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Abstract 22 

Alzheimer’s disease (AD), the most prevalent form of dementia, is a progressive and 23 

devastating neurodegenerative condition for which there are no effective treatments. 24 

Understanding the molecular pathology of AD during disease progression may identify new 25 

ways to reduce neuronal damage. Here, we present a longitudinal study tracking dynamic 26 

proteomic alterations in the brains of an inducible Drosophila melanogaster model of AD 27 

expressing the Arctic mutant Aβ42 gene. We identified 3093 proteins from flies that were 28 

induced to express Aβ42 and age-matched healthy controls using label-free quantitative ion-29 

mobility data independent analysis mass spectrometry. Of these, 228 proteins were 30 

significantly altered by Aβ42 accumulation and were enriched for AD-associated processes. 31 

Network analyses further revealed that these proteins have distinct hub and bottleneck 32 

properties in the brain protein interaction network, suggesting that several may have 33 

significant effects on brain function. Our unbiased analysis provides useful insights into the 34 

key processes governing the progression of amyloid toxicity and forms a basis for further 35 

functional analyses in model organisms and translation to mammalian systems.  36 
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Introduction 37 

Alzheimer’s disease (AD) is a progressive and devastating neurodegenerative disease that 38 

is the most prevalent form of dementia [1]. Symptoms initially present as episodic memory 39 

loss and subsequently develop into widespread cognitive impairment. Two brain lesions are 40 

pathological hallmarks of the disease: plaques and neurofibrillary tangles. Plaques are 41 

extracellular aggregates of amyloid beta (Aβ) [2], whereas, neurofibrillary tangles are 42 

intraneuronal aggregates of hyperphosphorylated tau [3,4]. In addition to these hallmarks, 43 

the AD brain experiences many other changes, including metabolic and oxidative 44 

dysregulation [5,6], DNA damage [7], cell cycle re-entry [8], axon loss [9] and, eventually, 45 

neuronal death [6,10]. 46 

Despite a substantial research effort, no cure for AD has been found. Effective treatments 47 

are desperately needed to cope with the projected increase in the number of new cases as a 48 

result of longer life expectancy and an ageing population. Sporadic onset is the most 49 

common form of AD (SAD), for which age is the major risk factor. Familial AD (FAD)—a less 50 

common (<1%), but more aggressive, form of the disease—has an early onset of pathology 51 

before the age of 65 [11]. FAD is caused by fully penetrant mutations in the Aβ precursor 52 

protein (APP) and two subunits—presenilin 1 and presenilin 2—of the Ɣ-secretase complex 53 

that processes APP in the amyloidogenic pathway to produce Aβ. Whilst the exact disease 54 

mechanisms of AD are not yet fully understood, this has provided support for Aβ 55 

accumulation as a key player in its cause and progression [1]. Aβ42—a 42 amino acid 56 

variant of the peptide—is neurotoxic [12], necessary for plaque deposition [13] and sufficient 57 

for tangle formation [14]. The Arctic mutation in Aβ42 (Glu22Gly) [15] causes a particularly 58 

aggressive form of familial AD that is associated with an increased rate and volume of 59 

plaque deposition [16]. Genetic analyses of SAD, however, suggest a complex molecular 60 

pathology, in which alterations in neuro-inflammation, cholesterol metabolism and synaptic 61 

recycling pathways may also be required for Aβ42 to initiate the toxic cascade of events 62 

leading to tau pathology and neuronal damage in dementia. 63 

Comparison of proteomic analyses of post-mortem human brains have further revealed an 64 

increase in metabolic processes and reduction in synaptic function in AD [17]. Oxidised 65 

proteins also accumulate at early stages in AD brain, probably as a result of mitochondrial 66 

ROS production [18], and redox proteomic approaches suggest that enzymes involved in 67 

glucose metabolism are oxidised in mild cognitive impairment and AD [19,20]. Moreover, 68 

phospho-proteomic approaches have revealed alterations in phosphorylation of metabolic 69 

enzymes and kinases that regulate phosphorylation of chaperones such as HSP27 and 70 

crystallin alpha B [21]. Of note, however, there is little proteomic overlap between studies 71 
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using post-mortem human brain tissue, which may reflect the low sample numbers available 72 

for such studies, differences in comorbidities between patients and confounding post-73 

mortem procedures [17]. Although valuable, post-mortem studies also reflect the end-stage 74 

of disease and, therefore, do not facilitate measurement of dynamic alterations in proteins as 75 

AD progresses. 76 

Animal models of AD, generated through transgenic over-expression of human APP or tau, 77 

provide an opportunity to track proteomic alterations at pre- and post-pathological stages, 78 

thus facilitating insight into the molecular mechanisms underlying disease development and 79 

revealing new targets for drugs to prevent AD progression. Analyses of transgenic mice 80 

models of AD have revealed some overlapping alterations in metabolic enzymes, kinases 81 

and chaperones with human AD brain [17]. Only one study, however, has tracked alterations 82 

in protein carbonylation over time, showing increases in oxidation of metabolic enzymes 83 

(alpha-enolase, ATP synthase α-chain and pyruvate dehydrogenase E1) and regulatory 84 

molecules (14-3-3 and Pin1) in correlation with disease progression [22]. 85 

Adult-onset Drosophila models of AD have been generated by over-expressing human Aβ42 86 

peptide exclusively in adult fly neurons using inducible expression systems. These models 87 

have been shown to develop progressive neurodegenerative phenotypes, such as reduced 88 

climbing ability, and shortened lifespan [23]. Taking advantage of the short lifespan of the fly, 89 

and the flexible nature of the inducible model, we have performed a longitudinal study of the 90 

brain proteome to capture the effects of Aβ42-toxicity in the brain from the point of induction 91 

and across life. We identified 3093 proteins using label-free quantitative ion-mobility data 92 

independent analysis mass spectrometry (IM-DIA-MS) [24], 1854 of which were common to 93 

healthy and Aβ42 flies. Of these, we identified 228 proteins that were significantly altered in 94 

AD, some of which overlapped with normal ageing but the majority of which were ageing-95 

independent. Proteins altered in response to Aβ42 were enriched for AD processes and 96 

have statistically significant network properties in the brain protein interaction network. We 97 

also show that these proteins are likely to be bottlenecks for signalling in the network, 98 

suggesting that they comprise important proteins for normal brain function. Our data is a 99 

valuable resource to begin to understand the dynamic properties of Aβ42 proteo-toxicity 100 

during AD progression. Future functional studies will be required to determine the causal 101 

role of these proteins in mediating progression of AD using model organisms and to 102 

translate these findings to mammalian systems.  103 
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Results 104 

Proteome analysis of healthy and Aβ42-expressing fly brains 105 

Using an inducible transgenic fly line expressing human Arctic mutant Aβ42 (TgAD) [23] (Fig 106 

1A), we confirmed a previously observed [23] reduction in lifespan following Aβ42 induction 107 

prior to proteomic analyses (Fig 1B). 108 

To understand how the brain proteome is affected as Aβ42 toxicity progresses, fly brains 109 

were dissected from healthy and Aβ42 flies at 5, 19, 31 and 46 days, and at 54 and 80 days 110 

for healthy controls, then analysed by label-free quantitative IM-DIA-MS (Fig 1C, 111 

Supplementary Data 1). 1854 proteins were identified in both healthy and Aβ42 fly brain 112 

from a total of 3093 proteins (Fig 1D), which is typical for recent fly proteomics studies 113 

[25,26]. 114 
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 115 

Figure 1. Proteome analysis of healthy and AD fly brains. (A) Drosophila melanogaster 116 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


 

7 

transgenic model of AD (TgAD) that expresses Arctic mutant Aβ42 in a mifepristone-117 
inducible GAL4/UAS expression system under the pan-neuronal elav promoter. (B) Survival 118 
curves for healthy and Aβ42 flies. Aβ42 flies were induced to express Aβ42 at 2 days. 119 
Markers indicate days that MS samples were collected. (C) Experimental design of the brain 120 
proteome analysis. Aβ42 flies were induced to express Aβ42 at 2 days. For each of the 121 
three biological repeats, 10 healthy and 10 Aβ42 flies were collected at 5, 19, 31 and 46 122 
days, as well as 54 and 80 days for healthy flies. Proteins were extracted from dissected 123 
brains and digested with trypsin. The resulting peptides were separated by nanoscale liquid 124 
chromatography and analysed by label-free quantitative IM-DIA-MS. (D) Proteins identified 125 
by IM-DIA-MS. (E) Principal component analysis of the IM-DIA-MS data. Axes are annotated 126 
with the percentage of variance explained by each principal component. (F) Hierarchical 127 
biclustering using relative protein abundances normalised to their abundance in healthy flies 128 
at 5 days.  129 
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For the 1854 proteins identified in both healthy and Aβ42 flies, we assessed the reliability of 130 

our data. Proteins were highly correlated between technical and biological repeats (Fig S1). 131 

We used principal component analysis of the protein abundances to identify sources of 132 

variance (Fig 1E). Healthy and Aβ42 samples are clearly separated in the first principal 133 

component, probably due to the effects of Aβ42. In the second principal component, 134 

samples are separated by increasing age, due to age-dependent or disease progression 135 

changes in the proteome. These results show that whilst ageing does contribute to changes 136 

in the brain proteome (8.7% of the total variance), much larger changes are due to 137 

expression of Aβ42 (70.6%) and this may reflect either a correlation with the ageing process 138 

or progression of AD pathology. We confirmed this result using hierarchical biclustering of 139 

protein abundances in Aβ42 versus healthy flies at 5 days (Fig 1F). The results reveal that 140 

most proteins do not vary significantly in abundance with age in healthy flies, but many 141 

proteins are differentially abundant in Aβ42 flies. 142 

Analysis of brain proteome dysregulation in Aβ42 flies 143 

We next identified the proteins that were significantly altered following Aβ42 expression in 144 

the fly brain. To achieve this, we used five methods commonly used to analyse time course 145 

