

1 ***Off-target effects of Cre recombinase reveal limits of adoptive T-cell***
2 ***transfers and persistent proliferation of effector CD8 T-cells***

3 Lisa Borkner¹, Anja Drabig¹, Xiaoyan Zheng¹, Julia Drylewicz², Thomas Marandu¹, Mariona Baliu-
4 Piqué², Suzanne van Duikeren³, Ramon Arens³, Kiki Tesselaar², José AM Borghans², Luka Cicin-Sain^{1,4,5}

5 Affiliations:

6 1. Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection
7 Research, Braunschweig, Germany

8 2. Laboratory of Translational Immunology, University Medical Center Utrecht, The Netherlands

9 3. Department of Immunohematology and Blood Transfusion, Leiden University Medical Center,
10 Leiden, The Netherlands

11 4. German Center for Infection Research (DZIF), Partner site Hannover/Braunschweig, Germany

12 5. Institute for Virology, Hannover Medical School, Hannover, Germany

13 * corresponding author:

14 Dr. Luka Cicin-Sain

15 Helmholtz Centre for Infection Research GmbH,

16 Inhoffenstr 7, 38124 Braunschweig,

17 E-Mail: luka.cicin-sain@helmholtz-hzi.de

18 Tel. +49 531 6181 4616

19 **Abstract**

20 Effector-memory T-cells (TEM) are assumed to be short-lived cells that poorly proliferate upon
21 antigenic restimulation, thus depending on central-memory T-cells (TCM) to replenish their numbers
22 during homeostasis, largely depending on adoptive transfer evidence. Here we analyzed T cells in
23 their natural environment and observed robust long-term *in vivo* cycling within the TEM subset that
24 was stronger than the one in the TCM subset. Murine Cytomegalovirus (MCMV) induces inflationary
25 TEM responses that remain high during latency. We analyzed Ki67 expression during acute and latent
26 MCMV infection and found Ki67^{hi}Bcl2^{lo} TEM in latently infected mice, arguing for antigen-driven TEM
27 proliferation. TEM acquired deuterium more rapidly than TCM in an *in vivo* labeling experiment, and
28 were replenished more rapidly than TCM after memory depletion, suggesting that TEM cycle faster
29 than TCM. We depleted selectively the proliferating T-cells by Cre-overinduction, which resulted in a
30 selective loss of Ki67^{hi}Bcl2^{lo} effector T-cells, and an increase in the death of TEM in the spleen, while
31 it hardly affected the TCM subset, arguing for robust proliferation of TEM in the spleen. On the other
32 hand, TEM homing to the spleen upon adoptive transfer was substantially poorer than TCM,
33 explaining the previously reported expansions of TCM, but not TEM, upon transfer. In conclusion, our
34 data suggest that memory inflation is maintained by proliferation of antigen-specific TEM, rather
35 than by continued expansion and differentiation of TCM.

36

37 ***Running title: TEM proliferation during MCMV latency***

38 ***Author Summary***

39 The naïve T cell population consists of T cells that have the potential to recognize millions of
40 different pathogens. Upon infection, naïve T cells that recognize the pathogen expand, and
41 differentiate into effector T cells that eliminate infected cells. Once the infection is contained, the T
42 cell pool contracts and only a small population of central memory T cells remains that can expand
43 quickly upon re-infection. Cytomegaloviruses cause persistent infections that are not cleared from
44 the organism after the initial immune response. In infected individuals a pool of CMV-specific
45 effector memory T cells dominates the immune system in a phenomenon called memory inflation.
46 Previous research using the transfer of central memory or effector memory T cells from CMV-
47 infected mice into mice with a matching infection, showed expansion of central memory T cells but
48 not effector memory T cells. Here we show that effector memory T cells have a reduced capacity to
49 home into lymphoid organs, where T cell activation takes place, compared to central memory T cells.
50 Using methods that do not interfere with T cell differentiation and homing, we show that effector
51 memory T cells are proliferating during the persistent phase of CMV infection, significantly
52 contributing to the upkeep of the inflationary population.

53 ***Introduction***

54 T-lymphocytes play a unique role in the control of intracellular pathogens. T-cell receptor (TCR)
55 recognition of antigenic epitopes presented on MHC molecules results in clonal expansion of activated
56 cells and long-term maintenance of antigen-specific memory cells. This results in natural selection of
57 oligoclonal memory T-cells recognizing previously encountered pathogens, which must be balanced
58 with the need to maintain a broad repertoire of naïve T-cells to allow the recognition of a broad swath
59 of potential infections. Therefore, the proliferation and renewal of the peripheral T-cell compartments
60 is marked by exquisite complexity (1).

61 The pool of peripheral naïve T-cells is mainly quiescent (2), but ongoing maturation of T-cells from
62 the thymus replenishes it and maintains TCR diversity. The homeostatic turnover of memory CD8 T-

63 cells is more rapid, both in mice and humans (3, 4) and depends on both IL-7 and IL-15 stimulation (5,
64 but occurs independently of T-cell receptor (TCR) stimulation (7). The most rapid proliferation of T-
65 cells is the expansion of CD8 T-cells upon priming in response to antigen (8, 9). This expansion is mainly
66 driven by antigen-specific CD8 T-cells (7), and results in an overall expansion of the effector CD8 T-cells
67 (10). While numbers of effector CD8 T-cells remain elevated by 80 to 160 days post-infection with non-
68 persisting viruses (10), they decline slowly thereafter (11). On the other hand, the expansion of the
69 effector-memory ($CD62L^{lo}$) subset persists for life upon infection with mouse cytomegalovirus
70 (MCMV), a persistent herpesvirus (11).

71 The human cytomegalovirus (HCMV) latently persists in the vast majority of the adult human
72 population worldwide (12). T-cell responses to HCMV dominate the primed T-cell compartment of
73 seropositive individuals (13). Therefore, CMV-specific T-cells dominate the primed compartment of
74 most adult people in the world, yet the mechanisms of maintenance of these cells remain incompletely
75 understood. Experiments in the mouse model of MCMV infection recapitulated the key aspects of the
76 T-cell response to HCMV infection (14), and allowed the identification of so-called inflationary CD8 T-
77 cell responses – persistence of antigen-specific effector-memory ($CD62L^{lo}$) cells against
78 immunodominant CMV antigens (14-17). It has been proposed that the pool of inflationary T-cells is
79 continuously being replenished by vigorous proliferation of a small subset of central-memory ($CD27^+$)
80 T-cells primed early in infection as well as by recruitment of new cells from the naïve T-cell
81 compartment (18). This is in line with the observation that CMV-specific T-cells with effector ($CD27^-$)
82 phenotypes show very little proliferative responses upon adoptive transfer into infection matched
83 wild-type mice (19). Furthermore, while inflationary cells are more abundant in lungs than in lymph
84 nodes, the inflationary T-cells expressing the proliferation marker Ki67 were shown to be more
85 abundant in lymph nodes than in lungs (20), suggesting that cycling central-memory T-cells may
86 continuously feed the large pool of inflationary cells in the tissues. On the other hand, blocking
87 lymphocyte egress from lymph nodes does not impair the blood and splenic proliferation of
88 inflationary T-cells (21), and our recent data indicate that inflationary EM cells proliferate by IL-15

89 driven, homeostatic, proliferation (22). Taken together, these data suggest that the inflationary pool
90 is maintained by systemic hematogenous proliferation of T-cells, rather than by the proliferation of
91 central-memory T-cells in lymph nodes. In conclusion, published data point to scenarios that at face
92 value seem mutually exclusive.

93 Here we show that Ki67 labeling divides CD8 T-cells into three distinct subsets, where most primed
94 CD8 T-cells are Ki67-intermediate ($Ki67^{int}$) and only the $Ki67^{hi}$ subset represents bona fide cycling cells.
95 The cycling cells in latent MCMV infection displayed predominantly effector phenotypes, whereas
96 cycling was typically homeostatic and restricted to central-memory cells upon clearance of Vaccinia
97 virus. Since adoptively transferred effector-memory and central-memory T-cells were biased in their
98 homing to lymphatic organs, we used alternative methods to validate their contribution to the
99 proliferating pool. In vivo deuterium labeling provided evidence for proliferation of TEM cells in MCMV
100 infection. Selective depletion of primed CD8 T-cells showed that antigen-specific T-cells are rapidly re-
101 established in MCMV, but not in Vaccinia infection, and that effector-memory T-cells rebound before
102 central-memory T-cells. Targeted depletion of cycling cells significantly increased the apoptosis of
103 effector-memory T-cells in the spleen and decreased the count of inflationary T-cells, while leaving the
104 central-memory T-cells hardly affected, substantiating the claim that inflationary CD8 T-cells maintain
105 their numbers by antigen-driven cycling of effector-memory T-cells. Taken together our data indicate
106 that terminally differentiated T-cells retain a substantial cycling potential and that the continuous
107 cycling of effector T-cells is critical for the maintenance of inflationary responses.

108 **Results**

109 ***Ki67 exhibits three distinct expression levels in CD8 T-cell populations during***
110 ***acute and long-term responses to infection***

111 To define the amount of T-cells proliferating in the memory phase of a persistent or a resolved
112 infection, we infected mice with MCMV or the non-persistent Vaccinia virus (VACV) and analyzed blood
113 CD8 T-cells for the expression of cycling marker Ki67 and the DNA marker FXcycle at 120 days post-
114 infection (dpi). We used as controls the blood from the very same mice during the acute phase, at 7
115 dpi.

116 To our surprise, the intracellular staining of Ki67 did not simply result in a Ki67 positive and a
117 negative population, but in three distinct populations, which we will further on call Ki67⁻, Ki67^{int}, and
118 Ki67^{hi}. Cells within the S, G2, or M phase as indicated by an increased amount of DNA (FXcycle⁺) were
119 predominantly found in the Ki67^{hi} population at 7 dpi (Fig. 1A, Supplementary Fig. 1A), but some were
120 also encountered in the Ki67^{int} fraction, and very few in the Ki67⁻ subset (Fig. 1A).

121 At 7 dpi, the fraction of Ki67⁻, Ki67^{int}, and Ki67^{hi} subsets of CD8 T-cells were roughly similar in MCMV
122 and VACV infected animals. Approximately 50% of cells were observed in the Ki67^{hi} population, 30-
123 40% in the Ki67^{int}, and less than 20% of CD8 T-cells in the Ki67⁻ fraction, consistent with the strong
124 antigen-driven proliferation of CD8 T-cells that one would expect during the acute phase of viral
125 infection (Fig. 1B). At 120 dpi, this picture changed considerably: In both infections, the percentage of
126 Ki67^{hi} CD8 T-cells was substantially reduced, but it remained significantly higher in MCMV infected
127 mice (median of 6.2%) than in VACV infected mice (median of 2.5%). The Ki67^{int} population remained
128 at around 40% in the VACV infection, but made up as much as 70% of the CD8 T-cell compartment in
129 MCMV infected mice. The fraction of Ki67⁻ cells showed a median value close to 20% in the MCMV-
130 infected group but approximately 50% in VACV infected mice and was thus significantly larger in VACV
131 infected mice (Fig. 1B). Assuming that at least Ki67^{hi} cells are cycling, our data indicated that the robust
132 cycling of CD8 T-cells upon acute infection is followed by quiescence in VACV infected mice and by

133 continuous cycling at a low level in latent MCMV infection at 120 dpi. It remains unclear if Ki67^{int} cells
134 were also a cycling subset, which would have implied an even larger difference in CD8 T-cell cycling at
135 120 days post MCMV or VACV infection.

136 A key difference in T-cell cycling during acute or resolved infections is that cycling is antigen-
137 driven in acute infection and homeostatic after resolution. Therefore, to better understand the
138 difference between Ki67^{hi} and Ki67^{int} expression, we analyzed the Ki67 subsets of CD8 T-cells for the
139 expression of Bcl2, an anti-apoptotic gene that is commonly used as marker of homeostatic
140 proliferation and that is down-regulated after TCR engagement and T-cell activation (23, 24). We found
141 that the markers Ki67 and Bcl2 determine five different populations in the CD8 T-cell compartment:
142 non-cycling Ki67⁻ T-cells, Ki67^{int} Bcl2^{lo}, Ki67^{int} Bcl2^{hi}, Ki67^{hi} Bcl2^{lo}, and Ki67^{hi} Bcl2^{hi} T-cells (Fig. 1C).

143 The pattern of Ki67 and Bcl2 expression in MCMV and VACV infection was comparable at 7 dpi,
144 with most cells in the Ki67^{int}Bcl2^{lo} or Ki67^{hi}Bcl2^{lo} populations, indicating antigen-driven proliferation
145 (Fig. 1C, D), but starkly different at 120 dpi. Here, the most abundant fraction in MCMV infected mice
146 was Ki67^{int}Bcl2^{lo}, whereas the Ki67^{int} cells in VACV infected mice were mainly Bcl2^{hi} and this difference
147 was significant (Fig. 1C, D). Similarly, significantly higher percentages of Ki67^{hi}Bcl2^{lo} CD8 T-cells were
148 observed in MCMV infected mice (Fig. 1C, D) than in the VACV group (median 5.6% versus 1.1%,
149 respectively). Taken together, our results argue that CD8 T-cells expressing Ki67 in resolved VACV
150 infection fit the pattern of homeostatic proliferation, but most cells in latent/persistent MCMV
151 infection do not.

152

153 ***Cycling CD8 T-cells in latent MCMV infection are largely effector T cells***

154 We considered it likely that differences in Bcl2 expression reflect antigen-driven proliferation
155 in latent MCMV infection versus homeostatic proliferation in the resolved VACV infection. We reported
156 previously that primed T-cells assume a memory phenotype upon VACV infection over time, whereas
157 latent MCMV infection sustains a large pool of effector cells (11), which are known to lack substantial
158 Bcl2 expression. To determine if the difference in Ki67 and Bcl2 expression upon MCMV and VACV
159 infection reflects a difference in the phenotype of cycling cells, Ki67^{hi} and Ki67^{int} cells were analyzed
160 for the expression of the surface markers CD44 and CD127, allowing us to separate CD44^{hi}CD127^{hi}
161 memory T-cells (TM), CD44^{hi}CD127^{lo} effector T-cells (TE), and CD44^{lo}CD127^{hi} naïve T-cells (Fig. 2A).
162 Consistent with previous reports (11), effector T-cells were more frequent in MCMV than in VACV
163 infection at 120 dpi and displayed a Bcl2^{lo} phenotype (data not shown). Ki67⁻ cells showed a
164 predominantly naïve phenotype in both groups (data not shown), and were not analyzed further. On
165 the other hand, both the Ki67^{hi} and the Ki67^{int} subset displayed a significantly higher frequency of TE
166 cells in MCMV-infected mice, and conversely a higher frequency of TM cells in the VACV infected group
167 (Fig. 2B). Therefore, we concluded that the significantly higher frequency of Ki67^{hi} and Ki67^{int} CD8 T-
168 cells in MCMV-infected mice at day 120 was mainly due to the high frequencies of Bcl2^{lo} effector T-
169 cells found in long-term MCMV infection.

170 ***Effector CD8 T-cells proliferate in latently MCMV infected mice***

171 We independently quantified CD8 T-cell proliferation in latently MCMV-infected mice by in
172 vivo stable isotope labeling, a method that is not toxic and does not interfere with cell dynamics. Mice
173 were given deuterated water (D₂O) at 120 dpi over a course of 4 weeks.

