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Abstract

Alzheimer’s disease (AD), the most prevalent form of dementia, is a progressive and
devastating neurodegenerative condition for which there are no effective treatments.
Understanding the molecular pathology of AD during disease progression may identify new
ways to reduce neuronal damage. Here, we present a longitudinal study tracking dynamic
proteomic alterations in the brains of an inducible Drosophila melanogaster model of AD
expressing the Arctic mutant AB42 gene. We identified 3093 proteins from flies that were
induced to express AB42 and age-matched healthy controls using label-free quantitative ion-
mobility data independent analysis mass spectrometry. Of these, 228 proteins were
significantly altered by AB42 accumulation and were enriched for AD-associated processes.
Network analyses further revealed that these proteins have distinct hub and bottleneck
properties in the brain protein interaction network, suggesting that several may have
significant effects on brain function. Our unbiased analysis provides useful insights into the
key processes governing the progression of amyloid toxicity and forms a basis for further

functional analyses in model organisms and translation to mammalian systems.
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37 Introduction

38 Alzheimer’s disease (AD) is a progressive and devastating neurodegenerative disease that
39 is the most prevalent form of dementia [1]. Symptoms initially present as episodic memory
40 loss and subsequently develop into widespread cognitive impairment. Two brain lesions are
41 pathological hallmarks of the disease: plaques and neurofibrillary tangles. Plaques are

42  extracellular aggregates of amyloid beta (AB) [2], whereas, neurofibrillary tangles are

43  intraneuronal aggregates of hyperphosphorylated tau [3,4]. In addition to these hallmarks,
44  the AD brain experiences many other changes, including metabolic and oxidative

45  dysregulation [5,6], DNA damage [7], cell cycle re-entry [8], axon loss [9] and, eventually,
46  neuronal death [6,10].

47  Despite a substantial research effort, no cure for AD has been found. Effective treatments
48  are desperately needed to cope with the projected increase in the number of new cases as a
49  result of longer life expectancy and an ageing population. Sporadic onset is the most

50 common form of AD (SAD), for which age is the major risk factor. Familial AD (FAD)—a less
51  common (<1%), but more aggressive, form of the disease—has an early onset of pathology
52  before the age of 65 [11]. FAD is caused by fully penetrant mutations in the AR precursor

53  protein (APP) and two subunits—presenilin 1 and presenilin 2—of the Y-secretase complex
54  that processes APP in the amyloidogenic pathway to produce AB. Whilst the exact disease
55  mechanisms of AD are not yet fully understood, this has provided support for AR

56  accumulation as a key player in its cause and progression [1]. AB42—a 42 amino acid

57  variant of the peptide—is neurotoxic [12], necessary for plaque deposition [13] and sufficient
58 for tangle formation [14]. The Arctic mutation in AB42 (Glu22Gly) [15] causes a particularly
59  aggressive form of familial AD that is associated with an increased rate and volume of

60 plaque deposition [16]. Genetic analyses of SAD, however, suggest a complex molecular

61 pathology, in which alterations in neuro-inflammation, cholesterol metabolism and synaptic
62 recycling pathways may also be required for AB42 to initiate the toxic cascade of events

63 leading to tau pathology and neuronal damage in dementia.

64  Comparison of proteomic analyses of post-mortem human brains have further revealed an
65 increase in metabolic processes and reduction in synaptic function in AD [17]. Oxidised
66  proteins also accumulate at early stages in AD brain, probably as a result of mitochondrial
67 ROS production [18], and redox proteomic approaches suggest that enzymes involved in
68  glucose metabolism are oxidised in mild cognitive impairment and AD [19,20]. Moreover,
69  phospho-proteomic approaches have revealed alterations in phosphorylation of metabolic
70  enzymes and kinases that regulate phosphorylation of chaperones such as HSP27 and

71 crystallin alpha B [21]. Of note, however, there is little proteomic overlap between studies
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using post-mortem human brain tissue, which may reflect the low sample numbers available
for such studies, differences in comorbidities between patients and confounding post-
mortem procedures [17]. Although valuable, post-mortem studies also reflect the end-stage
of disease and, therefore, do not facilitate measurement of dynamic alterations in proteins as

AD progresses.

Animal models of AD, generated through transgenic over-expression of human APP or tau,
provide an opportunity to track proteomic alterations at pre- and post-pathological stages,
thus facilitating insight into the molecular mechanisms underlying disease development and
revealing new targets for drugs to prevent AD progression. Analyses of transgenic mice
models of AD have revealed some overlapping alterations in metabolic enzymes, kinases
and chaperones with human AD brain [17]. Only one study, however, has tracked alterations
in protein carbonylation over time, showing increases in oxidation of metabolic enzymes
(alpha-enolase, ATP synthase a-chain and pyruvate dehydrogenase E1) and regulatory

molecules (14-3-3 and Pin1) in correlation with disease progression [22].

