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Abstract

The conduction velocity (CV) of action potentials along axons is
a key neurophysiological property central to neural communication.
The ability to estimate CV in humans in vivo from non-invasive MRI
methods would therefore represent a significant advance in neuroscience.
However, there are 2 major challenges that this paper aims to address:
(1) much of the complexity of the neurophysiology of action potentials
cannot be captured with currently available MRI techniques. Therefore,
we seek to establish the variability in CV that can be captured when
predicting CV purely from parameters that can be estimated from
MRI (axon diameter and g-ratio); and (2) errors inherent in existing
MRI-based biophysical models of tissue will propagate through to
estimates of CV, the extent to which is currently unknown.
Issue (1) is investigated by performing a sensitivity analysis on a
comprehensive model of axon electrophysiology and determining the
relative sensitivity to various morphological and electrical parameters.
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The investigations suggest that 89.2 % of the variance in CV is accounted
for by variation in AD and g-ratio. The observed dependency of CV
on AD and g-ratio is well characterised by a previously reported model
by Rushton.

Issue (2) is investigated through simulation of diffusion and relaxometry
MRI data for a range of axon morphologies, applying models of restricted
diffusion and relaxation processes to derive estimates of axon volume
fraction (AVF), AD and g-ratio and estimating CV from the derived
parameters. The results show that errors in the AVF have the biggest
detrimental impact on estimates of CV, particularly for sparse fibre
populations (AVF< 0.3). CV estimates are most accurate (below 5%
error) where AVF is above 0.3, g-ratio is between 0.6 and 0.85 and AD
is below 10 pm. Fortunately, these parameter bounds are typically
satisfied by most myelinated axons.

In conclusion, we demonstrate that accurate CV estimates can be
inferred in axon populations across a range of configurations, except
in some exceptional cases or where axonal density is low. As a proof of
concept, for the first time, we generated an in vivo map of conduction
velocity in the human corpus callosum with estimates consistent with
values previously reported from invasive electrophysiology in primates.

1 Introduction

The conduction velocity (CV) of action potentials along axons is a key
neurophysiological property upon which neural communication depends. While
in vivo CV measurements in peripheral nerves are comparatively trivial, it is
currently not possible to obtain in vivo measurements of CV in the central
nervous system (CNS). The ability to make such measurements, however,
would yield a great deal of insight into how the brain encodes and integrates
information and how such mechanisms are optimised in the human brain
[1,2,3,4,5,6, 7, 8]. Furthermore, being able to image CV in CNS axons in
vwo would allow us to identify individual differences in CV, and examine how
and why CV is altered in healthy development, ageing and disease states.
Previously, simple relationships between axon morphology and CV have
been derived from early electrophysiological and theoretical literature [9, 10,
11, 12, 13, 14, 15] (see [16] for a review). In particular, Rushton [12] derived
a very simple model to predict conduction velocity from g-ratio and axon
diameter. An alternative model derived by Waxman and Bennett [17] models
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CV as a simple correlation with the outer fibre diameter.

Recent developments in MRI acquisition technology and modelling claim
to provide non-invasive estimates of microstructural attributes relevant to
CV, including axon diameter (AD) [18, 19], axonal volume fractions (AVF)
20, 21], myelin volume fractions (MVF) [22, 23] and g-ratios [24, 25]. It
is tempting, therefore, to speculate that one might use this information to
obtain individual specific estimates of CV in vivo. To the authors knowledge,
no peer-reviewed studies have estimated CV from in vivo human MRI, although
one study by Horowitz at al [26] has shown correlation between MRI-based
estimates of AD and inter-hemispheric transfer delay in electroencephalography,
implying MRI-derived measures of AD correlates with CV.

However, beyond the parameters mentioned above, CV depends, to greater
or lesser extent, on a number of parameters that are not currently accessible
in vivo, and yet contribute considerable variability across fibre populations
and across individuals. These include the distance between the nodes of
Ranvier, inter-nodal spacing, and electrical properties of the axonal and
myelin membranes. We address these issues through simulation and then
present some CV estimates in human corpus callosum obtained from in vivo
MRI data

2 Sensitivity of CV to axonal parameters

This section addresses the first issue: How sensitive is CV to axonal parameters
and are simplified models of CV sufficient to capture variance in CV?

The physiological mechanisms of axon potential propagation have a complex
dependency on many parameters that cannot be quantified in wvivo. In
particular, microstructural properties of the nodes of Ranvier, including their
length and diameter, contribute to the surface area on which permeable
ion channels can reside, impacting on the electrical properties of the axon.
Moreover, the inter-nodal distance is important in determining how many
instances of depolarisation are required for an action potential to traverse a
unit length of axon. Given these various factors, it is important to establish
whether it is feasible to obtain accurate estimates of CV from a simplified
model using only parameters that have previously been reported as quantifiable
using MRI.

A sensitivity analysis on parameters affecting CV has previously been
performed [15]. However, this utilised a simple one-at-a-time (OAAT) analysis
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(where each parameter is varied one at a time) which does not consider
combinations of parameters, and how interactions between parameter changes
affect CV. Moreover, a number of important properties that affect the excitation
of the axonal membrane, such as the peri-axonal space, were omitted in that
previous analysis. Here, we perform a more comprehensive analysis. We
perform extensive simulations of axon physiology using the model of [27] and
perform sensitivity analysis to determine the sensitivity of CV across a wide
region of the parameter space, and to quantify the variance in CV accounted
for by each parameter.

