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Summary 30 

• Accurate, high-throughput phenotyping for quantitative traits is the limiting factor for 31 

progress in plant breeding. We developed automated image analysis to measure 32 

quantitative resistance to septoria tritici blotch (STB), a globally important wheat 33 

disease, enabling identification of small chromosome intervals containing plausible 34 

candidate genes for STB resistance. 35 

• 335 winter wheat cultivars were included in a replicated field experiment that 36 

experienced natural epidemic development by a highly diverse but fungicide-resistant 37 

pathogen population. More than 5.4 million automatically generated phenotypes were 38 

associated with 13,648 SNP markers to perform a GWAS. 39 

•  We identified 26 chromosome intervals explaining 1.9-10.6% of the variance 40 

associated with four resistance traits. Seventeen of the intervals were less than 5 Mbp 41 

in size and encoded only 173 genes, including many genes associated with disease 42 

resistance. Five intervals contained four or fewer genes, providing high priority 43 

targets for functional validation. Ten chromosome intervals were not previously 44 

associated with STB resistance.  45 

• Our experiment illustrates how high-throughput automated phenotyping can 46 

accelerate breeding for quantitative disease resistance. The SNP markers associated 47 

with these chromosome intervals can be used to recombine different forms of 48 

quantitative STB resistance that are likely to be more durable than pyramids of major 49 

resistance genes.  50 

 51 

Key words:  automated image analysis, genome-wide association study (GWAS), plant 52 

breeding, precision phenotyping, septoria tritici blotch, Zymoseptoria tritici   53 
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Introduction 54 

Genome-wide association studies (GWAS) provide a powerful approach to identify genetic 55 

markers associated with important quantitative traits in crops (e.g. Milner et al. 2018; Yano et 56 

al. 2016). The single nucleotide polymorphism (SNP) markers significantly associated with a 57 

trait in a GWAS can be directly used in breeding programs for marker-assisted selection or 58 

genomic selection, and also as tools to enable map-based cloning of the corresponding genes 59 

underlying quantitative traits. 60 

 61 

An abundant supply of SNP genetic markers is now available for the most important crops as 62 

a result of rapid advances in sequencing technologies. Because phenotyping technologies 63 

have not developed as quickly as genotyping technologies, the ability to generate accurate 64 

and reproducible phenotypes for quantitative traits is now the primary limitation to progress 65 

in breeding for many important traits (Furbank and Tester 2011; Araus and Cairns 2014), 66 

including resistance to pests and pathogens (Joalland et al. 2018). Many research teams are 67 

working to develop automated and high-throughput phenotyping of important traits under 68 

field conditions, with some reports of success (Joalland et al. 2018; Wedeking et al. 2017), 69 

but we remain far from the goal of using automated phenotyping to speed progress in plant 70 

breeding for useful traits.   71 

 72 

Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is currently the most 73 

damaging leaf disease on wheat in Europe (Jørgensen et al. 2014) and is a significant disease 74 

on wheat around the world. Z. tritici has a mixed reproductive system, producing airborne 75 

ascospores through sexual reproduction that can be disseminated over distances of several 76 

kilometers and asexual conidia that are splash-dispersed over spatial scales of only 1-2 meters 77 

over the course of a growing season (McDonald and Mundt, 2016; P. Karisto and A. 78 

Mikaberidze, personal communication). Z. tritici populations are highly variable within fields 79 

as a result of its mixed reproductive system, large effective population sizes and high levels 80 

of gene flow among populations (McDonald and Mundt, 2016; Zhan et al. 2003). These 81 

properties provide a high evolutionary potential that leads to rapid development of virulence 82 

against resistant cultivars (McDonald and Mundt, 2016; Cowger et al. 2000) as well as 83 

resistance to fungicides (McDonald and Mundt, 2016; Estep et al. 2015; Estep et al. 2016). 84 

STB in Europe is controlled mainly by applying fungicides costing over $1 billion per year 85 

(Torriani et al. 2015), but many European Z. tritici populations have now evolved sufficiently 86 

high levels of resistance that fungicides are losing their efficacy (Karisto et al. 2018; Cools 87 
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and Fraaije, 2013). The European Union is planning to ban many fungicides during coming 88 

years (EU Regulation 1107/2009). These developments have stimulated new efforts to 89 

increase STB resistance through plant breeding.  90 

 91 

Many studies have identified strain-specific STB resistance genes that could prove useful in 92 

breeding programs (summarized in Brown et al. 2015). STB resistance is mainly quantitative, 93 

but some examples of major gene resistance were identified (e.g. Stb6) that were recently 94 

shown to follow the gene-for-gene (GFG) pattern of inheritance (Saintenac et al. 2018; Zhong 95 

et al. 2017). Unfortunately, major STB resistance genes like Stb6 typically failed within 3-4 96 

years of deployment as a result of pathogen evolution (Cowger and Mundt 2000). A different 97 

breeding approach that is expected to slow pathogen evolution and be more durable is to 98 

make pyramids of quantitative resistance (QR) genes with additive effects (Mundt 2018). 99 

This approach requires the identification and deployment of QR that is effective across a 100 

broad cross-section of the Z. tritici population as opposed to major gene resistance that works 101 

against only a small fraction of the strains found in natural field populations.   102 

 103 

Identification of QR is difficult for most pathogens for many reasons including: 1) 104 

measurement error associated with eyeball assessments of disease; 2) inherent differences in 105 

disease measurements conducted by different people; 3) differences in expression of QR in 106 

different environments; 4) the occurrence of mixed infections by several pathogens under 107 

typical field conditions, with overlapping symptoms that often cannot be teased apart (e.g. 108 

STB symptoms look very similar to the symptoms associated with tan spot and stagonospora 109 

nodorum leaf blotch). These factors combine to create a low heritability for QR that slows 110 

progress in accumulating different sources of QR in breeding programs. 111 

 112 

The recent development of automated image analysis for STB enabled rapid acquisition of 113 

large datasets including millions of phenotype datapoints that were highly informative under 114 

both greenhouse and field conditions, and facilitated the cloning of genes encoding several 115 

avirulence effectors, including AvrStb6 (Zhong et al. 2017) and Avr3D1 (Meile et al. 2018; 116 

Stewart et al. 2018), as well as the Zmr1 gene affecting melanization of Z. tritici colonies and 117 

pycnidia (Krishnan et al. 2018; Lendenmann et al. 2014). We took advantage of the high 118 

levels of fungicide resistance in Swiss populations of Z. tritici by using fungicide treatments 119 

to eliminate competing pathogens in a replicated field experiment (Karisto et al. 2018). The 120 

fungicide treatments enabled a pure-pathogen readout of quantitative resistance to STB 121 
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caused by a genetically diverse, natural population of Z. tritici in an epidemic that developed 122 

under natural field conditions. Here we use this extensive phenotype dataset in a GWAS to 123 

identify 26 chromosome intervals associated with quantitative STB resistance in a broad 124 

panel of 335 elite European winter wheat cultivars. Many of these intervals explained 6%-125 

