features for each event, including 

the direction of propagation relative to a landmark. 
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Figures and Figure Legends 
 
 
 

 
 
Figure 1. AQuA algorithm. (a) Flowchart of AQuA algorithm. Raw data is visualized as a stack of 
images across time with grey level indicating signal intensity. In the detect peaks panel, five peaks are 
detected and highlighted by solid diamonds, each color denoting one peak. Based on the single-cycle rule 
and spatial adjacency of the apexes of each peak, peaks are clustered into spatially disconnected groups. 
Apexes are labelled as solid dots. Based on smoothness, propagation patterns are estimated for each peak 
group. By applying the single-source rule, two events are detected for peak group 1. Three total events are 
detected. (b) Feature extraction. Based on the event-detection results, AQuA outputs four sets of features 
relevant to astrocytic activity: 1) propagation related (path, direction, and speed); 2) source of events, 
indicating where an event is initiated; 3) features related to the event footprint, including area and shape. 
Event 2 is plotted here; 4) features derived from the dF/F dynamics.  
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Figure 2. Performance comparison among image-analysis methods. (a–c) Schematic (top) and results 
(bottom) of performance of five image analysis methods (AQuA, GECI-quant, CaSCaDe, CaImAn, and 
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Suite2P) on simulated datasets, independently changing event size (a), location (b), and propagation 
duration (c). In results, change of independent parameter is shown in left panel, and varying SNR in right. 
For each result, the smallest value of the independent parameter corresponds to a simulation under pure 
ROI assumptions. The larger the values, the greater the violation of the ROI assumptions. IoU 
(intersection over union) measures the overlap between detected and ground-truth events. An IoU=1 is the 
best achievable performance, meaning that all detected events are ground-truth and all ground-truth 
events are detected. Error bars indicate the 95% confidence interval calculated from 10 independent 
replications of simulation, where each simulation contains hundreds of events.  
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Figure 3. AQuA features capture heterogeneities among single astrocytes. (a) Representative 
GCaMP6f ex vivo image (left) with AQuA events overlaid from 1 min of a 5 min movie. Soma marked 
with black s. (Scale bar = 50μm; Supplemental movie 1). Right: Representative image sequence for each 
propagation direction class (blue=static, pink=toward soma, purple=away from soma; scale bar=20μm. 
Soma direction marked with s and white arrow. (b) Spatiotemporal plot of Ca2+ activity from 1 min of 
movie. Each event is represented by a polygon that is proportional to its area as it changes over its 
lifetime. (c) Distribution of dynamic and static events as a function of minimum distance from soma (chi-
square test, ***p<0.001, n=5 slices, 11 cells). All bin widths calculated by Freedman-Diaconis’s rule. (d) 
Left: Propagative event size versus starting distance from soma, segregated by propagation direction. 
Dashed gray line denotes half the distance between the soma and the cell border. Right: Average event 
area for those that start <50% (top) and >50% (bottom) of the distance from the soma, (one-tailed paired 
t-test, *p<0.05). (e) Left: Event duration versus starting distance from soma. Right: Average event 
duration for those that start <50% (top) and >50% (bottom) of the distance from the soma (one-tailed 
paired t-test, *p<0.05). (f) Two event-based measurements of frequency: events with activity overlapping 
in time (top) and in space (bottom; scale bar=50μm). Median (red) and interquartile range (blue) from the 
three cells in cluster 1 and the eight cells in cluster 2 (one-tailed Wilcoxon rank sum, ***p<0.001). (g) 
After t-SNE plotting of Ca2+ activity using features calculated from ROIs and 5x5μm tiles (top), 
quantification of centroid distances between cells from cluster 1 and cluster 2 (bottom, one-tailed paired t-
test, ***p<0.001). 
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Figure 4. AQuA resolves astrocytic Ca2+ propagation directionality across scales. (a) Representative 
in vivo GCaMP6f images during a burst period (top) and inter-burst period (bottom) with overlaid AQuA-
detected events (scale bar=50μm). (b) Population Ca2+ events represented as percentage of the imaging 
field active as a function of time. Burst periods (pink) are identified when Ca2+ activity exceeds more than 
1% of the active field of view and exceeds more than 10% of the maximum number of event onsets. (c) In 
vivo Ca2+ events propagate with specific directionality. Top: representative propagative event that 
occurred during the burst period in panel a. (scale bar=25μm). The propagation direction (change of 
centroid relative to its original location) for each frame is overlaid on the event (right). Bottom: Total 
propagation distance versus event size for all events within bursts (n=6 mice, 66 bursts, 14,967 events). 
