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Abstract

Identification of neoantigens is a critical step in predicting response to checkpoint
blockade therapy and design of personalized cancer vaccines. We have developed an
in silico sequence analysis toolkit - pVACtools, to facilitate comprehensive neoantigen
characterization. pVACtools supports a modular workflow consisting of tools for
neoantigen prediction from somatic alterations (pVACseq and pVACfuse), prioritization
and selection using a graphical web-based interface (pVACviz) and design of DNA
vector-based vaccines (pVACvector) and synthetic long peptide vaccines. pVACtools is
available at pvactools.org.
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The increasing use of cancer immunotherapies has spurred interest in identifying and
characterizing predicted neoantigens encoded by a tumor genome. The facility and
precision of computational tools for predicting neoantigens have become increasingly
important(1), and several such resources have been published(2—4). Typically, these
tools start with a list of somatic variants (in VCF or other formats) with annotated protein
changes, and predict the strongest MHC binding peptides (8-11-mer for class | MHC
and 13-25-mer for class Il) using one or more prediction algorithms(5—7). The predicted
neoantigens are then filtered and ranked based on defined metrics including
sequencing read coverage, variant allele fraction (VAF), gene expression, and
differential binding compared to the wild type peptide (agretopicity index score(8)).
However, of the small number of such prediction tools (Supp Table 1), most lack key
functionality, including predicting neoantigens from gene fusions, aiding optimized
vaccine design for DNA cassette vaccines, and incorporating nearby germline or
somatic alterations into the candidate neoantigens(9). Furthermore, none of the existing
tools offer an intuitive graphical user interface for visualizing and efficiently selecting the
most promising candidates; a key feature for facilitating involvement of clinicians and
other researchers in the process of neoantigen evaluation.

To address these limitations, we created a comprehensive and extensible toolkit for
computational identification, selection, prioritization and visualization of neoantigens -
‘PVACtools’, that facilitates each of the major components of neoantigen identification.
This computational framework can be used to identify neoantigens from a variety of
somatic alterations, including gene fusions and insertion/deletion frameshift mutations,
both of which potentially create strong immunogenic neoantigens(10). pVACtools can
facilitate both MHC class | and Il predictions, and provides an interactive display of
predicted neoantigens for review by the end user.

The pVACtools workflow (Figure 1) is divided into modular components that can be run
independently. The main tools in the workflow are: (a) pVACseq: a significantly
enhanced and reengineered version of our previous pipeline(11) for identifying and
prioritizing neoantigens from a variety of tumor-specific alterations (b) pVACfuse: a tool
for detecting neoantigens resulting from gene fusions (c) pVACuviz: a graphical user
interface web client for process management, visualization and selection of results from
pVACseq (d) pVACvector: a tool for optimizing design of neoantigens and nucleotide
spacers in a DNA vector that prevents high-affinity junctional neoantigens, and (e)
pVACapi: an OpenAPI HTTP REST interface to the pVACtools suite.
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Figure 1: Overview of pVACtools workflow: The pVACtools workflow is highly modularized and is
divided into flexible components that can be run independently. The main tools under the workflow
include pVACseq for identifying and prioritizing neoantigens from a variety of somatic alterations (red
inset box), pVACfuse (green) for detecting neoantigens resulting from gene fusions, pVACviz (blue) for
process management, visualization and selection of results and pVACvector (orange) for optimizing
design of neoantigens and nucleotide spacers in a DNA vector. All of these tools interact via the pVACapi
(purple), an OpenAPI HTTP REST interface to the pVACtools suite.

pVACseq(11) has been re-implemented in Python3 and extended to include many new
features since our initial report of its use. pVACseq no longer requires a custom input
format for variants, and now uses a standard VCF file annotated with VEP(12). In our
own neoantigen identification pipeline, this VCF is the result of merging results from
multiple somatic variant callers and RNA expression tools (Supplementary
Text/Example pipeline for creation of pVACtools input files). Information that is not
natively available in the VCF output from somatic variant callers (such as coverage and
variant allele fractions for RNA and DNA, as well as gene and transcript expression
values) can be added to the VCF using VAtools (http://vatools.org), a suite of accessory
routines that we created to accompany pVACtools. pVACtools queries these features
directly from the VCF, enabling prioritization and filtering of neoantigen candidates
based on sequence coverage and expression information. In addition, pVACseq now
makes use of phasing information taking into account variants proximal to somatic
variants of interest. Since proximal variants can change the peptide sequence and
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affect neoantigen binding predictions, this is important for ensuring that the selected
neoantigens correctly represent the individual’'s genome (9). We have also expanded
the supported mutation types for neoantigen predictions to include in-frame indels and
frameshift mutations. These capabilities expand the potential number of targetable
neoantigens several-fold in many tumors (10,13)(Supplementary Data).

