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Abstract

Aging is a fundamental biological process, where key bio-markers interact with each
other and synergistically regulate the aging process. Thus aging dysfunction will
induce many disorders. Finding aging markers and re-constructing networks based on
multi-omics data (i.e. methylation, transcriptional and so on) are informative to study
the aging process. However, optimizing the model to predict aging have not been
performed systemically, although it is critical to identify potential molecular
mechanism of aging relative diseases.

This paper aims to model the aging self-organization system using a serious of
supervised learning methods, and study complex molecular mechanism of aging at
system level: i.e. optimizing the aging network; summarizing interactions between
aging markers; accumulating patterns of aging markers within module; finding
order-parameters of the aging self-organization system.

In this work, the normal aging process is modeled based on multi-omics profiles
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across tissues. In addition, the computational pipeline aims to model aging
self-organizing systems and study the relationship between aging and related diseases
(i.e. cancers), thus provide useful indexes of aging related diseases and improve
diagnostic effects for both pre- and pro- gnosis.

Introduction

Aging is a complex process regulated by key bio-markers, reflecting disorders /
declined abilities of tissues [1]. Dysfunction of aging has been shown to relate many
diseases, such as diabetes, Parkinson disease [2], Alzheimer’s disease [3] and cancers
[4]. As a result, finding aging markers is critical to study aging related diseases and
identify healthy genomic diagnostics (i.e. by predicting the chronological age (group)
based on molecular profiles). For example, multi-tissue predictors of age have been
calculated by methylation [5] or mRNA expression profiles[6]; and there are more age
predictors based on single tissue (e.g. brain [7], breast [8], ans so on), also provide
insights on aging related diseases [6] (i.e. cancers, Alzheimer’s disease).

Further, the aging markers interact with each other [9], and synergetically coordinate
the aging process, herein generating the self-organization system [10] of aging, where
particular bio-markers regulate the aging process in different age groups, respectively.
Although tissues become disordered / functional decline during aging in general
(often evaluated by the entropy [11]), a serious of aging markers perform special /
ordered functions in special aging stages / age groups. In addition, these markers /
genes interact with each other, coordinately involving in the aging process; therefore,
the interactions / modules between such markers also provide critical patterns of aging.
In summary, finding bio-markers to predict the chronological ages, summarizing
interactions between aging markers, and optimizing the aging self-organization
system based on molecular profiles (i.e. methylation, expression and so on) of normal
tissues from healthy persons, could help predict future health risks at system level.
However, these works have not been solved entirely for the aging process.

In this work, we modeled the aging self-organization system using a serious of
computational methods: filtering inter-connection networks between different age
groups by the maximum mutual information and minimum redundancy criterion in
the information theory; summarizing interactions between bio-markers by the
convolution technology; calculating patterns by accumulating weighted genes within
the same module; selecting module scales by the hierarchical clustering method and
cross validation; identifying order parameters in the aging self-organization system by
network sparsification.

The prediction results showed high classification accuracy between different age
groups; moreover, the enrichment analysis and network analysis also found key
functions of the order parameters. Thus critical complex characteristics (i.e.
hierarchies, emergencies and bifurcations) were identified in different aging stages.
Aging acceleration patterns were also identified across cancers. In short, the aging
process can be thorough studied by modelling the aging self-organization system.
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Results and discussion

A brief description of the aging self-organization system

In the aging self-organization system, genes interacted with each other, and
synergetically coordinated the aging process. Therefore, the aging process could also
be evaluated by interactions between aging markers. The aging markers clustered
nearby would drive similar function [12], and could be summarized within the same
module. Each module take a particular part during aging, and regulated the aging
process altogether. Different levels / hierarchies of the markers / modules reflected
special the complexity of the aging system, herein reflecting particular patterns in
different aging stages. As a result, the aging self-organization system would emerge
important characteristics apart from any single isolated marker / module. In summary,
modules based on aging markers coordinately determined the bifurcations and
displayed critical differential patterns between age groups, where key aging markers
within modules could be identified as the order parameters in the aging
self-organization system.