2.1 Method
2.1.1 Simulations

The 'Model C’” axon model of Richardson et al [27], as implemented by [28§]
(code obtained from https://github.com/AttwellLab/Myelinated AxonModel)
was used to analyse the sensitivity of CV to variance in each of the 14
parameters listed in the upper part of Table 1. Model parameters derived
from optic nerve [28, 29]. were used as a proxy for CNS axons. Some
parameters were assumed to be well-constrained across individuals and fibre
populations and thus not tested (fixed parameters listed in Table 1). Others,
such as the number of myelin wraps and myelin thickness, are dependent on
g-ratio, AD and myelin periodicity, and so were not directly manipulated.
The simulated axon was comprised of 50 laminated inter-nodal regions. All
parameters were kept constant across all nodes and inter nodes along the
length of the axon. Some internode parameters, such as periaxonal width,
were varied at the paranode to accommodate unique morphological characteristics
in these regions [30].

In the simulations, each model axon was subjected to a current stimulation
applied for 10 s to the first node. The amount of current was calibrated
such that it produced a peak membrane depolarisation of +50mV in the
first node (in the baseline condition, this results in a stimulus amplitude
of 2.73 nA). The resultant CV was then measured over a 10-node interval
between the 30th and 40th node, except in cases where the CV was too slow
for action potentials to reach the 40th node in the simulation duration, in
which case the recording interval was moved to earlier segments so that
CVs could be measured. To establish that action potentials propagated
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consistently along the length of the axon, simulations were checked to ensure
membrane potential peaks of at least -40 mV were achieved on a minimum
of 10 consecutive nodes.

2.1.2 Sensitivity Analysis

Sensitivity was assessed by sampling the corners of a 14-dimensional hypercube
in the parameter space, i.e., for every possible combination of positive and
negatives changes in each parameter. The dimensions of the hypercube were
set to 1 s.d. around the baseline condition (with baseline being the same
conditions used for the simulations in [28], given in Table 1), where s.d. was
determined from experimental observations in optic nerve [28, 29|, or 20%
where no such data were available. An exhaustive analysis of 2! = 16, 384
comparisons were made. All simulations ran produced generated action
potentials that propagated along the length of the axon.

A one-at-a-time (OAAT) sensitivity analysis was performed for each parameter
at 10 equally-spaced intervals within a 20% range around the baseline condition
(see B). This shows that relative changes in CV are approximately linear
with change in parameter so we can assume sampling only the corners of the
hypercube is sufficient to capture the variability in CV within this region
of the parameter space. The change in CV, Av(®;) = v(®;") — v(®; ), due
to a change in each parameter A®; = & — &, | relative to the CV of the
baseline condition v(®}) was calculated. The corresponding sensitivity was
calculated by normalising the relative change in CV to the relative change
in the parameter.

S(®;) = % (1)

2.1.3 Testing Simplified Models of CV

We aimed to derive a simple model to predict CV (and associated variance)
from the two parameters that have previously been reported as accessible
from in vivo MRI: g-ratio, g, and internal AD, d. We tested the model
across a grid comprising 10 equally-spaced values of d (0.25 to 8 pm) and 12
equally-spaced values of g (0.4 to 0.95). For each grid-point, we repeated the
sensitivity hypercube analysis by running the Model C [27] simulation across
all possible combinations of the remaining non-MRI accessible parameters,
to generate a distribution of CVs for each point on the grid. This resulted
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Table 1: Baseline and range values for each parameter tested for parameters

of interest and values for fixed parameters of the Richardson model.

All

baseline values were those used in [28]. References indicate where values for
range were obtained from, otherwise 20% of the baseline value was used

Varied parameters

Parameter Units Baseline value (®;) [28] =+ Limits (JA®;|)
Axon diameter pm 0.82 0.31[28]
d-ratio (node diameter / axon diameter) - 0.9 0.18[29]
Node length pm 1.02 0.15[28]
Internode length pm 139.26 31.53[28]
Peri-axonal width nm 15 3
Myelin periodicity nm 15.6 3.12
g-ratio (inner diameter / outer diameter) - 0.78 0.057[29]
Internode leakage conductance mS cm—2 0.1 0.02
Intra-axonal resistivity Qm 0.7 0.14
Peri-axonal resistivity Q m 0.7 0.14
Myelin conductance mS cm ™2 1 0.2

Fast Na+ conductance mS cm ™2 30 6
Persistent Na+ conductance mS cm ™2 0.05 0.01
Slow K+ conductance mS cm ™2 0.8 0.16

Parameters dependent on varied parameters

Parameter Units Baseline value
Myelin width pm 0.101
Myelin periodicity nm 15.6
# of myelin wraps - 7
Node diameter nm 0.73
Internode diameter pm 1.05
Paranode diameter pm 1.02
Paranode length nm 2.11
Periaxonal width at internode nm 15
Effective periaxonal width at paranode nm 0.0077
Fixed parameters

Temperature °C 37
Number of nodes - 50
Stimulus amplitude (baseline condition) nA 2.73
Stimulus duration ms 10
Axon capacitance pF cm—2 0.9
Node capacitance pF cm—2 0.9
Myelin membrane capacitance pF cm—2 0.9
Node Resting potential mV —82
Node Reversal potential mV —83.4
Na+ reversal potential mV 50
K+ reversal potential mV —84
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in 10 x 12 x 22 = 491,520 model runs. The mean and standard deviation
of CV at each point was calculated We then fitted simplified models based
on the Rushton formula [12] and the linear relationship with outer diameter
[17]. We also explored some more complex polynomial models that could
potentially provide better fits to the data. In all cases, metrics of the model
fit performance and parsimony, including Akaike and Bayesian information
criterion (AIC and BIC) were computed. As with the sensitivity analysis,
simulations were checked to ensure that action potentials were successfully
generated and propagated along the axon.

