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Abstract
Aging is a fundamental biological process, where key bio-markers interact with each 
other and synergistically regulate the aging process. Thus aging dysfunction will 
induce many disorders. Finding aging markers and re-constructing networks based on 
multi-omics data (i.e. methylation, transcriptional and so on) are informative to study 
the aging process. However, optimizing the model to predict aging have not been 
performed systemically, although it is critical to identify potential molecular 
mechanism of aging relative diseases.
This paper aims to model the aging self-organization system using a serious of 
supervised learning methods, and study complex molecular mechanism of aging at 
system level: i.e. optimizing the aging network; summarizing interactions between 
aging markers; accumulating patterns of aging markers within module; finding 
order-parameters of the aging self-organization system.
In this work, the normal aging process is modeled based on multi-omics profiles 
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across tissues. In addition, the computational pipeline aims to model aging 
self-organizing systems and study the relationship between aging and related diseases 
(i.e. cancers), thus provide useful indexes of aging related diseases and improve 
diagnostic effects for both pre- and pro- gnosis.

Introduction 
Aging is a complex process regulated by key bio-markers, reflecting disorders / 
declined abilities of tissues [1]. Dysfunction of aging has been shown to relate many 
diseases, such as diabetes, Parkinson disease [2], Alzheimer’s disease [3] and cancers 
[4]. As a result, finding aging markers is critical to study aging related diseases and 
identify healthy genomic diagnostics (i.e. by predicting the chronological age (group) 
based on molecular profiles). For example, multi-tissue predictors of age have been 
calculated by methylation [5] or mRNA expression profiles[6]; and there are more age 
predictors based on single tissue (e.g. brain [7], breast [8], ans so on), also provide 
insights on aging related diseases [6] (i.e. cancers,  Alzheimer’s disease).
Further, the aging markers interact with each other [9], and synergetically coordinate 
the aging process, herein generating the self-organization system [10] of aging, where 
particular bio-markers regulate the aging process in different age groups, respectively. 
Although tissues become disordered / functional decline during aging in general 
(often evaluated by the entropy [11]), a serious of aging markers perform special / 
ordered functions in special aging stages / age groups. In addition, these markers / 
genes interact with each other, coordinately involving in the aging process; therefore, 
the interactions / modules between such markers also provide critical patterns of aging. 
In summary, finding bio-markers to predict the chronological ages, summarizing 
interactions between aging markers, and optimizing the aging self-organization 
system based on molecular profiles (i.e. methylation, expression and so on) of normal 
tissues from healthy persons, could help predict future health risks at system level. 
However, these works have not been solved entirely for the aging process.

In this work, we modeled the aging self-organization system using a serious of 
computational methods: filtering inter-connection networks between different age 
groups by the maximum mutual information and minimum redundancy criterion in 
the information theory; summarizing interactions between bio-markers by the 
convolution technology; calculating patterns by accumulating weighted genes within 
the same module; selecting module scales by the hierarchical clustering method and 
cross validation; identifying order parameters in the aging self-organization system by 
network sparsification.
The prediction results showed high classification accuracy between different age 
groups; moreover, the enrichment analysis and network analysis also found key 
functions of the order parameters. Thus critical complex characteristics (i.e. 
hierarchies, emergencies and bifurcations) were identified in different aging stages. 
Aging acceleration patterns were also identified across cancers. In short, the aging 
process can be thorough studied by modelling the aging self-organization system.
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Results and discussion

A brief description of the aging self-organization system
In the aging self-organization system, genes interacted with each other, and 
synergetically coordinated the aging process. Therefore, the aging process could also 
be evaluated by interactions between aging markers. The aging markers clustered 
nearby would drive similar function [12], and could be summarized within the same 
module. Each module take a particular part during aging, and regulated the aging 
process altogether. Different levels / hierarchies of the markers / modules reflected 
special the complexity of the aging system, herein reflecting particular patterns in 
different aging stages. As a result, the aging self-organization system would emerge 
important characteristics apart from any single isolated marker / module. In summary, 
modules based on aging markers coordinately determined the bifurcations and 
displayed critical differential patterns between age groups, where key aging markers 
within modules could be identified as the order parameters in the aging 
self-organization system.
Further, the system from pathological samples should be deviated the normal aging 
self-organization system (from healthy persons): for example, the aging system with 
disease (i.e. cancers) should display significant acceleration from the normal aging 
process. Accordingly, the following parts of this paper depicted results of modelling 
the aging self-organization system and the computational pipeline was shown in 
Figure 1.