Further, the system from pathological samples should be deviated the normal aging
self-organization system (from healthy persons): for example, the aging system with
disease (i.e. cancers) should display significant acceleration from the normal aging
process. Accordingly, the following parts of this paper depicted results of modelling
the aging self-organization system and the computational pipeline was shown in
Figure 1.

Classification results of the aging self-organization system

The expression and methylation profiles were used to test the classification abilities of
the aging self-organization system between different age groups, respectively (Figure
2 and 3). Table 1-3 showed that classification results based on the self-organization
system have lower error rates than traditional feature selection methods (i.e. the
refieff-mRMR pipeline [13]), using both methylation and expression data between
age groups. As a result, the self-organization system reduced the feature dimensions
effectively and extracted critical modules by finding the order-parameters, and
identifying key differences based on aging markers / interactions in the aging process
at system level.

Biological features of the order parameters

The methylation order parameter with the maximum relieff weight was the
convolution interactions of ¢g27583030 (SLC25A4, weight=0.1974, shown in Figure
1b) in the model of age group 50-70 vs. 70-survival. Common SLC25A4 related
pathway were apoptosis and survival regulation of apoptosis by mitochondrial protein,
reflecting the relationship between aging and cellular apoptosis [14]. The expression
order parameters with the largest relieff weight was original profile of NRBF2
(weight=0.2493) between age group 50-70 vs. 70-sruvival. NRBF2 played a role in
cellular survival and neural progenitor cell survival during differentiation [15], and
dysfunction of NRBF2 also affected the aging process.


https://doi.org/10.1101/502815
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/502815; this version posted December 20, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Further, enrichment analyses of the order parameters in each module were performed
on Biological Process (BP) terms of Gene Ontology (GO) and KEGG pathways using
the hypergeometric test (Table 4-5 and S1-S2). The most significant BP term was the
negative regulation of viral process (GO:0048525, tdr=0.0005) in the 245th module of
the model between age group 20-50 vs. 50-70 based on the methylation profiles,
reflecting the relationship between the immunity system and aging [16]; and the most
significant KEGG pathway was Phenylalanine metabolism (fdr=0.0009) based on the
methylation profiles in the model between age group 0-50 vs. 50-survival, indicating
the critical metabolism during aging. In addition, the annotation of order-parameters
also reveal key functions across different aging stages, i.e. BP terms were enriched in
aging related diseases in the early stage of aging, and enriched in tissue dysfunction in
the later stage. It is perhaps functional decline of the immunity system induced aging /
tissue dysfunction.

Strikingly, enriched functions across modules indicated the common themes of aging
(Table 6 and 7). For example, BP terms of organ morphogenesis were enriched during
both young (0-20 vs. 20-50) and old (50-70 vs. 70- survival) age groups, reflecting the
basal role of tissues affected by the aging process. Moreover, cancer and related
signaling KEGG pathways were enriched across different aging stages based on both
methylation and expression profiles (Figure 4). These results reflected the cross-talk
between aging and cancer, where dysfunction of aging might indicate diseases /
cancerization of tissues .

Complexity characteristics of the aging self-organization system

In the self-organization system, molecules interacted with each other, and
synergetically regulate particular process (i.e. aging). For example, summarized
interactions of both methylation ¢g27583030 (SLC25A4) (with higher relieff values,
shown in Figure 1b). Moreover, a serious of order parameters were with summarized
interactions other than the ordinary profiles, indicating functions of cross-talks
between key markers during aging (Table 1).

In addition, any single isolated marker / module could not reflect all of the key
characteristics between age groups effectively, but combination of modules could. It
should be that cross-talks across modules generated the aging self-organization
system with key differential patterns / bifurcations between age groups. Thus the
hierarchies across modules promoted emergencies of the aging self-organization
system, which were not displayed by any single module / order parameter. Therefore,
the correspondences across modules indicated the hierarchies / emergencies of the
aging self-organization system.

