

1 **Sex differences in the relationship between social difficulties and executive dysfunction**
2 **in children and adolescents with autism spectrum disorder**

3

4 Tonje Torske^{a,b*}, Terje Nærland^{c,d}, Daniel S. Quintana^d, Ruth Elizabeth Hypher^e, Anett Kaale
5^{c,f}, Anne Lise Høyland^{g,h}, Sigrun Hope^{d,i}, Jarle Johannessen^{d,j}, Merete G Øie^{b,k} and Ole A
6 Andreassen^d

7

8

9^a Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Drammen, Norway

10^b Department of Psychology, University of Oslo, Norway

11^c NevSom Department of Rare Disorders and Disabilities, Oslo University Hospital, Oslo, Norway

12^d NORMENT, KG Jebsen Centre for Psychosis Research, University of Oslo and Oslo University
13 Hospital, Oslo, Norway

14^e Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway

15^f Department of Special Needs Education, University of Oslo, Norway

16^g Regional Centre for Child and Youth Mental Health and Child Welfare, Department of Mental
17 Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology,
18 Trondheim, Norway

19^h Department of Pediatrics, St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway

20ⁱ Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway

21^j Autism Society Norway, Oslo 0609, Norway

22^k Research Department, Innlandet Hospital Trust, Lillehammer, Norway

23 *Corresponding author

24 E-mail: tonje.torske@vestreviken.no (TT)

25

26

27

39 **Abstract**

40 The prevalence of autism spectrum disorder (ASD) in boys is nearly four times higher than in
41 girls, and the causes of this sex difference are not fully known. Difficulties in executive
42 function may be involved in development of autistic symptomatology. Here we investigated
43 sex differences in the relationship between executive function in everyday life and social
44 dysfunction symptoms in a sample of 116 children (25 girls) aged 5-19 years with IQ above
45 70 and with a diagnosis of ASD. They were assessed with the Behavior Rating Inventory of
46 Executive Function (BRIEF) and the Autism Diagnostic Interview Revised (ADI-R). We
47 found no significant differences in BRIEF or ADI-R scores between girls and boys after
48 correcting for multiple testing. Nested linear regression models revealed significant sex
49 differences in the relationship between executive function and both reciprocal social
50 interaction ($p<0.001$) and communication ($p=0.001$) over and above the main effects of age,
51 sex, IQ and comorbid attention deficit/hyperactivity disorder diagnosis. We did not find sex
52 differences in the relationship between executive dysfunction and restricted and repetitive
53 behaviors. Altogether, our results provide a greater understanding of the sex-specific
54 characteristics of ASD and may suggest that boys and girls can benefit from different
55 intervention strategies.

56 **Introduction**

57 Autism spectrum disorder (ASD) is overrepresented in boys compared to girls. Traditionally,
58 the male-to-female ratio is thought to be 4:1 ¹. However, a recent meta-analysis of population
59 based ASD studies concluded that the male-to-female ratio is closer to 3:1, suggesting that
60 researchers and health professionals may currently overlook ASD in females ². This sex
61 difference influences the identification of autistic symptoms and obtaining an accurate
62 diagnosis, as well as intervention options and the provision of suitable resources and services
63 for people with ASD ³. Furthermore, the underlying causes of the difference in ASD
64 occurrence between boys and girls are not fully known. Research on females with ASD has
65 been limited, and most of the literature on ASD is based on boys and young men ⁴. Thus,
66 there is a growing need for a better understanding of the sex differences in ASD and there is
67 an increased research focus on girls with ASD ^{1,3,5}.

68

69 Some studies suggest that the sex difference in ASD prevalence can partially be due to sex-
70 differential genetic and hormonal factors ⁶. However, the genetic factors underlying the
71 skewed sex ratio in ASD remains mostly unknown, and cannot be explained by X-linked
72 variants since most known ASD risk genes are located in autosomal regions ⁶. There is some
73 evidence for increased mutational burden in females and their families, which indicates an
74 elevated threshold for developing ASD in girls ⁷. This has been interpreted as a female
75 protective effect, in other words, a greater resistance to ASD from genetic causes in females ⁸.
76 Even though there are no complete molecular explanations for this hypothesis ⁹, studies
77 suggest that the male bias is most likely due to female protective factors rather than male-
78 specific risk factors. A possible consequence of an increased genetic load in girls, is that those
79 who reach a clinical diagnosis of ASD often have lower intelligence and more behavioral
80 problems than boys with ASD ¹⁰.

81

82 An important factor in the prevalence ratio in ASD seems to be related to cognitive level;
83 lower IQ is associated with a lower male-to-female ratio ^{2,5,11}. However, this finding needs to
84 be treated with caution, since only about half of the studies included in Loomes and
85 colleague's recent review included sufficient information regarding IQ ². It has also been
86 recognized that the autistic symptoms are less apparent in girls than boys. This phenomenon
87 might be due better learning of compensatory behaviors and skills to mask their social
88 challenges ^{12,13} and that parents, teachers, and clinicians are less able to recognize autistic
89 symptoms in girls ¹⁴. Girls with ASD tend to have better social skills and less behaviour
90 problems than boys with ASD, which might make it harder to recognise their autistic
91 characteristics ¹⁰. Furthermore, some have found that girls with ASD have less repetitive
92 behavior and interests compared to boys with ASD ^{1,15}.

93

94 EF deficits constitute one of the main cognitive theories of ASD ¹⁶⁻¹⁸, together with Theory of
95 Mind and Central Coherence ¹⁹. Recent meta-analyses confirm that on average, people with
96 ASD perform worse on executive function (EF) tasks than neurotypical controls ^{20,21}. EF
97 comprises several components including inhibition, working memory, flexibility, emotional
98 control, initiation, planning, organization, monitoring and self-control ^{17,22}. These components
99 enable the individual to disengage from the present context to effectuate future goals.

100 Demetriou and colleagues ²⁰ found consistent evidence of an overall moderate effect size
101 (Hedges' $g = 0.48$) of executive dysfunction in ASD, that the deficits are relatively stable
102 across development, with few differences across subdomains ²⁰. In a meta-analysis that also
103 included children and adolescents with ASD and comorbid attention deficit/hyperactivity
104 disorder (ADHD), Lai and colleagues ²¹ confirmed that children with ASD tend to have
105 executive dysfunction with small to moderate effect sizes (Hedges' $g = 0.41-0.67$), and that

106 this was not solely accounted for by the effect of comorbid ADHD or general cognitive
107 abilities. Further, the questionnaire Behavior Rating Inventory of Executive Function
108 (BRIEF) was found to be a better clinical marker of ASD than performance based tests ²⁰.
109 This is probably because it can be difficult to generalize from EF assessed in highly structured
110 laboratory settings, and that questionnaires regarding everyday functioning have a higher
111 ecological validity and thus also a better clinical utility than neuropsychological tests ^{20,23}. In
112 addition, intelligence and age are factors that might influence EF in children with ASD ²⁴.
113
114 Sex differences in the relationship between EF and social function might contribute to the
115 skewed sex distribution in ASD. If girls who reach a clinical diagnosis of ASD tend to be
116 more impaired and have a higher genetic burden than boys ¹⁰, the relationship between EF
117 deficits and social difficulties may also be different in girls. Studies investigating this
118 relationship have focused on specific subdomains of EF examined mainly by
119 neuropsychological tests ^{11,25-27}. Since some EF difficulties may not be observable in a
120 laboratory setting, informant based measures and questionnaires like the BRIEF might add
121 valuable information ²³. In addition to EF, there are indications that there also may be sex
122 differences in people with ASD within domains such as mentalizing, emotion perception,
123 perceptual attention to detail, and motor function ⁴.
124
125 Although studies have identified a relationship between key ASD traits, such as social
126 dysfunction, and EF ²⁸, there are few studies focusing on how *sex* might impact the
127 relationship, and the findings have been inconsistent. Some studies have indicated that
128 females with ASD have more impairment in EF compared to males ²⁵. In a relatively small
129 group of participants, Lemon and colleagues ²⁵ found that only girls showed poorer response
130 inhibition. Others have reported that females with ASD outperform males on executive tasks

131 related to processing speed and verbal fluency ^{11,26}.