Classification results of the aging self-organization system
The expression and methylation profiles were used to test the classification abilities of 
the aging self-organization system between different age groups, respectively (Figure 
2 and 3). Table 1-3 showed that classification results based on the self-organization 
system have lower error rates than traditional feature selection methods (i.e. the 
refieff-mRMR pipeline [13]), using both methylation and expression data between 
age groups. As a result, the self-organization system reduced the feature dimensions 
effectively and extracted critical modules by finding the order-parameters, and 
identifying key differences based on aging markers / interactions in the aging process 
at system level. 

Biological features of the order parameters
The methylation order parameter with the maximum relieff weight was the 
convolution interactions of cg27583030 (SLC25A4, weight=0.1974, shown in Figure 
1b) in the model of age group 50-70 vs. 70-survival. Common SLC25A4 related 
pathway were apoptosis and survival regulation of apoptosis by mitochondrial protein, 
reflecting the relationship between aging and cellular apoptosis [14]. The expression 
order parameters with the largest relieff weight was original profile of NRBF2 
(weight=0.2493) between age group 50-70 vs. 70-sruvival. NRBF2 played a role in  
cellular survival and neural progenitor cell survival during differentiation [15], and 
dysfunction of NRBF2 also affected the aging process.
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Further, enrichment analyses of the order parameters in each module were performed 
on Biological Process (BP) terms of Gene Ontology (GO) and KEGG pathways using 
the hypergeometric test (Table 4-5 and S1-S2). The most significant BP term was the 
negative regulation of viral process (GO:0048525, fdr=0.0005) in the 245th module of 
the model between age group 20-50 vs. 50-70 based on the methylation profiles, 
reflecting the relationship between the immunity system and aging [16]; and the most 
significant KEGG pathway was Phenylalanine metabolism (fdr=0.0009) based on the 
methylation profiles in the model between age group 0-50 vs. 50-survival, indicating 
the critical metabolism during aging. In addition, the annotation of order-parameters  
also reveal key functions across different aging stages, i.e. BP terms were enriched in 
aging related diseases in the early stage of aging, and enriched in tissue dysfunction in 
the later stage. It is perhaps functional decline of the immunity system induced aging / 
tissue dysfunction.

Strikingly, enriched functions across modules indicated the common themes of aging 
(Table 6 and 7). For example, BP terms of organ morphogenesis were enriched during 
both young (0-20 vs. 20-50) and old (50-70 vs. 70- survival) age groups, reflecting the 
basal role of tissues affected by the aging process. Moreover, cancer and related 
signaling KEGG pathways were enriched across different aging stages based on both 
methylation and expression profiles (Figure 4). These results reflected the cross-talk 
between aging and cancer, where dysfunction of aging might indicate diseases / 
cancerization of tissues . 

Complexity characteristics of the aging self-organization system
In the self-organization system, molecules interacted with each other, and 
synergetically regulate particular process (i.e. aging). For example, summarized 
interactions of both methylation cg27583030 (SLC25A4) (with higher relieff values, 
shown in Figure 1b). Moreover, a serious of order parameters were with summarized 
interactions other than the ordinary profiles, indicating functions of cross-talks 
between key markers during aging (Table 1).
In addition, any single isolated marker / module could not reflect all of the key 
characteristics between age groups effectively, but combination of modules could. It 
should be that cross-talks across modules generated the aging self-organization 
system with key differential patterns / bifurcations between age groups. Thus the 
hierarchies across modules promoted emergencies of the aging self-organization 
system, which were not displayed by any single module / order parameter. Therefore, 
the correspondences across modules indicated the hierarchies / emergencies of the 
aging self-organization system. 
The corresponding networks across modules (also using the maximum mutual 
information minimum redundancy criterion) indicated core modules in the hierarchies 
of the self-organization system (Figure S1). Based on the methylation profiles, the 
492th module were with the maximum interaction score (mean value=0.0189), 
connecting other 2682 modules (in the model of age group: 0-20 vs. 20-50). This 
module acted as a “hub” and connected 45 key BP functions (i.e. negative regulation 
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of cellular senescence, regulation of attachment of spindle microtubules to 
kinetochore and negative regulation of potassium ion transmembrane transporter 
activity) and 60 KEGG pathways (i.e. Maturity onset diabetes of the young and 
Pentose and glucuronate interconversions), reflecting the crosstalk between immunity 
and key metabolic pathway during aging. Based on the expression profiles, the 1799th 
module were with the maximum interaction score (mean value=0.0762), connecting 
other 2387 modules (in the model of age group: 20-50 vs. 50-70). The module 
connected 46 key BP functions (i.e. fatty acid beta oxidation using acyl coa oxidase, 
cell aggregation and cytokine production) and 51 KEGG pathways (i.e. Retinol 
metabolism, alpha linolenic acid metabolism and Pyruvate metabolism), revealed 
basal metabolism pathways during aging. In short, the corresponding networks 
reflected correlations of important parts / functions in the aging self-organization 
system, such as the immunity system, cancer related pathways, and so on. It might be 
the cross-talk between the immunity system and cancers affected emergencies of 
critical themes in the aging process.

