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Abstract

Background: Genomic initiatives such as The Cancer Genome Atlas (TCGA) project contain
data on profiling of thousands of tumors with different —omics approaches, providing a
valuable source of information which may be used to decipher cancer signaling and related
alterations. Managing and analyzing data from large-scale projects such as TCGA is a
demanding task. Indeed, it is difficult to dissect the high complexity hidden in genomic data
and to adequately account for tumor heterogeneity. Results: In this study, we used a robust
statistical framework along with the integration of diverse bioinformatic tools to analyze
next-generation sequencing data from more than 1000 patient samples from two different
lung cancer subtypes, i.e., the lung adenocarcinoma (LUAD) and the squamous cell
carcinoma (LUSC). In particular, we used RNA-Seq gene expression data to identify both co-
expression modules and differentially expressed genes to accurately discriminate between
LUAD and LUSC. Moreover, we identified a group of genes which could act as specific
oncogenes or tumor suppressor genes in one of the two lung cancer types, as well as two
dual role genes. Our results have also been cross-validated against other transcriptomics
data of lung cancer patients. Conclusions: Our integrative approach allowed to identify two
key features: a substantial up-regulation of genes involved in O-glycosylation of mucins in
LUAD, and a compromised immune response in LUSC. The immune-profile associated with
LUSC is linked to the activation of three specific oncogenic pathways which promote the
evasion of antitumor immune response, providing new future directions for the design of
target therapies.

1. Background

Lung cancer is one of the most aggressive cancers, with a five-year overall survival of 10—
15% [1]. Lung cancer can be classified into small cell lung cancer (SCLC) and non-SCLC
(NSCLC), which account for 15% and 85% of all lung cancers, respectively. The main subtypes
of NSCLC are divided mainly into adenocarcinoma (LUAD) and squamous cell carcinoma
(LUSC). Lung cancer is a highly heterogeneous cancer type with multiple histologic subtypes
and molecular phenotypes [2,3].

Since 2015, the classification of lung tumors has been defined by both their cytology and
histology [1,4]. Despite the staining strategy to separate the lung tumors into different
classes, cases that are immunohistochemically ambiguous are often reported and difficult to
resolve. A proper differentiation between LUAD and LUSC also determines eligibility for
certain types of therapeutic strategies [5]. For example, certain drugs are contraindicated
for one of the two lung cancer types, such as Bevacizumab (Avastin) in LUSC [6]. It thus
becomes crucial to discriminate among the two lung cancer types in a precise way.
Microarray technologies have been used to identify differentially expressed genes (DEGs) in
lung cancer samples to identify critical markers [7-10]. For example, Naval et al. identified a
prognostic gene-expression signature of 11 genes which was subsequently validated in
several independent NSCLC gene expression datasets[9]. This pioneering study established
the prognostic impact of carcinoma-associated fibroblasts gene-expression changes in
NSCLC patients. However, the markers identified in the study do not differentiate between
LUAD and LUSC.
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Gene or microRNA markers may be used, in principle, to distinguish between these two
types of cancer [11-14]. Most of the studies carried out so far on LUAD and LUSC gene
expression data have focused on the selection of a group of genes without considering, for
example, the co-expression of the candidate genes. Single markers are very unlikely to be
sufficiently robust to discriminate between cancer subtypes due to the intrinsic
heterogeneity of tumors. In this context, new methods have been developed for robust
analyses of co-expression signatures in gene expression data [15-17].

The Cancer Genome Atlas (TCGA) is a large genomic initiative in which more than 10 000
patients were profiled using six different platforms to identify cancer-related signatures
[18-20]. TCGA provides a unique resource which can be re-analyzed for the discovery of
cancer-related alterations or new biomarkers specific to a certain cancer (sub)type. Among
the next-generation sequencing (NGS) platforms available, RNA-Seq is a recent and reliable
approach for quantification of changes at the transcriptional level [21]. Lung cancer datasets
for LUAD [22] and LUSC [23] are available in TCGA and account for more than 1000 samples
overall. In parallel, the Recount?2 initiative [24], which integrates GTEX [25] and TCGA, has
recently allowed for an increase of healthy tissue samples for the comparison with tumor
samples. Thus, the LUAD and LUSC TCGA datasets offer a suitable framework for the
identification of gene expression signatures that could discriminate between the two lung
cancer types regarding classification, diagnosis, and prognosis, as well as to shed light on the
underlying molecular mechanisms. These two datasets have been used either to identify
general cancer signatures [10,26—32] or to pinpoint signatures specific in only one of the
lung cancer types [33—35].

Cline and colleagues [32] recently showed that there is a subset of 19 samples in the LUSC
cohort that feature a LUAD-like gene expression profile. They labeled these samples
‘discordant LUSC'. Discordant LUSC samples are borderline for subtype classification, and
the similarity with LUAD is also modest. These findings were also supported by the analyses
from Piccolo’s group on an alternative pre-processing of the TCGA datasets [31]. As such, it
is important to account for this information in the re-analysis of the TCGA lung cancer data
to avoid misleading conclusions.

We aimed to closely compare LUAD and LUSC TCGA datasets using a robust statistical and
bioinformatic framework. In particular, we have: i) identified a group of genes that are
differentially expressed between LUAD and LUSC lung cancer types when compared to the
normal samples, ii) assessed changes in the gene expression signature over cancer stages,
iii) identified modules of differently co-expressed genes in the two lung cancer types and
how the transcription regulation of the module genes was altered, iv) predicted potential
oncogenes, tumor suppressors or dual role genes for each type and, iv) evaluated if there
were potential prognostic markers among the group of LUAD- or LUSC-specific candidate
genes. Overall, our study resulted in a subset of genes and pathways that have the potential
to be used to discriminate among the two cancer types. Moreover, we identified candidate
genes which deserve further functional/structural studies since they are poorly understood
but potentially important as lung cancer markers or targets. Lastly, our data can also provide
a useful guide to cellular studies using cancer cell lines which reflects the LUAD or LUSC
types.

2. Results

2.1 Curation and description of the datasets used in the study
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The datasets for our analyses were curated to remove the LUSC discordant samples and to
remove samples with a low tumor purity (see Materials and Methods). The number of
samples and genes retained for the analyses are reported in Table S1.