RNA-Seq data [27] and classified proteins as significantly altered if at least two methods 146 

detected them [28]. We identified 228 significantly altered proteins from 740 proteins that 147 

were detected by one or more methods (Fig 2A). A comparison of popular RNA-Seq 148 

analysis tools [29] showed that edgeR [30] has a high false positive rate and variable 149 

performance on different data sets, whereas, DESeq2 [31] and limma [32] have low false 150 

positive rates and perform more consistently. We observed a similar trend in our data set. 151 

limma and DESeq2 detected the lowest number of proteins, with 21 proteins in common (Fig 152 

S2A). edgeR detected more proteins, of which 38 were also detected by DESeq2 and 16 by 153 

limma. EDGE [33] and maSigPro [34] detected vastly more proteins, 464 of which were only 154 

detected by one method. Principal component analysis shows that edgeR, DESeq2 and 155 

limma detect similar proteins, whereas, EDGE and maSigPro detect very different proteins 156 

(Fig S2B).  157 
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 158 

Figure 2. Brain proteome dysregulation in AD. (A) Proteins significantly altered in AD 159 
were identified using five methods (EDGE, edgeR, DESeq2, limma and maSigPro) and 160 
classified as significantly altered if at least two methods detected them. (B) Significantly 161 
altered proteins in AD (from A) and ageing. (C) Significantly altered protein abundances 162 
were z score-transformed and clustered using a Gaussian mixture model.  163 
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Although these methods should be able to differentiate between proteins that are altered in 164 

Aβ42 flies from those that change during normal ageing, we confirmed this by analysing 165 

healthy flies separately. In total, 61 proteins were identified as significantly altered with age 166 

(Fig S3), of which 30 were also identified as significantly altered in AD (Fig 2B) and 31 in 167 

normal ageing alone. These proteins are not significantly enriched for any pathways or 168 

functions. Based on our results, we concluded that the vast majority of proteins that are 169 

significantly altered in AD are not altered in normal ageing and that AD causes significant 170 

dysregulation of the brain proteome. 171 

To understand the dynamics of protein alterations following Aβ42 induction, we clustered the 172 

profiles of proteins significantly altered in Aβ42 flies using a Gaussian mixture model (Fig 173 

2C). The proteins clustered best into four sets (Fig S4). In comparison to healthy flies, 174 

cluster 1 contains proteins that have consistently higher abundance in Aβ42 flies. 175 

Conversely, cluster 2 contains proteins that have lower abundance in Aβ42 flies. The 176 

abundances of proteins from clusters 1 and 2 are affected from the onset of disease at day 177 

5, and remain at similar levels as the disease progresses. Dysregulation of these proteins 178 

may initiate AD pathogenesis, be involved in early stages of disease progression, or 179 

represent defense mechanisms that could be harnessed for protection. Proteins in cluster 3 180 

follow a similar trend in healthy and Aβ42 flies and increase in abundance with age. 181 

However, cluster 4 proteins decrease in abundance as the disease progresses, whilst 182 

remaining steady in healthy flies. Further work is required to determine whether reduction of 183 

these proteins plays a causal role in disease pathogenesis that could be targeted 184 

therapeutically, or whether their decline represents a protective response to damage. 185 

We performed a statistical Gene Ontology enrichment analysis on each cluster, but found no 186 

enrichment of terms. Furthermore, we also saw no enrichment when we analysed all 228 187 

proteins together. 188 

Brain proteins significantly altered by Aβ42 have distinct 189 

network properties 190 

Following the analyses of brain proteome dysregulation in Aβ42 flies, we analysed the 228 191 

significantly altered proteins in the context of the brain protein interaction network to 192 

determine whether their network properties are significantly different to the other brain 193 

proteins. Using a subgraph of the STRING [35] network induced on the 3093 proteins 194 

identified by IM-DIA-MS, we calculated four graph theoretic network properties (Fig 3A) of 195 

the 183 significantly altered proteins contained in this network: degree, the number of edges 196 

that a node has; shortest path, the smallest node set that connect any two nodes; largest 197 
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connected component, the largest node set for which all nodes have at least one edge to 198 

any of the other nodes; and betweenness centrality, the proportion of all the shortest paths 199 

in the network that a particular node lies on.  200 
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 201 

Figure 3: Significantly altered proteins have statistically significant network 202 
properties in the brain protein interaction network. (A) Network properties that were 203 
calculated: degree, the number of edges that a node has; shortest path, the smallest node 204 
set that connect any two nodes; largest connected component, the largest node set for 205 
which all nodes have at least one edge to any of the other nodes; and betweenness 206 
centrality, the proportion of all the shortest paths in the network that a particular node lies on. 207 
Using a subgraph of the STRING network induced on the 3093 proteins identified by IM-DIA-208 
MS in healthy and Aβ42 flies, the significance of four network characteristics were calculated 209 
for the 183 significantly altered proteins contained in this subgraph. (B) mean degree; (C) 210 
mean shortest path length between a node and the remaining 182 nodes; (D) the size of the 211 
largest connected component in the subgraph induced on these nodes; and (E) mean 212 
betweenness centrality. Non-parametric p-values were calculated using null distributions of 213 
the test statistics, simulated by randomly sampling 183 nodes from the network 10,000 214 
times.  215 
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We performed hypothesis tests and found that these proteins have statistically significant 216 

network properties. Firstly, the significantly altered proteins make more interactions than 217 

expected (mean degree p < 0.05; Fig 3B). Therefore, these proteins may further imbalance 218 

the proteome by disrupting the expression or activity of proteins they interact with. Secondly, 219 

not only are these proteins close to each other (mean shortest path p < 0.05; Fig 3C), but 220 

also 129 of them form a connected component (size of largest connected component p < 221 

0.01; Fig 3D). These two pieces of evidence suggest that Aβ42 disrupts proteins at the 222 

centre of the proteome. Lastly, these proteins lie along shortest paths between many pairs of 223 

nodes (mean betweenness centrality p < 0.01; Fig 3E) and may control how signals are 224 

transmitted in cells. Proteins with high betweenness centrality are also more likely to be 225 

essential genes for viability [36]. Taken together, these findings suggest that the proteins 226 

significantly altered in AD are important in the protein interaction network, and that 227 

dysregulation of these proteins may have significant consequences for the brain proteome 228 

and therefore function. 229 

Predicting the severity of Aβ42-induced protein alterations 230 

using network properties 231 

We predicted how severely particular Aβ42-associated protein alterations may affect the 232 

brain using two network properties—the tendency of a node to be a hub or a bottleneck. In 233 

networks, nodes with high degree are hubs for communication, whereas nodes with high 234 

betweenness centrality are bottlenecks that regulate how signals propagate through the 235 

network. Protein expression tends to be highly correlated to that of its neighbours in the 236 

protein interaction network. One exception to this rule, however, are bottleneck proteins, 237 

whose expression tends to be poorly correlated with that of its neighbours [36]. This 238 

suggests that the proteome is finely balanced and that the expression of bottleneck proteins 239 

is tightly regulated to maintain homeostasis. We analysed the hub and bottleneck properties 240 

of the significantly altered proteins and identified four hub-bottlenecks and five nonhub-241 

bottlenecks that correlate with Aβ42 expression (Fig 4A) and analysed how their 242 

abundances change during normal ageing and as pathology progresses (Fig 4B).  243 
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 244 

Figure 4. Analysis of hubs and bottlenecks in the brain protein interaction network. In 245 
networks, nodes with high degree are hubs and nodes with high betweenness centrality are 246 
bottlenecks. (A) Degree (hub-ness) is plotted against betweenness centrality (bottleneck-247 
ness) in the brain protein interaction network for all proteins identified by IM-DIA-MS (grey 248 
circles). Of the significantly altered proteins (red circles), hub-bottleneck (> 90th percentile 249 
(PC) for degree and betweenness centrality) and nonhub-bottleneck proteins (> 90th PC for 250 
betweenness centrality) are highlighted (filled red circles). (B) Profiles of significantly altered 251 
bottleneck proteins implicated in Aβ42 toxicity. Maximum abundances are scaled to 1. 252 
Numbers in parentheses denote which cluster from Fig 2C the protein was in.  253 
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Nonhub-bottlenecks: Acs1, Echs1, Got2, mt:CoII and Acp65Aa 254 

Three of the nonhub-bottlenecks, Acyl-CoA synthetase long chain (Acs1), Enoyl-CoA 255 

hydratase, short chain 1 (Echs1), and Aspartate aminotransferase (Got2), are metabolic 256 

enzymes with previous links to neuronal function and damage. Acs1 and Echs1 are involved 257 

in the production of acetyl-CoA from fatty acids. Many enzymes involved in acetyl-CoA 258 

metabolism associate with AD leading to acetyl-CoA deficits in the brain and loss of 259 

cholinergic neurons [6]. Got2 produces the neurotransmitter L-glutamate from aspartate, is 260 

involved in assembly of synapses and becomes elevated following brain injury [37]. Brain 261 