174 We measured deuterium levels in the DNA of different CD8 T-cell subsets during the labeling period
175 and for additional 16 weeks thereupon. We sorted CD8⁺ splenocytes into CD44⁺CD62L⁺ (central-
176 memory – TCM), CD44⁺CD62L⁻ (effector-memory – TEM) and naïve (CD44⁻CD62L⁺) T-cells at various
177 days during and after label administration, isolated DNA from the sorted subsets, and quantified the

178 fraction of deuterium labeled DNA. Pairwise comparison of the level of deuterium enrichment in the
179 different T-cell subsets revealed that at every time point during up-labeling, deuterium enrichment
180 was lowest in naïve cells and consistently higher in TEM than in TCM cells (Fig. 2D), arguing for robust
181 TEM proliferation. Using mathematical modeling (See material and methods), we estimated the
182 average turnover rate (p) of TCM, TEM and naïve T-cells, i.e. the fraction of cells replaced by new cells
183 per day, and their corresponding lifespans ($1/p$). The best fits to the data (Fig. 2c) suggested that naïve
184 T-cells had a relatively low turnover rate of 0.8% per day, TCM cells an almost two-fold higher turnover
185 rate of 1.4% per day, but TEM cells displayed the highest turnover rate of 2.0% per day (see Table 1).
186 Although part of the label incorporation in the TEM population may have been obtained during T-cell
187 proliferation at the TCM stage after which these cells differentiated into TEM cells (25), the significantly
188 higher turnover rate and consistently higher level of deuterium enrichment in TEM cells shows that
189 TEM cells themselves also proliferate significantly.

190 **Table 1: Parameters corresponding to the best fits of the mathematical model**
191 **to the deuterium labeling data.**

192

	Naïve	TCM	TEM
turnover rate p (per day)	0.0083 [0.0070; 0.0088]	0.0138 [0.0119 ; 0.0141]	0.0196 [0.0169 ; 0.0199]
Average lifespan ($1/p$ in days)	120 [113;142]	72 [71;84]	51 [50;59]

193

194 *values in brackets represent 95% confidence intervals on the parameters.

195

196 Finally, to validate independently the rate of cycling in the naïve, TCM, and TEM subsets in another
197 mouse strain, blood leukocytes from latently infected C57BL/6 mice were assessed by Ki67 and FXcycle
198 staining. Ki67^{hi} FXcycle⁻ cells were considered as cycling cells in the G1 phase, whereas Ki67^{hi}FXcycle⁺

199 cells were assumed to be in the G2, the S, or the M phase of the cell cycle. The percentages of Ki67^{hi}
200 G1 and Ki67^{hi} G2-S-M cells were clearly higher in the TEM compartment than in the TCM compartment,
201 while the naïve subset showed very few cycling cells (Fig. 2E). Taken together, these data argue for
202 mouse-strain independent TEM proliferation in latently MCMV-infected mice.

203 ***Activation of Cre-recombinase in R26 CreER^{T2} mice leads to specific loss of***
204 ***proliferating CD8 T-cell subsets in blood and spleen***

205 While D₂O labeling demonstrated proliferation and turnover of primed T-cell subsets in MCMV
206 latency, and Ki67^{hi} cells were most abundant among effector-memory T-cells, it remained unresolved
207 if Ki67^{hi}, Ki67^{int}, or both subsets are the bona fide cycling ones and replenish the CD8 compartment. To
208 specifically test the proliferation of Ki67^{hi} and Ki67^{int} CD8 T-cells we designed an assay that targets
209 cycling cells for depletion. Persistent overexpression of Cre-recombinase leads to non-targeted effects
210 beyond loxP sites and illegitimate chromosomal recombination (26). This effect disproportionately
211 affects the rapidly proliferating cells in the hematopoietic system, resulting in catastrophic
212 chromosomal aberrations in the dividing cells and thus in their death and loss (27). To target dividing
213 cells for depletion once MCMV had established latency, we used the Rosa26-CreER^{T2} mice (R26
214 CreER^{T2}), which ubiquitously express a variant of the Cre-recombinase that can be activated by the
215 administration of Tamoxifen (Tam). Latently infected R26 CreER^{T2} mice were administered Tam for five
216 consecutive days followed by a three day break and one more day of Tam, upon which we analyzed
217 the proliferation of blood lymphocytes and splenocytes by flow cytometry. Using the markers Ki67 and
218 FXcycle we distinguished four subsets: Ki67⁻, Ki67^{int}, Ki67^{hi}FXcycle⁻, and Ki67^{hi}FXcycle⁺ (Fig. 3A). In
219 absence of Tam, approximately 2% of CD8 T-cells were Ki67^{hi}FXcycle⁻ in both blood and spleen, and
220 even fewer cells were seen in the Ki67^{hi}FXcycle⁺ subset (Fig. 3A and 3B). Hence, both compartments
221 showed some ongoing CD8 T-cell proliferation in latent MCMV infection. Mice that were treated with
222 Tam displayed a clear loss of FXcycle⁺ cells over controls receiving vehicle only (Fig. 3A), demonstrating
223 targeted depletion of CD8 T-cells in the S, G₂, or M phase of the cell cycle by Tam treatment.
224 Ki67^{hi}FXcycle⁻ cells were also depleted (Fig. 3A), arguing that this subset is targeted by the same

225 mechanism. This resulted in significantly reduced Ki67^{hi}FXcycle⁻ and Ki67^{hi}FXcycle⁺ populations (Fig. 3B).
226 On the other hand, we observed no significant loss of Ki67^{int} cells, and a mild increase in the percentage
227 of Ki67⁻ cells (Fig. 3B). Since Tamoxifen treatment reduced specifically the CD8 T-cell subsets with Ki67^{hi}
228 expression, but had no effect on Ki67^{int} cells, our data suggested active cycling of Ki67^{hi} CD8 T-cells and
229 quiescence in most of the Ki67^{int} population (Fig. 3B).

230 ***Tamoxifen targets splenic effector T-cells for depletion***

231 Both the Ki67 staining and the deuterium labeling results were consistent with robust proliferation
232 of effector (CD127⁻) or effector-memory (CD62L⁻CD127^{+/−}) T-cells. Tam treatment affected the relative
233 size of blood and splenic T-cell subsets, decreasing the size of the effector subset (CD127⁻) and
234 increasing relatively all the other ones (Suppl. Fig. 2A and data not shown). However, these data did
235 not exclude a scenario in which rapidly cycling central-memory or effector-memory T-cells in MCMV
236 infection downregulate CD62L and CD127 and assume an effector phenotype. A major contribution of
237 central-memory T-cells to the maintenance of inflationary responses was previously suggested by
238 adoptive transfer experiments (19). In that case, memory cells, rather than effector cells, would be
239 the major driver of cycling in MCMV latency. Hence, we analyzed the Ki67 and FXcycle staining patterns
240 in the effector (CD127⁻CD44⁺), memory (CD127⁺CD44⁺), and naïve (CD127⁺CD44⁻) CD8 T-cells of R26
241 CreER^{T2} mice after Tam treatment.

242 In naïve T-cells, both in blood and spleen, over 90% of cells were in the Ki67⁻ gate and Tam
243 treatment had no discernible effect on this subset. Most memory CD8 T-cells in blood and spleen were
244 in the Ki67^{int} population. This subset also showed no significant change in the cell fractions upon Tam
245 depletion (Fig. 3C). Effector CD8 T-cells were also observed predominantly in the Ki67^{int} population,
246 but this subset also showed the highest fraction of cells in the Ki67^{hi} gates (both FXcycle⁺ and FXcycle⁻
247) in absence of Tam. A highly significant reduction of Ki67^{hi}FXcycle⁺ and Ki67^{hi}FXcycle⁻ fractions could
248 be observed in the spleen upon Tam treatment. The percentage of Ki67^{hi} T-cells was also reduced in
249 the Ki67^{hi}FXcycle⁻ subset in the blood (Fig. 3C), implying that targeted depletion of cycling cells affected

250 disproportionately the effector subset in both compartments. Similarly, gating on CD62L and CD127
251 expression revealed low levels of Ki67 and FXcycle labeling in CD62L⁻CD127⁺ T cells and a pronounced
252 reduction of Ki67^{hi} subsets upon Tam-treatment only in the CD62L⁻CD127⁻ subset (data not shown).

253 The reduction of Ki67^{hi} subsets in blood and spleen indicated that effector CD8 T-cells may cycle in
254 either compartment, but did not allow us to define if cycling is restricted to one compartment over the
255 other. We reasoned that a more immediate assay to define the cycling activity would be to measure
256 cell death upon Tam treatment. Therefore, we stained the CD8 T-cells of latently infected R26 CreER^{T2}
257 mice with antibodies against CD62L and CD44 and determined the fraction of dead cells via 7AAD. We
258 observed very few 7AAD⁺ lymphocytes in the blood, and a substantially higher percentage of 7AAD⁺
259 cells after Tam treatment in the spleen (Fig. 3D). This increase was particularly pronounced in the TEM
260 subset of CD8 T-cells (Fig. 3D) and similar results were observed using Annexin V staining (data not
261 shown). R26 CreER^{T2} mice infected with MCMV for a very long time (21 months) prior to Tam treatment
262 and administered with Tam-spiked food pellets for two weeks showed a similar significant increase of
263 7AAD⁺ cells only in the TEM fraction of splenic CD8 T-cells (Supplementary Fig. 2B). Hence, cycling of
264 effector-memory T-cells in spleens of latently infected hosts is maintained essentially for life. We also
265 analyzed the expression pattern of Ki67 and Bcl2 in CD8 T-cells of R26 CreER^{T2} mice treated with Tam.
266 Using the gating scheme introduced in Fig. 1C, we found a robust population of Ki67^{hi}Bcl2^{lo} CD8 T-cells
267 in the blood and in the spleen of untreated mice (Supplementary Fig. 2C), indicating non-homeostatic
268 proliferation, likely due to ongoing antigen stimulation. This population, however, disappeared almost
269 completely after Tam treatment and this decrease was specific for this gate and highly significant in
270 both blood and spleen (Supplementary Fig. 2D).

271 Taken together, our data show that Ki67^{hi} effector cells are more abundant and more susceptible
272 to Tam treatment in R26 CreER^{T2} mice than Ki67^{hi} naïve or memory T-cells, particularly in the spleen,
273 thereby identifying Ki67^{hi} effector cells as main proliferating cells. The observed Cre-recombinase
274 effects are most pronounced in Bcl2⁻ cells arguing for a robust antigen-driven T-cell proliferation.

275 ***Adoptive transfer of TCM and TEM leads to skewed distribution of T-cells to***
276 ***secondary lymphoid organs***

277 Our deuterium labeling and depletion data argued for robust cycling of effector T-cells, which was
278 unexpected because studies using adoptive transfer suggested that inflationary effector CD8 T-cells
279 can only be replenished from a pool of central-memory T-cells (19, 20). We speculated that the
280 discrepancy might be due to differences in the experimental design. Since we recently observed an
281 association between the latent MCMV load in the spleen and the size of memory inflation (28) and
282 since Tam induced apoptosis in splenic TEM cells (Fig. 3D), we considered it likely that the spleen is a
283 major cycling site. Consequently, adoptive transfer would skew the experimental results towards T-
284 cell subsets that efficiently home to lymphatic organs upon transfer. To test this idea, we sorted
285 CD62L⁺CD44⁺ or CD62L⁻CD44⁺ CD8 T-cells from splenocytes of latently infected Ly5.1 C57BL/6J mice
286 and transferred them into naïve Ly5.2 C57BL/6J mice. 18 hours after adoptive transfer, we found
287 significantly more CD62L⁺CD44⁺ than CD62L⁻CD44⁺ CD8 T-cells in the spleen (Fig. 4A). Similarly, antigen-
288 specific CD62L⁺ cells homed to the spleen more efficiently than their CD62L⁻ counterparts
289 (Supplementary Fig. 3). In consequence, adoptive transfer skews experimental results towards the
290 CD62L⁺ cell subset, which efficiently homes to the spleen.

291 ***The effector-memory compartment is restored more rapidly than the central-
292 memory after depletion of primed CD8 T-cells with anti-asialo GM1***

293 While all previous experiments suggested ongoing proliferation of effector T-cells in latently
294 infected mice, they did not allow a head-to-head comparison of proliferation in the effector-memory
295 and the central-memory compartment. Adoptive transfer of cell subsets is a method of choice to
296 measure such activity, but it was not suitable due to the homing bias of the transferred subsets.
297 Therefore, to validate if TEM or TCM would replicate more rapidly, we developed an assay where most
298 of the primed CD8 T-cell compartment is depleted upon which we monitored the ability of T-cells to
299 repopulate this compartment. Asialo-GM1 antibodies are widely used for the depletion of NK cells (29,
300 30), but were shown to also target virus-specific CD8 T-cells (31). We used repeated weekly i. p.

301 injections of asialo-GM1 antibodies starting at 60 dpi and proceeding for four consecutive weeks to
302 deplete the entire CD44⁺CD62L⁺ (TCM) and CD44⁺CD62L⁻ (TEM) compartment, but leave the naïve
303 subset (CD44⁻CD62L⁺) intact (Fig. 4B). Thereupon, we analyzed the fraction of total primed CD8 T-cells
304 at 4 days and 2 months after the last depletion. Antibody administration severely reduced the fraction
305 of primed cells in MCMV and VACV infection, but the cells rebounded at 2 months post depletion, and
306 this was more pronounced in the group infected with MCMV (Fig. 4C). We next defined if the rebound
307 at 2 months was evenly distributed among TCM and TEM cells or more pronounced in any of the
308 subsets, and observed a prominent restoration of TEM cells in MCMV and VACV infection, but a very
309 weak rebound of TCM cells (Fig. 4D). To understand if this effect may be observed in long-term latency
310 and in other latent infections, mice were infected with MCMV, murine herpesvirus clone 68 (MHV-68),
311 or herpes simplex virus type 1 (HSV-1), allowed to establish latency, and treated with asialo-GM1 at 10
312 months post infection. As in the previous experiment, the depletion strongly reduced the number of
313 primed cells, but their numbers were substantially increased 2 months later. Even more interestingly,
314 the rebound of primed CD8 T-cells was almost exclusively due to the TEM fraction, and essentially no
315 rebound was seen among TCM cells (Fig. 4E). In conclusion, our data showed that in conditions of
316 competition, the TEM cells proliferate more rapidly than TCM cells upon in vivo depletion, and that
317 this is a feature that can be observed in other herpesviral infections as well.

318 ***MCMV-specific CD8 T-cells show antigen-driven proliferation in latently
319 infected mice***

320 To test if the proliferation of effector CD8 T-cells in latently infected mice reflects the proliferation
321 of antigen-specific cells, we analyzed the cycling properties of CD8 T-cells recognizing the well-
322 characterized inflationary M38 antigen. M38-specific CD8 T-cells were identified using flow cytometry
323 via the binding of an M38-MHCI-tetramer, and analyzed using Ki67, FXcycle, and Bcl2 staining (Fig. 5A).

324 Consistent with prior reports (32), M38-specific cells expanded from 4.6% of the CD8 T-cell pool at
325 7 dpi to 14% at 120 dpi (Fig. 5B). Very few M38-specific cells were low in Ki67 expression both at 7 and

326 at 120 dpi. The percentage of Ki67^{int} T-cells increased from a mean of 26% at 7 dpi to 86% at 120 dpi,
327 while the percentage of Ki67^{hi} T-cells decreased from 68% on average at 7 dpi to 12% at 120 dpi (Fig.
328 5C). Similarly, M38-specific CD8 T-cells were mainly Ki67^{hi}Bcl2^{lo} (72%) at 7 dpi, whereas at 120 dpi most
329 T-cells were Ki67^{int}Bcl2^{lo} (83%). 12% retained the Ki67^{hi} Bcl2^{lo} phenotype (Fig. 5D). Thus, while the data
330 resembled the time-associated pattern that was observed in the total CD8 T-cell pool, a larger fraction
331 of M38-specific cells were Ki67^{hi} at 120 dpi, than the data observed in the total CD8 T-cell pool (median
332 of 6.2%, Fig. 1B). The immunodominant peptide (RALEYKNL) derived from the ie3 MCMV gene (33)
333 showed similar phenotypes (data not shown). Taken together, the results suggest that CD8 T-cells
334 recognizing immunodominant inflammatory antigens may vigorously proliferate during MCMV latency.