Therefore, the bifurcations (differential patterns) between age groups were 
investigated, where order parameters with convoluted interactions were summarized 
by each relieff weight, indicating order-disorder patterns of interactions between 
aging order-parameters from low (near the ordered / same pattern with low entropic 
values of the aging system) to high (near disordered / different patterns with high 
entropic values) values, or vise verse. As a result, significant differential patterns were 
found between age groups using both methylation and expression profiles (Figure 5). 
In the early aging stage (0-20 vs. 20-50), the aging self-organization systems were 
with significantly ordered patterns based on both methylation and expression profiles. 
As aging was regulated by special markers / order-parameters, the self-organization 
system showed ordered patterns in the early aging stage. However, the 
self-organization systems were with disordered patterns in middle (20-50 vs. 50-70) 
and later (50-70 vs. 70-survival) stage based on expression and methylation profiles, 
respectively, indicating tissue declined function / disordered patterns during aging. 
The aging process was driven by both special markers / order parameters (with order 
patterns) and tissue declined function (with disordered patterns), perhaps determined 
by the former in the early aging stage, and by the latter in the later stage.

Aging acceleration of cancers
To study the crosstalk between aging and cancer, the aging associated accelerations 
were investigated in cancer samples (from the TCGA platform). The order parameters 
were extracted using the cancer profiles based on each self-organization model, and 
the module patterns in each model were summarized. Then the aging score were 
calculated by the module patterns (adjacent normal samples were as the training data, 
cancer samples were as the test data, and the 0-1 SVM regression was used as the 
predictor). Strikingly, the results showed that the scores in cancer samples were 
significantly higher compared to adjacent normal samples, based on both methylation 
and expression profiles (Figure 6). These results were consistent with previous results, 
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which might reflect the protection of the cancer tissues [5, 17].
The correlation between somatic mutation and aging acceleration was also investigate, 
but none of SNPs with significant (p-value<0.05 and fdr<0.2, using the non-parameter 
Kruskal-Wallis Test [18]) aging acceleration were identified. The results were 
perhaps because of not enough samples of paired profiles, aging acceleration tissues 
in cancer with fewer somatic mutations, or the complexity of the self-organization 
system [5]. It have been found that there were negative correlation between age 
acceleration and number of somatic mutations[5]. Therefore, our work also found the 
negative correlations in most types of cancers (Figure S2 and S3). However, only a 
few cancers were with significant correlation (e.g. THCA, shown in Figure S2l and 
S3l) .

Further, the 11 types of cancer profiles were clustered based on the mean value of 
aging acceleration patterns using mean acceleration ratios base on simplified 
methylation and expression models. As a result (Figure 6c and S4), 7 cancers were 
identified as one aging acceleration pattern, including BLCA, COAD, ESCA, HNSC, 
KIRC, KIRP and PRAD; and other 4 cancers were identified as another aging 
acceleration pattern (BRCA, LIHC, LUAD and THCA). In addition, 49 significant 
modules were identified based on both differential methylation and expression 
profiles, where the top differential module (the 926th expression module) connected 
50 key BP terms (i.e. cellular localization, skeletal muscle adaptation and GABAergic 
neuron differentiation) and 51 KEGG pathways (Long-term potentiation and Retinol 
metabolism), indicating key functions of the aging process of the neuron system. The 
aging acceleration patterns also revealed basal characteristics across cancers.