Adult-onset Drosophila models of AD have been generated by over-expressing human ApR42
peptide exclusively in adult fly neurons using inducible expression systems. These models
have been shown to develop progressive neurodegenerative phenotypes, such as reduced
climbing ability, and shortened lifespan [23]. Taking advantage of the short lifespan of the fly,
and the flexible nature of the inducible model, we have performed a longitudinal study of the
brain proteome to capture the effects of AB42-toxicity in the brain from the point of induction
and across life. We identified 3093 proteins using label-free quantitative ion-mobility data
independent analysis mass spectrometry (IM-DIA-MS) [24], 1854 of which were common to
healthy and AB42 flies. Of these, we identified 228 proteins that were significantly altered in
AD, some of which overlapped with normal ageing but the majority of which were ageing-
independent. Proteins altered in response to AB42 were enriched for AD processes and
have statistically significant network properties in the brain protein interaction network. We
also show that these proteins are likely to be bottlenecks for signalling in the network,
suggesting that they comprise important proteins for normal brain function. Our data is a
valuable resource to begin to understand the dynamic properties of AB42 proteo-toxicity
during AD progression. Future functional studies will be required to determine the causal
role of these proteins in mediating progression of AD using model organisms and to

translate these findings to mammalian systems.
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104 Results

105 Proteome analysis of healthy and AB42-expressing fly brains
106  Using an inducible transgenic fly line expressing human Arctic mutant AB42 (TgAD) [23] (Fig

107  1A), we confirmed a previously observed [23] reduction in lifespan following AB42 induction

108  prior to proteomic analyses (Fig 1B).

109 To understand how the brain proteome is affected as AB42 toxicity progresses, fly brains
110  were dissected from healthy and AB42 flies at 5, 19, 31 and 46 days, and at 54 and 80 days
111 for healthy controls, then analysed by label-free quantitative IM-DIA-MS (Fig 1C,

112  Supplementary Data 1). 1854 proteins were identified in both healthy and AB42 fly brain
113  from a total of 3093 proteins (Fig 1D), which is typical for recent fly proteomics studies

114  [25,26].
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116  Figure 1. Proteome analysis of healthy and AD fly brains. (A) Drosophila melanogaster
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117  transgenic model of AD (TgAD) that expresses Arctic mutant AB42 in a mifepristone-

118  inducible GAL4/UAS expression system under the pan-neuronal elav promoter. (B) Survival
119  curves for healthy and ABR42 flies. AB42 flies were induced to express AR42 at 2 days.

120  Markers indicate days that MS samples were collected. (C) Experimental design of the brain
121 proteome analysis. Ap42 flies were induced to express AB42 at 2 days. For each of the

122  three biological repeats, 10 healthy and 10 AB42 flies were collected at 5, 19, 31 and 46
123  days, as well as 54 and 80 days for healthy flies. Proteins were extracted from dissected
124  brains and digested with trypsin. The resulting peptides were separated by nanoscale liquid
125  chromatography and analysed by label-free quantitative IM-DIA-MS. (D) Proteins identified
126 by IM-DIA-MS. (E) Principal component analysis of the IM-DIA-MS data. Axes are annotated
127  with the percentage of variance explained by each principal component. (F) Hierarchical
128  biclustering using relative protein abundances normalised to their abundance in healthy flies
129  at5 days.
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For the 1854 proteins identified in both healthy and AB42 flies, we assessed the reliability of
our data. Proteins were highly correlated between technical and biological repeats (Fig S1).
We used principal component analysis of the protein abundances to identify sources of
variance (Fig 1E). Healthy and AB42 samples are clearly separated in the first principal
component, probably due to the effects of AB42. In the second principal component,
samples are separated by increasing age, due to age-dependent or disease progression
changes in the proteome. These results show that whilst ageing does contribute to changes
in the brain proteome (8.7% of the total variance), much larger changes are due to
expression of AB42 (70.6%) and this may reflect either a correlation with the ageing process
or progression of AD pathology. We confirmed this result using hierarchical biclustering of
protein abundances in AB42 versus healthy flies at 5 days (Fig 1F). The results reveal that
most proteins do not vary significantly in abundance with age in healthy flies, but many

proteins are differentially abundant in AB42 flies.

Analysis of brain proteome dysregulation in Ap42 flies

We next identified the proteins that were significantly altered following AB42 expression in
the fly brain. To achieve this, we used five methods commonly used to analyse time course
RNA-Seq data [27] and classified proteins as significantly altered if at least two methods
detected them [28]. We identified 228 significantly altered proteins from 740 proteins that
were detected by one or more methods (Fig 2A). A comparison of popular RNA-Seq
analysis tools [29] showed that edgeR [30] has a high false positive rate and variable
performance on different data sets, whereas, DESeq2 [31] and limma [32] have low false
positive rates and perform more consistently. We observed a similar trend in our data set.
limma and DESeq2 detected the lowest number of proteins, with 21 proteins in common (Fig
S2A). edgeR detected more proteins, of which 38 were also detected by DESeq2 and 16 by
limma. EDGE [33] and maSigPro [34] detected vastly more proteins, 464 of which were only
detected by one method. Principal component analysis shows that edgeR, DESeq2 and
limma detect similar proteins, whereas, EDGE and maSigPro detect very different proteins
(Fig S2B).
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159  Figure 2. Brain proteome dysregulation in AD. (A) Proteins significantly altered in AD
160  were identified using five methods (EDGE, edgeR, DESeqg2, limma and maSigPro) and
161  classified as significantly altered if at least two methods detected them. (B) Significantly
162  altered proteins in AD (from A) and ageing. (C) Significantly altered protein abundances
163  were z score-transformed and clustered using a Gaussian mixture model.
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Although these methods should be able to differentiate between proteins that are altered in
AB42 flies from those that change during normal ageing, we confirmed this by analysing
healthy flies separately. In total, 61 proteins were identified as significantly altered with age
(Fig S3), of which 30 were also identified as significantly altered in AD (Fig 2B) and 31 in
normal ageing alone. These proteins are not significantly enriched for any pathways or
functions. Based on our results, we concluded that the vast majority of proteins that are
significantly altered in AD are not altered in normal ageing and that AD causes significant

dysregulation of the brain proteome.