(d) To test consistency of local directionality during bursts, sixteen 96x96μm tiles are overlaid on images. 
(e) Event propagation direction from all events over the entire field in the burst shown in d. Length of 
arrow indicates propagation distance. (f) Top: All events within highlighted tile in d (red square) for five 
burst periods, color-coded by propagation direction (top). Bottom: Event propagation direction 
distributions (P=posterior; A=anterior; M=medial; L=lateral). (g) Cumulative distribution of percentage 
of bursts with events (within individual tiles/regions) propagating in the same direction in actual (solid) 
and simulated (dashed) data (one-tailed Wilcoxon rank sum, ***p<0.001) (h) Two representative maps of 
population burst propagation direction with each event color-coded by their onset time relative to the 
beginning of the burst period, demonstrating variability of burst size. (i) Burst propagation direction 
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calculated from onset maps in h (n=66 bursts). Event locations from the first 20% of the frames after burst 
onset are averaged together to determine burst origin. Event locations from 20% of the last frames after 
burst onset are averaged together and the difference between this and the origin determines burst 
propagation distance. Red arrow denotes average of all bursts. 
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Figure 5. Extracellular glutamate event detection reveals differences between astrocytic and 
neuronal expression of GluSnFR. (a) Representative images of ex vivo slices with expression of 
astrocytic (left) or neuronal (right) GluSnFR. Color indicates detected events. Those with dynamic shape 
are shown in magenta, and static events in cyan. Scale bar = 50μm. (b) Examples of timecourse of 
astrocytic (left, top) and neuronal (right, top) glutamate events. Scale bar = 10μm. Raster plot of area of 
astrocytic (left, bottom) and neuronal (right, bottom) glutamate events (n = 15/cell type). (c) Ratio of 
events that change shape over time (magenta) to events that do not (cyan). (d) Size dynamics (area 
increase [left] and decrease [middle] per frame) and shape (circularity index, right) of glutamate events 
when GluSnFR is expressed on astrocytes (red) or neurons (blue). Same color scheme continues 
throughout figure. (e) Representative small and large glutamate events and corresponding dF/F traces. 
Scale bar = 10μm. (f) Amplitude (top), rise time (bottom left), and decay time (bottom right) differences 
between all astrocytic and neuronal GluSnFR events. (g) Correlations between event size and amplitude 
(left), rise time (middle), and decay time (right). Dashed line represents size threshold dividing small 
events from large (see Supp. Fig 11for details). (h) Summary quantification of differences in amplitude 
and dynamics between small (left) and large (right) astrocytic (red) and neuronal (blue) GluSnFR events. 
Data are shown as mean ± SEM.  
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Supplemental Figure 1: Eight steps in the AQuA algorithm. The eight steps can be grouped into four 
modules indicated by brackets below panels. The last three modules are further illustrated in Supp. Fig. 2.  
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Supplemental Figure 2: Schematic illustration of three major modules in AQuA algorithm. Curves 
and regions taken from a real data set. (a) AQuA flowchart, with three gray bars below indicating where 
the three major modules are located with respect to the AQuA flowchart. (b) detect and cluster peaks: 
curves in the detect peaks by curve panel are associated with the location labeled by the red diamond in 
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the seed location panel. One curve may have multiple peaks, which are detected one-by-one. Once a peak 
is detected at a seed location, the peak is spatially extended to include its neighboring pixels as in the 
grow to all pixels with signals panel. Clustering of peaks starts from the peak with the earliest onset time 
and includes its spatially adjacent peaks based on the two inclusion rules shown in the grow to all pixels 
with signals panel. Two peaks at one location are never clustered into one group. Once the greedy search 
strategy can't find more peaks to include, it stops and one peak group is formed. Then, to find another 
peak group, the greedy search restarts from the first onset in the remaining peaks. The process is repeated 
until no peaks remain. (c) Propagation estimation and super-event detection: This module is applied to 
each peak group. The five colored curves are the dynamics of the five exemplar pixels with corresponding 
colors. The dashed curve is the representative or reference curve. In the graphical time warping model 
panel, red arrows indicate how the reference curve can be warped to represent the curve at each location. 