10% of the variance for the associated resistance trait. Several of the intervals contained a 126 

relatively small number of annotated genes, including genes known to be associated with 127 

disease resistance in wheat or other plants. There was a significant enrichment (P<0.0001) for 128 

genes encoding putative receptor kinases and kinases within the 17 chromosome segments 129 

spanning less than 5 Mbp. Other candidate genes for STB resistance encoded NB-LRR 130 

proteins, F-box LRR proteins, sugar transporters, an ABC transporter, superoxide dismutase, 131 

and a TCP transcription factor, illustrating how automated image analysis can lead to 132 

identification of plausible candidate genes for quantitative disease resistance. 133 

 134 

Materials and Methods 135 

335 European winter wheat cultivars chosen from the GABI wheat panel (Kollers et al. 2013) 136 

were grown in 1.1 x 1.4 m plots replicated twice as complete blocks at the Field Phenotyping 137 

Platform of the ETH research station in Lindau, Switzerland (Kirchgessner et al. 2017). The 138 

plots received full agrochemical inputs typically associated with intensive wheat cultivation 139 

in Europe, including mineral fertilizers, a stem shortener and several pesticide applications. 140 

Among the pesticides, fungicides comprising five different active ingredients with three 141 

modes of action were applied at three time points over the growing season.  Additional details 142 

associated with the field experiment are given in Karisto et al. (2018).   143 

 144 

An unusual feature of this experiment is that all STB infection was natural, with the epidemic 145 

caused by a highly diverse Z. tritici population that immigrated into the experimental plots 146 

via windborne ascospores coming from nearby wheat fields that were treated with fungicides. 147 

This local Z. tritici population carried sufficient resistance to all fungicides applied in the 148 

experimental plots to enable an STB epidemic to develop despite the intensive fungicide 149 

treatments. But other wheat diseases common in this region, including leaf rust, stripe rust, 150 

stagonospora nodorum blotch, powdery mildew and tan spot, were practically absent because 151 

the fungicides excluded these pathogens (Karisto et al. 2018). As a result, we were able to 152 

obtain a pure-culture read out of quantitative STB resistance across all 335 wheat cultivars 153 

without confounding effects from other diseases. The local weather during the 2015-2016 154 

growing season was cooler and wetter than usual, providing a highly conducive environment 155 
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for development of an STB epidemic. At least six asexual reproduction cycles occurred 156 

during the most active period of wheat growth between March and July (Karisto et al. 2018).  157 

Other components of STB epidemiology associated with this experiment were already 158 

reported (Karisto et al. 2018).   159 

 160 

All experimental plots were assessed for STB resistance at two time points, t1 (20 May 2016, 161 

approximately GS 41) and t2 (4 July 2016, approximately GS 75-85) using automated image 162 

analysis of 21,420 scanned leaves infected by Z. tritici (Stewart et al. 2016; Karisto et al. 163 

2018). Nearly sixteen infected leaves collected from the same leaf layer in each plot were 164 

mounted on A4 paper and scanned at 1200 dpi using flatbed scanners as described earlier 165 

(Karisto et al. 2018). The scanned images were analyzed using an ImageJ macro script 166 

(Karisto et al. 2018). Automatically generated outputs of the script included percentage of 167 

leaf area covered by lesions (PLACL), average pycnidia density within lesions (ρlesion), and 168 

average pycnidia darkness (measured using the 256-point gray scale). To measure pycnidia 169 

sizes, we developed a Python (version: 3.6.7, https://www.python.org/) program based on the 170 

determination of contours of constant brightness in the vicinity of each detected pycnidium 171 

with the help of the skimage package (version: 0.13, https://scikit-image.org/). Each of these 172 

STB-associated phenotypes were analyzed separately in a GWAS. The grand means for each 173 

phenotype were calculated based on an average of 60 scanned leaves for each wheat cultivar, 174 

including both time points and both replicates for each plot (i.e. four measurements of each 175 

trait associated with STB resistance). The mean values of PLACL and ρlesion were 1/x 176 

transformed to better fit a normal distribution, yielding a P < 0.01 for the Shapiro-Wilk test 177 

after transformation. 178 

 179 

The SNP markers used for the GWAS came from the Illumina 90K SNP array (iSELECT, 180 

San Diego, USA, Wang et al., 2014). The majority of the markers on this array were not 181 

useful for our experiment because they were not polymorphic in the GABI panel. The 182 

remaining markers were positioned on the IWGSC wheat genome (IWGSC, 2018) using a 183 

BLASTN search with E-value < 10-30. The position with the lowest E-value was assigned as 184 

the marker position. In the case of ties where it was not possible to unequivocally assign a 185 

marker to one of the homeologous chromosomes, the markers were omitted. Additional 186 

filtering criteria to choose SNPs for the GWAS were: a call rate of > 95 % per marker, > 5 % 187 

minor allele frequency and identity by state (IBS) < 0.975, using the GenABEL software in 188 

the R statistical environment (Aulchenko et al. 2007). After filtering, a total of 13,648 high 189 
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quality SNP markers were used for the GWAS. Haplotypes were identified using a sliding 190 

window of three consecutive SNPs with PLINK (Purcell et al. 2007) and tested using linear 191 

regression models. GWAS Manhattan plots were constructed using R (version 3.5.1, R core 192 

team, 2018) with ggplot2 (version: 3.1.0. Wickham, 2016). Bonferroni thresholds were 193 

calculated using P/N (0.05/13,648) yielding a LOD (-log10(P)) score of 5.44. The fraction of 194 

the phenotypic variance associated with the 26 chromosome intervals at or exceeding the 195 

Bonferonni threshold was calculated using linear regression models in R (lm function). The 196 

adjusted R2 provided a measure of the proportion of the variance explained.   197 

 198 

The coordinates of the 26 intervals exceeding the Bonferonni threshold were plotted onto the 199 

Chinese Spring reference genome as described earlier and used to compare the positions of 200 

the SNPs affecting STB resistance identified in this analysis with the positions of STB 201 

resistance traits identified in earlier studies (Brown et al. 2015). The sequence data of the 202 

markers associated with STB resistance in earlier studies were retrieved from GrainGenes 203 

(https://wheat.pw.usda.gov/GG3/) and then searched using BLASTN against the IWGSC 204 