We performed differential expression analyses (DEAs) using generalized linear models to
identify a subset of differentially expressed genes in the two TCGA lung cancer datasets
LUAD and LUSC tumor primary (TP) with respect to the normal (NT) samples. A clear
consensus on the best DEA approaches for RNA-Seq data does not exist yet, and different
DEA methods could provide different results [36—40]. We thus employed three pipelines for
DEA of LUAD and LUSC and generated a consensus list of DE genes (see Materials and
Methods).

In addition, we curated three different datasets for each cancer type: i) two datasets
containing all the samples (LUAD,;, LUSCy) that account for partially paired tumors and
normal samples; ii) two datasets containing only paired samples (LUADpaired, LUSCpaired), i-€-,
normal and tumor samples from the same patient; iii) two datasets containing all samples
without paired tumor samples (LUADynpaired; LUSCynpaired). The pre-processed and processed
(after normalization and filtering steps) data used in the study are deposited in our Github
repository (https://github.com/ELELAB/LUADvsLUSC tcga). A summary of the genes found
to be up- or down-regulated by the different combination of curated datasets and DEA
approaches is also reported in the Github repository. The paired datasets aimed to account
for the proper removal of individual variability. We noticed that the usage of paired datasets
from TCGA made a difference in the comparison of individual gene levels [41] and we thus
aimed to evaluate its impact more broadly on the DEA analyses. The usage of the third
dataset (unpaired) aimed to remove artifacts due to a partially paired dataset [42] with the
purpose of identifying a gene expression profile that may be observed without correction
for patient-specific effects. The choice to remove the paired tumor samples was dictated by
the fact that the datasets contained several non-paired tumor samples, whereas almost all
the normal samples were associated with a paired tumor sample and were thus retained. A
comparison of the DE genes obtained from the analysis of each of the three datasets
allowed us to evaluate the impact of different curations in terms either of either sample size
or sample pairs.

2.2. The usage of paired or non/partially paired data mildly affects the results of DEA,
whereas a too simplistic design in the DEA protocol has marked effects

At first, we assessed the influence of using different definitions of the dataset for DEA
analyses. We compared the results of DEA carried out with a certain method, i.e., limma or
edgeR or edgeR-TCGAb, on the three different datasets (paired, all, unpaired) for each of the
two cancer types (LUAD and LUSC) (Figure 1). The differences in the total number of DE
genes were minimal among the different datasets (approximately 1-8 %). We noticed that
the usage of paired data provides a more stringent selection of up-regulated genes but is
more permissive concerning the estimate of down-regulated genes. Moreover, the datasets
unpaired and all feature a more substantial overlap with respect to the paired ones (Figure
1).

Next, we analyzed in more detail, the impact of the different DEA approaches on the
definition of DE genes. Limma results in the most stringent approach in the case of up-
regulated genes (Table S2). Inversely, limma provides a large number of down-regulated
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genes (more than 300) that are not identified by the two edgeR pipelines (Figure 1). At the
gene identity level, we also observed a similar pattern to the one above, i.e. that partially
paired (all) and unpaired datasets have similar trends regarding the influence of the DEA
approach.

We obtained the most pronounced differences in the case of paired data. In this case,
edgeR-TCGAD featured a subset of up-regulated genes which are not identified by the other
two methods (Figure 1). We noticed a similar effect, even if less pronounced, when
unpaired or all samples were used (see data in our Github repository). In the case of paired
samples, this behavior can be explained by the fact that the edgeR-TCGAb pipeline does not
correct for patient-specific effects which are likely important when the normal and tumor
samples are matched. In the case of partially paired or unpaired samples, the effect is less
pronounced, and it is likely to be related to the fact that edgeR-TCGAb DEA pipeline does
not include batch corrections which we included directly within the design matrix in the
other two DEA pipelines. We therefore decided to have a closer look at the 820 and 619 up-
regulated genes identified only by the edgeR-TCGAb pipeline in LUAD and LUSC,
respectively. We extracted these genes and compared their logFC and FDR values, as
calculated by the three approaches (Figure 2). Most of the discordant genes have either
logFCs close to or below to 1 or FDR values close to 0.01 (50-60% of the genes), i.e., they are
borderline significant according to the DEA criteria set for analysis with edgeR or limma.
Moreover, edgeR-TCGAb tends to overestimate the logFC values. We also noticed that there
is a small number of cases in which edgeR-TCGAb also assign an opposite directionality, i.e.,
the genes are down-regulated according to the other two methods. Specifically, this set of
genes included: DUOXA2, IGFALS and, KLK14 in LUAD, as well as EDN3, GFI1B, MYH15, PEG3
and PENK in LUSC. We searched for each of these non-congruent genes in the IGDB.NSCLC
database [43], which is a collection of genes that are known to be altered in NSCLC. We did
not consider those hits with significant p-values but for which either the probe sets are
reported with mapping problems or the fold change is lower than 2. We observed that only
MYH15 is found to be up-regulated in one of the LUSC studies at /IGDB.NSCLC, while the
other genes listed above are significantly down-regulated, supporting the edgeR and limma
results from our study.

The results of our analyses, thus, raise concerns about the accuracy of the original
TCGAbiolinks DEA pipeline with edgeR (edgeR-TCGAb) especially when paired samples are
analyzed, highlighting a need for a different DEA design within the R/Bioconductor package.
This design should include functions for proper batch corrections and corrections for
patient-specific effects, which we recently implemented in the current version of
TCGAbiolinks (v 2.8).

We observed the main differences in DEA genes when the paired dataset was compared to
the other two datasets, as expected, considering that we explicitly corrected for the patient-
specific effects in the paired scenario. We also concluded that there is no significant
advantage in the usage of unpaired samples in the DEA of TCGA datasets, at least when only
a small fraction of paired tumor samples is removed (i.e., less than 10% of the whole tumor
dataset). Overall, 60-80% of the DE genes are in common among the three methods,
suggesting that their integration may allow for removal of genes with borderline significance
with the purpose of defining a robust signature of LUAD- and LUSC-specific genes.