Acs1 and Got2 levels were stably expressed throughout normal ageing in our healthy flies 262 

but increased upon Aβ42 induction and continued to rise with age in Aβ42 flies. This 263 

suggests that levels of these proteins increase independently of ageing in AD but correlate 264 

closely with disease progression. On the other hand, Echs1 abundance increases in healthy 265 

flies during normal ageing, but its levels were reduced upon Aβ42 induction and its ageing-266 

dependent increase was diminished in Aβ42 flies compared to controls. This may reflect a 267 

protective response with ageing that is suppressed by Aβ42 toxicity. 268 

Cytochrome c oxidase (COX), complex IV of the mitochondrial electron transport chain, uses 269 

energy from reducing molecular oxygen to water to generate a proton gradient across the 270 

inner mitochondrial membrane. Levels of mt:CoII (a COX subunit) declined in aged healthy 271 

control fly brain. mt:CoII expression was downregulated in Aβ42 flies compared to controls 272 

at all time-points and was stably-expressed across age following Aβ42 induction. The link 273 

between COX and AD is unclear, although Aβ is known to inhibit COX activity [38]. For 274 

example, in AD patients, COX activity—but not abundance—is reduced, resulting in 275 

increased levels of ROS [39]. However, in COX-deficient mouse models of AD, plaque 276 

deposition and oxidative damage are reduced [40]. Hence, the ageing-dependent decline in 277 

mt:CoII may represent either a reduction in COX function which renders the brain vulnerable 278 

to damage and is exacerbated by Aβ42 toxicity, or a protective mechanism against both 279 

ageing and amyloid toxicity. 280 

The cuticle protein Acp65Aa was also upregulated in Aβ42 flies, but levels fell sharply 281 

between 5 and 19 days. However, it is surprising that we identified Acp65Aa in our samples, 282 

as it is not expected to be expressed in the brain. One explanation may involve chitin, which 283 

has been detected in AD brains and has been suggested to facilitate Aβ nucleation [41]. 284 

Amyloid aggregation has previously been shown to plateau around 15 days post-induction 285 

[42], which is around the same time that Acp65Aa drops in Aβ42 flies. Our results suggest 286 

that Aβ42 causes an increase in Acp65Aa expression early in the disease, but further 287 
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experiments are needed to confirm this and to investigate its relationship with nucleation and 288 

the aggregation process. 289 

Hub-bottlenecks: Hsp70A, Gp93, Top2 and Act75B 290 

 291 
The four hub-bottlenecks are consistent with Aβ42 inducing stress. Hsp70A, a heat shock 292 

protein that responds to hypoxia, was significantly upregulated at early time-points (5 days) 293 

in Aβ42 flies, compared to healthy controls which exhibited stable expression of this protein 294 

throughout life. Although the levels dropped in Aβ42 flies between days 5 and 31 post-295 

induction, at later time-points Hsp70A increased again, possibly suggesting a two-phase 296 

response to hypoxia in Aβ42 flies. We found that Gp93—a stress response protein that 297 

binds unfolded proteins—to be increased across age in Aβ42 flies compared to controls 298 

possibly suggesting an early and sustained protective mechanism against Aβ42-induced 299 

damage. DNA topoisomerase 2 (Top2), an essential enzyme for DNA double-strand break 300 

repair, was decreased in Aβ42 flies, following a pattern which mirrors changes in its 301 

expression with normal ageing. Double-strand breaks occur naturally in the brain as a 302 

consequence of neuronal activity—an effect that is aggravated by Aβ[7]. As a consequence 303 

of deficient DNA repair machinery, deleterious genetic lesions may accumulate in the brain 304 

and exacerbate neuronal loss. 305 

Finally, we found that actin (Act57B) was increased in Aβ42 flies, in agreement with two 306 

recent studies on mice brains [43,44]. Kommaddi and colleagues found that Aβ causes 307 

depolymerisation of F-actin filaments in a mouse AD model before onset of AD pathology 308 

[44]. The authors showed that although the concentration of monomeric G-actin increases, 309 

the total concentration of actin remains unchanged. It has long been known that G-, but not 310 

F-, actin is susceptible to cleavage by trypsin [45], permitting its detection and quantification 311 

by IM-DIA-MS. Hence, the apparent increase of actin in Aβ42 flies may be due to F-actin 312 

depolymerisation, which increases the pool of trypsin-digestible G-actin, and is consistent 313 

with the findings of Kommaddi et al. To confirm whether total actin levels remain the same in 314 

the brains of Aβ42 flies, additional experiments would have to be carried out in the future, for 315 

example tryptic digestion in the presence of MgADP—which makes F-actin susceptible to 316 

cleavage [46]—and transcriptomic analysis of actin mRNA. Furthermore, actin 317 

polymerisation is ATP-dependent, so increased levels of G-actin may indicate reduced 318 

intracellular ATP. In addition, ATP is important for correct protein folding and therefore 319 

reduced levels may lead to increased protein aggregation in AD. 320 
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Due to the importance of these hub and bottleneck proteins in the protein interaction 321 

network, we predict that AD-associated alterations in their abundance will likely have a 322 

significant effect on the cellular dynamics of the brain. 323 

Dysregulated genes are associated with known AD and ageing 324 

network modules 325 

Finally, we clustered the protein interaction network into modules and performed a Gene 326 

Ontology enrichment analysis on modules that contained any of the 228 significantly altered 327 

proteins. We saw no Gene Ontology term enrichment when we tested these proteins 328 

clustered according to their abundance profiles (Fig 2C), presumably because the proteins 329 

affected in AD are diverse and involved in many different biological processes. However, by 330 

testing network modules for functional enrichment, we exploited the principle that interacting 331 

proteins are functionally associated. Using a subgraph of the STRING network containing 332 

the significantly altered proteins and their directly-interacting neighbours, we used MCODE 333 

[47] to find modules of densely interconnected nodes. We chose to include neighbouring 334 

proteins to compensate for proteins that may not have been detected in the MS experiments 335 

due to the stochastic nature of observing peptides and the wide dynamic range of biological 336 

samples [48]. The resulting subgraph contained 4842 proteins, including 183 of the 228 337 

significantly altered proteins, as well as 477 proteins that were only identified in healthy or 338 

Aβ42 flies and 3125 proteins that were not identified in our IM-DIA-MS experiments. 12 339 

modules were present in the network (Fig 5A, Supplementary Data 2). The proportion of 340 

these modules that were composed of significantly altered proteins ranged from 0–8%. All 341 

but one of the modules were enriched for processes implicated in AD and ageing (Fig 5, 342 

Supplementary Data 3), including respiration and oxidative phosphorylation, transcription 343 

and translation, proteolysis, DNA replication and repair, and cell cycle regulation. These 344 

modules contained two proteins that were recently found to be significantly altered in the 345 

brain of AD mice [43] and are both upregulated four-fold in AD: adenylate kinase, an 346 

adenine nucleotide phosphotransferase, and the armadillo protein Arm, involved in creating 347 

long-term memories.  348 
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 349 

Figure 5. Analysis of network modules enriched for AD or ageing processes. MCODE 350 
was used to identify network modules in a subgraph of the STRING network containing the 351 
significantly altered proteins and their directly-interacting neighbours. The size of the 352 
resulting 12 modules is plotted against the fraction of proteins in these modules that are 353 
significantly altered in AD. Module 2 is annotated as containing ApoB. Marker sizes denote 354 
the MCODE score for the module.  355 
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In humans, the greatest genetic risk factor for AD is the Ɛ4 allele of ApoE—an apolipoprotein 356 

involved in cholesterol transport and repairing brain injuries [49]. A recent study showed that 357 

ApoE is only upregulated in regions of the mouse brain that have increased levels of Aβ [43], 358 

indicating a direct link between the two proteins. Although flies lack a homolog of ApoE, they 359 

do possess a homolog of the related apolipoprotein ApoB (Apolpp) [50], which contributes to 360 

AD in mice [51,52] and is correlated with AD in humans [53,54]. Interestingly, whilst it was 361 

not identified by IM-DIA-MS, ApoB interacts with 12 significantly altered proteins in the 362 

STRING network, so is included in the subgraph induced on the significantly altered proteins 363 

and their neighbours. ApoB was found in the second highest scoring module that contains 364 

proteins involved in translation and glucose transport (Fig 5) [55]. 365 

We analysed the 31 proteins significantly altered in normal ageing, but not AD. Of the 29 366 

proteins that were contained in the STRING network, 24 interact directly with at least one of 367 

the AD significantly altered proteins, suggesting an interplay between ageing and AD at the 368 

pathway level. Using a subgraph of the STRING network induced on these proteins and their 369 

1603 neighbours, we identified eight network modules that were enriched for ageing 370 

processes [56], including respiration, unfolded protein and oxidative damage stress 371 

responses, cell cycle regulation, DNA damage repair, and apoptosis.  372 
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Discussion 373 

Despite the substantial research effort spent on finding drugs against AD, effective 374 

treatments remain elusive. We need to better understand the molecular processes that 375 

govern the onset and progression of the complex pathologies observed in AD. This 376 

knowledge will help to identify new drug targets to treat and prevent AD. 377 

Analysis of post-mortem human brain tissue is an important way to study dementia, but 378 

cannot capture the progression of pathology from the initiation of disease. Due to their short 379 

lifespan and ease of genetic manipulation, model organisms such as Drosophila 380 

melanogaster provide a tractable system in which to examine the progression of AD 381 

pathology across life. We performed a longitudinal study of the Drosophila brain proteome, 382 

using an inducible model of AD, label-free quantitative IM-DIA-MS and network analyses. 383 

