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30 Summary

31 e Accurate, high-throughput phenotyping for quantitative traits is the limiting factor for
32 progress in plant breeding. We developed automated image analysis to measure

33 quantitative resistance to septoria tritici blotch (STB), a globally important wheat

34 disease, enabling identification of small chromosome intervals containing plausible
35 candidate genes for STB resistance.

36 e 335 winter wheat cultivars were included in a replicated field experiment that

37 experienced natural epidemic development by a highly diverse but fungicide-resistant
38 pathogen population. More than 5.4 million automatically generated phenotypes were
39 associated with 13,648 SNP markers to perform a GWAS.

40 e  We identified 26 chromosome intervals explaining 1.9-10.6% of the variance

41 associated with four resistance traits. Seventeen of the intervals were less than 5 Mbp
42 in size and encoded only 173 genes, including many genes associated with disease

43 resistance. Five intervals contained four or fewer genes, providing high priority

44 targets for functional validation. Ten chromosome intervals were not previously

45 associated with STB resistance.

46 e Our experiment illustrates how high-throughput automated phenotyping can

47 accelerate breeding for quantitative disease resistance. The SNP markers associated
48 with these chromosome intervals can be used to recombine different forms of

49 quantitative STB resistance that are likely to be more durable than pyramids of major
50 resistance genes.

51

52 Key words: automated image analysis, genome-wide association study (GWAS), plant

53  breeding, precision phenotyping, septoria tritici blotch, Zymoseptoria tritici
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Introduction

Genome-wide association studies (GWAS) provide a powerful approach to identify genetic
markers associated with important quantitative traits in crops (e.g. Milner et al. 2018; Yano et
al. 2016). The single nucleotide polymorphism (SNP) markers significantly associated with a
trait in a GWAS can be directly used in breeding programs for marker-assisted selection or
genomic selection, and also as tools to enable map-based cloning of the corresponding genes

underlying quantitative traits.

An abundant supply of SNP genetic markers is now available for the most important crops as
a result of rapid advances in sequencing technologies. Because phenotyping technologies
have not developed as quickly as genotyping technologies, the ability to generate accurate
and reproducible phenotypes for quantitative traits is now the primary limitation to progress
in breeding for many important traits (Furbank and Tester 2011; Araus and Cairns 2014),
including resistance to pests and pathogens (Joalland et al. 2018). Many research teams are
working to develop automated and high-throughput phenotyping of important traits under
field conditions, with some reports of success (Joalland et al. 2018; Wedeking et al. 2017),
but we remain far from the goal of using automated phenotyping to speed progress in plant

breeding for useful traits.

Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is currently the most
damaging leaf disease on wheat in Europe (Jorgensen et al. 2014) and is a significant disease
on wheat around the world. Z. tritici has a mixed reproductive system, producing airborne
ascospores through sexual reproduction that can be disseminated over distances of several
kilometers and asexual conidia that are splash-dispersed over spatial scales of only 1-2 meters
over the course of a growing season (McDonald and Mundt, 2016; P. Karisto and A.
Mikaberidze, personal communication). Z. tritici populations are highly variable within fields
as a result of its mixed reproductive system, large effective population sizes and high levels
of gene flow among populations (McDonald and Mundt, 2016; Zhan et al. 2003). These
properties provide a high evolutionary potential that leads to rapid development of virulence
against resistant cultivars (McDonald and Mundt, 2016; Cowger et al. 2000) as well as
resistance to fungicides (McDonald and Mundt, 2016; Estep et al. 2015; Estep et al. 2016).
STB in Europe is controlled mainly by applying fungicides costing over $1 billion per year
(Torriani et al. 2015), but many European Z. tritici populations have now evolved sufficiently

high levels of resistance that fungicides are losing their efficacy (Karisto et al. 2018; Cools
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88  and Fraaije, 2013). The European Union is planning to ban many fungicides during coming
89  years (EU Regulation 1107/2009). These developments have stimulated new efforts to
90 increase STB resistance through plant breeding.
91
92  Many studies have identified strain-specific STB resistance genes that could prove useful in
93  breeding programs (summarized in Brown et al. 2015). STB resistance is mainly quantitative,
94  but some examples of major gene resistance were identified (e.g. Stb6) that were recently
95  shown to follow the gene-for-gene (GFG) pattern of inheritance (Saintenac et al. 2018; Zhong
96 etal. 2017). Unfortunately, major STB resistance genes like Stb6 typically failed within 3-4
97  years of deployment as a result of pathogen evolution (Cowger and Mundt 2000). A different
98  breeding approach that is expected to slow pathogen evolution and be more durable is to
99  make pyramids of quantitative resistance (QR) genes with additive effects (Mundt 2018).
100  This approach requires the identification and deployment of QR that is effective across a
101  broad cross-section of the Z. tritici population as opposed to major gene resistance that works
102 against only a small fraction of the strains found in natural field populations.
103
104 Identification of QR is difficult for most pathogens for many reasons including: 1)
105 measurement error associated with eyeball assessments of disease; 2) inherent differences in
106  disease measurements conducted by different people; 3) differences in expression of QR in
107  different environments; 4) the occurrence of mixed infections by several pathogens under
108  typical field conditions, with overlapping symptoms that often cannot be teased apart (e.g.
109  STB symptoms look very similar to the symptoms associated with tan spot and stagonospora
110 nodorum leaf blotch). These factors combine to create a low heritability for QR that slows
111  progress in accumulating different sources of QR in breeding programs.
112
113 The recent development of automated image analysis for STB enabled rapid acquisition of
114 large datasets including millions of phenotype datapoints that were highly informative under
115  both greenhouse and field conditions, and facilitated the cloning of genes encoding several
116  avirulence effectors, including AvrStb6 (Zhong et al. 2017) and Avr3D1 (Meile et al. 2018;
117  Stewart et al. 2018), as well as the Zmr!I gene affecting melanization of Z. tritici colonies and
118  pycnidia (Krishnan et al. 2018; Lendenmann et al. 2014). We took advantage of the high
119  levels of fungicide resistance in Swiss populations of Z. ritici by using fungicide treatments
120  to eliminate competing pathogens in a replicated field experiment (Karisto et al. 2018). The

121  fungicide treatments enabled a pure-pathogen readout of quantitative resistance to STB
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caused by a genetically diverse, natural population of Z. tritici in an epidemic that developed
under natural field conditions. Here we use this extensive phenotype dataset in a GWAS to
identify 26 chromosome intervals associated with quantitative STB resistance in a broad
panel of 335 elite European winter wheat cultivars. Many of these intervals explained 6%-
10% of the variance for the associated resistance trait. Several of the intervals contained a
relatively small number of annotated genes, including genes known to be associated with
disease resistance in wheat or other plants. There was a significant enrichment (P<0.0001) for
genes encoding putative receptor kinases and kinases within the 17 chromosome segments
spanning less than 5 Mbp. Other candidate genes for STB resistance encoded NB-LRR
proteins, F-box LRR proteins, sugar transporters, an ABC transporter, superoxide dismutase,
and a TCP transcription factor, illustrating how automated image analysis can lead to

identification of plausible candidate genes for quantitative disease resistance.