2018 assembly using Unité de Recherche Génomique Info (URGI, https://wheat-205 

urgi.versailles.inra.fr/) for the corresponding chromosome. The position of the best hit was 206 

used as the genome position. 207 

 208 

Candidate gene identification was based on the gene annotation of the IWGSC v1.0 reference 209 

sequence of the wheat landrace Chinese Spring (IWGSC 2018). All high confidence genes in 210 

chromosome segments shorter than 5 Mb were identified.  211 

 212 

Results 213 

The three fungicide treatments eliminated all competing fungal pathogens, enabling a mono 214 

disease readout of the relative degree of quantitative resistance to STB under the field 215 

conditions typically used for intensive wheat production in Europe. All STB infection was 216 

natural, with an epidemic resulting from at least six cycles of infection by a diverse Z. tritici 217 

population that included a high degree of gene and genotype diversity, with infections caused 218 

by millions of different Z. tritici strains despite the fungicide applications. As an indicator of 219 

the pathogen genetic diversity in these plots, genome sequences of 161 Z. tritici isolates 220 

obtained from 21 of the plots revealed 147 unique genome sequences, with all but two of the 221 

identified clones found within the same 2 m2 plot (Daniel Croll, personal communication). 222 

This high level of pathogen diversity was consistent with earlier findings from other naturally 223 
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infected wheat fields around the world and was expected given that Z. tritici populations 224 

experience high levels of recombination (Chen and McDonald 1996; Zhan et al. 2003) that 225 

enable different fungicide resistance mutations to segregate and re-assort into many different 226 

genetic backgrounds in natural populations. 227 

 228 

The quantitative measures of STB severity generated by automated image analysis followed 229 

the continuous distribution typically associated with quantitative traits (Karisto et al 2018; 230 

Stewart et al. 2016). Earlier analyses of relationships among these traits (Karisto et al 2018) 231 

showed that resistance that minimizes host damage (PLACL) was largely independent of 232 

resistance that minimizes pathogen reproduction (ρlesion). Hence the GWAS was conducted 233 

independently for each trait. In addition to the traits PLACL and ρlesion, we measured the 234 

average size of pycnidia formed within lesions, which reflects the average size and number of 235 

spores contained in each fruiting body (Stewart et al. 2018), (i.e. pycnidia size is an 236 

independent indicator of pathogen reproduction), and the average gray value of pycnidia, 237 

which reflects the average amount of melanin accumulated in each fruiting body (Stewart et 238 

al. 2018; Krishnan et al. 2018). Our earlier work indicated that pycnidia melanization is on 239 

average greater on wheat cultivars with more resistance to STB (Stewart et al. 2016; Stewart 240 

et al. 2018). Altogether, the phenotype measurements used for the GWAS included 21,420 241 

measures each of PLACL and ρlesion and 2.7 million measures each of pycnidia size and 242 

pycnidia melanization, yielding a total of >5.44 million automatically measured phenotypes 243 

that were not prone to human scoring error. 244 

 245 

Manhattan plots for PLACL, ρlesion, pycnidia size, and pycnidia gray value revealed the SNPs 246 

with the highest associations for each STB resistance trait (Figure 1).  A total of 109 SNPs 247 

were at or above the Bonferroni threshold across all traits based on the GWAS. Marker-trait 248 

associations were calculated using sliding windows including three consecutive SNPs. 249 

Among these, 52 haplotypes were at or above the Bonferroni threshold. Further evaluation of 250 

the 52 haplotypes revealed overlaps that were combined to produce a non-redundant set of 26 251 

chromosome segments that explained from 1.9% to 10.6% of the overall variance associated 252 

with each resistance trait (Table 1).   253 

 254 

For the PLACL trait that reflects the ability of a wheat cultivar to limit the degree of necrosis 255 

caused by an STB infection, 14 SNPs identified 4 different genomic positions distributed 256 

across chromosomes 5A, 5B and 5D with LOD scores exceeding 5.5. Interval 4 on 5D had a 257 
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LOD score of 9.2 and explained 10.3% of the total variance associated with PLACL (Table 258 

1).  For the ρlesion trait that reflects the ability of a wheat cultivar to restrict Z. tritici 259 

reproduction, 51 SNPs identified 13 genomic positions located on chromosomes 2B, 4A, 5D, 260 

6A, 6B, 6D and 7B, with LOD scores ranging from 5.5 to 7.1. Interval 15 on 6B had the 261 

highest LOD score and explained 9.3% of the total variance associated with ρlesion. For the 262 

pycnidia size trait, three SNPs located on 2B defined a chromosome interval that surpassed 263 

the Bonferroni threshold. Interval 18 explained 5.9% of the total variance associated with 264 

pycnidia size. For the pycnidia melanization trait, 36 SNPs defined 8 genomic positions 265 

located on chromosomes 1A, 2A, 3B, 4D, 5A, 5B, and 7B. Interval 23 on 4D showed the 266 

highest LOD score of 8.7 and explained 10.6% of the total variance associated with pycnidia 267 

melanization. 268 

 269 

The positions of the 26 chromosome segments identified in this experiment were compared to 270 

the positions of mapped STB genes reported in earlier publications (summarized in Fig. 1 of 271 

Brown et al. 2015). Figure 2 shows that 16 of the 26 chromosome segments identified in our 272 

analyses overlapped with or were very close to genomic regions identified in earlier 273 

publications, while 10 of the chromosome segments were in chromosomal regions that were 274 

not previously associated with STB resistance. Among those, two were associated with 275 

PLACL (3, 4), five with ρlesion (7, 8, 9, 16, 17), and three with pycnidia melanization (20, 23, 276 

26) (Table 1). 277 

 278 

Seventeen of the 26 chromosome segments were smaller than 5 Mb. For these, we identified 279 

putative candidate genes responsible for STB resistance based on the wheat reference genome 280 

sequence of Chinese Spring (IWGSC 2018). In total, the 17 intervals spanned 24.2 Mb and 281 

contained 173 high confidence genes (Supplementary Table 1). There was a significant 282 

enrichment (P<0.0001) for genes encoding putative receptor kinases and kinases within these 283 

17 chromosome segments. Receptor kinase genes were recently shown to play major roles in 284 

disease resistance in cereals (Saintenac et al. 2018; Keller and Krattinger 2018; Ma et al. 285 

2018), including the Stb6 gene encoding resistance to STB (Saintenac et al. 2018). Five of the 286 

chromosome segments contained four or fewer genes, with three of these segments (19, 20, 287 