We were able to track alterations in protein levels from the point of exposure to human Aβ42 384 

and the widespread interaction of Aβ42 with brain signalling networks as pathology 385 

progresses. 386 

Our proteomic analyses identified Aβ42-induced alterations in levels of 228 proteins, which 387 

clustered into four groups: those which were either elevated (cluster 1) or reduced (cluster 2) 388 

in AD relative to controls throughout life, those which were altered in correlation with ageing 389 

in healthy and Aβ42 flies (cluster 3), and those which changed in Aβ42 flies across life but 390 

independently of ageing-dependent effects in healthy controls (cluster 4). Further 391 

computational analysis of these proteins revealed significant network properties within the fly 392 

brain proteome. Assessing hub and bottleneck properties, many of the Aβ42-induced 393 

proteomic changes represented alterations in bottleneck proteins suggesting that they play 394 

key roles in downstream cellular function. Of these, some display non-hub properties 395 

indicating that they are important for maintaining cellular homeostasis in a targeted fashion, 396 

whereas others also displayed hub properties suggesting that they are central in linking 397 

cellular signalling pathways to maintain cell function. 398 

We identified five nonhub-bottleneck proteins and four hub-bottleneck proteins, the 399 

expression of which was altered in Aβ42 flies relative to controls across life. Due to the 400 

importance of these hub and bottleneck proteins in the protein interaction network, we 401 

predict that AD-associated alterations in their abundance will likely have a significant effect 402 

on the cellular dynamics of the brain. Indeed, these proteins play key molecular roles in 403 

metabolism (AscI, Echs1, Got2), protein homeostasis (Hsp70A, Gp93), and protection 404 

against oxidative stress (mt:CoII) and DNA damage (Top2). These processes have been 405 

shown to affect neuronal function and protection against proteo-toxicity. Alterations in these 406 
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proteins may represent either adaptive responses to the presence of abnormal protein 407 

aggregates, such as Aβ42, or mediators of neuronal toxicity. Further functional genomic 408 

studies are therefore required to establish the causal role of these processes in governing 409 

onset and progression of AD pathology. 410 

Assessing the human orthologs of these genes, identified using DIOPT [57], indicates that 411 

several of these bottleneck proteins have been previously implicated in association with AD 412 

or other neurological conditions in humans or mammalian models of disease. ACSL4 (Acs1 413 

ortholog) has been shown to associate with synaptic growth cone development and mental 414 

retardation [58]. Mutations in ECHS1 (Echs1 ortholog), an enzyme involved in mitochondrial 415 

fatty acid oxidation, associate with Leigh Syndrome, a severe developmental neurological 416 

disorder [59]. Proteomic studies have revealed that GOT2 (Got2 ortholog) is down-regulated 417 

in infarct regions following stroke [60], and in AD patient brain [61]. Integrating data from 418 

human post-mortem brain studies, HSPA1A (Hsp70Aa ortholog) upregulates in the protein 419 

interaction network of AD patients compared to healthy controls [62], and has recently been 420 

suggested to block APP processing and Aβ production in mouse brain [63]. Synthetic, 421 

fibrillar, Aβ42 reduces expression of TOP2B (Top2 ortholog) in rat cerebellar granule cells 422 

and in a human mesenchymal cell line, suggesting this may contribute to DNA damage in 423 

response to amyloid [64]. HSP90B1 (Gp93 ortholog) shows increased expression following 424 

TBI in mice [65], and associates with animal models of Huntington’s disease [66]. Finally, 425 

ACTB (Act57B ortholog) has been implicated as a significant AD risk gene and central hub 426 

node using integrated network analyses across GWAS [67]. 427 

ACSL4, ECHS1, and HSP90B1 have no reported association with AD or related dementias, 428 

however, which suggests that our study has potential to identify new targets in the molecular 429 

pathogenesis of this disease. Our study also provides additional information about the 430 

homeostasis of these proteins across life from the point of amyloid production. For example, 431 

the abundances of Acs1 and Got2 are elevated following Aβ42 induction and continue to 432 

increase with age relative to controls. Echs1 is reduced in Aβ42 flies compared to controls 433 

but increases across life in parallel with ageing-dependent increases in this protein. 434 

Structural proteins Acp65Aa and Act57B are elevated in response to Aβ42 but decline 435 

across life whilst remaining stable in control flies. Gp93 and Top2 are either elevated or 436 

reduced in response to Aβ42 but mirror ageing-dependent alterations in their expression. 437 

mt:CoII is reduced following Aβ42 expression at all time-points, but reduced with ageing in 438 

controls. Hsp70A is increased early in Aβ42 flies, reduced to control levels in mid-life then 439 

elevated at late pathological stages whilst remaining stable in healthy controls. 440 

Analysing Gene Ontology enrichment using network modules, to capture the diverse 441 
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biological processes modified in AD, we identified 12 modules enriched for processes 442 

previously implicated in ageing and AD. This validates the use of our Drosophila model in 443 

identifying progressive molecular changes in response to Aβ42 that are likely to correlate 444 

with progression of cognitive decline in human disease. Further work is required to modify 445 

the genes identified in our study at different ages, in order to elucidate whether they 446 

represent mediators of toxicity as disease progresses, factors which increase neuronal 447 

susceptibility to disease with age or compensatory protective mechanisms. Model organisms 448 

will be essential in unravelling these complex interactions. Our study therefore forms a basis 449 

for future analyses that may identify new targets for disease intervention that are specific to 450 

age and/or pathological stage of AD.  451 
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Materials and methods 452 

Fly stocks 453 

The TgAD fly line used in this study [23] contains the human transgene encoding the Arctic 454 

mutant Aβ42 peptide under the control of an Upstream Activation Sequence (UAS) [68]. 455 

Expression of Aβ42 was controlled by GeneSwitch [69]—a mifepristone-inducible 456 

GAL4/UAS expression system—under the pan-neuronal elav promoter. All flies were 457 

backcrossed for six generations into the w1118 genetic background. 458 

Flies were grown in 200 ml bottles on a 12 h/12 h light/dark cycle at constant temperature 459 

(25 °C) and humidity. Growth media contained 15 g/l agar, 50 g/l sugar, 100 g/l autolysed 460 

yeast, 100 g/l nipagin and 3 ml/l propionic acid. Flies were maintained for two days after 461 

eclosion before females were transferred to vials at a density of 25 flies per vial for the 462 

lifespan analysis and 10 flies per vial for the IM-DIA-MS analysis. Expression of Aβ42 was 463 

induced in TgAD flies by spiking the growth media with mifepristone to a final concentration 464 

of 200 µM. Flies were transferred to fresh media three times per week, at which point the 465 

number of surviving flies was recorded. For each of the three biological repeats, 10 healthy 466 

and 10 Aβ42 flies were collected at 5, 19, 31 and 46 days, as well as 54 and 80 days for 467 

healthy flies. Following anesthetisation with CO2, brains were dissected in ice cold 10 mM 468 

phosphate buffered saline snap frozen and stored at -80°C. 469 

Extraction of brain proteins 470 

Brain proteins were extracted by homogenisation on ice into 50 µl of 50 mM ammonium 471 

bicarbonate, 10 mM DTT and 0.25% RapiGest detergent. Proteins were solubilised and 472 

disulfide bonds were reduced by heating at 80°C for 20 minutes. Free cysteine thiols were 473 

alkylated by adding 20 mM IAA and incubating at room temperature for 20 minutes in 474 

darkness. Protein concentration was determined and samples were diluted to a final 475 

concentration of 0.1% RapiGest using 50 mM ammonium bicarbonate. Proteins were 476 

digested with trypsin overnight at 37°C at a 50:1 protein:trypsin ratio. Additional trypsin was 477 

added at a 100:1 ratio the following morning and incubated for a further hour. Detergent was 478 

removed by incubating at 60°C for 1 hour in 0.1% formic acid. Insoluble debris was removed 479 

by centrifugation at 14,000 x g for 30 minutes. Supernatant was collected, lyophilised and 480 

stored at -80°C. Prior to lyophilisation peptide concentration was estimated by nanodrop 481 

(Thermo Fisher Scientific, Waltham, MA). 482 
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Label-free quantitative IM-DIA-MS 483 

Peptides were separated by nanoscale liquid chromatography (LC) by loading 300 ng of 484 

protein onto an analytical reversed phase column. IM-DIA-MS analysis was performed using 485 

a Synapt G2-Si mass spectrometer (Waters Corporation, Manchester, UK). The time-of-flight 486 

analyzer of the instrument was externally calibrated with a NaCsI mixture from m/z 50 to 487 

1990. Spectra were acquired over a range of 50–2000 m/z. Each biological repeat was 488 

analysed at least twice to account for technical variation. 489 

LC-MS data were peak detected and aligned by Progenesis QI for proteomics (Waters 490 

Corporation). The principles of the embedded search algorithm for DIA data has been 491 

described previously [70]. Proteins were identified by searching against the Drosophila 492 

melanogaster proteome in UniProt, appended with common contaminants, and revered 493 

sequence entries to estimate protein identification false discovery rate (FDR) values, using 494 

previously specified search criteria [71]. Peptide intensities were normalised to control for 495 

variation in protein loading and relative quantification. Abundances were estimated by Hi3-496 

based quantitation [72]. 497 

Data analysis 498 

Proteins that were identified in both healthy and Aβ42 flies were considered for further 499 

analysis. Missing data were replaced by the minimum abundance measured for any protein 500 

in the same repeat [48]. The data were quantile normalised [73], so that different conditions 501 

and time points could be compared reliably. Quantile normalisation transforms the 502 

abundances so that each repeat has the same distribution. 503 

For PCA analysis, the data were log10-transformed and each protein was standardised to 504 

zero mean and unit variance. Hierarchical biclustering was performed using the Euclidean 505 

distance metric with the complete linkage method. Prior to clustering, proteins were 506 

normalised to their abundance in healthy flies at 5 days. 507 

Proteins that were identified by IM-DIA-MS in either healthy or Aβ42 flies were assessed for 508 

overrepresentation of Gene Ontology terms using GOrilla [74], which uses ranked lists of 509 

target and background genes. Proteins were ranked in descending order by their mean 510 

abundance. The type I error rate was controlled by correcting for multiple testing using the 511 