To understand the dynamics of protein alterations following AB42 induction, we clustered the
profiles of proteins significantly altered in AB42 flies using a Gaussian mixture model (Fig
2C). The proteins clustered best into four sets (Fig S4). In comparison to healthy flies,
cluster 1 contains proteins that have consistently higher abundance in AB42 flies.
Conversely, cluster 2 contains proteins that have lower abundance in AB42 flies. The
abundances of proteins from clusters 1 and 2 are affected from the onset of disease at day
5, and remain at similar levels as the disease progresses. Dysregulation of these proteins
may initiate AD pathogenesis, be involved in early stages of disease progression, or
represent defense mechanisms that could be harnessed for protection. Proteins in cluster 3
follow a similar trend in healthy and AB42 flies and increase in abundance with age.
However, cluster 4 proteins decrease in abundance as the disease progresses, whilst
remaining steady in healthy flies. Further work is required to determine whether reduction of
these proteins plays a causal role in disease pathogenesis that could be targeted

therapeutically, or whether their decline represents a protective response to damage.

We performed a statistical Gene Ontology enrichment analysis on each cluster, but found no
enrichment of terms. Furthermore, we also saw no enrichment when we analysed all 228

proteins together.

Brain proteins significantly altered by AB42 have distinct
network properties

Following the analyses of brain proteome dysregulation in AB42 flies, we analysed the 228
significantly altered proteins in the context of the brain protein interaction network to
determine whether their network properties are significantly different to the other brain
proteins. Using a subgraph of the STRING [35] network induced on the 3093 proteins
identified by IM-DIA-MS, we calculated four graph theoretic network properties (Fig 3A) of
the 183 significantly altered proteins contained in this network: degree, the number of edges

that a node has; shortest path, the smallest node set that connect any two nodes; largest

10
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198  connected component, the largest node set for which all nodes have at least one edge to
199 any of the other nodes; and betweenness centrality, the proportion of all the shortest paths

200 in the network that a particular node lies on.

11
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Figure 3: Significantly altered proteins have statistically significant network
properties in the brain protein interaction network. (A) Network properties that were
calculated: degree, the number of edges that a node has; shortest path, the smallest node
set that connect any two nodes; largest connected component, the largest node set for
which all nodes have at least one edge to any of the other nodes; and betweenness
centrality, the proportion of all the shortest paths in the network that a particular node lies on.
Using a subgraph of the STRING network induced on the 3093 proteins identified by IM-DIA-
MS in healthy and AB42 flies, the significance of four network characteristics were calculated
for the 183 significantly altered proteins contained in this subgraph. (B) mean degree; (C)
mean shortest path length between a node and the remaining 182 nodes; (D) the size of the
largest connected component in the subgraph induced on these nodes; and (E) mean
betweenness centrality. Non-parametric p-values were calculated using null distributions of
the test statistics, simulated by randomly sampling 183 nodes from the network 10,000
times.
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We performed hypothesis tests and found that these proteins have statistically significant
network properties. Firstly, the significantly altered proteins make more interactions than
expected (mean degree p < 0.05; Fig 3B). Therefore, these proteins may further imbalance
the proteome by disrupting the expression or activity of proteins they interact with. Secondly,
not only are these proteins close to each other (mean shortest path p < 0.05; Fig 3C), but
also 129 of them form a connected component (size of largest connected component p <
0.01; Fig 3D). These two pieces of evidence suggest that AB42 disrupts proteins at the
centre of the proteome. Lastly, these proteins lie along shortest paths between many pairs of
nodes (mean betweenness centrality p < 0.01; Fig 3E) and may control how signals are
transmitted in cells. Proteins with high betweenness centrality are also more likely to be
essential genes for viability [36]. Taken together, these findings suggest that the proteins
significantly altered in AD are important in the protein interaction network, and that
dysregulation of these proteins may have significant consequences for the brain proteome

and therefore function.

Predicting the severity of AB42-induced protein alterations
using network properties

We predicted how severely particular AB42-associated protein alterations may affect the
brain using two network properties—the tendency of a node to be a hub or a bottleneck. In
networks, nodes with high degree are hubs for communication, whereas nodes with high
betweenness centrality are bottlenecks that regulate how signals propagate through the
network. Protein expression tends to be highly correlated to that of its neighbours in the
protein interaction network. One exception to this rule, however, are bottleneck proteins,
whose expression tends to be poorly correlated with that of its neighbours [36]. This
suggests that the proteome is finely balanced and that the expression of bottleneck proteins
is tightly regulated to maintain homeostasis. We analysed the hub and bottleneck properties
of the significantly altered proteins and identified four hub-bottlenecks and five nonhub-
bottlenecks that correlate with AB42 expression (Fig 4A) and analysed how their

abundances change during normal ageing and as pathology progresses (Fig 4B).
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245  Figure 4. Analysis of hubs and bottlenecks in the brain protein interaction network. In
246  networks, nodes with high degree are hubs and nodes with high betweenness centrality are
247  bottlenecks. (A) Degree (hub-ness) is plotted against betweenness centrality (bottleneck-
248 ness) in the brain protein interaction network for all proteins identified by IM-DIA-MS (grey
249 circles). Of the significantly altered proteins (red circles), hub-bottleneck (> 90th percentile
250 (PC) for degree and betweenness centrality) and nonhub-bottleneck proteins (> 90th PC for
251  betweenness centrality) are highlighted (filled red circles). (B) Profiles of significantly altered
252  bottleneck proteins implicated in AB42 toxicity. Maximum abundances are scaled to 1.