132

133 With regard to everyday functioning in children with ASD, there is one study, to our
134 knowledge, of sex differences in the relationship between the Autism Diagnostic Interview
135 Revised (ADI-R) and adaptive behavior ²⁹, and another study of sex differences in parent-
136 reported EF and adaptive behavior ³⁰. Mandic-Maravik and colleagues ²⁹ found different
137 associations of autistic symptoms with various aspects of adaptive behavior between the
138 sexes. White and colleagues ³⁰ reported a correlation between EF difficulties and decreased
139 adaptive ability in both males and females. However, females had more EF difficulties on the
140 BRIEF and more difficulties on the Daily Living Skills domain on the Vineland Adaptive
141 Behavior Scales. To the best of our knowledge there are no studies of how sex differences
142 influence the relationship between parent-rated EF in everyday life (BRIEF) and autistic
143 symptomatology (ADI-R).

144

145 The main aim of the current study was to investigate the relationship between EF in everyday
146 life rated by parents and autistic symptomatology, and to investigate possible sex differences in
147 this relationship. In accordance with the female protective effect hypothesis, that girls would
148 need to be more impaired to have the same amount of ASD symptoms as boys, we
149 hypothesized the relationship between EF deficits and autistic symptomatology to be stronger
150 in girls than boys.

151

152 **Methods**

153 **Participants**

154 The participants were recruited from Norwegian health services specializing in the assessment
155 of ASD and other neurodevelopmental disorders. The study was part of the national BUPgen

156 network ³¹. The current sample consisted of 25 girls and 91 boys with ASD who were
157 recruited between 2013 and May 2018 and assessed at age 5-19 years. Fifteen of the children
158 (2 girls, 13 boys) were diagnosed with childhood autism, 9 (2 girls, 7 boys) with atypical
159 autism, 57 (14 girls, 43 boys) with Asperger syndrome and 35 (7 girls, 28 boys) with
160 unspecified pervasive developmental disorder (PDD-NOS).

161

162 The male:female ratio was 3.6:1. In total, 40 children (34.5%) had a comorbid disorder of
163 ADHD. All participants had an intelligence quotient (IQ) within the normal range based on a
164 standardized Wechsler's test (Full-scale IQ ≥ 70) and spoke Norwegian fluently. Exclusion
165 criteria were significant sensory losses (vision and/or hearing).

166

167 **Clinical assessment**

168 The children were assessed by a team of experienced clinicians (clinical psychologists and/or
169 child psychiatrists and educational therapists). Diagnostic conclusions were best-estimate
170 clinical diagnoses derived from tests, interview results and observations. All diagnoses were
171 based on the International Statistical Classification of Diseases and Related Health Problems
172 10th Revision (ICD-10) ³² criteria, and the autistic symptoms were evaluated using the Autism
173 Diagnostic Observation Schedule (ADOS) ³³ and/or Autism Diagnostic Interview-Revised
174 (ADI-R) ³⁴. In addition, the assessment included a full medical and developmental history,
175 physical examination and IQ assessment. Because ASD and ADHD often co-occur (29), the
176 current study also included children with ASD and comorbid ADHD.

177

178 For a subsample of the group n = 34 (10 girls), we also had neuropsychological test data from
179 the Delis-Kaplan Executive Function System (D-KEFS) ³⁵. We used five of the subtests from
180 D-KEFS. Results are reported as mean scaled scores and standard deviations (10+/-3): 8.48

181 (3.44) for Trail Making Test Condition 4 Number-Letter Switching (n = 31), 8.97 (2.42) for
182 Verbal Fluency Letter Fluency (FAS) (n = 32), 8.59 (3.39) for the Color-Word Inhibition
183 Time (n=34), 8.44 (3.31) for Color-Word Inhibition/ Switching Time (n = 32), 10.39 (3.59)
184 for Twenty Questions Initial Abstract Score (n = 28) and 10.19 (2.34) for Tower Test Total
185 Achievement Score (n = 31). The subsample with neuropsychological test results was on
186 average older than the total sample (11.8 versus 10.3 year; $p = 0.009$), and fewer had
187 comorbid ADHD than the total sample ($p = 0.043$). However they did not differ from the total
188 sample in sex distribution ($p = 0.185$). Due to a small sample size, the neuropsychological test
189 results are included to describe the group and were not used in further analyses.

190

191 **Measures**

192 *Autistic symptoms:* Autism Diagnostic Interview-Revised (ADI-R) diagnostic algorithm was
193 used to assess autistic symptoms. The ADI-R is a clinical diagnostic tool based on a
194 comprehensive interview with parents or primary caregivers of the child/ adolescent³⁶. The
195 interview consists of 93 questions, and a predetermined number of these scores go into a
196 diagnostic algorithm. The interview and scoring follow standardized procedures, and the
197 interviewer records and codes the informant's responses. The algorithm is divided into three
198 functional domains based on the diagnostic criteria (qualitative deviations in): A = Reciprocal
199 Social Interaction, B = Communication, C = Restricted, Repetitive, and Stereotyped
200 Behavior. Higher scores indicate that an individual has a greater number of items representing
201 core ASD deficits and/or more severe symptoms³⁷. All the participants were verbal children,
202 and therefore the algorithm for verbal children was used. We used the Norwegian translation
203 of the ADI-R³⁸.

204

205 *Executive function (EF):* In order to assess EF parents completed the parent version of the
206 BRIEF ³⁹. The BRIEF for children and adolescents aged 5 to 18 years includes 86-item parent
207 and teacher forms that allow professionals to assess everyday EF in the home and school
208 environments ³⁹. The BRIEF contains eight scales that are grouped in a Behavioral Regulation
209 Index (BRI): Inhibit, Shift and Emotional Control, and a Metacognition Index (MI): Initiate,
210 Working Memory, Plan/Organize, Organization of Materials and Monitor. *T-scores* of ≥ 65
211 are considered to represent clinically significant areas. The Global Executive Composite
212 (GEC) is a summary score that incorporates all eight clinical scales. The GEC has high
213 reliability in both standardized and clinical samples (Cronbach's alpha = 0.80-0.98). The
214 current study used the Norwegian version of the parent rating form, which has been reported
215 to have high internal consistency (Cronbach's alpha = 0.76-0.92) ⁴⁰. Similar levels are
216 described for the English version (Cronbach's alpha = 0.80-0.98) ³⁹.

217

218 *Intelligence Quotient (IQ):* IQ was assessed using age-appropriate full-scale Wechsler tests of
219 intelligence ⁴¹⁻⁴³. We used the Norwegian versions of the Wechsler tests, which have
220 Norwegian and/or Scandinavian norms ⁴⁴⁻⁴⁶.

221

222 **Statistical analyses**

223 Analyses were conducted using the R statistical environment (version 3.5.0) using the "jmv"
224 (Version 0.7.3.1; ⁴⁷) and "cocor" packages ⁴⁸. Statistical significance was set at $p < 0.05$ and
225 adjusted according to number of comparisons. When adjusting critical *p*-values for multiple
226 tests it is important to carefully consider the risks of type-I and type-II errors ⁴⁹. Thus, we
227 provide justifications below for how we adjusted tests for multiple comparisons to control the
228 Type-I error rate. Conventional values were used for interpreting effect sizes (Effect size
229 values of 0.2, 0.5, and 0.8, were considered small, medium, and large effects, respectively ⁵⁰).

230

231 Welch's t-tests were conducted to assess sex differences in ADI-R and BRIEF scores. As here
232 we were examining a series of tests and hypothesizing that these groups were not significantly
233 different, we adjusted for 6 tests (critical p-value = 0.008);^{49,51}, with values less than 0.05
234 considered on the border of statistical significance. A chi-squared statistic was calculated to
235 assess the frequency distribution of comorbid ADHD between sexes. For the t-tests, Glass'
236 delta—which is unaffected by unequal variances—was used as a measures of effect size.