Benjamini-Hochberg method at an FDR of 5%. 512 

Clusters of proteins were assessed for overrepresentation of GO-Slim terms in the Biological 513 

Process ontology using Panther (version 13.1) with a custom background of the 3093 514 
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proteins identified by IM-DIA-MS in healthy or AD flies. 515 

Identification of significantly altered proteins 516 

Significantly altered proteins were identified using five methods that are frequently used to 517 

identify differentially expressed genes in time course RNA-Seq data. DESeq2 [31], EDGE 518 

[33], edgeR [30], limma [32] and maSigPro [34] are all available in R through Bioconductor. 519 

Dispersions were estimated from the biological and technical repeats. Unless otherwise 520 

stated, default parameters were used for all methods under the null hypothesis that a protein 521 

does not change in abundance between healthy and AD conditions in normal ageing. The 522 

type I error rate was controlled by correcting for multiple testing using the Benjamini-523 

Hochberg method at a FDR of 5%. A protein was classified as significantly altered if two or 524 

more methods identified it. 525 

DESeq2 models proteins with the negative binomial distribution and performs likelihood ratio 526 

tests. A time course experiment was selected in EDGE using the likelihood ratio test and a 527 

normal null distribution. edgeR uses the negative binomial distribution and performs quasi-528 

likelihood tests. limma fits linear models to the proteins and performed empirical Bayes F-529 

tests. maSigPro fits generalised linear models to the proteins and performs log-likelihood 530 

ratio tests. 531 

Significantly altered proteins were clustered using a Gaussian mixture model. Protein 532 

abundances were log10-transformed and z scores were calculated. Gaussian mixture 533 

models were implemented for 1–228 clusters. The best model was chosen using the 534 

Bayesian information criterion (BIC), which penalises complex models: 535 

BIC = -2ln(L) + ln(n)k 536 

where ln(L) is the log-likelihood of the model, n is the number of significantly altered proteins 537 

and k is the number of clusters. The model with lowest BIC was chosen. 538 

Networks 539 

All network analysis was performed using the Drosophila melanogaster STRING network 540 

(version 10) [35]. Low confidence interactions with a ‘combined score’ < 500 were removed 541 

in all network analyses. 542 

Network properties of the significantly altered proteins were analysed in the brain protein 543 

interaction network. A subgraph of the STRING network was induced on the 3093 proteins 544 

identified by IM-DIA-MS in healthy or Aβ42 flies and the largest connected component was 545 
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selected (2428 nodes and 44,561 edges). The subgraph contained 183 of the 228 546 

significantly altered proteins. For these proteins, four network properties were calculated as 547 

test statistics: mean node degree; mean unweighted shortest path length between a node 548 

and the remaining 182 nodes; the size of the largest connected component in the subgraph 549 

induced on these nodes; and mean betweenness centrality. Hypothesis testing was 550 

performed using the null hypothesis that there is no difference between the nodes in the 551 

subgraph. Assuming the null hypothesis is true, null distributions of each test statistic were 552 

simulated by randomly sampling 183 nodes from the network 10,000 times. Using the null 553 

distributions, non-parametric one-sided p-values were calculated as the probability of 554 

observing a test statistic as extreme as the test statistic for the significantly altered proteins. 555 

A subgraph of the STRING network was induced on the proteins significantly altered in AD 556 

and their neighbours and the largest connected component was selected (4842 nodes and 557 

182,474 edges). The subgraph contained 198 of the 228 significantly altered proteins and 558 

was assessed for enrichment of Gene Ontology terms. Densely connected subgraphs were 559 

identified using MCODE [47]. Modules were selected with an MCODE score > 10. As 560 

STRING is a functional interaction network, clusters of nodes may correspond to proteins 561 

from the same complex, pathway or functional family. Clusters were assessed for 562 

overrepresentation of GO-Slim terms in the Biological Process ontology using Panther 563 

(version 13.1) [75] with a custom background of the 3093 proteins identified by IM-DIA-MS in 564 

healthy or Aβ42 flies. Fisher’s exact tests were performed and the type I error rate was 565 

controlled by correcting for multiple testing using the Benjamini-Hochberg method at a FDR 566 

of 5%. 567 

Open source software 568 

Data analysis was performed in Python 3.6 (Python Software Foundation, 569 

http://www.python.org) using SciPy [76], NumPy [77], Pandas [78], scikit-learn [79], 570 

NetworkX [80], IPython [81] and Jupyter [82]. Figures were plotted using Matplotlib [83] and 571 

seaborn. 572 
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Supplementary Information 587 

Methods 588 

IM-DIA-MS analysis 589 

Nanoscale liquid chromatography (LC) separation of tryptic peptides was performed using a 590 

nanoAcquity UPLC system (Waters Corporation) equipped with a UPLC HSS T3 1.7 µm, 75 591 

µm x 250 mm analytical reverse phase column (Waters Corporation). Prior to peptide 592 

separation, 300 ng of tryptic peptides were loaded onto a 2G, V/V 5 µm, 180 µm x 20 mm 593 

reverse phase trapping column at 5 µl/min for 3 minutes. IM-DIA-MS analysis of tryptic 594 

digests was performed using a Synapt GS-Si mass spectrometer equipped with a T-Wave-595 

IMS device. Mass measurements were made in positive-mode ESI with the instrument 596 

operated in resolution mode with a typical resolving power of 20,000 full width at half 597 

maximum. Prior to analysis the time-of-flight analyzer was externally calibrated with a NaCsI 598 

mixture from m/z 50 to 1990. The data were post-acquisition lock mass corrected using the 599 

double charged monoisotopic ion of [Glu1]-Fibrinopeptide B. To achieve lock mass 600 

correction, a 100 fmol/µl solution of [Glu1]-Fibrinopeptide B was infused at a 90° angle to the 601 

analytical sprayer. This reference sprayer was sampled every 60 seconds. Accurate IM-DIA-602 

MS data were collected in the DIA mode of analysis, HDMSE [24,71] IM spectrometry was 603 

performed by applying a constant wave height of 40 V whilst a constant wave velocity of 650 604 

m/s was maintained. Wave heights within the trap and transfer were both set at 4 V whilst 605 

the wave velocities were 311 and 175 m/s respectively. MS data were acquired over 50-606 

2000 m/z for each mode. Spectral acquisition time for each mode was 0.5 s with a 0.015 607 

interscan delay, corresponding to a cycle of low and elevated energy data being acquired 608 

every 1.1 s. During the low energy MS mode data was acquired whilst applying a constant 609 

collision energy of 4 eV within the transfer. After IMS, MS/MS data was acquired by ramping 610 

the collision energy within the transfer region between 15 and 45 eV. To ensure that ions 611 

with a m/z less than 350 were derived from peptide fragmentation within the transfer region 612 

the radio frequency applied to the quadrupole mass analyser was adjusted to optimise 613 

transmission within the region of 350 – 2000 Da. Each biological replicate was analysed at 614 

least twice. 615 

MS Data Processing 616 

All MS data were processed in Progenesis QI for proteomics. Data were imported into 617 

Progenesis to generate a 3D representation of the data (m/z, RT and peak intensity). 618 

Samples were then time aligned with the software allowed to automatically determine the 619 
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best reference run from the dataset. Following alignment, peak picking was performed on 620 

MS level data. A peak picking sensitivity of 4 (out of 5) was set. Peptide features were 621 

tentatively aligned with their respective fragment ions based primarily on the similarity of 622 

their chromatographic and mobility profiles. Requirements for features to be included in post-623 

processing database searching were as follows: 300 counts for low energy ions, 50 counts 624 

for high energy ions and 750 counts for deconvoluted precursor intensities. Subsequent data 625 

were searched against 20,049 sequences from the UniProt canonical Drosophila database 626 

(appended with common contaminants). Trypsin was specified as the enzyme of choice and 627 

a maximum of two missed cleavages were permitted. Carbamidomethyl (C) was set as a 628 

fixed modification whilst oxidation (M) and N-terminal acetylation were set as variable 629 

modifications. Peptide identifications were grouped and relative quantification was 630 

performed using non-conflicting peptides only. 631 

Data 632 

Supplementary Data 1 633 
supplementary_data_1.xlsx 634 
Proteomics data 635 

Supplementary Data 2 636 
supplementary_data_2.txt 637 
MCODE modules 638 
 639 
Supplementary Data 3 640 
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Figures 643 

 644 
Figure S1: Assessment of experimental reproducibility. Scatter plots comparing protein 645 

abundances in different biological repeats (BR) of healthy flies at days (D) (A) 5, (B) 19, (C) 646 

31, (D) 46, (E) 54 and (F) 80. Abundances were log2-transformed before plotting. Pearson 647 

correlation coefficients (r) are shown for each pair of biological repeat at each time point.  648 
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 649 

Figure S2: Analysis of the five statistical methods used to identify significantly altered 650 

proteins. 651 

(A) Heat map of the proteins detected by each method. (B) Principal component analysis of 652 

these results. Axes are annotated with the percentage of variance explained by each 653 

principal component.  654 
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 655 

Figure S3: Identification of significantly altered proteins during normal ageing. Heat 656 

map of the proteins detected by each method.  657 
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 658 

Figure S4: Model selection for clustering of the significantly altered proteins using a 659 

Gaussian mixture model. The best model was chosen using the Bayesian information 660 

criterion (BIC), which penalises complex models.  661 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


 

34 

References 662 

1.  Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25: 59–70. 663 
doi:10.1111/ene.13439 664 

2.  Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and 665 
characterization of a novel cerebrovascular amyloid protein. 1984. Biochem Biophys 666 
Res Commun. 2012;425: 534–539. doi:10.1016/j.bbrc.2012.08.020 667 

