

Precision phenotyping reveals novel loci for quantitative resistance to septoria tritici blotch in European winter wheat

Steven Yates^{1*}, Alexey Mikaberidze^{2*}, Simon G. Krattinger³, Michael Abrouk³, Andreas Hund⁴, Kang Yu⁴, Bruno Studer¹, Simone Fouche², Lukas Meile², Danilo Pereira², Petteri Karisto², Bruce A. McDonald²

¹ Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland

² Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland

³ Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

⁴Crop Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland

* These authors contributed equally to this work.

Corresponding author: B.A. McDonald

E-mail address: bruce.mcdonald@usys.ethz.ch Telephone: +41 44 632 3847

Word counts.

Introduction. 972

Materials and Methods. 946

Results. 1152

Discussion. 1857

Acknowledgements: 65

Total word count: 4952

2 Figures (both colored)

30 **Summary**

- 31 • Accurate, high-throughput phenotyping for quantitative traits is the limiting factor for
32 progress in plant breeding. We developed automated image analysis to measure
33 quantitative resistance to septoria tritici blotch (STB), a globally important wheat
34 disease, enabling identification of small chromosome intervals containing plausible
35 candidate genes for STB resistance.
- 36 • 335 winter wheat cultivars were included in a replicated field experiment that
37 experienced natural epidemic development by a highly diverse but fungicide-resistant
38 pathogen population. More than 5.4 million automatically generated phenotypes were
39 associated with 13,648 SNP markers to perform a GWAS.
- 40 • We identified 26 chromosome intervals explaining 1.9-10.6% of the variance
41 associated with four resistance traits. Seventeen of the intervals were less than 5 Mbp
42 in size and encoded only 173 genes, including many genes associated with disease
43 resistance. Five intervals contained four or fewer genes, providing high priority
44 targets for functional validation. Ten chromosome intervals were not previously
45 associated with STB resistance.
- 46 • Our experiment illustrates how high-throughput automated phenotyping can
47 accelerate breeding for quantitative disease resistance. The SNP markers associated
48 with these chromosome intervals can be used to recombine different forms of
49 quantitative STB resistance that are likely to be more durable than pyramids of major
50 resistance genes.

51

52 Key words: automated image analysis, genome-wide association study (GWAS), plant
53 breeding, precision phenotyping, septoria tritici blotch, *Zymoseptoria tritici*

54 **Introduction**

55 Genome-wide association studies (GWAS) provide a powerful approach to identify genetic
56 markers associated with important quantitative traits in crops (e.g. Milner et al. 2018; Yano et
57 al. 2016). The single nucleotide polymorphism (SNP) markers significantly associated with a
58 trait in a GWAS can be directly used in breeding programs for marker-assisted selection or
59 genomic selection, and also as tools to enable map-based cloning of the corresponding genes
60 underlying quantitative traits.

61

62 An abundant supply of SNP genetic markers is now available for the most important crops as
63 a result of rapid advances in sequencing technologies. Because phenotyping technologies
64 have not developed as quickly as genotyping technologies, the ability to generate accurate
65 and reproducible phenotypes for quantitative traits is now the primary limitation to progress
66 in breeding for many important traits (Furbank and Tester 2011; Araus and Cairns 2014),
67 including resistance to pests and pathogens (Joalland et al. 2018). Many research teams are
68 working to develop automated and high-throughput phenotyping of important traits under
69 field conditions, with some reports of success (Joalland et al. 2018; Wedeking et al. 2017),
70 but we remain far from the goal of using automated phenotyping to speed progress in plant
71 breeding for useful traits.

72

73 Septoria tritici blotch (STB), caused by the fungus *Zymoseptoria tritici*, is currently the most
74 damaging leaf disease on wheat in Europe (Jørgensen et al. 2014) and is a significant disease
75 on wheat around the world. *Z. tritici* has a mixed reproductive system, producing airborne
76 ascospores through sexual reproduction that can be disseminated over distances of several
77 kilometers and asexual conidia that are splash-dispersed over spatial scales of only 1-2 meters
78 over the course of a growing season (McDonald and Mundt, 2016; P. Karisto and A.
79 Mikaberidze, personal communication). *Z. tritici* populations are highly variable within fields
80 as a result of its mixed reproductive system, large effective population sizes and high levels
81 of gene flow among populations (McDonald and Mundt, 2016; Zhan et al. 2003). These
82 properties provide a high evolutionary potential that leads to rapid development of virulence
83 against resistant cultivars (McDonald and Mundt, 2016; Cowger et al. 2000) as well as
84 resistance to fungicides (McDonald and Mundt, 2016; Estep et al. 2015; Estep et al. 2016).
85 STB in Europe is controlled mainly by applying fungicides costing over \$1 billion per year
86 (Torriani et al. 2015), but many European *Z. tritici* populations have now evolved sufficiently
87 high levels of resistance that fungicides are losing their efficacy (Karisto et al. 2018; Cools

88 and Fraaije, 2013). The European Union is planning to ban many fungicides during coming
89 years (EU Regulation 1107/2009). These developments have stimulated new efforts to
90 increase STB resistance through plant breeding.

91
92 Many studies have identified strain-specific STB resistance genes that could prove useful in
93 breeding programs (summarized in Brown et al. 2015). STB resistance is mainly quantitative,
94 but some examples of major gene resistance were identified (e.g. *Stb6*) that were recently
95 shown to follow the gene-for-gene (GFG) pattern of inheritance (Saintenac et al. 2018; Zhong
96 et al. 2017). Unfortunately, major STB resistance genes like *Stb6* typically failed within 3-4
97 years of deployment as a result of pathogen evolution (Cowger and Mundt 2000). A different
98 breeding approach that is expected to slow pathogen evolution and be more durable is to
99 make pyramids of quantitative resistance (QR) genes with additive effects (Mundt 2018).
100 This approach requires the identification and deployment of QR that is effective across a
101 broad cross-section of the *Z. tritici* population as opposed to major gene resistance that works
102 against only a small fraction of the strains found in natural field populations.

103
104 Identification of QR is difficult for most pathogens for many reasons including: 1) measurement error associated with eyeball assessments of disease; 2) inherent differences in
105 disease measurements conducted by different people; 3) differences in expression of QR in
106 different environments; 4) the occurrence of mixed infections by several pathogens under
107 typical field conditions, with overlapping symptoms that often cannot be teased apart (e.g.
108 STB symptoms look very similar to the symptoms associated with tan spot and stagonospora
109 nodorum leaf blotch). These factors combine to create a low heritability for QR that slows
110 progress in accumulating different sources of QR in breeding programs.

112
113 The recent development of automated image analysis for STB enabled rapid acquisition of
114 large datasets including millions of phenotype datapoints that were highly informative under
115 both greenhouse and field conditions, and facilitated the cloning of genes encoding several
116 avirulence effectors, including *AvrStb6* (Zhong et al. 2017) and *Avr3D1* (Meile et al. 2018;
117 Stewart et al. 2018), as well as the *Zmr1* gene affecting melanization of *Z. tritici* colonies and
118 pycnidia (Krishnan et al. 2018; Lendenmann et al. 2014). We took advantage of the high
119 levels of fungicide resistance in Swiss populations of *Z. tritici* by using fungicide treatments
120 to eliminate competing pathogens in a replicated field experiment (Karisto et al. 2018). The
121 fungicide treatments enabled a pure-pathogen readout of quantitative resistance to STB

122 caused by a genetically diverse, natural population of *Z. tritici* in an epidemic that developed
123 under natural field conditions. Here we use this extensive phenotype dataset in a GWAS to
124 identify 26 chromosome intervals associated with quantitative STB resistance in a broad
125 panel of 335 elite European winter wheat cultivars. Many of these intervals explained 6%-
126 10% of the variance for the associated resistance trait. Several of the intervals contained a
127 relatively small number of annotated genes, including genes known to be associated with
128 disease resistance in wheat or other plants. There was a significant enrichment ($P<0.0001$) for
129 genes encoding putative receptor kinases and kinases within the 17 chromosome segments
130 spanning less than 5 Mbp. Other candidate genes for STB resistance encoded NB-LRR
131 proteins, F-box LRR proteins, sugar transporters, an ABC transporter, superoxide dismutase,
132 and a TCP transcription factor, illustrating how automated image analysis can lead to
133 identification of plausible candidate genes for quantitative disease resistance.

134

135 **Materials and Methods**

136 335 European winter wheat cultivars chosen from the GABI wheat panel (Kollers et al. 2013)
137 were grown in 1.1 x 1.4 m plots replicated twice as complete blocks at the Field Phenotyping
138 Platform of the ETH research station in Lindau, Switzerland (Kirchgessner et al. 2017). The
139 plots received full agrochemical inputs typically associated with intensive wheat cultivation
140 in Europe, including mineral fertilizers, a stem shortener and several pesticide applications.
141 Among the pesticides, fungicides comprising five different active ingredients with three
142 modes of action were applied at three time points over the growing season. Additional details
143 associated with the field experiment are given in Karisto et al. (2018).