2.3 Identification of LUAD- and LUSC-specific differentially expressed genes
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In the following steps, we employed the LUAD,; and LUSC,, datasets since they are the ones
that allow us to maximize the sample size. The results of the other two dataset curations
were mainly used as a further control in each of the analyses. Moreover, as an additional
control of our analyses, we carried out DEA on the LUAD and LUSC re-processed unified
datasets from the recent Recount2 initiative [24]. In the Recount2 platform, TCGA data
were integrated with the normal GTEX (Genotype Tissue Expression Project)[25] samples
(see Materials and Methods for details). This integration increases the pool of available
normal samples for the comparison for a total of 374 healthy samples. Moreover, Recount2
also provides a genuine source of healthy tissue samples to compare with the lung tumors,
e.g., not only to the normal adjacent tissues that are available in the TCGA. The list of DE
genes for LUAD and LUSC for the unified datasets are reported in our GitHub repository.

We employed a consensus approach, in which we defined as DE genes in LUAD and LUSC
only those found by all the three DEA approaches (i.e., the intersects in each of the overlap
diagrams similar to the ones reported in Figure 1, bottom panels) in the datasets all. We
then compared the up- and down-regulated genes in LUAD, with the ones of LUSCy.
Indeed, to identify gene signatures that can differentiate between the two lung cancer
types, it is not sufficient that the genes are differentially expressed with respect to the
normal samples. We also need to verify that they are not up (or down) regulated in both the
cancer types. Moreover, we further pruned the list of specifically up- (or down-) regulated
genes for LUAD or LUSC by those genes that are identified as specifically up- (or down-)
regulated in the opposite cancer type with the DEA consensus approach applied to the
datasets paired to filter out false positives.

Overall, we retained 337 and 1451 genes specifically up-regulated, as well as 165 and 956
down-regulated genes in LUAD and LUSC, respectively (reported in our Github repository).
Interestingly, we identified a small subset of genes that were up-regulated in LUAD but
down-regulated in LUSC {(MUC5B, HABP2, MUC21, and KCNKS5) or vice-versa (CSTA, P2RY1,
ANXAS8, NELL2, and NTRK2).

We carried out pathway enrichment analysis using ReactomePA [44] for the up- and down-
regulated unique genes of LUAD and LUSC. The analyses revealed that pathways related to
O-linked glycosylation of mucins is enriched for the up-regulated genes of LUAD and down-
regulated genes of LUSC, respectively (Table 1). This suggests that the proteins involved in
this pathway could play an important role in discriminating between the two lung cancer
types. Of particular interest is a group of mucins (MUC1, MUC4, MUC5B, MUC13, MUC15,
MUC16, and MUC21), as well as enzymes involved in their modifications. Additionally, we
noticed that genes involved in the complement system (C2, C3, C4BPA, C5, CFH, and CFl)
and several genes related to the pathways of the innate immune response are significantly
downregulated in LUSC. We obtained similar results using GO-enrichment analysis on GO
biological processes on LUAD samples with regards to O-linked glycosylation (Figure 1S).

2.4 Clustering genes in LUAD and LUSC across tumor stages

We aimed to identify a subset of specific and interrelated genes which, as an ensemble,
could be more effective than single markers in discriminating between LUAD and LUSC. For
this purpose, DEA alone is not sufficient. We therefore analyzed the molecular signatures
both using soft-clustering approaches over the cancer clinical stages and implementing
weighted co-expression analyses (see 2.5).
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We applied a soft-clustering approach [45,46] to separate LUAD and LUSC genes into
clusters based on their changes in gene expression during different cancer clinical stages
[47], allowing us to identify six main clusters with different signatures over stages (Figure 3
and Figure S2). We observed that LUSC genes selected for each cluster have a higher
membership value (Figure 3), i.e., more solid classification within the cluster, whereas the
LUAD gene had a ‘soft’ membership (Figure S2).

Clusters 1 and 5 of LUSC (Figure 3), as well as clusters 1 and 6 of LUAD show a general up-
regulation of genes along all stages (Figure S2). In contrast, clusters 2 and 6 of LUSC (Figure
3), and clusters 2 and 4 of LUAD (Figure S2) feature a general down-regulation when the
four clinical stages are compared to the normal samples. We extracted the genes that are
up-regulated in a certain cancer type and down-regulated in the other or the opposite,
similarly to what we previously did in the context of the DEA results. We identify a group of
46 genes which are up-regulated in LUAD but down-regulated in LUSC. 72 genes are
identified as down-regulated in LUAD and up-regulated in LUSC. The soft-clustering
comparison thus provided an additional list of interesting gene candidates of which MUCSB,
CSTA, P2RY1 and NTRK2 were shared between the soft-clustering and the DEA.

Clusters 3 of both LUAD and LUSC (Figure 3 and Figure S2) feature a signature in which the
genes are up-regulated at the early clinical stages, but they decrease again at late stages (i.e.
stage V), whereas cluster 4 of LUSC and 5 of LUAD show the opposite trend, i.e. a down-
regulation at early stages but increase at late stages (Figure 3 and Figure S2). These patterns
may be indicative of dual-role/moonlight genes.

Expression of dual-role genes may, for example, be unwanted by cancer cells in early tumor
stages, whereas they become essential later on in tumorigenesis, providing the cancer cell
with a functional advantage or resistance to chemotherapy [30].

2.5 Prediction of oncogene and tumor suppressor genes in LUAD and LUSC

Genes that are up- or down-regulated and are also known to be oncogenes or tumor
suppressors, respectively, are of great interest in cancer.

We therefore carried out a prediction of potential tumor suppressor genes (TSGs) and
oncogenes (OGs) using the Moonlight workflow[30], which employs gene expression
signatures and biological pathways to identify potential TSGs and OGs. This analysis is useful
to integrate and expand the information available on TSGs and OGs through the curated
data from TSGene (TSGDB)[48], ONGene [49] and COSMIC [50] (see Materials and Methods
for details).

At first, we were interested in evaluating which of the up- and down-regulated genes that
discriminate between LUAD and LUSC are known or predicted to be OGs (up-regulated
genes) or TSGs (down-regulated genes).

