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ABSTRACT

Alcohol exposure triggers changes in gene expression and biological pathways in human brain.
We explored alterations in gene expression in the Pre-Frontal Cortex (PFC) of 65 alcoholics and
73 controls of European descent, and identified 129 genes that showed altered expression (FDR <
0.05) in subjects with alcohol dependence. Differentially expressed genes were enriched for
pathways related to interferon signaling and Growth Arrest and DNA Damage-inducible 45
(GADDA45) signaling. A coexpression module (thistle2) identified by weighted gene co-expression
network analysis (WGCNA) was significantly correlated with alcohol dependence, alcohol
consumption, and AUDIT scores. Genes in the thistle2 module were enriched with genes related
to calcium signaling pathways and showed significant downregulation of these pathways, as well
as enrichment for biological processes related to nicotine response and opioid signaling. A second
module (brown4) showed significant upregulation of pathways related to immune signaling.
Expression quantitative trait loci (eQTLs) for genes in the brown4 module were also enriched for
genetic associations with alcohol dependence and alcohol consumption in large genome-wide
studies included in the Psychiatric Genetic Consortium and the UK Biobank’s alcohol
consumption dataset. By leveraging multi-omics data, this transcriptome analysis has identified
genes and biological pathways that could provide insight for identifying therapeutic targets for

alcohol dependence.
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INTRODUCTION

Alcohol dependence (AD) can be defined as a cluster of physiological, behavioral, and cognitive
phenomena in which the use of alcohol takes a much higher priority for a given individual than
other behaviors that once had greater value (American Psychiatric Association 1994)'. The
development of AD is characterized by frequent episodes of intoxication, preoccupation with
alcohol, use of alcohol despite adverse consequences, compulsion to seek and consume alcohol,
loss of control in limiting alcohol intake, and emergence of a negative emotional state in the
absence of the drug (American Psychiatric Association 1994)". The changes in behavioral
priorities not only results in increased morbidity and mortality, it is also a substantial social and
economic burden on individual families and the nation”.

In individuals with alcohol dependence, there is a complex interplay between genetic
background, environmental factors, and history of alcohol exposure’. Alcohol crosses the blood
brain barrier and triggers changes in the central nervous system”, including transcriptional
changes in many different regions of the brain >. The transcriptional effects of long-term
alcohol consumption are associated with pathways involved in the neuro-immune system,
neurotoxicity, and changes in neuroplasticity *". Transcriptomes from complex tissues, such as
human brain, may be organized into networks of co-expressed genes that better reflect the
biological functions and organization of the tissue " '*. Application of bioinformatics techniques,
such as weighted gene co-expression network analysis (WGCNA)", has uncovered networks
associated with alcohol dependence®’. However, past studies were performed on small numbers
of AD cases, thus limiting the statistical power to detect small changes in alcohol-induced gene
expression. In this study, we utilized massively parallel sequencing of RNA transcripts from

postmortem human prefrontal cortex (PFC) of 65 alcoholics and 73 controls of European descent
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to explore transcriptional networks and genetic variation and identified groups of coexpressed
genes associated with alcohol dependence. Our analysis provides systems-level evidence of
genetic networks within the PFC that contribute to the pathophysiology of alcohol drinking

behavior in humans.

MATERIALS AND METHODS

Case selection and postmortem tissue collection

Human autopsy brain samples were obtained from the New South Wales Tissue Resource Centre
at the University of Sydney (http://sydney.edu.au/medicine/pathology/btrc/). Fresh frozen
samples of the superior frontal gyrus (Brodmann area 8; referred to as prefrontal cortex (PFC) in
this manuscript) were collected from each postmortem sample. Brain tissue was sectioned at 3
mm intervals in the coronal plane. Alcohol dependent diagnoses were confirmed by physician
interviews, review of hospital medical records, questionnaires to next-of-kin, and from
pathology, radiology, and neuropsychology reports. Tissue samples were matched as closely as
possible according to age, sex, post-mortem interval, pH of tissue, disease classification, and
cause of death. To be included as part of the alcohol-dependent cohort, subjects had to meet the
following criteria: greater than 18 years of age, no head injury at time of death, lack of
developmental disorder, no recent cerebral stroke, no history of other psychiatric or neurological
disorders, no history of intravenous or polydrug abuse, negative screen for AIDS and hepatitis
B/C, post-mortem interval within 48 hours, and diagnosis of AD meeting the DSM-IV criteria’.
Sample preparation