Materials and Methods

335 European winter wheat cultivars chosen from the GABI wheat panel (Kollers et al. 2013)
were grown in 1.1 x 1.4 m plots replicated twice as complete blocks at the Field Phenotyping
Platform of the ETH research station in Lindau, Switzerland (Kirchgessner et al. 2017). The
plots received full agrochemical inputs typically associated with intensive wheat cultivation
in Europe, including mineral fertilizers, a stem shortener and several pesticide applications.
Among the pesticides, fungicides comprising five different active ingredients with three
modes of action were applied at three time points over the growing season. Additional details

associated with the field experiment are given in Karisto et al. (2018).

An unusual feature of this experiment is that all STB infection was natural, with the epidemic
caused by a highly diverse Z. tritici population that immigrated into the experimental plots
via windborne ascospores coming from nearby wheat fields that were treated with fungicides.
This local Z. tritici population carried sufficient resistance to all fungicides applied in the
experimental plots to enable an STB epidemic to develop despite the intensive fungicide
treatments. But other wheat diseases common in this region, including leaf rust, stripe rust,
stagonospora nodorum blotch, powdery mildew and tan spot, were practically absent because
the fungicides excluded these pathogens (Karisto et al. 2018). As a result, we were able to
obtain a pure-culture read out of quantitative STB resistance across all 335 wheat cultivars
without confounding effects from other diseases. The local weather during the 2015-2016

growing season was cooler and wetter than usual, providing a highly conducive environment
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156  for development of an STB epidemic. At least six asexual reproduction cycles occurred

157  during the most active period of wheat growth between March and July (Karisto et al. 2018).
158  Other components of STB epidemiology associated with this experiment were already

159  reported (Karisto et al. 2018).

160

161  All experimental plots were assessed for STB resistance at two time points, #; (20 May 2016,
162 approximately GS 41) and #; (4 July 2016, approximately GS 75-85) using automated image
163 analysis of 21,420 scanned leaves infected by Z. tritici (Stewart et al. 2016; Karisto et al.

164  2018). Nearly sixteen infected leaves collected from the same leaf layer in each plot were
165 mounted on A4 paper and scanned at 1200 dpi using flatbed scanners as described earlier
166  (Karisto et al. 2018). The scanned images were analyzed using an ImageJ macro script

167  (Karisto et al. 2018). Automatically generated outputs of the script included percentage of
168  leaf area covered by lesions (PLACL), average pycnidia density within lesions (piesion), and
169  average pycnidia darkness (measured using the 256-point gray scale). To measure pycnidia
170  sizes, we developed a Python (version: 3.6.7, https://www.python.org/) program based on the
171  determination of contours of constant brightness in the vicinity of each detected pycnidium
172 with the help of the skimage package (version: 0.13, https://scikit-image.org/). Each of these
173  STB-associated phenotypes were analyzed separately in a GWAS. The grand means for each
174  phenotype were calculated based on an average of 60 scanned leaves for each wheat cultivar,
175  including both time points and both replicates for each plot (i.e. four measurements of each
176  trait associated with STB resistance). The mean values of PLACL and piesion Were 1/x

177  transformed to better fit a normal distribution, yielding a P < 0.01 for the Shapiro-Wilk test
178  after transformation.

179

180  The SNP markers used for the GWAS came from the [llumina 90K SNP array (iISELECT,
181  San Diego, USA, Wang et al., 2014). The majority of the markers on this array were not

182  useful for our experiment because they were not polymorphic in the GABI panel. The

183  remaining markers were positioned on the IWGSC wheat genome (IWGSC, 2018) using a
184  BLASTN search with E-value < 10-3°, The position with the lowest E-value was assigned as
185  the marker position. In the case of ties where it was not possible to unequivocally assign a
186  marker to one of the homeologous chromosomes, the markers were omitted. Additional

187  filtering criteria to choose SNPs for the GWAS were: a call rate of > 95 % per marker, > 5 %
188  minor allele frequency and identity by state (IBS) < 0.975, using the GenABEL software in
189  the R statistical environment (Aulchenko ef al. 2007). After filtering, a total of 13,648 high
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quality SNP markers were used for the GWAS. Haplotypes were identified using a sliding
window of three consecutive SNPs with PLINK (Purcell ef al. 2007) and tested using linear
regression models. GWAS Manhattan plots were constructed using R (version 3.5.1, R core
team, 2018) with ggplot2 (version: 3.1.0. Wickham, 2016). Bonferroni thresholds were
calculated using P/N (0.05/13,648) yielding a LOD (-logio(P)) score of 5.44. The fraction of
the phenotypic variance associated with the 26 chromosome intervals at or exceeding the
Bonferonni threshold was calculated using linear regression models in R (/m function). The

adjusted R’ provided a measure of the proportion of the variance explained.

The coordinates of the 26 intervals exceeding the Bonferonni threshold were plotted onto the
Chinese Spring reference genome as described earlier and used to compare the positions of
the SNPs affecting STB resistance identified in this analysis with the positions of STB
resistance traits identified in earlier studies (Brown et al. 2015). The sequence data of the
markers associated with STB resistance in earlier studies were retrieved from GrainGenes

(https://wheat.pw.usda.gov/GG3/) and then searched using BLASTN against the IWGSC

2018 assembly using Unité de Recherche Génomique Info (URGI, https://wheat-

urgi.versailles.inra.fr/) for the corresponding chromosome. The position of the best hit was

used as the genome position.

Candidate gene identification was based on the gene annotation of the IWGSC v1.0 reference
sequence of the wheat landrace Chinese Spring (IWGSC 2018). All high confidence genes in

chromosome segments shorter than 5 Mb were identified.