144

145 An unusual feature of this experiment is that all STB infection was natural, with the epidemic
146 caused by a highly diverse *Z. tritici* population that immigrated into the experimental plots
147 via windborne ascospores coming from nearby wheat fields that were treated with fungicides.
148 This local *Z. tritici* population carried sufficient resistance to all fungicides applied in the
149 experimental plots to enable an STB epidemic to develop despite the intensive fungicide
150 treatments. But other wheat diseases common in this region, including leaf rust, stripe rust,
151 stagonospora nodorum blotch, powdery mildew and tan spot, were practically absent because
152 the fungicides excluded these pathogens (Karisto et al. 2018). As a result, we were able to
153 obtain a pure-culture read out of quantitative STB resistance across all 335 wheat cultivars
154 without confounding effects from other diseases. The local weather during the 2015-2016
155 growing season was cooler and wetter than usual, providing a highly conducive environment

156 for development of an STB epidemic. At least six asexual reproduction cycles occurred
157 during the most active period of wheat growth between March and July (Karisto et al. 2018).
158 Other components of STB epidemiology associated with this experiment were already
159 reported (Karisto et al. 2018).

160

161 All experimental plots were assessed for STB resistance at two time points, t_1 (20 May 2016,
162 approximately GS 41) and t_2 (4 July 2016, approximately GS 75-85) using automated image
163 analysis of 21,420 scanned leaves infected by *Z. tritici* (Stewart et al. 2016; Karisto et al.
164 2018). Nearly sixteen infected leaves collected from the same leaf layer in each plot were
165 mounted on A4 paper and scanned at 1200 dpi using flatbed scanners as described earlier
166 (Karisto et al. 2018). The scanned images were analyzed using an ImageJ macro script
167 (Karisto et al. 2018). Automatically generated outputs of the script included percentage of
168 leaf area covered by lesions (PLACL), average pycnidia density within lesions (ρ_{lesion}), and
169 average pycnidia darkness (measured using the 256-point gray scale). To measure pycnidia
170 sizes, we developed a Python (version: 3.6.7, <https://www.python.org/>) program based on the
171 determination of contours of constant brightness in the vicinity of each detected pycnidium
172 with the help of the skimage package (version: 0.13, <https://scikit-image.org/>). Each of these
173 STB-associated phenotypes were analyzed separately in a GWAS. The grand means for each
174 phenotype were calculated based on an average of 60 scanned leaves for each wheat cultivar,
175 including both time points and both replicates for each plot (i.e. four measurements of each
176 trait associated with STB resistance). The mean values of PLACL and ρ_{lesion} were $1/x$
177 transformed to better fit a normal distribution, yielding a $P < 0.01$ for the Shapiro-Wilk test
178 after transformation.

179

180 The SNP markers used for the GWAS came from the Illumina 90K SNP array (iSELECT,
181 San Diego, USA, Wang et al., 2014). The majority of the markers on this array were not
182 useful for our experiment because they were not polymorphic in the GABI panel. The
183 remaining markers were positioned on the IWGSC wheat genome (IWGSC, 2018) using a
184 BLASTN search with E-value $< 10^{-30}$. The position with the lowest E-value was assigned as
185 the marker position. In the case of ties where it was not possible to unequivocally assign a
186 marker to one of the homeologous chromosomes, the markers were omitted. Additional
187 filtering criteria to choose SNPs for the GWAS were: a call rate of $> 95\%$ per marker, $> 5\%$
188 minor allele frequency and identity by state (IBS) < 0.975 , using the GenABEL software in
189 the R statistical environment (Aulchenko et al. 2007). After filtering, a total of 13,648 high

190 quality SNP markers were used for the GWAS. Haplotypes were identified using a sliding
191 window of three consecutive SNPs with PLINK (Purcell *et al.* 2007) and tested using linear
192 regression models. GWAS Manhattan plots were constructed using R (version 3.5.1, R core
193 team, 2018) with ggplot2 (version: 3.1.0. Wickham, 2016). Bonferroni thresholds were
194 calculated using P/N (0.05/13,648) yielding a LOD ($-\log_{10}(P)$) score of 5.44. The fraction of
195 the phenotypic variance associated with the 26 chromosome intervals at or exceeding the
196 Bonferroni threshold was calculated using linear regression models in R (*lm* function). The
197 adjusted R^2 provided a measure of the proportion of the variance explained.

198

199 The coordinates of the 26 intervals exceeding the Bonferroni threshold were plotted onto the
200 Chinese Spring reference genome as described earlier and used to compare the positions of
201 the SNPs affecting STB resistance identified in this analysis with the positions of STB
202 resistance traits identified in earlier studies (Brown *et al.* 2015). The sequence data of the
203 markers associated with STB resistance in earlier studies were retrieved from GrainGenes
204 (<https://wheat.pw.usda.gov/GG3/>) and then searched using BLASTN against the IWGSC
205 2018 assembly using Unité de Recherche Génomique Info (URGI, <https://wheat-urgi.versailles.inra.fr/>) for the corresponding chromosome. The position of the best hit was
206 used as the genome position.

207

208 Candidate gene identification was based on the gene annotation of the IWGSC v1.0 reference
209 sequence of the wheat landrace Chinese Spring (IWGSC 2018). All high confidence genes in
210 chromosome segments shorter than 5 Mb were identified.

211

212 **Results**

213 The three fungicide treatments eliminated all competing fungal pathogens, enabling a mono
214 disease readout of the relative degree of quantitative resistance to STB under the field
215 conditions typically used for intensive wheat production in Europe. All STB infection was
216 natural, with an epidemic resulting from at least six cycles of infection by a diverse *Z. tritici*
217 population that included a high degree of gene and genotype diversity, with infections caused
218 by millions of different *Z. tritici* strains despite the fungicide applications. As an indicator of
219 the pathogen genetic diversity in these plots, genome sequences of 161 *Z. tritici* isolates
220 obtained from 21 of the plots revealed 147 unique genome sequences, with all but two of the
221 identified clones found within the same 2 m² plot (Daniel Croll, personal communication).
222 This high level of pathogen diversity was consistent with earlier findings from other naturally

224 infected wheat fields around the world and was expected given that *Z. tritici* populations
225 experience high levels of recombination (Chen and McDonald 1996; Zhan et al. 2003) that
226 enable different fungicide resistance mutations to segregate and re-assort into many different
227 genetic backgrounds in natural populations.

228

229 The quantitative measures of STB severity generated by automated image analysis followed
230 the continuous distribution typically associated with quantitative traits (Karisto et al 2018;
231 Stewart et al. 2016). Earlier analyses of relationships among these traits (Karisto et al 2018)
232 showed that resistance that minimizes host damage (PLACL) was largely independent of
233 resistance that minimizes pathogen reproduction (ρ_{lesion}). Hence the GWAS was conducted
234 independently for each trait. In addition to the traits PLACL and ρ_{lesion} , we measured the
235 average size of pycnidia formed within lesions, which reflects the average size and number of
236 spores contained in each fruiting body (Stewart et al. 2018), (i.e. pycnidia size is an
237 independent indicator of pathogen reproduction), and the average gray value of pycnidia,
238 which reflects the average amount of melanin accumulated in each fruiting body (Stewart et
239 al. 2018; Krishnan et al. 2018). Our earlier work indicated that pycnidia melanization is on
240 average greater on wheat cultivars with more resistance to STB (Stewart et al. 2016; Stewart
241 et al. 2018). Altogether, the phenotype measurements used for the GWAS included 21,420
242 measures each of PLACL and ρ_{lesion} and 2.7 million measures each of pycnidia size and
243 pycnidia melanization, yielding a total of >5.44 million automatically measured phenotypes
244 that were not prone to human scoring error.

245

246 Manhattan plots for PLACL, ρ_{lesion} , pycnidia size, and pycnidia gray value revealed the SNPs
247 with the highest associations for each STB resistance trait (Figure 1). A total of 109 SNPs
248 were at or above the Bonferroni threshold across all traits based on the GWAS. Marker-trait
249 associations were calculated using sliding windows including three consecutive SNPs.
250 Among these, 52 haplotypes were at or above the Bonferroni threshold. Further evaluation of
251 the 52 haplotypes revealed overlaps that were combined to produce a non-redundant set of 26
252 chromosome segments that explained from 1.9% to 10.6% of the overall variance associated
253 with each resistance trait (Table 1).

254

255 For the PLACL trait that reflects the ability of a wheat cultivar to limit the degree of necrosis
256 caused by an STB infection, 14 SNPs identified 4 different genomic positions distributed
257 across chromosomes 5A, 5B and 5D with LOD scores exceeding 5.5. Interval 4 on 5D had a

258 LOD score of 9.2 and explained 10.3% of the total variance associated with PLACL (Table
259 1). For the ρ_{lesion} trait that reflects the ability of a wheat cultivar to restrict *Z. tritici*
260 reproduction, 51 SNPs identified 13 genomic positions located on chromosomes 2B, 4A, 5D,
261 6A, 6B, 6D and 7B, with LOD scores ranging from 5.5 to 7.1. Interval 15 on 6B had the
262 highest LOD score and explained 9.3% of the total variance associated with ρ_{lesion} . For the
263 pycnidia size trait, three SNPs located on 2B defined a chromosome interval that surpassed
264 the Bonferroni threshold. Interval 18 explained 5.9% of the total variance associated with
265 pycnidia size. For the pycnidia melanization trait, 36 SNPs defined 8 genomic positions
266 located on chromosomes 1A, 2A, 3B, 4D, 5A, 5B, and 7B. Interval 23 on 4D showed the
267 highest LOD score of 8.7 and explained 10.6% of the total variance associated with pycnidia
268 melanization.