We thus identified 24 potential TSGs and 146 OCGs for LUAD, while we obtained 22 TSGs
and 456 OCGs for LUSC with the Moonlight approach (the details and full list of genes are
reported in our GitHub repository). Only 31 predicted OCGs are common between LUAD and
LUSC, whereas no TSGs are common among the two lung cancer subtypes. Intriguingly, IL6
and KRT23 are predicted as OCGs in LUAD but TSGs in LUSC, highlighting that these genes
are deserving of attention in future studies. IL6 is of interest thanks to its role in the immune
response and the complement system [51], as well as considering that it is down-regulated
in LUSC. We also recently identified IL6 as the only down-regulated cytokine in breast cancer
samples using cytokine assays [52]. However, IL6 downregulation could be also associated
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with the chemotherapeutic treatment as previously reported [53]. Future studies on naive
tumor samples, as well as LUSC and LUAD cellular models where the IL6 gene could be
overexpressed or silenced could shed light on its involvement in the two lung cancer types.

2.6 Coexpression signatures in LUAD and LUSC

As stated above, we seek gene expression signatures which may be useful in discriminating
between LUAD and LUSC types, as well as interesting targets for each of the cancer types.
For this reason, we carried out a gene co-expression analysis to identify different modular
gene co-expression networks in LUAD and LUSC.

In LUSC, we identified six modules (Figure 4). M1 is enriched in proteins for organization and
assembly of the cell and gap junctions, including gap junction proteins, like the up-regulated
hub proteins GJB5, keratin type Il proteins and protein channels activated by chloride. M2 is
enriched in proteins for glutathione conjugation and response to redox stress, such as the
up-regulated hub proteins sulfiredoxin-1 protein and the oxidative stress-induced growth
inhibitor OSGIN1. M3 includes extracellular matrix organization and collage-related
proteins. M4 is enriched in interferon signaling, cytokine signaling in immune response, with
a down-regulation of HLA genes. M5 has no significant association to any annotated cellular
pathway, whereas M6 is enriched in proteins that regulate the complement cascade.

We then identified four modules in LUAD (Figure 5): M1 which is enriched in extracellular
matrix organization proteins and regulation of complement cascade; M2, which is enriched
in interferon and cytokine signaling and, M3 which includes collagen-related genes and
proteins for extracellular matrix organization. Notably, M3 is the only module that includes
hubs which are conserved among LUAD and LUSC and thus not relevant to our study. M4 of
LUAD has no significant associations with any known pathway.

Even if some of the modules of LUAD and LUSC are enriched for the same processes, a
pairwise comparison of each of them suggested that, in most of the cases, the number of
overlapping genes in the LUAD and LUSC modules is only a minor component. This could
suggest that the genes triggering different pathways have different coexpression signatures
in the two cancer types. Pathway-enrichment analyses on the DE and soft-clustering genes
also pointed out a down-regulation of proteins involved in the complement cascade and
genes related to the immune response in the LUSC samples (Table 1), enforcing the notion
of a compromised immune response in LUSC.

Moreover, the M1 and M2 of LUSC are enriched in pathways that have not been found for
the LUAD coexpression modules, i.e., pathways related to cellular junctions (M1) and
glutathione (M2).

For further analyses, we retained only those genes within each module that are truly unique
for LUAD or LUSC, comparing each module of a cancer type to all the modules of the other
cancer type. For each module, we extracted the known transcription factors and their
targets using the TRRUST database as a source of information[54]. We identified a network
of transcription factors and their targets for modules 1 and 2 of LUAD, as wellas 1, 2,3 and 4
or LUSC (Figure 6). Out of these, LEF1 is of interest since it activates NRCAM in module 2 of
LUSC - two genes that are also up-regulated in LUSC only. We also noticed the presence of
the up-regulated CSTA in module 1 of LUSC which is transcriptionally regulated by FOS along
with TP63 and its target gene ZNF750. In module 1 of LUAD, we identified an interesting
network between the up-regulated gene AGR2 and its transcription factor FOXA1, along
with the activator SPDEF.
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2.7 Selection of candidate genes and their pathways

We collectively considered the results of the analyses described above with the final goal of
proposing a subset of LUAD and LUSC-specific genes for further studies as markers or
potential targets. In particular, we decided to retain only the genes that satisfy the following
criteria: i) genes that are up- or down-regulated in a specific cancer type and the opposite in
the other cancer type according to DEA and/or soft-clustering analyses, and ii) genes that
belong to the coexpression modules with a functional signature and are truly unigue to
LUAD or LUSC. For each of these genes, we also annotated information on their potential as
oncogenes, tumor suppressors or dual role genes; known associations with cancer according
to the repository of disease-gene associations from text mining of the literature, DISEASES
[55]. Specifically, we noticed if they matched with known oncogenes or tumor suppressors
through analyses of COSMIC TGs and OCGs collection [50], TSGDB [48], ONGene [49] or
prediction with the MoonlightR workflow [30] (see Section 2.5 and Materials and Methods).
For dual role genes, we integrated as a reference for our study the curation from TSGDB
[48], COSMIC [50] and the recently predicted ‘double-agent’ genes, namely Proto-
Oncogenes with Tumor-Suppressor Functions (POTSF) [56]. This integrative reference
annotation for dual role genes is reported in Table S3 and in the Github repository for a
total of 152 genes of which only 14 were all reported in all the three studies.

The summary of each of the candidate genes along with their annotations is reported in
Table 2.

2.8 Association of the gene signatures with patient survival

Next, we aimed to evaluate if any of the candidate genes had also a potential prognostic
impact. We therefore carried out survival analyses using a Cox proportional hazard
regression using all the candidate genes. We accounted for different explanatory variables,
including the clinical stages, age and sex of the patients.

We retained only 14 and 16 genes out of the original list of LUAD and LUSC candidate genes,
respectively since the others do not satisfy the proportional hazard assumption. Only four
genes for LUAD (ITAG6, HABP2, FAB5P5 and RND3) are predictive for overall survival based
on either FDRs and/or p-values (Table S4) regarding overall survival. In LUSC, we could not
identify any significant prognostic marker for which the cox coefficient is in agreement with
the direction of deregulation of the gene observed by DEA.

2.9 Cross-validation of the candidate genes

To further strengthen our results, we used two independent datasets (see Materials and
Methods) where LUAD and LUSC samples were profiled by transcriptomics techniques with
the same experimental setup as independent datasets for validation of the most interesting
markers.