2.2 Results

The conduction velocity obtained in the baseline condition was 2.95 ms™!,

in agreement with the original simulations in [28] (see also A for further
validation). Action potential propagation was successful in all simulations.
The distribution of relative changes in CV, due to change in each parameter,
is shown in Figure 1(a), while Figure 1(b) shows the total variances in CV
due to change in each parameter relative to the total variance. The majority
of the variance is explained by AD, followed by internode length and then
g-ratio. A key finding of this analysis is that combined together, AD and
g-ratio explain 89.2% of the model variance in CV.

The distribution of relative sensitivities of CV to unit changes in each parameter
are shown in Figure 2(a) while Figure 2(b) shows the sum-squared sensitivity
for each parameter, proportional to the sum-squared sensitivity across all
parameters. CV is most sensitive to unit change in g by a considerable
margin. d has the second highest sensitivity. Combined together, d and g
account for 91.5% of the total sensitivity of CV.

The distribution of CVs across d and g are shown in Figure 3. 7 grid
points tested failed to produce action potentials (where AD is 0.25um and
g-ratio is above 0.65) as indicated by missing points in Figure 3. The mapping
of CV to d appears to approximately linear, while the mapping to ¢ follows
an inverse log square root function. This is similar to the form given by [12].

v = pdy/—log(yg) (2)

where p is some constant of proportionality, fitted to p = 6.644 (confidence
bounds: [6.638,6.651]). The 2D fitting to the original Rushton model yielded
a good fit (SSE=1.54 x 107, R? = 0.766), but the fit was poor where d is
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Table 2: Goodness of fit statistics for candidate simplified models to data
generated from the Richardson model (n = 491, 520).

Model SSE R? Adj. R RMSE k AIC BIC

Rushton model 1.54 x 107 0.766  0.766 5.69 1 1.76 12.87
Linear outer diameter model 1.58 x 107 0.760  0.760 5.77 1 1.76 12.87
Polynomial expansion (full) 1.23 x 107 0.813  0.813 5.09 11 21.81 144.0
Polynomial expansion (cross-terms only)  1.25 x 107  0.810 0.810 5.13 3 5.81 39.13

large and ¢ is small (Figure 4 ).

We also tested whether CV could be predicted from a linear function
of outer diameter [17]. This is simpler to calculate since it uses only one
parameter but implicitly assumes a constant g-ratio.

d
v = P; (3)

where p was fitted to p = 2.626 (confidence bounds: [2.624,2.629]). The
goodness of fit was slightly poorer for this model compared to the Rushton
model (SSE=1.58 x 107, R? = 0.760). The AIC and BIC were comparable
to the Rushton model.

Further comparison was made between the two models by computing the
SSE for each d-g pair and plotting the difference in SSE (Figure 5). This
shows that where AD is high (above 5 nm), there is a better fit (lower SSE)
for the Rushton model where g lies between 0.5 and 0.75. The outer diameter
model shows better fit where ¢ lies between 0.75 and 0.95.

Two more complex models were tested to compare with the Rushton and
linear outer diameter models. A 3rd order 2D polynomial expression in d
and /— log(g) yielded a better fit (SSE=1.23 x 107, R? = 0.813) but required
fitting of 11 coefficients. A good fit was also achieved when considering only
cross-terms in the polynomial, (SSE=1.25 x 10",R? = 0.810) which only
requires 3 coefficients.

v = prdy/—log(g) + pard*/—log(g) — piadlog(g) (4)

However, the AIC and BIC are lowest for the Rushton model. Therefore,
this remains the preferred model for predicting CV (Figure 4). The s.d. of
the modelled CVs scaled linearly with the mean CV (SSE=7.22,R? = 0.994).
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3 Estimating CV from MRI-derived parameters

The second part of this study focuses on the second issue highlighted in the
introduction: Is it possible to obtain accurate CV estimates from parameters
derived from existing microstructural MRI techniques [18, 19, 20, 21, 22, 23,
24, 25]7

All these techniques work by fitting microstructural parameters to biophysical
models of the MRI signal using some numerical optimization routine. This
approach has some inherent issues. MRI signals are subject to noise from a
range of sources. There are problems with fitting model parameters to MRI
signals, including degeneracy of solutions in the optimisation process, and the
likelihood of fitting the model to noise contributions. As a result, there can
be considerable bias in MRI-derived microstructural metrics [31]. We note,
in particular, that quantification of inner AD is challenging, if not impossible,
at gradient strengths found on typical clinical MRI system (up to 80 mT /m)
(32, 33, 34, 35]. This was a criticism levied at the study of Horrowitz et al
(36, 33]. However, the advent of ultra strong gradient systems (300 mT /m)
provides sensitivity to axon diameter, at least over a limited but relevant
range (i.e. above 3 pm) [34]. In this work we therefore focus on simulation
(and real data) on an ultra strong gradient system. Although this is a special
case, it does allow us to evaluate the feasibility of estimating CV wn wvivo.

This issue of model bias can become an even more pernicious if some
models take as input the output of other models, leading to propagation of
noise and bias through different models. It is imperative, therefore, that
MRI-derived estimates of CV are robust to such errors, which is the subject
of investigation in the present study.