The graphical time warping model incorporates the information that nearby locations should have more 
similar curves than distant locations. A double-headed arrow between two functions informs the model 
that these curves should be warped similarly to the reference curve. As a comparison, if there is no 
double-headed arrow between curves, dissimilar warping functions are allowed. Once the warping 
function is calculated by the graphical time warping model, onset time is computed for each pixel, 
resulting in an onset time map. Note discontinuity of onset time examples at black triangles. These pixels 
are removed to obtain the final super-event, which may contain multiple events and are subject to the next 
operation. (d) Propagation source and event detection: Local propagation sources are obtained by 
finding local minima on the onset time map. According to the rules described in Methods, some local 
sources will be combined/merged, resulting in global propagation sources. Briefly, if the path between 
two local sources does not have to go through a location with a late onset time, these two local sources are 
combined. Then, each global propagation source leads to an event. Each event is obtained by growing 
each global source to include its neighboring pixels. In the event detection from sources panel, solid dots 
are pixels already assigned to an event, white dots are unexplored pixels, and grey dots are explored but 
await a later decision to be assigned to an event.  
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Supplemental Figure 3: AQuA detects ground truth events across three types of simulated data. 
Color represents event count for each pixel (note colors bars have different scales in each dataset). Red 
borders show ROIs detected by ROI-based methods. (AQuA does not detect ROIs.) (a) Pure ROI. (b) 
Size change odds of 5, indicating size changes 20–500% of ROI. (c) Location change ratio of 1. Average 
distance to the center of the ROI is 100% the ROI diameter. (d) Mixed propagation with 10 frames. 
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Supplemental Figure 4:  Event counts under different SNRs. Study the impact of SNR change when 
size change ratio is 3. The color shows the count of events on that pixel. All plots share the same scale. 
The red lines are the boundaries of detected ROIs. (a) Ground truth event count and the color bar for all 
plots. (b) The event count for all methods under four different SNRs. 
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Supplemental Figure 5: Peer method performance on growing and moving propagation types. 
Schematic (top) and results (bottom) of performance of five image-analysis methods (AQuA, GECI-
quant, CaSCaDe, CalmAn, and Suite2P) on simulated datasets with (a) growing propagation and (b) 
moving propagation. Change of the propagation frame number is shown in the bottom left panel, and 
varying SNR in the bottom right. When the number of propagation frames (not the event duration) is 0, 
the simulation is under pure ROI assumptions. IoU (intersection over union) measures the overlap 
between detected and ground-truth events. An IoU of 1 is the best performance achievable by any 
method, meaning that all detected events are ground-truth and all ground-truth events are detected. The 
bars on each curve indicate the 95% confidence interval calculated from 10 independent replications of 
simulation, where each simulation contains hundreds of events.  
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Supplemental Figure 6: AQuA features enable detailed Ca2+ activity plots. (a) Spatiotemporal plot of 
Ca2+ activity from a five minute movie (the first minute of which is shown in Fig. 3b). Each event is rep-
resented by a polygon that is proportional to the area of the event as it changes over its lifetime, and col-
or-coded by propagation direction. (b) Example time series illustrating how propagation direction is de-
termined (left). A propagation direction score is calculated for each event by multiplying the Euclidian 
distance between the event pixels’ proximity to the soma at each frame by each pixel’s intensity. The 
overall score is the summation of this weighted pixel intensity distance over the lifetime of the event. 
Therefore, if more pixels with higher intensity move toward the soma it will be classified as such (top). 
While some events appear in the plot as moving toward the soma, they are actually calculated as moving 
away from the soma (middle) since we are only displaying the minimum event proximity to the soma in 
the spatiotemporal plot, but calculate each pixel’s proximity to the soma when generating propagation 
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score (see Supplemental Movie 4). Further, pixel intensity is first thresholded at 0.3dF/F. Therefore, 
events that move toward or away from the soma yet have pixel intensities below threshold (bottom) ap-
pear to have a propagation direction when plotted, yet have a zero propagation direction score when cal-
culated. (c) Additional events plotted for each propagation direction category to demonstrate range of de-
tected/plotted events. Scale is not equivalent to events shown in b, but is equivalent within entire group 
shown here.  