Conclusions 
The aging process is regulated by a serious of key markers. The aging markers 
interact with each other, and performed their functions in the aging specific networks. 
As a result, identifying modules clustered by these markers during aging was more 
informative to research the aging process than only finding isolated markers. In this 
paper, we presented a computational pipeline to model the aging self-organization 
system and select the order parameters using a serious of supervised learning 
technologies. The discrimination results showed that our prediction ability was with 
more accuracy than traditional gene selection / classification methods. 
Tissues are usually with declined functions during aging. However, the aging markers 
interact with each other, and synergistically regulate the aging process. Therefore, the 
aging process is affected by both ordered and disordered factors. In this work, the 
complexity characteristics across modules were also found critical patterns in 
different age groups.
In the immunity theories of aging [19], tissues are involved with progressively 
functional declines during aging. The functional analysis found the order parameters 
were enriched in particular BP terms / KEGG pathways in different age groups, where 
immunity dysfunction and cancer related pathways indicated the common theme of 
aging. Therefore, the aging process could be predictive by modelling the 
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self-organization system.
Further, the cancer profiles also identified the aging acceleration of cancer samples 
with statistically significant using the aging scores, based on the aging 
self-organization system. Both methylation and expression profiles found the cancer 
samples with aging acceleration compared to normal samples. The results indicated 
the protective roles of aging in cancers [5]. Moreover, different aging acceleration 
pattern could also discriminate cancer types.

In summary, we presented the self-organization model of the aging process based on 
both methylation and expression profiles in this work, where both ordered and 
disordered critical patterns were identified in different aging stages. Biological 
features of the order parameters indicated dysfunction of the immunity system and 
other key functions of aging (i.e. cancers). Thus the aging acceleration also revealed 
the cross-talk between aging and cancers. In conclusion, the aging self-organization 
system described here is informative to both aging and aging related diseases.

Materials and methods

Data and pre-processing
We obtained methylation and expression profiles from MuTHER study [20] and GEO 
database (https://www.ncbi.nlm.nih.gov/geo/) with the chronological age (Table S1 
and S2), respectively. Only profiles in normal tissues of healthy persons were 
considered for modelling the aging self-organization systems (samples from normal 
tissues from persons with cancer and disease status sample / blood, e.g. traumatic 
blood from healthy persons were discarded). As a result, there were 2226 samples of 
Gene expression data from 37 datasets, and 4428 samples methylation data from 35 
datasets were selected to model the aging self-organization systems, respectively.
For each methylation / expression dataset, the data were treated by a Singular Value 
Decomposition (SVD) method [16, 21] (regress the first 3 principle components) to 
assess the sources of inter-sample variation separately in each tissue, and then were 
normalized to have zero mean and unit variance. Finally the profiles were discretized 
using two thresholds mean+/-std. If the data came from different platform (e.g.  
GPL96 / GPL97) even in the same GEO Series, or came from different region of brain 
(e.g. hippocampus, Posterior cingulate region and so on), the data were treated as 
independent dataset. 
The age groups were partition as: 0-20, 20-50, 50-70 and 70-survival. The choice of 
age groups was guided by the following criterion: first, the partition of methylation 
and expression data should be accordance for further integration; second, the human 
methylation “age acceleration” is significant before age of 20 [5]; third, the sample 
imbalances between age groups need to be small. Data from different age nearby were 
used to model the aging self-organization system (0-20 vs. 20-50; 20-50 vs. 50-70; 
50-70 vs. 70-sruvival) based on methylation and expression profiles, respectively. 
Further, simplified classification models were also constructed to discriminate 
“young” (0-50) and “old” (50-survival) age group [6] based on expression and 
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methylation profiles, respectively.
We also downloaded paired methylation, expression, somatic mutation profiles and 
clinical data (both cancer and adjacent normal tissue) from the TCGA platform 
(through the xena website: https://xenabrowser.net/hub/) to further analyze aging 
related genomic alterations (totally 333 paired samples were obtained). 

The computational pipeline of modelling aging self-organization systems

Step 1, filtering the aging background network by maximum mutual information 
minimum redundancy criterion
Aging is a gradual process with biology functional decline / disorder. The degree of 
disorder is often evaluated by entropy. The aging process is usually followed energy 
disperse / entropy increasing; however, in the biological non-closed molecular system, 
particular bio-markers perform special function of the aging process. Therefore, key 
order-disorder transitions (or vice versa) might be considered important changes 
between age group in the aging process.
In this work, the mutual information between different age groups was used to 
evaluate relevance between genes (i.e. methylation or expression profiles), and the 
mutual information between genes (from all training samples / age groups) was used 
to evaluate gene redundancy. In addition, the background interaction system / network 
of the aging process needs to be satisfied maximum mutual information and minimum 
redundancy criterion:

    (1))|I|max(argn ),(),(
2

),(
1   jiji

group
ji

group redundancyIetwork

where I(i,j)
group indicates the mutual information between genes within the same age 

group, evaluating the changed dispersion of gene interaction between age groups by 
the absolute difference, and redundancy(i,j)  indicates the redundancy between genes. 
As a result, the mutual information between age groups was filtered by the 
redundancy in the background network as the preliminary gene interaction system of 
the aging process.