237

238 To assess the association between ADI-R sub-scores (i.e., reciprocal social interaction,
239 communication, and restricted, repetitive and stereotyped behavior) and EF (BRIEF GEC),
240 we first calculated a Pearson correlation coefficient. To assess the impact of covariates (i.e.,
241 sex, IQ, age, ADHD, and a sex * EF interaction) on the association between ADI-R sub-
242 scores and BRIEF GEC, we fitted a series of nested multiple regression models and then
243 compared the fit of these models by calculating Akaike information criterion (AIC) values
244 and *F*-ratios for model change. Lower AIC values are indicative of better model fit. As we
245 were interested in three sub-scores from the ADI-R for these multiple regression models, we
246 adjusted the critical value for 3 tests (critical p-value = 0.017), with values less than 0.05
247 considered on the border of statistical significance for the purposes of these analyses.

248 Although this is an arbitrary cutoff for values considered to be on the border of statistical
249 significance, we chose 0.05 as this is the value traditionally used when not corrected for
250 multiple comparisons. To generalise the regression results beyond the given samples, robust
251 regression was performed in the event of non-normally distributed standardized residuals via
252 bootstrapping with 2000 samples. We obtained bootstrapped 95% confidence intervals for the
253 model intercept and slopes and compared these with the confidence intervals from the original
254 model. Similar confidence intervals between original and bootstrapped models would suggest

255 that there are no considerable problems with non-normal distribution of residuals in the
256 original models. Finally, we assessed the relationship between BRIEF GEC and ADI-R sub-
257 scores in the male and female subgroups and Fisher's z test was used to assess whether these
258 correlations were significantly different. To examine the impact of more closely matched
259 boys and girls on age and IQ, the same model fit and comparison procedure was performed on
260 a subset of the sample, which was generated using the FUZZY extension command in SPSS.
261 These analyses can be found in the supplement section. We allowed cases to be matched on
262 age within 2 years and total IQ within 10 points. Three girls had missing full-scale IQ data, so
263 the 22 girls with no missing values were matched to 44 boys.

264

265 **Results**

266 **Sex differences in age, IQ, ADI-R scores, and BRIEF scores**

267 There were no statistically significant differences between sexes (critical alpha adjusted to $p =$
268 .008) in any of the ADI-R domains, BRIEF GEC, full-scale IQ, or age (Table 1). However,
269 there were tendencies for girls to be slightly older ($p = 0.029$), have some more difficulties on
270 the BRIEF index MI ($p = 0.045$) and to have less difficulties with the ADI-R C domain
271 restricted and repetitive behaviour ($p = 0.038$) than the boys, but these sex differences did not
272 reach the adjusted significance level.

273

274 [Table 1 about here]

275

276 There was no significant difference in the proportion of males and females with comorbid
277 ADHD ($\chi^2 = 2.96, p = 0.09$).

278

279 **The association between reciprocal social interaction and executive function**

280 There was a statistically significant correlation (adjusted critical alpha = 0.017) between
281 reciprocal social interaction and EF ($r = 0.31, p < 0.001$), as indexed by scores on the ADI-R-
282 A and BRIEF GEC, respectively. We fitted three nested linear regression models to assess the
283 role of covariates (i.e., sex, IQ, age, and ADHD diagnosis) and the interaction of sex and EF
284 on the relationship between reciprocal social interaction and BRIEF GEC (Table 2A). The
285 first model, which included sex, IQ, age, and ADHD diagnosis, was not statistically
286 significant ($p = 0.49$). The second nested model, which added BRIEF GEC, was on the border
287 of our adjusted statistical significance threshold ($p = 0.04$). The second model (AIC = 630.9)
288 was a significantly better fit of the data than the first model (AIC = 637.4; $F(1, 96 = 8.38, p =$
289 0.005), indicating that EF is related to reciprocal social interaction, over and above the main
290 effects of sex, IQ, age, and ADHD diagnosis. The third nested model, which added the
291 interaction of BRIEF GEC and sex, significantly predicted social interaction ($p = 0.001$). In
292 this model, BRIEF GEC, sex, and their interaction provided a statistically significant
293 contribution (Table 2A). The third model (AIC = 619.7), which included a sex * BRIEF GEC
294 interaction term, was a significantly better model for the data than the second model, which
295 only included main effects (AIC = 630.9; $F(1, 95) = 13.15, p < 0.001$).

296

297 [Table 2A about here]

298

299 The standardized residuals from models 1 ($p = 0.02$), 2 ($p = 0.01$), and 3 ($p = 0.003$) were not
300 normally distributed. Confidence intervals for the intercept and slopes of this model were
301 similar to a bootstrapped model (Table S3A), indicating that there were no considerable
302 problems with non-normal distribution of residuals in the model. The relationship between
303 ADI-R A and BRIEF GEC was statistically significant in females ($p < 0.001$), but not males
304 ($p = 0.08$; Figure 1). A formal comparison of these correlations suggested that the relationship

305 between EF and reciprocal social interaction is stronger in females than males (Fisher's $z = -$
306 $3.56, p < 0.001$). The same model fit and comparison procedure on subset of participants
307 more closely matched on age and IQ revealed similar results (Supplementary material S2A).

308

309 [Figure 1 about here]

310 Figure 1 Correlations between ADI-R and BRIEF scores for girls and boys
311
312 ADI-R: Autism Diagnostic Interview- Revised, diagnostic algorithm. A: Reciprocal Social Interaction domain, B:
313 Communication domain, C: Restricted, repetitive and stereotyped behavior domain.
314 BRIEF_GEC: Behavior Rating Inventory of Executive Function, Global Executive Composite
315 Note: BRIEF scores are reported as T scores ($M = 50, SD = 10$) and ADI-R scores are reported as domain scores
316 from the diagnostic algorithm.
317

318 **The association between communication and executive function**

319 There was a statistically significant correlation (adjusted critical alpha = 0.017) between
320 communication and EF ($r = 0.33, p < 0.001$), as indexed by scores on the ADI-R-B and
321 BRIEF GEC, respectively. We fitted three nested linear regression models to assess the role
322 of covariates and the interaction of sex and EF on the relationship between ADI-R B and
323 BRIEF GEC (Table 2B). The first model, which including sex, IQ, age, and ADHD diagnosis,
324 was not statistically significant ($p = 0.84$). Although the second nested model was also not
325 statistically significant ($p = 0.20$), BRIEF GEC provided a contribution that was on the border
326 of statistical significance ($p = 0.02$). This second model ($AIC = 577.3$) was a better fit of the
327 data than the first model ($AIC = 581.5$; $F(1, 92) = 5.98, p = 0.02$), indicating that EF is related
328 to communication, over and above the main effects of sex, IQ, and ADHD diagnosis.

329 However, this effect was on the border of statistical significance ($p = 0.02$) and needs to be
330 validated in future studies. The third nested model, which added the interaction of BRIEF
331 GEC and sex, significantly predicted communication ($p = 0.004$). In this model, BRIEF GEC,
332 sex, and their interaction provided a statistically significant contribution (Table 2B). The third
333 model ($AIC = 566.9$), which included a sex * BRIEF GEC interaction term, was a
334 significantly better model for the data than the second model, which only included main

335 effects (AIC = 577.3; $F(1, 91) = 12.27, p = 0.001$). The standardized residuals from models 1
336 ($p = 0.004$), 2 ($p = 0.02$), and 3 ($p = 0.01$) were not normally distributed. Confidence intervals
337 for the intercept and slopes of this model were similar to a bootstrapped model (Table S3B),
338 indicating that there were no considerable problems with non-normal distribution of residuals
339 in the model. The relationship between BRIEF GEC and ADI-R B was statistically
340 significant in females ($p < 0.001$), but not males ($p = 0.03$; Figure 1). A formal comparison of
341 these correlations suggested that the relationship between EF and communication is stronger
342 in females than males (Fisher's $z = -2.62, p = 0.01$). The same model fit and comparison
343 procedure on subset of participants more closely matched on age and IQ revealed similar
344 results (Supplementary material S2B).