The Qiagen RNeasy and Lipid Tissue kit (Qiagen, Valencia, CA, USA) was used to extract total

RNA from human PFC brain tissue, and RNA concentration was measured with a NanoDrop


https://doi.org/10.1101/500439
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/500439; this version posted December 19, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

8000 spectrophotometer (ThermoFisher Scientific). An Agilent Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA) was used to test the integrity of RNA samples. Samples
with an RNA integrity number (RIN) <5.5 were removed from futher analyses. Sixty samples
were processed at the Waggoner Center for Alcohol and Addiction Research (WCAAR), The
University of Texas at Austin while 83 samples were processed at the Ronald M. Loeb Center
for Alzheimer disease, Icahn School of Medicine at Mount Sinai. Details about the library
preparation and sequencing is provided in the supplementary document.

Mapping and quantification of gene expression

Raw reads were aligned to human genome 19 (hg19) using STAR aligner (version 2.5.3.2)'°. We
used QC tools RSeQC (http://code.google.com/p/rseqc/) and Picard
(https://broadinstitute.github.io/picard/) to evaluate RNA sequence quality including the %GC,
%duplicates, gene body coverage, unsupervised clustering, and the library complexity. We used
the Picard “MarkDuplicates” option to flag and remove duplicate reads. Gene quantification was
performed with featureCounts (SUBREAD package; release 1.6.0)'” using Gencode annotations
(Release 19 (GRCh37.p13)).

Selection of covariates to for analyses

Linear regression: We first performed a linear regression with alcohol dependence as a
dependent variable to identify possible covariates (e.g. sex, age, PMI). The mean age of AD
subjects was 55.65 years and was not significantly different from the age of control subjects
(54.96) (Table 1). There was no significant difference in distribution of RIN and brain pH
between cases and controls (Table 1). Postmortem interval (PMI) was significantly lower for the

alcohol dependent subjects.
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Variance partition analysis: We used the variancePartition package'® in R to calculate the
proportion of variance in RNA expression explained by known covariates such as age, gender,
RIN and PMI, using the variancePartition package in R. The variancePartition'® package uses
linear mixed model based statistical methods to quantify the contribution of multiple sources of
variation and identify the covariates that required correction in the final analysis. Supplementary
figure 1A shows violin plots depicting drivers of variation in gene expression data without
accounting for covariates. The figure shows that sequencing batch is a major driver of variation
in a large proportion of genes, while RIN and sex have large effects on only a few genes. We
used the voom function in the Limma package
(https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/) to account for the effect of
sequencing batch, RIN, age, sex and PMI on gene expression. After removing the effects of these
covariates, alcohol-related phenotypes explained the largest proportion of the remaining
variation in gene expression (Supplementry figure 1B).

Differential gene expression analysis

Gene-level analyses started with the featureCounts-derived sample-by-gene read count matrix.
The basic normalization and adjustment pipeline for the expression data matrix consisted of: (i)
removal of low expression genes ( <1 CPM in > 50% of the individuals); (i1) differential gene
expression analysis based upon adjustment for the chosen covariates. We filtered out all genes
with lower expression in a substantial fraction of the cohort, with 18,463 genes with at least 1
CPM in at least 50% of the individuals; note that only these genes were carried forward in all
subsequent analyses. The following design was used for the final differential expression analysis
using the DeSeq2 ' package as implimented in R: gene expression ~ DSM4 alcohol

classification +sex + age + PMI + RIN + batch.
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Pathway analyses of differential expression

Ingenuity® Pathway Analysis (IPA®) was used to perform pathway, canonical pathways, and
causal network analysis. All genes that passed the threshold of significance at 25% FDR were
included in the analysis.

Gene ontology analysis

Gene ontology analyses were performed using the clusterProfiler package *° as implemented in
R. All differentially expressed genes that passed the threshold of significance at 25% FDR were
included in the analysis. Results for the enrichment analysis were extracted and plotted using the
ggplot2 package in R.