The corresponding networks across modules (also using the maximum mutual
information minimum redundancy criterion) indicated core modules in the hierarchies
of the self-organization system (Figure S1). Based on the methylation profiles, the
492th module were with the maximum interaction score (mean value=0.0189),
connecting other 2682 modules (in the model of age group: 0-20 vs. 20-50). This
module acted as a “hub” and connected 45 key BP functions (i.e. negative regulation
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of cellular senescence, regulation of attachment of spindle microtubules to
kinetochore and negative regulation of potassium ion transmembrane transporter
activity) and 60 KEGG pathways (i.e. Maturity onset diabetes of the young and
Pentose and glucuronate interconversions), reflecting the crosstalk between immunity
and key metabolic pathway during aging. Based on the expression profiles, the 1799th
module were with the maximum interaction score (mean value=0.0762), connecting
other 2387 modules (in the model of age group: 20-50 vs. 50-70). The module
connected 46 key BP functions (i.e. fatty acid beta oxidation using acyl coa oxidase,
cell aggregation and cytokine production) and 51 KEGG pathways (i.e. Retinol
metabolism, alpha linolenic acid metabolism and Pyruvate metabolism), revealed
basal metabolism pathways during aging. In short, the corresponding networks
reflected correlations of important parts / functions in the aging self-organization
system, such as the immunity system, cancer related pathways, and so on. It might be
the cross-talk between the immunity system and cancers affected emergencies of
critical themes in the aging process.

Therefore, the bifurcations (differential patterns) between age groups were
investigated, where order parameters with convoluted interactions were summarized
by each relieff weight, indicating order-disorder patterns of interactions between
aging order-parameters from low (near the ordered / same pattern with low entropic
values of the aging system) to high (near disordered / different patterns with high
entropic values) values, or vise verse. As a result, significant differential patterns were
found between age groups using both methylation and expression profiles (Figure 5).
In the early aging stage (0-20 vs. 20-50), the aging self-organization systems were
with significantly ordered patterns based on both methylation and expression profiles.
As aging was regulated by special markers / order-parameters, the self-organization
system showed ordered patterns in the early aging stage. However, the
self-organization systems were with disordered patterns in middle (20-50 vs. 50-70)
and later (50-70 vs. 70-survival) stage based on expression and methylation profiles,
respectively, indicating tissue declined function / disordered patterns during aging.
The aging process was driven by both special markers / order parameters (with order
patterns) and tissue declined function (with disordered patterns), perhaps determined
by the former in the early aging stage, and by the latter in the later stage.

Aging acceleration of cancers

To study the crosstalk between aging and cancer, the aging associated accelerations
were investigated in cancer samples (from the TCGA platform). The order parameters
were extracted using the cancer profiles based on each self-organization model, and
the module patterns in each model were summarized. Then the aging score were
calculated by the module patterns (adjacent normal samples were as the training data,
cancer samples were as the test data, and the 0-1 SVM regression was used as the
predictor). Strikingly, the results showed that the scores in cancer samples were
significantly higher compared to adjacent normal samples, based on both methylation
and expression profiles (Figure 6). These results were consistent with previous results,
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which might reflect the protection of the cancer tissues [5, 17].

The correlation between somatic mutation and aging acceleration was also investigate,
but none of SNPs with significant (p-value<0.05 and fdr<0.2, using the non-parameter
Kruskal-Wallis Test [18]) aging acceleration were identified. The results were
perhaps because of not enough samples of paired profiles, aging acceleration tissues
in cancer with fewer somatic mutations, or the complexity of the self-organization
system [5]. It have been found that there were negative correlation between age
acceleration and number of somatic mutations[5]. Therefore, our work also found the
negative correlations in most types of cancers (Figure S2 and S3). However, only a
few cancers were with significant correlation (e.g. THCA, shown in Figure S2I and
S31).

Further, the 11 types of cancer profiles were clustered based on the mean value of
aging acceleration patterns using mean acceleration ratios base on simplified
methylation and expression models. As a result (Figure 6¢ and S4), 7 cancers were
identified as one aging acceleration pattern, including BLCA, COAD, ESCA, HNSC,
KIRC, KIRP and PRAD; and other 4 cancers were identified as another aging
acceleration pattern (BRCA, LIHC, LUAD and THCA). In addition, 49 significant
modules were identified based on both differential methylation and expression
profiles, where the top differential module (the 926th expression module) connected
50 key BP terms (i.e. cellular localization, skeletal muscle adaptation and GABAergic
neuron differentiation) and 51 KEGG pathways (Long-term potentiation and Retinol
metabolism), indicating key functions of the aging process of the neuron system. The
aging acceleration patterns also revealed basal characteristics across cancers.