3.1 Method

To model the effects of MRI noise, MRI data were simulated using analytical
expressions for three biophysical models, the Composite Hindered and Restricted
Model of Diffusion (CHARMED) [20], the AxCaliber model [18] and multicomponent
driven equilibrium single pulse observation of T1/T2 (mcDESPOT) relaxometry

22].
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3.2 Core biophysical simulations

A single population of axons with a Poisson distribution of diameters (mean
AD is parameterised by A) was simulated with dispersion or crossing-fibre
configurations were simulated. The biophysical parameters of the system are
listed in Table 4. Systems with this configuration were simulated for a range
of AVFs, axon diameters and g-ratios. The g-ratio value is treated as an
aggregate measure of g-ratio across the volume. The value AVF ranged from
0.05 to 0.4; mean ADs from 0.25 to 12 pm and g-ratios of 0.4 to 0.9.

3.2.1 Diffusion MRI simulation

CHARMED and AxCaliber MRI data were simulated in MATLAB using
parameters that matched a standard protocol used on a Siemens 300 mT/s
Connectom system (Table 3). The CHARMED model was then fitted to the
simulated data using particle swarm global optimization to handle multiple
local minima in the optimisation landscape [37].

3.2.2 relaxometry MRI simulation

mcDESPOT MRI data were simulated using the ’qisignal’ function in the
Quantitative Imaging Toolbox (QUIT) [38]. The protocol comprised 8 spoiled
gradient recalled (SPGR) images with varying flip angles and 16 steady-state
free precession (SSFP) (Table 3) images distributed across 8 flip angles and
4 phase cycle angles. To account for the influence of radio frequency field
strength (B;) and off-resonance frequency (Fp) in the fitting, a range of B;
and Fy values were simulated for each noise measurement. To replicate the
noise profile obtained from SNR measurements across flip angles, noiseless
data were simulated and Rician noise with flip-angle-specific s.d. was added
to the simulated data (see C). A 3-pool model (modelling contributions from
myelin, extra-cellular and CSF water) was then fitted to the simulated data
using the ’gqimcdespot’ function in the QUIT toolbox.

Since mcDESPOT gives a myelin water fraction (MWF') map, as opposed
to a true MVF, we estimated the true MVF from the formula:

- MWF(1 4 w)

MVE = 1 +wMWF (5)

where w = 1.44 is the ratio of lipid to water in the myelin [39] (see D for
derivation).

10
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Table 3:

Acquisition parameters used for simulations of

diffusion and

relaxometry MRI data and for in vivo data acquisition

Parameter

Value

Diffusion acquisitions

Flip angle
Slice thickness
Field of View
Matrix size
Voxel size

90°

2 mm

220 x 220 mm
110 x 110

2 X 2X2mm

CHARMED

b

# directions

)

A

Echo time
Repetition time

[500,1200,2400,4000,6000] s mm 2
[30,60,60,60,60]

7 ms

23.3 ms

48 ms

2600 ms

AxCaliber

b

# directions

0

A

Echo time
Repetition time

[2000,4000] S mm 2
[30,60]

7 ms

[17.3,30,42,55] ms
80 ms

3900 ms

Relaxometry acquisitions

Slice thickness
Field of View
Matrix size

1.72 mm
220 x 220 mm
128 x 128

Voxel size 1.72 x 1.72 x 1.72
SPGR

Flip angles [3,4,5,6,7.5,9,12,15,18] °
Echo time 1.9 ms

Repetition time 4.2 ms

IR-SPGR

Flip angle 5°

Echo time 1.9 ms

Repetition time 4.2 ms

Inversion Time 450 ms

SSEFP

Flip angles

Phase cycle angles
Echo time
Repetition time
Slice thickness

[10,10,15,15,20,20,30,30,40,40,50,50,60,60] °
[0,180,90,270,0,180,90,270,0,180,90,270,0,180,90,270] °
2.27 ms

4.54 ms

1.72 mm

11
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Table 4: Fixed biophysical parameters used for the MRI simulations

Fixed biophysical parameters

Parameter Units Value
Intracellular axial diffusivity cm? s—1 2.9
Extracellular axial diffusivity cm? s~ 1 1.3
Extracellular radial diffusivity —cm? s™1 0.3
Orientation (6) rad T /2
Orientation (¢) rad 0
Myelin T} ms 465
Myelin T» ms 26
Myelin residence time ms 180
Extracellular T4 ms 1070
Extracellular T ms 50
CSF T ms 4000
CSF T ms 2500
CSF volume fraction 0.05

3.2.3 g-ratio and CV estimation
g-ratios were computed using the approach of Stikov et al [24]:

! (6)

g —=
MVF

L+ AVF

This approach has been shown to give a valid aggregate measure of g-ratio
for a distribution of ADs. Using the Rushton model (Eq. 2), with p = 6.65 as
fitted previously using simulations, CV was estimated for each combination
of mean AD and g-ratio.

3.2.4 Noise

Noise was simulated by adding Rician noise to each simulated MRI acquisition.
The s.d. for each acquisition was modified to replicate the SNR profiles
observed in real data (see C). Additionally, to test sensitivity to noise, data
simulations were repeated with noise s.d. at 50% and 200% of the original
noise s.d. This was done for all permutations across the 3 MRI parameters.
For all simulated acquisition and permutations of noise levels, 100 iterations
were performed. This resulted in a total of 100 x (1 +23) x 11 x 8 = 79,200
diffusion MRI simulations and 100 x (1 + 23) x 8 x 12 = 86, 400 relaxometry
MRI simulations.