Gene co-expression analysis

Scale-free co-expression networks were constructed using the weighted gene coexpression
network analysis (WGCNA) package in R'>. WGCNA provides a global perspective,
emphasizing the correlation between genes to classify different molecular groupings, rather than
focusing on individual genes. WGCNA defines modules using a dynamic tree-cutting algorithm
based on hierarchical clustering of expression values (minimum module size=100, cutting
height=0.99, deepSplit=TRUE). The networks were constructed at a soft power of 14 at which
the scale free topology fit index reached 0.90 (Supplementary Figure 2B). We further merged
modules that had similar co-expression patterns by calculating the eigengenes and merging those
having a correlation > 75% (Supplementary Figure 2C). Correlation of module eigengenes with
alcohol dependence, alcohol consumption, AUDIT scores and number of years of drinking
(module-trait correlation analysis) was evaluated using Spearman’s rank correlation analysis. We
used the DSM4 criteria for alcohol dependence classification as provided by the New South

Wales Tissue Resource Centre at the University of Sydney. For each individual in the RNA-Seq
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dataset a module eigen value was calculated for each module. This module eigen value was used
to perform the correlation analysis of the traits (e.g. alcohol dependence, alcohol consumption
and Audit scores) with each whole module. Digital deconvolution showed no significant
differences in the percentage of neurons, astrocytes and microglia in the PFC of alcoholics and
controls (Supplementary Figure 3)*'; therefore we did not perform any correction for cell-type
heterogeneity. Assigned modules were functionally annotated against known
molecular/functional categories and pathways using Ingenuity Pathway Analysis (IPA).

GWAS enrichment analysis

The summary statistics from a GWAS of alcohol dependence (PGC-AD) were provided by the
Psychiatric Genetics Consortium Substance Use Dependence working group” (Walters et al,
2018). Summary statistics for the UKBB alcohol consumption (UKBB-AC) GWAS * were
provided by Dr. Toni Clarke. We also downloaded the summary statistics for Tobacco and
Genetics (TAG) Consortium’s GWAS?** of cigarettes per day from the PGC website
(https://www.med.unc.edu/pgc/results-and-downloads). SNPs from the PGC-AD and UKBB-AC
studies were mapped to PFC expression quantitative trait loci (eQTLs) in 461 post-mortem
brains from the Religious Orders Study and Memory and Aging Project (ROS/MAP)® (Bennett
et al). Enrichment analysis was performed for SNPs meeting the criteria of e€QTL P <5 X 10 in
the ROSMAP dataset and tested for overrepresentation in GWAS of AD (PGC-AD), alcohol
consumption (UKBB-AC) and TAG-CPD. Since there are a few loci that passed the genome-
wide significance threshold in alcohol and smoking GWAS analysis, we tested the polygenicity
of alcoholism and smoking by exploring the overenrichment in variants that passed nominal
threshold of significance in these datasets. The enrichment analysis was focused on eQTLs for

the genes within modules that were correlated with AD in the module-trait correlation analysis.
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The two modules (thistle and brown4) that showed significant enrichment (p < 0.05) in the
Fisher exact test were subjected to 100,000 permutations to report the final P value of
enrichment. We also performed the gene based analysis by Multi-marker Analysis of GenoMic
Annotation (MAGMA)*® on summary statistics of PGC-AD, UKBB-AC and TAG-CPD GWAS
using Functional Mapping and Annotation of GWAS (FUMA-GWAS)*’. The summary statistics
of this gene based analysis were overlaid on the IPA networks to identify the genes in these

networks that also have nominal to moderate evidence of genetic contributions.

Results

Differential expression analysis

Analysis of PFC tissue derived from 65 alcoholics and 73 controls identified 827 differentially
expressed genes at 25% FDR, 298 genes at 10% FDR and 129 genes at 5% FDR (Figure 1A,
Supplemental table 1; protein coding genes only). Transient Receptor Potential Cation Channel
Subfamily C Member 3 (TRPC3) was the top differentially expressed gene with significantly
lower expression in alcohol-dependent subjects (FC 0.82; p = 4.6 x 10”), while Kinesin Family
Member 19 (KFM19) showed significantly higher expression in alcohol dependent subjects (FC
1.24; p= 5.7 x 10”). IPA analysis of the differentially expressed genes (FDR < 25%) showed
significant enrichment for pathways involved in interferon signaling, GADDA45 signaling, and
other immune-related pathways (Figure 1B). Gene-ontology enrichment analysis using
clusteProfiler mapped a large proportion of genes to biological processes involved in blood
coagulation and fluid transport (Figure 1C). The network analysis in IPA mapped the significant

genes to networks involved in neurodegenerative disorders and organismal injury. Several genes
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that were part of this network were also nominally significant (p < 0.05) in the PGC-AD and
UKBB-AC GWAS (Figure 1D).