3.  Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal 668 
phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer 669 
cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986;83: 4913–4917. Available: 670 
https://www.ncbi.nlm.nih.gov/pubmed/3088567 671 

4.  Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A. Cloning and sequencing of 672 
the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: 673 
identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A. 674 
1988;85: 4051–4055. Available: https://www.ncbi.nlm.nih.gov/pubmed/3131773 675 

5.  Cai H, Cong W-N, Ji S, Rothman S, Maudsley S, Martin B. Metabolic Dysfunction in 676 
Alzheimer’s Disease and Related Neurodegenerative Disorders. Curr Alzheimer Res. 677 
2011;9: 5–17. doi:10.2174/156720512799015064 678 

6.  Szutowicz A, Bielarczyk H, Jankowska-Kulawy A, Pawełczyk T, Ronowska A. Acetyl-679 
CoA the key factor for survival or death of cholinergic neurons in course of 680 
neurodegenerative diseases. Neurochem Res. 2013;38: 1523–1542. 681 
doi:10.1007/s11064-013-1060-x 682 

7.  Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, et al. Physiologic 683 
brain activity causes DNA double-strand breaks in neurons, with exacerbation by 684 
amyloid-β. Nat Neurosci. 2013;16: 613–621. doi:10.1038/nn.3356 685 

8.  Raina AK, Monteiro MJ, McShea A, Smith MA. The role of cell cycle-mediated events in 686 
Alzheimer’s disease. Int J Exp Pathol. 1999;80: 71–76. doi:10.1046/j.1365-687 
2613.1999.00106.x 688 

9.  Kanaan NM, Pigino GF, Brady ST, Lazarov O, Binder LI, Morfini GA. Axonal 689 
degeneration in Alzheimer’s disease: when signaling abnormalities meet the axonal 690 
transport system. Exp Neurol. 2013;246: 44–53. doi:10.1016/j.expneurol.2012.06.003 691 

10.  Donev R, Kolev M, Millet B, Thome J. Neuronal death in Alzheimer’s disease and 692 
therapeutic opportunities. J Cell Mol Med. 2009;13: 4329–4348. doi:10.1111/j.1582-693 
4934.2009.00889.x 694 

11.  Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of 695 
Alzheimer disease: clinical implications and perspectives. Genet Med. The Author(s); 696 
2016;18: 421–430. doi:10.1038/gim.2015.117 697 

12.  Zhang Y, McLaughlin R, Goodyer C, LeBlanc A. Selective cytotoxicity of intracellular 698 
amyloid beta peptide1-42 through p53 and Bax in cultured primary human neurons. J 699 
Cell Biol. 2002;156: 519–529. doi:10.1083/jcb.200110119 700 

13.  McGowan E, Pickford F, Kim J, Onstead L, Eriksen J, Yu C, et al. Abeta42 is essential 701 
for parenchymal and vascular amyloid deposition in mice. Neuron. 2005;47: 191–199. 702 
doi:10.1016/j.neuron.2005.06.030 703 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


 

35 

14.  Götz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301l 704 
tau transgenic mice induced by Abeta 42 fibrils. Science. 2001;293: 1491–1495. 705 
doi:10.1126/science.1062097 706 

15.  Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, et al. A pathogenic 707 
mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-708 
amyloid. Nat Genet. 1992;1: 345–347. doi:10.1038/ng0892-345 709 

16.  Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, 710 
et al. The “Arctic” APP mutation (E693G) causes Alzheimer’s disease by enhanced 711 
Abeta protofibril formation. Nat Neurosci. 2001;4: 887–893. doi:10.1038/nn0901-887 712 

17.  Moya-Alvarado G, Gershoni-Emek N, Perlson E, Bronfman FC. Neurodegeneration and 713 
Alzheimer’s disease (AD). What Can Proteomics Tell Us About the Alzheimer's Brain? 714 
Mol Cell Proteomics. 2016;15: 409–425. doi:10.1074/mcp.R115.053330 715 

18.  Lynn BC, Wang J, Markesbery WR, Lovell MA. Quantitative changes in the 716 
mitochondrial proteome from subjects with mild cognitive impairment, early stage, and 717 
late stage Alzheimer’s disease. J Alzheimers Dis. 2010;19: 325–339. doi:10.3233/JAD-718 
2010-1254 719 

19.  Butterfield DA, Di Domenico F, Swomley AM, Head E, Perluigi M. Redox proteomics 720 
analysis to decipher the neurobiology of Alzheimer-like neurodegeneration: overlaps in 721 
Down’s syndrome and Alzheimer's disease brain. Biochem J. 2014;463: 177–189. 722 
doi:10.1042/BJ20140772 723 

20.  Aluise CD, Robinson RAS, Cai J, Pierce WM, Markesbery WR, Butterfield DA. Redox 724 
proteomics analysis of brains from subjects with amnestic mild cognitive impairment 725 
compared to brains from subjects with preclinical Alzheimer’s disease: insights into 726 
memory loss in MCI. J Alzheimers Dis. 2011;23: 257–269. doi:10.3233/JAD-2010-727 
101083 728 

21.  Dammer EB, Lee AK, Duong DM, Gearing M, Lah JJ, Levey AI, et al. Quantitative 729 
phosphoproteomics of Alzheimer’s disease reveals cross-talk between kinases and 730 
small heat shock proteins. Proteomics. 2015;15: 508–519. doi:10.1002/pmic.201400189 731 

22.  Sultana R, Robinson RAS, Di Domenico F, Abdul HM, St Clair DK, Markesbery WR, et 732 
al. Proteomic identification of specifically carbonylated brain proteins in 733 
APP(NLh)/APP(NLh) × PS-1(P264L)/PS-1(P264L) human double mutant knock-in mice 734 
model of Alzheimer disease as a function of age. J Proteomics. 2011;74: 2430–2440. 735 
doi:10.1016/j.jprot.2011.06.015 736 

23.  Sofola O, Kerr F, Rogers I, Killick R, Augustin H, Gandy C, et al. Inhibition of GSK-3 737 
Ameliorates Aβ Pathology in an Adult-Onset Drosophila Model of Alzheimer’s Disease. 738 
Lu B, editor. PLoS Genet. Public Library of Science; 2010;6: e1001087. 739 
doi:10.1371/journal.pgen.1001087 740 

24.  Rodriguez-Suarez E, Hughes C, Gethings L, Giles K, Wildgoose J, Stapels M, et al. An 741 
Ion Mobility Assisted Data Independent LC-MS Strategy for the Analysis of Complex 742 
Biological Samples. Curr Anal Chem. 2013;9: 199–211. Available: 743 
https://www.ingentaconnect.com/content/ben/cac/2013/00000009/00000002/art00006 744 

25.  Brown CJ, Kaufman T, Trinidad JC, Clemmer DE. Proteome changes in the aging 745 
Drosophila melanogaster head. Int J Mass Spectrom. 2018;425: 36–46. 746 
doi:10.1016/j.ijms.2018.01.003 747 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


 

36 

26.  Tain LS, Sehlke R, Jain C, Chokkalingam M, Nagaraj N, Essers P, et al. A proteomic 748 
atlas of insulin signalling reveals tissue-specific mechanisms of longevity assurance. 749 
Mol Syst Biol. 2017;13: 939. doi:10.15252/msb.20177663 750 

27.  Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, et al. Count-751 
based differential expression analysis of RNA sequencing data using R and 752 
Bioconductor. Nat Protoc. 2013;8: 1765–1786. doi:10.1038/nprot.2013.099 753 

28.  Zhang ZH, Jhaveri DJ, Marshall VM, Bauer DC, Edson J, Narayanan RK, et al. A 754 
comparative study of techniques for differential expression analysis on RNA-Seq data. 755 
PLoS One. 2014;9: e103207. doi:10.1371/journal.pone.0103207 756 

29.  Seyednasrollah F, Laiho A, Elo LL. Comparison of software packages for detecting 757 
differential expression in RNA-seq studies. Brief Bioinform. 2015;16: 59–70. 758 
doi:10.1093/bib/bbt086 759 

30.  Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential 760 
expression analysis of digital gene expression data. Bioinformatics. 2010;26: 139–140. 761 
doi:10.1093/bioinformatics/btp616 762 

31.  Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for 763 
RNA-seq data with DESeq2. Genome Biol. 2014;15: 550. doi:10.1186/s13059-014-764 
0550-8 765 

32.  Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential 766 
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 767 
2015;43: e47. doi:10.1093/nar/gkv007 768 

33.  Woo S, Leek JT, Storey JD. A computationally efficient modular optimal discovery 769 
procedure. Bioinformatics. 2011;27: 509–515. doi:10.1093/bioinformatics/btq701 770 

34.  Nueda MJ, Tarazona S, Conesa A. Next maSigPro: updating maSigPro bioconductor 771 
package for RNA-seq time series. Bioinformatics. 2014;30: 2598–2602. 772 
doi:10.1093/bioinformatics/btu333 773 

35.  Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING 774 
database in 2017: quality-controlled protein-protein association networks, made broadly 775 
accessible. Nucleic Acids Res. 2017;45: D362–D368. doi:10.1093/nar/gkw937 776 

36.  Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in 777 
protein networks: correlation with gene essentiality and expression dynamics. PLoS 778 
Comput Biol. 2007;3: e59. doi:10.1371/journal.pcbi.0030059 779 

37.  Maas AI. Cerebrospinal fluid enzymes in acute brain injury. 2. Relation of CSF enzyme 780 
activity to extent of brain injury. J Neurol Neurosurg Psychiatry. 1977;40: 666–674. 781 
doi:10.1136/jnnp.40.7.666 782 