Conclusions

The aging process is regulated by a serious of key markers. The aging markers
interact with each other, and performed their functions in the aging specific networks.
As a result, identifying modules clustered by these markers during aging was more
informative to research the aging process than only finding isolated markers. In this
paper, we presented a computational pipeline to model the aging self-organization
system and select the order parameters using a serious of supervised learning
technologies. The discrimination results showed that our prediction ability was with
more accuracy than traditional gene selection / classification methods.

Tissues are usually with declined functions during aging. However, the aging markers
interact with each other, and synergistically regulate the aging process. Therefore, the
aging process is affected by both ordered and disordered factors. In this work, the
complexity characteristics across modules were also found critical patterns in
different age groups.

In the immunity theories of aging [19], tissues are involved with progressively
functional declines during aging. The functional analysis found the order parameters
were enriched in particular BP terms / KEGG pathways in different age groups, where
immunity dysfunction and cancer related pathways indicated the common theme of
aging. Therefore, the aging process could be predictive by modelling the
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self-organization system.

Further, the cancer profiles also identified the aging acceleration of cancer samples
with statistically significant using the aging scores, based on the aging
self-organization system. Both methylation and expression profiles found the cancer
samples with aging acceleration compared to normal samples. The results indicated
the protective roles of aging in cancers [5]. Moreover, different aging acceleration
pattern could also discriminate cancer types.

In summary, we presented the self-organization model of the aging process based on
both methylation and expression profiles in this work, where both ordered and
disordered critical patterns were identified in different aging stages. Biological
features of the order parameters indicated dysfunction of the immunity system and
other key functions of aging (i.e. cancers). Thus the aging acceleration also revealed
the cross-talk between aging and cancers. In conclusion, the aging self-organization
system described here is informative to both aging and aging related diseases.

Materials and methods

Data and pre-processing

We obtained methylation and expression profiles from MuTHER study [20] and GEO
database (https://www.ncbi.nlm.nih.gov/geo/) with the chronological age (Table S1
and S2), respectively. Only profiles in normal tissues of healthy persons were
considered for modelling the aging self-organization systems (samples from normal
tissues from persons with cancer and disease status sample / blood, e.g. traumatic
blood from healthy persons were discarded). As a result, there were 2226 samples of
Gene expression data from 37 datasets, and 4428 samples methylation data from 35
datasets were selected to model the aging self-organization systems, respectively.

For each methylation / expression dataset, the data were treated by a Singular Value
Decomposition (SVD) method [16, 21] (regress the first 3 principle components) to
assess the sources of inter-sample variation separately in each tissue, and then were
normalized to have zero mean and unit variance. Finally the profiles were discretized
using two thresholds mean+/-std. If the data came from different platform (e.g.
GPL96 / GPL97) even in the same GEO Series, or came from different region of brain
(e.g. hippocampus, Posterior cingulate region and so on), the data were treated as
independent dataset.

The age groups were partition as: 0-20, 20-50, 50-70 and 70-survival. The choice of
age groups was guided by the following criterion: first, the partition of methylation
and expression data should be accordance for further integration; second, the human
methylation “age acceleration” is significant before age of 20 [5]; third, the sample
imbalances between age groups need to be small. Data from different age nearby were
used to model the aging self-organization system (0-20 vs. 20-50; 20-50 vs. 50-70;
50-70 vs. 70-sruvival) based on methylation and expression profiles, respectively.
Further, simplified classification models were also constructed to discriminate
“young” (0-50) and “old” (50-survival) age group [6] based on expression and
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methylation profiles, respectively.

We also downloaded paired methylation, expression, somatic mutation profiles and
clinical data (both cancer and adjacent normal tissue) from the TCGA platform
(through the xena website: https://xenabrowser.net/hub/) to further analyze aging
related genomic alterations (totally 333 paired samples were obtained).