Step 2, summarizing gene interactions by the convolution technology
Each “edge” in the aging background network indicating the changed dispersion of 
gene interaction. As a result, the entire interaction of a gene could be calculated by 
convoluting all the edges in the background network (i.e. Figure 1b), where the 
absolute differences of mutual information between age groups were used as the 
convolution kernel.

(2)|)()(|*intninteractio ),(i jiji genesigngenesigneraction  
where genei and genej was the profile of i-th and j-th gene, respectively; and

(3))_|,)()((|ninteractio ),( groupagegenesigngenesignI jiji 

where I(x,y) was the mutual information between x and y.
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Step 3,calculating the entire pattern by accumulating genes within module
Highly interconnected genes in the network are usually involved in the same 
biological functions. In this work, genes in the same module were accumulated, where 
the weights were calculated by the relieff algorithm. Either gene original profiles or 
convoluted interactions were accumulated was determined by their relieff weights. As 
a result, each module could be a feature in classification of different age groups. In 
this work, the SVM classifier (with the linear kernel) was used to discriminate the age 
groups.

Step 4, determining module size by clustering method and cross-validation
The size of module (how many genes in a module) was determined the hierarchical 
clustering method, where correlation of genes was evaluated by mutual information in 
the background network between different age groups in the aging process. The 
clustering degree / times was determined by (5-fold) cross validation.

Step 5, identifying order parameters by network sparsification
In this work, only a small ratio of interactions were convoluted in step 2, sorted by the 
mutual information; and only genes with top relieff values were accumulated in the 
module in step 2. sqrt(n) interactions / genes were selected as the order parameters of 
the aging process using the network sparsification method, where n was the total 
number interacted with each gene / within the module, respectively.

Enrichment analysis
Enrichment analyses were carried out to gain significantly biological functions. GO 
Biological Processes (BP) terms of Gene Ontology (GO) and KEGG pathways were 
downloaded from Gene Set Enrichment Analysis (GSEA) platform (version 6.1) [22].
The hypergeometric test [23] was performed to estimate the enrichment of these 
selected genes compared to known GO terms or pathways. Finally, the selected 
significantly enrichment p-values were controlled by False Discover Rate [24]. The 
thresholds were set as p-value<0.05 and FDR<0.2. 
To evaluate annotated functions across, enriched BP terms / KEGG pathways were 
calculated by summarizing values of 1-fdr, where fdr<0.2 was set as the threshold.

(4)



2.0

)1(score
fdr

fdr

Figures and tables
Figure 1 Overview of the aging self-organization system.
(a) the computational pipeline of modelling the aging self-organization system; (b) an 
example of the convolution of interactions between methylation cg27583030 
(SLC25A4) and other genes in the model of age group 50-70 vs. 70-survival; 
Figure 2 Learning curves of the the aging self-organization system.
(a, c, e, g) methylation profiles; (b, d, f, h) expression profiles; (a, b) 0-50 vs. 
50-survival; (c, d) 0-20 vs. 20-50; (e, f) 20-50 vs. 50-70; (g, h) 50-70 vs. 70-survival; 
Figure 3 ROC curves of the the aging self-organization system in test data.
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(a, c, e, g) methylation profiles; (b, d, f, h) expression profiles; (a, b) 0-50 vs. 
50-survival; (c, d) 0-20 vs. 20-50; (e, f) 20-50 vs. 50-70; (g, h) 50-70 vs. 70-survival; 
Figure 4 Biological features of the the aging self-organization system.
The top 10 enriched KEGG pathways across different models of aging 
self-organization systems.
Figure 5 Order-disorder patterns in different aging stages
(a, c, e, g) methylation profiles; (b, d, f, h) expression profiles; 
Figure 6 Aging acceleration of cancers.
(a) methylation profiles; (b) expression profiles; (c) The heatmap of aging 
acceleration patterns across cancers;