Results

The three fungicide treatments eliminated all competing fungal pathogens, enabling a mono
disease readout of the relative degree of quantitative resistance to STB under the field
conditions typically used for intensive wheat production in Europe. All STB infection was
natural, with an epidemic resulting from at least six cycles of infection by a diverse Z. tritici
population that included a high degree of gene and genotype diversity, with infections caused
by millions of different Z. tritici strains despite the fungicide applications. As an indicator of
the pathogen genetic diversity in these plots, genome sequences of 161 Z. tritici isolates
obtained from 21 of the plots revealed 147 unique genome sequences, with all but two of the
identified clones found within the same 2 m? plot (Daniel Croll, personal communication).

This high level of pathogen diversity was consistent with earlier findings from other naturally
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224  infected wheat fields around the world and was expected given that Z. tritici populations

225  experience high levels of recombination (Chen and McDonald 1996; Zhan et al. 2003) that
226  enable different fungicide resistance mutations to segregate and re-assort into many different
227  genetic backgrounds in natural populations.

228

229  The quantitative measures of STB severity generated by automated image analysis followed
230  the continuous distribution typically associated with quantitative traits (Karisto et al 2018;
231  Stewart et al. 2016). Earlier analyses of relationships among these traits (Karisto et al 2018)
232 showed that resistance that minimizes host damage (PLACL) was largely independent of
233 resistance that minimizes pathogen reproduction (piesion). Hence the GWAS was conducted
234 independently for each trait. In addition to the traits PLACL and piesion, Wwe measured the

235  average size of pycnidia formed within lesions, which reflects the average size and number of
236  spores contained in each fruiting body (Stewart et al. 2018), (i.e. pycnidia size is an

237  independent indicator of pathogen reproduction), and the average gray value of pycnidia,
238  which reflects the average amount of melanin accumulated in each fruiting body (Stewart et
239  al. 2018; Krishnan et al. 2018). Our earlier work indicated that pycnidia melanization is on
240  average greater on wheat cultivars with more resistance to STB (Stewart et al. 2016; Stewart
241  etal. 2018). Altogether, the phenotype measurements used for the GWAS included 21,420
242 measures each of PLACL and piesion and 2.7 million measures each of pycnidia size and

243  pycnidia melanization, yielding a total of >5.44 million automatically measured phenotypes
244  that were not prone to human scoring error.

245

246  Manhattan plots for PLACL, piesion, pycnidia size, and pycnidia gray value revealed the SNPs
247  with the highest associations for each STB resistance trait (Figure 1). A total of 109 SNPs
248  were at or above the Bonferroni threshold across all traits based on the GWAS. Marker-trait
249  associations were calculated using sliding windows including three consecutive SNPs.

250  Among these, 52 haplotypes were at or above the Bonferroni threshold. Further evaluation of
251  the 52 haplotypes revealed overlaps that were combined to produce a non-redundant set of 26
252 chromosome segments that explained from 1.9% to 10.6% of the overall variance associated
253  with each resistance trait (Table 1).

254

255  For the PLACL trait that reflects the ability of a wheat cultivar to limit the degree of necrosis
256  caused by an STB infection, 14 SNPs identified 4 different genomic positions distributed
257  across chromosomes 5A, 5B and 5D with LOD scores exceeding 5.5. Interval 4 on 5D had a
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258  LOD score of 9.2 and explained 10.3% of the total variance associated with PLACL (Table
259 1). For the piesion trait that reflects the ability of a wheat cultivar to restrict Z. tritici

260  reproduction, 51 SNPs identified 13 genomic positions located on chromosomes 2B, 4A, 5D,
261  6A, 6B, 6D and 7B, with LOD scores ranging from 5.5 to 7.1. Interval 15 on 6B had the

262  highest LOD score and explained 9.3% of the total variance associated with piesion. For the
263  pycnidia size trait, three SNPs located on 2B defined a chromosome interval that surpassed
264  the Bonferroni threshold. Interval 18 explained 5.9% of the total variance associated with

265  pycnidia size. For the pycnidia melanization trait, 36 SNPs defined 8 genomic positions

266  located on chromosomes 1A, 2A, 3B, 4D, 5A, 5B, and 7B. Interval 23 on 4D showed the

267  highest LOD score of 8.7 and explained 10.6% of the total variance associated with pycnidia
268  melanization.

269

270  The positions of the 26 chromosome segments identified in this experiment were compared to
271  the positions of mapped STB genes reported in earlier publications (summarized in Fig. 1 of
272 Brown et al. 2015). Figure 2 shows that 16 of the 26 chromosome segments identified in our
273  analyses overlapped with or were very close to genomic regions identified in earlier

274  publications, while 10 of the chromosome segments were in chromosomal regions that were
275  not previously associated with STB resistance. Among those, two were associated with

276  PLACL (3, 4), five with piesion (7, 8, 9, 16, 17), and three with pycnidia melanization (20, 23,
277  26) (Table 1).

278

279  Seventeen of the 26 chromosome segments were smaller than 5 Mb. For these, we identified
280  putative candidate genes responsible for STB resistance based on the wheat reference genome
281  sequence of Chinese Spring (IWGSC 2018). In total, the 17 intervals spanned 24.2 Mb and
282  contained 173 high confidence genes (Supplementary Table 1). There was a significant

283  enrichment (P<0.0001) for genes encoding putative receptor kinases and kinases within these
284 17 chromosome segments. Receptor kinase genes were recently shown to play major roles in
285  disease resistance in cereals (Saintenac et al. 2018; Keller and Krattinger 2018; Ma et al.

286  2018), including the Sth6 gene encoding resistance to STB (Saintenac et al. 2018). Five of the
287  chromosome segments contained four or fewer genes, with three of these segments (19, 20,
288  24) associated with pycnidia gray value and two segments (2, 3) associated with PLACL. The
289  smallest chromosome segment (20) encompassed 28 kb on chromosome 1A and contained a
290  single gene in Chinese Spring (TraesCS1A01G277000) encoding a putative solute carrier

291  family 35 member. The 99.7 kb segment 24 on the long arm of chromosome 5A also had a
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292  single gene (TraesCS5A01G524800) encoding a putative 4-hydroxy-tetrahydrodipicolinate
293  reductase, a protein involved in lysine biosynthesis. Intervals 2 (chromosome 5A) and 19
294  (chromosome 1A) had three candidate genes each, of which a putative kinase gene and a

295  putative nucleotide binding site — leucine-rich repeat (NLR) represent the most obvious

296  candidates as these categories of genes are known to affect disease resistance (Dodds and
297  Rathjen, 2010). Interval 3 contained four candidate genes, all of which were associated with
298  F-box proteins, a class of proteins often associated with plant defense responses (van den
299  Burg et al. 2008). Other candidate genes known to be involved in disease resistance include
300  sugar transporters (associated with PLACL in intervals 1 and 4), superoxide dismutase

301  (associated with pycnidia size in interval 18), an ABC transporter (associated with PLACL in
302 interval 1), and a TCP transcription factor (associated with piesion in interval 15).