The computational pipeline of modelling aging self-organization systems

Step 1, filtering the aging background network by maximum mutual information
minimum redundancy criterion

Aging is a gradual process with biology functional decline / disorder. The degree of
disorder is often evaluated by entropy. The aging process is usually followed energy
disperse / entropy increasing; however, in the biological non-closed molecular system,
particular bio-markers perform special function of the aging process. Therefore, key
order-disorder transitions (or vice versa) might be considered important changes
between age group in the aging process.

In this work, the mutual information between different age groups was used to
evaluate relevance between genes (i.e. methylation or expression profiles), and the
mutual information between genes (from all training samples / age groups) was used
to evaluate gene redundancy. In addition, the background interaction system / network
of the aging process needs to be satisfied maximum mutual information and minimum
redundancy criterion:

network « argmax()_|142 107 | =" redundancy™) (1

groupl group?

where [07,,,,, indicates the mutual information between genes within the same age
group, evaluating the changed dispersion of gene interaction between age groups by
the absolute difference, and redundancy®?’ indicates the redundancy between genes.
As a result, the mutual information between age groups was filtered by the
redundancy in the background network as the preliminary gene interaction system of
the aging process.

Step 2, summarizing gene interactions by the convolution technology

Each “edge” in the aging background network indicating the changed dispersion of
gene interaction. As a result, the entire interaction of a gene could be calculated by
convoluting all the edges in the background network (i.e. Figure 1b), where the
absolute differences of mutual information between age groups were used as the
convolution kernel.

interaction, = z interaction; ,, * | sign(gene,) — sign(gene,) | (2)
where gene; and gene; was the profile of i-th and j-th gene, respectively; and
interaction , ,, = I(| sign(gene,) — sign(gene,) |,age _ group) (3)

where I(x,y) was the mutual information between x and y.
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Step 3,calculating the entire pattern by accumulating genes within module

Highly interconnected genes in the network are usually involved in the same
biological functions. In this work, genes in the same module were accumulated, where
the weights were calculated by the relieff algorithm. Either gene original profiles or
convoluted interactions were accumulated was determined by their relieff weights. As
a result, each module could be a feature in classification of different age groups. In
this work, the SVM classifier (with the linear kernel) was used to discriminate the age
groups.

Step 4, determining module size by clustering method and cross-validation

The size of module (how many genes in a module) was determined the hierarchical
clustering method, where correlation of genes was evaluated by mutual information in
the background network between different age groups in the aging process. The
clustering degree / times was determined by (5-fold) cross validation.

Step 5, identifying order parameters by network sparsification

In this work, only a small ratio of interactions were convoluted in step 2, sorted by the
mutual information; and only genes with top relieff values were accumulated in the
module in step 2. sqrt(n) interactions / genes were selected as the order parameters of
the aging process using the network sparsification method, where n was the total
number interacted with each gene / within the module, respectively.

Enrichment analysis

Enrichment analyses were carried out to gain significantly biological functions. GO
Biological Processes (BP) terms of Gene Ontology (GO) and KEGG pathways were
downloaded from Gene Set Enrichment Analysis (GSEA) platform (version 6.1) [22].
The hypergeometric test [23] was performed to estimate the enrichment of these
selected genes compared to known GO terms or pathways. Finally, the selected
significantly enrichment p-values were controlled by False Discover Rate [24]. The
thresholds were set as p-value<0.05 and FDR<O0.2.

To evaluate annotated functions across, enriched BP terms / KEGG pathways were
calculated by summarizing values of 1-fdr, where fdr<0.2 was set as the threshold.

score = z (1- fdr) “4)

fidr<02

Figures and tables

Figure 1 Overview of the aging self-organization system.

(a) the computational pipeline of modelling the aging self-organization system; (b) an
example of the convolution of interactions between methylation cg27583030
(SLC25A4) and other genes in the model of age group 50-70 vs. 70-survival;

Figure 2 Learning curves of the the aging self-organization system.