269

270 The positions of the 26 chromosome segments identified in this experiment were compared to
271 the positions of mapped STB genes reported in earlier publications (summarized in Fig. 1 of
272 Brown et al. 2015). Figure 2 shows that 16 of the 26 chromosome segments identified in our
273 analyses overlapped with or were very close to genomic regions identified in earlier
274 publications, while 10 of the chromosome segments were in chromosomal regions that were
275 not previously associated with STB resistance. Among those, two were associated with
276 PLACL (3, 4), five with ρ_{lesion} (7, 8, 9, 16, 17), and three with pycnidia melanization (20, 23,
277 26) (Table 1).

278

279 Seventeen of the 26 chromosome segments were smaller than 5 Mb. For these, we identified
280 putative candidate genes responsible for STB resistance based on the wheat reference genome
281 sequence of Chinese Spring (IWGSC 2018). In total, the 17 intervals spanned 24.2 Mb and
282 contained 173 high confidence genes (Supplementary Table 1). There was a significant
283 enrichment ($P < 0.0001$) for genes encoding putative receptor kinases and kinases within these
284 17 chromosome segments. Receptor kinase genes were recently shown to play major roles in
285 disease resistance in cereals (Saintenac et al. 2018; Keller and Krattinger 2018; Ma et al.
286 2018), including the *Stb6* gene encoding resistance to STB (Saintenac et al. 2018). Five of the
287 chromosome segments contained four or fewer genes, with three of these segments (19, 20,
288 24) associated with pycnidia gray value and two segments (2, 3) associated with PLACL. The
289 smallest chromosome segment (20) encompassed 28 kb on chromosome 1A and contained a
290 single gene in Chinese Spring (TraesCS1A01G277000) encoding a putative solute carrier
291 family 35 member. The 99.7 kb segment 24 on the long arm of chromosome 5A also had a

292 single gene (TraesCS5A01G524800) encoding a putative 4-hydroxy-tetrahydrodipicolinate
293 reductase, a protein involved in lysine biosynthesis. Intervals 2 (chromosome 5A) and 19
294 (chromosome 1A) had three candidate genes each, of which a putative kinase gene and a
295 putative nucleotide binding site – leucine-rich repeat (NLR) represent the most obvious
296 candidates as these categories of genes are known to affect disease resistance (Dodds and
297 Rathjen, 2010). Interval 3 contained four candidate genes, all of which were associated with
298 F-box proteins, a class of proteins often associated with plant defense responses (van den
299 Burg et al. 2008). Other candidate genes known to be involved in disease resistance include
300 sugar transporters (associated with PLACL in intervals 1 and 4), superoxide dismutase
301 (associated with pycnidia size in interval 18), an ABC transporter (associated with PLACL in
302 interval 1), and a TCP transcription factor (associated with ρ_{lesion} in interval 15).

303

304 **Discussion**

305 In a year that was highly conducive to development of an STB epidemic, we combined a
306 novel automated image analysis tool that could differentiate independent components of STB
307 severity with the high level of fungicide resistance existing in a local Swiss population of *Z.*
308 *tritici* to make a quantitative comparison of STB resistance across a broad cross section of
309 elite European winter wheat cultivars. GWAS analyses that coupled these quantitative
310 measures of STB resistance with 13,648 SNP markers enabled identification of 109 SNPs on
311 13 chromosomes that defined 26 chromosome segments highly associated with STB
312 resistance. Because all STB infection in this experiment was natural, including millions of
313 different pathogen genotypes originating from a recombining population, and the growing
314 season was highly conducive to development of an STB epidemic, we believe that the SNP
315 markers defining the chromosome intervals associated with the highest levels of STB
316 resistance could be especially useful in European breeding programs aiming to increase
317 overall levels of STB resistance to the *Z. tritici* populations found in Europe.

318

319 The 26 chromosome intervals associated with STB resistance ranged from 28 kbp to 60 Mbp
320 in size and were distributed across 13 chromosomes, with individual intervals explaining
321 1.9% to 10.6% of the phenotypic variance for each trait. Some of the intervals were clustered
322 in the same chromosomal region (e.g. intervals 1 and 2 associated with PLACL on
323 chromosome 5A; intervals 13, 14 and 15 associated with pycnidia gray value on chromosome
324 6B), but most of the intervals were genetically distant from each other. Sixteen of the
325 intervals were embedded within or located very close to chromosomal regions previously

326 associated with STB resistance, but 10 intervals were in genomic regions that had not been
327 associated with STB resistance. Particularly notable novel regions were the intervals 4, 8 and
328 9 located on 5D, a chromosome which had not previously been associated with STB
329 resistance (Brown et al. 2015), though Kollers et al (2013) found some weak associations
330 with STB resistance on this chromosome. There was no overlap between chromosomal
331 segments associated with host damage (PLACL) and pathogen reproduction (pycnidia density
332 or pycnidia size), indicating that these resistance traits were under independent genetic
333 control as hypothesized earlier (Karisto et al. 2018). Intervals 4, 14, 15, and 23 had LOD
334 scores at or exceeding 7. These are candidate regions for genes encoding broadly based field
335 resistance to STB that may be especially useful against the genetically diverse *Z. tritici*
336 populations in Europe.

337

338 The chromosome segments identified in our GWAS are much smaller than the intervals
339 defined in earlier work as shown in Figure 2. For example, STB15 was previously mapped to
340 a region that includes most of chromosome 6A (~590 Mbp) while we identified two separate
341 chromosome regions (10 and 11) within the STB15 region that encompass only ~8.5 Mbp.
342 Similarly, STB1 was mapped to a region that covered ~69.9 Mbp on chromosome 5B while
343 interval 25 covers only ~13 Mbp within this region. The smaller intervals detected in our
344 GWAS reflects the much higher marker density used in our experiment coupled with more
345 accurate knowledge of marker positions coming from the new wheat genome assembly.
346 Other contributors to the small intervals were the more accurate quantitative phenotypes
347 yielding relatively large effect sizes and the haplotype-based GWAS approach that increased
348 the statistical power compared to standard GWAS pipelines.

349

350 Seventeen of the 26 chromosome segments identified in the GWAS were less than 5 Mbp in
351 size and contained between 1-28 candidate genes annotated in the Chinese Spring reference
352 genome. The 173 genes located in these intervals were significantly enriched for receptor
353 kinases and kinases, including clusters of 6 and 10 kinases found in intervals 18 and 22
354 respectively. We consider this enrichment to be notable because *Stb6*, the only cloned STB
355 resistance gene, is a receptor kinase (Saintenac et al. 2018). Also notable was our finding that
356 genes encoding receptor kinases are strongly upregulated during infection by all tested strains
357 of *Z. tritici* (Ma et al. 2018). Hence we hypothesize that some of the receptor kinase genes
358 found in these intervals may be responsible for the STB resistance we observed. The interval
359 4 associated with PLACL explained 10.3% of the overall variance and provided the first

360 report of STB resistance on chromosome 5D. This interval contained 12 genes, including
361 three encoding proteins already shown to affect disease resistance, including an NLR, a S/T
362 protein kinase and a sugar transporter (Dodds and Rathjen 2010; Moore et al. 2015). We
363 hypothesize that one or more of these genes are responsible for the STB resistance in this
364 chromosome segment. Other interesting candidate genes found in the 17 intervals encode an
365 ABC transporter, a TCP transcription factor and superoxide dismutase. The *Lr34* gene
366 encoding quantitative resistance to leaf rust and other diseases in wheat was shown to be an
367 ABC transporter (Krattinger et al. 2009). Superoxide dismutases are involved in synthesis of
368 hydrogen peroxide, which was already shown to be involved in wheat's defense response
369 against STB (Shetty et al. 2007). TCP transcription factors were shown recently to be
370 important components of the signaling pathway involved in systemic acquired resistance (Li
371 et al. 2018). Segment 24, which explained 8% of the variance in pycnidia melanization and
372 lies within the QTL9 region identified in earlier mapping studies, contained a single gene
373 encoding a protein involved in lysine biosynthesis. Recent work on the wheat pathogen
374 *Cochliobolus sativus* showed that lysine was essential for melanin biosynthesis (Leng and
375 Zhong 2012) and lysine was recently shown to be essential for virulence in *Z. tritici*
376 (Derbyshire et al. 2018). We conclude from this analysis that many of the genes found in the
377 intervals identified in the GWAS are plausible candidates to explain the observed phenotypes
378 associated with STB resistance, but functional validation studies will be needed to confirm
379 whether any of these genes actually play a role in resistance.

380
381 Earlier field trials also used association mapping to identify genetic markers associated with
382 STB resistance (Kollers et al. 2013; Miedaner et al. 2013; Muqaddasi et al. 2019). In all of
383 these trials, the experimental plots were inoculated with a small number of *Z. tritici* isolates
384 that were sprayed when all wheat genotypes had fully extended flag leaves (i.e. GS >41) a
385 few weeks before scoring for STB resistance. As a result, the associations identified in those
386 experiments are likely to be strain-specific and represent the outcome of a single cycle of
387 infection based on a high dose of artificially applied blastospore inoculum. Similarly, most
388 experiments that identified STB genes with major effects were based on greenhouse
389 inoculations of seedlings by a single pathogen strain and used disease scores made at a single
390 point in time, leading to identification of genes that encode seedling resistance to the strain
391 used in the experiment. It is now clear that natural field infections of STB are caused by
392 many millions of *Z. tritici* strains, with a different strain occurring on each infected leaf, on
393 average, and with most leaves infected by more than one strain (Linde et al. 2002). The

394 significant STB resistance associations identified in our experiment were based on a natural
395 epidemic that included at least six cycles of pycnidiospore infection by a highly diverse
396 population of the pathogen and included two time points during epidemic development. We
397 believe that the STB resistance identified in our experiment is more likely to be broadly
398 applicable under natural field conditions and hence more useful in breeding programs aiming
399 for stable STB resistance.