303

304  Discussion

305  In ayear that was highly conducive to development of an STB epidemic, we combined a

306  novel automated image analysis tool that could differentiate independent components of STB
307  severity with the high level of fungicide resistance existing in a local Swiss population of Z.
308  tritici to make a quantitative comparison of STB resistance across a broad cross section of
309 elite European winter wheat cultivars. GWAS analyses that coupled these quantitative

310 measures of STB resistance with 13,648 SNP markers enabled identification of 109 SNPs on
311 13 chromosomes that defined 26 chromosome segments highly associated with STB

312 resistance. Because all STB infection in this experiment was natural, including millions of
313  different pathogen genotypes originating from a recombining population, and the growing
314  season was highly conducive to development of an STB epidemic, we believe that the SNP
315  markers defining the chromosome intervals associated with the highest levels of STB

316  resistance could be especially useful in European breeding programs aiming to increase

317  overall levels of STB resistance to the Z. tritici populations found in Europe.

318

319  The 26 chromosome intervals associated with STB resistance ranged from 28 kbp to 60 Mbp
320  in size and were distributed across 13 chromosomes, with individual intervals explaining

321  1.9% to 10.6% of the phenotypic variance for each trait. Some of the intervals were clustered
322 in the same chromosomal region (e.g. intervals 1 and 2 associated with PLACL on

323  chromosome 5A; intervals 13, 14 and 15 associated with pycnidia gray value on chromosome
324  6B), but most of the intervals were genetically distant from each other. Sixteen of the

325 intervals were embedded within or located very close to chromosomal regions previously
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326  associated with STB resistance, but 10 intervals were in genomic regions that had not been
327  associated with STB resistance. Particularly notable novel regions were the intervals 4, 8 and
328 9 located on 5D, a chromosome which had not previously been associated with STB

329  resistance (Brown et al. 2015), though Kollers et al (2013) found some weak associations
330  with STB resistance on this chromosome. There was no overlap between chromosomal

331  segments associated with host damage (PLACL) and pathogen reproduction (pycnidia density
332 or pycnidia size), indicating that these resistance traits were under independent genetic

333 control as hypothesized earlier (Karisto et al. 2018). Intervals 4, 14, 15, and 23 had LOD

334 scores at or exceeding 7. These are candidate regions for genes encoding broadly based field
335  resistance to STB that may be especially useful against the genetically diverse Z. tritici

336  populations in Europe.

337

338  The chromosome segments identified in our GWAS are much smaller than the intervals

339  defined in earlier work as shown in Figure 2. For example, STB15 was previously mapped to
340  aregion that includes most of chromosome 6A (~590 Mbp) while we identified two separate
341  chromosome regions (10 and 11) within the STB15 region that encompass only ~8.5 Mbp.
342 Similarly, STB1 was mapped to a region that covered ~69.9 Mbp on chromosome 5B while
343  interval 25 covers only ~13 Mbp within this region. The smaller intervals detected in our
344  GWAS reflects the much higher marker density used in our experiment coupled with more
345  accurate knowledge of marker positions coming from the new wheat genome assembly.

346  Other contributors to the small intervals were the more accurate quantitative phenotypes

347  yielding relatively large effect sizes and the haplotype-based GWAS approach that increased
348  the statistical power compared to standard GWAS pipelines.

349

350  Seventeen of the 26 chromosome segments identified in the GWAS were less than 5 Mbp in
351  size and contained between 1-28 candidate genes annotated in the Chinese Spring reference
352  genome. The 173 genes located in these intervals were significantly enriched for receptor
353  kinases and kinases, including clusters of 6 and 10 kinases found in intervals 18 and 22

354  respectively. We consider this enrichment to be notable because Sth6, the only cloned STB
355  resistance gene, is a receptor kinase (Saintenac et al. 2018). Also notable was our finding that
356  genes encoding receptor kinases are strongly upregulated during infection by all tested strains
357  of Z tritici (Ma et al. 2018). Hence we hypothesize that some of the receptor kinase genes
358  found in these intervals may be responsible for the STB resistance we observed. The interval

359 4 associated with PLACL explained 10.3% of the overall variance and provided the first
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360  report of STB resistance on chromosome 5D. This interval contained 12 genes, including
361  three encoding proteins already shown to affect disease resistance, including an NLR, a S/T
362  protein kinase and a sugar transporter (Dodds and Rathjen 2010; Moore et al. 2015). We
363  hypothesize that one or more of these genes are responsible for the STB resistance in this
364  chromosome segment. Other interesting candidate genes found in the 17 intervals encode an
365  ABC transporter, a TCP transcription factor and superoxide dismutase. The Lr34 gene

366  encoding quantitative resistance to leaf rust and other diseases in wheat was shown to be an
367  ABC transporter (Krattinger et al. 2009). Superoxide dismutases are involved in synthesis of
368  hydrogen peroxide, which was already shown to be involved in wheat's defense response
369  against STB (Shetty et al. 2007). TCP transcription factors were shown recently to be

370  important components of the signaling pathway involved in systemic acquired resistance (Li
371  etal. 2018). Segment 24, which explained 8% of the variance in pycnidia melanization and
372 lies within the QTL9 region identified in earlier mapping studies, contained a single gene
373  encoding a protein involved in lysine biosynthesis. Recent work on the wheat pathogen

374 Cochliobolus sativus showed that lysine was essential for melanin biosynthesis (Leng and
375  Zhong 2012) and lysine was recently shown to be essential for virulence in Z. tritici

376  (Derbyshire et al. 2018). We conclude from this analysis that many of the genes found in the
377 intervals identified in the GWAS are plausible candidates to explain the observed phenotypes
378  associated with STB resistance, but functional validation studies will be needed to confirm
379  whether any of these genes actually play a role in resistance.