345

346 [Table 2B about here]

347

348 **The association between restricted, repetitive and stereotyped behavior and executive
349 function**

350 The correlation between restricted, repetitive and stereotyped behavior and EF, as indexed by
351 scores on the ADI-R-C and BRIEF GEC respectively, was on the border of the adjusted
352 critical alpha ($r = 0.22, p = 0.019$; adjusted critical alpha = 0.017). We fitted three nested
353 linear regression models to assess the role of covariates and the interaction of sex and EF on
354 the relationship between repetitive behavior and EF (Table 2C). The first model, which
355 including sex, IQ, age, and ADHD diagnosis, was not statistically significant ($p = 0.43$). Nor
356 was the second nested model which added BRIEF GEC ($p = 0.12$). This second model (AIC =
357 439.9) was a better fit of the data than the first model (AIC = 443.1; $F(1, 93) = 5.08, p =$
358 0.03), but was on the border of statistical significance. The third nested model (adding the
359 interaction of BRIEF GEC and sex) was not statistically significant ($p = 0.06$) (Table 2C).

360 The third model (AIC = 438.4) was a better fit of the data than the second model (AIC =
361 439.9), but this was not statistically significant ($F(1, 92) = 3.3, p = 0.07$). The standardized
362 residuals from models 2 and 3, which included the predictor of EF were normally distributed
363 ($p > 0.05$), however, they were not normally distributed for the first model ($p = 0.01$).
364 Confidence intervals for the intercept and slopes of this model were similar to a bootstrapped
365 model (Table S3C), indicating that there were no considerable problems with non-normal
366 distribution of residuals in the model. The relationship between EF and repetitive behavior
367 was statistically significant in females ($p = 0.007$) but not statistically significant in males (p
368 = 0.09; Fig 1). However, formal comparisons of these two correlations showed that they were
369 not significantly different (Fisher's $z = -1.72, p = 0.09$). The same model fit and comparison
370 procedure on subset of participants more closely matched on age and IQ revealed similar
371 results (Supplementary material S2C).

372

373 [Table 2C about here]

374

375 **Discussion**

376 The main finding of the current study is that there are sex differences in the relationship
377 between EF in everyday life and social difficulties related to ASD. We found a strong
378 association between the BRIEF (GEC) scores and the ADI-R domains reciprocal social
379 interaction and communication in girls, while these relationships were small and non-
380 significant in boys. We did not find sex differences in the relationship between executive
381 dysfunction and restricted and repetitive behaviors. These results have implications for
382 understanding the different clinical manifestations of ASD in girls and boys. The findings
383 indicate that girls and boys might have a different relationship between cognitive and
384 behavioural phenotypes, which may provide novel information in search for different
385 etiologies in girls and boys with ASD. Furthermore, it supports the notion that there may be
386 different reasons for the behavioural problems related to ASD in girls and boys, with girls'
387 social and communicative challenges more strongly related to EF deficits. This could also
388 help to develop sex-differentiated interventions.

389

390 Of particular note, we found evidence for a relationship between EF deficits and difficulties in
391 the domains social reciprocity and communication, but not for the relationship between EF
392 deficits and restrictive and repetitive behavior (RRB). This differs from previous studies,
393 which found that EF difficulties were mainly related to RRB ^{52,53}. However, these studies did
394 not investigate the differences between girls and boys. On the other hand, Kenworthy and
395 colleagues showed that EF deficits, measured with both performance tests and parental
396 questionnaires, were related to all three components of the triad of impairment in ASD ²⁸.

397

398 We did not find any statistically significant sex differences in the total amount of difficulties
399 with social reciprocity or communication (ADI-R A and ADI-R B). However, we did observe

400 that girls had slightly less reported problems related to RRB (ADI-R C), which is in line with
401 previous studies ⁵⁴. Results from the Simons Simplex Collection showed lower levels of
402 restricted interests in girls ⁵⁵, and others have found that girls with ASD have less RBB
403 compared to boys, especially for high functioning girls ⁵⁶.

404

405 The participants in our study did not significantly differ in the total amount of executive
406 difficulties (GEC), but girls had higher scores (were slightly more impaired) than boys on the
407 metacognitive index from the BRIEF. White and colleagues ³⁰ reported that girls showed
408 more EF difficulties in a matched sample of 78 girls and 158 boys with ASD and ADHD
409 symptomatology. The BRIEF (GEC) scores for girls and boys from their study are similar to
410 our results; however, in our study the difference in GEC scores between girls and boys did not
411 reach the corrected level of significance. This might be due to a smaller sample size and a
412 stricter control for multiple testing in our study.

413

414 We showed a strong link between EF deficits in everyday life and social dysfunction for girls
415 with ASD. However, EF deficits seem to have a weaker association to social dysfunction for
416 boys, which suggest that their social difficulties may have a different etiology. Despite not
417 collecting any genetic information in our study, the finding is consistent with earlier studies
418 suggesting that girls require a greater genetic load to manifest autistic symptoms, and that
419 their cognitive and behavior characteristics tend to be more severe than boys when they are
420 diagnosed ⁵⁷. The main finding in our study is not that girls with ASD have more EF deficits
421 than boys, but that the EF deficits are stronger linked to core ASD symptoms in girls. Our
422 study only investigated the association between EF and social function, and does not give
423 insight into the causal relationship between these two functional areas. Still, it is reasonable to

424 argue that in girls, EF difficulties might drive social difficulties. This possible causal
425 explanation should be further investigated in follow-up studies.

426

427 In typically developed children, girls appear to be more mature than boys, better at adapting
428 to the classroom environment and more sociable⁵⁸. These differences may explain why girls
429 tend to outperform boys in the early school years⁵⁸. Consequently, there tends to be different
430 societal expectations of girls and boys in terms of social functioning. Girls with ASD might
431 have more difficulties socially interacting with other girls, than boys with ASD have socially
432 interacting with other boys^{59,60}. Thus, when EF is impaired in girls with ASD, it may have
433 stronger negative effects on their social functioning because it requires more of their total
434 cognitive resources.

435

436 Although the ADI-R together with the ADOS is considered to be the gold standard for
437 assessing ASD^{61,62}, recent studies suggest that these diagnostic instruments may not be
438 equally effective in identifying symptoms in both sexes. Beggiato and colleagues⁵⁴
439 investigated if the ADI-R items discriminate between males and females, and found that in
440 two large cohorts the ADI-R was better at classifying males than females. They argue that
441 because clinicians use diagnostic tools (like the ADOS and the ADI-R) that are not gender
442 specific, it is likely that girls are underrepresented. Other screening instruments for autism
443 symptoms like the Autism Spectrum Screening Questionnaire (ASSQ) and the Social
444 Responsiveness Scale (SRS) have gender-specific items or different norms for boys and girls,
445 to better to capture the “female phenotype” of autism⁵⁴. Thus, although girls and boys in our
446 study have the same level of difficulties in social reciprocity and communication, they might
447 have different expressions of autism symptoms in everyday life. We did not use the screening
448 tools ASSQ or SRS because ADI-R is considered the gold standard measure of autism

449 symptomatology. Further, ADI-R involves a clinical rating and not just parent reports, taking
450 into account the clinical judgment.

451

452 In our study 34.5% of the children had a comorbid diagnosis of ADHD. Both ASD and
453 ADHD are characterized by executive dysfunction, but the two disorders typically differ in
454 terms of which subdomains of EF that are affected. Where individuals with ADHD usually
455 have problems with inhibition, those with ASD are more likely to have difficulties with
456 flexibility and planning⁶³. Recently, it is suggested that as many as 40-70% of children and
457 adolescents with ASD have a comorbid diagnosis of ADHD^{19,64,65}. This complicates the
458 picture regarding EF deficits, considering that the two disorders typically represent different
459 aspects of EF deficits. In our study we did not have any significant sex differences in the
460 distribution of ADHD. Furthermore, we included ADHD diagnosis as a predictor in our
461 nested regression models (Table 2A-C). ADHD diagnosis did not have a significant
462 contribution to the outcome measures related to social reciprocity, communication or RRB.
463 We argue that it is important to include children and adolescents with comorbid ADHD in
464 research on ASD, because ADHD is a common comorbid disorder in clinical populations.
465 However, it is important to be aware of the possible influence ADHD might have on
466 executive measures. Future research should combine the measurements used in this study
467 with genetic information and/or neuropsychological testing to investigate sex differences in
468 the relationship between EF and social difficulties in more depth.