400

401 An important and novel aspect of our experiment was the use of an automated image analysis
402 pipeline for phenotyping that eliminated human scoring bias while generating millions of
403 accurate phenotype data points. As is the case for many plant diseases (Saari and Prescott
404 1975), the traditional eyeball assessment of STB typically generates a single number on a 0-9
405 scale (Eyal et al. 1987) that tries to integrate the totality of disease in a particular plot, often
406 relative to other plots in the same field or trial. Eyeball assessments are fast, often requiring
407 less than one minute per plot to produce a measurement, but are prone to variation caused by
408 fatigue, changes in lighting over the course of a day, and differences in opinion among
409 different scorers. The automated image analyses allowed us to simultaneously assess four
410 quantitative phenotypes that could not be accurately measured by eye. A traditional eyeball
411 assessment would have generated a total of 4 STB measurements per cultivar to use in the
412 GWAS. Our automated analyses generated an average of over 16,000 STB measurements per
413 cultivar. These detailed phenotype data enabled us to separate different components of STB
414 resistance, in particular allowing us to separate STB resistance that affects host damage
415 (PLACL) from STB resistance that affects pathogen reproduction (ρ_{lesion} and pycnidia size).
416 We believe that resistance affecting pathogen reproduction is likely to be more effective in
417 the long run for several reasons, including: 1) Our earlier analyses (Karisto et al. 2018)
418 showed that measures of pathogen reproduction (ρ_{lesion}) early in the growing season were the
419 best predictors of host damage (PLACL) late in the growing season, showing that resistance
420 that reduces pathogen reproduction is likely to minimize yield losses caused by STB; 2) A
421 decrease in pathogen reproduction diminishes the amount of inoculum available to cause new
422 cycles of infection, which will lower the transmission rate (i.e. decrease the basic
423 reproductive number, R_0) during each infection cycle and result in less overall infection by
424 the end of the epidemic; 3) A decrease in pathogen inoculum will lead to a decrease in the
425 pathogen population size, which will decrease the overall genetic diversity and provide fewer
426 opportunities for favorable mutations (e.g. for fungicide resistance or gain of virulence) to

427 emerge (Stam and McDonald, 2018). This should lower the overall evolutionary potential of
428 the pathogen population (McDonald and Linde, 2002).

429

430 Recombining the SNP markers associated with the STB resistance intervals identified in this
431 experiment may accelerate breeding efforts aiming to increase quantitative resistance to STB
432 in European wheat. We showed that resistance affecting leaf damage (PLACL) is genetically
433 distinct from resistance affecting pathogen reproduction (ρ_{lesion}). We consider it likely that
434 these different resistance phenotypes reflect different underlying mechanisms of STB
435 resistance. We hypothesize that PLACL reflects the additive actions of toxin sensitivity genes
436 that interact with host-specific toxins produced by the pathogen, as shown for
437 *Parastagonospora nodorum* on wheat (e.g. Friesen et al., 2008; Oliver et al., 2012), while
438 pycnidia density reflects the additive actions of quantitative resistance genes that recognize
439 pathogen effectors (e.g. Meile et al. 2018). Under this scenario, breeders should aim to
440 recombine these two forms of resistance into the same genetic background, bringing together
441 different forms of resistance that may be more durable when deployed together than when
442 either mechanism is deployed in isolation. We anticipate that functional analyses of the most
443 compelling candidate genes identified in this experiment will enable us to identify new genes
444 underlying the different STB resistance traits. Our experiment illustrates how high-
445 throughput automated phenotyping can accelerate breeding for quantitative disease
446 resistance.

447

448

449 **Acknowledgements**

450 STB research in BAM's lab was supported by the Swiss National Science Foundation (grants
451 155955, 134755, 104145 and 56874) and the ETH Zurich Research Commission (grants 12-
452 03, 15-02). AM and PK were supported by the Swiss National Science Foundation through
453 Ambizione grant PZ00P3_161453. H. Zellweger managed the wheat trial. Marion Roeder
454 from IPK Gatersleben provided seeds and marker information for the GABI wheat panel.

455

456

457 **Author contributions**

458 B.A.M. conceived and managed the project. B.A.M., A.M., and B.S. provided funding for the
459 project. A.H., S.F., L.M., D.P., and P.K. performed the experiments. S.Y., A.M., P.K.,
460 S.G.K., M.A., and K.Y. analysed the data. B.A.M., S.Y., and S.G.K. wrote the manuscript.

461

462

463 **References**

464 IWGSC (2018). Shifting the limits in wheat research and breeding using a fully annotated
465 reference genome. *Science* 361(6403), p.eaar7191.

466

467 Araus, J.L. and Cairns, J.E., 2014. Field high-throughput phenotyping: the new crop breeding
468 frontier. *Trends in Plant Science* 19:52-61.

469

470 Aulchenko, Y.S., Ripke, S., Isaacs, A. and Van Duijn, C.M. (2007) GenABEL: an R library
471 for genome-wide association analysis. *Bioinformatics* 23:1294-1296.

472

473 Brown, J.K., Chartrain, L., Lasserre-Zuber, P. and Saintenac, C., 2015. Genetics of resistance
474 to *Zymoseptoria tritici* and applications to wheat breeding. *Fungal Genetics and Biology*
475 79:33-41.

476

477 Chen, R.S., McDonald, B.A. 1996. Sexual reproduction plays a major role in the genetic
478 structure of populations of the fungus *Mycosphaerella graminicola*. *Genetics* 142:1119-
479 1127.

480

481 Cools, H. J., and Fraaije, B. A. 2013. Update on mechanisms of azole resistance in
482 *Mycosphaerella graminicola* and implications for future control. *Pest Management Science*
483 69:150–155.

484

485 Cowger, C., Hoffer, M. E., and Mundt, C. C. 2000. Specific adaptation by *Mycosphaerella*
486 *graminicola* to a resistant wheat cultivar. *Plant Pathology* 49:445-451.

487

488 Derbyshire, M.C., Gohari, A.M., Mehrabi, R., Kilaru, S., Steinberg, G., Ali, S., Bailey, A.,
489 Hammond-Kosack, K., Kema, G.H. and Rudd, J.J., 2018. Phosphopantetheinyl transferase
490 (Ppt)-mediated biosynthesis of lysine, but not siderophores or DHN melanin, is required for
491 virulence of *Zymoseptoria tritici* on wheat. *Scientific Reports*, 8:17069.

492

493 Dodds, P.N., Rathjen, J.P. 2010 Plant immunity: towards an integrated view of plant-
494 pathogen interactions. *Nature Reviews Genetics* 11:539-548.

495

496 Estep, L. K., Sackett, K. E., Anderson, N. P., Flowers, M. D., and Mundt, C. C. 2016.

497 Evidence of within-season selection for fungicide resistance in *Zymoseptoria tritici*

498 populations in western Oregon. *Plant Disease* 100:483-489.

499

500 Estep, L. K., Torriani, S. F. F., Zala, M., Anderson, N. P., Flowers, M. D., McDonald, B. A.,

501 Mundt, C. C., and Brunner, P. C. 2015. Emergence and early evolution of fungicide

502 resistance in North American populations of *Zymoseptoria tritici*. *Plant Pathology* 64:961–

503 971.

504

505 Eyal, Z., Scharen, A.L., Prescott, J.M., van Ginkel, M. 1987. *The Septoria diseases of wheat: concepts and methods of disease management*. CIMMYT. 52 pp.

507

508 Furbank, R.T., Tester, M., 2011. Phenomics—technologies to relieve the phenotyping

509 bottleneck. *Trends in Plant Science* 16:635-644.

510

511 Joalland, S., Scrpanti, C., Varella, H.V., Reuther, M., Schwind, M., Lang, C., Walter, A. and

512 Liebisch, F., 2018. Aerial and ground based sensing of tolerance to beet cyst nematode in

513 sugar beet. *Remote Sensing* 10:787.

514

515 Jørgensen, L.N., Hovmöller, M.S., Hansen, J.G., Lassen, P., Clark, B., Bayles, R.,

516 Rodemann, B., Flath, K., Jahn, M., Goral, T. and Czembor, J.J., 2014. IPM strategies and

517 their dilemmas including an introduction to www. eurowheat. org. *Journal of Integrative*

518 *Agriculture* 13:265-281.

519

520 Karisto, P., Walter, A., Hund, A., Yu, K., Anderegg, J., Mascher, F., McDonald, B.A.,

521 Mikaberidze, A. 2018. Ranking quantitative resistance to *Septoria tritici* blotch in elite wheat

522 cultivars using automated image analysis. *Phytopathology* 108:568-581.

523

524 Keller, B., Krattinger, S.G. 2018. A new player in race-specific resistance. *Nature Plants*

525 4:197-198.