253  Numbers in parentheses denote which cluster from Fig 2C the protein was in.
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Nonhub-bottlenecks: Acs1, Echs1, Got2, mt:Coll and Acp65Aa
Three of the nonhub-bottlenecks, Acyl-CoA synthetase long chain (Acs1), Enoyl-CoA

hydratase, short chain 1 (Echs1), and Aspartate aminotransferase (Got2), are metabolic
enzymes with previous links to neuronal function and damage. Acs1 and Echs1 are involved
in the production of acetyl-CoA from fatty acids. Many enzymes involved in acetyl-CoA
metabolism associate with AD leading to acetyl-CoA deficits in the brain and loss of
cholinergic neurons [6]. Got2 produces the neurotransmitter L-glutamate from aspartate, is
involved in assembly of synapses and becomes elevated following brain injury [37]. Brain
Acs1 and Got2 levels were stably expressed throughout normal ageing in our healthy flies
but increased upon AB42 induction and continued to rise with age in Ap42 flies. This
suggests that levels of these proteins increase independently of ageing in AD but correlate
closely with disease progression. On the other hand, Echs1 abundance increases in healthy
flies during normal ageing, but its levels were reduced upon AB42 induction and its ageing-
dependent increase was diminished in AB42 flies compared to controls. This may reflect a

protective response with ageing that is suppressed by ABR42 toxicity.

Cytochrome c oxidase (COX), complex IV of the mitochondrial electron transport chain, uses
energy from reducing molecular oxygen to water to generate a proton gradient across the
inner mitochondrial membrane. Levels of mt:Coll (a COX subunit) declined in aged healthy
control fly brain. mt:Coll expression was downregulated in AB42 flies compared to controls
at all time-points and was stably-expressed across age following AB42 induction. The link
between COX and AD is unclear, although AR is known to inhibit COX activity [38]. For
example, in AD patients, COX activity—but not abundance—is reduced, resulting in
increased levels of ROS [39]. However, in COX-deficient mouse models of AD, plaque
deposition and oxidative damage are reduced [40]. Hence, the ageing-dependent decline in
mt:Coll may represent either a reduction in COX function which renders the brain vulnerable
to damage and is exacerbated by ApR42 toxicity, or a protective mechanism against both

ageing and amyloid toxicity.

The cuticle protein Acp65Aa was also upregulated in AB42 flies, but levels fell sharply
between 5 and 19 days. However, it is surprising that we identified Acp65Aa in our samples,
as it is not expected to be expressed in the brain. One explanation may involve chitin, which
has been detected in AD brains and has been suggested to facilitate AR nucleation [41].
Amyloid aggregation has previously been shown to plateau around 15 days post-induction
[42], which is around the same time that Acp65Aa drops in AB42 flies. Our results suggest

that AB42 causes an increase in Acp65Aa expression early in the disease, but further
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experiments are needed to confirm this and to investigate its relationship with nucleation and

the aggregation process.

Hub-bottlenecks: Hsp70A, Gp93, Top2 and Act75B

The four hub-bottlenecks are consistent with AB42 inducing stress. Hsp70A, a heat shock
protein that responds to hypoxia, was significantly upregulated at early time-points (5 days)
in AB42 flies, compared to healthy controls which exhibited stable expression of this protein
throughout life. Although the levels dropped in AB42 flies between days 5 and 31 post-
induction, at later time-points Hsp70A increased again, possibly suggesting a two-phase
response to hypoxia in Ap42 flies. We found that Gp93—a stress response protein that
binds unfolded proteins—to be increased across age in AB42 flies compared to controls
possibly suggesting an early and sustained protective mechanism against AB42-induced
damage. DNA topoisomerase 2 (Top2), an essential enzyme for DNA double-strand break
repair, was decreased in AB42 flies, following a pattern which mirrors changes in its
expression with normal ageing. Double-strand breaks occur naturally in the brain as a
consequence of neuronal activity—an effect that is aggravated by AB[7]. As a consequence
of deficient DNA repair machinery, deleterious genetic lesions may accumulate in the brain

and exacerbate neuronal loss.

Finally, we found that actin (Act57B) was increased in AB42 flies, in agreement with two
recent studies on mice brains [43,44]. Kommaddi and colleagues found that AB causes
depolymerisation of F-actin filaments in a mouse AD model before onset of AD pathology
[44]. The authors showed that although the concentration of monomeric G-actin increases,
the total concentration of actin remains unchanged. It has long been known that G-, but not
F-, actin is susceptible to cleavage by trypsin [45], permitting its detection and quantification
by IM-DIA-MS. Hence, the apparent increase of actin in AB42 flies may be due to F-actin
depolymerisation, which increases the pool of trypsin-digestible G-actin, and is consistent
with the findings of Kommaddi et al. To confirm whether total actin levels remain the same in
the brains of AR42 flies, additional experiments would have to be carried out in the future, for
example tryptic digestion in the presence of MgADP—which makes F-actin susceptible to
cleavage [46]—and transcriptomic analysis of actin mRNA. Furthermore, actin
polymerisation is ATP-dependent, so increased levels of G-actin may indicate reduced
intracellular ATP. In addition, ATP is important for correct protein folding and therefore

reduced levels may lead to increased protein aggregation in AD.
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Due to the importance of these hub and bottleneck proteins in the protein interaction
network, we predict that AD-associated alterations in their abundance will likely have a

significant effect on the cellular dynamics of the brain.