24) associated with pycnidia gray value and two segments (2, 3) associated with PLACL. The 288 

smallest chromosome segment (20) encompassed 28 kb on chromosome 1A and contained a 289 

single gene in Chinese Spring (TraesCS1A01G277000) encoding a putative solute carrier 290 

family 35 member. The 99.7 kb segment 24 on the long arm of chromosome 5A also had a 291 
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single gene (TraesCS5A01G524800) encoding a putative 4-hydroxy-tetrahydrodipicolinate 292 

reductase, a protein involved in lysine biosynthesis. Intervals 2 (chromosome 5A) and 19 293 

(chromosome 1A) had three candidate genes each, of which a putative kinase gene and a 294 

putative nucleotide binding site – leucine-rich repeat (NLR) represent the most obvious 295 

candidates as these categories of genes are known to affect disease resistance (Dodds and 296 

Rathjen, 2010). Interval 3 contained four candidate genes, all of which were associated with 297 

F-box proteins, a class of proteins often associated with plant defense responses (van den 298 

Burg et al. 2008). Other candidate genes known to be involved in disease resistance include 299 

sugar transporters (associated with PLACL in intervals 1 and 4), superoxide dismutase 300 

(associated with pycnidia size in interval 18), an ABC transporter (associated with PLACL in 301 

interval 1), and a TCP transcription factor (associated with ρlesion in interval 15). 302 

 303 

Discussion 304 

In a year that was highly conducive to development of an STB epidemic, we combined a 305 

novel automated image analysis tool that could differentiate independent components of STB 306 

severity with the high level of fungicide resistance existing in a local Swiss population of Z. 307 

tritici to make a quantitative comparison of STB resistance across a broad cross section of 308 

elite European winter wheat cultivars. GWAS analyses that coupled these quantitative 309 

measures of STB resistance with 13,648 SNP markers enabled identification of 109 SNPs on 310 

13 chromosomes that defined 26 chromosome segments highly associated with STB 311 

resistance. Because all STB infection in this experiment was natural, including millions of 312 

different pathogen genotypes originating from a recombining population, and the growing 313 

season was highly conducive to development of an STB epidemic, we believe that the SNP 314 

markers defining the chromosome intervals associated with the highest levels of STB 315 

resistance could be especially useful in European breeding programs aiming to increase 316 

overall levels of STB resistance to the Z. tritici populations found in Europe. 317 

 318 

The 26 chromosome intervals associated with STB resistance ranged from 28 kbp to 60 Mbp 319 

in size and were distributed across 13 chromosomes, with individual intervals explaining 320 

1.9% to 10.6% of the phenotypic variance for each trait. Some of the intervals were clustered 321 

in the same chromosomal region (e.g. intervals 1 and 2 associated with PLACL on 322 

chromosome 5A; intervals 13, 14 and 15 associated with pycnidia gray value on chromosome 323 

6B), but most of the intervals were genetically distant from each other. Sixteen of the 324 

intervals were embedded within or located very close to chromosomal regions previously 325 
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associated with STB resistance, but 10 intervals were in genomic regions that had not been 326 

associated with STB resistance. Particularly notable novel regions were the intervals 4, 8 and 327 

9 located on 5D, a chromosome which had not previously been associated with STB 328 

resistance (Brown et al. 2015), though Kollers et al (2013) found some weak associations 329 

with STB resistance on this chromosome. There was no overlap between chromosomal 330 

segments associated with host damage (PLACL) and pathogen reproduction (pycnidia density 331 

or pycnidia size), indicating that these resistance traits were under independent genetic 332 

control as hypothesized earlier (Karisto et al. 2018). Intervals 4, 14, 15, and 23 had LOD 333 

scores at or exceeding 7. These are candidate regions for genes encoding broadly based field 334 

resistance to STB that may be especially useful against the genetically diverse Z. tritici 335 

populations in Europe.   336 

 337 

The chromosome segments identified in our GWAS are much smaller than the intervals 338 

defined in earlier work as shown in Figure 2. For example, STB15 was previously mapped to 339 

a region that includes most of chromosome 6A (~590 Mbp) while we identified two separate 340 

chromosome regions (10 and 11) within the STB15 region that encompass only ~8.5 Mbp.  341 

Similarly, STB1 was mapped to a region that covered ~69.9 Mbp on chromosome 5B while 342 

interval 25 covers only ~13 Mbp within this region. The smaller intervals detected in our 343 

GWAS reflects the much higher marker density used in our experiment coupled with more 344 

accurate knowledge of marker positions coming from the new wheat genome assembly. 345 

Other contributors to the small intervals were the more accurate quantitative phenotypes 346 

yielding relatively large effect sizes and the haplotype-based GWAS approach that increased 347 

the statistical power compared to standard GWAS pipelines.   348 

 349 

Seventeen of the 26 chromosome segments identified in the GWAS were less than 5 Mbp in 350 

size and contained between 1-28 candidate genes annotated in the Chinese Spring reference 351 

genome. The 173 genes located in these intervals were significantly enriched for receptor 352 

kinases and kinases, including clusters of 6 and 10 kinases found in intervals 18 and 22 353 

respectively. We consider this enrichment to be notable because Stb6, the only cloned STB 354 

resistance gene, is a receptor kinase (Saintenac et al. 2018). Also notable was our finding that 355 

genes encoding receptor kinases are strongly upregulated during infection by all tested strains 356 

of Z. tritici (Ma et al. 2018). Hence we hypothesize that some of the receptor kinase genes 357 

found in these intervals may be responsible for the STB resistance we observed. The interval 358 

4 associated with PLACL explained 10.3% of the overall variance and provided the first 359 
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report of STB resistance on chromosome 5D. This interval contained 12 genes, including 360 

three encoding proteins already shown to affect disease resistance, including an NLR, a S/T 361 

protein kinase and a sugar transporter (Dodds and Rathjen 2010; Moore et al. 2015). We 362 

hypothesize that one or more of these genes are responsible for the STB resistance in this 363 

chromosome segment. Other interesting candidate genes found in the 17 intervals encode an 364 

ABC transporter, a TCP transcription factor and superoxide dismutase. The Lr34 gene 365 

encoding quantitative resistance to leaf rust and other diseases in wheat was shown to be an 366 

ABC transporter (Krattinger et al. 2009). Superoxide dismutases are involved in synthesis of 367 

hydrogen peroxide, which was already shown to be involved in wheat's defense response 368 

against STB (Shetty et al. 2007). TCP transcription factors were shown recently to be 369 

important components of the signaling pathway involved in systemic acquired resistance (Li 370 

et al. 2018). Segment 24, which explained 8% of the variance in pycnidia melanization and 371 

lies within the QTL9 region identified in earlier mapping studies, contained a single gene 372 

encoding a protein involved in lysine biosynthesis. Recent work on the wheat pathogen 373 