12
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3.2.5 Error measurement

Errors in CV estimates were quantified in 4 ways: Bias, variance, relative
sensitivity to modelling errors and relative sensitivity to noise. Bias was
quantified by the mean relative error in CV, variance was quantified by
the variance of the CV estimates normalised to the original CV estimate.
Relative sensitivity to modelling errors was quantified by taking the ratio
of the relative error in CV to the relative error of the relevant imaging
parameter (AVF, AD and MVF). Sensitivity to noise was estimate by taking
the difference in CV estimates between the 50% and 200% noise condition
and normalising to the difference in noise s.d.

3.3 Results
3.3.1 Errors in modelled parameters

Errors in relevant fitted parameters are shown in Figure 6 and distributions
of errors across parameters are shown in Figure 7. Overall, the lowest errors
are in AVF (mean =+ s.e.: 0.02940.0002) with higher errors for MVF (0.48 +
0.0071) and AD (0.65 4+ 0.0072). AVF estimates show the highest error for
the smallest values of AVF, and this error decreases with increasing AVF up
to value of AVF = 0.5. Across all other parameters (AD, MVF and g-ratio),
errors were also largest for the lowest AVF and decreased with increasing
AVF. The optimal value for MVF and g-ratio (where the relative error is
lowest) scales approximately linearly with the AVF. Errors in AD are largest
when AD and AVF are low.

3.3.2 Bias in CV estimates

Relative errors in CV across the parameter space tested are shown in Figure 8.
The CV estimates show a less than 5% bias across a region of parameter space
where AVF is 0.25 or above, AD is below 10pm. There is little dependency
on g-ratio. Bias is greatest (over 50%) in regions where AVF is low (below
0.25) and AD is between 2-4 pm or greater than 8 pm.

3.3.3 Variance in CV estimates

Variance in CV estimates is shown in Figure 9. The normalised variance is
below 0.5 where AVF is high (above 0.25) and AD is between 1 and 10 pm.
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3.3.4 Sensitivity to parameter errors

Distributions of relative sensitivities to modelled parameter errors across the
tested parameter space are shown in Figure 10. The sensitivity of CV to
errors in AVF (mean + s.e.: 5.02 £ 0.006) is much higher than to errors
in AD (0.39 + 0.007 pm ) and in MVF (2.38 + 0.014). The proportional
variances in CV estimates explained by errors in the three MRI parameters
are shown in Figure 11. Errors in AVF derived from CHARMED have the
highest effect overall. Errors in MVF derived from mcDESPOT contribute
more to variance in regions of low g-ratio (below 0.7) and low AVF (below
0.2). Errors in AD derived from AxCaliber contribute very little to variance
in CV across all parameters.

3.3.5 Sensitivity to MRI noise

Distributions of relative sensitivities to noise across the tested parameter
space are shown in Figure 12. The proportional variance in CV estimates
explained by noise across three MRI parameters are shown in Figure 13.
Proportional variances are quite uniform across the parameter space, with
noise in relaxometry acquisitions (MVF) contributing almost nothing to the
variance in CV. Noise in diffusion acquisitions (AVF and AD) each contribute
equally about 50% of variance in CV.

4 n vwwo CV estimates from human MRI
data

As a proof of principle we apply the proposed approach to in vivo human
data obtained from . Subject to the caveats regarding the sensitivity to AD.
Data were acquired on a high gradient MRI system. The analysis focuses on
the corpus callosum as the axons here have a relative uniform orientation,
minimal dispersion and have an AD that is in the range that is detectable
on a high-gradient MRI system.
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4.1 Method
4.1.1 MRI acquisition

CHARMED, AxCaliber and mcDESPOT data were all acquired from a single
healthy human participant (F,28y) on a Siemens 3T 300mT/m Connectom
system. The acquisition parameters used were identical to those used in the
simulations (see Table 3).

4.1.2 Diffusion MRI processing

Motion, eddy current and EPI distortions were corrected using FSL TOPUP
and EDDY tools [40]. Gradient non-linearities were corrected. All diffusion
data were then registered to a skull-stripped [41] structural T1-weighted
image using EPIREG [40]. AVF and AD parameters were fitted to the
CHARMED and AxCaliber models using the same approach described for
the MRI simulations.

4.1.3 Relaxometry MRI processing

Motion correction was applied to the SPGR and SSFP data using FSL
mcFLIRT and then the brain was skull-stripped [41]. All subsequent fitting
steps were performed using the QUIT toolbox [38]. A B; map was estimated
by fitting the data to the DESPOT1-HIFI model [42] and then fitting to
a 8th order 3D polynomial. An Fy map was estimated by fitting to the
DESPOT2-FM model [43]. These were then used for the final fitting to the
mcDESPOT model, as described for the MRI simulations. The final MVF
maps were registered to the T1-weighted image using FLIRT [40] so that all
parameter maps were in the same space.