335 ***Virus-specific CD8 T-cells are restored after asialo-GM1 depletion***

336 To investigate if virus-specific inflammatory CD8 T-cells would rebound after the antibody mediated
337 depletion of primed cells, blood lymphocytes from mice latently infected with the three herpesviruses
338 (MCMV, MHC-68, HSV-1; see Fig. 4E) were restimulated with viral peptides, and the responding cells
339 were quantified by intracellular cytokine staining and flow cytometry. We used peptide pools in the
340 case of MCMV (pool of M38 and m139 peptides) and MHV-68 (pool of MHV-68_{ORF6} and MHV-68_{ORF68})
341 or a single peptide (SSIEFARL derived from gB) in the case of HSV-1. Asialo-GM1 treatment resulted in
342 highly efficient depletion of antigen-specific cells (Fig. 5E), yet the fraction of virus-specific CD8 T-cells
343 was nearly completely replenished two months later. This was observed in MCMV, MHV-68 and HSV-
344 1 infected mice (Fig. 5F), arguing that inflammatory CD8 T-cells in herpesvirus infections are capable of
345 replenishing their pool after depletion.

346 To understand if the restoration of virus-specific CD8 T-cells is typical for persistent infections, or
347 whether it also occurs in non-persistent infection, we compared mice infected with MCMV and HSV-1
348 to mice infected with VACV. We normalized the populations of CD8 T-cells responding to antigen by
349 using recombinant MCMV and VACV clones expressing the HSV-1 epitope SSIEFARL (34, 35). This
350 enabled us to compare specific T-cell responses in persistent herpesvirus infections and a non-

351 persistent infection, while excluding the possibility that peptide-intrinsic differences, such as
352 differences in avidity of responding CD8 populations, may influence the outcome. We treated the mice
353 with asialo-GM1 antibodies at 60 dpi and analyzed SSIEFARL-specific CD8 T-cell responses at 4 days
354 post depletion or two months later. The depletion of virus-specific CD8 T-cells was highly efficient in
355 all three virus infections, but their numbers were restored only in MCMV, and partly in HSV-1 infection,
356 whereas VACV-infected mice showed essentially no recovery (Fig. 5G). Taken together, the results
357 confirmed that the proliferative potential of CD8 T-cells in persistent infections is likely due to antigen-
358 driven proliferation that cannot be observed in infections that are cleared.

359 It is important to note that adoptive transfer of M38- or m139-specific CD8 T-cells sorted for the
360 CD62L⁺ or CD62L⁻ phenotype from spleens of latently infected Ly5.1 C57BL/6J mice into naïve Ly5.2
361 C57BL/6J mice also showed significantly more homing of CD62L⁺ CD8 T-cells to the spleen compared
362 to CD62L⁻ CD8 T-cells (Supplementary Fig. 3). Hence, we avoided testing the proliferative capacity of
363 antigen-specific cells by adoptive transfer.

364 ***Dynamic monitoring reveals robust cycling of inflationary CD8 T-cells***

365 The comparison of Tam treated and mock-treated R26 CreER^{T2} mice revealed significantly smaller
366 fractions of Ki67^{hi} subsets in Tam treated mice, especially in the effector compartment of CD8 T-cells
367 (Fig. 3A, B, C). To define in longitudinal experiments the effect of Tamoxifen treatment on the
368 inflationary responses, we analyzed the kinetics of CD8 T-cell responses in the blood of MCMV infected
369 R26 CreER^{T2} mice before and after Tamoxifen treatment, and compared it to mock-infected controls.
370 Mice were bled at 7, 14, 28, 60, 90 and 120 days post MCMV infection, before Tam containing food
371 was administered for 28 days. Subsequently, mice were bled at 150, 180 and 210 dpi. Blood
372 lymphocytes were restimulated with the inflationary peptide RALEYKNL from the MCMV gene ie3 (32)
373 and analyzed for surface marker and intracellular cytokine expression by flow cytometry. First, we
374 analyzed the effector cells (CD127⁻CD44⁺) and observed a stable population of the CD8 compartment
375 until 120 dpi, followed by a marked drop after 28 days of Tamoxifen treatment. This was not observed

376 in the untreated control group (Fig. 6A). The reduction of the ie3-specific CD8 T-cell fraction was even
377 more pronounced (Fig. 6B). Once the Tam-spiked food pellets were replaced with standard diet, the
378 analyzed CD8 subsets rebounded (Fig. 6A, B). Taken together, the data confirmed that Tam treatment
379 reduced the effector subset of T-cells in general and antigen-specific inflationary cells in particular,
380 arguing strongly for continuous cycling of these subsets. Tam administration in latently infected
381 C57BL/6 mice resulted in no loss of TEM or antigen-specific CD8 T-cells (Supplementary Fig. 4A-D),
382 arguing that the effects were specific for Tam effects in R26 CreER^{T2} mice. In an independent
383 experiment, we administered Tamoxifen at 60 dpi to mice infected with the SSIEFARL-expressing
384 MCMV (see Fig. 5F), and we observed a reduction of T-cells specific for the inflationary SSIEFARL and
385 the M38 epitope (Supplementary Fig. 5A, B).

386 Finally, we considered the possibility that the percentagewise loss of effector cells could have been
387 a reflection of absolute gains of cells in other subsets of T-cells, rather than a loss of antigen-specific
388 cells with effector phenotypes. While unlikely, this scenario could have mimicked as a relative loss of
389 effector and antigen-specific T-cells. To exclude this possibility, we repeated the kinetics experiment
390 and measured the relative and absolute counts of CD127⁻CD44⁺ CD8 T-cells and of CD8 T-cells specific
391 for two inflationary epitopes derived from the ie3 and the M38 epitope. As in the previous experiment,
392 Tam feeding decreased the relative fraction of antigen-specific and effector cells (data not shown), and
393 this was reflected in a decrease of absolute counts of antigen-specific CD8 T-cells (Fig. 6C), as well as
394 effector CD8 T cells (Fig. 6D). Importantly, the drop in absolute counts of TE cells was stronger than the
395 loss of the TEM subset (Fig. 6E), consistent with the high percentage of Ki67^{hi} cells (Fig. 2B) and cycling
396 within the TE cells. In conclusion, selective targeting of cycling cells for elimination resulted in a
397 selective loss of cells expressing high levels of Ki67, a reduction of antigen-specific T-cells recognizing
398 inflationary epitopes and of the effector CD8 T-cell fraction in general.

399 **Discussion**

400 In our study, we document a robust and long-term proliferation of effector T-cells in latent
401 herpesviral infection. In light of the previously published literature, which classified this subset as
402 short-lived effector cells that are maintained by continuous influx from naïve and central-memory
403 cells, our results are surprising. Two groups have independently shown that MCMV-specific TEM T-
404 cells poorly proliferate upon transfer into MCMV-infected mice (19, 20), whereas recent adoptive
405 transfer data by the Robey lab argued that memory (KLRG1⁻) or intermediate (KLRG1⁺) CXCR3⁺ cells
406 maintain the effector compartment in chronic Toxoplasma infection (36). We show that effector cells
407 robustly cycle and that their own cycling substantially contributes to their maintenance in chronic
408 infection. We explain this stark difference in conclusions by differences in the experimental approach.
409 Namely, we show that adoptive transfer experiments introduce a bottleneck for T-cell expansion. This
410 bottleneck depends on the ability of transferred cells to home to secondary lymphoid organs, resulting
411 in an inherent - and previously unappreciated - bias towards the expansion of cells expressing defined
412 chemokine receptors or integrins, such as CD62L. We do not challenge the conclusion that TCM
413 proliferate better than TEM upon adoptive transfer, and that immunotherapy by adoptive transfer of
414 TCM cell preparations is likely to yield better clinical outcomes (37). However, we show that adoptive
415 transfer may bias for cell survival and homing during the transfer, rather than merely reflecting cell
416 proliferation after the transfer. Considering the widespread use of this method, our data invites
417 caution in extrapolating adoptive transfer results to conditions of cell proliferation in their natural
418 niche. To exclude that our main conclusion is likewise influenced by a bias in the method, we
419 performed four independent approaches, based on (i) precise Ki67 staining, (ii) in vivo deuterium
420 labeling, (iii) targeted depletion of TCM and TEM, and (iv) targeted depletion of cycling cells. All four
421 methods pointed to robust proliferation of effector CD8 T cells and antigen-specific CD8 T cells in
422 chronically infected mice, especially in the spleen. Therefore, we conclude that effector cell cycling
423 substantially contributes to the maintenance of inflammatory responses in steady state conditions.

424 We observed a stark but underreported three-way separation in Ki67 expression patterns in
425 lymphocytes. The vast majority of published literature does not account for the large Ki67^{int} subset,

426 which overlaps with the primed CD8 T-cell compartment. We assume that we obtained an optimal cell
427 separation by using a cell permeabilization procedure tailored for the detection of transcription
428 factors, which allowed us to accurately stain the intra-nuclear Ki67. CreER^{T2}–mediated depletion did
429 not affect the size of the Ki67^{int} subset, and their genomes were diploid, arguing that these cells are
430 largely quiescent, while cycling is specific for the Ki67^{hi} subset. This is in line with a recent publication
431 that reported somewhat diminished Ki67 levels in CD4 T-cells that had previously cycled, but were not
432 in cell cycle at the time of analysis (38). Consequently, conclusions from numerous previous studies
433 (including our own ones) may require revisiting in light of this optimized labeling.

434 We base our conclusions on several complementary methods that pointed us in the same
435 direction. We used *in vivo* deuterium labeling to measure cell proliferation and turnover and observed
436 that the TEM subset was the fastest one on both accounts. Antibodies recognizing asialo-GM1 are a
437 mainstay of NK-cell depletion in experimental mouse models, but they also have the potential to target
438 and deplete T-cells specific for viral antigens as shown by others previously (31). We showed here that
439 essentially all primed CD8 T-cells express asialo-GM1; thus, they may be depleted by rigorous and
440 repeated antibody administration, yet the TEM cells are the first one to recover from this depletion.
441 Similarly, we are not the first ones to report that loxP-like sequences present in host genomes may be
442 recognized by the Cre-recombinase (26) resulting in the depletion of rapidly cycling hematopoietic cells
443 (27). However, we are to our knowledge the first ones to exploit this insight to deplete specifically the
444 antigen-specific cells that proliferate and thus define which populations are maintained by renewal
445 and which ones are long-term quiescent. Taken together, our results indicate robust cycling in the
446 effector CD8 T-cell subset of mice latently infected with herpesviruses. Considering that latent
447 herpesvirus infections are ubiquitous and found in mammals and birds, it is reasonable to assume that
448 in a natural microbiological environment such proliferation occurs in all mammals, including all people
449 worldwide. Therefore, our results appear to bear profound implications for our understanding of T-
450 cell population dynamics in natural settings.

451 **Material and Methods**

452 **Mouse strains**

453 129S2/SvPas Crl (129/Sv) mice were purchased from Charles River (Sulzfeld, Germany). C57BL/6
454 mice were purchased from Janvier (Le Genest Saint Isle, France). Rosa26-CreERT² (R26CreERT²) mice on
455 the C57BL/6 background were bred at the Helmholtz Centre for Infection Research (Braunschweig,
456 Germany). Ly5.1 and Ly5.2 C57BL/6 mice were maintained at the Central Animal Facility of Leiden
457 University Medical Center. Mice were 8-10 weeks old at the beginning of an experiment, R26CreERT²
458 mice were used at 8-20 weeks of age. Mice were housed and handled in accordance with good animal
459 practice as defined by Federation of Laboratory Animal Science Associations and the national animal
460 welfare body Die Gesellschaft für Versuchstierkunde/Society of Laboratory Animals.

461 **Ethics statement**

462 All animal experiments were approved by the responsible state office (Lower Saxony State Office
463 of Consumer Protection and Food Safety, Germany; permit no. 33.9-42502-04-10/0109, 33.9-42502-
464 04-11/0426 and 33.9-42502-04-15/1832) or by the Animal Experiments Committee of LUMC (Leiden
465 University Medical Center, The Netherlands; DEC 12070). Animal care and use protocols adhered to
466 Directive 2010/63/EU.

467 **Cells**

468 M2-10B4 (CRL-1972), Vero (CCL-81), and NIH 3T3 fibroblasts (CRL-1658) (all from American Type
469 Culture Collection) were maintained in DMEM supplemented with 10% FCS, 1% glutamine, and 1%
470 penicillin/streptomycin. C57BL/6 murine embryonic fibroblasts (MEFs) were prepared in our lab from
471 14 days pregnant mice and maintained as described previously (39).

472 **Viruses**

473 BAC-derived wild-type MCMV (MCMV WT) and MCMV-SSIEFARL were propagated as described
474 previously (40) and the virus stocks were prepared from M2-10B4 lysates purified on a sucrose cushion

475 as described previously (41). Virus titers were determined on MEFs by plaque assay. HSV-1 strain 17
476 obtained from Dr. J. Nikolich-Zugich (University of Arizona, Tucson, AZ) was grown and titrated on Vero
477 cells (42). The MHV-68 was kindly provided by Dr. H. Adler (43), Helmholtz Zentrum München, and the
478 virus stock was produced and titrated on NIH3T3 cells. Western Reserve Vaccinia virus (VACV) and
479 VACV-SSIEFARL were grown and titrated on VERO cells (44). Mice were infected with the indicated
480 dose of purified, tissue culture-derived virus and housed in specific pathogen-free conditions
481 throughout the experiment.

482 ***Cell surface staining***

483 Blood cells were surface stained for 30 min at 4°C with the following antibodies, depending on the
484 experiment: anti-CD4-Pacific Blue (clone GK1.5; BioLegend), anti-CD4-allophycocyanin (clone GK1.5;
485 BioLegend), anti-CD4-PE-Cy7 (clone GK1.5; BioLegend), anti-CD8a-PerCP/Cy5.5 (clone 53-6.7;
486 BioLegend), anti-CD44-Alexa Fluor 700 (clone IM7; BioLegend), anti-CD62L-eFluor 605NC (clone MEL-
487 14; eBioscience), anti-CD127-PE (clone A7R34; Biolegend), anti-CD62L-Brilliant Violet 510 (clone MEL-
488 14; Biolegend), anti-CD127-PE-Cy7 (clone A7R34; Biolegend), and anti-CD3-allophycocyanin-eFluor
489 780 (clone 17A2; eBioscience). Antigen-specific cells were detected with allophycocyanin-labeled
490 MHC-peptide tetramers specific for M38, m139, or gB (see also Peptides) or oligomerized streptamers
491 specific for IE3. Briefly, the MHC class I-peptide-Strep molecules were first oligomerized (incubation
492 for 45 min at 4°C with Strep-Tactin allophycocyanin; IBA Life Sciences) before cells were stained with
493 the oligomerized MHC class I-Strep molecules for 15 min at 4°C with subsequent staining with surface
494 antibodies for additional 30 min.