469

470 **Potential clinical implications**

471 The finding that executive dysfunction and social difficulties are highly related in girls but not
472 in boys might be important for various aspects of clinical practice. Firstly, when girls present
473 high scores on the ADI-R, it is reasonable to assess for executive difficulties and vice versa.

474 Furthermore, because girls might have a higher risk for executive dysfunction in combination
475 with their social difficulties, the finding can have implications for the choice of interventions.
476 Following this argument, it is possible that girls (with the same amount of social difficulties
477 as boys) will benefit more from EF interventions. Some existing programs that aim to
478 enhance EF have shown to be effective on both social problems and EF⁶⁶. However, to our
479 knowledge, research is yet to investigated whether this treatment may be more effective for
480 girls than boys. Future studies need to consider that sex differences might influence the effect
481 of interventions.

482

483 **Strengths and limitations of the study**

484 The study consists of a clinically well-defined sample of children and adolescents with ASD.
485 Even though we have a reasonable number of girls, the total number of girls is still relatively
486 small. The participants were recruited from specialist health care services, which may limit
487 the findings to the more severe conditions. Previous studies have shown that girls referred to
488 specialist clinics have more severe problems than boys⁵⁷. The girls in our study were slightly
489 older than the boys, but age was accounted for in the nested linear models. The BRIEF is
490 based on parent's own observations and evaluations of the child. This parental bias might
491 have influenced the findings, but on the other hand, these instruments have been shown to be
492 ecologically valid measurements of how the child functions in everyday life. We have used
493 the *t*-score from the BRIEF in the analyses, which have age and gender "corrected" norms,
494 since *t*-scores are commonly used in literature, as well as clinical practice, and it is important
495 to understand how different clinical tools influences each other. Both the BRIEF and the ADI-
496 R are based on information from parents and this might bias the findings. However, while the
497 BRIEF is a questionnaire, the ADI-R is a clinical semi-structured interview, which involves a
498 clinical rating. Together, they both give important information about a child's behaviour.

499

500 Another reason for the sex difference in ASD prevalence might be that girls have a different
501 phenotype. Currently, the established diagnostic practices and tools like the ADOS and the
502 ADI-R are not constructed or adapted to measure the subtle difficulties that girls may present
503 with, which differ from the typical presentation of ASD symptoms in boys. Lai and
504 colleagues suggest this might be a circular phenomenon, since an ASD diagnosis is based on
505 behavioral descriptions, and the most common diagnostic tools are largely validated on the
506 classic male phenotype of autism behaviors ¹.

507

508 **Conclusion**

509 We report sex differences in the relationship between executive dysfunction and social
510 difficulties in individuals with ASD. Our study found a strong relationship between
511 difficulties with social reciprocity and communication and parent-rated executive dysfunction
512 in girls, while the same relationship was not evident in boys. These results suggest potential
513 underlying factors related to different manifestations of ASD in males and females, which
514 may have clinical implications.

515

516 **Abbreviations**

517 ADHD: Attention Deficit Hyperactivity Disorder; ADI-R: Autistic Diagnostic Interview-Revised; ADOS: Autism
518 Diagnostic Observation Scale; ASD: Autism Spectrum Disorder; BRIEF: Behavior Rating Inventory of Executive
519 Function; BRI: Behavioral Regulation Index; D-KEFS: Delis-Kaplan Executive Function System; EF: Executive
520 Function; GEC: Global Executive Composite; IQ: Intelligence Quotient; MI: Metacognitive Index; PDD-NOS:
521 Pervasive Developmental Disorder – Not Otherwise Specified; RRB: Restrictive and Repetitive Behavior.

522

523 **Acknowledgements**

524 We are thankful to all the BUPgen participants and partners. The study is part of the BUPgen Study group and
525 the research network NeuroDevelop.

526

527 **Funding**

528 This project was supported by the National Research Council of Norway (Grant #213694) and the South-Eastern
529 Norway Regional Health Authority funds the Regional Research Network NeuroDevelop (Grant #39763). The
530 corresponding author has a research grant from Vestre Viken Hospital Trust (Grant #6903002).

531

532 **Availability of data and materials**

533 The datasets used and analyses in the current study are available from the corresponding author on reasonable
534 request.

535

536 **Authors' contributions**

537 TT, TN, MGØ and OAA planned and designed the study. TT, MGØ, REH, AK, ALH and SH collected the clinical
538 information. TT, TN and DQ analysed the data and interpreted the results. TT wrote the first draft of the
539 manuscript. All the authors contributed to the manuscript and read and approved the final manuscript.
540

541 **Ethics approval and consent to participate**

542 Written informed consent was obtained from a parent and/or legal guardian for all participants under the age of 18
543 years who were included in the study. Participants over 18 years gave written consent themselves. The study was
544 approved by the Regional Ethical Committee and the Norwegian Data Inspectorate (REK #2012/1967), and was
545 conducted in accordance with the Helsinki Declaration of the World Medical Association Assembly.
546