38.  Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA. Beta-amyloid inhibits integrated 783 
mitochondrial respiration and key enzyme activities. J Neurochem. 2002;80: 91–100. 784 
doi:10.1046/j.0022-3042.2001.00681.x 785 

39.  Cardoso SM, Proença MT, Santos S, Santana I, Oliveira CR. Cytochrome c oxidase is 786 
decreased in Alzheimer’s disease platelets. Neurobiol Aging. 2004;25: 105–110. 787 
doi:10.1016/S0197-4580(03)00033-2 788 

40.  Fukui H, Diaz F, Garcia S, Moraes CT. Cytochrome c oxidase deficiency in neurons 789 
decreases both oxidative stress and amyloid formation in a mouse model of Alzheimer’s 790 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


 

37 

disease. Proc Natl Acad Sci U S A. 2007;104: 14163–14168. 791 
doi:10.1073/pnas.0705738104 792 

41.  Castellani RJ, Siedlak SL, Fortino AE, Perry G, Ghetti B, Smith MA. Chitin-like 793 
polysaccharides in Alzheimer’s disease brains. Curr Alzheimer Res. 2005;2: 419–423. 794 
Available: https://www.ncbi.nlm.nih.gov/pubmed/16248847 795 

42.  Rogers I, Kerr F, Martinez P, Hardy J, Lovestone S, Partridge L. Ageing Increases 796 
Vulnerability to Aβ42 Toxicity in Drosophila. Iijima KM, editor. PLoS One. 2012;7: 797 
e40569. doi:10.1371/journal.pone.0040569 798 

43.  Savas JN, Wang Y-Z, DeNardo LA, Martinez-Bartolome S, McClatchy DB, Hark TJ, et 799 
al. Amyloid Accumulation Drives Proteome-wide Alterations in Mouse Models of 800 
Alzheimer’s Disease-like Pathology. Cell Rep. 2017;21: 2614–2627. 801 
doi:10.1016/j.celrep.2017.11.009 802 

44.  Kommaddi RP, Das D, Karunakaran S, Nanguneri S, Bapat D, Ray A, et al. Aβ 803 
mediates F-actin disassembly in dendritic spines leading to cognitive deficits in 804 
Alzheimer’s disease. J Neurosci. 2018;38: 1085–1099. doi:10.1523/JNEUROSCI.2127-805 
17.2017 806 

45.  Jacobson GR, Rosenbusch JP. ATP binding to a protease-resistant core of actin. Proc 807 
Natl Acad Sci U S A. 1976;73: 2742–2746. Available: 808 
https://www.ncbi.nlm.nih.gov/pubmed/134374 809 

46.  Hozumi T. Structural aspects of skeletal muscle F-actin as studied by tryptic digestion: 810 
evidence for a second nucleotide interacting site. J Biochem. 1988;104: 285–288. 811 
Available: https://www.ncbi.nlm.nih.gov/pubmed/2972700 812 

47.  Bader GD, Hogue CWV. An automated method for finding molecular complexes in large 813 
protein interaction networks. BMC Bioinformatics. 2003;4: 2. doi:10.1186/1471-2105-4-2 814 

48.  Lazar C, Gatto L, Ferro M, Bruley C, Burger T. Accounting for the Multiple Natures of 815 
Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation 816 
Strategies. J Proteome Res. 2016;15: 1116–1125. doi:10.1021/acs.jproteome.5b00981 817 

49.  Liu C-C, Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: 818 
risk, mechanisms and therapy. Nat Rev Neurol. 2013;9: 106–118. 819 
doi:10.1038/nrneurol.2012.263 820 

50.  Palm W, Sampaio JL, Brankatschk M, Carvalho M, Mahmoud A, Shevchenko A, et al. 821 
Lipoproteins in Drosophila melanogaster--assembly, function, and influence on tissue 822 
lipid composition. PLoS Genet. 2012;8: e1002828. doi:10.1371/journal.pgen.1002828 823 

51.  Bereczki E, Bernát G, Csont T, Ferdinandy P, Scheich H, Sántha M. Overexpression of 824 
human apolipoprotein B-100 induces severe neurodegeneration in transgenic mice. J 825 
Proteome Res. 2008;7: 2246–2252. doi:10.1021/pr7006329 826 

52.  Löffler T, Flunkert S, Havas D, Sántha M, Hutter-Paier B, Steyrer E, et al. Impact of 827 
ApoB-100 expression on cognition and brain pathology in wild-type and hAPPsl mice. 828 
Neurobiol Aging. 2013;34: 2379–2388. doi:10.1016/j.neurobiolaging.2013.04.008 829 

53.  Caramelli P, Nitrini R, Maranhão R, Lourenço AC, Damasceno MC, Vinagre C, et al. 830 
Increased apolipoprotein B serum concentration in Alzheimer’s disease. Acta Neurol 831 
Scand. 1999;100: 61–63. doi:10.1111/j.1600-0404.1999.tb00724.x 832 

54.  Zhang R, Barker L, Pinchev D, Marshall J, Rasamoelisolo M, Smith C, et al. Mining 833 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


 

38 

biomarkers in human sera using proteomic tools. Proteomics. 2004;4: 244–256. 834 
doi:10.1002/pmic.200300495 835 

55.  Niccoli T, Cabecinha M, Tillmann A, Kerr F, Wong CT, Cardenes D, et al. Increased 836 
Glucose Transport into Neurons Rescues Aβ Toxicity in Drosophila. Curr Biol. 2016;26: 837 
2291–2300. doi:10.1016/j.cub.2016.07.017 838 

56.  López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. 839 
Cell. 2013;153: 1194–1217. doi:10.1016/j.cell.2013.05.039 840 

57.  Hu Y, Flockhart I, Vinayagam A, Bergwitz C, Berger B, Perrimon N, et al. An integrative 841 
approach to ortholog prediction for disease-focused and other functional studies. BMC 842 
Bioinformatics. 2011;12: 357. doi:10.1186/1471-2105-12-357 843 

58.  Meloni I, Muscettola M, Raynaud M, Longo I, Bruttini M, Moizard M-P, et al. FACL4, 844 
encoding fatty acid-CoA ligase 4, is mutated in nonspecific X-linked mental retardation. 845 
Nat Genet. 2002;30: 436–440. doi:10.1038/ng857 846 

59.  Peters H, Buck N, Wanders R, Ruiter J, Waterham H, Koster J, et al. ECHS1 mutations 847 
in Leigh disease: a new inborn error of metabolism affecting valine metabolism. Brain. 848 
2014;137: 2903–2908. doi:10.1093/brain/awu216 849 

60.  Datta A, Akatsu H, Heese K, Sze SK. Quantitative clinical proteomic study of autopsied 850 
human infarcted brain specimens to elucidate the deregulated pathways in ischemic 851 
stroke pathology. J Proteomics. 2013;91: 556–568. doi:10.1016/j.jprot.2013.08.017 852 

61.  McKenzie AT, Moyon S, Wang M, Katsyv I, Song W-M, Zhou X, et al. Multiscale 853 
network modeling of oligodendrocytes reveals molecular components of myelin 854 
dysregulation in Alzheimer’s disease. Mol Neurodegener. 2017;12: 82. 855 
doi:10.1186/s13024-017-0219-3 856 

62.  Chi L-M, Wang X, Nan G-X. In silico analyses for molecular genetic mechanism and 857 
candidate genes in patients with Alzheimer’s disease. Acta Neurol Belg. 2016;116: 543–858 
547. doi:10.1007/s13760-016-0613-6 859 

63.  Gerber H, Mosser S, Boury-Jamot B, Stumpe M, Piersigilli A, Goepfert C, et al. The 860 
APMAP interactome reveals new modulators of APP processing and beta-amyloid 861 
production that are altered in Alzheimer’s disease. Acta Neuropathol Commun. 2019;7: 862 
13. doi:10.1186/s40478-019-0660-3 863 

64.  Terzioglu-Usak S, Negis Y, Karabulut DS, Zaim M, Isik S. Cellular Model of Alzheimer’s 864 
Disease: Aβ1-42 Peptide Induces Amyloid Deposition and a Decrease in Topo 865 
Isomerase IIβ and Nurr1 Expression. Curr Alzheimer Res. 2017;14: 636–644. 866 
doi:10.2174/1567205014666170117103217 867 

65.  Tzekov R, Dawson C, Orlando M, Mouzon B, Reed J, Evans J, et al. Sub-Chronic 868 
Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive 869 
Mild Traumatic Brain Injury. PLoS One. 2016;11: e0153608. 870 
doi:10.1371/journal.pone.0153608 871 

66.  Kalathur RKR, Giner-Lamia J, Machado S, Barata T, Ayasolla KRS, Futschik ME. The 872 
unfolded protein response and its potential role in Huntington’s disease elucidated by a 873 
systems biology approach. F1000Res. 2015;4: 103. doi:10.12688/f1000research.6358.2 874 

67.  Talwar P, Silla Y, Grover S, Gupta M, Agarwal R, Kushwaha S, et al. Genomic 875 
convergence and network analysis approach to identify candidate genes in Alzheimer’s 876 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


 

39 

disease. BMC Genomics. 2014;15: 199. doi:10.1186/1471-2164-15-199 877 

68.  Crowther DC, Kinghorn KJ, Miranda E, Page R, Curry JA, Duthie FAI, et al. 878 
Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila 879 
model of Alzheimer’s disease. Neuroscience. 2005;132: 123–135. 880 
doi:10.1016/j.neuroscience.2004.12.025 881 

69.  Osterwalder T, Yoon KS, White BH, Keshishian H. A conditional tissue-specific 882 
transgene expression system using inducible GAL4. Proc Natl Acad Sci U S A. 2001;98: 883 
12596–12601. doi:10.1073/pnas.221303298 884 