(a, ¢, e, g) methylation profiles; (b, d, f, h) expression profiles; (a, b) 0-50 vs.
50-survival; (c, d) 0-20 vs. 20-50; (e, f) 20-50 vs. 50-70; (g, h) 50-70 vs. 70-survival;
Figure 3 ROC curves of the the aging self-organization system in test data.
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(a, ¢, e, g) methylation profiles; (b, d, f, h) expression profiles; (a, b) 0-50 vs.
50-survival; (c, d) 0-20 vs. 20-50; (e, f) 20-50 vs. 50-70; (g, h) 50-70 vs. 70-survival;
Figure 4 Biological features of the the aging self-organization system.

The top 10 enriched KEGG pathways across different models of aging
self-organization systems.

Figure 5 Order-disorder patterns in different aging stages

(a, ¢, e, g) methylation profiles; (b, d, f, h) expression profiles;

Figure 6 Aging acceleration of cancers.

(a) methylation profiles; (b) expression profiles; (c) The heatmap of aging
acceleration patterns across cancers;

Table 1 overview of the aging self-organization system

Order parameters

Samples (original profiles +
original profiles
model profiles  (training data + test gimatp ) Modules (dimensions)
summarized
data) ) .
interactions)
0-20 vs. _
methylation 1760+798 4360+6408 2683
20-50
20-50 vs. ,
methylation 1875+845 2137+6713 2920
50-70
50-70 vs. .
) methylation 1285+585 1484+5497 1918
70-survival
0-50 vs. )
) methylation 3045+1381 4825+4891 2746
50-survival
0-20 vs. )
expression 655+315 246+2211 1173
20-50
20-50 vs. )
expression 975+473 2658+4660 2388
50-70
50-70 vs. .
. expression 845+411 2201+6044 2454
70-survival
0-50 vs. .
expression 1500+726 2832+4413 2067

50-survival

Table 2 classification results (error rates) based on methylation data

o Training
Training data Test data (control
Age group L. Test data data(control
(cross validation) method)
method)
0-20 vs.
" 0.279 0.3356 0.44 0.4726
20-50
20-50 vs.
v 0.2916 0.2719 0.422 0.461
50-70

50-70 vs. 0.3097 0.3098 0.3262 0.3137
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70-survival
0-50 vs.

. 0.259 0.2549 0.3791 0.4136
50-survival

Table 3 classification results (error rates) based on expression data

Training data Training data  Test data (control

A Test dat
ge group (cross validation) est data (control method) method)
0-20 vs.
0.3185 0.3084 0.351 0.3911
20-50
20-50 vs.
0.2333 0.2308 0.2613 0.4325
50-70
50-70 vs.
) 0.2337 0.279 0.2726 0.4659
70-survival
0-50 vs.
: 0.2161 0.2066 0.3492 0.4297
50-survival
Table 4 top enriched BP terms within module
model profiles pathway FDR
. negative regulation of cellular senescence
0-20 vs. 20-50 methylation 0.0016
(GO:2000773)
20-50 vs. ) negative regulation of viral process
methylation 0.0005
50-70 (GO:0048525)
prostage gland morphogenesis
(GO:0016578)
50-70 vs. . branch elongation of an epithelium
) methylation 0.0041
70-survival (GO:0060602)
axis elongation
(GO:0003401)
0-50 vs. _ histone deubiquitination
. methylation 0.003
50-survival (GO:0016578)
0-20 vs. 20-50 . response to electrical stimulus 0.0324
-20 vs. 20- expression .
P (GO:0051602)
fatty acid beta-oxidation using acyl-CoA
20-50 vs. ) oxidase 0.0014
expression )
50-70 P (GO:0033540)
alpha-linolenic acid metabolic process
(GO:0036109)
50-70 vs. ) )
) expression progesterone metabolic process 0.0028
70-survival

(GO:0042448)

0-50 vs. expression  purinergic nucleotide receptor signaling 0.0012
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50-survival pathway
(GO:0035590)