Dysregulated genes are associated with known AD and ageing
network modules

Finally, we clustered the protein interaction network into modules and performed a Gene
Ontology enrichment analysis on modules that contained any of the 228 significantly altered
proteins. We saw no Gene Ontology term enrichment when we tested these proteins
clustered according to their abundance profiles (Fig 2C), presumably because the proteins
affected in AD are diverse and involved in many different biological processes. However, by
testing network modules for functional enrichment, we exploited the principle that interacting
proteins are functionally associated. Using a subgraph of the STRING network containing
the significantly altered proteins and their directly-interacting neighbours, we used MCODE
[47] to find modules of densely interconnected nodes. We chose to include neighbouring
proteins to compensate for proteins that may not have been detected in the MS experiments
due to the stochastic nature of observing peptides and the wide dynamic range of biological
samples [48]. The resulting subgraph contained 4842 proteins, including 183 of the 228
significantly altered proteins, as well as 477 proteins that were only identified in healthy or
AB42 flies and 3125 proteins that were not identified in our IM-DIA-MS experiments. 12
modules were present in the network (Fig 5A, Supplementary Data 2). The proportion of
these modules that were composed of significantly altered proteins ranged from 0-8%. All
but one of the modules were enriched for processes implicated in AD and ageing (Fig 5,
Supplementary Data 3), including respiration and oxidative phosphorylation, transcription
and translation, proteolysis, DNA replication and repair, and cell cycle regulation. These
modules contained two proteins that were recently found to be significantly altered in the
brain of AD mice [43] and are both upregulated four-fold in AD: adenylate kinase, an
adenine nucleotide phosphotransferase, and the armadillo protein Arm, involved in creating

long-term memories.
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350 Figure 5. Analysis of network modules enriched for AD or ageing processes. MCODE
351  was used to identify network modules in a subgraph of the STRING network containing the
352  significantly altered proteins and their directly-interacting neighbours. The size of the

353  resulting 12 modules is plotted against the fraction of proteins in these modules that are
354  significantly altered in AD. Module 2 is annotated as containing ApoB. Marker sizes denote
355 the MCODE score for the module.
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356 In humans, the greatest genetic risk factor for AD is the €4 allele of ApoE—an apolipoprotein
357 involved in cholesterol transport and repairing brain injuries [49]. A recent study showed that
358  ApoE is only upregulated in regions of the mouse brain that have increased levels of AB [43],
359 indicating a direct link between the two proteins. Although flies lack a homolog of ApoE, they
360 do possess a homolog of the related apolipoprotein ApoB (Apolpp) [50], which contributes to
361  AD in mice [51,52] and is correlated with AD in humans [53,54]. Interestingly, whilst it was
362 not identified by IM-DIA-MS, ApoB interacts with 12 significantly altered proteins in the

363  STRING network, so is included in the subgraph induced on the significantly altered proteins
364  and their neighbours. ApoB was found in the second highest scoring module that contains

365  proteins involved in translation and glucose transport (Fig 5) [55].

366  We analysed the 31 proteins significantly altered in normal ageing, but not AD. Of the 29
367  proteins that were contained in the STRING network, 24 interact directly with at least one of
368 the AD significantly altered proteins, suggesting an interplay between ageing and AD at the
369 pathway level. Using a subgraph of the STRING network induced on these proteins and their
370 1603 neighbours, we identified eight network modules that were enriched for ageing

371 processes [56], including respiration, unfolded protein and oxidative damage stress

372  responses, cell cycle regulation, DNA damage repair, and apoptosis.

19


https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/501213; this version posted July 8, 2019. The copyright holder for this preprint (which was not

373

374
375
376
377

378
379
380
381
382
383
384
385
386

387
388
389
390
391
392
393
394
395
396
397
398

399
400
401
402
403
404
405
406

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-ND 4.0 International license.

Discussion

Despite the substantial research effort spent on finding drugs against AD, effective
treatments remain elusive. We need to better understand the molecular processes that
govern the onset and progression of the complex pathologies observed in AD. This

knowledge will help to identify new drug targets to treat and prevent AD.

Analysis of post-mortem human brain tissue is an important way to study dementia, but
cannot capture the progression of pathology from the initiation of disease. Due to their short
lifespan and ease of genetic manipulation, model organisms such as Drosophila
melanogaster provide a tractable system in which to examine the progression of AD
pathology across life. We performed a longitudinal study of the Drosophila brain proteome,
using an inducible model of AD, label-free quantitative IM-DIA-MS and network analyses.
We were able to track alterations in protein levels from the point of exposure to human Ap42
and the widespread interaction of AB42 with brain signalling networks as pathology

progresses.

Our proteomic analyses identified AB42-induced alterations in levels of 228 proteins, which
clustered into four groups: those which were either elevated (cluster 1) or reduced (cluster 2)
in AD relative to controls throughout life, those which were altered in correlation with ageing
in healthy and AB42 flies (cluster 3), and those which changed in AB42 flies across life but
independently of ageing-dependent effects in healthy controls (cluster 4). Further
computational analysis of these proteins revealed significant network properties within the fly
brain proteome. Assessing hub and bottleneck properties, many of the AB42-induced
proteomic changes represented alterations in bottleneck proteins suggesting that they play
key roles in downstream cellular function. Of these, some display non-hub properties
indicating that they are important for maintaining cellular homeostasis in a targeted fashion,
whereas others also displayed hub properties suggesting that they are central in linking

cellular signalling pathways to maintain cell function.