495 ***Ki67, Bcl-2, and FxCycle staining***

496 For intracellular staining of Ki67 and Bcl-2, cells were first surface stained and then fixed for 20 min
497 at room temperature with 100µl fixation/permeabilization buffer of the FoxP3/Transcription factor
498 staining set (eBioscience) followed by 15 min at room temperature in 100µl permeabilization buffer
499 (eBioscience). Subsequently the cells were stained with Ki67-PE (clone 16A8, Biolegend) and Bcl-2-

500 AF488 (clone BCL/10C4, Biolegend) in 100µl permeabilization buffer for 30 min at room temperature.

501 After the intracellular staining cells were resuspended in 100µl of FXcycle staining solution (FxCycle

502 Violet stain, life technologies) and incubated for 30 min at room temperature before acquisition with

503 an LSR Fortessa (BD Biosciences). Cytometric results were analyzed with FlowJo software (version

504 9.8.3).

505 ***AnnexinV and 7AAD staining***

506 4 x 10⁶ splenocytes or 300µl blood were used for the apoptosis staining. The cells were stained

507 first with a Live/Dead marker (LIVE/DEAD® Fixable Blue Dead Cell Stain Kit, Invitrogen) for 30 min at

508 4°C, followed by a washing step and then stained with CD8-eFluor 450 (clone 53-6.7; eBioscience),

509 CD62L-PE (clone MEL-14; BD) and CD44-FITC (clone IM7; BD) for 15 min at 4°C. After an additional

510 washing step, the cells were re-suspended in 250 µl binding buffer, before 5 µl Annexin V-APC (BD

511 Biosciences) and 2.5 µl 7AAD (Sigma-Aldrich) were added and incubated for 15 min at RT. 250 µl

512 binding buffer was added to the staining mix and the cells were acquired in an LSR-II or an LSR Fortessa

513 cytometer (BD Biosciences). Cytometric results were analyzed with FlowJo software (version 9.5.3).

514 ***Intracellular cytokine staining***

515 For intracellular cytokine staining, cells were first surface stained and then subsequently fixed for

516 5 min with 100 µl IC fixation buffer (eBioscience), followed by 3 min permeabilisation with 100 µl

517 permeabilisation buffer (eBioscience) and overnight incubation with anti-IFN-γ-allophycocyanin (clone

518 XMG1.2; BioLegend), anti-TNF-α-FITC (clone MP6-XT22; Biolegend) and anti-IL-2-Pacific Blue (clone

519 JES6-5H4; BioLegend). Cells were washed and acquired in an LSR-II cytometer (BD Biosciences).

520 Cytometric results were analyzed with FlowJo software (version 9.5.3).

521 ***Stable isotope labeling***

522 120 days after infection, 25-week old 129/Sv mice received 8% deuterated water (99.8% D₂O,

523 Cambridge Isotope Laboratories) in their drinking water for 28 days. At day 7, mice were given a boost

524 injection (i.p.) of 15ml/kg D₂O in phosphate-buffered saline (PBS).

525 ***Cell preparation and sorting***

526 Spleens, thymocytes, and blood were isolated at different time points during and after label
527 administration. Blood was collected in a vial containing anti-coagulant EDTA and spun down to isolate
528 plasma. Plasma was stored at -80°C until analysis. Organs were mechanically disrupted (using a plunger
529 and a cell strainer) to obtain single-cell suspensions. Splenocytes were stained with monoclonal
530 antibodies: anti-CD3e-APC-FITC (clone 145-2C11; BD-Biosciences), anti-CD4-pacific blue (clone GK1.5;
531 BioLegend), anti-CD8a-Percp/cy5.5 (clone 53-6.7; BioLegend), anti-CD44-Alexa fluor 700 (clone IM7;
532 BioLegend), and anti-CD62L-evolve605 (clone MEL-14; eBioscience). Within CD8⁺ tetramer-negative
533 splenocytes, naïve T-cells were defined as CD62L⁺CD44⁻, central-memory T-cells as CD62L⁺CD44⁺, and
534 effector-memory T-cells as CD62L⁻CD44⁺. Cells were sorted using an Aria-II SORP or MoFlo XDP cell
535 sorter. Genomic DNA was isolated from thymocytes of age-matched, uninfected mice and sorted T-
536 cell subsets from MCMV-infected mice according to the manufacturer's instructions using the
537 NucleoSpin Blood QuickPure kit (MACHEREY-NAGEL), and stored at -20°C until further analysis.

538 ***Measurement of deuterium enrichment in DNA and body water***

539 Deuterium enrichment in plasma (as a measure of deuterium availability in the body water) of
540 uninfected mice and in the DNA of the different cell subsets was analyzed by gas-
541 chromatography/mass-spectrometry (GC/MS) using an Agilent 5973/6890 GC/MS system (Agilent
542 Technologies). Deuterium enrichment in DNA was measured according to (4). Briefly, DNA was
543 hydrolyzed to deoxyribonucleotides and derivatized to penta-fluoro-triacetate (PFTA). The derivative
544 was injected into the GC/MS equipped with a DB-17 column (Agilent Technologies) and measured in
545 SIM mode, monitoring ions m/z 435 (M+0), and m/z 436 (M+1). From the ratio of ions, deuterium
546 enrichment in the DNA was calculated by calibration against deoxyadenosine standards of known
547 enrichment. Plasma was derivatized to acetylene (C₂H₂) as previously described (4). The derivative was
548 injected into the GC/MS equipped with a PoraPLOT Q 25x0.32 column (Varian), and measured in SIM
549 mode, monitoring ions m/z 26 (M+0) and m/z 27 (M+1). From the ratio of ions, deuterium enrichment
550 in the plasma was calculated by calibration against standard water samples of known enrichment.

551 ***Adoptive T-cell transfer***

552 For the adoptive T-cell transfer, CD62L⁻ and CD62L⁺ CD44⁺ CD8⁺ T-cells from spleens of latently
553 infected Ly5.1 mice were sorted after CD8 enrichment. 50.000 CD62L⁺ or 50.000 CD62L⁻ cells were
554 transferred into naïve Ly5.2 mice. 3h after transfer, the number of transferred cells present in the
555 spleen were determined by flow cytometry.

556 ***Depletion of memory T-cells***

557 Mice were i.p. injected with 100 µg purified anti-Asialo GM1 (polyclonal; eBioscience) or 100 µg
558 rabbit anti-human IgG (polyclonal; Thermo Scientific) weekly for 4 weeks and housed in specific
559 pathogen-free conditions throughout the experiment.

560 ***Tamoxifen application***

561 Tamoxifen (Tamoxifen, T5648-1g, Sigma) was dissolved in an Ethanol/corn oil (C8267-500ML,
562 Sigma) mixture (1/49) at a concentration of 20mg/ml. Mice were weighed and received 80mg/g BW
563 Tamoxifen via orally on 5 consecutive days, followed by 3 days break, and 1 more day of treatment.
564 Control animals received corn oil only. For long-term treatment, Tamoxifen was administrated orally
565 with pellets containing 400 mg/kg Tam CRD Tam⁴⁰⁰/CreER (Teklad) at indicated time points.

566 ***Peptides***

567 The peptides m139 (H-2K^b-restricted, ⁴¹⁹TVYGFCLL⁴²⁶), IE3 (H-2K^b-restricted, ⁴¹⁶RALEYKNL⁴²³), M38
568 (H-2K^b-restricted, ³¹⁶SSPPMFRV³²³) (11), the HSV-1 glycoprotein-derived epitope gB (H-2K^b-restricted,
569 ⁴⁹⁸SSIEFARL⁵⁰⁵) (45), the MHV-68_{ORF6} (H2-D^b-restricted, ⁴⁸⁷AGPHNDMEI⁴⁹⁵) and MHV-68_{ORF61} (H2-K^b-
570 restricted, ⁵²⁴TSINFVKI⁵³¹) were synthesized and HPLC purified (65–95% purity) at the HZI peptide-
571 synthesis platform.

572 ***Peptide stimulation***

573 Cells were stimulated with peptides (1 µg/ml) in 100 µl RPMI 1640 (10% FCS supplemented) for 6
574 h at 37°C with brefeldin A (Cell Signaling Technology) added at a concentration 10 µg/ml for the last 5

575 h stimulation. Negative control samples were generated for all tested groups by incubating cells in the
576 same conditions, but in the absence of any peptide. Cells were tested for cytokine responses by
577 intracellular cytokine staining using flow cytometry. Cytokine responses observed in unstimulated
578 samples were considered background noise due to unspecific Ab binding and were subtracted from
579 the values observed in test samples.

580 **Statistics**

581 Comparisons between two groups were performed using the Mann–Whitney U test (two-tailed).
582 Statistical analysis was performed using the GraphPad Prism program.

583 **Mathematical modeling of deuterium labeling data**

584 We used a mathematical model to deduce the dynamics of naïve and memory T-cells from the
585 deuterium labeling data. To control for changing levels of deuterium (${}^2\text{H}$) in body water over the course
586 of the experiment, a simple label enrichment/decay curve was fitted to ${}^2\text{H}$ enrichment in plasma:

587 during label intake ($t \leq \tau$): $S(t) = f(1 - e^{-\delta t})$

588 after label intake ($t > \tau$): $S(t) = [f(1 - e^{-\delta\tau})]e^{-\delta(t - \tau)}$

589 as described previously (46), where $S(t)$ represents the fraction of D_2O in plasma at time t (in days),
590 f is the fraction of D_2O in the drinking water, labelling was stopped at $t = \tau$ days, and δ represents the
591 turnover rate of body water per day. The best fit for $S(t)$ was used in the labelling equations for the
592 different cell populations (see below). Up- and down-labeling of the thymocyte population was
593 analyzed as previously described (47), to estimate the maximum level of label intake that cells could
594 possibly attain. The best fits to the plasma and thymocyte data are shown in Supplementary Figure 1.

595 To model the deuterium enrichment in the different T-cell subsets, we used a previously published
596 mathematical model, which in principle allows for kinetic heterogeneity between cells within a
597 population (47). Based on previous observations, we know there is a time delay between T-cell
598 production in the thymus and the appearance of labeled DNA in naïve T-cells in the spleen (47), which
599 we fixed at 4 days. For all subpopulations, we found that the data could be well described with a

600 kinetically homogeneous model, i.e. where all cells have the same average turnover rate p , from which
601 we derived the average lifespan as $1/p$.

602 Best fits were determined by minimizing the sum of squared residuals using the R function `nlminb`,
603 after transforming the fraction of labeled DNA (x) to $\text{arcsin}(\text{sqrt}(x))$. The 95% confidence intervals were
604 determined using a bootstrap method where the residuals to the optimal fit were resampled 500
605 times.

606

607 ***Acknowledgement***

608 We thank Ilona Bretag, Ayse Barut, and Inge Hollatz-Rangosch for excellent technical assistance and
609 Dirk Busch for providing us streptamer reagents. This work was supported by the ERC-StG 260934, the
610 DFG grant SFB900 TP B2, Helmholtz Association grants VH-NG-638 and VH-VI-424 to LCS, and the
611 European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement 317040
612 (QuanTI) to JAMB. The funding agencies had no role in the study design, nor in the data analysis and
613 manuscript preparation.

614

615

616

617 **References**

618 1. De Boer RJ, Perelson AS. Quantifying T lymphocyte turnover. *Journal of theoretical biology*.
619 2013;327:45-87.

620 2. Hamilton SE, Jameson SC. CD8 T cell quiescence revisited. *Trends Immunol*. 2012;33(5):224-
621 30.

622 3. Choo DK, Murali-Krishna K, Anita R, Ahmed R. Homeostatic turnover of virus-specific memory
623 CD8 T cells occurs stochastically and is independent of CD4 T cell help. *J Immunol*. 2010;185(6):3436-
624 44.

625 4. Westera L, Zhang Y, Tesselaar K, Borghans JA, Macallan DC. Quantitating lymphocyte
626 homeostasis in vivo in humans using stable isotope tracers. *Methods Mol Biol*. 2013;979:107-31.

627 5. Schluns KS, Kieper WC, Jameson SC, Lefrancois L. Interleukin-7 mediates the homeostasis of
628 naive and memory CD8 T cells in vivo. *Nat Immunol*. 2000;1(5):426-32.

629 6. Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD. Interleukin (IL)-15 and IL-7 Jointly
630 Regulate Homeostatic Proliferation of Memory Phenotype CD8+ Cells but Are Not Required for
631 Memory Phenotype CD4+ Cells. *The Journal of Experimental Medicine*. 2002;195(12):1523-32.

632 7. Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, et al. Counting
633 antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. *Immunity*.
634 1998;8(2):177-87.

635 8. Williams MA, Bevan MJ. Effector and Memory CTL Differentiation. *Annual Review of
636 Immunology*. 2007;25(1):171-92.

637 9. Butz EA, Bevan MJ. Massive Expansion of Antigen-Specific CD8+ T Cells during an Acute Virus
638 Infection. *Immunity*. 1998;8(2):167-75.

639 10. Vezys V, Yates A, Casey KA, Lanier G, Ahmed R, Antia R, et al. Memory CD8 T-cell
640 compartment grows in size with immunological experience. *Nature*. 2009;457(7226):196-9.

641 11. Cicin-Sain L, Brien JD, Uhrlaub JL, Drabig A, Marandu TF, Nikolich-Zugich J. Cytomegalovirus
642 infection impairs immune responses and accentuates T-cell pool changes observed in mice with
643 aging. *PLoS pathogens*. 2012;8(8):e1002849.

644 12. Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. The "silent" global burden of
645 congenital cytomegalovirus. *Clinical microbiology reviews*. 2013;26(1):86-102.

646 13. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, et al. Broadly targeted
647 human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of
648 exposed subjects. *J Exp Med*. 2005;202(5):673-85.

649 14. Klenner P, Oxenius A. T cell responses to cytomegalovirus. *Nat Rev Immunol*. 2016.

650 15. Holtappels R, Pahl-Seibert MF, Thomas D, Reddehase MJ. Enrichment of immediate-early 1
651 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during
652 latent murine cytomegalovirus infection of the lungs. *J Virol*. 2000;74(24):11495-503.

653 16. Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, et al. Memory Inflation:
654 Continous Accumulation of Antiviral CD8+ T Cells Over Time. *The Journal of Immunology*.
655 2003;171(7):3895.

656 17. Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, et al. Memory inflation:
657 continuous accumulation of antiviral CD8+ T cells over time. *Journal of immunology*.
658 2003;170(4):2022-9.

659 18. Snyder CM. Buffered memory: a hypothesis for the maintenance of functional, virus-specific
660 CD8(+) T cells during cytomegalovirus infection. *Immunologic research*. 2011;51(2-3):195-204.

661 19. Snyder CM, Cho KS, Bonnett EL, van Dommelen S, Shellam GR, Hill AB. Memory Inflation
662 during Chronic Viral Infection Is Maintained by Continuous Production of Short-Lived, Functional T
663 Cells. *Immunity*. 2008;29(4):650-9.

664 20. Torti N, Walton SM, Brocker T, Rulicke T, Oxenius A. Non-hematopoietic cells in lymph nodes
665 drive memory CD8 T cell inflation during murine cytomegalovirus infection. *PLoS pathogens*.
666 2011;7(10):e1002313.

667 21. Smith CJ, Turula H, Snyder CM. Systemic Hematogenous Maintenance of Memory Inflation by
668 MCMV Infection. *PLoS pathogens*. 2014;10(7):e1004233.

669 22. Baumann NS, Torti N, Welten SPM, Barnstorf I, Borsig M, Pallmer K, et al. Tissue maintenance
670 of CMV-specific inflationary memory T cells by IL-15. *PLoS pathogens*. 2018;14(4):e1006993.