We retained only a subset of candidate genes reported in Table 2 for which LUAD and LUSC
upper and lower quartiles are sufficiently separated when compared for the same gene so
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that they may suggest a potential value as a marker for classification of the two lung cancer
types. We then extracted the ones for which gene quantification was available in the cross-
validation datasets, and we used unsupervised clustering to verify if they can separate LUAD
and LUSC. The results are reported in Figure 7. We could not validate the clustering
potential of mucins since the data for these genes were not originally available as probes or
after the probe set collapse operation. SPDEF, ICA1, FZD7, CHST7, SLC2A9, ACOX2, KCNKS5,
ARSE, P2RY1, RND3, CSTA, ALDOC, and ANXA8 from the coexpression modules 1 and 2 of
LUAD or LUSC turned out to be promising for the separation of the two lung cancer types.
KCNK5 was also proposed in a previous study [10]. We even identified a small core group of
genes that still retain the capability of separating the two lung cancer subtypes, i.e., ALDOC,
ARSE, ANXAS8, and CSTA (Figure 7).

3. Discussion

Genes involved in O-glycosylation of mucins are differentially regulated in different lung
cancer types

Our analyses pinpointed a differential regulation of different genes involved in the O-
glycosylation of mucins. These genes are up-regulated in LUAD and down-regulated in LUSC.
Mucins are heavily glycosylated proteins where glycosylation is relevant to their function.
Under normal conditions, mucins serve as a protective barrier for epithelial lung cells [57].
When dysregulated, these proteins promote cancer progression and metastasis [58]. During
cancer progression, mucins can alone or in combination with different tyrosine kinase
receptors mediate cell signals for growth and survival of cancer cells. Expression of certain
mucins, such as MUC1 or MUC4 (identified also in our study), have been already associated
to lung cancer in other studies, and in some cases even associated with poor prognosis for
the patients [58]. Due to this key role in oncogenesis, mucins are emerging as attractive
targets for novel therapeutic approaches to treat lung cancer and strategies have been
already proposed [58].

Our results suggest that both membrane-bound (such as MUC21) and secreted mucins {(such
as MUC5B) contributes to the differences between LUAD and LUSC.

MUCSB overexpressing cancers more often show tendencies for relapse or metastasize
postoperatively in comparison to non-expressing tumors [59], suggesting that LUAD patients
could suffer from these events more often than the ones with a LUSC lung cancer type.
Mucins are amenable drug targets, as attested by MUC1 which can be targeted by
immunotherapy thanks to the availability of T-cell specific antigenic epitopes. Vaccines have
been also proposed, as well as aptamer-based drugs (for a review [58]). Despite several
studies on mucins in lung cancer, these have only scraped the surface of a complex and
intricate interplay where also the interactions between the different mucins can add an
extra level of undisclosed complexity. Our data suggest that more studies focusing
specifically on MUC5B and MUC21 are needed, considering both the opposite behavior of
these two proteins in LUAD and LUSC and overexpression in LUAD, which suggest the
possibility of exploiting them (or the enzymes regulating mucin glycosylation) as drug
targets for LUAD-specific therapy.

LUSC and the activation of oncogenic pathways for evasion of antitumor activity
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Generally, an enhanced immune response in cancer can be exploited for therapeutic
purposes[60]. We here observed that LUSC seems to be immune-compromised with a
signature of massive down-regulation of the complement cascade and other key genes for
native immune response. Our results nicely fit within the recent scenario of overall
difference in tumor immune landscape in LUAD and LUSC [61].

Recently, five main oncogenic pathways have been reported [62] that are associated with
the evasion of antitumor immunotherapy. The activation of these pathways which relies, in
turn, on the dysregulation or mutations of usual suspects in cancer such as p53, cMYC, and
the B-catenin/WNT. These genes are the upstream regulators of these evasion pathways
and act through a well-orchestrated cascade of other more specifically deregulated and
diverse set of genes (Figure 8). The oncogenic pathways for evasion of immune response in
tumor cells have the ultimate effect of impairing the induction or execution of a local
antitumor immune response, which also explains the resistance to certain therapies. Using
our integrative analyses on DE and coexpressed genes we were able to link the activation of
three of these pathways to LUSC, providing new horizons for the design of new tailored
therapies to this cancer type.

4, Conclusions

This study allowed to shed new light on the differences between two elusive lung cancer
types, i.e., LUAD and LUSC. In addition, we here provide a useful integrative biostatistics and
bioinformatics framework for the interpretation of gene expression data. Our results
suggest that to use partially paired, paired or unpaired samples will not yield markedly
different outcome from downstream analyses, e.g., differential expression or enrichment
analyses. On the contrary, the protocol used for the DEA, especially in the context of the up-
regulated genes and paired data, needs to be carefully assessed since too simplistic
approaches without the proper information incorporated in the design matrix can results in
discordant signatures.

We predicted two potential dual role genes (IL6 and KRT23) in LUAD and LUSC. Our analysis
also showed that LUAD and LUSC differentiate for the biological processes that are altered.
In particular, LUAD feature an up-regulation of genes involved in the O-linked glycosylation
of mucins, where MUC5B and MUC21 has the potential for target therapy against LUAD. On
the other hand, LUSC seems to be associated with a down-regulation of the complement
cascade genes and more generally the innate immune response. These events are triggered,
in LUSC, by the activation of three key oncogenic pathways, stimulated by p53, cMYC and B-
catenin that impair the induction of execution of a local antitumor immune response. Future
in-depth studies on the role of these pathways in LUSC may provide interesting
opportunities for drug treatments tailored to this challenging lung cancer type.

We also identified and validated in silico a set of genes that can be collectively used as an
ensemble to classify LUAD and LUSC in cancer patient samples, through the integration of
different but complementary computational techniques. Some of the candidate genes and
pathways identified in our study are usual suspects in lung cancer or other cancer types,
attesting the validity of our approaches. Moreover, other candidate genes have been poorly
investigated and they could entail novel mechanisms in LUAD and LUSC, deserving attention
in future investigations.
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5. Materials and Methods
5.1. Pre-processing of RNAseq data from The Cancer Genome Atlas (TCGA)

We downloaded and pre-processed level 3 legacy RNA-Seq data (RSEM count) for LUAD and
LUSC with the GDCquery of the TCGAbiolinks R package [63,64]. The RNA-Seq have been
produced using the Illumina HiSeq 2000 mRNA sequencing platform.