To prioritize neoantigens, pVACseq now offers support for eight different MHC Class |
antigen prediction algorithms and four MHC Class Il prediction algorithms. The tool
does this in part by leveraging the Immune Epitope Database (IEDB)(14) and their suite
of six different MHC class | prediction algorithms, as well as three MHC Class Il
algorithms (Methods/Neoantigen prediction). pVACseq supports local installation of
these tools for high-throughput users, access through a docker container
(https://hub.docker.com/r/griffithlab/pvactools), or provides ready-to-go access via the
IEDB RESTful web interface. In addition, pVACseq now contains an extensible
framework for supporting new neoantigen prediction algorithms that has been used to
add support for two new non-IEDB algorithms - MHCflurry(15) and MHCnuggets(16). By
creating a framework that integrates many tools we allow for (a) a broader ensemble
approach than IEDB, and (b) a system that other users can leverage to develop
improved ensemble ranking, or to integrate proprietary or not-yet-public prediction
software. Importantly, this framework enables non-informatics-expert users to predict
neoantigens from sequence variant data sets.

Once neoantigens have been predicted, the pVACseq ranking score is used to prioritize
them. This score takes into account gene expression, sequence read coverage, binding
affinity predictions, and agretopicity (Methods/Ranking of Neoantigens). In addition to
applying strict binding affinity cutoffs, the pipeline also offers support for MHC allele-
specific cutoffs(17). We also offer cleavage position predictions via optional processing
through NetChop(18) as well as stability predictions made by NetMHCstabPan(19).

Previous studies have shown that the novel protein sequences produced by gene
fusions frequently produce neoantigen candidates(20). pVACfuse provides support for
predicting neoantigens from such gene fusions. Fusion variants may be imported in
annotated BEDPE format from any fusion caller. We recommend using INTEGRATE-
Neo(20) for annotation of fusion calls in BEDPE format. These variants are then
assessed for presence of fusion neoantigens using predictions from any of the
pVACseq-supported binding prediction algorithms.

Implementing cancer vaccines in a clinical setting requires multidisciplinary teams,
many of whom may not be informatics experts. To support this growing community of
users, we developed pVACviz, which is a browser-based user interface that assists in
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launching, managing, reviewing, and visualizing the results of pVACtools processes.
Instead of interacting with the tools via terminal/shell commands, the pVACviz client
provides a modern web-based user experience. Users complete a pVACseq (Figure 2)
process setup form that provides helpful documentation and suggests valid values for
inputs. The client also provides views showing ongoing processes, their logs, and
interim data files to aid in managing and troubleshooting. After a process has
completed, users may examine the results as a filtered data table, or as a scatterplot
visualization - allowing them to curate results and save them as a CSV file for further
analysis. Extensive documentation of the visualization interface can be found in the
online documentation (https://pvactools.readthedocs.io/en/latest/pvacviz.html).

8§8rvAcviz
( ess HCC2_2 e | [(wwour -

“ Start Process

Corrosponding WT Score

Figure 2: pVACviz GUI client: pVACtools provides a browser-based graphical user interface, called
pVACuviz, that provides an intuitive means to launch pipeline processes, monitor their execution, and
analyze, export, or archive their results. To launch a process, users navigate to the Start Page (A), and
complete a form containing all of the relevant inputs and settings for a pVACseq process. Each form field
includes help text, and provides typeahead completion where applicable. For instance, the Alleles field
provides a typeahead dropdown menu that matches available alleles. Once a process is launched, a user
may monitor its progress on the Manage Page (B), which lists all running, stopped, and completed
processes. The Details Page (C) shows a process’ current log, attributes, and any results files as well as
providing controls for stopping, restarting, exporting and archiving the process. The results of pipeline
processes may be analyzed on the Visualize Page (D), which displays a customizable scatterplot of a
file's rows. The X and Y axis may be set to any column in the result set, and filters may be applied to
values in any column. Additionally, points may be selected on the scatter plot or data grid (not visible in
this figure) for further analysis or export as CSV files.