671 23. Akbar AN, Borthwick N, Salmon M, Gombert W, Bofill M, Shamsadeen N, et al. The
672 significance of low bcl-2 expression by CD45RO T cells in normal individuals and patients with acute
673 viral infections. *The role of apoptosis in T cell memory*. *J Exp Med*. 1993;178(2):427-38.

674 24. Hildeman D, Jorgensen T, Kappler J, Marrack P. Apoptosis and the homeostatic control of
675 immune responses. *Current opinion in immunology*. 2007;19(5):516-21.

676 25. Restifo NP, Gattinoni L. Lineage relationship of effector and memory T cells. *Curr Opin
677 Immunol*. 2013;25(5):556-63.

678 26. Loonstra A, Vooijs M, Beverloo HB, Allak BA, van Drunen E, Kanaar R, et al. Growth inhibition
679 and DNA damage induced by Cre recombinase in mammalian cells. *Proc Natl Acad Sci U S A*.
680 2001;98(16):9209-14.

681 27. Higashi AY, Ikawa T, Muramatsu M, Economides AN, Niwa A, Okuda T, et al. Direct
682 hematological toxicity and illegitimate chromosomal recombination caused by the systemic
683 activation of CreERT2. *Journal of immunology*. 2009;182(9):5633-40.

684 28. Oduro JD, Redeker A, Lemmermann NA, Ebermann L, Marandu TF, Dekhtiarenko I, et al.
685 Murine cytomegalovirus (CMV) infection via the intranasal route offers a robust model of immunity
686 upon mucosal CMV infection. *The Journal of general virology*. 2016;97(1):185-95.

687 29. Kawase I, Urdal DL, Brooks CG, Henney CS. Selective depletion of NK cell activity in vivo and
688 its effect on the growth of NK-sensitive and NK-resistant tumor cell variants. *Int J Cancer*.
689 1982;29(5):567-74.

690 30. Kasai M, Iwamori M, Nagai Y, Okumura K, Tada T. A glycolipid on the surface of mouse
691 natural killer cells. *European journal of immunology*. 1980;10(3):175-80.

692 31. Slifka MK, Pagarigan RR, Whitton JL. NK markers are expressed on a high percentage of virus-
693 specific CD8+ and CD4+ T cells. *Journal of immunology*. 2000;164(4):2009-15.

694 32. Munks MW, Cho KS, Pinto AK, Sierro S, Kleberman P, Hill AB. Four distinct patterns of
695 memory CD8 T cell responses to chronic murine cytomegalovirus infection. *Journal of immunology*.
696 2006;177(1):450-8.

697 33. Munks MW, Pinto AK, Doom CM, Hill AB. Viral interference with antigen presentation does
698 not alter acute or chronic CD8 T cell immunodominance in murine cytomegalovirus infection. *Journal
699 of immunology*. 2007;178(11):7235-41.

700 34. Blaney JE, Jr., Nobusawa E, Brehm MA, Bonneau RH, Mylin LM, Fu TM, et al. Immunization
701 with a single major histocompatibility complex class I-restricted cytotoxic T-lymphocyte recognition
702 epitope of herpes simplex virus type 2 confers protective immunity. *J Virol*. 1998;72(12):9567-74.

703 35. Dekhtiarenko I, Jarvis MA, Ruzsics Z, Cicin-Sain L. The context of gene expression defines the
704 immunodominance hierarchy of cytomegalovirus antigens. *Journal of immunology*.
705 2013;190(7):3399-409.

706 36. Chu HH, Chan SW, Gosling JP, Blanchard N, Tsitsiklis A, Lythe G, et al. Continuous Effector
707 CD8(+) T Cell Production in a Controlled Persistent Infection Is Sustained by a Proliferative
708 Intermediate Population. *Immunity*. 2016;45(1):159-71.

709 37. Stemberger C, Graef P, Odendahl M, Albrecht J, Dossinger G, Anderl F, et al. Lowest numbers
710 of primary CD8(+) T cells can reconstitute protective immunity upon adoptive immunotherapy.
711 *Blood*. 2014;124(4):628-37.

712 38. Gossel G, Hogan T, Cownden D, Seddon B, Yates AJ. Memory CD4 T cell subsets are kinetically
713 heterogeneous and replenished from naive T cells at high levels. *eLife*. 2017;6.

714 39. Podlech J, Holtappels R, Grzimek NKA, Reddehase MJ. Animal models: Murine
715 cytomegalovirus. *Methods in Microbiology*. Volume 32: Academic Press; 2002. p. 493-IN11.

716 40. Jordan S, Krause J, Prager A, Mitrovic M, Jonjic S, Koszinowski UH, et al. Virus progeny of
717 murine cytomegalovirus bacterial artificial chromosome pSM3fr show reduced growth in salivary
718 Glands due to a fixed mutation of MCK-2. *J Virol*. 2011;85(19):10346-53.

719 41. Menard C, Wagner M, Ruzsics Z, Holak K, Brune W, Campbell AE, et al. Role of murine
720 cytomegalovirus US22 gene family members in replication in macrophages. *J Virol.* 2003;77(10):5557-
721 70.

722 42. Lang A, Brien JD, Messaoudi I, Nikolich-Zugich J. Age-related dysregulation of CD8+ T cell
723 memory specific for a persistent virus is independent of viral replication. *Journal of immunology.*
724 2008;180(7):4848-57.

725 43. Adler H, Messerle M, Koszinowski UH. Virus reconstituted from infectious bacterial artificial
726 chromosome (BAC)-cloned murine gammaherpesvirus 68 acquires wild-type properties in vivo only
727 after excision of BAC vector sequences. *J Virol.* 2001;75(12):5692-6.

728 44. Volkmer H, Bertholet C, Jonjić S, Wittek R, Koszinowski UH. Cytolytic T lymphocyte
729 recognition of the murine cytomegalovirus nonstructural immediate-early protein pp89 expressed by
730 recombinant vaccinia virus. *J Exp Med.* 1987;166(3):668-77.

731 45. Wallace ME, Keating R, Heath WR, Carbone FR. The cytotoxic T-cell response to herpes
732 simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single
733 immunodominant determinant. *J Virol.* 1999;73(9):7619-26.

734 46. Vrisekoop N, den Braber I, de Boer AB, Ruiter AF, Ackermans MT, van der Crabben SN, et al.
735 Sparse production but preferential incorporation of recently produced naive T cells in the human
736 peripheral pool. *Proc Natl Acad Sci U S A.* 2008;105(16):6115-20.

737 47. Westera L, Drylewicz J, den Braber I, Mugwagwa T, van der Maas I, Kwast L, et al. Closing the
738 gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans.
739 *Blood.* 2013;122(13):2205-12.

740

743 **Figure Legends**

744 **Figure 1: Latently MCMV infected mice preserve antigen-driven proliferation**
745 **of T-cells**

746 129/Sv mice were infected with 2×10^5 PFU MCMV or VACV. At 7 and 120 dpi, blood was taken and
747 proliferating T-cell subsets were analyzed with antibodies directed against CD8, Ki67 and Bcl2. In
748 addition, the DNA content of the cells was determined using the DNA marker FXcycle violet. (A)
749 Representative dot plots demonstrating the gating of cell cycle subsets based on Ki67 and FXcycle
750 violet. (B) Percentage of cell cycle subsets in total CD8 T-cells. (C) Representative dot plots
751 demonstrating the gating of cell cycle subsets based on Ki67 and Bcl2. (D) Percentage of Ki67 Bcl2
752 subsets in total CD8. B and D: each dot represents one mouse; horizontal lines indicate median. Mann-
753 Whitney Test was used to assess significance at $**=p<0.01$, $***=p<0.001$ and $****=p<0.0001$.

754 **Figure 2: Proliferating CD8 T-cells in latently MCMV infected mice are largely**
755 **effector cells.**

756 (A) and (B): 129/Sv mice were infected with 2×10^5 PFU MCMV or VACV. At 7 and 120 dpi, blood
757 was taken and proliferating T-cell subsets were analyzed with antibodies directed against CD8, Ki67,
758 CD44, and CD127. (A) Representative dot plots demonstrating the determination of the immune
759 phenotype using CD44 and CD127. (B) Percentage of TM ($CD44^+ CD127^+$) and TE ($CD44^+ CD127^-$) in
760 cycling ($Ki67^{\text{int}}$ and $Ki67^{\text{hi}}$) subsets of CD8 T-cells. Bars indicate means, error bars indicate SEM. (C) and
761 (D): 129/Sv mice were infected with 2×10^5 PFU MCMV. From 120 dpi onward they were given D₂O for
762 28 days. Mice were sacrificed at indicated time points and CD8⁺ tetramer-negative splenocytes were
763 sorted on CD44 and CD62L expression to isolate DNA from TEM ($CD62L^- CD44^+$), TCM ($CD62L^+ CD44^+$),
764 and naïve ($CD62L^+ CD44^-$) CD8 T-cells. The deuterium content in the DNA of these CD8 T-cell subsets
765 was determined by mass spectrometry. Three independent experiments with 5-6 mice per time-point
766 were performed, and data from a representative experiment are shown. (C) Best fits of the
767 mathematical model (solid curves) to the deuterium enrichment levels in the indicated cell subsets

768 (circles for individual mice). The gray-shaded area indicates the window of D₂O administration.
769 Parameters corresponding to the best fits are summarized in Table 1. (D) Comparison of the
770 percentage of deuterium labelled DNA in the three T-cell subsets of each mouse at the indicated time
771 points during label administration. Each symbol represents a T-cell subset from one mouse and lines
772 connect data points from the same mouse. (E) Blood leukocytes from C57BL/6 mice gated by CD62L
773 and CD44 expression into naïve, TCM, and TEM subsets at 100 dpi with MCMV were labelled
774 intracellularly with Ki67 and FXcycle (see Fig 3A for representative gating) and mean frequencies of
775 Ki67^{hi} populations in indicated subsets are shown. Experiments were performed twice (total n=12).
776 Error bars are SEM.

777 ***Figure 3: The activated Cre-Recombinase induces cell death in Ki67^{hi} effector T-
778 cells in blood and spleen.***

779 R26CreER^{T2} mice were infected with 10⁶ PFU MCMV. At 94 dpi the mice received 80mg/kg BW
780 Tamoxifen by oral gavage for 5 consecutive days, followed by a three day break, and one more day of
781 treatment, before mice were sacrificed. Cell proliferation in CD8 T-cell subsets was characterized by
782 CD8, CD44, CD127, and Ki67 expression as well as by the DNA marker FXcycle. (A) Representative dot
783 plots for CD8 T-cell proliferation in blood and splenocytes in treated and untreated animals. (B)
784 Percentages of cell cycle subsets Ki67⁻, Ki67^{int}, Ki67^{hi}FX⁻, and Ki67^{hi} FX⁺ in total CD8 T-cells. (C)
785 Percentages of cell cycle subsets Ki67⁻, Ki67^{int}, Ki67^{hi}FX⁻, and Ki67^{hi} FX⁺ in naïve (CD127⁺ CD44⁻), memory
786 (CD127⁺ CD44⁺), and effector (CD127⁻ CD44⁺) CD8 T-cell subsets. (D) The percentage of dead cells (7-
787 AAD⁺) was determined in the naïve (CD62L⁺ CD44⁻), central-memory (CD62L⁺ CD44⁺), and effector-
788 memory (CD62L⁻ CD44⁺) CD8 T-cell subsets in blood and spleen. Pooled data from two independent
789 experiments (12 mice in total) are shown. Bars indicate means, error bars indicate SEM. Significant
790 differences were determined by Mann-Whitney test, * $=p<0.05$, ** $=p<0.01$, *** $=p<0.001$, and
791 **** $=p<0.0001$

792

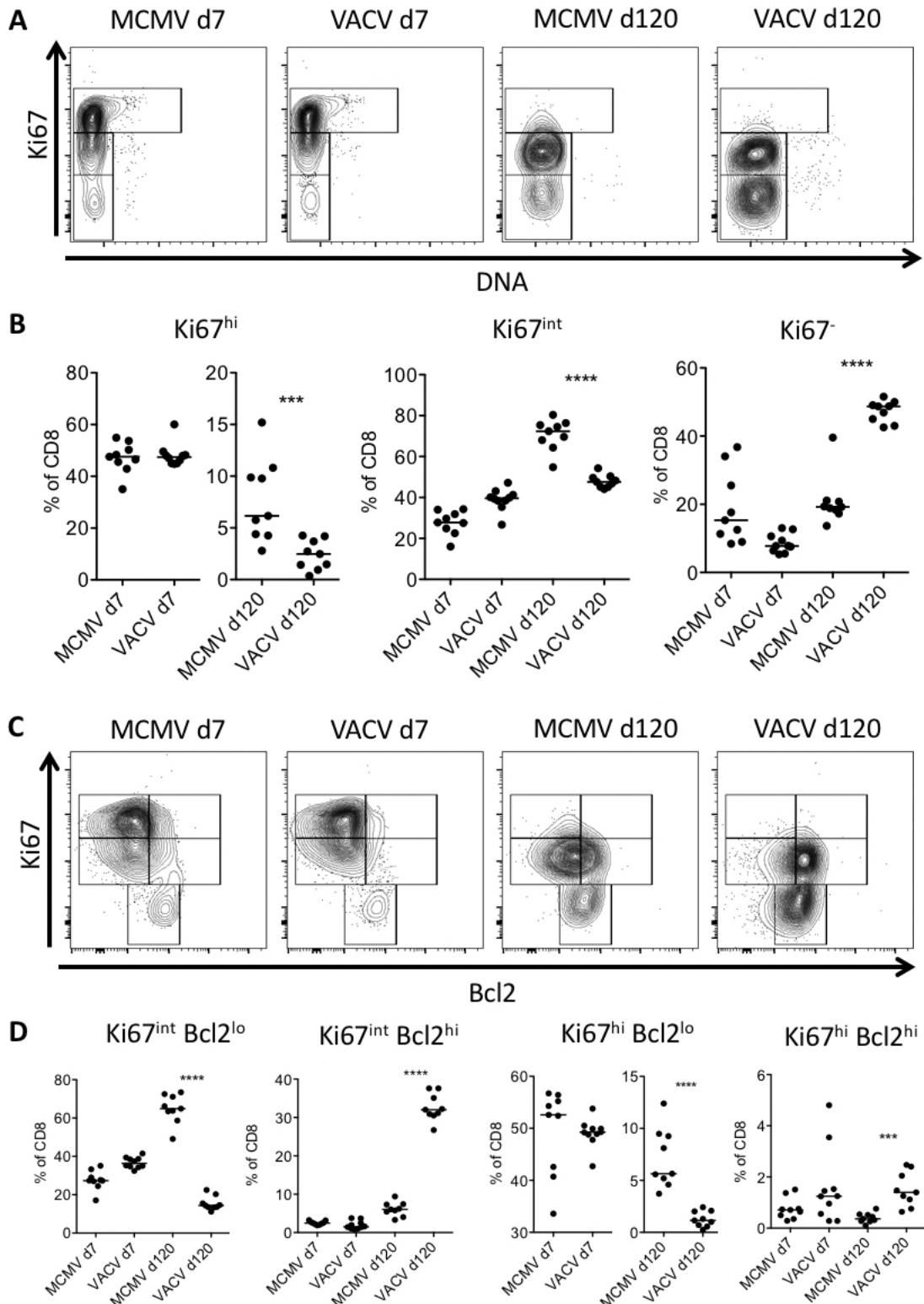
793 **Figure 4: The TEM compartments of herpesvirus-specific CD8 T-cells are**
794 **restored after depletion with anti-asialo GM1.**