We identified five nonhub-bottleneck proteins and four hub-bottleneck proteins, the
expression of which was altered in AR42 flies relative to controls across life. Due to the
importance of these hub and bottleneck proteins in the protein interaction network, we
predict that AD-associated alterations in their abundance will likely have a significant effect
on the cellular dynamics of the brain. Indeed, these proteins play key molecular roles in
metabolism (Ascl, Echs1, Got2), protein homeostasis (Hsp70A, Gp93), and protection
against oxidative stress (mt:Coll) and DNA damage (Top2). These processes have been

shown to affect neuronal function and protection against proteo-toxicity. Alterations in these
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proteins may represent either adaptive responses to the presence of abnormal protein
aggregates, such as AB42, or mediators of neuronal toxicity. Further functional genomic
studies are therefore required to establish the causal role of these processes in governing

onset and progression of AD pathology.

Assessing the human orthologs of these genes, identified using DIOPT [57], indicates that
several of these bottleneck proteins have been previously implicated in association with AD
or other neurological conditions in humans or mammalian models of disease. ACSL4 (Acs1
ortholog) has been shown to associate with synaptic growth cone development and mental
retardation [58]. Mutations in ECHS1 (Echs1 ortholog), an enzyme involved in mitochondrial
fatty acid oxidation, associate with Leigh Syndrome, a severe developmental neurological
disorder [59]. Proteomic studies have revealed that GOT2 (Got2 ortholog) is down-regulated
in infarct regions following stroke [60], and in AD patient brain [61]. Integrating data from
human post-mortem brain studies, HSPA1A (Hsp70Aa ortholog) upregulates in the protein
interaction network of AD patients compared to healthy controls [62], and has recently been
suggested to block APP processing and AB production in mouse brain [63]. Synthetic,
fibrillar, AB42 reduces expression of TOP2B (Top2 ortholog) in rat cerebellar granule cells
and in a human mesenchymal cell line, suggesting this may contribute to DNA damage in
response to amyloid [64]. HSPOOB1 (Gp93 ortholog) shows increased expression following
TBI in mice [65], and associates with animal models of Huntington’s disease [66]. Finally,
ACTB (Act57B ortholog) has been implicated as a significant AD risk gene and central hub

node using integrated network analyses across GWAS [67].

ACSL4, ECHS1, and HSP90B1 have no reported association with AD or related dementias,
however, which suggests that our study has potential to identify new targets in the molecular
pathogenesis of this disease. Our study also provides additional information about the
homeostasis of these proteins across life from the point of amyloid production. For example,
the abundances of Acs1 and Got2 are elevated following AB42 induction and continue to
increase with age relative to controls. Echs1 is reduced in AB42 flies compared to controls
but increases across life in parallel with ageing-dependent increases in this protein.
Structural proteins Acp65Aa and Act57B are elevated in response to AB42 but decline
across life whilst remaining stable in control flies. Gp93 and Top2 are either elevated or
reduced in response to AB42 but mirror ageing-dependent alterations in their expression.
mt:Coll is reduced following AB42 expression at all time-points, but reduced with ageing in
controls. Hsp70A is increased early in AB42 flies, reduced to control levels in mid-life then

elevated at late pathological stages whilst remaining stable in healthy controls.

Analysing Gene Ontology enrichment using network modules, to capture the diverse
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442  biological processes modified in AD, we identified 12 modules enriched for processes

443  previously implicated in ageing and AD. This validates the use of our Drosophila model in
444  identifying progressive molecular changes in response to AB42 that are likely to correlate
445  with progression of cognitive decline in human disease. Further work is required to modify
446 the genes identified in our study at different ages, in order to elucidate whether they

447  represent mediators of toxicity as disease progresses, factors which increase neuronal

448  susceptibility to disease with age or compensatory protective mechanisms. Model organisms
449  will be essential in unravelling these complex interactions. Our study therefore forms a basis
450 for future analyses that may identify new targets for disease intervention that are specific to

451  age and/or pathological stage of AD.
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Materials and methods

Fly stocks

The TgAD fly line used in this study [23] contains the human transgene encoding the Arctic
mutant AB42 peptide under the control of an Upstream Activation Sequence (UAS) [68].
Expression of AB42 was controlled by GeneSwitch [69]—a mifepristone-inducible
GAL4/UAS expression system—under the pan-neuronal elav promoter. All flies were

1118

backcrossed for six generations into the w'''° genetic background.

Flies were grown in 200 ml bottles on a 12 h/12 h light/dark cycle at constant temperature
(25 °C) and humidity. Growth media contained 15 g/l agar, 50 g/l sugar, 100 g/l autolysed
yeast, 100 g/l nipagin and 3 ml/I propionic acid. Flies were maintained for two days after
eclosion before females were transferred to vials at a density of 25 flies per vial for the
lifespan analysis and 10 flies per vial for the IM-DIA-MS analysis. Expression of AB42 was
induced in TgAD flies by spiking the growth media with mifepristone to a final concentration
of 200 uM. Flies were transferred to fresh media three times per week, at which point the
number of surviving flies was recorded. For each of the three biological repeats, 10 healthy
and 10 AB42 flies were collected at 5, 19, 31 and 46 days, as well as 54 and 80 days for
healthy flies. Following anesthetisation with CO>, brains were dissected in ice cold 10 mM

phosphate buffered saline snap frozen and stored at -80°C.