4.1.4 CV mapping

AVF, AD and MVF parameters were fitted using the same methods described
for the MRI simulations and CV maps were generated using the same approach.
In addition to generating a CV map, maps of estimated bias and variance
were obtained by interpolating the estimates obtained from the MRI simulations
using the MRI-estimated MVF, AD and g-ratio values. The bias was then
used to obtain a bias-corrected CV map.
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4.2 Results

In vivo MRI data in the corpus callosum are shown in Figure 14(a). CV
estimates in the corpus callosum are between 8.1 and 41.6 ms™! (median:
14.2 ms™!). Smaller CV estimates are seen in the genu and splenium of
the corpus callosum, consistent with the fact that these regions have smaller
ADs. The bias in these regions is higher than in the body of the corpus
callosum. The bias-corrected CV values showed a range of 3.7 - 20.4 ms™!
(median: 12.2 ms™!). This is very similar to the range observed in Macaque
corpus callosum [44] (2.8 - 22.5 ms™!, median = 7.4 ms™!, see Figure 14(b)).

5 Discussion

This paper has explored the feasibility of obtaining conduction velocity (CV)
maps from @n vivo human MRI, using a simplified model of axonal CV.
Results from the axon simulations demonstrate that 89.2% of the variance
in CV, and 91.5% of the sum-squared sensitivity of CV, can be attributed
to variance in AD and g-ratio. Looking at variance (using ecologically valid
variances in parameters where possible), implicate AD as the most important
parameter, while looking at sensitivity to a unit change in parameter, g-ratio
is implicated as the most important parameter. Therefore, considering the
fact that AD varies much more in axon populations than g-ratio, capturing
accurate estimates of AD is still more important than g-ratio for CV estimation.
The Rushton and outer diameter models for CV provide a reliable estimate
of CV from MRI-derived estimates of g-ratio and AD. In addition, we show
that it is possible to account for uncertainty in CV estimates due to parameters
not accessible in vivo. Thus, when the reliable estimates of AD and g-ratio
can be made, it is feasible to obtain estimates of axonal CVs in wvivo. The
match in the parsimony measures (AIC/BIC) for the Rushton model and
outer-diameter model (Table 2) were comparable, with a minor improvement
in SSE for the Rushton model. Indeed, [45] used the outer-diameter model
to good effect (see also [33] for a discussion fo merits of the outer diameter
model). However, examining the regional difference in the SSE (Figure 5) it
is shown for g-ratios in the range 0.5-0.75, the Rushton model performs best.
Performance is only better for the outer diameter model for large g-ratios
(between 0.75 and 0.95). Given that most axons conform to the former
range of g-ratio, the Rushton model is the preferred approach, and thus an
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estimate of both inner diameter and g-ratio is valuable for mapping CV.

More complex models of CV derived using a polynomial expansion gave
better fits than the two simpler models, but the parsimony measures suggest
that, due to the increased number of coefficients, these models are suboptimal.
Figure 4, shows the main improvement in the polynomial models is where AD
is high and g-ratio is low. However, such axon configurations are uncommon:
large diameter axons are unlikely to have very thick myelin sheaths. Therefore,
there is little value gained by employing these more complex models to
estimate CV in vivo.

In terms of sensitivity to errors in parameter estimation, we investigated
the effects of bias in MRI-derived parameters, the sensitivity of CV estimates
to these errors, and the sensitivity to noise. Overall we show that the errors
in CV estimates are below 5% over a large region of the parameter space
that applies most myelinated white-matter axons. CV estimates were least
accurate when the AVF is small (below 0.3) and the AD is above 10 pm
although less restrictive where AVF is high (greater than or equal to 0.5).
This is to be expected as more sparse axon populations will generate less
signal and reduce performance of model fitting. CV is most sensitive to errors
in AVF, but errors in AVF are very small compared to other parameters. CV
is most sensitive to errors in AD. This is as expected, since the Rushton model
has highest sensitivity to AD.

While efforts have been made to incorporate true biological variability in
the sensitivity analysis by taking parameter ranges from the literature, where
available, the simulations are currently restricted to a single axon population.
Variability should be considered across axon populations, where, for example,
it is known that AD varies considerably throughout the CNS [46] as well as
along single axons [47].

The computation of CV is assumed to be a valid aggregate measure of
CV for a population of axons. The mean AD is parameterised by A of the
Poisson distribution and the g-ratio calculation has been shown to be valid
for a distribution of ADs [23]. However, it is unclear if the CV value obtained
from aggregated AD and g-ratio values is a valid aggregate representation of
a distribution of CVs. The parametrisation of the AD distribution should be
considered. A Poisson distribution was chosen as it has only one parameter,
thereby reducing model complexity, but other distributions can offer better
approximations of distributions observed in histology [48].

An assumption is made that the results of the axon simulations, whose
baseline parameters are based on rat optic nerve [28], are generalisable to
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other white matter axons, and to other species. One aspect of this generalisation
of particular concern is the g-ratio. There is a theoretical optimal g-ratio for

a given fibre diameter [13]. In the present sensitivity analysis, the range of
g-ratios tested is in an interval where the relationship between CV and g-ratio

is monotonic and approximately linear. However, for other fibre populations
with different ranges of g-ratios where the effect is non-monotonic, the sensitivities
may differ substantially. Other parameters may present non-monotonic behaviour
in parts of the parameter space not examined here. A potential future
research avenue is to repeat the sensitivity analysis on a range of axon
populations to see which populations better lend themselves to be modelled
with MRI. However, obtaining all the morphological and electrophysiological
parameters for multiple populations present significant practical challenges.

It has been demonstrated that the relative thickness of the water and
lipid layers in myelin vary with age [39], and consequently the assumed
constancy of w used in Eq. 5 may not be valid. This issue can potentially be
resolved by combining multiple myelin-sensitive contrasts, e.g. by adding in
quantitative magnetization transfer (qMT). While gMT does not provide
unique sensitivity to lipids, it does have sensitivity to protons bound to
lipids and macromolecules. It may therefore be possible to exploit qMT and
relaxometry methods together to better characterise the water-lipid ratio in
myelin.