Furthermore, to support informatics groups that want to incorporate or build upon the
pVACtools features, we developed pVACapi, which provides a HTTP REST interface to
the pVACtools suite. Currently, it provides the API that pVACviz uses to interact with the
pVACtools suite. Advanced users could develop their own user interfaces, or use the
API to control multiple pVACtools installations remotely over an HTTP network.
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Once a list of neoantigen candidates has been prioritized and selected, the pVACvector
utility can be used to aid in the construction of DNA-based cancer vaccines. The input is
either the output file from pVACseq or a fasta file containing peptide sequences.
pVACvector returns a neoantigen sequence ordering that minimizes the effects of
junctional peptides (which may create novel antigens) between the sequences (Figure
3). This is accomplished by using the core pVACseq module to predict the binding
scores for each junctional peptide and by modifying junctions with spacer(21,22) amino
acid sequences, or by trimming the ends of the peptides in order to reduce reactivity.
The final vaccine ordering is achieved through a simulated annealing procedure that
returns a near-optimal solution, when one exists (Methods/Implementation).
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Figure 3: An example pVACvector output showing the optimum arrangement of candidate
neoantigens for a DNA-vector based vaccine design. The figure depicts a circularized DNA insert
carrying 10 encoded neoantigenic peptide sequences to be synthesized and encoded/cloned into a DNA
plasmid. DNA sequences encoding each peptide are ordered (with use of spacer sequences where
needed) to ensure there are no strong-binding junctional epitopes. Each neoantigenic peptide candidate
is shown in Blue, Green, Red, Orange, Purple, and Brown. Spacer sequences, where added to minimize
junctional epitope affinity, are depicted in Black, along with the binding affinity value of the junctional
epitope. Labels represent the Gene Name and Amino Acid Change for each candidate.
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As many prediction algorithms are CPU-intensive, pVACseq, pVACfuse, and
pVACvector also support using multiple cores to improve runtime. Using this feature,
calls to IEDB and other prediction algorithms are made in parallel over a user-defined
number of processes. (Methods/Implementation).

pVACtools has been used to predict and prioritize neoantigens for several
immunotherapy studies(23—-25) and cancer vaccine clinical trials (e.g. NCT02348320,
NCT03121677, NCT03122106, NCT03092453 and NCT03532217). We also have a
large external user community that has been actively evaluating and using these
packages for their neoantigen analysis, and has also helped in the subsequent
refinement of pVACtools through extensive feedback. The original ‘pvacseq’ package
has been downloaded over 41,000 times from PyPi, and the ‘pvactools’ package has
been downloaded over 18,000 times.

To demonstrate the utility and performance of the pVACtools package, we downloaded
exome sequencing and RNA-Seq data from The Cancer Genome Atlas (TCGA)(26)
from 100 cases each of melanoma, hepatocellular carcinoma and lung squamous cell
carcinoma, and used patient-specific MHC Class | alleles (Supp Fig 1) to determine
neoantigen candidates for each tumor. By extending support for additional variant types
(Supp Fig 2) as well as prediction algorithms, we produced 42% more predicted
neoantigens compared to the previous version of pVACseq(11) (Supplementary
Text/Analysis of TCGA data using pVACtools).

Comparison of epitope prediction software

Since we offer support for as many as eight different epitope prediction tools, we
assessed agreement in binding affinity predictions (IC50) between these algorithms
from a random subset of 100,000 neoantigen peptides from the TCGA analysis (Figure
4). The highest correlation was observed between the two stabilization matrix method
(SMM)-based algorithms - SMM and SMMPMBEC. The next best correlation was
observed between NetMHC and MHCflurry, possibly due to both being allele-specific
predictors employing neural network based models. Overall the correlation between
prediction algorithms is low (mean correlation of 0.388 and range of 0.18-0.89 between
all pairwise comparisons of algorithms).
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Figure 4: Correlation between prediction algorithms: Spearman Correlation between prediction
values from all 8 class | prediction algorithms generated from a random subsample of 100,000 peptides.