526

527 Kirchgessner, N., F. Liebisch, K. Yu, J. Pfeifer, M. Friedli, A. Hund, and A. Walter. 2017.
528 The ETH field phenotyping platform FIP: a cable-suspended multi-sensor system. Functional
529 Plant Biology 44:154–168.
530
531 Kollers, S., Rodemann, B., Ling, J., Korzun, V., Ebmeyer, E., Argillier, O., Hinze, M.,
532 Plieske, J., Kulosa, D., Ganal, M.W. and Röder, M.S., 2013. Genetic architecture of
533 resistance to *Septoria tritici* blotch (*Mycosphaerella graminicola*) in European winter wheat.
534 Molecular Breeding 32:411-423.
535
536 Krattinger, S.G., Lagudah, E.S., Spielmeyer, W., Singh, R.P., Huerta-Espino, J., McFadden,
537 H., Bossolini, E., Selter, L.L. and Keller, B., 2009. A putative ABC transporter confers
538 durable resistance to multiple fungal pathogens in wheat. Science 323:1360-1363.
539
540 Krishnan, P., Meile, L., Plissonneau, C., Ma, X., Hartmann, F.E., Croll, D., McDonald, B.A.,
541 Sánchez-Vallet, A. 2018. Transposable element insertions shape gene regulation and melanin
542 production in a fungal pathogen. BMC Biology 16:78.
543
544 Lendenmann, M., Croll, D., Stewart, E.L., McDonald, B.A. 2014. Quantitative Trait Locus
545 mapping of melanization in the plant pathogenic fungus *Zymoseptoria tritici*. G3: Genes,
546 Genomes, Genetics 4:2519-2533.
547
548 Leng, Y. and Zhong, S., 2012. Sfp-type 4'-phosphopantetheinyl transferase is required for
549 lysine synthesis, tolerance to oxidative stress and virulence in the plant pathogenic fungus
550 *Cochliobolus sativus*. Molecular Plant Pathology 13:375-387.
551
552 Li, M., Chen, H., Chen, J., Chang, M., Palmer, I.A., Gassmann, W., Liu, F. and Fu, Z.Q.,
553 2018. TCP Transcription Factors Interact With NPR1 and Contribute Redundantly to
554 Systemic Acquired Resistance. Frontiers in Plant Science 9.
555
556 Ma, X., Keller, B., McDonald, B.A., Palma-Guerrero, J., Wicker, T. 2018. Comparative
557 transcriptomics reveals how wheat responds to infection by *Zymoseptoria tritici*. Molecular
558 Plant-Microbe Interactions 31:420-431.
559

560 McDonald, B.A., Mundt, C.C. 2016. How knowledge of pathogen population biology
561 informs management of *Septoria tritici* blotch. *Phytopathology* 106: 948-955.

562

563 Meile, L., Daniel Croll, D., Brunner, P., Plissonneau, C., Hartmann, F., McDonald, B.A.,
564 Sánchez-Vallet, A. 2018. A fungal avirulence factor encoded in a highly plastic genomic
565 region triggers partial resistance to *septoria tritici* blotch. *New Phytologist* 219:1048–1061.

566

567 Miedaner, T., Zhao, Y., Gowda, M., Longin, C.F.H., Korzun, V., Ebmeyer, E., Kazman, E.
568 and Reif, J.C., 2013. Genetic architecture of resistance to *septoria tritici* blotch in European
569 wheat. *BMC Genomics* 14:858.

570

571 Milner, S.G., Jost, M., Taketa, S., Mazón, E.R., Himmelbach, A., Oppermann, M., Weise, S.,
572 Knüpffer, H., Basterrechea, M., König, P. and Schüler, D., 2018. Genebank genomics
573 highlights the diversity of a global barley collection. *Nature Genetics* 10.1038/s41588-018-
574 0266-x.

575

576 Moore, J.W., Herrera-Foessel, S., Lan, C.X., Schnippenkoetter, W., Ayliffe, M., Huerta-
577 Espino, J., Lillemo, M., Viccars, L., Milne, R., Periyannan, S., Kong, X.Y., Spielmeyer, W.,
578 Talbot, M., Bariana, H., Patrick, J.W., Dodds, P., Singh, R., Lagudah, E.S. 2015 A recently
579 evolved hexose transporter variant confers resistance to multiple pathogens in wheat. *Nature
580 Genetics* 47:1494-1498.

581

582 Mundt, C.C., 2018. Pyramiding for resistance durability: theory and practice. *Phytopathology*
583 108:792-802.

584

585 Muqaddasi, Q.H., Zhao, Y., Rodemann, B., Plieske, J., Ganal, M.W. and Röder, M.S., 2019.
586 Genome-wide association mapping and prediction of adult stage *septoria tritici* blotch
587 infection in European winter wheat via high-density marker arrays. *The Plant Genome* (in
588 press).

589

590 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J.,
591 Sklar, P., De Bakker, P.I. and Daly, M.J. (2007) PLINK: a tool set for whole-genome
592 association and population-based linkage analyses. *The American Journal of Human Genetics*
593 81:559-575.

594

595 R Core Team (2018). R: A language and environment for statistical computing. R Foundation
596 for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

597

598 Saari, E.E. and Prescott, J.M., 1975. A scale for appraising the foliar intensity of wheat
599 diseases. *Plant Disease Reporter* 59:377-380.

600

601 Saintenac, C., Lee, W.S., Cambon, F., Rudd, J.J., King, R.C., Marande, W., Powers, S.J.,
602 Berges, H., Phillips, A.L., Uauy, C. and Hammond-Kosack, K.E., 2018. Wheat receptor-
603 kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen *Zymoseptoria*
604 *tritici*. *Nature Genetics* 50:368.

605

606 Shetty, N.P., Mehrabi, R., Lütken, H., Haldrup, A., Kema, G.H., Collinge, D.B. and
607 Jørgensen, H.J.L., 2007. Role of hydrogen peroxide during the interaction between the
608 hemibiotrophic fungal pathogen *Septoria tritici* and wheat. *New Phytologist* 174:637-647.

609

610 Stewart, E.L., Hagerty, C.H., Mikaberidze, A., Mundt, C. C., Zhong, Z., McDonald, B.A.
611 2016. An improved method for measuring quantitative resistance to the wheat pathogen
612 *Zymoseptoria tritici* using high throughput automated image analysis. *Phytopathology*
613 106:782-788.

614

615 Stewart, E.L., Croll, D., Lendenmann, M.H., Sanchez-Vallet, A., Hartmann, F.E., Palma-
616 Guerrero, J., Ma, X., McDonald, B.A. 2018. Quantitative trait locus mapping reveals
617 complex genetic architecture of quantitative virulence in the wheat pathogen *Zymoseptoria*
618 *tritici*. *Molecular Plant Pathology* 19:201–216.

619

620 Torriani, S. F. F., Melichar, J. P. E., Mills, C., Pain, N., Sierotzki, H., and Courbot, M. 2015.
621 *Zymoseptoria tritici*: A major threat to wheat production, integrated approaches to control.
622 *Fungal Genetics and Biology* 79:8–12.

623

624 van den Burg, H.A., Tsitsigiannis, D.I., Rowland, O., Lo, J., Rallapalli, G., Maclean, D.,
625 Takken, F.L., Jones, J.D. 2008 The F-box protein ACRE189/ACIF1 regulates cell death and
626 defense responses activated during pathogen recognition in tobacco and tomato. *Plant Cell*
627 20:697-719.

628

629 Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B.E., Maccaferri, M., Salvi, S.,
630 Milner, S.G. and Cattivelli, L. (2014) Characterization of polyploid wheat genomic diversity
631 using a high-density 90 000 single nucleotide polymorphism array. *Plant Biotechnology*
632 *Journal* 12:787-796.

633

634 Wedeking R, Mahlein AK, Steiner U, Oerke EC, Goldbach HE, Wimmer MA (2017)
635 Osmotic adjustement of young sugar beets (*Beta vulgaris*) under progressive drought stress
636 and subsequent rewetting assessed by metabolite analysis and infrared
637 thermography. *Functional Plant Biology* 44:119–133.

638

639 Wickham, H. (2016). *ggplot2: elegant graphics for data analysis*. Springer.

640

641 Yano, K., Yamamoto, E., Aya, K., Takeuchi, H., Lo, P.C., Hu, L., Yamasaki, M., Yoshida,
642 S., Kitano, H., Hirano, K. and Matsuoka, M., 2016. Genome-wide association study using
643 whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice.
644 *Nature Genetics* 48:927-934.

645

646 Zhan, J., Pettway, R.E., McDonald B.A. 2003. The global genetic structure of the wheat
647 pathogen *Mycosphaerella graminicola* is characterized by high nuclear diversity, low
648 mitochondrial diversity, regular recombination, and gene flow. *Fungal Genetics and Biology*
649 38:286-297.

650

651 Zhong, Z., Marcel, T., Hartmann, F.E., Ma, X., Plissonneau, C., Zala, M., Ducasse, A.,
652 Compain, J., Lapalu, N., Amselem, J., McDonald, B.A., Croll, D., Palma-Guerrero, J. 2017.
653 A small secreted protein in *Zymoseptoria tritici* is responsible for avirulence on wheat
654 cultivars carrying the *Stb6* resistance gene. *New Phytologist* 214:619-631.