We downloaded the data in October 2016 from the Genomic Data Common (GDC) Portal
(https://gdc-portal.nci.nih.gov/). An overview of the analyzed samples is reported in Table
S1. The samples retained for analyses have been pruned by the 19 ‘discordant LUSC
samples [31] and by samples with low tumor purity (< 60%) according to a consensus
measurement of tumor purity [65].

We then employed the TCGAbiolinks[63] function GDCprepare to obtain a Summarized
Experiment object [66]. We removed samples outliers with the TCGAanalyze Preprocessing
function of TCGAbiolinks using a Pearson correlation cutoff of 0.6. We normalized the
datasets for GC-content [67] and library size using the TCGAanalyze Normalization function
from TCGAbiolinks. Lastly, we filtered the normalized RNA-Seq data for low counts across
samples using the function TCGAanalyze Filtering. This step removed all transcripts with
mean across all the samples less than 0.25 quantile of the mean. The preprocessed and
processed datasets are available through our Github repository, along with the script to
generate them (https://github.com/ELELAB/LUADvsLUSC tcga ).

5.2. Differential expression analyses of TCGA datasets

Differential expression analyses have been carried out using edgeR [68] and limma [37]. The
analyses were performed using three different pipelines: one is based on limma-voom and
the other two are edgeR-based, where one of them is developed into TCGAanalyze_DEA
function, originally incorporated into the TCGAbiolinks package (called edgeR-TCGAb in this
study).

In limma, the counts were transformed to log2-counts per million (logCPM) with voom [69],
which made it possible to apply this tool to RNA-Seq read counts where the robust
estimation of the mean-variance relationship replaces the lack of data distribution
assumption. In edgeR pipelines, the GLM (Generalized Linear Models) approach was used by
which it is possible to include an experimental design with multiple factors.

In our limma and edgeR pipelines, the design matrix includes: conditions (tumor vs normal),
the patient information when a paired dataset is used, and batches for the other datasets
(unpaired and all). We corrected for the TSS (Tissue Source Site; the center where the
samples are collected) as source of batch effect in our edgeR and limma-voom DEA
pipelines. Other sources of bath effects, such as the plates have been tested in the early
stages of the project and did not affect the final conclusion. In contrast, edgeR-TCGAb
implemented a simpler function for DEA which does not take in account neither the batch
correction nor the patient information (only for paired dataset). In all our DEA analyses, we
defined as a cutoff to retain significant DE genes a log fold change {logFC) >= 1 or <=-1,
whereas a cutoff of 0.01 was used for the False Discovery Rate (FDR).

During the analyses, we also tested two variations of the limma-voom DEA pipeline: |) using
the same design matrix for voom and ImFit functions and ii) using the entire voom object in
the steps following the voom transformation and not just the log2-transformed data. These
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adjustments provide a more correct approach to DEA but did not make any difference on
our final conclusions. The corresponding scripts are also reported in our Github repository.
The overlap between the DE genes identified by each pipeline and for each different
curation of the dataset have been estimated using the UpSetR package [70].

5.3 Curation and differential expression analyses of unified GTEx and TCGA LUAD and
LUSC datasets

We used the unified dataset integrating the GTEx [25] cohort of healthy samples and TCGA
data as provided by the batch-free Recount2 protocol [24]. We employed the
TCGAquery _Recount2 function of TCGAbiolinks v2.8, which we recently developed to query
the GTEx and TCGA unified dataset for lung cancer. We then filtered the data for tumor
purity with a threshold of 60% as we did for the TCGA dataset (see 3.1) and removing the
LUSC discordant samples.

Since recount2 barcodes were updated to the Universally Unique ldentifier (UUID), we
carried out a conversion of the filtered TCGA barcodes using the TCGAAutils package to be
able to apply the pre-processing steps mentioned above with TCGAbiolinks (see 3.1). The
mapping between the TCGA barcodes and the new UUIDs was carried out by extracting the
GDC case identifiers. We analyzed 374, 355 and 393 samples for GTEx, LUAD and LUSC,
respectively in the unified datasets. After the filtering steps and preparation of the unified
datasets for LUAD and LUSC, only protein-coding genes were retained using the biomaRt
Bioconductor R package [71-73]. We carried out GC-content normalization and quantile
filtering as above (see 3.2). We converted the ENSEMBL identifiers into gene names through
the information in the SummarizedExperiment object. DEA was carried out with the limma-
voom method according to the pipeline described above (see 3.2).

5.4 Soft-clustering analysis along the clinical stages

We performed gene clustering for the LUAD and LUSC datasets paired and all according to
the normal tumor (NT) and four clinical stages of cancer, i.e stages |, II, lll and IV using the
Mfuzz package version 2.36.0 [45]. Mfuzz uses a fuzzy c-means algorithm based on the
iterative optimization of an objective function to minimize the variation of objects within
the clusters. The benefit of this method is that the fuzzy c-means algorithm is more robust
with respect to noise and avoids a priori pre-filtering of genes [46]. Analyses by the four
stages of cancer and NT were executed to visualize longitudinal evolution of the mean
expression in LUAD and LUSC clusters

We carried out the clustering by lung cancer type using the datasets all. We built a
consensus matrix containing all the gene expression for LUAD and LUSC. The 19 discordant
LUSC samples were excluded. We collected all barcodes corresponding to NT samples using
the TCGAbiolinks function TCGAquery SampleTypes for each lung subtype to identify NT
samples in the all matrices. We mapped the tumor samples to their stages from the LUAD
and LUSC clinical datasets using their barcodes. We filtered out the samples with “not
reported” stage status. We computed mean gene expression value per tumor stage and NT
for LUAD and LUSC. We settled the parameters for fuzzy c-means clustering using the
number of clusters = 6. A minimum standard deviation = 0.0 was used as default parameter.
The centroid clustering step results from a weighted sum of all cluster members and shows
the overall gene expression pattern in each cluster. The membership values indicate how
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well a gene is represented by its cluster. Low values illustrate a poor representation of gene
by the cluster centroid. Large values point to a high correlation of the expression of gene
with the cluster centroid. In each cluster, genes are represented with color lines
corresponding to their cluster membership m > 0.56. The membership values are color-
encoded in the plots generated by mfuzz.plot. Yellow or green colored lines correspond to
genes with low membership value; red and purple colored lines correspond to genes with
high membership value.