Table 1 overview of the aging self-organization system

model profiles
Samples

(training data + test 
data)

Order parameters
(original profiles + 

summarized 
interactions)

Modules (dimensions)

0-20 vs. 
20-50

methylation 1760+798 4360+6408 2683

20-50 vs. 
50-70

methylation 1875+845 2137+6713 2920

50-70 vs. 
70-survival

methylation 1285+585 1484+5497 1918

0-50 vs. 
50-survival

methylation 3045+1381 4825+4891 2746

0-20 vs. 
20-50

expression 655+315 246+2211 1173

20-50 vs. 
50-70

expression 975+473  2658+4660 2388

50-70 vs. 
70-survival

expression 845+411 2201+6044 2454

0-50 vs. 
50-survival

expression 1500+726 2832+4413 2067

Table 2 classification results (error rates) based on methylation data

Age group
Training data 

(cross validation)
Test data

Training 
data(control 

method)

Test data (control 
method)

0-20 vs. 
20-50

0.279 0.3356 0.44 0.4726

20-50 vs. 
50-70

0.2916 0.2719 0.422 0.461

50-70 vs. 0.3097 0.3098 0.3262 0.3137
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70-survival
0-50 vs. 

50-survival
0.259 0.2549 0.3791 0.4136

Table 3 classification results (error rates) based on expression data

Age group
Training data 

(cross validation)
Test data

Training data 
(control method)

Test data (control 
method)

0-20 vs. 
20-50

0.3185 0.3084 0.351 0.3911

20-50 vs. 
50-70

0.2333 0.2308 0.2613 0.4325

50-70 vs. 
70-survival

0.2337 0.279 0.2726 0.4659

0-50 vs. 
50-survival

0.2161 0.2066 0.3492 0.4297

Table 4 top enriched BP terms within module
model profiles pathway FDR

0-20 vs. 20-50 methylation
negative regulation of cellular senescence

(GO:2000773)
0.0016

20-50 vs. 
50-70

methylation
negative regulation of viral process

(GO:0048525)
0.0005

50-70 vs. 
70-survival

methylation

prostage gland morphogenesis
(GO:0016578)

branch elongation of an epithelium
(GO:0060602)
axis elongation
(GO:0003401)

0.0041  

0-50 vs. 
50-survival

methylation
histone deubiquitination

(GO:0016578)
0.003

0-20 vs. 20-50 expression
response to electrical stimulus

(GO:0051602)
0.0324

20-50 vs. 
50-70

expression

fatty acid beta-oxidation using acyl-CoA 
oxidase

(GO:0033540)
alpha-linolenic acid metabolic process

(GO:0036109)

0.0014

50-70 vs. 
70-survival

expression progesterone metabolic process
(GO:0042448)

0.0028

0-50 vs. expression purinergic nucleotide receptor signaling 0.0012
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50-survival pathway
(GO:0035590)

Table 5 top enriched KEGG pathways within module
model profiles pathway FDR

0-20 vs. 
20-50

methylation Maturity onset diabetes of the young 0.0019

20-50 vs. 
50-70

methylation Focal adhesion 0.0015

50-70 vs. 
70-survival

methylation Homologous recombination 0.0014

0-50 vs.
50-survival

methylation Phenylalanine metabolism 0.0009  

0-20 vs. 
20-50

expression Lysosome 0.0104

20-50 vs. 
50-70

expression Retinol metabolism 0.0022

50-70 vs. 
70-survival

expression Prion diseases 0.0027

0-50 vs. 
50-survival

expression Long-term potentiation 0.0035

Table 6 top enriched BP terms across modules

model profiles pathway
FDR 
range

Enriched 
modules

score

0-20 vs. 20-50 methylation

outflow tract morphogenesis
(GO:0035902)

cardiac septum morphogenesis
(GO:0060411)

0.0409~
0.0614

2 1.8977

20-50 vs. 
50-70

methylation
negative regulation of viral process

(GO:0048525)
0.0061~
0.1663

2 1.8276

50-70 vs. 
70-survival

methylation
developmental growth involved in 

morphogenesis
(GO:0060560)

0.0266~
0.0845  

3 2.8406

0-50 vs. 
50-survival

methylation
response to immobilization stress

(GO:0035902)
0.0031~
0.0937

2 1.9031

0-20 vs. 20-50 expression
obsolete regulation of cyclic nucleotide 

metabolic process
(GO:0030799)