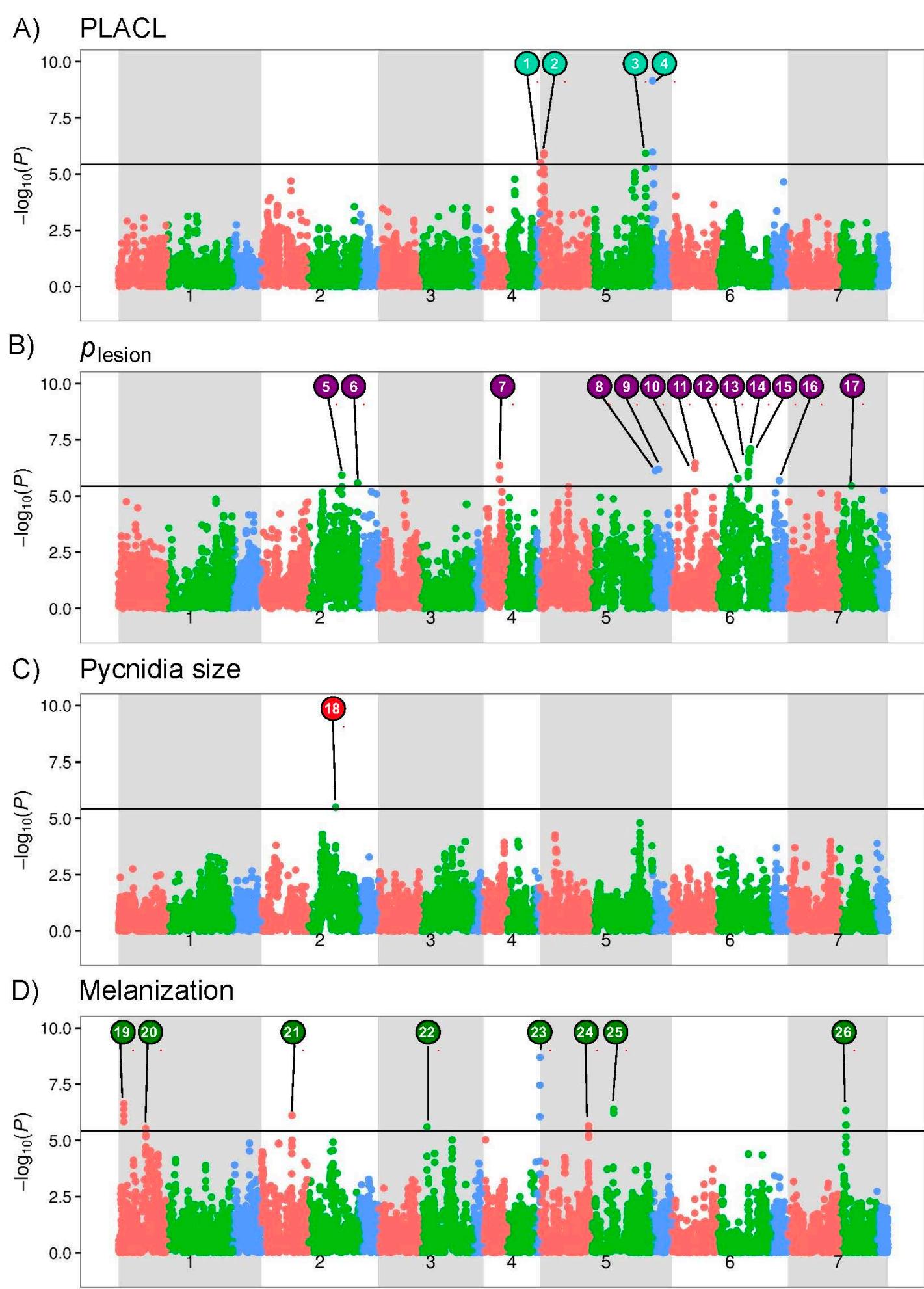
655

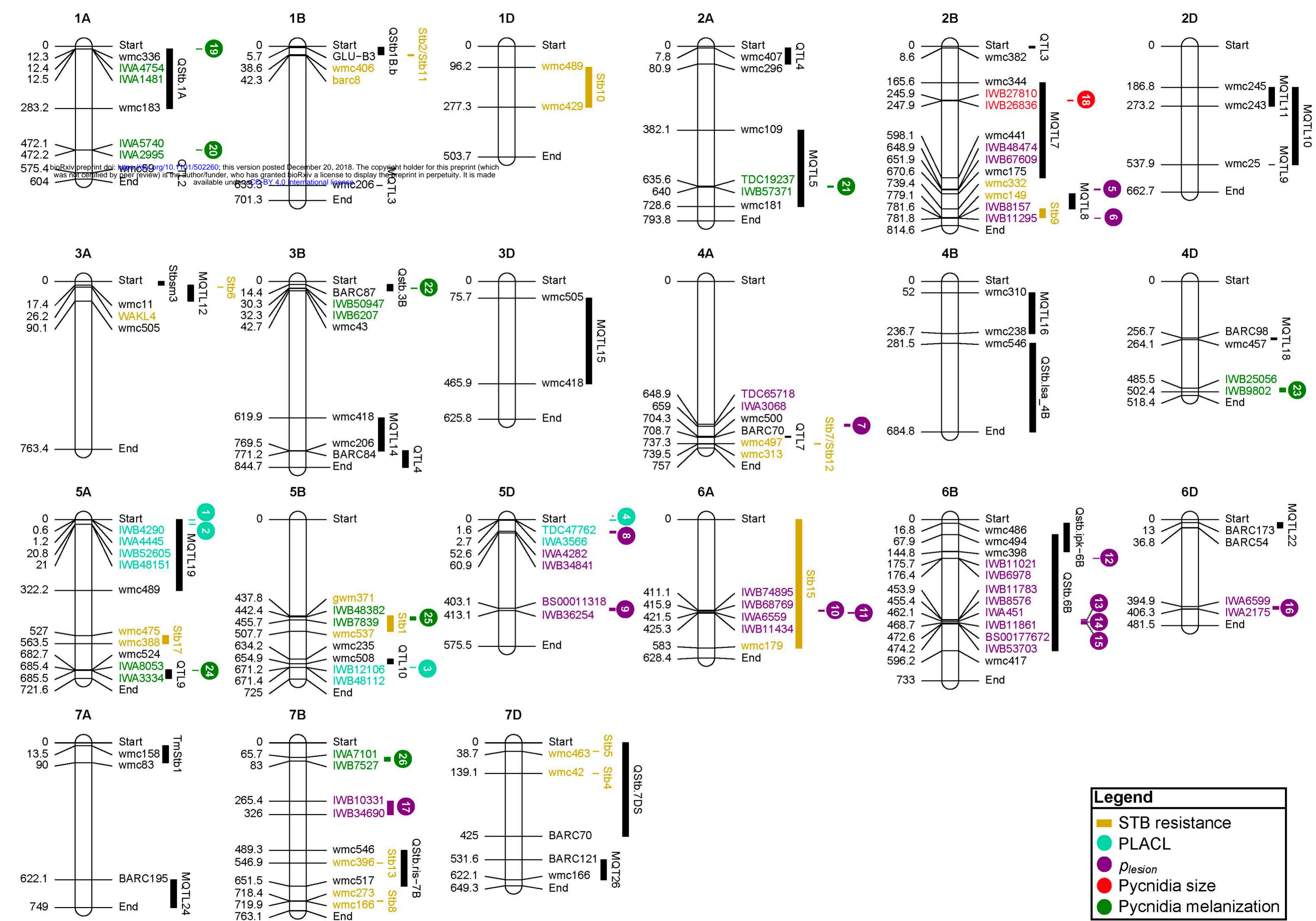
656 **Figure legends**

657

658 Figure 1. Manhattan plots showing significant SNP markers associated with each trait. The
659 horizontal line indicates the Bonferroni-adjusted significance threshold. The A, B and D
660 genomes of wheat are shown in red, green and blue, respectively. SNPs associated with the
661 interval IDs shown in Table 1 are indicated in colored circles. A. Percentage of leaf area
662 covered by lesions (PLACL) had four significant associations distributed across
663 chromosomes 5A, 5B and 5D. B. Density of pycnidia within lesions (ρ_{lesion}) had 12
664 significant associations distributed across chromosomes 2B, 4A, 5A, 5D, 6A, 6B, 6D and 7B.
665 C. Pycnidia size had a single significant association located on chromosome 2B. D.
666 Pycnidia melanization had 8 significant associations distributed across chromosomes 1A, 2A,
667 3B, 4D, 5A, 5B, and 7B.

668


669 Figure 2. Positions on the Chinese Spring reference genome (IWGSC 2018) of 26 significant
670 GWAS marker-trait associations across four resistance traits compared to positions of
671 previously mapped STB resistance genes (Brown et al. 2015). The 26 associations are shown
672 as numbered circles and a bar (95% confidence interval) in cyan for PLACL, purple for ρ_{lesion} ,
673 red for pycnidia size and green for melanization. Confidence intervals of previously mapped
674 STB resistance loci are shown in dark blue bars (STB genes) and black bars (QTLs). SNP
675 markers are presented as locus names from GrainGenes (<https://wheat.pw.usda.gov/GG3/>) for
676 brevity. Markers with the prefix Tdurum_contig were abbreviated to TDC. Only SNP
677 markers with significant associations with STB genes, QTLs or the four phenotypes included
678 in the GWAS are shown. For each association confidence interval, the first and the last SNP
679 and their positions are shown. Names are colored according to the type of association.


680

681

682 **Supplementary information**

683 Table S1. Candidate genes in the chromosome intervals defined by the GWAS.

Table S1. Candidate genes in chromosome intervals. Only target intervals shorter than 5 Mb (according to IWGSC RefSeq v.1.0) were analyzed for candidate genes. Candidate gene prediction is based on the IWGSC RefSeq v1.0 from Chinese Spring.