5.5 Pathway enrichment analyses

We used ReactomePA version 1.18.1, an R/Bioconductor package for Reactome Pathway
Analysis [44]. We employed the enrichPathway function of ReactomePA to retrieve the
enriched pathways given the DE genes list or the genes from the soft-clustering approach
and the background genes list i.e. total genes list used for the DEA. An adjusted p-value
cutoff of 0.05 was set and the analysis was done by separating the up- and down-regulated
genes for each dataset (all and paired) and lung cancer subtype. In addition, all the gene
symbols were converted to their corresponding ENTREZ IDs provided by the
SummarizedExperiment object (GDCprepare function output).

5.6 Gene Ontology (GO) enrichment analysis

To identify biological functions in LUAD and LUSC DE gene sets, we carried out a GO
classification, which included the following categories: biological process, cellular
component and molecular functions [74].

We performed GO functional enrichment analysis for DEGs using the topGo R/Bioconductor
package. We provided both DE and background genes lists separating up- and down-
regulated genes. The GO results for the biological processes were represented in circular
plots generated by the GOplot R package [75].

5.7 Co-expression network analyses

We used the LUAD and LUSC dataset upon filtering and after voom transformation (see 3.2)
to carry out modular coexpression analyses with the recently Bioconductor/R package
CEMITool[15] using the default protocol suggested by the developers. We also performed
pathway enrichment analyses and protein-protein network analyses with the pre-built
functions of CEMiTools. As a reference for protein-protein interaction we used the
Interologous Interaction Database 12D version 2.9. [76]

5.8 Survival analysis

We performed survival analysis using the R package survival version 2.41-3. We used cox
regression[77] to estimate differences in survival between patients with low and high
expression level of our candidate genes. For each cancer type, tumor samples were
extracted and separated by gene expression levels according to lower and upper percentile
(25th and 75th, respectively). In cases in which the gene expression level of a specific gene
in a certain sample is lower than the 25th percentile the corresponding sample is labelled as
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low, whereas it is labeled as high if it the gene expression level is greater than the upper
percentile. Since for LUAD, there were tumor duplicates (i.e., tumor samples from the same
patient), we calculated their mean for the analysis. The clinical data were downloaded using
the GDCquery_clinical function of TCGAbiolinks and only the patients containing information
regarding the last follow-up or death time were included in the analysis.

The cox regressions were performed using the coxph function. Cox regression allow to take
into account additional explanatory variables, such as age at diagnosis, gender and tumor
stage. Before performing Cox regression, we tested the proportional assumption using the
cox.zph function and only the genes that satisfy this test were employed (14 and 16 genes
for LUAD and LUSC, respectively). We corrected the p-values of each variable using the
Benjamini and Hochberg (BH) method [78].

5.9 Independent validation in silico of the candidate genes

To validate our candidate genes, we selected two microarray studies that include both LUAD
and LUSC samples. The first study contains 139 and 21 samples for LUAD and LUSC,
respectively [79]. The second dataset (GSE33532-GEQ accession) 10 and 4 samples for LUAD
and LUSC, respectively [80]. At first, we converted the probe sets to gene names using the
gconvert function of the gProfileR package[81] (0.6.6 version) and we removed all the non-
converted probes. Since multiple probe sets can identify the same gene, we collapsed them
to obtain unique matches with the collapseRows function implemented in the WGCNA
package-1.63 version [16]. We performed the hierarchical clustering (complete method and
euclidean distance) and the results was showed in a heatmap (heatmap.2 function in the
gplots package 3.0.1 version).
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Figure 1. Comparison of DEA results with different curation of the datasets and different
DEA protocols. For sake of clarity, we reported the example of up-regulated genes in LUAD
(A,C) and down-regulated genes in LUSC (B,D) with the limma approach. The other
approaches gave similar results and can be reproduced through the scripts in our Github
repository (https://github.com/ELELAB/LUADvsLUSC tcga).

Figure 2. Analysis of the 820 up-regulated genes identified only by edgeR-TCGAb and gene
enrichment analyses. The comparison between edgeR-TCGAb with limma and edgeR,
respectively are shown in the upper panels, whereas the scattered plot comparing limma
and edgeR are shown in bottom left panel. In the upper panels, we reported the genes that:
i) are identified as down-regulated (in red), ii) have a significant FDR but not logFC (in
green), iii) have a significant logFC but not FDR (in cyan), iv) are not significant according to
both FDR and logFC (purple), according to edgeR (A) or limma (B) approaches. In the panel
C, we used a similar color code, the only difference was that the condition is satisfied by
both the edgeR and limma approaches (i.e. in red down-regulated genes for both the
methods). Those genes that are in disagreement between limma and edgeR are shown in
grey. We obtained the same results for LUAD and LUSC and we reported the LUAD case as
an example.

Figure 3. Soft-clustering across lung cancer clinical stages. Each cluster describes an
expression pattern in the dataset through the four stages of cancer i.e stages |, Il, [ll and IV.
Blue and purple lines correspond to genes with high cluster membership value, i.e. m> 0.56.
A Table with the genes belonging to each cluster and their m value is reported in the Github
repository. The example of LUSC,; is showed for sake of clarity and the results for LUAD,
are reported in Figure S2.

Figure 4. Coexpression modules and their network in LUSC. The modules which collect
genes and pathways that differentiate LUSC from LUAD are shown in the figure, along with
their networks built integrating the coexpression data with annotated protein-protein
interactions.

Figure 5. Coexpression modules and their network in LUAD. The modules which collect
genes and pathways that differentiate LUAD from LUSC are shown in the figure, along with
their networks built integrating the coexpression data with annotated protein-protein
interactions.

Figure 6. Network of transcription factors and their target genes in the coexpressed
module 1 of LUAD (A) or LUSC (B).
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Figure 7. In silico validation of the candidate genes using other transcriptomics data for
lung cancer. A minimal group of gene (core genes, panel A) or a more extended gene list
(panel B) is showed that allow to classify the two cancer types.

Figure 8. lllustration of the three oncogenic pathways to evade tumor immune response
which we found activated in LUSC.

Table 1. Pathway enrichment analysis with ReactomePA. Only the results relevant to the
comparison of O-glycosylation, immune response and complement pathways are reported.
For the full list of results, one could refer to our Github repository for the project.