Cochliobolus sativus showed that lysine was essential for melanin biosynthesis (Leng and 374 

Zhong 2012) and lysine was recently shown to be essential for virulence in Z. tritici 375 

(Derbyshire et al. 2018). We conclude from this analysis that many of the genes found in the 376 

intervals identified in the GWAS are plausible candidates to explain the observed phenotypes 377 

associated with STB resistance, but functional validation studies will be needed to confirm 378 

whether any of these genes actually play a role in resistance. 379 

 380 

Earlier field trials also used association mapping to identify genetic markers associated with 381 

STB resistance (Kollers et al. 2013; Miedaner et al. 2013; Muqaddasi et al. 2019). In all of 382 

these trials, the experimental plots were inoculated with a small number of Z. tritici isolates 383 

that were sprayed when all wheat genotypes had fully extended flag leaves (i.e. GS >41) a 384 

few weeks before scoring for STB resistance. As a result, the associations identified in those 385 

experiments are likely to be strain-specific and represent the outcome of a single cycle of 386 

infection based on a high dose of artificially applied blastospore inoculum. Similarly, most 387 

experiments that identified STB genes with major effects were based on greenhouse 388 

inoculations of seedlings by a single pathogen strain and used disease scores made at a single 389 

point in time, leading to identification of genes that encode seedling resistance to the strain 390 

used in the experiment. It is now clear that natural field infections of STB are caused by 391 

many millions of Z. tritici strains, with a different strain occurring on each infected leaf, on 392 

average, and with most leaves infected by more than one strain (Linde et al. 2002). The 393 
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significant STB resistance associations identified in our experiment were based on a natural 394 

epidemic that included at least six cycles of pycnidiospore infection by a highly diverse 395 

population of the pathogen and included two time points during epidemic development. We 396 

believe that the STB resistance identified in our experiment is more likely to be broadly 397 

applicable under natural field conditions and hence more useful in breeding programs aiming 398 

for stable STB resistance.   399 

 400 

An important and novel aspect of our experiment was the use of an automated image analysis 401 

pipeline for phenotyping that eliminated human scoring bias while generating millions of 402 

accurate phenotype data points. As is the case for many plant diseases (Saari and Prescott 403 

1975), the traditional eyeball assessment of STB typically generates a single number on a 0-9 404 

scale (Eyal et al. 1987) that tries to integrate the totality of disease in a particular plot, often 405 

relative to other plots in the same field or trial. Eyeball assessments are fast, often requiring 406 

less than one minute per plot to produce a measurement, but are prone to variation caused by 407 

fatigue, changes in lighting over the course of a day, and differences in opinion among 408 

different scorers. The automated image analyses allowed us to simultaneously assess four 409 

quantitative phenotypes that could not be accurately measured by eye. A traditional eyeball 410 

assessment would have generated a total of 4 STB measurements per cultivar to use in the 411 

GWAS. Our automated analyses generated an average of over 16,000 STB measurements per 412 

cultivar. These detailed phenotype data enabled us to separate different components of STB 413 

resistance, in particular allowing us to separate STB resistance that affects host damage 414 

(PLACL) from STB resistance that affects pathogen reproduction (ρlesion and pycnidia size).  415 

We believe that resistance affecting pathogen reproduction is likely to be more effective in 416 

the long run for several reasons, including: 1) Our earlier analyses (Karisto et al. 2018) 417 

showed that measures of pathogen reproduction (ρlesion) early in the growing season were the 418 

best predictors of host damage (PLACL) late in the growing season, showing that resistance 419 

that reduces pathogen reproduction is likely to minimize yield losses caused by STB; 2) A 420 

decrease in pathogen reproduction diminishes the amount of inoculum available to cause new 421 

cycles of infection, which will lower the transmission rate (i.e. decrease the basic 422 

reproductive number, R0) during each infection cycle and result in less overall infection by 423 

the end of the epidemic; 3) A decrease in pathogen inoculum will lead to a decrease in the 424 

pathogen population size, which will decrease the overall genetic diversity and provide fewer 425 

opportunities for favorable mutations (e.g. for fungicide resistance or gain of virulence) to 426 
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emerge (Stam and McDonald, 2018). This should lower the overall evolutionary potential of 427 

the pathogen population (McDonald and Linde, 2002). 428 

 429 

Recombining the SNP markers associated with the STB resistance intervals identified in this 430 

experiment may accelerate breeding efforts aiming to increase quantitative resistance to STB 431 

in European wheat. We showed that resistance affecting leaf damage (PLACL) is genetically 432 

distinct from resistance affecting pathogen reproduction (ρlesion). We consider it likely that 433 

these different resistance phenotypes reflect different underlying mechanisms of STB 434 

resistance. We hypothesize that PLACL reflects the additive actions of toxin sensitivity genes 435 

that interact with host-specific toxins produced by the pathogen, as shown for 436 

Parastagonospora nodorum on wheat (e.g. Friesen et al., 2008; Oliver et al., 2012), while 437 

pycnidia density reflects the additive actions of quantitative resistance genes that recognize 438 

pathogen effectors (e.g. Meile et al. 2018). Under this scenario, breeders should aim to 439 

recombine these two forms of resistance into the same genetic background, bringing together 440 

different forms of resistance that may be more durable when deployed together than when 441 

either mechanism is deployed in isolation. We anticipate that functional analyses of the most 442 

compelling candidate genes identified in this experiment will enable us to identify new genes 443 

underlying the different STB resistance traits. Our experiment illustrates how high-444 

throughput automated phenotyping can accelerate breeding for quantitative disease 445 

resistance.  446 

 447 
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Figure legends 656 

 657 

Figure 1.  Manhattan plots showing significant SNP markers associated with each trait. The 658 

horizontal line indicates the Bonferroni-adjusted significance threshold.  The A, B and D 659 

genomes of wheat are shown in red, green and blue, respectively. SNPs associated with the 660 

interval IDs shown in Table 1 are indicated in colored circles. A.  Percentage of leaf area 661 

covered by lesions (PLACL) had four significant associations distributed across 662 

chromosomes 5A, 5B and 5D.  B.  Density of pycnidia within lesions (ρlesion) had 12 663 

significant associations distributed across chromosomes 2B, 4A, 5A, 5D, 6A, 6B, 6D and 7B.  664 

C.  Pycnidia size had a single significant association located on chromosome 2B.  D.  665 

Pycnidia melanization had 8 significant associations distributed across chromosomes 1A, 2A, 666 

3B, 4D, 5A, 5B, and 7B. 667 

 668 

Figure 2.  Positions on the Chinese Spring reference genome (IWGSC 2018) of 26 significant 669 