0.0791~
0.0867

2 1.8342

20-50 vs. 
50-70

expression regulation of response to external 
stimulus

0.0752~
0.1723

3 2.5805
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(GO:0032101)

50-70 vs. 
70-survival

expression cardiac septum development
(GO:0003279)

0.0358~
0.0915

2 1.8725

0-50 vs. 
50-survival

expression
neural tube formation

(GO:0051602)
0.0333~
0.0775

2 1.8892

Table 7 top enriched KEGG pathways across modules

model profiles pathway FDR range
Enriched 
modules

score

0-20 vs. 
20-50

methylation Glioma 0.0193~0.184 11  9.8185

20-50 vs. 
50-70

methylation Prostage cancer 0.0922~0.185 16 13.6894

50-70 vs. 
70-survival

methylation Pancreatic cancer 0.0714~0.1931 9 7.9217

0-50 vs.
50-survival

methylation Pancreatic cancer 0.041~0.1988  17 14.7595

0-20 vs. 
20-50

expression
ERBB signaling pathway
VEGF signaling pathway

Non-small cell lung cancer
0.0902~0.1844 5  4.3889

20-50 vs. 
50-70

expression Insulin signaling pathway 0.0213~0.1858 10 8.8731

50-70 vs. 
70-survival

expression
VEGF signaling pathway

Fc epsilon RI signaling pathway
0.0134~0.194 9 7.8764

0-50 vs. 
50-survival

expression Prostage cancer 0.0692~0.1887 11 9.4625

Reference
1, Finch, C.E. (1990). Longevity, Senescence, and the Genome (University of 
Chicago Press, Chicago)
2, Gilberto Levy The Relationship of Parkinson Disease With Aging Arch Neurol. 
2007;64(9):1242-1246. 
3, McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, et al. (2001)
Clinical and pathological diagnosis of frontotemporal dementia: report of the
Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol 58:
1803–1809 
4, Angela Grimes, B.S. and Sathees B.C. Chandra Significance of Cellular 
Senescence in Aging and Cancer Cancer Res Treat. 2009 Dec; 41(4): 187–195. 
5, Steve Horvath  DNA methylation age of human tissues and cell types Horvath 
Genome Biol 2013, 14:R115
6, Sood S, Gallagher IJ, Lunnon K, Rullman E, Keohane A, Crossland H, Phillips BE, 
Cederholm T, Jensen T, van Loon LJ, Lannfelt L, Kraus WE, Atherton PJ, Howard 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2018. ; https://doi.org/10.1101/502815doi: bioRxiv preprint 