Pathway Description FDR Gene | Ds
ID
913709 | O-linked glycosylation 0.01 LUAD(up):
of mucins B3GNT6/GALNT6/MUC13/MUC16/MUC21/MUCA/MUCSEB
913709 | O-linked glycosylation 0.04 LUSC(down):
of mucins B3GNT7/B3GNT8/GALNT10/GALNT5/MUCL/MUC1I5/MUC
21/MUC5B/
ST3GAL2/ST6GALNACA
977068 Termination of O- 0.01 LUAD(up):MUC13/MUC16/MUC21/MUC4/MUC5B
glycan biosynthesis
5173105 | O-linked glycosylation 0.02 LUAD(up):
B3GNT6/GALNT6/MUC13/MUC16/MUC21/MUCA/MUCSEB
5173105 | O-linked glycosylation 0.02 LUSC(down):

B3GNT7/B3GNT8/GALNT10/GALNT5/MUCYMUC15/
MUC21/MUC5B/SPON1/ST3GAL2/ST6GALNAC4/THBS1

977606 Regulation of 0.001 LUSC(down):C2/C3/C4BPA/C5/CD55/CFH/CFI/CR1
Complement cascade
168249 | Innate Immune System 0.01 LUSC(down):

ADCY6/ADCY 7/BIRC3/C2/C3/CABPA/C5/CASP10/CCR2/C
CR6/CD14/CD3G/CD55/CD80/CFH/CFI/CR1L/CY FIP2/DTX4/
DUSP6/ELMOL1/FCER1A/FCGR2A/FGF7/FY N/GAB2/GRAP
2/HLA-
C/ICAM3/ITK/ITPRYITPR2/JUN/KLB/LGALS3/LRRFIP1/M
EF2C/MY D88/MY O1C/NFATC2/NFKBIA/NOD1/PDGFRB/P
LCG2/PRK CD/RIPK3/RNF125/RPS6K A1/RPSEK A2/TEC/TL
R2/TLRITMEM 173/ TREML/TXNIP/UNC93B1/VAV1/WIPF
1
166658 Complement cascade 0.02 LUSC(down): C2/C3/CABPA/C5/CD55/CFH/CFI/CR1
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Table 2. Candidate genes to discriminate between LUAD and LUSC in terms of gene
expression levels, functions or prognosis. ‘N.S.” indicates not significant results. The
DisGeNET score and the DISEASES Z-score are provided in the table. *, **, and ***
indicate a significant DE when the unified recount, the TCGA pair dataset or both are used.

GENE UNIPRO DEA Mfuzz CEMiTool DISEASES 0G TSG DUAL ROLE
TID cluster Module
MUC5B Q9HC84 Up(LUAD) Cl6(LUAD) | M1(LUAD) None None None None
Down(LUSC) CI2(LUSC)
HABP2 Q14520 Up(LUAD) CI3(LUAD) | M1(LUAD) 3.8 None None None
Down(LUSC) Cl4(LUsQC)
MuC21 Q5SSG8 Up(LUAD) Cl2(LUSC) | M1(LUAD) 4.0 None None None
Down(LUSC)
KCNK5 095279 Up(LUAD) CI3(LUAD) | M1(LUAD) None None None None
Down(LUSC) Cl2(LUSC)
ICA1 Q05084 Up(LUAD) Cl6(LUAD) | M1(LUSC) 19 None None None
Down(LUSC)* Cl2(LUSC)
CSTA P01040 Down(LUAD) CI4(LUAD) | M1(LUSC) 35 None TSGDB(CSTS5, None
Up(LUSC) CI1(LUSC) CST6)
P2RY1 P47900 Down(LUAD) Cl4(LUAD) | M1(LUSC) 2.2 Moonlight( None None
Up(LUSC) Cl1(LUSC) LUSC,
P2RY14)
COSMIC(P
2RY8)
ANXAS8 P13928 Down(LUAD) CI5(LUSC) M1(LUSC) 2.4 None TSGDB(ANXA1, None
Up(LUSC) ANXA7)
FID7 075084 Up(LUSC) Cl4(LUAD) | M2(LUSC) 3.7 ONGENE(F None None
Cl1(LUSC) ZD2)
Moonlight(
LUSC,
FZD4)
ITGA6 P23229 Up(LUSC)*** Cl4(LUAD) | M1(LUAD) 4.2 ONGENE(I | TSGDB(ITGAS,IT None
Cl1(LUSC) TGA3) GA7, ITGAV)
Moonlight(
LUSC,
ITGAB)
CHST7 QINS84 Up(LUSC)** Cl4(LUAD) | M2(LUSC) 1.6 None TSGDB(CHST10) None
Cl1(LUSC)
RND3 Up(LUSC)* Cl4(LUAD) | M1(LUAD) 33 Moonlight( TSGDB None
Cl1(LUSC) LUSC,
RDN1)
ACOX2 Down(LUSC) CI2(LUSQ) M1(LUAD) 2.2 None None None
ALDOC Up(LUSC) Cl1(LUSC) | M1(LUAD) 39 None None None
AQP5 Down(LUSC) Cl4(LUSC) | M1(LUAD) None None None None
ARSE Up (LUAD)* CI2(LUSC) | M1(LUAD) None None None None
Down(LUSC)
FABP5 Down(LUAD) Cl4(LUAD) | MI1(LUSC) None Moonlight TSGDB(FABP3) None
Up(LUSC) CI5(LUSC) L(LUAD,FA
BP7)
SIPA1L2 Down(LUAD)* | CI2(LUAD) | M3(LUAD) None None None None
CI1(LUSC)
SLC1A3 Down(LUAD)* | CI2(LUAD) M3(LUSC) 3.5 None None None
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CI5(LUSC)
SLC2A9 Down(LUAD)* | CI4(DOWN | M1(LUSC) None None None None
)
CI5(LUSC)
NRCAM Down(LUAD)* | CI1(LUSC) M2(LUSC) 2.6 Moonlight( TSGDB None
Up(LUSC) LUSC,
0CG)
AGR2 Up(LUAD) CI3(LUAD) | M1(LUAD) 4.1 None None None
Down(LUSC)**
SPDEF Up(LUAD) Cl1(LUAD) | M1(LUAD) 3.6 None None None
Down(LUSC)** | CI2(LUSC)
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