GWAS marker-trait associations across four resistance traits compared to positions of 670 

previously mapped STB resistance genes (Brown et al. 2015). The 26 associations are shown 671 

as numbered circles and a bar (95% confidence interval) in cyan for PLACL, purple for ρlesion, 672 

red for pycnidia size and green for melanization. Confidence intervals of previously mapped 673 

STB resistance loci are shown in dark blue bars (STB genes) and black bars (QTLs). SNP 674 

markers are presented as locus names from GrainGenes (https://wheat.pw.usda.gov/GG3/) for 675 

brevity. Markers with the prefix Tdurum_contig were abbreviated to TDC. Only SNP 676 

markers with significant associations with STB genes, QTLs or the four phenotypes included 677 

in the GWAS are shown. For each association confidence interval, the first and the last SNP 678 

and their positions are shown. Names are colored according to the type of association. 679 

 680 

 681 

Supplementary information 682 

Table S1. Candidate genes in the chromosome intervals defined by the GWAS.  683 
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Table S1. Candidate genes in chromosome intervals. Only target intervals shorter than 5 Mb (according to IWGSC RefSeq v.1.0) were analyzed for candidate genes. Candidate gene prediction is based on the IWGSC RefSeq v1.0 from Chinese Spring.

Interval ID Chromosome Start of gene End of gene Gene orientation Gene ID Functional annotation

Percent leaf area covered by lesion (PLACL) 27 candidate genes
1 chr5A 644931 645971 + TraesCS5A01G000700 Metal-dependent hydrolase
1 chr5A 653903 654847 + TraesCS5A01G000800 Multidrug resistance-associated protein 13
1 chr5A 692733 694011 + TraesCS5A01G000900 Protein yippee-like
1 chr5A 835966 836319 + TraesCS5A01G001000 SNF2 domain-containing protein / helicase domain-containing protein / zinc finger protein-like protein
1 chr5A 855689 858514 - TraesCS5A01G001100 Sugar transporter, putative
1 chr5A 1114075 1114440 - TraesCS5A01G001200 Pollen allergen-like protein
1 chr5A 1200901 1201266 - TraesCS5A01G001300 Expansin protein
1 chr5A 1202144 1202581 + TraesCS5A01G001400 Lethal factor

2 chr5A 20816765 20821935 - TraesCS5A01G025700 Kinase, putative
2 chr5A 20822571 20823194 + TraesCS5A01G025800 Cysteine synthase
2 chr5A 20993223 20998405 - TraesCS5A01G025900 YABBY transcription factor

3 chr5B 671295153 671298157 - TraesCS5B01G505500 F-box domain containing protein, expressed
3 chr5B 671301792 671303066 - TraesCS5B01G505600 F-box family protein
3 chr5B 671339292 671341356 - TraesCS5B01G505700 F-box family protein
3 chr5B 671355220 671357142 - TraesCS5B01G505800 F-box and associated interaction domains-containing protein

4 chr5D 1710503 1717152 - TraesCS5D01G001300 NBS-LRR disease resistance protein-like
4 chr5D 1799796 1802729 + TraesCS5D01G001400 Serine/threonine-protein kinase
4 chr5D 1863625 1865222 + TraesCS5D01G001500 Protein yippee-like
4 chr5D 1884922 1887332 - TraesCS5D01G001600 Sugar transporter, putative
4 chr5D 2120473 2120838 - TraesCS5D01G001700 Pollen allergen-like protein
4 chr5D 2121607 2122255 + TraesCS5D01G001800 Lysyl oxidase homolog 2
4 chr5D 2135990 2141629 + TraesCS5D01G001900 Carotenoid cleavage dioxygenase
4 chr5D 2251491 2252724 - TraesCS5D01G002000 rRNA N-glycosidase
4 chr5D 2286407 2289277 + TraesCS5D01G002100 AGAMOUS MADS box factor transcription factor
4 chr5D 2291913 2302714 + TraesCS5D01G002200 MADS-box transcription factor AGAMOUS-like protein
4 chr5D 2511199 2511993 - TraesCS5D01G002300 Teosinte branched 1
4 chr5D 2610639 2613218 + TraesCS5D01G002400 Cation/H(+) antiporter

Pycnidia per cm2 (80 candidate genes)
5 chr2B 648930287 648931409 - TraesCS2B01G454400 Late embryogenesis abundant protein
5 chr2B 649475856 649478079 + TraesCS2B01G454500 Xyloglucan endotransglucosylase/hydrolase
5 chr2B 649479354 649480612 - TraesCS2B01G454600 Xyloglucan endotransglucosylase/hydrolase
5 chr2B 649656198 649656461 - TraesCS2B01G454700 Pyridoxine/pyridoxamine 5'-phosphate oxidase
5 chr2B 649669805 649670845 + TraesCS2B01G454800 Xyloglucan endotransglucosylase/hydrolase
5 chr2B 649707601 649708239 - TraesCS2B01G454900 Vacuolar iron transporter-like protein
5 chr2B 649713438 649714070 - TraesCS2B01G455000 Vacuolar iron transporter
5 chr2B 649749598 649750230 - TraesCS2B01G455100 Vacuolar iron transporter
5 chr2B 649755487 649756119 - TraesCS2B01G455200 Vacuolar iron transporter
5 chr2B 649946420 649947238 - TraesCS2B01G455300 Vacuolar iron transporter-like protein
5 chr2B 649974553 649976030 + TraesCS2B01G455400 Xyloglucan endotransglucosylase/hydrolase
5 chr2B 650164651 650165049 + TraesCS2B01G455500 VQ motif family protein
5 chr2B 650167748 650168737 - TraesCS2B01G455600 DNA-directed RNA polymerase subunit
5 chr2B 650279143 650287025 + TraesCS2B01G455700 Villin
5 chr2B 650353345 650354632 + TraesCS2B01G455800 HTH-type transcriptional regulator YidZ
5 chr2B 650399689 650405235 + TraesCS2B01G455900 Plastid-lipid associated protein PAP/fibrillin family-like
5 chr2B 650482338 650485786 + TraesCS2B01G456000 Leucine-rich repeat protein kinase family protein
5 chr2B 650789626 650791042 + TraesCS2B01G456100 RING/U-box superfamily protein
5 chr2B 650793585 650798566 - TraesCS2B01G456200 Aldose 1-epimerase family protein
5 chr2B 651069212 651071547 - TraesCS2B01G456300 Protein-S-isoprenylcysteine O-methyltransferase
5 chr2B 651351239 651359011 + TraesCS2B01G456400 Kinase family protein
5 chr2B 651359753 651362141 + TraesCS2B01G456500 RNA-binding (RRM/RBD/RNP motifs) family protein
5 chr2B 651363411 651365828 - TraesCS2B01G456600 Pentatricopeptide repeat-containing protein
5 chr2B 651554339 651556762 + TraesCS2B01G456700 GDSL esterase/lipase
5 chr2B 651725304 651726407 + TraesCS2B01G456800 Serine/threonine-protein kinase ULK4
5 chr2B 651730605 651731877 - TraesCS2B01G456900 Pollen Ole e 1 allergen/extensin
5 chr2B 651734065 651736700 - TraesCS2B01G457000 Pectin acetylesterase
5 chr2B 651920967 651924717 + TraesCS2B01G457100 Maltose excess protein 1-like, chloroplastic
5 chr2B 651925266 651927404 + TraesCS2B01G457200 Trihelix transcription factor GT-like protein
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6 chr2B 781584402 781585503 - TraesCS2B01G598600 Calcium-dependent lipid-binding domain-containing protein
6 chr2B 781773043 781776241 + TraesCS2B01G598700 Mediator of rna polymerase ii transcription subunit 15a
6 chr2B 781788843 781793742 + TraesCS2B01G598800 Polyadenylate-binding protein
6 chr2B 781794034 781797032 - TraesCS2B01G598900 F-box family protein
6 chr2B 781801119 781804671 + TraesCS2B01G599000 Polyadenylate-binding protein
6 chr2B 781805058 781807816 - TraesCS2B01G599100 F-box family protein
6 chr2B 781826770 781828446 - TraesCS2B01G599200 F-box family protein