Interval ID	Chromosome	Start of gene	End of gene	Gene orientation	Gene ID	Functional annotation
Percent leaf area covered by lesion (PLACL) 27 candidate genes						
1	chr5A	644931	645971	+	TraesCS5A01G000700	Metal-dependent hydrolase
1	chr5A	653903	654847	+	TraesCS5A01G000800	Multidrug resistance-associated protein 13
1	chr5A	692733	694011	+	TraesCS5A01G000900	Protein yippee-like
1	chr5A	835966	836319	+	TraesCS5A01G001000	SNF2 domain-containing protein / helicase domain-containing protein / zinc finger protein-like protein
1	chr5A	855689	858514	-	TraesCS5A01G001100	Sugar transporter, putative
1	chr5A	1114075	1114440	-	TraesCS5A01G001200	Pollen allergen-like protein
1	chr5A	1200901	1201266	-	TraesCS5A01G001300	Expansin protein
1	chr5A	1202144	1202581	+	TraesCS5A01G001400	Lethal factor
2	chr5A	20816765	20821935	-	TraesCS5A01G025700	Kinase, putative
2	chr5A	20822571	20823194	+	TraesCS5A01G025800	Cysteine synthase
2	chr5A	20993223	20998405	-	TraesCS5A01G025900	YABBY transcription factor
3	chr5B	671295153	671298157	-	TraesCS5B01G505500	F-box domain containing protein, expressed
3	chr5B	671301792	671303066	-	TraesCS5B01G505600	F-box family protein
3	chr5B	671339292	671341356	-	TraesCS5B01G505700	F-box family protein
3	chr5B	671355220	671357142	-	TraesCS5B01G505800	F-box and associated interaction domains-containing protein
4	chr5D	1710503	1717152	-	TraesCS5D01G001300	NBS-LRR disease resistance protein-like
4	chr5D	1799796	1802729	+	TraesCS5D01G001400	Serine/threonine-protein kinase
4	chr5D	1863625	1865222	+	TraesCS5D01G001500	Protein yippee-like
4	chr5D	1884922	1887332	-	TraesCS5D01G001600	Sugar transporter, putative
4	chr5D	2120473	2120838	-	TraesCS5D01G001700	Pollen allergen-like protein
4	chr5D	2121607	2122255	+	TraesCS5D01G001800	Lysyl oxidase homolog 2
4	chr5D	2135990	2141629	+	TraesCS5D01G001900	Carotenoid cleavage dioxygenase
4	chr5D	2251491	2252724	-	TraesCS5D01G002000	rRNA N-glycosidase
4	chr5D	2286407	2289277	+	TraesCS5D01G002100	AGAMOUS MADS box factor transcription factor
4	chr5D	2291913	2302714	+	TraesCS5D01G002200	MADS-box transcription factor AGAMOUS-like protein
4	chr5D	2511199	2511993	-	TraesCS5D01G002300	Teosinte branched 1
4	chr5D	2610639	2613218	+	TraesCS5D01G002400	Cation/H(+) antiporter
Pycnidia per cm² (80 candidate genes)						
5	chr2B	648930287	648931409	-	TraesCS2B01G454400	Late embryogenesis abundant protein
5	chr2B	649475856	649478079	+	TraesCS2B01G454579	Xyloglucan endotransglucosylase/hydrolase
5	chr2B	649479354	649480612	-	TraesCS2B01G454600	Xyloglucan endotransglucosylase/hydrolase
5	chr2B	649656198	649656461	-	TraesCS2B01G454700	Pyridoxine/pyridoxamine 5'-phosphate oxidase
5	chr2B	649669805	649670845	+	TraesCS2B01G454800	Xyloglucan endotransglucosylase/hydrolase
5	chr2B	649707601	649708239	-	TraesCS2B01G454900	Vacuolar iron transporter-like protein
5	chr2B	649713438	649714070	-	TraesCS2B01G455000	Vacuolar iron transporter
5	chr2B	649749598	649750230	-	TraesCS2B01G455100	Vacuolar iron transporter
5	chr2B	649755487	649756119	-	TraesCS2B01G455200	Vacuolar iron transporter
5	chr2B	649946420	649947238	-	TraesCS2B01G455300	Vacuolar iron transporter-like protein
5	chr2B	649974553	649976030	+	TraesCS2B01G455400	Xyloglucan endotransglucosylase/hydrolase
5	chr2B	650164651	650165049	+	TraesCS2B01G455500	VQ motif family protein
5	chr2B	650167748	650168737	-	TraesCS2B01G455600	DNA-directed RNA polymerase subunit
5	chr2B	650279143	650287025	+	TraesCS2B01G455700	Villin
5	chr2B	650353345	650354632	+	TraesCS2B01G455800	HTH-type transcriptional regulator YidZ
5	chr2B	650399689	650405235	+	TraesCS2B01G455900	Plastid-lipid associated protein PAP/fibrillin family-like
5	chr2B	650482338	650485786	+	TraesCS2B01G456000	Leucine-rich repeat protein kinase family protein
5	chr2B	650789626	650791042	+	TraesCS2B01G456100	RING/U-box superfamily protein
5	chr2B	650793585	650798566	-	TraesCS2B01G456200	Aldose 1-epimerase family protein
5	chr2B	651069212	651071547	-	TraesCS2B01G456300	Protein S-isoprenylcysteine O-methyltransferase
5	chr2B	651351239	651359011	+	TraesCS2B01G456400	Kinase family protein
5	chr2B	651359753	651362141	+	TraesCS2B01G456500	RNA-binding (RRM/RBD/RNP motifs) family protein
5	chr2B	651363411	651365828	-	TraesCS2B01G456600	Pentatricopeptide repeat-containing protein
5	chr2B	651554339	651556762	+	TraesCS2B01G456700	GDSL esterase/lipase
5	chr2B	651725304	651726407	+	TraesCS2B01G456800	Serine/threonine-protein kinase ULK4
5	chr2B	651730605	651731877	-	TraesCS2B01G456900	Pollen Ole e 1 allergen/extensin
5	chr2B	651734065	651736700	-	TraesCS2B01G457000	Pectin acetyl esterase
5	chr2B	651920967	651924717	+	TraesCS2B01G457100	Maltose excess protein 1-like, chloroplastic
5	chr2B	651925266	651927404	+	TraesCS2B01G457200	Trihelix transcription factor GT-like protein

6	chr2B	781584402	781585503	-	TraesCS2B01G598600	Calcium-dependent lipid-binding domain-containing protein
6	chr2B	781773043	781776241	+	TraesCS2B01G598700	Mediator of rna polymerase ii transcription subunit 15a
6	chr2B	781788843	781793742	+	TraesCS2B01G598800	Polyadenylate-binding protein
6	chr2B	781794034	781797032	-	TraesCS2B01G598900	F-box family protein
6	chr2B	781801119	781804671	+	TraesCS2B01G599000	Polyadenylate-binding protein
6	chr2B	781805058	781807816	-	TraesCS2B01G599100	F-box family protein
6	chr2B	781826770	781828446	-	TraesCS2B01G599200	F-box family protein
10	chr6A	411767957	411771768	+	TraesCS6A01G221500	Protein lunapark
10	chr6A	411936868	411940451	-	TraesCS6A01G221600	Histone H2A deubiquitinase (DUF3755)
10	chr6A	412363785	412385133	-	TraesCS6A01G221700	Regulator of nonsense transcripts 2
10	chr6A	412848770	412849492	-	TraesCS6A01G221800	Response regulator
10	chr6A	413732630	413735160	+	TraesCS6A01G221900	Gibberellin 2-beta-dioxygenase
10	chr6A	414865158	414868301	+	TraesCS6A01G222000	Receptor kinase
10	chr6A	414875496	414878302	-	TraesCS6A01G222100	Aquaporin
10	chr6A	415098272	415098802	+	TraesCS6A01G222200	Senescence regulator
11	chr6A	421530653	421531853	-	TraesCS6A01G224500	Xanthine/uracil permease family protein
11	chr6A	421753544	421754759	-	TraesCS6A01G224600	60S ribosomal protein L14, putative
11	chr6A	421767909	421770920	+	TraesCS6A01G224700	Glycolipid transfer protein domain-containing protein
11	chr6A	421772284	421774886	-	TraesCS6A01G224800	RNA-binding protein
11	chr6A	422285666	422286053	-	TraesCS6A01G224900	Allantioate deiminase
11	chr6A	422328184	422328792	-	TraesCS6A01G225000	LIGHT-DEPENDENT SHORT HYPOCOTYLS-like protein (DUF640)
11	chr6A	422935140	422936738	-	TraesCS6A01G225100	Ascorbate peroxidase
11	chr6A	423310052	423324247	-	TraesCS6A01G225200	Lysine-tRNA ligase
11	chr6A	423521951	423524570	-	TraesCS6A01G225300	Receptor-like protein kinase
11	chr6A	423533078	423535555	-	TraesCS6A01G225400	Receptor-like protein kinase
11	chr6A	424087505	424088410	+	TraesCS6A01G225500	Phosphatidylinositol N-acetylglucosaminyltransferase subunit C, putative
11	chr6A	424090944	424099996	-	TraesCS6A01G225600	Protein kinase family protein
11	chr6A	424797406	424800668	+	TraesCS6A01G225700	Type I inositol-1,4,5-trisphosphate 5-phosphatase CVP2, putative, expressed
11	chr6A	425249429	425253335	+	TraesCS6A01G225800	Long-chain-alcohol oxidase
12	chr6B	175726767	175730014	-	TraesCS6B01G167200	Zinc finger, CCCH-type
12	chr6B	176131735	176132676	-	TraesCS6B01G167300	Glutathione S-transferase
12	chr6B	176138330	176139755	-	TraesCS6B01G167400	Glutathione S-transferase
12	chr6B	176163077	176163868	-	TraesCS6B01G167500	Glutathione S-transferase
12	chr6B	176249071	176249862	-	TraesCS6B01G167600	Glutathione S-transferase
12	chr6B	176280755	176283885	-	TraesCS6B01G167700	DNA-directed RNA polymerase subunit beta'
12	chr6B	176394876	176401133	-	TraesCS6B01G167800	embryonic stem cell-specific 5-hydroxymethylcytosine-binding protein
13	chr6B	454023846	454029869	-	TraesCS6B01G253000	methyl-coenzyme M reductase II subunit gamma, putative (DUF3741)
13	chr6B	454075257	454078933	-	TraesCS6B01G253100	Protein HIR1
13	chr6B	454502165	454525616	-	TraesCS6B01G253200	CLIP-associating family protein
13	chr6B	454717910	454750188	+	TraesCS6B01G253300	Prolyl oligopeptidase family protein
13	chr6B	455078316	455087102	+	TraesCS6B01G253400	Oligopeptide transporter, putative
13	chr6B	455413653	455416101	+	TraesCS6B01G253500	GDSL esterase/lipase
13	chr6B	455417367	455430878	-	TraesCS6B01G253600	Polyribonucleotide nucleotidyltransferase
15	chr6B	472610042	472614224	-	TraesCS6B01G262400	Yellow stripe-like transporter 12
15	chr6B	472708690	472709907	+	TraesCS6B01G262500	Surfeit locus protein 6
15	chr6B	473055822	473056442	+	TraesCS6B01G262600	TCP transcription factor
15	chr6B	473061975	473062283	+	TraesCS6B01G262700	BolA-like protein, expressed
15	chr6B	473067963	473069768	-	TraesCS6B01G262800	Atp-dependent rna helicase
15	chr6B	473086672	473088971	-	TraesCS6B01G262900	F-box/LRR protein
15	chr6B	473540635	473541516	-	TraesCS6B01G263000	GRAM domain-containing protein / ABA-responsive protein-related
15	chr6B	474173211	474176246	+	TraesCS6B01G263100	Endosomal targeting BRO1-like domain-containing protein