While this study explored the impact on MRI noise on CV estimates,
there are a range of other sources of confounding variance, such as motion
and distortions due to eddy currents, field inhomogeneities. Other sources
of error could impact on CV estimates to differing degrees. Methodological
issues around the estimation of axon diameters also should be considered.
The apparent inter-axonal diffusion perpendicular to axon (which is used to
estimate AD) is orders of magnitude smaller than the apparent extra-axonal
diffusion [32, 33, 35]. This presents a challenge to estimating ADs, and
require acquisitions at high b values to ensure a non-negligible contribution
from the intra-axonal space [35]. On clinical MRI systems with gradients
of up to 70 mT/m, this is problematic. On such systems, ADs below 6 pm
will not be detectable. However, on a high gradient system (300 mT/m),
where high b values are achievable, this can be reduced to 2-3 pm. [49,
50, 34]. Adapting the parameterised AD distribution with this limit can
allow modelling of ADs below this limit [51]. We do stress that measuring
axon diameter is challenging and we are not suggesting that it is possible to
estimate CV everywhere within the brain [33]. An alternative to estimating
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internal AD is the framework of [52, 53, 54, 32, 33| allows characterisation of
diffusion in the extra-axonal space in terms of the packing geometry of axons,
which is dependent on the outer fibre diameter. This is appealing as this is
closely correlated to CV, and only requires estimation of one microstructural
parameter, instead of two, as used by the Rushton model. [33] suggest that
the apparent correlation between AD and CV observed by [26] is due to
contributions from the extra-axonal diffusion to the signal not being modelled
correctly. However, it is unclear how outer fibre diameter can be disentangled
from the packing geometry such as packing density and packing randomness
within this framework. Also, as highlighted in the present study, the Rushton
model is more accurate than the outer diameter model for estimating CV in
more common ranges of AD and g-ratio. However the merits of this modelling
framework should be explored further.

In conclusion, we demonstrated the feasibility of estimating CV for ensembles
of axons from their diameter and g-ratio, estimated from in vivo microstructural
MRI. These estimates can provide valuable insights into white-matter physiology,
that would otherwise not be possible.
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A Validation of axon model

To ensure the implementation of the "Model C” axon model [27] produces
results consistent with [28], simulations were carried out with the baseline
condition and some parameters varied as described in this paper. All other
model parameters were the same as used in the main simulations except
that the stimulus current was fixed at 3 nA, as done in [28]. The baseline
condition produced a CV of 2.95 ms™!, consistent with [28]. The results for
other parameter variations are shown in Table A.1 which are also consistent
with those reported in [28].

Table A.1: Changes in CV due to changes of parameters previously reported

in [28].
Parameter changed Value Relative change from baseline CV (ms~1) Relative change from baseline
Node length (nm) 0.5 -0.51 2.53 -0.14
2.2 1.16 3.02 0.02
Fast Na+ conductance (mS cm™2) 21 -0.30 2.64 -0.11
Number of wraps® 6 -0.14 2.66 -0.10

T, Number of wraps, AD and g-ratio were fixed for this simulation. This is equivalent to setting myelin

periodicity to 18.5 nm (a relative change from baseline of 0.19).

B OAAT sensitivity analyses

A one-at-a-time (OAAT) sensitivity analysis was performed for each parameter
at 10 equally-spaced intervals within a +20% range around the baseline
condition. Results are shown in Figure B.1. It shows all sensitivity to all
parameters is approximately linear over the interval tested.

In the main analysis, three of a set of six interdependent geometric parameters
were manipulated: axon diameter, g-ratio and myelin periodicity. Three
other parameters depend directly on these parameters: number of myelin
wraps, myelin width and outer fibre diameter. As the impact of variance
in these parameters will vary depending on which combinations of these
parameters are fixed, we repeated the OAAT analyses for different combinations
of fixings. The results are shown in Figure B.2. For most combinations, the
sensitivity to each parameter shows a trend in the same direction regardless of
which combination of other parameters are fixed. Notable exceptions are for
the g-ratio where the direction of the sensitivity varies depending on which
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Table C.1: In vivo measurements of SNR and corresponding s.d. values
for acquisition sequences used for estimating CV. S.D. values quoted for
mcDESPOT scans are the effective noise added to recreate SNR measured

in vivo.

Sequence Flip angle (°) SNR  noise s.d.

CHARMED 90 2,690 0.019

AxCaliber 90 1,776 0.024

mcDESPOT - SPGR
3 2,246 0.134
4.5 2,701 0.087
6 2,805 0.069
7.5 2,670 0.064
9 2,394 0.062
12 1,873 0.056
15 1,044 0.068
18 495 0.098

mcDESPOT - SSFP
10 10,136 0.010
15 14,256 0.008
20 17,666 0.008
25 19,090 0.007
30 19,659 0.007
40 18,269 0.007
50 14,272 0.008
60 9,776 0.010

parameters are fixed. Sensitivity to g-ratio shows a negative trend when axon
diameter and myelin periodicity or axon diameter and number of wraps are
fixed. Sensitivity to g-ratio shows a positive non-linear trend when myelin
periodicity and myelin width are fixed.