380

381  Earlier field trials also used association mapping to identify genetic markers associated with
382  STB resistance (Kollers et al. 2013; Miedaner et al. 2013; Muqaddasi et al. 2019). In all of
383 these trials, the experimental plots were inoculated with a small number of Z. tritici isolates
384  that were sprayed when all wheat genotypes had fully extended flag leaves (i.e. GS >41) a
385  few weeks before scoring for STB resistance. As a result, the associations identified in those
386  experiments are likely to be strain-specific and represent the outcome of a single cycle of
387 infection based on a high dose of artificially applied blastospore inoculum. Similarly, most
388  experiments that identified STB genes with major effects were based on greenhouse

389  inoculations of seedlings by a single pathogen strain and used disease scores made at a single
390  point in time, leading to identification of genes that encode seedling resistance to the strain
391  used in the experiment. It is now clear that natural field infections of STB are caused by

392  many millions of Z. tritici strains, with a different strain occurring on each infected leaf, on

393  average, and with most leaves infected by more than one strain (Linde et al. 2002). The
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394  significant STB resistance associations identified in our experiment were based on a natural
395  epidemic that included at least six cycles of pycnidiospore infection by a highly diverse

396  population of the pathogen and included two time points during epidemic development. We
397  believe that the STB resistance identified in our experiment is more likely to be broadly

398  applicable under natural field conditions and hence more useful in breeding programs aiming
399  for stable STB resistance.

400

401  An important and novel aspect of our experiment was the use of an automated image analysis
402  pipeline for phenotyping that eliminated human scoring bias while generating millions of
403  accurate phenotype data points. As is the case for many plant diseases (Saari and Prescott
404  1975), the traditional eyeball assessment of STB typically generates a single number on a 0-9
405  scale (Eyal et al. 1987) that tries to integrate the totality of disease in a particular plot, often
406  relative to other plots in the same field or trial. Eyeball assessments are fast, often requiring
407  less than one minute per plot to produce a measurement, but are prone to variation caused by
408  fatigue, changes in lighting over the course of a day, and differences in opinion among

409  different scorers. The automated image analyses allowed us to simultaneously assess four
410  quantitative phenotypes that could not be accurately measured by eye. A traditional eyeball
411  assessment would have generated a total of 4 STB measurements per cultivar to use in the
412 GWAS. Our automated analyses generated an average of over 16,000 STB measurements per
413  cultivar. These detailed phenotype data enabled us to separate different components of STB
414  resistance, in particular allowing us to separate STB resistance that affects host damage

415 (PLACL) from STB resistance that affects pathogen reproduction (piesion and pycnidia size).
416  We believe that resistance affecting pathogen reproduction is likely to be more effective in
417  the long run for several reasons, including: 1) Our earlier analyses (Karisto et al. 2018)

418  showed that measures of pathogen reproduction (piesion) €arly in the growing season were the
419  best predictors of host damage (PLACL) late in the growing season, showing that resistance
420  that reduces pathogen reproduction is likely to minimize yield losses caused by STB; 2) A
421  decrease in pathogen reproduction diminishes the amount of inoculum available to cause new
422  cycles of infection, which will lower the transmission rate (i.e. decrease the basic

423 reproductive number, Ro) during each infection cycle and result in less overall infection by
424 the end of the epidemic; 3) A decrease in pathogen inoculum will lead to a decrease in the
425  pathogen population size, which will decrease the overall genetic diversity and provide fewer

426  opportunities for favorable mutations (e.g. for fungicide resistance or gain of virulence) to
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427  emerge (Stam and McDonald, 2018). This should lower the overall evolutionary potential of
428  the pathogen population (McDonald and Linde, 2002).

429

430  Recombining the SNP markers associated with the STB resistance intervals identified in this
431  experiment may accelerate breeding efforts aiming to increase quantitative resistance to STB
432 in European wheat. We showed that resistance affecting leaf damage (PLACL) is genetically
433  distinct from resistance affecting pathogen reproduction (piesion). We consider it likely that
434 these different resistance phenotypes reflect different underlying mechanisms of STB

435  resistance. We hypothesize that PLACL reflects the additive actions of toxin sensitivity genes
436  that interact with host-specific toxins produced by the pathogen, as shown for

437  Parastagonospora nodorum on wheat (e.g. Friesen et al., 2008; Oliver et al., 2012), while
438  pycnidia density reflects the additive actions of quantitative resistance genes that recognize
439  pathogen effectors (e.g. Meile et al. 2018). Under this scenario, breeders should aim to

440  recombine these two forms of resistance into the same genetic background, bringing together
441  different forms of resistance that may be more durable when deployed together than when
442  either mechanism is deployed in isolation. We anticipate that functional analyses of the most
443  compelling candidate genes identified in this experiment will enable us to identify new genes
444  underlying the different STB resistance traits. Our experiment illustrates how high-

445  throughput automated phenotyping can accelerate breeding for quantitative disease

446  resistance.
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656  Figure legends

657

658  Figure 1. Manhattan plots showing significant SNP markers associated with each trait. The
659  horizontal line indicates the Bonferroni-adjusted significance threshold. The A, B and D

660  genomes of wheat are shown in red, green and blue, respectively. SNPs associated with the
661 interval IDs shown in Table 1 are indicated in colored circles. A. Percentage of leaf area

662  covered by lesions (PLACL) had four significant associations distributed across

663  chromosomes 5A, 5B and 5D. B. Density of pycnidia within lesions (piesion) had 12

664  significant associations distributed across chromosomes 2B, 4A, 5A, 5D, 6A, 6B, 6D and 7B.
665  C. Pycnidia size had a single significant association located on chromosome 2B. D.

666  Pycnidia melanization had 8 significant associations distributed across chromosomes 1A, 2A,
667 3B, 4D, 5A, 5B, and 7B.

668

669  Figure 2. Positions on the Chinese Spring reference genome (IWGSC 2018) of 26 significant
670  GWAS marker-trait associations across four resistance traits compared to positions of

671  previously mapped STB resistance genes (Brown et al. 2015). The 26 associations are shown
672  as numbered circles and a bar (95% confidence interval) in cyan for PLACL, purple for piesion,
673  red for pycnidia size and green for melanization. Confidence intervals of previously mapped

674  STB resistance loci are shown in dark blue bars (STB genes) and black bars (QTLs). SNP

675  markers are presented as locus names from GrainGenes (https://wheat.pw.usda.gov/GG3/) for
676  brevity. Markers with the prefix Tdurum_contig were abbreviated to TDC. Only SNP

677  markers with significant associations with STB genes, QTLs or the four phenotypes included
678  in the GWAS are shown. For each association confidence interval, the first and the last SNP
679  and their positions are shown. Names are colored according to the type of association.