Mean pycnidia area (16 candidate genes)

18	chr2B	246000758	246004175	-	TraesCS2B01G242100	Receptor kinase 1
18	chr2B	246005636	246006553	-	TraesCS2B01G242200	Cysteine-rich receptor kinase
18	chr2B	246113464	246119395	-	TraesCS2B01G242300	Receptor-like protein kinase, putative, expressed
18	chr2B	246167294	246171328	-	TraesCS2B01G242400	Cysteine-rich receptor-kinase-like protein
18	chr2B	246261252	246264186	-	TraesCS2B01G242500	Protein kinase
18	chr2B	246362267	246367495	-	TraesCS2B01G242600	Protein kinase
18	chr2B	246574675	246576540	+	TraesCS2B01G242700	F-box/RNI-like/FBD-like domains-containing protein

18	chr2B	246953243	246957772	-	TraesCS2B01G242800	phox (PX) domain-containing protein
18	chr2B	247363059	247374406	-	TraesCS2B01G242900	Superoxide dismutase [Mn] 2, mitochondrial
18	chr2B	247384432	247387817	-	TraesCS2B01G243000	Receptor-like protein kinase, putative, expressed
18	chr2B	247389273	247392493	-	TraesCS2B01G243100	Protein kinase
18	chr2B	247517948	247519009	+	TraesCS2B01G243200	Aspartic proteinase nepenthesin-1
18	chr2B	247559939	247561258	+	TraesCS2B01G243300	Aspartic proteinase nepenthesin-1
18	chr2B	247613813	247615117	+	TraesCS2B01G243400	Aspartic proteinase nepenthesin-1
18	chr2B	247625181	247631731	-	TraesCS2B01G243500	Ankyrin repeat protein-like
18	chr2B	247918284	247925256	-	TraesCS2B01G243600	Pre-rRNA-processing protein esf1
Pycnidia grey value (50 candidate genes)						
19	chr1A	12371419	12372333	+	TraesCS1A01G026000	DUF868 family protein (DUF868)
19	chr1A	12404449	12405320	-	TraesCS1A01G026100	Early-responsive to dehydration stress protein (ERD4)
19	chr1A	12503897	12505126	+	TraesCS1A01G026200	NBS-LRR disease resistance protein-like protein
20	chr1A	472140908	472143336	+	TraesCS1A01G277000	Solute carrier family 35 protein
21	chr2A	635604280	635608766	-	TraesCS2A01G388400	SH3 domain-containing protein 2
21	chr2A	635722881	635724573	+	TraesCS2A01G388500	Zinc finger, B-box
21	chr2A	635930456	635932265	+	TraesCS2A01G388600	COBRA-like protein
21	chr2A	636901274	636903003	+	TraesCS2A01G388700	Formin-like protein
21	chr2A	636904233	636910541	+	TraesCS2A01G388800	Formin-like protein
21	chr2A	636922148	636926236	-	TraesCS2A01G388900	Aldehyde dehydrogenase
21	chr2A	637192422	637197233	+	TraesCS2A01G389000	Multiprotein-bridging factor, putative
21	chr2A	637222371	637223435	-	TraesCS2A01G389100	Kinase family protein
21	chr2A	637678058	637681260	-	TraesCS2A01G389200	Trihelix transcription factor GT-2
21	chr2A	637976213	637981011	+	TraesCS2A01G389300	Sphingoid long-chain bases kinase 1
21	chr2A	637984504	637985699	+	TraesCS2A01G389400	Homeobox protein, putative
21	chr2A	638033822	638035845	+	TraesCS2A01G389500	Ubiquitin-specific protease family C19-related protein
21	chr2A	638305584	638308610	+	TraesCS2A01G389600	Histone-lysine N-methyltransferase, H3 lysine-9 specific
21	chr2A	638319812	638320477	-	TraesCS2A01G389700	glycine-rich protein
21	chr2A	638681769	638683367	+	TraesCS2A01G389800	Histone H1
21	chr2A	638684394	638688858	-	TraesCS2A01G389900	Glutamate dehydrogenase
21	chr2A	638779207	638783120	-	TraesCS2A01G390000	Subtilisin-like protease
21	chr2A	639055850	639057916	+	TraesCS2A01G390100	Cationic amino acid transporter, putative
21	chr2A	639066864	639071262	-	TraesCS2A01G390200	RNA binding protein, putative
21	chr2A	639694553	639697004	+	TraesCS2A01G390300	F-box family protein
21	chr2A	639977693	639977917	+	TraesCS2A01G390400	Tyrosine-protein kinase transforming protein Src
22	chr3B	30363594	30364446	+	TraesCS3B01G058100	Kinase-like protein
22	chr3B	30376813	30378035	+	TraesCS3B01G058200	Receptor-like kinase
22	chr3B	30404609	30405157	-	TraesCS3B01G058300	DNA topoisomerase
22	chr3B	30407309	30410742	+	TraesCS3B01G058400	Receptor-like kinase
22	chr3B	30436570	30439623	+	TraesCS3B01G058500	Receptor-like protein kinase
22	chr3B	30484838	30486684	+	TraesCS3B01G058600	Receptor-like kinase
22	chr3B	30492789	30493349	+	TraesCS3B01G058700	Kinase, putative
22	chr3B	30494677	30495387	+	TraesCS3B01G058800	Receptor-like kinase
22	chr3B	30498295	30505596	+	TraesCS3B01G058900	Receptor-like kinase
22	chr3B	30508947	30518610	+	TraesCS3B01G059000	Receptor-like kinase
22	chr3B	30679098	30684638	+	TraesCS3B01G059100	Receptor-like kinase
22	chr3B	30908024	30908351	-	TraesCS3B01G059200	Histone-lysine N-methyltransferase
22	chr3B	31058376	31059966	+	TraesCS3B01G059300	GMP synthase [glutamine-hydrolyzing]
22	chr3B	31062459	31063272	-	TraesCS3B01G059400	Electron transport complex subunit D
22	chr3B	31066764	31068198	-	TraesCS3B01G059500	GMP synthase [glutamine-hydrolyzing]
22	chr3B	31098466	31100275	-	TraesCS3B01G059600	D-Ala-D/L-Ala epimerase
22	chr3B	31105404	31108562	-	TraesCS3B01G059700	D-Ala-D/L-Ala epimerase
22	chr3B	31297540	31297998	+	TraesCS3B01G059800	GRF zinc finger family protein
22	chr3B	31788992	31789585	+	TraesCS3B01G059900	Glycine-rich cell wall structural protein 2
22	chr3B	31798043	31800226	+	TraesCS3B01G060000	RING/U-box superfamily protein
22	chr3B	31812867	31813800	-	TraesCS3B01G060100	GDSL esterase/lipase
22	chr3B	31983277	31984365	+	TraesCS3B01G060200	BTB/POZ/MATH-domain protein
22	chr3B	31992337	31994065	+	TraesCS3B01G060300	Phosphate carrier, mitochondrial
22	chr3B	32276994	32278066	+	TraesCS3B01G060400	Reticulon-like protein
24	chr5A	685534162	685536484	+	TraesCS5A01G524800	4-hydroxy-tetrahydrodipicolinate reductase