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Supplemental Figure 7: Distribution of Ca2+ event features. (a) Left: total number of Ca2+ events that 
are dynamic (gray, propagation direction score > 0) and static (blue, propagation direction score = 0), 
***p < 0.001, n=11 cells, chi-square test for independence. Middle: distribution of Ca2+ event area for 
dynamic and static events, ***p < 0.001, one-tailed Wilcoxon rank sum test. Right: distribution of Ca2+ 
event duration for dynamic and static events, ***p < 0.001, one-tailed Wilcoxon rank sum test (right). (b) 
Distribution, average area, and average duration of  events propagating toward soma (pink), away from 
soma (purple), and static events (blue) compared to starting distance from soma (top row), ending dis-
tance from soma (middle row), and minimum distance from soma (bottom row). Bin widths calculated by 
Freedman-Diaconis’s rule.  
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Supplemental Figure 8: Cluster analysis on features generated from three spatial footprint meth-
ods. (a) Heatmap of z-scores for eight AQuA features (x-axis) describing each event. White boxes demar-
cate events and features from individual cells. (b–c) Top: heatmaps of z-scores for three features describ-
ing the Ca2+ activity at each ROI (b) or tile (c) location. ROIs detected using average projection image 
with a 5μm square filter applied (for ROIs) or 5x5μm tiles, based on fluorescence intensity and size. Ca2+ 
events with signals > 0.03dF/F and two times the noise of each individual trace were selected. Pixels 
within each ROI or tile were averaged and dF/F was calculated by dividing each value by the mean values 
from the previous 25 seconds. (d–f) t-SNE visualizations of each cell’s Ca2+ activity using features calcu-
lated using AQuA (d), ROIs (e), and tiles (f). k-means clustering boundary denoted as dashed line. (g–h) 
t-SNE plots using only subsets of AQuA-calculated features from (a) and (d). (g) t-SNE plot of only the 
features specific to AQuA and not shared with ROI or tile analysis. (h) Plot using only AQuA-extracted 
features that correspond to those in ROI- or tile-based analyses. (i) Comparison of difference between two 
clusters generated from the t-SNE analysis followed by k-means clustering. Note increased separation 
using AQuA-specific features compared to others. (One-tailed paired t-test, ***p<0.001) 
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Supplemental Figure 9: (a) Population Ca2+ events represented as two temporal traces: percentage of 
imaging field active (top) and number of AQuA event onsets (middle). Burst periods (pink) are defined 
from the top trace as periods when Ca2+ activity exceeds 1% of the active field of view (red dashed line, 
top), and exceeds 10% of the maximum number of event onsets (red dashed line, middle). Burst periods 
correlate with wheel velocity of the treadmill (bottom). (b) Burst onset is defined as the first frame in 
which 10% of the peak is exceeded and burst offset is defined as the last frame exceeding 10% of the 
peak. (c) The relationship between all interburst events’ total propagation distance and size, similar to the 
burst events plotted in Fig 4c.  
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Supplemental Figure 10: Comparison of AQuA and Caltracer for event detection of astrocytic 
GluSnFR signals. (a) Applied to the same data sets, AQuA detects 157 events, while Caltracer2,9, using a 
rising faces algorithm, detects 76 events with manually defined single-cell ROIs. (b) ROI example (left) 
and temporal trace with detected events marked by black circle using Caltracer software. Scale bar = 
50μm. (c) AQuA-detected events from the same cell as in (b), and corresponding temporal traces (black 
dot, specific events shown above each trace). Scale bar = 10μm.  
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Supplemental Figure 11: Differences in astrocytic and neuronal glutamate events are robust to 
varying size thresholds. Entire population (a) and distribution (b) of astrocytic and neuronal glutamate 
event size. Exponential fit and expected decay value shown with fit error. (c) Size thresholds set to lower 
(73.42, left) and upper (90.58, left) fit error bounds. Data are shown as mean ± SEM.  
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