We also evaluated if there were any biases among the algorithms to predict strong (i.e.
binding affinity < = 500nM) or weak binding epitopes (Figure 5 and Supp Fig 3). We
found that MHCnuggets predicts the highest number of strong-binding candidates
alone. Of the total number of strong binding candidates predicted, 64.7% of these
candidates were predicted by a single algorithm (any one of the eight algorithms),
35.2% were predicted as strong-binders by two to seven algorithms, and only 1.8% of
the strong-binding candidates were predicted as strong binders by the combination of all
eight algorithms. In fact, as shown in Figure 6, even if one (or more) algorithms predict
a peptide to be a strong binder, often another algorithm not only doesn't agree but
disagrees by a large margin, in some cases predicting that same peptide as a very
weak binder. This remarkable lack of agreement underscores the potential value of an
ensemble approach that considers multiple algorithms.
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Figure 5: Intersection of peptide sequences predicted by different algorithms are shown using
upset plots. The y-axis shows the number of overlapping unique neoantigenic peptides predicted for
each combination of algorithm depicted on the x-axis. Each collection of connected circles shows the set
contained in an exclusive intersection (i.e. the identity of each algorithm), while the light gray circles
represent the algorithm(s) that do not participate in this exclusive intersection. (a) Upset plot for the top 20
algorithm combinations ranked by the number of peptides predicted to be a good binder (mutant IC50
score < 500 nM). The combination of all eight algorithms (highlighted orange) ranks the 8th highest; (b)
Upset plot for algorithm combinations where at least six algorithms agree on predicting a peptide to be a
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good binder (MT IC50 score < 500 nM). The combination of all eight algorithms (highlighted orange)
ranks the highest.

Distribution of binding affinity values for peptides predicted as strong binders by at least one algorithm

Predicted Poor Binder
Predicted Good Binder
Median MT Score

== == 500 nM Default Threshold

N

log(MT Score/nM)

[N]

MHCflurry MHCnuggets NetMHC NetMHCcons  NetMHCpan FickPocket SMM SMMPMBEC

Figure 6: Overall distribution of binding affinity scores (nM) for 126,648 peptides (out of total
predicted 14,599,993 peptides) where at least one of the algorithms predicts a strong binder. To
define the set of peptides that are strong binders according to at least one algorithm, HLA allele subtype-
specific thresholds were applied when available, otherwise the default cutoff binding affinity of 500 nM
was used. The peptides were further filtered using the default coverage based filters. Peptides with
predicted MT IC50 scores lower than their respective cutoff scores are highlighted in orange. The median
MT IC50 scores of each algorithm’s prediction are indicated for reference (purple line).

Next we determined if the number of human HLA alleles supported by these eight
algorithms differed. As shown (Supp Fig 4), MHCnuggets supports the highest number
of human HLA alleles.

As reported from our demonstration analysis, a typical tumor has too many possible
neoantigen candidates to be practical for a vaccine. There is therefore a critical need for
a tool that takes in the input from a tumor sequencing analysis pipeline and reports a
filtered and prioritized list of neoantigens. pVACtools enables a streamlined, accurate
and user-friendly analysis of neoantigenic peptides from NGS cancer datasets. This
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suite offers a complete and easily configurable end-to-end analysis, starting from
somatic variants and gene fusions (pVACseq and pVACfuse respectively), through
filtering, prioritization, and visualization of candidates (pVACviz), and determining the
best arrangement of candidates for a DNA vector vaccine (pVACvector). Furthermore,
by supporting additional classes of variants as well as gene fusions, we offer an
increase in the number of predicted neoantigens which may be critical for low
mutational burden tumors. Finally, by extending support for multiple binding prediction
algorithms, we allow for a consensus approach. The need for this integrated approach
is made abundantly clear by the high disagreement between these algorithms observed
in our demonstration analyses.

The results from pVACtools analyses are already being used in dozens of cancer
immunology studies, including studying the relationship between tumor mutation burden
and neoantigen load to predict response in checkpoint blockade therapy trials and the
design of cancer vaccines in ongoing clinical trials. We anticipate that pVACtools will
make such analyses more robust, reproducible, and facile as these efforts continue.

Methods

TCGA data pre-processing

Aligned (build GRCh38) tumor and normal BAMs from BWA(27) (version 0.7.12-r1039)
as well as somatic variant calls from VarScan2(28,29)(in VCF format) were downloaded
from the Genomic Data Commons (GDC, https://gdc.cancer.gov/). Since the GDC does
not provide germline variant calls for TCGA data, we used GATK’s(30) HaplotypeCaller
to perform germline variant calling using default parameters. These calls were refined
using VariantRecalibrator in accordance with GATK Best Practices(31). Somatic and
germline missense variant calls from each sample were then combined using GATK’s
CombineVariants, and the variants were subsequently phased using GATK’s
ReadBackedPhasing algorithm.