680

681

682  Supplementary information

683  Table S1. Candidate genes in the chromosome intervals defined by the GWAS.
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Table S1. Candidate genes in chromosome intervals. Only target intervals shorter than 5 Mb (according to IWGSC RefSeq v.1.0) were analyzed for candidate genes. Candidate gene prediction is based on the IWGSC RefSeq v1.0 from Chinese Spring.
Interval ID Chromosome  Startofgene Endofgene Gene orientation GenelD Functional annotation

Percent leaf area covered by lesion (PLACL) 27 candidate genes

1 chr5A 644931 645971 + TraesCS5A01G000700  Metal-dependent hydrolase
1 chr5A 653903 654847 + TraesCS5A01G000800  Multidrug resistance-associated protein 13
1 chr5A 692733 694011 + TraesCS5A01G000900  Protein yippee-like
1 chr5A 835966 836319 + TraesCS5A01G001000  SNF2 domain-containing protein / helicase domain-containing protein / zinc finger protein-like protein
1 chr5A 855689 858514 - TraesCS5A01G001100  Sugar transporter, putative
1 chr5A 1114075 1114440 - TraesCS5A01G001200  Pollen allergen-like protein
1 chr5A 1200901 1201266 - TraesCS5A01G001300 Expansin protein
1 chr5A 1202144 1202581 + TraesCS5A01G001400  Lethal factor
2 chr5A 20816765 20821935 - TraesCS5A01G025700 Kinase, putative
2 chr5A 20822571 20823194 + TraesCS5A01G025800  Cysteinesynthase
2 chr5A 20993223 20998405 - TraesCS5A01G025900 YABBY transcription factor
3 chr5B 671295153 671298157 - TraesCS5B01G505500  F-box domain containing protein, expressed
3 chr5B 671301792 671303066 - TraesCS5B01G505600 F-box family protein
3 chr5B 671339292 671341356 - TraesCS5B01G505700  F-box family protein
3 chr5B 671355220 671357142 - TraesCS5B01G505800  F-box and associated interaction domains-containing protein
4 chr5D 1710503 1717152 - TraesCS5D01G001300  NBS-LRR disease resistance protein-like
4 chr5D 1799796 1802729 + TraesCS5D01G001400  Serine/threonine-protein kinase
4 chr5D 1863625 1865222 + TraesCS5D01G001500  Protein yippee-like
4 chr5D 1884922 1887332 - TraesCS5D01G001600  Sugar transporter, putative
4 chr5D 2120473 2120838 - TraesCS5D01G001700  Pollen allergen-like protein
4 chr5D 2121607 2122255 + TraesCS5D01G001800  Lysyl oxidase homolog 2
4 chr5D 2135990 2141629 + TraesCS5D01G001900  Carotenoid cleavage dioxygenase
4 chr5D 2251491 2252724 - TraesCS5D01G002000  rRNA N-glycosidase
4 chr5D 2286407 2289277 + TraesCS5D01G002100  AGAMOUS MADS box factor transcription factor
4 chr5D 2291913 2302714 + TraesCS5D01G002200  MADS-box transcription factor AGAMOUS-like protein
4 chr5D 2511199 2511993 - TraesCS5D01G002300  Teosintebranched 1
4 chr5D 2610639 2613218 + TraesCS5D01G002400  Cation/H(+) antiporter
Pycnidia per cm2 (80 candidate genes)
5 chr2B 648930287 648931409 - TraesCS2B01G454400  Late embryogenesis abundant protein
5 chr2B 649475856 649478079 + TraesCS2B01G454500  Xyloglucan endotransglucosylase/hydrolase
5 chr2B 649479354 649480612 - TraesCS2B01G454600  Xyloglucan endotransglucosylase/hydrolase
5 chr2B 649656198 649656461 - TraesCS2B01G454700  Pyridoxine/pyridoxamine 5'-phosphate oxidase
5 chr2B 649669805 649670845 + TraesCS2B01G454800  Xyloglucan endotransglucosylase/hydrolase
5 chr2B 649707601 649708239 - TraesCS2B01G454900  Vacuolariron transporter-like protein
5 chr2B 649713438 649714070 - TraesCS2B01G455000 Vacuolariron transporter
5 chr2B 649749598 649750230 - TraesCS2B01G455100  Vacuolariron transporter
5 chr2B 649755487 649756119 - TraesCS2B01G455200  Vacuolariron transporter
5 chr2B 649946420 649947238 - TraesCS2B01G455300  Vacuolariron transporter-like protein
5 chr2B 649974553 649976030 + TraesCS2B01G455400  Xyloglucan endotransglucosylase/hydrolase
5 chr2B 650164651 650165049 + TraesCS2B01G455500  VQmotif family protein
5 chr2B 650167748 650168737 - TraesCS2B01G455600  DNA-directed RNA polymerase subunit
5 chr2B 650279143 650287025 + TraesCS2B01G455700  Villin
5 chr2B 650353345 650354632 + TraesCS2B01G455800  HTH-typetranscriptional regulator YidZ
5 chr2B 650399689 650405235 + TraesCS2B01G455900  Plastid-lipid associated protein PAP/fibrillin family-like
5 chr2B 650482338 650485786 + TraesCS2B01G456000  Leucine-rich repeat protein kinase family protein
5 chr2B 650789626 650791042 + TraesCS2B01G456100  RING/U-box superfamily protein
5 chr2B 650793585 650798566 - TraesCS2B01G456200  Aldose 1-epimerase family protein
5 chr2B 651069212 651071547 - TraesCS2B01G456300  Protein-S-isoprenylcysteine O-methyltransferase
5 chr2B 651351239 651359011 + TraesCS2B01G456400  Kinase family protein
5 chr2B 651359753 651362141 + TraesCS2B01G456500 RNA-binding (RRM/RBD/RNP motifs) family protein
5 chr2B 651363411 651365828 - TraesCS2B01G456600  Pentatricopeptide repeat-containing protein
5 chr2B 651554339 651556762 + TraesCS2B01G456700 GDSL esterase/lipase
5 chr2B 651725304 651726407 + TraesCS2B01G456800 Serine/threonine-protein kinase ULK4
5 chr2B 651730605 651731877 - TraesCS2B01G456900  Pollen Olee 1 allergen/extensin
5 chr2B 651734065 651736700 - TraesCS2B01G457000  Pectin acetylesterase
5 chr2B 651920967 651924717 + TraesCS2B01G457100  Maltose excess protein 1-like, chloroplastic
5 chr2B 651925266 651927404 + TraesCS2B01G457200  Trihelix transcription factor GT-like protein
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6 chr2B 781584402 781585503 - TraesCS2B01G598600  Calcium-dependent lipid-binding domain-containing protein