547 **Consent for publication**

548 All the participants consented to publication.
549

550 **Competing interests**

551 The authors declare that they have no conflict of interest.

552 **References**

- 553 1 Lai, M. C., Lombardo, M. V., Auyeung, B., Chakrabarti, B. & Baron-Cohen, S. Sex/gender differences
554 and autism: setting the scene for future research. *J Am Acad Child Adolesc Psychiatry* **54**, 11-24,
555 doi:10.1016/j.jaac.2014.10.003 (2015).
- 556 2 Loomes, R., Hull, L. & Mandy, W. P. L. What Is the Male-to-Female Ratio in Autism Spectrum Disorder?
557 A Systematic Review and Meta-Analysis. *J Am Acad Child Adolesc Psychiatry* **56**, 466-474,
558 doi:10.1016/j.jaac.2017.03.013 (2017).
- 559 3 Halladay, A. K. *et al.* Sex and gender differences in autism spectrum disorder: summarizing evidence
560 gaps and identifying emerging areas of priority. *Mol Autism* **6**, 36, doi:10.1186/s13229-015-0019-y
561 (2015).
- 562 4 Lai, M. C. *et al.* Cognition in males and females with autism: similarities and differences. *PLoS One* **7**,
563 e47198, doi:10.1371/journal.pone.0047198 (2012).
- 564 5 Werling, D. M. & Geschwind, D. H. Understanding sex bias in autism spectrum disorder. *Proc Natl Acad
565 Sci U S A* **110**, 4868-4869, doi:10.1073/pnas.1301602110 (2013).
- 566 6 Werling, D. M. & Geschwind, D. H. Sex differences in autism spectrum disorders. *Curr Opin Neurol* **26**,
567 146-153, doi:10.1097/WCO.0b013e32835ee548 (2013).
- 568 7 Jacquemont, S. *et al.* A higher mutational burden in females supports a "female protective model" in
569 neurodevelopmental disorders. *Am J Hum Genet* **94**, 415-425, doi:10.1016/j.ajhg.2014.02.001 (2014).
- 570 8 Levy, D. *et al.* Rare de novo and transmitted copy-number variation in autistic spectrum disorders.
571 *Neuron* **70**, 886-897, doi:10.1016/j.neuron.2011.05.015 (2011).
- 572 9 Werling, D. M., Parikhshak, N. N. & Geschwind, D. H. Gene expression in human brain implicates
573 sexually dimorphic pathways in autism spectrum disorders. *Nat Commun* **7**, 10717,
574 doi:10.1038/ncomms10717 (2016).
- 575 10 Dworzynski, K., Ronald, A., Bolton, P. & Happé, F. How different are girls and boys above and below the
576 diagnostic threshold for autism spectrum disorders? *J Am Acad Child Adolesc Psychiatry* **51**, 788-797,
577 doi:10.1016/j.jaac.2012.05.018 (2012).
- 578 11 Lehnhardt, F. G. *et al.* Sex-Related Cognitive Profile in Autism Spectrum Disorders Diagnosed Late in
579 Life: Implications for the Female Autistic Phenotype. *J Autism Dev Disord* **46**, 139-154,
580 doi:10.1007/s10803-015-2558-7 (2016).
- 581 12 Dean, M., Harwood, R. & Kasari, C. The art of camouflage: Gender differences in the social behaviors of
582 girls and boys with autism spectrum disorder. *Autism* **21**, 678-689, doi:10.1177/1362361316671845
583 (2017).
- 584 13 Lai, M. C. *et al.* Quantifying and exploring camouflaging in men and women with autism. *Autism* **21**, 690-
585 702, doi:10.1177/1362361316671012 (2017).
- 586 14 Ratto, A. B. *et al.* What About the Girls? Sex-Based Differences in Autistic Traits and Adaptive Skills. *J
587 Autism Dev Disord* **48**, 1698-1711, doi:10.1007/s10803-017-3413-9 (2018).
- 588 15 Van Wijngaarden-Cremers, P. J. *et al.* Gender and age differences in the core triad of impairments in
589 autism spectrum disorders: a systematic review and meta-analysis. *J Autism Dev Disord* **44**, 627-635,
590 doi:10.1007/s10803-013-1913-9 (2014).
- 591 16 Geurts, H., de Vries, M. & van den Bergh, S. F. in *Handbook of Executive Functioning* (eds S.
592 Goldstein & J. A. Naglieri) (Springer Science + Business Media, 2014).
- 593 17 Hill, E. L. Executive dysfunction in autism. *Trends Cogn Sci* **8**, 26-32 (2004).
- 594 18 Pennington, B. F. & Ozonoff, S. Executive functions and developmental psychopathology. *J Child
595 Psychol Psychiatry* **37**, 51-87 (1996).
- 596 19 Lai, M. C., Lombardo, M. V. & Baron-Cohen, S. Autism. *Lancet* **383**, 896-910, doi:10.1016/s0140-
597 6736(13)61539-1 (2014).
- 598 20 Demetriou, E. A. *et al.* Autism spectrum disorders: a meta-analysis of executive function. *Mol Psychiatry*,
599 doi:10.1038/mp.2017.75 (2017).
- 600 21 Lai, C. L. E. *et al.* Meta-analysis of neuropsychological measures of executive functioning in children and
601 adolescents with high-functioning autism spectrum disorder. *Autism Res* **10**, 911-939,
602 doi:10.1002/aur.1723 (2017).
- 603 22 Miyake, A. *et al.* The unity and diversity of executive functions and their contributions to complex "Frontal
604 Lobe" tasks: a latent variable analysis. *Cogn Psychol* **41**, 49-100, doi:10.1006/cogp.1999.0734 (2000).
- 605 23 Kenworthy, L., Yerys, B. E., Anthony, L. G. & Wallace, G. L. Understanding executive control in autism
606 spectrum disorders in the lab and in the real world. *Neuropsychol Rev* **18**, 320-338, doi:10.1007/s11065-
607 008-9077-7 (2008).
- 608 24 Van Eylen, L., Boets, B., Steyaert, J., Wagemans, J. & Noens, I. Executive functioning in autism
609 spectrum disorders: influence of task and sample characteristics and relation to symptom severity. *Eur
610 Child Adolesc Psychiatry* **24**, 1399-1417, doi:10.1007/s00787-015-0689-1 (2015).
- 611 25 Lemon, J. M., Gargaro, B., Enticott, P. G. & Rinehart, N. J. Executive functioning in autism spectrum
612 disorders: a gender comparison of response inhibition. *J Autism Dev Disord* **41**, 352-356,
613 doi:10.1007/s10803-010-1039-2 (2011).
- 614 26 Bolte, S., Duketis, E., Poustka, F. & Holtmann, M. Sex differences in cognitive domains and their clinical
615 correlates in higher-functioning autism spectrum disorders. *Autism* **15**, 497-511,
616 doi:10.1177/1362361310391116 (2011).
- 617 27 Nyden, A., Hjelmquist, E. & Gillberg, C. Autism spectrum and attention-deficit disorders in girls. Some
618 neuropsychological aspects. *Eur Child Adolesc Psychiatry* **9**, 180-185 (2000).

- 619 28 Kenworthy, L., Black, D. O., Harrison, B., della Rosa, A. & Wallace, G. L. Are executive control functions
620 related to autism symptoms in high-functioning children? *Child Neuropsychol* **15**, 425-440,
621 doi:10.1080/09297040802646983 (2009).
622 29 Mandic-Maravic, V. et al. Sex differences in autism spectrum disorders: does sex moderate the pathway
623 from clinical symptoms to adaptive behavior? *Sci Rep* **5**, 10418, doi:10.1038/srep10418 (2015).
624 30 White, E. I. et al. Sex differences in parent-reported executive functioning and adaptive behavior in
625 children and young adults with autism spectrum disorder. *Autism Res* **10**, 1653-1662,
626 doi:10.1002/aur.1811 (2017).
627 31 Grove, J. et al. Common risk variants identified in autism spectrum disorder. *bioRxiv preprint November*
628 **27**, doi:<https://doi.org/10.1101/224774> (2017).
629 32 World Health Organization. *The ICD-10 classification of mental and behavioral disorders: clinical*
630 *descriptions and diagnostic guidelines.*, (World Health Organization, 1992).
631 33 Lord, C. et al. The autism diagnostic observation schedule-generic: a standard measure of social and
632 communication deficits associated with the spectrum of autism. *J Autism Dev Disord* **30**, 205-223 (2000).
633 34 Rutter, M., Lord, C. & LeCouteur, A. *Autism Diagnostic Interview-Revised manual (ADI-R)*. (Western
634 Psychological Services, 2003).
635 35 Delis, D. C., Kaplan, E. & Kramer, J. H. *Delis-Kaplan executive function system (D-KEFS)*. (The
636 Psychological Corporation, 2001).
637 36 Lord, C., Rutter, M. & Le Couteur, A. Autism Diagnostic Interview-Revised: a revised version of a
638 diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. *J*
639 *Autism Dev Disord* **24**, 659-685 (1994).
640 37 Gotham, K., Pickles, A. & Lord, C. Standardizing ADOS scores for a measure of severity in autism
641 spectrum disorders. *J Autism Dev Disord* **39**, 693-705, doi:10.1007/s10803-008-0674-3 (2009).
642 38 Rutter, M., Lord, C. & LeCouteur, A. *Autism Diagnostic Interview – Revised. Norsk versjon.*, (Hogrefe
643 Psykologforlag AB, 2016).
644 39 Gioia, G. A., Isquith, P. K., Guy, S. C. & Kenworthy, L. *Behavior Rating Rating Inventory of Executive*
645 *Function (BRIEF)*. (PAR Psychological Assessment Resources, Inc, 2002).
646 40 Fallmyr, Ø. & Egeland, J. Psykometriske egenskaper for den norske versjonen av Behavior Rating
647 Inventory of Executive Function (BRIEF). *Tidsskrift for Norsk Psykologforening* **48**, 339-343 (2011).
648 41 Wechsler, D. *Wechsler Preschool and Primary Scale of Intelligence-Third edition* (Pearson, 2002).
649 42 Wechsler, D. *Wechsler Intelligence Scale for Children- Fourth edition.*, (Pearson, 2003).
650 43 Wechsler, D. *Wechsler Adult Intelligence Scale–Fourth Edition.*, (Pearson, 2008).
651 44 Weschler, D. *Wechsler Preschool and Primary Scale of Intelligence - Third edition. Norsk versjon.*
652 (Pearson Assessment, 2008).
653 45 Weschler, D. *Wechsler Intelligence Scale for Children - Fourth edition. Norsk versjon.* (Pearson
654 Assessment, 2009).
655 46 Weschler, D. *Wechsler Adult Intelligence Scale - Fourth edition. Norsk versjon.* (Pearson Assessment,
656 2011).
657 47 Selker, R., Love, R. & Dropmann, D. *The "jamovi" Analyses, <[https://CRAN.R-](https://CRAN.R-project.org/package=jamv)*
658 *project.org/package=jamv.*> (2017).
659 48 Diedenhofen, B. & Musch, J. cocor: a comprehensive solution for the statistical comparison of
660 correlations. *PLoS One* **10**, e0121945, doi:10.1371/journal.pone.0121945 (2015).
661 49 Armstrong, R. A. When to use the Bonferroni correction. *Ophthalmic Physiol Opt* **34**, 502-508,
662 doi:10.1111/opo.12131 (2014).
663 50 Cohen, J. *Statistical Power Analysis for the Behavioral Sciences*. (Lawrence Erlbaum Associates,
664 1988).
665 51 Perneger, T. V. What's wrong with Bonferroni adjustments. *BMJ* **316**, 1236-1238 (1998).
666 52 Lopez, B. R., Lincoln, A. J., Ozonoff, S. & Lai, Z. Examining the relationship between executive functions
667 and restricted, repetitive symptoms of Autistic Disorder. *J Autism Dev Disord* **35**, 445-460,
668 doi:10.1007/s10803-005-5035-x (2005).
669 53 Brunsdon, V. E. & Happé, F. Exploring the 'fractionation' of autism at the cognitive level. *Autism* **18**, 17-
670 30, doi:10.1177/1362361313499456 (2014).
671 54 Beggiaito, A. et al. Gender differences in autism spectrum disorders: Divergence among specific core
672 symptoms. *Autism Res* **10**, 680-689, doi:10.1002/aur.1715 (2017).
673 55 Frazier, T. W., Georgiades, S., Bishop, S. L. & Hardan, A. Y. Behavioral and cognitive characteristics of
674 females and males with autism in the Simons Simplex Collection. *J Am Acad Child Adolesc Psychiatry*
675 **53**, 329-340 e321-323, doi:10.1016/j.jaac.2013.12.004 (2014).
676 56 Supekar, K. & Menon, V. Sex differences in structural organization of motor systems and their
677 dissociable links with repetitive/restricted behaviors in children with autism. *Mol Autism* **6**, 50,
678 doi:10.1186/s13229-015-0042-z (2015).
679 57 Wang, S. et al. Sex Differences in Diagnosis and Clinical Phenotypes of Chinese Children with Autism
680 Spectrum Disorder. *Neurosci Bull* **33**, 153-160, doi:10.1007/s12264-017-0102-9 (2017).
681 58 Bennett, S., Farrington, D. P. & Huesmann, R. Explaining gender differences in crime and violence: The
682 importance of social cognitive skills. *Aggression and Violent Behavior*, 263-288 (2005).
683 59 Dean, M. et al. The peer relationships of girls with ASD at school: comparison to boys and girls with and
684 without ASD. *J Child Psychol Psychiatry* **55**, 1218-1225, doi:10.1111/jcpp.12242 (2014).