Extraction of brain proteins

Brain proteins were extracted by homogenisation on ice into 50 ul of 50 mM ammonium
bicarbonate, 10 mM DTT and 0.25% RapiGest detergent. Proteins were solubilised and
disulfide bonds were reduced by heating at 80°C for 20 minutes. Free cysteine thiols were
alkylated by adding 20 mM IAA and incubating at room temperature for 20 minutes in
darkness. Protein concentration was determined and samples were diluted to a final
concentration of 0.1% RapiGest using 50 mM ammonium bicarbonate. Proteins were
digested with trypsin overnight at 37°C at a 50:1 protein:trypsin ratio. Additional trypsin was
added at a 100:1 ratio the following morning and incubated for a further hour. Detergent was
removed by incubating at 60°C for 1 hour in 0.1% formic acid. Insoluble debris was removed
by centrifugation at 14,000 x g for 30 minutes. Supernatant was collected, lyophilised and
stored at -80°C. Prior to lyophilisation peptide concentration was estimated by nanodrop
(Thermo Fisher Scientific, Waltham, MA).
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Label-free quantitative IM-DIA-MS
Peptides were separated by nanoscale liquid chromatography (LC) by loading 300 ng of

protein onto an analytical reversed phase column. IM-DIA-MS analysis was performed using
a Synapt G2-Si mass spectrometer (Waters Corporation, Manchester, UK). The time-of-flight
analyzer of the instrument was externally calibrated with a NaCsl mixture from m/z 50 to
1990. Spectra were acquired over a range of 50—2000 m/z. Each biological repeat was

analysed at least twice to account for technical variation.

LC-MS data were peak detected and aligned by Progenesis QI for proteomics (Waters
Corporation). The principles of the embedded search algorithm for DIA data has been
described previously [70]. Proteins were identified by searching against the Drosophila
melanogaster proteome in UniProt, appended with common contaminants, and revered
sequence entries to estimate protein identification false discovery rate (FDR) values, using
previously specified search criteria [71]. Peptide intensities were normalised to control for
variation in protein loading and relative quantification. Abundances were estimated by Hi3-

based quantitation [72].

Data analysis

Proteins that were identified in both healthy and AB42 flies were considered for further
analysis. Missing data were replaced by the minimum abundance measured for any protein
in the same repeat [48]. The data were quantile normalised [73], so that different conditions
and time points could be compared reliably. Quantile normalisation transforms the

abundances so that each repeat has the same distribution.

For PCA analysis, the data were logio-transformed and each protein was standardised to
zero mean and unit variance. Hierarchical biclustering was performed using the Euclidean
distance metric with the complete linkage method. Prior to clustering, proteins were

normalised to their abundance in healthy flies at 5 days.

Proteins that were identified by IM-DIA-MS in either healthy or AB42 flies were assessed for
overrepresentation of Gene Ontology terms using GOrilla [74], which uses ranked lists of
target and background genes. Proteins were ranked in descending order by their mean
abundance. The type | error rate was controlled by correcting for multiple testing using the

Benjamini-Hochberg method at an FDR of 5%.

Clusters of proteins were assessed for overrepresentation of GO-Slim terms in the Biological

Process ontology using Panther (version 13.1) with a custom background of the 3093
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proteins identified by IM-DIA-MS in healthy or AD flies.

|dentification of significantly altered proteins

Significantly altered proteins were identified using five methods that are frequently used to
identify differentially expressed genes in time course RNA-Seq data. DESeq2 [31], EDGE
[33], edgeR [30], limma [32] and maSigPro [34] are all available in R through Bioconductor.
Dispersions were estimated from the biological and technical repeats. Unless otherwise
stated, default parameters were used for all methods under the null hypothesis that a protein
does not change in abundance between healthy and AD conditions in normal ageing. The
type | error rate was controlled by correcting for multiple testing using the Benjamini-
Hochberg method at a FDR of 5%. A protein was classified as significantly altered if two or

more methods identified it.

DESeqg2 models proteins with the negative binomial distribution and performs likelihood ratio
tests. A time course experiment was selected in EDGE using the likelihood ratio test and a
normal null distribution. edgeR uses the negative binomial distribution and performs quasi-
likelihood tests. limma fits linear models to the proteins and performed empirical Bayes F-
tests. maSigPro fits generalised linear models to the proteins and performs log-likelihood

ratio tests.

Significantly altered proteins were clustered using a Gaussian mixture model. Protein
abundances were log10-transformed and z scores were calculated. Gaussian mixture
models were implemented for 1-228 clusters. The best model was chosen using the

Bayesian information criterion (BIC), which penalises complex models:
BIC =-2In(L) + In(n)k

where In(L) is the log-likelihood of the model, n is the number of significantly altered proteins

and k is the number of clusters. The model with lowest BIC was chosen.

Networks

All network analysis was performed using the Drosophila melanogaster STRING network
(version 10) [35]. Low confidence interactions with a ‘combined score’ < 500 were removed

in all network analyses.

Network properties of the significantly altered proteins were analysed in the brain protein
interaction network. A subgraph of the STRING network was induced on the 3093 proteins

identified by IM-DIA-MS in healthy or AB42 flies and the largest connected component was
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selected (2428 nodes and 44,561 edges). The subgraph contained 183 of the 228
significantly altered proteins. For these proteins, four network properties were calculated as
test statistics: mean node degree; mean unweighted shortest path length between a node
and the remaining 182 nodes; the size of the largest connected component in the subgraph
induced on these nodes; and mean betweenness centrality. Hypothesis testing was
performed using the null hypothesis that there is no difference between the nodes in the
subgraph. Assuming the null hypothesis is true, null distributions of each test statistic were
simulated by randomly sampling 183 nodes from the network 10,000 times. Using the null
distributions, non-parametric one-sided p-values were calculated as the probability of

observing a test statistic as extreme as the test statistic for the significantly altered proteins.