Phased Somatic VCF files were annotated with RNA depth and expression information
using VAtools (http://vatools.org). We restricted our analysis to only consider ‘PASS’
variants in these VCFs as these are higher confidence than the raw set, and the
variants were annotated using the “--pick” option in VEP (Ensembl version 88).

Existing in silico HLA typing information was obtained from The Cancer Immunome
Atlas (TCIA) database(32).

Neoantigen prediction
The VEP-annotated VCF files were then analyzed with pVACseq using all eight Class |
prediction algorithms for neoantigen peptide lengths 8-11. The current MHC Class |
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algorithms supported by pVACseq are NetMHCpan(33), NetMHC(7,33),
NetMHCcons(34), PickPocket(35), SMM(36), SMMPMBEC(37), MHCflurry(15) and
MHCnuggets(16). The four MHC Class Il algorithms that are supported are
NetMHClIIpan, SMMalign, NNalign, and MHCnuggets. For the demonstration analysis,
we limited our prediction to only MHC Class | alleles due to availability of HLA typing
information from TCIA, though binding predictions for Class Il alleles can also be
generated using pVACtools.

Ranking of Neoantigens

To help prioritize neoantigens, a ranking score is assigned to all neoantigens that pass
initial filters where each of the following four criteria are assigned a rank-ordered value
(where the worst = 1):

B = binding affinity

F = Fold Change between MT and WT alleles

M = mutant allele expression, calculated as (Gene expression * Mutant allele RNA
Variant allele fraction)

D = DNA Variant allele fraction

A final ranking is based on a score obtained from combining these values:

Priority Score = B+F+(M*2)+(D/2). This score is not meant to be a definitive metric of
peptide suitability for vaccines, but was designed to be a useful first step in the peptide
selection process.. Moreover, since the score is based on rank-ordered values, each
neoantigen’s score is relative to the scores of the other neoantigens it is evaluated
against and can not be used to compare neoantigens between different pVACseq runs.

Implementation

pVACtools is written in Python3. The individual tools are implemented as separate
command line entry points that can be run using the ‘pvacseq’, ‘pvacfuse’,
‘pvacvector’, pvacapi’, and ‘pvacviz commands to run the respective tool.
pVACapi is required to run pVACviz so both the "pvacapi’ and “pvacviz' commands
need to be executed in separate terminals.

The test suite is implemented using the Python unittest framework and GitHub
integration tests are run using travis-ci (travis-ci.org). Code changes are integrated
using GitHub pull requests (https://github.com/griffithlab/pVACtools/pulls). Feature
additions, user requests, and bug reports are managed using the GitHub issue tracking
(https://github.com/griffithlab/pVACtools/issues). User documentation is written using
the reStructuredText markup language and the Sphinx documentation framework
(sphinx-doc.org). Documentation is hosted on Read The Docs (readthedocs.org).
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The pymp-pypi package was used to add support for parallel processing. The number
of processes is controlled by the -—-n-threads parameter.

pVACseq

For pVACseq, the pyvcf package is first used for parsing the input VCF file and
extracting information about the supported missense, inframe indel, and frameshift
mutations into TSV format.

This output is then used to determine the wildtype peptide sequence by extracting a
region around the somatic mutation according to the --peptide-sequence-length
specified by the user. The mutation’s amino acid change is incorporated in this peptide
sequence to determine the mutant peptide sequence. For frameshift mutations, the new
downstream protein sequence calculated by VEP is reported from the mutation position
onward. The number of downstream amino acids to include is controlled by the —-
downstream-sequence-length parameter. If a phased VCF with proximal variants
is provided, proximal missense mutations that are in phase with the somatic variant of
interest are incorporated into the mutant and wildtype peptide sequences as
appropriate. The mutant and wildtype sequences are stored in a FASTA file. The
FASTA file is then submitted to the individual prediction algorithms for binding affinity
predictions. For algorithms included in IEDB, we either use the IEDB API or a
standalone installation, if an installation path is provided by the user (--iedb-
install-directory). The mhcflurry and mhcnuggets packages are used to run
the MHCflurry(15) and MHCnuggets(16) prediction algorithms, respectively.