795 (A) Ly5.1 C57BL/6 mice were infected with 10⁴ PFU MCMV (Smith strain). At 30 dpi the mice were
796 sacrificed and CD62L⁺ CD44⁺ (TCM) and CD62L⁻ CD44⁺ (TEM) CD8 T-cells were sorted from spleens and
797 transferred into Ly5.2 C57BL/6 recipients (n=4). 18h post transfer the number of Ly5.1⁺ cells per 50
798 000 transferred cells was determined in the spleens of the recipients. (B-D) C57CL/6 mice were injected
799 with 10⁵ PFU MCMV-gB, or 10⁶ PFU Vaccinia-gB. 2 months post infection mice were either treated
800 weekly with anti-asialo GM1 antibody or mock treated for 5 consecutive weeks. 4 days and 2 months
801 after the last round of depletion the mice were bled and cells were stained with antibodies against
802 CD8, CD44, CD62L, and CD11a. (B) Representative dot plots of CD8 T-cell subsets before and after
803 depletion. (C) Percentage of primed (CD11a⁺CD44⁺) cells in the CD8 population. (D) Percentages of TEM
804 (CD62L⁻CD44⁺) or TCM (CD62L⁻CD44⁺) cells. 3-5 mice per group. (E) C57CL/6 mice were infected with
805 2x10⁵ PFU MCMV IE2-SSIEFARL, 1x10⁶ PFU MHV-68 (MHV) or 2x10⁵ PFU HSV-1 (HSV). 10 months post
806 infection the mice were treated weekly with anti-asialo GM1 antibody or an isotype control for four
807 consecutive weeks. 3 days and 2 months after the last round of depletion the mice were bled and cells
808 were stained with antibodies against CD8, CD44, and CD62L. Percentages of TEM and TCM among CD8
809 T cells were determined. 6 - 10 mice per group; bars indicate means, error bars indicate SEM.
810 Significance was assessed by Mann-Whitney test. * = p < 0.05, ** = p < 0.01, *** = p < 0.001, and
811 **** = p < 0.0001

812 **Figure 5: MCMV-specific T-cells show antigen driven proliferation in latently**
813 **infected mice**

814 129/Sv mice were infected with 2x10⁵ PFU MCMV or VACV. At 7 and 120 dpi, blood was taken and
815 proliferating T-cell subsets were analysed with antibodies directed against CD8, Ki67, and Bcl2. In
816 addition, the DNA content of the cells was determined using the DNA marker FXcycle violet. T-cells
817 specific for M38 were identified via MHC-tetramer staining. (A) Representative dot plots
818 demonstrating specific T-cells among total CD8 T-cells, the gating of cell cycle subsets (Ki67 and FXcycle

819 violet), and proliferating subsets driven by homeostatic or antigen-driven proliferation (Ki67 Bcl2) in
820 tet+ CD8 T-cells. (B) Percentage of tetramer positive CD8 T-cells at 7 and 120 dpi. (C) Percentage of cell
821 cycle subsets among tet+ CD8 T-cells. (D) Percentage of Ki67 Bcl2 subsets among tet+ CD8 T-cells. 8-9
822 mice per group, lines indicate median. (E, F) C57CL/6 mice were infected with 2×10^5 PFU MCMV IE2-
823 SSIEFARL, 1×10^6 PFU MHV-68 (MHV) or 2×10^5 PFU HSV-1 (HSV). 10 months post infection the mice
824 were treated weekly with anti-asialo GM1 antibody or isotype control for four consecutive weeks. 3
825 days and 2 months after the last round of depletion the mice were bled and cells were stimulated with
826 peptide pools in the case of MCMV (pool of M38 and m139 peptides) and MHV-68 (pool of MHV-68_{ORF6}
827 and MHV-68_{ORF68}) or a single peptide (SSIEFARL derived from gB) in the case of HSV-1 and stained with
828 antibodies against CD8, IL-2, IFN γ , and TNF α to identify cytokine producing CD8 T-cells. (E)
829 Representative dot plots of cytokine-producing MCMV specific CD8 T-cells before and after depletion
830 with anti-asialo GM1 antibody. (F) Percentages of cytokine producing CD8 T-cells in isotype and anti-
831 asialo GM1 treated mice. 6-10 mice per group. (G) C57CL/6 mice were infected with 2×10^5 PFU MCMV-
832 ie2-SSIEFARL, 2×10^5 PFU HSV-1 or 2×10^5 PFU Vaccinia-SSIEFARL. 2 months post infection the mice were
833 treated weekly with anti-asialo GM1 antibody or isotype control for four consecutive weeks. 4 days
834 and 60 days post depletion the mice were bled and cells stimulated with the HSV-1 glycoprotein-
835 derived epitope gB (SSIEFARL) and stained with anti-CD8 and anti-IFN γ . The CD8 T-cells were analysed
836 for IFN γ expression. 6-10 mice per group, bars indicate means, error bars indicate SEM.

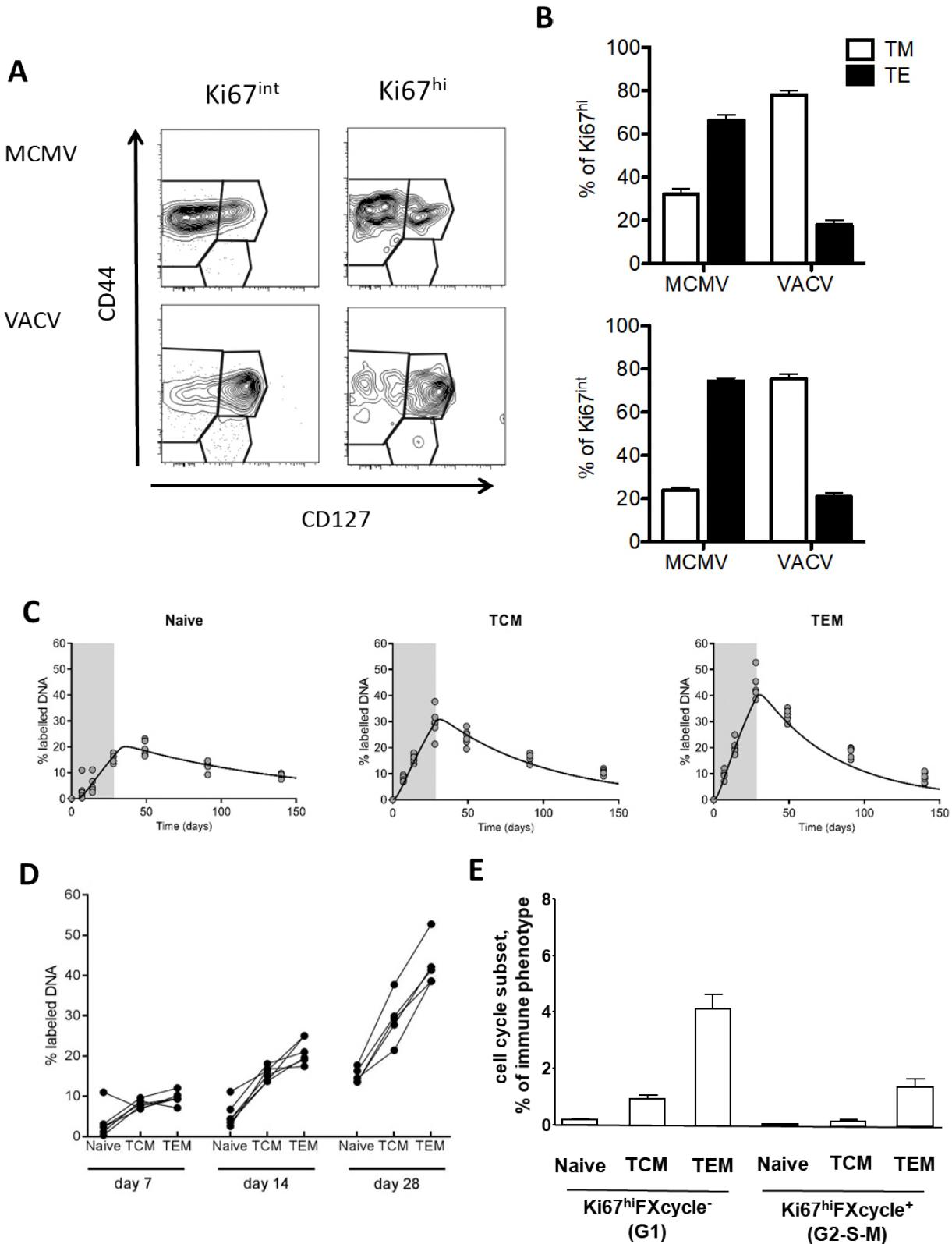

837 **Figure 6: MCMV-specific CD8 T-cells are depleted by Tamoxifen treatment in
838 R26 CreER T2 mice.**

839 (A, B) R26 CreER T2 mice were infected with 10^6 PFU MCMV or 200 μ l PBS (mock). 4 months post
840 infection half of the mice received food pellets containing 400 mg/kg Tamoxifen for 4 weeks
841 (indicated with a grey rectangle). Blood was collected and analysed at 0, 7, 14, 28, 60, 90, 120, 150,
842 180, and 270 dpi. Blood leukocytes were stimulated with the IE3 peptide (RALEYKNL) and stained for
843 CD8, CD44, CD127, and IFN γ expression. (A) Kinetics of effector (CD44 $^+$ CD127 $^-$; TE) CD8 T-cells
844 before, during, and after Tamoxifen treatment. (B) Percentages of IFN γ $^+$ CD8 T-cells specific for the

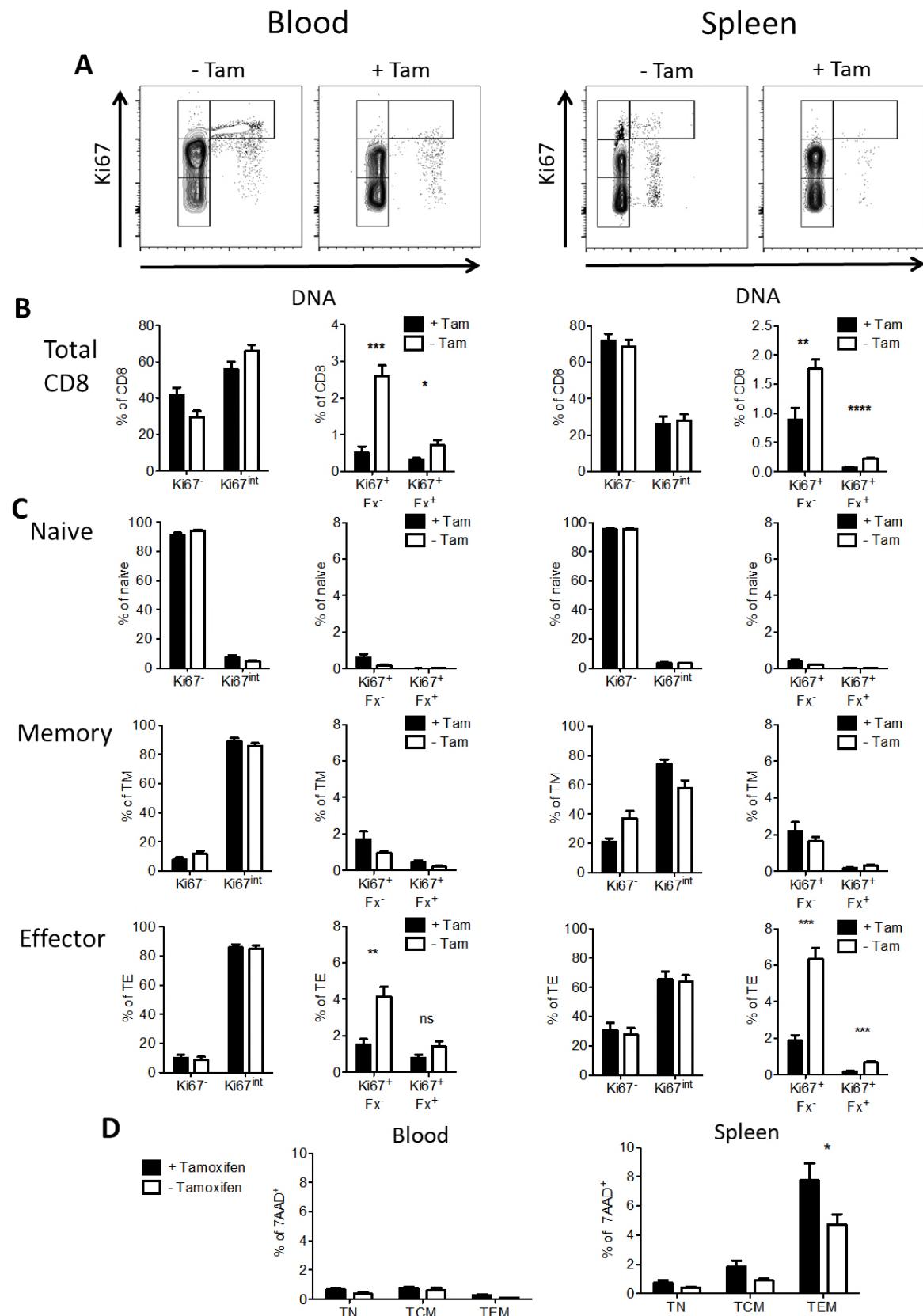
845 IE3 peptide before, during, and after Tamoxifen treatment. Data are pooled from three independent
846 experiments with up to 15 mice per group in total. Error bars indicate SEM. Significance was assessed
847 by Mann-Whitney test. ** p < 0.01. **** p < 0.0001. (C, D) R26 CreERT² mice were infected with 10⁶
848 PFU MCMV or 200 μ l PBS (mock). 3 months post infection mice half of the mice were treated with
849 80mg/kg bodyweight Tamoxifen by oral gavage on five consecutive days (d94-d98). Blood was
850 collected and analysed on d90 (pre treatment) and on day 101 (3 days post Tamoxifen). Lymphocyte
851 counts in blood were acquired via Vetscan. (C) Numbers of M38 and IE3-specific T-cells were
852 determined by tetramer-staining. (D) Counts of effector (CD44⁺ CD127⁻, TE) CD8 T-cells. Data from 2
853 independent experiments were pooled, with up to 15 mice per group in total. Dots indicate means,
854 error bars indicate SEM. (E) Comparison of TEM and TE loss. Cell counts in each subset prior to
855 Tamoxifen were normalized as 100% and post-depletion numbers are shown. 2 experiments with 15
856 mice per group were pooled. Data are means, error bars and SEM.