- 685 60 Tierney, S., Burns, J. & Kilbey, E. Looking behind the mask: Social coping strategies of girls on the
686 autistic spectrum. *Research in Autism Spectrum Disorders*, 73-83 (2016).
- 687 61 Falkmer, T., Anderson, K., Falkmer, M. & Horlin, C. Diagnostic procedures in autism spectrum disorders:
688 a systematic literature review. *Eur Child Adolesc Psychiatry* **22**, 329-340, doi:10.1007/s00787-013-0375-
689 0 (2013).
- 690 62 Ozonoff, S., Goodlin-Jones, B. L. & Solomon, M. Evidence-based assessment of autism spectrum
691 disorders in children and adolescents. *J Clin Child Adolesc Psychol* **34**, 523-540,
692 doi:10.1207/s15374424jccp3403_8 (2005).
- 693 63 Craig, F. *et al.* A review of executive function deficits in autism spectrum disorder and attention-
694 deficit/hyperactivity disorder. *Neuropsychiatr Dis Treat* **12**, 1191-1202, doi:10.2147/NDT.S104620
695 (2016).
- 696 64 Antshel, K. M., Zhang-James, Y., Wagner, K. E., Ledesma, A. & Faraone, S. V. An update on the
697 comorbidity of ADHD and ASD: a focus on clinical management. *Expert Rev Neurother* **16**, 279-293,
698 doi:10.1586/14737175.2016.1146591 (2016).
- 699 65 Simonoff, E. *et al.* Psychiatric disorders in children with autism spectrum disorders: prevalence,
700 comorbidity, and associated factors in a population-derived sample. *J Am Acad Child Adolesc Psychiatry*
701 **47**, 921-929, doi:10.1097/CHI.0b013e318179964f (2008).
- 702 66 Kenworthy, L. *et al.* Randomized controlled effectiveness trial of executive function intervention for
703 children on the autism spectrum. *J Child Psychol Psychiatry* **55**, 374-383, doi:10.1111/jcpp.12161
704 (2014).
- 705

706 Table 1. Age, IQ, BRIEF and ADI-R scores for girls and boys with ASD (N=116)
707

Scale	Girls Mean (SD)	n	Boys Mean (SD)	n	df	p-value	Glass' delta
Age	12.0 (3.1)	25	10.4 (3.2)	91	39.0	0.029	-0.50
Full-scale IQ	93.5 (9.3)	22	95.6 (13.1)	80	46.5	0.386	0.16
BRIEF	69.4 (10.1)	25	67.2 (10.8)	91	40.3	0.349	-0.20
Global Executive Composite (GEC)							
BRIEF	67.6 (14.6)	25	68.0 (11.8)	86	33.7	0.917	0.03
Behavioral Regulation Index (BRI)							
BRIEF Metacognition Index (MI)	68.6 (8.3)	25	64.5 (11.0)	91	49.9	0.045	-0.37
ADI-R (A)	11.8 (6.1)	25	11.8 (5.1)	91	33.5	0.945	-0.02
Reciprocal Social Interaction domain							
ADI-R (B)	8.8 (5.2)	24	9.2 (4.3)	87	32.4	0.715	0.10
Communication domain							
ADI-R (C)	2.4 (2.1)	24	3.4 (2.2)	88	38.4	0.038	0.47
Restricted, repetitive and stereotyped behavior domain							

708 $p = 0.008$

709 Welch's t-tests were conducted for age, IQ, BRIEF and ADI-R comparisons between sexes

710

711 IQ = Intelligence Quotient

712 BRIEF: Behavior Rating Inventory of Executive Functions

713 ADI-R: Autism Diagnostic Interview-Revised

714

715 Note. BRIEF scores are reported as T scores (M = 50, SD = 10) and ADI-R scores are reported as domain scores
716 from the diagnostic algorithm.