Identification of gene co-expression networks and modules

After correcting for the effects of batch, age, and RIN, the hierarchical clustering of expression
data from nearly 18,000 genes generated 27 different modules (Supplementary Figure 1). Trait-
module correlation analyses identified five modules that were significantly correlated to at least
one alcohol related trait (Figure 2). Of these five modules, the thistle2 module (containing 72
genes), was negatively correlated with alcohol dependence and other alcohol related traits. The
brown4 module (containing of 795 genes) was positively correlated with AD, AUDIT, alcohol

consumption and duration of alcohol use.

Thistle2 module

Pathway enrichment analysis of the thistle2 module showed a significant down-regulation of
pathways related to calcium signaling (Figure 3A). Gene-ontology enrichment analysis using the
clusterpProfiler showed significant enrichment for biological processes involved in “response to
nicotine” and “excitatory postsynaptic potential” (Figure 3B). Several genes in the thistle2
module that were significantly down-regulated in the PFC of alcohol dependent subjects.
Differentially expressed genes in the thistle2 module mapped to networks involved in G-protein
coupled receptor signaling, calcium signaling, and opioid signaling (Figure 3C). Cholinergic
Receptor Nicotinic Alpha subunits 6 and 2 (CHRNA6 UKBB-AC P = 7.60x 10~; CHRNA2 PGC-
AD P = 1.4 x 10?), Meningioma 1 (MN1, PGC-AD P = 9.1 x 10~) and Hyaluronan And

Proteoglycan Link Protein 1 (HAPLNI, UKBB-AC P = 1.9 x 10?) are some exmples where
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differntialy expressed genes in thistle 2 module also showed some evidence of genetic

contribution towards alcohol consumption or dependence.

Brown4 module

Pathway analysis for differentially expressed genes in the brown4 module showed
significant enrichment for Growth Arrest and DNA Damage (GADDA45) signaling and for
biological processes related to the inflammatory response (Figure 4). Other genes that were also
significantly upregulated in the PFC of alcoholics mapped to networks involved in infectious and

respiratory diseases.

GWAS enrichment analysis

GWAS enrichment analysis of significant eQTLs (P < 5 X 10™) for all genes in the top 5
modules (ranked by P value in module-trait correlation analysis), showed evidence of
enrichment for SNPs associated with AD (GWAS p <0.05) in PGC-AD and alcohol
consumption in UKBB-AC datasets. The brown4 module was also enriched for GWAS
association in the TAG-CPD dataset. The thistle2 module did not show enrichment of GWAS
association. Surprisingly, genes in the thistle2 modules were significantly depleted for GWAS
signals in the PGC-AD and UKBB-AC GWAS analyses. This finding was confirmed by

permutation analysis.

Discussion
To our knowledge, this is the largest transcriptome analysis comparing PFC of alcohol-

dependent cases and controls. The present study identified 129 genes (FDR < 0.05) that were
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differentially expressed in alcohol dependent subjects (Supplementary table 1). FKBPS, a well

studied gene that is asoociated with alcohol use®* ™"

, showed increased expression in the PFC of
alcohol dependent subjects in our differential gene expression analysis (I,FC 0.27; P =4.57 x 10
7). Other studies have also shown that FKBP5 plays a role in alcohol drinking behaviors in

829 and humans®® . FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor

rodents
(GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal
severity”". Qiu and colleagues® reported that Fkbp35 KO mice exhibited increased alcohol
consumption compared with wild-type mice. Another study has shown that the absence of Fkbp5
enhances sensitivity to alcohol withdrawal in mice™. Recent findings also suggested that Fkbp5
expression in mesocorticolimbic dopaminergic regions is associated with early life-stress
mediated sensitivity to alcohol drinking and that there is a gene environment interaction among
FKBPS5 genotype and parent-child relationship that influences alcohol drinking.

Genes showing significant differences in expression between alcohol dependent subjects and
controls were enriched in pathways related to interferon and GADD45 signaling (Figure 1 B).
Interferons are cytokines that have antiviral, antiproliferative, and immunomodulatory effects
and the interferon pathway plays a critical role in human innate and adaptive immune
responses”*. Our pathway analysis results are consistent with earlier findings showing induction
of innate immune genes by stress and drug abuse *>°. Furthermore, mRNA expression studies in
human brain showed significant changes in expression of genes related to immune or
inflammatory responses in hippocampus’ and nucleus accumbens®. The neuroinflammation
associated with chronic alcohol exposure and withdrawal may be attributed to microglial

activation and is associated with the neuropathology of chronic alcohol exposure®®. Differentially