C SNR measurements

SNR for the diffusion sequences used for the AxCaliber and CHARMED
acquisitions and the SPGR and SSFP acquisition used for mcDESPOT were
measured by acquiring two image volumes: (1) a standard image volume
(for diffusion sequences, only a b = 0 s mm~2 image was used as the noise
distribution is not expected to be affected by the level of diffusion weighting)
with the standard flip angle (see Table 3); and (2) a noise image volume
acquired with exactly the same parameters but with the flip angle set to 0,
such that there is effectively no echo received by the receiver coil. The noise
s.d. was computed from the SNR. The results are shown in Table C.1
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D Estimating MVF from MWF

mcDESPOT gives a myelin volume fraction (MWF) that is the proportion
of the total water volume that resides in the myelin layers.

MWV
MWF = ——— D.1
= (D.1)

whereas calculation of g-ratios requires the myelin volume fraction (MVF),
which is the proportion of the total volume that is myelin (both water and
lipid components):

MVE — MWV;— MLV (D.2)

where MWV is the myelin water volume, MLV is the myelin lipid volume,
W is the total volume of water and V' is the total volume. If we assume that
the ratio of water and lipid in the myelin compartment, w, is constant, we
can also express the MLV as:

MLV = wMWYV (D.3)

the total volume is given by:

V =MWV + MLV + AWV + EWV (D.4)

where AWV and EWV are the volumes of axonal and extracellular water,
respectively. The total water is given by:

W =MWV + AWV + EWV (D.5)

Assuming the only non-water compartment is the myelin phospho-lipid
layers and that the contribution of phospho-lipid membranes from other cell
types is negligible, this can be expressed as:

W =V - MLV (D.6)
Substituting this into the expression for the MWF gives:

MWV~ MWV
V=MLV V-—uwMWV
Collecting terms of MWV and rearranging gives:

MWF

(D.7)
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VMWF
MWV = MW (D-8)
We can get an equivalent expression for the MLV by multiplying through
by w
VMWF
MLV = —— D.9
1+ MWF (D-9)
Substituting these into the expression for MVF gives:
MWF MWF MWE(1
MVF W WE__ MWF(+w) (D.10)

T 1T WMWE I MWF 1+ wMWE

The value of w was taken from [39] where the width of the lipid bilayers
was about 4.6nm and the intra- and extracellular water layers were both
3.2nm, giving a lipid-water ratio of w = 1.44. The relationship between
MWF and MVF is show in Figure D.1.
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Figure 1: (a) Distributions of proportional change in CV for a stepwise change
in each parameter (parameter step size determined by limits indicated in
Table 1) across all points in the parameter space. (b) The total variance for
each parameter step change as proportion of variance across all simulations.
MRI-visible parameters indicated by green bars.
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Figure 2: (a) Distributions of relative sensitivities of CV to unit change in
each parameter across all points in the parameter space. (b) The sum-squared
relative sensitivity for each parameter step change as proportion of the
total sum-squared sensitivity across all simulations. MRI-visible parameters

indicated by green bars.
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Figure 3: Distribution of CV estimates across fixed values of AD and g-ratio.
Surface plot indicates the mean value. Black dots show the distribution of
CV estimates at each point.
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Figure 4: Plots of simplified models fitted to simulated data points across
AD, (d) and g-ratio (g) values.(mean for each AD-g pair indicated by red
circles). (a) Rushton model as fitted across values of d and g¢; (b) Rushton
model as a linear fit to d\/—log(g); (c) outer diameter model as fitted across
values of d and g; (d) outer diameter model as a linear fit to outer diameter

(d/g); (e) Full 3rd order polynomial expansion in d and /—log(g); (f) the
same polynomial expansion only considering the cross-terms.
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Figure 5: Difference in SSE between the Rushton and linear outer-diameter
models. Positive values (green) show higher SSE for The Rushton model,
negative values (red) show higher SSE for the outer diameter model.
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Figure 6: Log relative errors in (a) AVF (b) AD (c¢) MVF and (d) g-ratio.
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Figure 7: Distributions of log relative errors in AVF (red), AD (blue) and
MVF (green) across all iterations and parameters
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Figure 8: (a) Log relative error in CV estimates across values of AVF, AD and
g-ratio. (b) Regions of parameter space where relative variance is less than
5% (blue), 5-10% (green), 10-20% (yellow), 20-50% (orange) and greater than
50% (red) error in CV estimates. Black regions are where axon AVF /g-ratio
combination gives an infeasible MVF .
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Figure 9: (a) Log normalised variance in CV estimates across values of AVF,
AD and g-ratio. (b) Regions of parameter space where normalised variance
is less than 0.5 (coloured in blue) or greater than 0.5 (coloured in red).
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Figure 10: Proportional variance explained by errors in each MRI parameter,
across the parameter space tested.
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Figure 12: Distributions of log relative sensitivity of CV to noise in AVF
(red), AD (blue) and MVF (green) acquisitions across all iterations and
parameters.
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Figure 14: (a) Fitted in vivo human MRI data to microstructural parameters
in corpus callosum, and corresponding histograms showing the distribution
of values across the corpus callosum (b) comparison of distribution of CV
estimates from MRI and recordings from Macaque electrophysiology [44].
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Figure B.1: Results of OAAT analysis of sensitivity of CV to each of the free
parameters tested.
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Figure B.2: Results of OAAT analysis for the 6 interdependent geometric
parameters with different combinations of parameter fixings.
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Figure D.1: Theoretical relationship between MWF and MVF according to
Eq.5.
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