10 chr6A 411767957 411771768 + TraesCS6A01G221500 Protein lunapark
10 chr6A 411936868 411940451 - TraesCS6A01G221600 Histone H2A deubiquitinase (DUF3755)
10 chr6A 412363785 412385133 - TraesCS6A01G221700 Regulator of nonsense transcripts 2
10 chr6A 412848770 412849492 - TraesCS6A01G221800 Response regulator
10 chr6A 413732630 413735160 + TraesCS6A01G221900 Gibberellin 2-beta-dioxygenase
10 chr6A 414865158 414868301 + TraesCS6A01G222000 Receptor kinase
10 chr6A 414875496 414878302 - TraesCS6A01G222100 Aquaporin
10 chr6A 415098272 415098802 + TraesCS6A01G222200 Senescence regulator

11 chr6A 421530653 421531853 - TraesCS6A01G224500 Xanthine/uracil permease family protein
11 chr6A 421753544 421754759 - TraesCS6A01G224600 60S ribosomal protein L14, putative
11 chr6A 421767909 421770920 + TraesCS6A01G224700 Glycolipid transfer protein domain-containing protein
11 chr6A 421772284 421774886 - TraesCS6A01G224800 RNA-binding protein
11 chr6A 422285666 422286053 - TraesCS6A01G224900 Allantoate deiminase
11 chr6A 422328184 422328792 - TraesCS6A01G225000 LIGHT-DEPENDENT SHORT HYPOCOTYLS-like protein (DUF640)
11 chr6A 422935140 422936738 - TraesCS6A01G225100 Ascorbate peroxidase
11 chr6A 423310052 423324247 - TraesCS6A01G225200 Lysine--tRNA ligase
11 chr6A 423521951 423524570 - TraesCS6A01G225300 Receptor-like protein kinase
11 chr6A 423533078 423535555 - TraesCS6A01G225400 Receptor-like protein kinase
11 chr6A 424087505 424088410 + TraesCS6A01G225500 Phosphatidylinositol N-acetylglucosaminyltransferase subunit C, putative
11 chr6A 424090944 424099996 - TraesCS6A01G225600 Protein kinase family protein
11 chr6A 424797406 424800668 + TraesCS6A01G225700 Type I inositol-1,4,5-trisphosphate 5-phosphatase CVP2, putative, expressed
11 chr6A 425249429 425253335 + TraesCS6A01G225800 Long-chain-alcohol oxidase

12 chr6B 175726767 175730014 - TraesCS6B01G167200 Zinc finger, CCCH-type
12 chr6B 176131735 176132676 - TraesCS6B01G167300 Glutathione S-transferase
12 chr6B 176138330 176139755 - TraesCS6B01G167400 Glutathione S-transferase
12 chr6B 176163077 176163868 - TraesCS6B01G167500 Glutathione S-transferase
12 chr6B 176249071 176249862 - TraesCS6B01G167600 Glutathione S-transferase
12 chr6B 176280755 176283885 - TraesCS6B01G167700 DNA-directed RNA polymerase subunit beta'
12 chr6B 176394876 176401133 - TraesCS6B01G167800 embryonic stem cell-specific 5-hydroxymethylcytosine-binding protein

13 chr6B 454023846 454029869 - TraesCS6B01G253000 methyl-coenzyme M reductase II subunit gamma, putative (DUF3741)
13 chr6B 454075257 454078933 - TraesCS6B01G253100 Protein HIR1
13 chr6B 454502165 454525616 - TraesCS6B01G253200 CLIP-associating family protein
13 chr6B 454717910 454750188 + TraesCS6B01G253300 Prolyl oligopeptidase family protein
13 chr6B 455078316 455087102 + TraesCS6B01G253400 Oligopeptide transporter, putative
13 chr6B 455413653 455416101 + TraesCS6B01G253500 GDSL esterase/lipase
13 chr6B 455417367 455430878 - TraesCS6B01G253600 Polyribonucleotide nucleotidyltransferase

15 chr6B 472610042 472614224 - TraesCS6B01G262400 Yellow stripe-like transporter 12
15 chr6B 472708690 472709907 + TraesCS6B01G262500 Surfeit locus protein 6
15 chr6B 473055822 473056442 + TraesCS6B01G262600 TCP transcription factor
15 chr6B 473061975 473062283 + TraesCS6B01G262700 BolA-like protein, expressed
15 chr6B 473067963 473069768 - TraesCS6B01G262800 Atp-dependent rna helicase
15 chr6B 473086672 473088971 - TraesCS6B01G262900 F-box/LRR protein
15 chr6B 473540635 473541516 - TraesCS6B01G263000 GRAM domain-containing protein / ABA-responsive protein-related
15 chr6B 474173211 474176246 + TraesCS6B01G263100 Endosomal targeting BRO1-like domain-containing protein