expressed genes (FDR < 25% ) also mapped to networks associated with neurodegenerative
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disorders and organismal injury (Figure 1 D). Many differentially expressed genes in this
network are involved in nervous system development and function. Specifically TRPC3 and
calcium dependent protein kinase 4 (CAMK4) are involved in excitatory post-synaptic current
while Ampa receptor, Glutamate lonotropic receptor AMPA type subunit 4 (GRIA4), Calcium
dependent protein kinase i1 (CaMKII) and CAMK4 are involved in synaptic transmission.
Although we identified several genes that were differentially expressed in the PFC of alcohol-
dependent subjects, the variance explained by individual genes was very small (0.15-1%). The
differential expression observed here is smaller than that reported in earlier differential
expression studies of alcoholism, but it is consistent with differential expression studies of larger
sample size®’. For example, the CommonMind consortium reported similar fold changes in the
differential expression study of schizophrenia and they showed that their observation is
consistent with plausible models for average differential gene expression and the polygenic
inheritance of schizophrenia. The polygenicity of AD has also been observed by the GWAS of

alcoholism and other complex behavioral/psychiatric disorders **** !

, and it was demonstrated
that effect size for each individual genetic variant is very small. Studies that used a co-expression
network approach also showed that alcohol dependence is shaped, in part, by persistent
alterations in networks of co-expressed genes that collectively mediate excessive drinking and
other alcohol-dependent phenotypes®’. These and other studies also demonstrated that the gene
network structure is significantly correlated with lifetime alcohol consumption in addition to an
overall loss in network structure; furthermore, the neurobiology of alcohol dependence may be

due to altered covariation of gene modules, rather than discrete changes in differentially

expressed genes across the transcriptome’ .
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Trait-module correlation analysis for the thistle2 module showed a significant negative
correlation with alcohol dependence (-0.28, P = 9.0 x 10™), alcohol consumption (-0.22, P =9.0
x 107), and AUDIT score (-0.25, P = 3.0 x 10™®), while the brown4 module showed a positive
correlation (0.18, P = 4.0 x 10”) with alcohol dependence (Figure 2). The salmon4 module was
associated with the total number of drinking years (-0.24, P = 4.0 x 10™), independent of the age
of the subjects. Genes in the thistle2 module were significantly down-regulated in the PFC from
alcoholics. Many genes in the thistle2 module mapped to networks involved in opioid signaling
and nicotine response, highlighting the importance of this module in addiction-related traits.
Pathway analysis showed that all genes that overlapped with genes involved in calcium signaling
were significantly downregulated (Figure 3A). Acute ethanol exposure has been shown to inhibit
Ca”" currents induced by PKC-dependent phosphorylation of mGluR5 in neurons*”. Early studies
in PC12 cell cultures also showed that ethanol has a significant inhibitory effect on the influx of
Ca”" through L-type voltage-gated Ca®" channels®. Alcohol exposure also modulates Ca®"
signaling between astrocytes and neurons** (Warden et al, 2016), and Ca>" acts as a second
messenger that controls multiple processes in immune cells, including chemotaxis and secretion
of pro- and anti-inflammatory cytokines. Our analyses provide further evidence that alcohol
exposure alters Ca®" signaling in the brains of alcoholics and could potentially alter
communication between neurons and brain immune cells. Another module that correlated with
alcohol dependence, brown4, was also enriched in immune response and infectious diseases,
providing additional evidence for the role of the neuroimmune system in the etiology of alcohol
dependence. Some of the differentially expressed genes in this network were also statistical
significant in the gene-based tests (RASD1, UKBB-AC, P = 1.64 x 10~ and ARID5A4, UKBB-

AC, P 1.4 x 107). The differentially expressed FKBPS5 gene was also part of the brown module,
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but it was not identified as hub gene according to intra-modular connectivity (supplementary
table 2).

Enrichment analysis of nominally significant GWAS variants (p < 0.05) that were also eQTLs (p
<5 X 10™) for genes in the thistle2 module showed significant under enrichment in the two-tail
Fisher test. The under-enrichment remained significant even after 100,000 permutations. This
might be due to the small size of this module (N = 72 genes). Although some of the differntialy
expressed genes were significant in the gene-based tests performed in UKBB-AC and PGC-AD
datasets using MAGMA (CHRNA6, CHRNA2, MNI and HAPLN1). In the calcium signaling
network (Figure 3 C), a few genes that were not part of the thistle2 module, but were essential to
create network connections, were also found to be significant (3.4 x 102 <P > 4.8 x 10?) in the
gene-based tests (circled in red; Fig 4C). This suggests possible gene-environment (alcohol
exposure) interactions in the etiology of alcohol dependence. This also reinforces the need for
multi-omics data to understand a complex disorder like alcoholism. eQTLs for genes in the
brown4 module (N = 726 genes) were significantly enriched for GWAS signals (P = 4.2 x 10™)
in the PGC-AD GWAS. Interestingly this module was also positively correlated with alcohol
dependence (0.18, P = 4.0 x 10 in trait-module correlation analysis.