Table 5 top enriched KEGG pathways within module

model profiles pathway FDR
0-20 vs. , . .
20-50 methylation  Maturity onset diabetes of the young  0.0019
20-50 vs.
v methylation Focal adhesion 0.0015
50-70
50-70 vs. ) S
. methylation Homologous recombination 0.0014
70-survival
0-50 vs.
V,S methylation Phenylalanine metabolism 0.0009
50-survival
0-20 vs. )
expression Lysosome 0.0104
20-50
20-50 vs. ) . .
expression Retinol metabolism 0.0022
50-70
50-70 vs. . . .
. expression Prion diseases 0.0027
70-survival
0-50 vs. . .
expression Long-term potentiation 0.0035

50-survival

Table 6 top enriched BP terms across modules

FDR Enriched
model profiles pathway dul score
range modules

outflow tract morphogenesis

. (G0O:0035902) 0.0409~
0-20 vs. 20-50 methylation . i 2 1.8977
cardiac septum morphogenesis 0.0614
(GO:0060411)
20-50 vs. ) negative regulation of viral process  0.0061~
methylation 2 1.8276
50-70 (GO:0048525) 0.1663
developmental growth involved in
50-70 vs. _ _ 0.0266~
) methylation morphogenesis 3 2.8406
70-survival 0.0845
(GO:0060560)
0-50 vs. ) response to immobilization stress 0.0031~
. methylation 2 1.9031
50-survival (G0O:0035902) 0.0937
obsolete regulation of cyclic nucleotide 0.0791
0-20 vs. 20-50 expression metabolic process 0 0867 2 1.8342
(GO:0030799) '
20-50 vs. ) ) 0.0752~
expression regulation of response to external 3 2.5805
50-70 0.1723

stimulus
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(GO:0032101)

50-70 vs. ) ) 0.0358~
. expression cardiac septum development 2 1.8725
70-survival 0.0915
(GO:0003279)
0-50 vs. ) neural tube formation 0.0333~
: expression 2 1.8892
50-survival (GO:0051602) 0.0775

Table 7 top enriched KEGG pathways across modules

Enriched
model profiles pathway FDR range score
modules
0-20 vs. . .
methylation Glioma 0.0193~0.184 11 9.8185
20-50
20-50 vs. .
50-70 methylation Prostage cancer 0.0922~0.185 16 13.6894
50-70 vs. ) )
. methylation Pancreatic cancer 0.0714~0.1931 9 7.9217
70-survival
0-50 vs. . .
. methylation Pancreatic cancer 0.041~0.1988 17 14.7595
50-survival
0-20 ERBB signaling pathway
-20 vs.
50-50 expression VEGEF signaling pathway 0.0902~0.1844 5 4.3889
Non-small cell lung cancer
20-50 vs. . . .
50-70 expression Insulin signaling pathway 0.0213~0.1858 10 8.8731
50-70 vs. ) VEGF signaling pathway
. expression . ] : 0.0134~0.194 9 7.8764
70-survival Fc epsilon RI signaling pathway
0-50 vs. ,
) expression Prostage cancer 0.0692~0.1887 11 9.4625
50-survival
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Supplemental Files

Figure S1 Hierarchies of the the aging self-organization system.

(a, b) cross-talks between the 492th module and other modules in the model of 0-20
vs. 20-50; (c, d) cross-talks between the 1799th module and other modules in the
model of 20-50 vs. 50-70; (a, c) enriched BP terms; (b, d) enriched KEGG pathways;
Figure S2 Age acceleration versus number of somatic mutations in the TCGA data
based on methylation profiles
Figure S3 Age acceleration versus number of somatic mutations in the TCGA data
based on methylation profiles
Figure S4 aging acceleration characteristics across cancers using the top differential
expression module.

(a) connection of BP terms based on order-parameter modules; (b) connection of
KEGG pathways based on order-parameter modules;

Table S1 DNA methylation data involving normal tissues from healthy persons

Table S2 gene expression data involving normal tissues from healthy persons

Table S3 modules based on order-parameters of the aging self-organization system
using methylation profiles.

Table S4 modules based on order-parameters of the aging self-organization system
using expression profiles.

Note: 0 indicates genes are not selected as order-parameters, otherwise are selected
within modules (Table S3-S4).
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