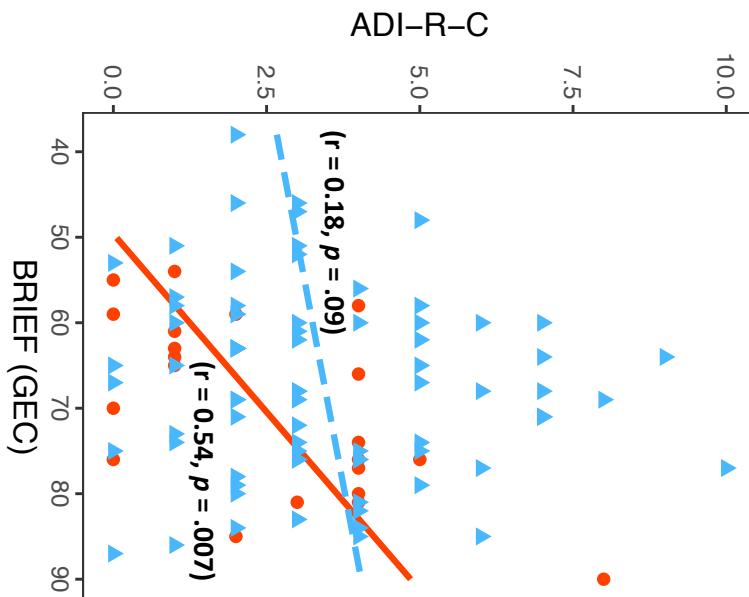
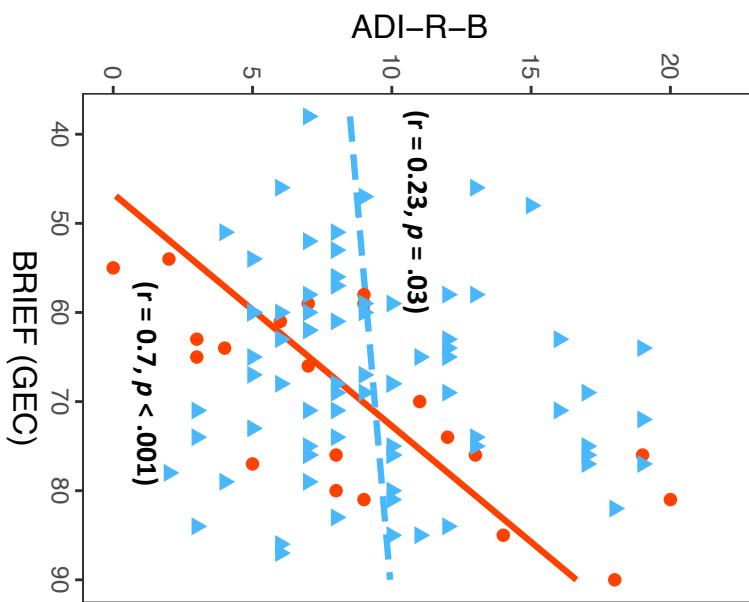
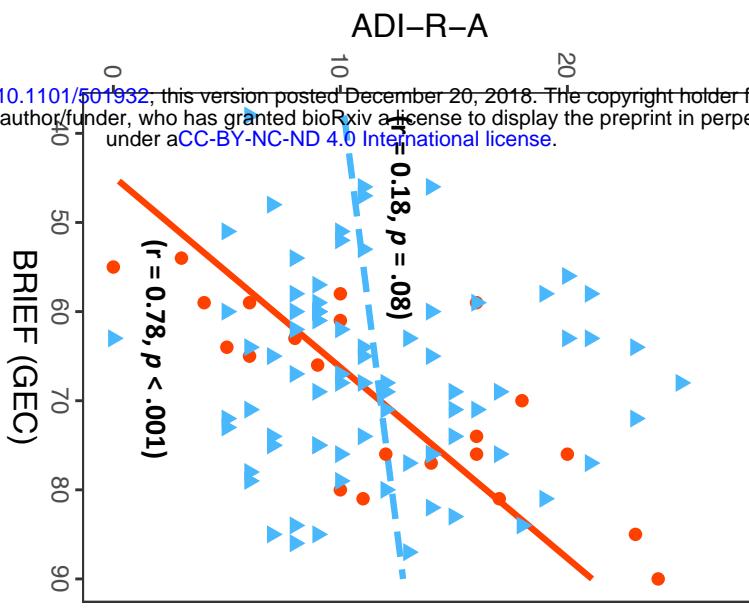
717

718 Table 2A-C Nested hierarchical models summary
719
720 2A Reciprocal Social Interaction domain
721

ADI-R A	R ²	B	SE B	p
Model 1	0.03			0.486
Constant		19.98	5.20	< .001*
Sex		-0.13	1.32	0.923
IQ		-0.07	0.04	0.104
ADHD diagnosis		-1.26	1.16	0.279
Age		-0.08	0.17	0.618
Model 2	0.11			0.041
Constant		10.68	5.95	0.076
Sex		-0.55	1.28	0.667
IQ		-0.07	0.04	0.106
ADHD diagnosis		-1.88	1.14	0.102
Age		-0.07	0.16	0.650
BRIEF GEC		0.14	0.05	0.005*
Model 3	0.22			<.001*
Constant		44.69	10.93	<.001*
Sex		-29.20	7.99	<.001*
IQ		-0.07	0.04	0.100
ADHD diagnosis		-1.04	1.10	0.345
Age		-0.05	0.15	0.743
BRIEF GEC		-0.37	0.15	0.015*
BRIEF GEC * Sex		0.42	0.11	< .001*

722
723 * p = 0.017
724 ADI-R: Autism Diagnostic Interview- Revised, diagnostic algorithm. A: Reciprocal Social Interaction domain, B:
725 Communication domain, C: Restricted, repetitive and stereotyped behavior domain.
726 ADHD: Attention deficit/ hyperactivity disorder
727 IQ: Intelligence Quotient
728 BRIEF_GEC: Behavior Rating Inventory of Executive Function, Global Executive Composite
729 B = unstandardized regression coefficients
730

731
732 2B Communication domain
733
734




ADI-R B	R ²	B	SE B	p
Model 1	0.01			0.843
Constant		12.86	4.47	0.005*
Sex		-0.42	1.14	0.717
IQ		-0.04	0.04	0.357
ADHD diagnosis		0.44	1.01	0.664
Age		0.01	0.15	0.963
Model 2	0.07			0.200
Constant		6.11	5.16	0.239
Sex		-0.76	1.12	0.500
IQ		-0.03	0.04	0.378
ADHD diagnosis		-0.01	1.00	0.990
Age		0.01	0.14	0.949
BRIEF GEC		0.11	0.04	0.016*
Model 3	0.18			0.004*
Constant		35.20	9.62	< .001*
Sex		-25.36	7.10	< .001*
IQ		-0.03	0.03	0.404
ADHD diagnosis		0.75	0.97	0.439
Age		0.01	0.13	0.916
BRIEF GEC		-0.33	0.13	0.013*
BRIEF GEC* Sex		0.36	0.10	< .001*

735 *p = 0.017
736 ADI-R: Autism Diagnostic Interview- Revised, diagnostic algorithm. A: Reciprocal Social Interaction domain, B:
737 Communication domain, C: Restricted, repetitive and stereotyped behavior domain.
738 ADHD: Attention deficit/ hyperactivity disorder
739 IQ: Intelligence Quotient
740 BRIEF_GEC: Behavior Rating Inventory of Executive Function, Global Executive Composite
741 B = unstandardized regression coefficients
742
743

744 2C Restricted, repetitive and stereotyped behavior domain
745

ADI-R C	R ²	B	SE B	p
Model 1	0.04			0.435
Constant		5.70	2.16	0.010*
Sex		-1.00	0.55	0.073
IQ		-0.01	0.02	0.478
ADHD diagnosis		-0.39	0.48	0.422
Age		0.01	0.07	0.889
Model 2	0.09			0.118
Constant		2.69	2.50	0.286
Sex		-1.15	0.54	0.037
IQ		-0.01	0.02	0.506
ADHD diagnosis		-0.58	0.48	0.229
Age		0.01	0.07	0.873
BRIEF GEC		0.05	0.02	0.027
Model 3	0.12			0.063
Constant		1.33	4.88	0.037
Sex		-7.62	3.60	0.037
IQ		-0.01	0.02	0.533
ADHD diagnosis		-0.39	0.49	0.428
Age		0.01	0.07	0.857
BRIEF GEC		-0.07	0.07	0.309
BRIEF GEC * Sex		0.09	0.05	0.072

746
747 * p = 0.017
748 ADI-R: Autism Diagnostic Interview- Revised, diagnostic algorithm. A: Reciprocal Social Interaction domain, B:
749 Communication domain, C: Restricted, repetitive and stereotyped behavior domain.
750 ADHD: Attention deficit/ hyperactivity disorder
751 IQ: Intelligence Quotient
752 BRIEF_GEC: Behavior Rating Inventory of Executive Function, Global Executive Composite
753 B = unstandardized regression coefficients
754
755

Sex

Female

Male