https://doi.org/10.1101/502815
http://creativecommons.org/licenses/by/4.0/


R4, Gustafsson T, Hodges A, Timmons JA  A novel multi-tissue RNA diagnostic 
of healthy ageing relates to cognitive health status. Genome Biol. 2015 Sep 
7;16:185.
7, Kajia Cao, Alice S. Chen-Plotkin, Joshua B. Plotkin, Li-San Wang Age-correlated 
gene expression in normal and neurodegenerative human brain tissues. PLoS 
One. 5(9): e13098. 
8, Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, et al. Dynamic 
modularity in protein interaction networks predicts breast cancer outcome. Nat 
Biotechnol. 2009;27:199–204. doi: 10.1038/nbt.1522.
9, Xue H, Xian B, Dong D, Xia K, Zhu S, Zhang Z, et al. A modular network model 
of aging. Mol Syst Biol. 2007;3:147. doi: 10.1038/msb4100189.
10, Roland Wedlich-Söldner and Timo Betz Self-organization: the fundament of 
cell biology Philos Trans R Soc Lond B Biol Sci. 2018 May 26; 373(1747): 
20170103. 
11, Hayflick L. Entropy explains aging, genetic determinism explains longevity, 
and undefined terminology explains misunderstanding both PLoS Genet. 2007 
Dec;3(12):e220.
12，Cho D-Y, Kim Y-A, Przytycka TM Chapter 5: Network Biology Approach to 
Complex Diseases. PLoS Comput Biol 2012 8(12): e1002820.
13, Yi Zhang, Chris Ding, Tao Li Gene selection algorithm by combining reliefF 
and mRMR BMC Genomics. 2008; 9(Suppl 2): S27. Published online 2008 Sep 16. 
doi: 10.1186/1471-2164-9-S2-S27
14, Fan YS1, Yang HM, Lin CC. Assignment of the human muscle adenine 
nucleotide translocator gene (ANT1) to 4q35 by fluorescence in situ 
hybridization.Cytogenet Cell Genet. 1992;60(1):29-30.
15, Zhong Y., Morris D.H., Jin L., Patel M.S., Karunakaran S.K., Fu Y.J., Matuszak 
E.A., Weiss H.L., Chait B.T., Wang Q.J. Nrbf2 protein suppresses autophagy by 
modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and 
reducing intracellular phosphatidylinositol-3 phosphate levels. J. Biol. Chem. 
289:26021-26037(2014)
16, Toneff T1, Funkelstein L, Mosier C, Abagyan A, Ziegler M, Hook V. 
Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and 
catecholamine neurotransmitters. Peptides. 2013 Aug;46:126-35. doi: 
10.1016/j.peptides.2013.04.020. Epub 2013 Jun 6.
17, Tian Yuan, Yinming Jiao, Simone de Jong, Roel A. Ophoff, Stephan Beck, 
Andrew E. Teschendorff An Integrative Multi-scale Analysis of the Dynamic DNA 
Methylation Landscape in Aging PLoS Genet. 2015 Feb 18;11(2):e1004996. doi: 
10.1371/journal.pgen.1004996. eCollection 2015 Feb.
18, Wei LJ. Asymptotic Conservativeness and Efficiency of Kruskal-Wallis Test 
for K Dependent Samples. Journal of the American Statistical Association. 1981. pp. 
1006–1009.
19, Camil Castelo-Branco & Iris Soveral (2014) The immune system and aging: a
review, Gynecological Endocrinology, 30:1, 16-22
20, Glass D, Viñuela A, Davies MN, Ramasamy A, Parts L, Knowles D, Brown AA, 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2018. ; https://doi.org/10.1101/502815doi: bioRxiv preprint 

https://doi.org/10.1101/502815
http://creativecommons.org/licenses/by/4.0/


Hedman AK, Small KS, Buil A, Grundberg E, Nica AC, Di Meglio P, Nestle FO, 
Ryten M; UK Brain Expression consortium; MuTHER consortium, Durbin R, 
McCarthy MI, Deloukas P, Dermitzakis ET, Weale ME, Bataille V, Spector TD. 
Gene expression changes with age in skin, adipose tissue, blood and brain. 
Genome Biol. 2013 Jul 26;14(7):R75. doi: 10.1186/gb-2013-14-7-r75.
21, Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Gayther SA, et al. 
(2009) An epigenetic sig nature in peripheral blood predicts active ovarian 
cancer. PLoS One 4: e8274. doi: 10.1371/journal.pone.0008274 
22, Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, 
Benjamin L. Ebert, Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy, Todd 
R. Golub, Eric S. Lander, and Jill P. Mesirov Gene set enrichment analysis: A 
knowledge-based approach for interpreting genome-wide expression profiles 
PNAS  October 25, 2005  vol. 102  no. 43  15545–15550
23, Gasper G, Rahman M (2004) Basic hypergeometric series. Cambridge, UK; 
New York: Cambridge University Press. xxvi, 428 p.
24, Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: A 
practical and powerful approach to multiple testing. Journal of the Royal 
Statistical Society 57, 289–300

Supplemental Files
Figure S1 Hierarchies of the the aging self-organization system.
 (a, b) cross-talks between the 492th module and other modules in the model of 0-20 
vs. 20-50; (c, d) cross-talks between the 1799th module and other modules in the 
model of 20-50 vs. 50-70; (a, c) enriched BP terms; (b, d) enriched KEGG pathways;
Figure S2 Age acceleration versus number of somatic mutations in the TCGA data 
based on methylation profiles
Figure S3 Age acceleration versus number of somatic mutations in the TCGA data 
based on methylation profiles
Figure S4 aging acceleration characteristics across cancers using the top differential 
expression module.
(a) connection of BP terms based on order-parameter modules; (b) connection of 
KEGG pathways based on order-parameter modules;

Table S1 DNA methylation data involving normal tissues from healthy persons
Table S2 gene expression data involving normal tissues from healthy persons
Table S3 modules based on order-parameters of the aging self-organization system 
using methylation profiles.
Table S4 modules based on order-parameters of the aging self-organization system 
using expression profiles.
Note: 0 indicates genes are not selected as order-parameters, otherwise are selected 
within modules (Table S3-S4).
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