A subgraph of the STRING network was induced on the proteins significantly altered in AD
and their neighbours and the largest connected component was selected (4842 nodes and
182,474 edges). The subgraph contained 198 of the 228 significantly altered proteins and
was assessed for enrichment of Gene Ontology terms. Densely connected subgraphs were
identified using MCODE [47]. Modules were selected with an MCODE score > 10. As
STRING is a functional interaction network, clusters of nodes may correspond to proteins
from the same complex, pathway or functional family. Clusters were assessed for
overrepresentation of GO-Slim terms in the Biological Process ontology using Panther
(version 13.1) [75] with a custom background of the 3093 proteins identified by IM-DIA-MS in
healthy or AB42 flies. Fisher’'s exact tests were performed and the type | error rate was
controlled by correcting for multiple testing using the Benjamini-Hochberg method at a FDR
of 5%.

Open source software

Data analysis was performed in Python 3.6 (Python Software Foundation,
http://www.python.org) using SciPy [76], NumPy [77], Pandas [78], scikit-learn [79],
NetworkX [80], IPython [81] and Jupyter [82]. Figures were plotted using Matplotlib [83] and

seaborn.
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Supplementary Information

Methods

IM-DIA-MS analysis

Nanoscale liquid chromatography (LC) separation of tryptic peptides was performed using a
nanoAcquity UPLC system (Waters Corporation) equipped with a UPLC HSS T3 1.7 ym, 75
pum x 250 mm analytical reverse phase column (Waters Corporation). Prior to peptide
separation, 300 ng of tryptic peptides were loaded onto a 2G, V/V 5 pym, 180 um x 20 mm
reverse phase trapping column at 5 pl/min for 3 minutes. IM-DIA-MS analysis of tryptic
digests was performed using a Synapt GS-Si mass spectrometer equipped with a T-Wave-
IMS device. Mass measurements were made in positive-mode ESI with the instrument
operated in resolution mode with a typical resolving power of 20,000 full width at half
maximum. Prior to analysis the time-of-flight analyzer was externally calibrated with a NaCsl
mixture from m/z 50 to 1990. The data were post-acquisition lock mass corrected using the
double charged monoisotopic ion of [Glu1]-Fibrinopeptide B. To achieve lock mass
correction, a 100 fmol/pl solution of [Glu1]-Fibrinopeptide B was infused at a 90° angle to the
analytical sprayer. This reference sprayer was sampled every 60 seconds. Accurate IM-DIA-
MS data were collected in the DIA mode of analysis, HDMSE [24,71] IM spectrometry was
performed by applying a constant wave height of 40 V whilst a constant wave velocity of 650
m/s was maintained. Wave heights within the trap and transfer were both set at 4 V whilst
the wave velocities were 311 and 175 m/s respectively. MS data were acquired over 50-
2000 m/z for each mode. Spectral acquisition time for each mode was 0.5 s with a 0.015
interscan delay, corresponding to a cycle of low and elevated energy data being acquired
every 1.1 s. During the low energy MS mode data was acquired whilst applying a constant
collision energy of 4 eV within the transfer. After IMS, MS/MS data was acquired by ramping
the collision energy within the transfer region between 15 and 45 eV. To ensure that ions
with a m/z less than 350 were derived from peptide fragmentation within the transfer region
the radio frequency applied to the quadrupole mass analyser was adjusted to optimise
transmission within the region of 350 — 2000 Da. Each biological replicate was analysed at

least twice.

MS Data Processing
All MS data were processed in Progenesis QI for proteomics. Data were imported into
Progenesis to generate a 3D representation of the data (m/z, RT and peak intensity).

Samples were then time aligned with the software allowed to automatically determine the
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best reference run from the dataset. Following alignment, peak picking was performed on
MS level data. A peak picking sensitivity of 4 (out of 5) was set. Peptide features were
tentatively aligned with their respective fragment ions based primarily on the similarity of
their chromatographic and mobility profiles. Requirements for features to be included in post-
processing database searching were as follows: 300 counts for low energy ions, 50 counts
for high energy ions and 750 counts for deconvoluted precursor intensities. Subsequent data
were searched against 20,049 sequences from the UniProt canonical Drosophila database
(appended with common contaminants). Trypsin was specified as the enzyme of choice and
a maximum of two missed cleavages were permitted. Carbamidomethyl (C) was set as a
fixed modification whilst oxidation (M) and N-terminal acetylation were set as variable
modifications. Peptide identifications were grouped and relative quantification was

performed using non-conflicting peptides only.

Data

Supplementary Data 1
supplementary_data_1.xlsx
Proteomics data

Supplementary Data 2
supplementary_data_2.txt
MCODE modules

Supplementary Data 3

supplementary_data_3.xIsx
Gene Ontology enrichment
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645 Figure S1: Assessment of experimental reproducibility. Scatter plots comparing protein

646  abundances in different biological repeats (BR) of healthy flies at days (D) (A) 5, (B) 19, (C)
647 31, (D) 46, (E) 54 and (F) 80. Abundances were log2-transformed before plotting. Pearson

648 correlation coefficients (r) are shown for each pair of biological repeat at each time point.
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Figure S2: Analysis of the five statistical methods used to identify significantly altered

proteins.

(A) Heat map of the proteins detected by each method. (B) Principal component analysis of

these results. Axes are annotated with the percentage of variance explained by each

principal component.
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656 Figure S3: Identification of significantly altered proteins during normal ageing. Heat
657  map of the proteins detected by each method.
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659 Figure S4: Model selection for clustering of the significantly altered proteins using a
660 Gaussian mixture model. The best model was chosen using the Bayesian information

661  criterion (BIC), which penalises complex models.
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