The predicted mutant antigens are then parsed into a TSV report format and for each
mutant antigen the closest wildtype antigen is determined and reported. Predictions for
each mutant antigen/neoantigen from multiple algorithms are aggregated into the “best”
(lowest) and median binding scores. The resulting TSV is processed through multiple
filtering steps (Supplementary Text/Comparison of filtering criteria): (1) Binding
filter: this filter selects the strongest binding candidates based on the mutant binding
score and the fold change (WT score / MT score). Depending on the --top-score-
metric parameter setting, this filter is either applied to the median score across all
chosen prediction algorithms(default) or the best score amongst the chosen prediction
algorithms. (2) Coverage filter: this filter accepts VAF and coverage information from the
tumor DNA, tumor RNA, and normal DNA, if these values are available in the input
VCF. (3) Transcript-support-level (TSL) filter: this filter evaluates each transcript’s
support level if this information was provided by VEP in the VCF. (4) Top-score filter: the
filter picks the top mutant peptide for each variant, using the binding affinity as the
determining factor. This filter is implemented to only select the best candidate from
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amongst multiple candidates that could result from a single variant due to different
peptide lengths, variant registers, transcript sequences, and HLA alleles. The result of
these filterings steps is reported in a filtered report TSV. The remaining neoantigens are
then annotated with cleavage site and stability predictions by NetChop and
NetMHCStabPan, respectively, and a relative ranking score (Methods/Ranking of
Neoantigens) is assigned. The rank ordered final output is reported in a condensed file.
The pandas package is used for data management while filtering and ranking the
neoantigen candidates.

pVACvector

When running pVACvector with a pVACseq output file, the original input VCF must also
be provided (--input-vcf parameter). The VCF is used to extract a larger peptide
sequence around the target neoantigen (length determined by the —-input-n-mer
parameter). Alternatively, a list of target peptide sequences can be provided in a fasta
file. The set of peptide sequences are then combined in all possible pairs, and a
ordering of peptides for the vector is produced as follows:

To determine the optimal order of peptide-spacer-peptide combinations, binding
predictions are made for all peptide registers overlapping the junction. A directed graph
is then constructed, with nodes defined as target peptides, and edges representing
junctions. The score of each edge is defined as the lowest binding score of its junctional
peptides (a conservative metric). Edges with scores below the threshold are removed,
and if heuristics indicate that a valid graph may exist, a simulated annealing procedure
is used to identify a path through the nodes that maximizes junction scores (preserving
the weakest overall predicted binding for junctional epitopes). If no valid ordering is
found, additional “spacer” amino acids are added to each junction, binding affinities are
re-calculated, and a new graph is constructed and tested, setting edge weights equal to
that of the best performing (highest binding score) peptide-junction-spacer combination.

The spacers used for pVACvector are set by the user with the --spacers parameter.
This parameter defaults to

None, AAY, HHHH, GGS, GPGPG, HHAA, AAL, HH, HHC, HHH, HHHD, HHL, HHHC, where
None is the placeholder for testing junctions without a spacer sequence. Spacers are
tested iteratively, starting with the first spacer in the list, and adding subsequent spacers
if no valid path is found.

If no result is found after testing with the full set of spacers, the ends of “problematic”
peptides, where all junctions contain at least one well-binding epitope, will be clipped by
removing one amino acid at a time, then repeating the above binding and graph-building
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process. This clipping may be repeated up to the number of times specified in the --
max-clip-length parameter.

pVACapi and pVACviz

pVACapi is implemented using the Python libraries Flask and Bokeh. The pVACviz
client is written in TypeScript using the Angular web application framework, the Clarity
Ul component library, and the ngrx library for managing application state.

Data availability

Data from 100 cases each of melanoma, hepatocellular carcinoma and lung squamous
cell carcinoma were obtained from TCGA and downloaded via the Genomics Data
Commons (GDC). This data can be accessed under dbGaP study accession
phs000178. Data for demonstration and analysis of fusion neoantigens was
downloaded from the Github repo for Integrate
(https://github.com/ChrisMaherLab/INTEGRATE-Vis/tree/master/example).

Software availability

The pVACtools codebase is hosted publicly on GitHub at
https://github.com/griffithlab/pVVACtools and https://github.com/griffithlab/BGA-interface-
projects (pVACviz). User documentation is available at pvactools.org. This project is
licensed under the Non-Profit Open Software License version 3.0 (NPOSL-3.0,
https://opensource.org/licenses/NPOSL-3.0). pVACtools has been packaged and
uploaded to PyPi under the “pvactools” package name and can be installed on Linux
systems by running the "pip install pvactools’ command. Installation requires a Python
3.5 environment which can be emulated by using Conda. Versioned Docker images are
available on DockerHub (https://hub.docker.com/r/griffithlab/pvactools/).
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