6 chr2B 781773043 781776241 + TraesCS2B01G598700  Mediator of rna polymeraseii transcription subunit 15a

6 chr2B 781788843 781793742 + TraesCS2B01G598800  Polyadenylate-binding protein

6 chr2B 781794034 781797032 - TraesCS2B01G598900  F-box family protein

6 chr2B 781801119 781804671 + TraesCS2B01G599000  Polyadenylate-binding protein

6 chr2B 781805058 781807816 TraesCS2B01G599100  F-box family protein

6 chr2B 781826770 781828446 - TraesCS2B01G599200  F-box family protein

10 chr6A 411767957 411771768 + TraesCS6A01G221500 Protein lunapark

10 chreA 411936868 411940451 TraesCS6A01G221600  Histone H2A deubiquitinase (DUF3755)

10 chr6A 412363785 412385133 - TraesCS6A01G221700 Regulator of nonsense transcripts 2

10 chr6A 412848770 412849492 - TraesCS6A01G221800 Response regulator

10 chr6A 413732630 413735160 + TraesCS6A01G221900  Gibberellin 2-beta-dioxygenase

10 chréA 414865158 414868301 + TraesCS6A01G222000 Receptor kinase

10 chr6A 414875496 414878302 - TraesCS6A01G222100  Aquaporin

10 chr6A 415098272 415098802 + TraesCS6A01G222200  Senescence regulator

11 chr6A 421530653 421531853 - TraesCS6A01G224500  Xanthine/uracil permease family protein

11 chr6A 421753544 421754759 - TraesCS6A01G224600  60S ribosomal protein L14, putative

11 chr6A 421767909 421770920 + TraesCS6A01G224700  Glycolipid transfer protein domain-containing protein

11 chr6A 421772284 421774886 - TraesCS6A01G224800 RNA-binding protein

11 chréA 422285666 422286053 - TraesCS6A01G224900  Allantoate deiminase

11 chréA 422328184 422328792 - TraesCS6A01G225000 LIGHT-DEPENDENT SHORT HYPOCOTYLS-like protein (DUF640)

11 chr6A 422935140 422936738 - TraesCS6A01G225100 Ascorbate peroxidase

11 chréA 423310052 423324247 - TraesCS6A01G225200  Lysine~tRNAligase

11 chr6A 423521951 423524570 - TraesCS6A01G225300  Receptor-like protein kinase

11 chr6A 423533078 423535555 - TraesCS6A01G225400  Receptor-like protein kinase

11 chr6A 424087505 424088410 + TraesCS6A01G225500  Phosphatidylinositol N-acetylglucosaminyltransferase subunit C, putative

11 chr6A 424090944 424099996 TraesCS6A01G225600  Protein kinase family protein

11 chr6A 424797406 424800668 + TraesCS6A01G225700  Typelinositol-1,4,5-trisphosphate 5-phosphatase CVP2, putative, expressed

11 chr6A 425249429 425253335 + TraesCS6A01G225800  Long-chain-alcohol oxidase

12 chr6B 175726767 175730014 - TraesCS6B01G167200  Zinc finger, CCCH-type

12 chréB 176131735 176132676 - TraesCS6B01G167300  Glutathione S-transferase

12 chréB 176138330 176139755 - TraesCS6B01G167400 Glutathione S-transferase

12 chr6B 176163077 176163868 - TraesCS6B01G167500  Glutathione S-transferase

12 chréB 176249071 176249862 - TraesCS6B01G167600  Glutathione S-transferase

12 chr6B 176280755 176283885 - TraesCS6B01G167700  DNA-directed RNA polymerase subunit beta'

12 chr6B 176394876 176401133 - TraesCS6B01G167800  embryonic stem cell-specific 5-hydroxymethylcytosine-binding protein

13 chr6B 454023846 454029869 TraesCS6B01G253000  methyl-coenzyme M reductase Il subunit gamma, putative (DUF3741)

13 chr6B 454075257 454078933 - TraesCS6B01G253100 Protein HIR1

13 chréB 454502165 454525616 - TraesCS6B01G253200  CLIP-associating family protein

13 chr6B 454717910 454750188 + TraesCS6B01G253300  Prolyl oligopeptidase family protein

13 chr6B 455078316 455087102 + TraesCS6B01G253400 Oligopeptide transporter, putative

13 chr6B 455413653 455416101 + TraesCS6B01G253500 GDSL esterase/lipase

13 chr6B 455417367 455430878 - TraesCS6B01G253600  Polyribonucleotide nucleotidyltransferase

15 chréB 472610042 472614224 - TraesCS6B01G262400  Yellow stripe-like transporter 12

15 chr6B 472708690 472709907 + TraesCS6B01G262500  Surfeit locus protein 6

15 chr6B 473055822 473056442 + TraesCS6B01G262600 TCP transcription factor

15 chréB 473061975 473062283 + TraesCS6B01G262700  BolA-like protein, expressed

15 chr6B 473067963 473069768 - TraesCS6B01G262800  Atp-dependent rna helicase

15 chr6B 473086672 473088971 - TraesCS6B01G262900 F-box/LRR protein

15 chréB 473540635 473541516 TraesCS6B01G263000  GRAM domain-containing protein / ABA-responsive protein-related

15 chr6B 474173211 474176246 + TraesCS6B01G263100  Endosomal targeting BRO1-like domain-containing protein
Mean pycnidia area (16 candidate genes)

18 chr2B 246000758 246004175 - TraesCS2B01G242100 Receptor kinase 1

18 chr2B 246005636 246006553 - TraesCS2B01G242200  Cysteine-rich receptor kinase

18 chr2B 246113464 246119395 - TraesCS2B01G242300  Receptor-like protein kinase, putative,expressed

18 chr2B 246167294 246171328 - TraesCS2B01G242400  Cysteine-rich receptor-kinase-like protein