857 **Figures**

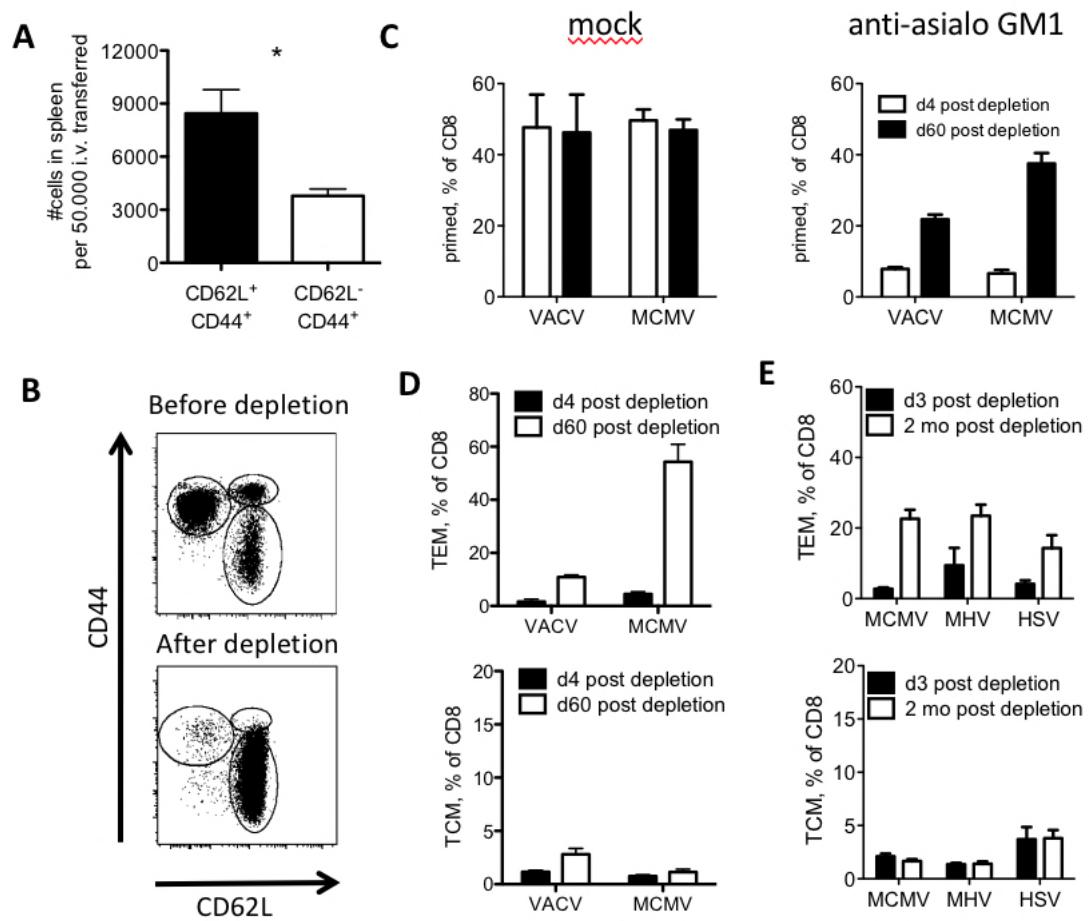
858 **Figure 1**



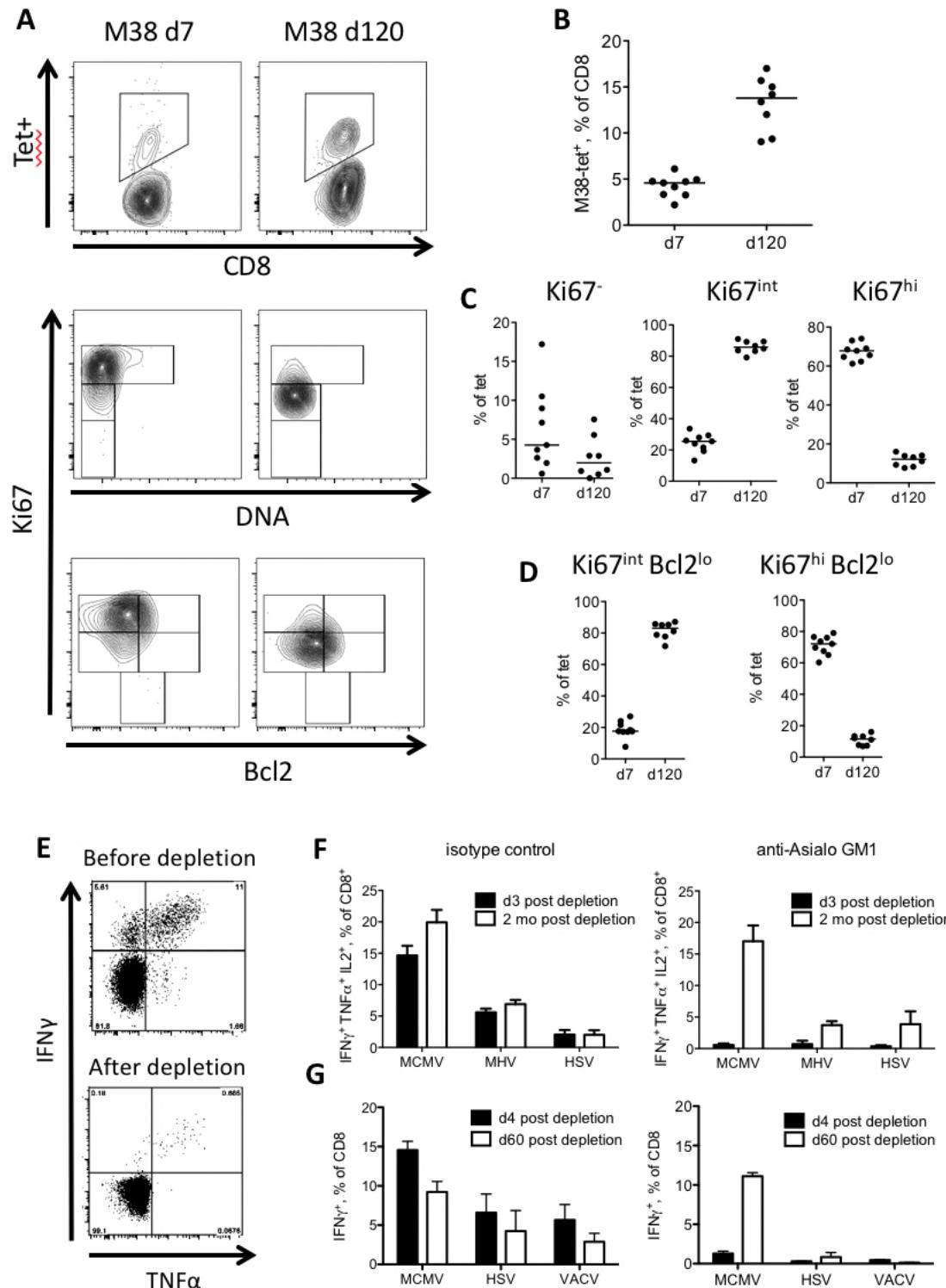
859


860

861 **Figure 2**

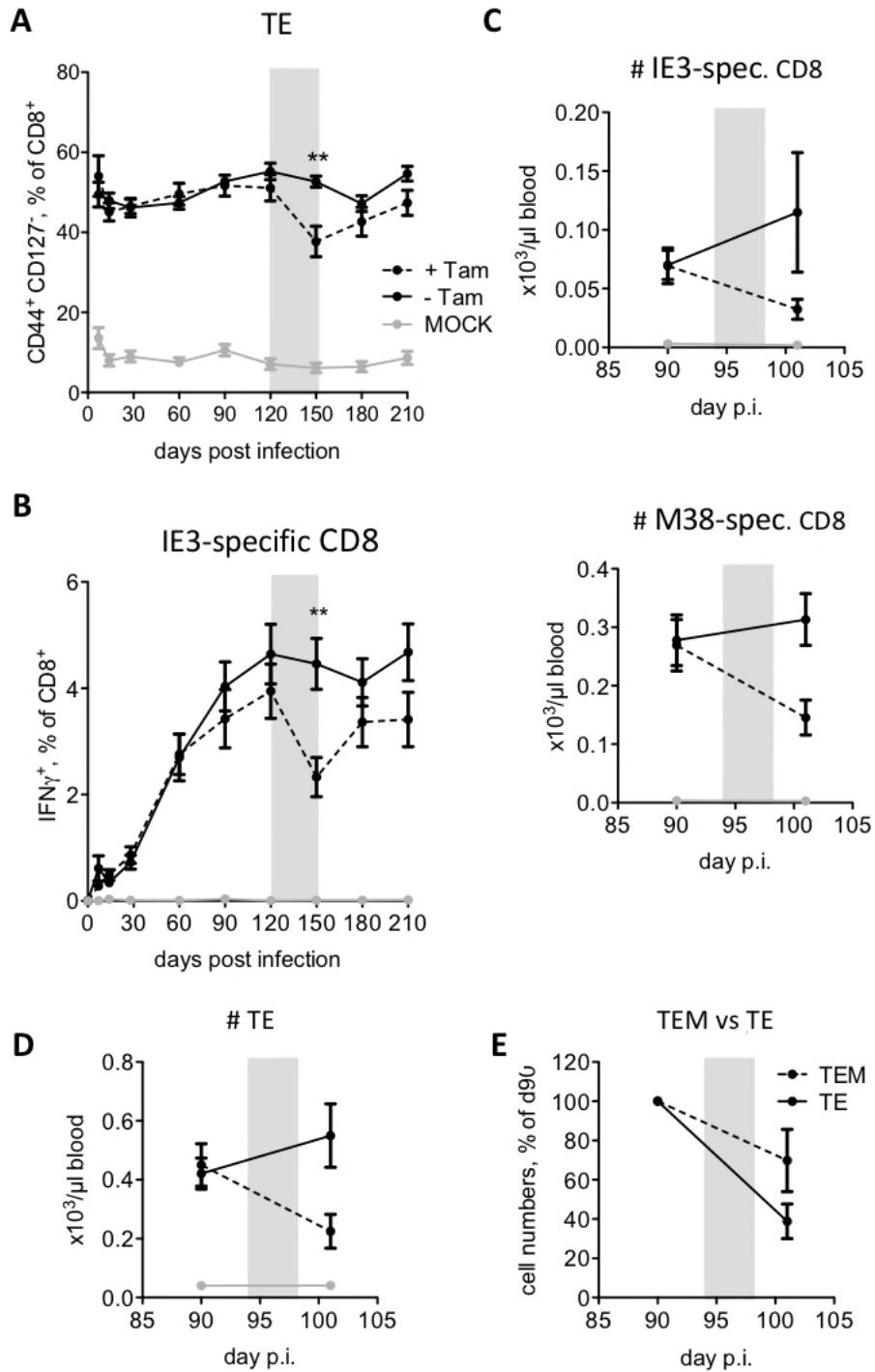

862

864 **Figure 3**


866 **Figure 4**

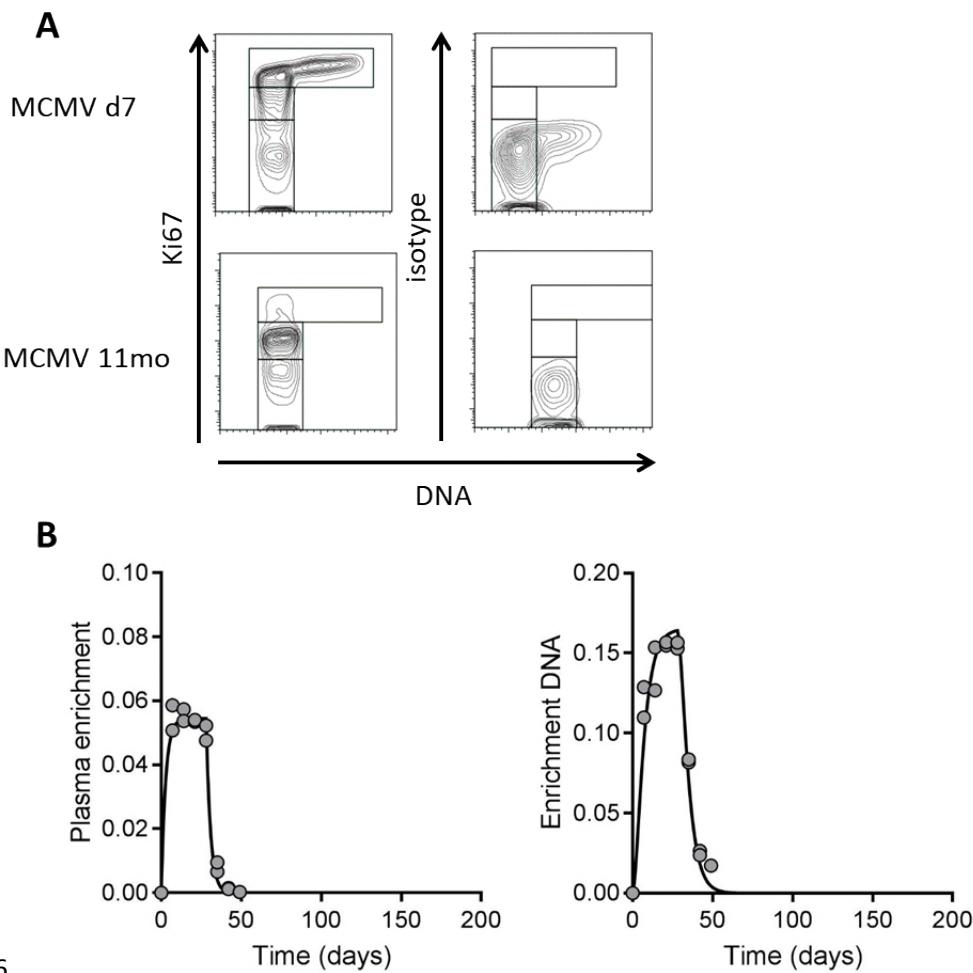
867

868


869 **Figure 5**

870

871


872 **Figure 6**

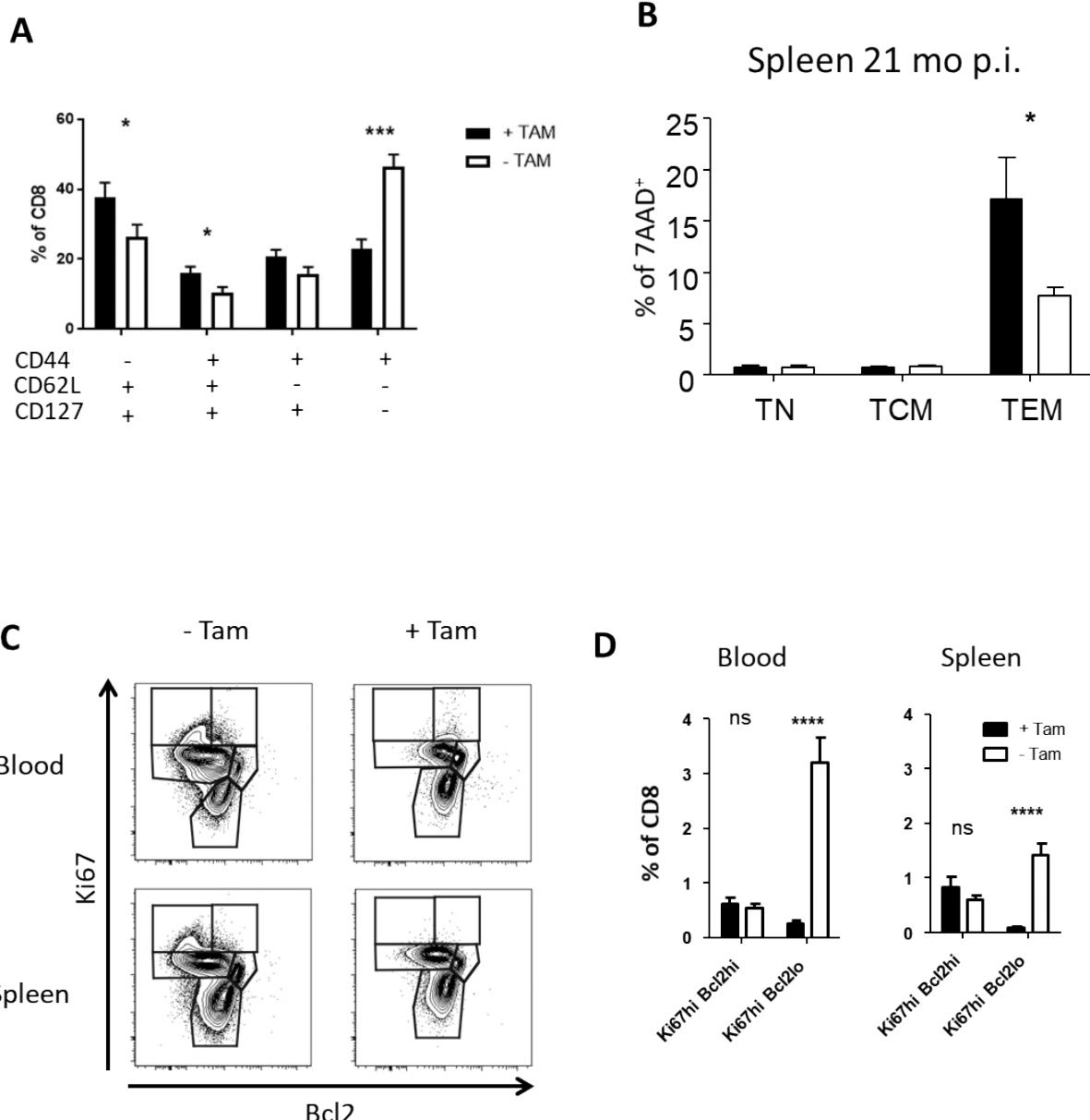
873

874 **Supporting Information**

875 **Supplementary Figure 1**

876

877 **Supplementary Figure 1: Ki67 staining isotype control and supplemental Deuterium enrichment**
878 **data.**


879 (A) Blood from mice that had been infected with MCMV for either 7 days or 11 months was
880 stained with antibodies against CD3, CD8, and Ki67. Additionally, samples were stained using an
881 isotype control for Ki67 instead. Furthermore, the DNA dye FXcycle violet was added. Representative
882 dotplots are shown. (B) The fraction deuterium labeled plasma (as a measure of deuterium
883 availability in the body water) over time during 4 weeks of D₂O administration and the subsequent 16
884 weeks after label cessation (left). The fraction of deuterium labeled DNA in thymocytes over time

885 (right). Thymocytes were used as a population of rapidly turning over cells to estimate the maximum
886 level of label incorporation that cells could possibly attain. Circles represent measurements from
887 individual mice; curves represent the best fits of the mathematical model to these data (see
888 Methods).