Mean pycnidia area (16 candidate genes)
18 chr2B 246000758 246004175 - TraesCS2B01G242100 Receptor kinase 1
18 chr2B 246005636 246006553 - TraesCS2B01G242200 Cysteine-rich receptor kinase
18 chr2B 246113464 246119395 - TraesCS2B01G242300 Receptor-like protein kinase, putative,expressed
18 chr2B 246167294 246171328 - TraesCS2B01G242400 Cysteine-rich receptor-kinase-like protein
18 chr2B 246261252 246264186 - TraesCS2B01G242500 Protein kinase
18 chr2B 246362267 246367495 - TraesCS2B01G242600 Protein kinase
18 chr2B 246574675 246576540 + TraesCS2B01G242700 F-box/RNI-like/FBD-like domains-containing protein
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18 chr2B 246953243 246957772 - TraesCS2B01G242800 phox (PX) domain-containing protein
18 chr2B 247363059 247374406 - TraesCS2B01G242900 Superoxide dismutase [Mn] 2, mitochondrial
18 chr2B 247384432 247387817 - TraesCS2B01G243000 Receptor-like protein kinase, putative,expressed
18 chr2B 247389273 247392493 - TraesCS2B01G243100 Protein kinase
18 chr2B 247517948 247519009 + TraesCS2B01G243200 Aspartic proteinase nepenthesin-1
18 chr2B 247559939 247561258 + TraesCS2B01G243300 Aspartic proteinase nepenthesin-1
18 chr2B 247613813 247615117 + TraesCS2B01G243400 Aspartic proteinase nepenthesin-1
18 chr2B 247625181 247631731 - TraesCS2B01G243500 Ankyrin repeat protein-like
18 chr2B 247918284 247925256 - TraesCS2B01G243600 Pre-rRNA-processing protein esf1

Pycnidia grey value (50 candidate genes)
19 chr1A 12371419 12372333 + TraesCS1A01G026000 DUF868 family protein (DUF868)
19 chr1A 12404449 12405320 - TraesCS1A01G026100 Early-responsive to dehydration stress protein (ERD4)
19 chr1A 12503897 12505126 + TraesCS1A01G026200 NBS-LRR disease resistance protein-like protein

20 chr1A 472140908 472143336 + TraesCS1A01G277000 Solute carrier family 35 protein

21 chr2A 635604280 635608766 - TraesCS2A01G388400 SH3 domain-containing protein 2
21 chr2A 635722881 635724573 + TraesCS2A01G388500 Zinc finger, B-box
21 chr2A 635930456 635932265 + TraesCS2A01G388600 COBRA-like protein
21 chr2A 636901274 636903003 + TraesCS2A01G388700 Formin-like protein
21 chr2A 636904233 636910541 + TraesCS2A01G388800 Formin-like protein
21 chr2A 636922148 636926236 - TraesCS2A01G388900 Aldehyde dehydrogenase
21 chr2A 637192422 637197233 + TraesCS2A01G389000 Multiprotein-bridging factor, putative
21 chr2A 637222371 637223435 - TraesCS2A01G389100 Kinase family protein
21 chr2A 637678058 637681260 - TraesCS2A01G389200 Trihelix transcription factor GT-2
21 chr2A 637976213 637981011 + TraesCS2A01G389300 Sphingoid long-chain bases kinase 1
21 chr2A 637984504 637985699 + TraesCS2A01G389400 Homeobox protein, putative
21 chr2A 638033822 638035845 + TraesCS2A01G389500 Ubiquitin-specific protease family C19-related protein
21 chr2A 638305584 638308610 + TraesCS2A01G389600 Histone-lysine N-methyltransferase, H3 lysine-9 specific
21 chr2A 638319812 638320477 - TraesCS2A01G389700 glycine-rich protein
21 chr2A 638681769 638683367 + TraesCS2A01G389800 Histone H1
21 chr2A 638684394 638688858 - TraesCS2A01G389900 Glutamate dehydrogenase
21 chr2A 638779207 638783120 - TraesCS2A01G390000 Subtilisin-like protease
21 chr2A 639055850 639057916 + TraesCS2A01G390100 Cationic amino acid transporter, putative
21 chr2A 639066864 639071262 - TraesCS2A01G390200 RNA binding protein, putative
21 chr2A 639694553 639697004 + TraesCS2A01G390300 F-box family protein
21 chr2A 639977693 639977917 + TraesCS2A01G390400 Tyrosine-protein kinase transforming protein Src

22 chr3B 30363594 30364446 + TraesCS3B01G058100 Kinase-like protein
22 chr3B 30376813 30378035 + TraesCS3B01G058200 Receptor-like kinase
22 chr3B 30404609 30405157 - TraesCS3B01G058300 DNA topoisomerase
22 chr3B 30407309 30410742 + TraesCS3B01G058400 Receptor-like kinase
22 chr3B 30436570 30439623 + TraesCS3B01G058500 Receptor-like protein kinase
22 chr3B 30484838 30486684 + TraesCS3B01G058600 Receptor-like kinase
22 chr3B 30492789 30493349 + TraesCS3B01G058700 Kinase, putative
22 chr3B 30494677 30495387 + TraesCS3B01G058800 Receptor-like kinase
22 chr3B 30498295 30505596 + TraesCS3B01G058900 Receptor-like kinase
22 chr3B 30508947 30518610 + TraesCS3B01G059000 Receptor-like kinase
22 chr3B 30679098 30684638 + TraesCS3B01G059100 Receptor-like kinase
22 chr3B 30908024 30908351 - TraesCS3B01G059200 Histone-lysine N-methyltransferase
22 chr3B 31058376 31059966 + TraesCS3B01G059300 GMP synthase [glutamine-hydrolyzing]
22 chr3B 31062459 31063272 - TraesCS3B01G059400 Electron transport complex subunit D
22 chr3B 31066764 31068198 - TraesCS3B01G059500 GMP synthase [glutamine-hydrolyzing]
22 chr3B 31098466 31100275 - TraesCS3B01G059600 D-Ala-D/L-Ala epimerase
22 chr3B 31105404 31108562 - TraesCS3B01G059700 D-Ala-D/L-Ala epimerase
22 chr3B 31297540 31297998 + TraesCS3B01G059800 GRF zinc finger family protein
22 chr3B 31788992 31789585 + TraesCS3B01G059900 Glycine-rich cell wall structural protein 2
22 chr3B 31798043 31800226 + TraesCS3B01G060000 RING/U-box superfamily protein
22 chr3B 31812867 31813800 - TraesCS3B01G060100 GDSL esterase/lipase
22 chr3B 31983277 31984365 + TraesCS3B01G060200 BTB/POZ/MATH-domain protein
22 chr3B 31992337 31994065 + TraesCS3B01G060300 Phosphate carrier, mitochondrial
22 chr3B 32276994 32278066 + TraesCS3B01G060400 Reticulon-like protein

24 chr5A 685534162 685536484 + TraesCS5A01G524800 4-hydroxy-tetrahydrodipicolinate reductase
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