18 chr2B 246261252 246264186 - TraesCS2B01G242500  Protein kinase

18 chr2B 246362267 246367495 - TraesCS2B01G242600 Protein kinase

18 chr2B 246574675 246576540 + TraesCS2B01G242700 F-box/RNI-like/FBD-like domains-containing protein



https://doi.org/10.1101/502260
http://creativecommons.org/licenses/by/4.0/

18 chr2B 246953243 246957772 - TraesCS2B01G242800  phox (PX) domain-containing protein

18 chr2B 247363059 247374406 TraesCS2B01G242900  Superoxide dismutase [Mn] 2, mitochondrial

18 chr2B 247384432 247387817 - TraesCS2B01G243000  Receptor-like protein kinase, putative,expressed

18 chr2B 247389273 247392493 TraesCS2B01G243100 Protein kinase

18 chr2B 247517948 247519009 + TraesCS2B01G243200  Aspartic proteinase nepenthesin-1

18 chr2B 247559939 247561258 + TraesCS2B01G243300  Aspartic proteinase nepenthesin-1

18 chr2B 247613813 247615117 + TraesCS2B01G243400 Aspartic proteinase nepenthesin-1

18 chr2B 247625181 247631731 - TraesCS2B01G243500  Ankyrin repeat protein-like

18 chr2B 247918284 247925256 - TraesCS2B01G243600 Pre-rRNA-processing protein esfl
Pycnidia grey value (50 candidate genes)

19 chriA 12371419 12372333 + TraesCS1A01G026000 DUF868 family protein (DUF868)

19 chriA 12404449 12405320 - TraesCS1A01G026100  Early-responsive to dehydration stress protein (ERD4)

19 chrlA 12503897 12505126 + TraesCS1A01G026200  NBS-LRR disease resistance protein-like protein

20 chriA 472140908 472143336 + TraesCS1A01G277000  Solutecarrier family 35 protein

21 chr2A 635604280 635608766 TraesCS2A01G388400 SH3 domain-containing protein 2

21 chr2A 635722881 635724573 + TraesCS2A01G388500  Zinc finger, B-box

21 chr2A 635930456 635932265 + TraesCS2A01G388600 COBRA-like protein

21 chr2A 636901274 636903003 + TraesCS2A01G388700 Formin-like protein

21 chr2A 636904233 636910541 + TraesCS2A01G388800  Formin-like protein

21 chr2A 636922148 636926236 - TraesCS2A01G388900  Aldehyde dehydrogenase

21 chr2A 637192422 637197233 + TraesCS2A01G389000  Multiprotein-bridging factor, putative

21 chr2A 637222371 637223435 - TraesCS2A01G389100  Kinase family protein

21 chr2A 637678058 637681260 TraesCS2A01G389200  Trihelix transcription factor GT-2

21 chr2A 637976213 637981011 + TraesCS2A01G389300  Sphingoid long-chain bases kinase 1

21 chr2A 637984504 637985699 + TraesCS2A01G389400  Homeobox protein, putative

21 chr2A 638033822 638035845 + TraesCS2A01G389500  Ubiquitin-specific protease family C19-related protein

21 chr2A 638305584 638308610 + TraesCS2A01G389600  Histone-lysine N-methyltransferase, H3 lysine-9 specific

21 chr2A 638319812 638320477 - TraesCS2A01G389700  glycine-rich protein

21 chr2A 638681769 638683367 + TraesCS2A01G389800 Histone H1

21 chr2A 638684394 638688858 TraesCS2A01G389900  Glutamate dehydrogenase

21 chr2A 638779207 638783120 - TraesCS2A01G390000  Subtilisin-like protease

21 chr2A 639055850 639057916 + TraesCS2A01G390100  Cationic amino acid transporter, putative

21 chr2A 639066864 639071262 TraesCS2A01G390200 RNA binding protein, putative

21 chr2A 639694553 639697004 + TraesCS2A01G390300  F-box family protein

21 chr2A 639977693 639977917 + TraesCS2A01G390400  Tyrosine-protein kinase transforming protein Src

22 chr3B 30363594 30364446 + TraesCS3B01G058100  Kinase-like protein

22 chr3B 30376813 30378035 + TraesCS3B01G058200  Receptor-like kinase

22 chr3B 30404609 30405157 - TraesCS3B01G058300 DNAtopoisomerase

22 chr3B 30407309 30410742 + TraesCS3B01G058400  Receptor-like kinase

22 chr3B 30436570 30439623 + TraesCS3B01G058500  Receptor-like protein kinase

22 chr3B 30484838 30486684 + TraesCS3B01G058600  Receptor-like kinase

22 chr3B 30492789 30493349 + TraesCS3B01G058700 Kinase, putative

22 chr3B 30494677 30495387 + TraesCS3B01G058800  Receptor-like kinase

22 chr3B 30498295 30505596 + TraesCS3B01G058900  Receptor-like kinase

22 chr3B 30508947 30518610 + TraesCS3B01G059000  Receptor-like kinase

22 chr3B 30679098 30684638 + TraesCS3B01G059100  Receptor-like kinase

22 chr3B 30908024 30908351 - TraesCS3B01G059200  Histone-lysine N-methyltransferase

22 chr3B 31058376 31059966 + TraesCS3B01G059300  GMP synthase [glutamine-hydrolyzing]

22 chr3B 31062459 31063272 TraesCS3B01G059400  Electron transport complex subunit D

22 chr3B 31066764 31068198 TraesCS3B01G059500  GMP synthase [glutamine-hydrolyzing]

22 chr3B 31098466 31100275 - TraesCS3B01G059600 D-Ala-D/L-Ala epimerase

22 chr3B 31105404 31108562 - TraesCS3B01G059700 D-Ala-D/L-Ala epimerase

22 chr3B 31297540 31297998 + TraesCS3B01G059800  GRF zinc finger family protein

22 chr3B 31788992 31789585 + TraesCS3B01G059900  Glycine-rich cell wall structural protein 2

22 chr3B 31798043 31800226 + TraesCS3B01G060000  RING/U-box superfamily protein

22 chr3B 31812867 31813800 - TraesCS3B01G060100 GDSL esterase/lipase

22 chr3B 31983277 31984365 + TraesCS3B01G060200  BTB/POZ/MATH-domain protein

22 chr3B 31992337 31994065 + TraesCS3B01G060300 Phosphate carrier, mitochondrial

22 chr3B 32276994 32278066 + TraesCS3B01G060400  Reticulon-like protein

24 chr5A 685534162 685536484 + TraesCS5A01G524800  4-hydroxy-tetrahydrodipicolinate reductase
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