889

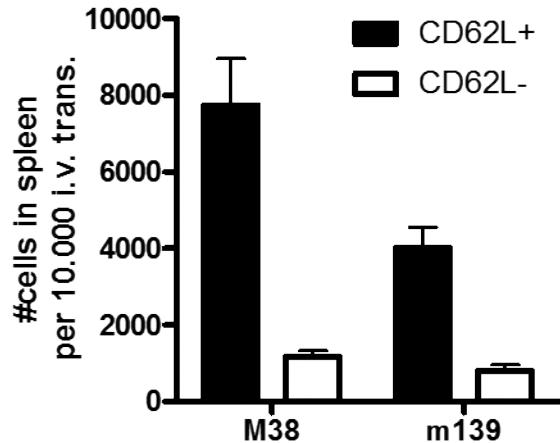
890

891 **Supplementary Figure 2**

892

893 **Supplementary Figure 2: Supplemental Tamoxifen data**

894 Fraction of CD8 subsets in the CD8 pool upon Tam treatment. Mice were MCMV infected and Tam
 895 treated as shown in figure 3. Blood leukocytes were stained for CD8 and the indicated surface markers
 896 and gated in the CD44-CD62L+CD127+ (naïve) CD44+CD62L+CD127+ (central memory), CD44+CD62L-
 897 CD127+ (effector memory) and CD44+CD62L-CD127- (Effector) subsets. Shown are group means +
 898 standard deviations from two pooled experiments. (B) Tamoxifen induces cell death in splenic TEM

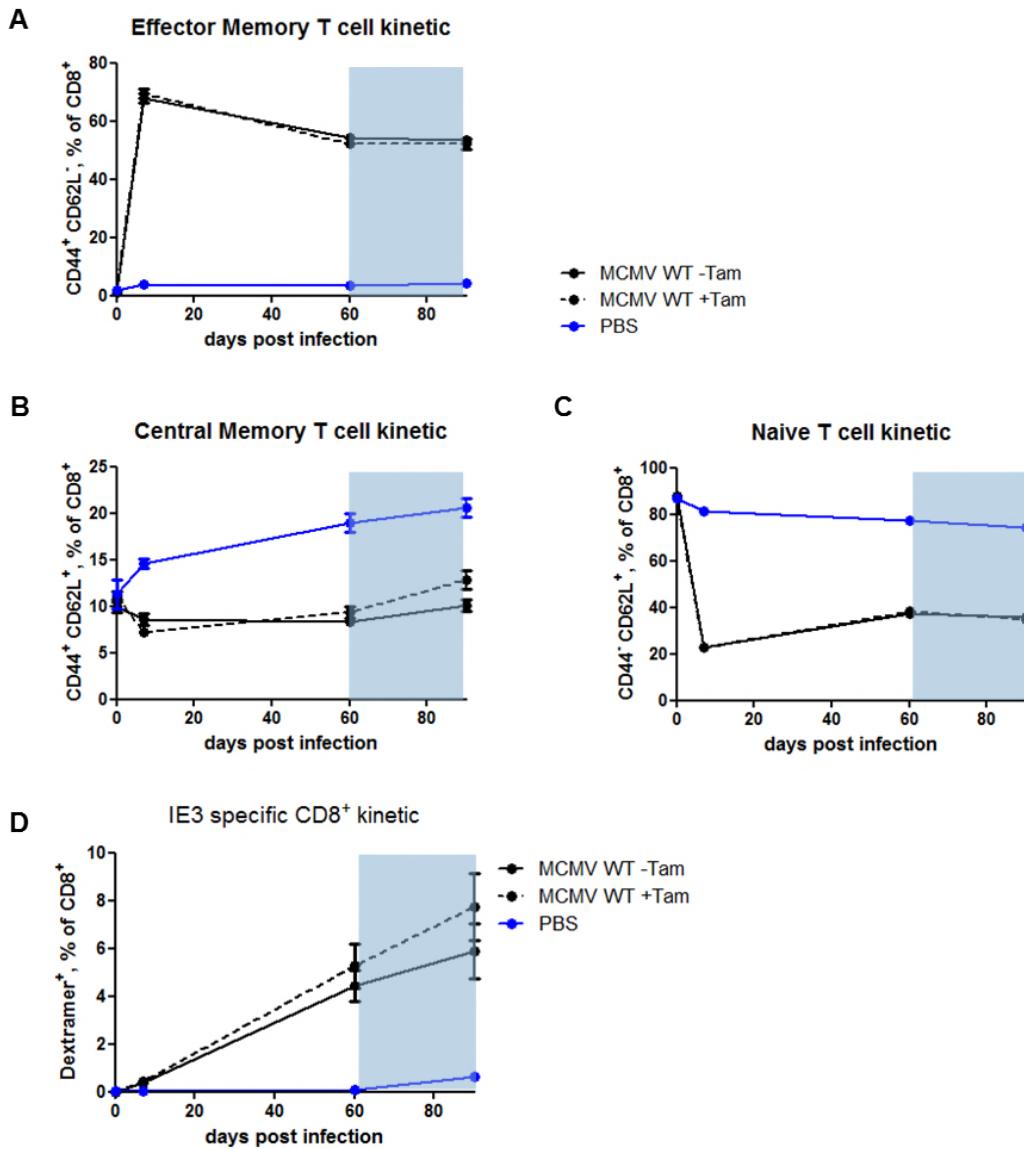

899 subsets after a life of latency. R26 CreER^{T2} mice were infected with 10⁶ PFU MCMV. 21 months post
900 infection the mice received food pellets containing 400 mg/kg Tamoxifen for 2 weeks. Splenocytes
901 were stained with antibodies against CD8, CD44, CD62L, and 7AAD. Percentage of 7AAD⁺ cells in
902 immune phenotype subsets are shown. 4 mice per group; significance was assessed by Mann-Whitney
903 test. * = p<0.05. (C+D) Tam treatment depletes primarily Bcl2^{lo} cells. R26CreER^{T2} mice were infected
904 with 10⁶ PFU MCMV. At 94 dpi, the mice received 80mg/kg BW Tamoxifen by oral gavage for 5
905 consecutive days, followed by one day break, and one more day of treatment, before mice were
906 sacrificed. Cell proliferation in CD8 T-cell subsets was characterized by CD8, Ki67, and Bcl2 expression.
907 (C) Representative dot plots for CD8 T-cell proliferation in blood and splenocytes in treated and
908 untreated mice. (D) Percentages of cell cycle subsets Ki67^{hi} Bcl2^{hi} and Ki67^{hi} Bcl2^{lo} in total CD8 T-cells.
909 Pooled data from two independent experiments (12 mice in total) are shown. Bars indicate means,
910 error bars indicate SEM. Significant differences were determined by Mann-Whitney test,
911 ****=p<0.0001.

912

913

914 **Supplementary Figure 3**

915


916

917 **Supplementary Figure 3: Antigen-specific CD62L⁺ T-cells home to the spleen more efficiently than**
918 **CD62L⁻**

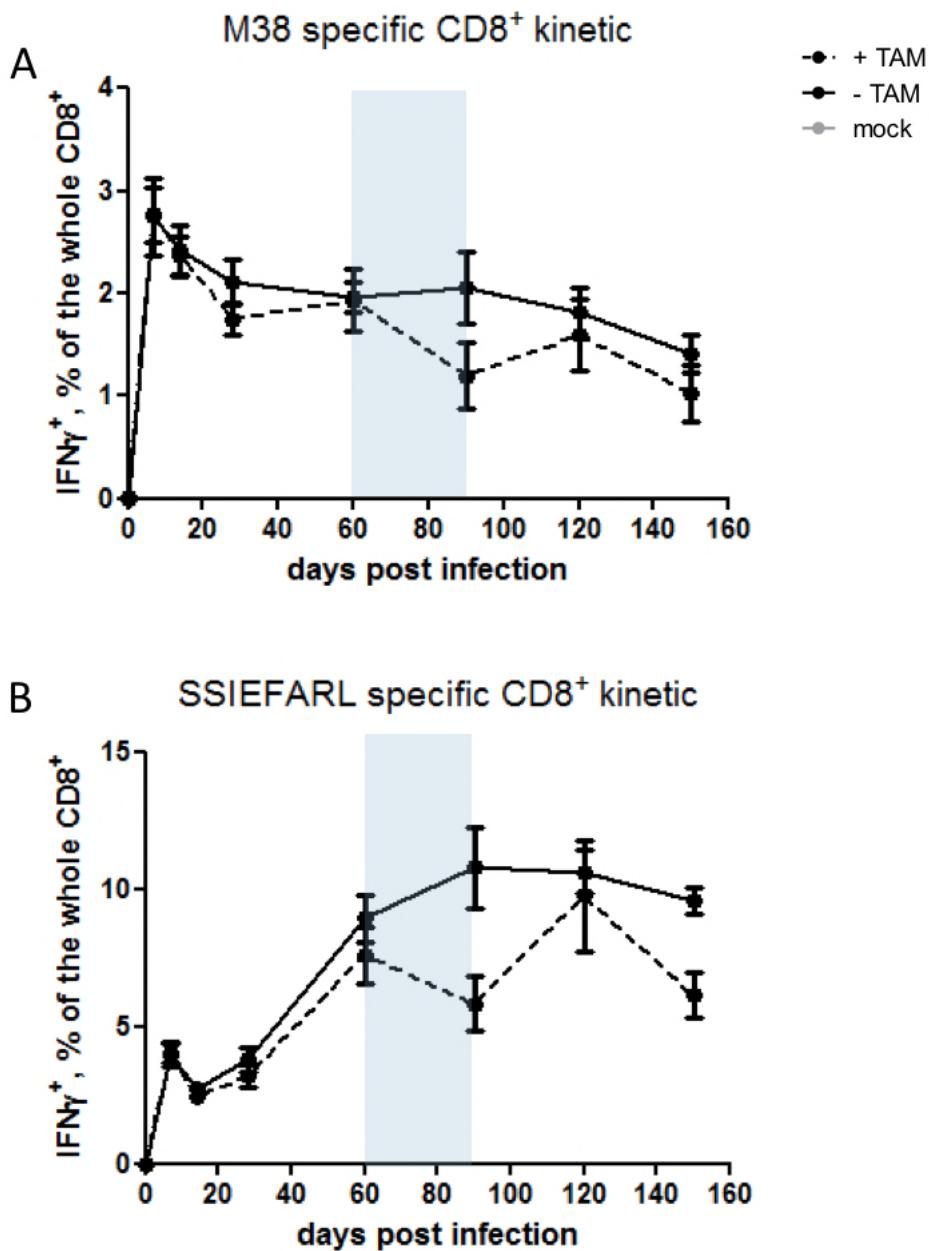
919 Ly5.1 C57BL/6 mice were infected with 10⁴ PFU MCMV (Smith strain). At 30 dpi the mice were
920 sacrificed and CD62L⁺ tet⁺ and CD62L⁻ tet⁺ CD8 T-cells were sorted from spleens after CD8 T cell
921 enrichment, using tetramers for the inflationary epitopes m139 and M38. Cells were transferred into
922 Ly5.2 C57BL/6 recipients (n=2 for CD62L⁺ tet⁺ and n=4 for CD62L⁻ tet⁺). 18h post transfer the number
923 of Ly5.1⁺ cells per 10 000 transferred cells was determined in the spleens of the recipients. Bars indicate
924 means, error bars indicate SEM.

925

926 **Supplementary Figure 4**

927

928 **Supplementary Figure 4: Tamoxifen treatment has no effect on any CD8 T-cell subsets in C67BL/6**


929 **wild-type animals.**

930 C57BL/6 wildtype mice were infected with 10^6 PFU MCMV or 200 μ l PBS (mock). At 60 dpi mice
931 received food pellets containing 400 mg/kg Tamoxifen for 4 weeks (indicated with a grey rectangle).
932 Blood was collected and analysed at 0, 7, 60, and 88 dpi. Blood leukocytes were stimulated with the
933 IE3 peptide (RALEYKNL) and stained for CD8, CD44, CD62L, and IFNy. (A) Kinetic of TEM (CD44⁺ CD62L⁻)
934 CD8 T-cells before and after Tamoxifen treatment. (B) Kinetic of TCM (CD44⁺ CD62L⁺) CD8 T-cells before

935 and after Tamoxifen treatment. (C) Kinetic of naïve (CD44⁻ CD62L⁺) CD8 T-cells before and after
936 Tamoxifen treatment. (D) Kinetic of IE3-specific CD8 T-cells before and after Tamoxifen treatment.

937

938 **Supplementary Figure 5**

939

940 **Supplementary Figure 5: MCMV-specific CD8 T-cells are depleted by Tamoxifen treatment in R26**

941 ***CreER*^{T2} mice.**

942 (A, B) R26CreER^{T2} mice were infected with 10⁶ PFU MCMV or 200µl PBS (mock). 60 days post infection

943 mice received food pellets with 400 mg/kg Tamoxifen for 4 weeks (indicated by the grey rectangle).

944 Blood was collected and analysed at 0, 7, 14, 28, 60, 90, 120, 150, 180, and 270 dpi. Blood leukocytes

945 were stimulated with the M38 peptide (SSPPMFRV) or the gB peptide (SSIEFARL) and stained for CD8,

946 CD44, CD127, and IFNy expression. (A) Kinetic of M38-specific CD8 T-cells before, during, and after
947 Tamoxifen treatment. (B) Kinetic of gB-specific CD8 T-cells before, during, and after Tamoxifen
948 treatment. Data are pooled from three independent experiments with up to 15 mice per group in total.
949 Error bars indicate SEM. Significance was assessed by Mann-Whitney test. ** $p < 0.01$. **** $p < 0.0001$.