70.  Li G-Z, Vissers JPC, Silva JC, Golick D, Gorenstein MV, Geromanos SJ. Database 885 
searching and accounting of multiplexed precursor and product ion spectra from the 886 
data independent analysis of simple and complex peptide mixtures. Proteomics. 2009;9: 887 
1696–1719. doi:10.1002/pmic.200800564 888 

71.  Distler U, Kuharev J, Navarro P, Levin Y, Schild H, Tenzer S. Drift time-specific collision 889 
energies enable deep-coverage data-independent acquisition proteomics. Nat Methods. 890 
2014;11: 167–170. doi:10.1038/nmeth.2767 891 

72.  Silva JC, Gorenstein MV, Li G-Z, Vissers JPC, Geromanos SJ. Absolute quantification 892 
of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics. 2006;5: 893 
144–156. doi:10.1074/mcp.M500230-MCP200 894 

73.  Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods 895 
for high density oligonucleotide array data based on variance and bias. Bioinformatics. 896 
2003;19: 185–193. doi:10.1093/bioinformatics/19.2.185 897 

74.  Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and 898 
visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10: 899 
48. doi:10.1186/1471-2105-10-48 900 

75.  Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis 901 
with the PANTHER classification system. Nat Protoc. 2013;8: 1551–1566. 902 
doi:10.1038/nprot.2013.092 903 

76.  Oliphant TE. SciPy: Open source scientific tools for Python. Computing in Science and 904 
Engineering. 2007;9: 10–20. 905 

77.  Oliphant TE. A guide to NumPy [Internet]. Trelgol Publishing USA; 2006. Available: 906 
http://ns.ael.ru/ports/distfiles/numpybook.pdf 907 

78.  McKinney W, Others. Data structures for statistical computing in python. Proceedings of 908 
the 9th Python in Science Conference. Austin, TX; 2010. pp. 51–56. Available: 909 
https://pdfs.semanticscholar.org/f6da/c1c52d3b07c993fe52513b8964f86e8fe381.pdf 910 

79.  Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-911 
learn: Machine Learning in Python. J Mach Learn Res. 2011;12: 2825–2830. Available: 912 
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf 913 

80.  Hagberg A, Swart P, S Chult D. Exploring network structure, dynamics, and function 914 
using NetworkX [Internet]. Los Alamos National Lab.(LANL), Los Alamos, NM (United 915 
States); 2008. Available: https://www.osti.gov/biblio/960616 916 

81.  Perez F, Granger BE. IPython: A System for Interactive Scientific Computing. 917 
Computing in Science Engineering. 2007;9: 21–29. doi:10.1109/MCSE.2007.53 918 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


 

40 

82.  Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, et al. 919 
Jupyter Notebooks-a publishing format for reproducible computational workflows. 920 
ELPUB. 2016. pp. 87–90. Available: 921 
https://books.google.com/books?hl=en&lr=&id=Lgy3DAAAQBAJ&oi=fnd&pg=PA87&dq922 
=jupyter&ots=N1AZ8RuCbo&sig=s-Q__Qm1hHR7bJmgi6x_Y8NGCzE 923 

83.  Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng. IEEE Computer 924 
Society; 2007;9: 90–95. doi:10.1109/MCSE.2007.55 925 

84.  Müller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid 926 
precursor protein family. Nat Rev Neurosci. 2017;18: 281–298. doi:10.1038/nrn.2017.29 927 

85.  Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, et al. Microglia-928 
derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature. 2017;552: 929 
355–361. doi:10.1038/nature25158 930 

86.  Yagi Y, Tomita S, Nakamura M, Suzuki T. Overexpression of human amyloid precursor 931 
protein in Drosophila. Mol Cell Biol Res Commun. 2000;4: 43–49. 932 
doi:10.1006/mcbr.2000.0248 933 

87.  Li Y, Liu T, Peng Y, Yuan C, Guo A. Specific functions of Drosophila amyloid precursor-934 
like protein in the development of nervous system and nonneural tissues. J Neurobiol. 935 
2004;61: 343–358. doi:10.1002/neu.20048 936 

88.  Torroja L, Chu H, Kotovsky I, White K. Neuronal overexpression of APPL, the 937 
Drosophila homologue of the amyloid precursor protein (APP), disrupts axonal 938 
transport. Curr Biol. 1999;9: 489–492. doi:10.1016/S0960-9822(99)80215-2 939 

89.  Ewald CY, Li C. Understanding the molecular basis of Alzheimer’s disease using a 940 
Caenorhabditis elegans model system. Brain Struct Funct. 2010;214: 263–283. 941 
doi:10.1007/s00429-009-0235-3 942 

90.  Baranello RJ, Bharani KL, Padmaraju V, Chopra N, Lahiri DK, Greig NH, et al. Amyloid-943 
beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer’s 944 
disease. Curr Alzheimer Res. 2015;12: 32–46. 945 
doi:10.2174/1567205012666141218140953 946 

91.  Zhang X, Le W. Pathological role of hypoxia in Alzheimer’s disease. Exp Neurol. 947 
2010;223: 299–303. doi:10.1016/j.expneurol.2009.07.033 948 

 949 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


Proteins

5
19
31
46
54
80
5
19
31
46

A
ge

 (
da

ys
)

A
42

 
H

ea
lth

y

20 0 20 40

PC1 (70.6% variance explained)

10

0

10

20

P
C

2 
(8

.6
%

)

5 (age in days)

19

31
46

54
80

5

19

31
46Healthy

A 42

607 6321854

Healthy A 42

Proteins identified by MS

0 25 50 75 100

Age (days)

0.0

0.2

0.4

0.6

0.8

1.0

S
ur

vi
va

l r
at

e 
(p

ro
po

rt
io

n 
of

 to
ta

l)

5 19 31 4654

46

80

Healthy

A 42

A B

C

D

F

GAL4elav
pan-neuronal

promoter

UAS Aβ42

Mifepristone inducerTgAD fly line

E

Collect samples,
dissect brains

Trypsin digest,
nanoscale UPLC

Induce Aβ42 flies
at 2 days

Age (days)

Data analysis

Healthy

5... 54 8046

Aβ42

5 19 31 46

Label-free
quantitative
IM-DIA-MS

Proteins

Lower

Higher

Abundance normalised to
healthy flies at 5 days

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


1 2 3 4 5

Number of methods that detect a
protein is significantly altered in A 42

0

200

400

600
P

ro
te

in
s

512

169

16 38
5

228 significantly altered proteins in A 42

5 19 31 46

Age (days)

2

1

0

1

2

R
el

at
iv

e 
ab

un
da

nc
e Cluster 1 (n = 75)

5 19 31 46

Cluster 2 (71)

5 19 31 46

Cluster 3 (39)

5 19 31 46

Cluster 4 (43)

Healthy

Aβ42

C

A B

31 19830

Ageing

Aβ42

Significantly altered proteins

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


30 40 50

Mean degree

0.0

0.5

1.0

N
ul

l d
is

tr
ib

ut
io

n
fr

eq
ue

nc
y 

(×
1

0
4
)

p < 0.05

3.0 3.5

Mean shortest path
length

0.0

0.5

1.0

p < 0.05

50 100 150

Size of largest
connected component

0.0

0.5

1.0

1.5

p < 0.01

1 2

Mean betweenness
centrality (×10 3)

0

1

2

p < 0.01
B

Degree

Network properties

Shortest path Largest connected
component

Betweenness
centrality

D(a) = 3 SP(b,d) = bcd = 2 LCC = 4

A

C D E

Significantly altered proteins Null distribution from 10,000 random samples

Property

Value

Example

a

b

c

d

BC(f) =   {efgh, efg}   = 0.66
           {efgh, efg, fgh}

e
f

g
h

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


10
7

10
5

10
3

10
1

Betweenness centrality

10
1

10
2

10
3

D
eg

re
e

Hsp70Ab

Acsl

Echs1

mt:CoII

Hsp70Aa

Acp65Aa

Act57B

Got2

Gp93

Top2

90th PC

0.0

0.5

1.0

Acsl (cluster 1) mt:CoII (2) Hsp70A (4) Act57B (1)

0.0

0.5

1.0

Echs1 (3) Acp65Aa (1) Gp93 (1)

5 19 31 46 54 80

Age (days)

0.0

0.5

1.0

R
el

at
iv

e 
ab

un
da

nc
e

Got2 (3)

5 19 31 46 54 80

Top2 (4)

A B Nonhub-bottlenecks Hub-bottlenecks

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


0 50 100 150 200 250 300

Module size (number of proteins)

0.00

0.02

0.04

0.06

0.08

0.10

F
ra

ct
io

n 
of

 p
ro

te
in

s 
in

 m
od

ul
es

si
gn

ifi
ca

nt
ly

 a
lte

re
d 

in
 A

42

Module containing
ApoB

Module enriched in AD or ageing processes

Not enriched

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


BA

C D

E F

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


BA

20 0 20

PC1 (44.8%)

10

0

10

20

P
C

2 
(4

1.
5%

) DESeq2

EDGE

edgeR

limma

maSigPro

DESeq
2 

(6
1)

EDGE (4
39

)

ed
ge

R (1
39

)

lim
m

a 
(3

2)

m
aS

igP
ro

 (3
82

)

1 2 3 4 5
Number of methods

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


DESeq
2 

(7
9)

EDGE (5
9)

ed
ge

R (4
9)

lim
m

a 
(3

5)

m
aS

igP
ro

 (0
)

1 2 3 4
Number of methods

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


1 4 10 20 30 40 50

Number of clusters

1000

0

1000

2000

3000

4000
B

IC

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/