Because of limited availability of human post-mortem tissue with DSM4 alcohol dependence
phenotype, we tried to look for validation in rodent RNA-expression datasets (Supplementary
methods; supplementary table 2). The hub genes identified in present analysis were found to be
significant enriched for association signals in the rodents. This observation adds to the validity of
hub genes in the identified modules.

In the present study, we focused on integrating the genomic information to transcriptomic data to

identify gene (genetic background) x environment (alcohol exposure) interactions in the etiology
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of alcohol use disorders. As mentioned in the discussion we identified that genes that have
altered expression due to alcohol exposure interact with risk genes (GWAS) to increase an
individual’s risk of becoming dependent on alcohol. So, to translate these findings in animals,
one has to mimic expression of hub genes as well as the risk gene to alter the pathways
associated with alcoholism. We are also reporting the direction of effect of the differential
expression. That should provide information that can be used to see whether knock-down or
overexpression of key genes alters risk for AUD phenotypes in models. Also, the replication of
the modules in rodent models indicates which models might be useful to study the effects of
dysregulation in these models.

Multiple lines of evidence derived from this study allowed us to prioritize the genes altered by
exposure to alcohol. The gene co-expression network analysis also identified networks of genes
altered in alcohol-dependent subjects. Further support for our findings comes from work
showing that many genes in these networks were also associated with alcohol dependence and
alcohol consumption in large GWAS study cohorts. This systematic exploration of
transcriptomic organization in the PFC from alcoholics provides further support for the role of
the neuroimmune system in alcohol dependence. The biological pathways and networks of genes
identified in the current study will help prioritize genes for functional studies and may help

advance targeted treatment approaches for alcohol use disorders.
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Table 1: Demographic profile of alcohol-dependent and control subjects

Trait Alcohol Dependent Control
(N =65) N=73)
Male (%) 51 (78%) 60 (82%)
Mean Age (SD) (yrs) 55.65 (11.81) 54.96 (12.11)
Mean PMI (SD) (hrs) 33.66 (15.59)* 26.63 (13.25)
Brain pH (SD) 6.54 (0.23) 6.58 (0.29)
RIN (SD) 6.84 (0.96) 7.0 (1.01)

*P-value= 0.0049

Table 2: Results of GWAS enrichment analysis in modules correlated with alcohol dependence

and alcohol consumption

RNA-Seq data (N=138)

GWAS data

Module trait correlation

GWAS P 0.05, eQTLP <5 X 108

ID AD P Audit P AC P PGC-AD UKBB-AC | TAG-CPD
Thistle2 | -0.28 | 9.00E-04 | -0.25 | 3.00E-03 | -0.22 | 9.00E-03 | 1.50E-02* | 1.30E-02* | 5.52E-01*
Brown4 | 0.18 | 4.00E-02 | 0.14 | 1.00E-01 | 0.12 | 1.00E-01 | 4.20E-03" | 2.28E-01" | 4.81E-03"

*Permuted P-value for the left-tail Fisher’s exact test (under-enriched);

"Permuted P-value to test right-tail Fisher’s exact test (over-enriched)

(AD = Alcohol Dependence; Audit = Audit scores; AC = Alcohol consumption)
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Figures

Figure 1: Top genes, pathways and networks from differential gene expression in DLFPC
region from 68 alcoholics and 70 controls. (A) Volcano plot showing top differentially expressed
genes among cases and controls. (B) The genes passing FDR threshold of 20% were inputted to
IPA for pathway enrichment analysis. The figure shows some of the top pathways identified by
IPA. P values here are from right tail Fisher’s exact test. (C) Enrichment analysis of gene ontology
“biological process” terms. Color depicts the qvalues with red being the strongest evidence of
enrichment (D) Network analysis on top genes (FDR <=20%) mapped to networks involved in the
neurodegenerative disorders and organismal injuries. P value under the gene is the uncorrected p-
value for differential expression among alcoholics and controls. The nominally significant genes
in the UKBB-alc and PGC-SUD GWAS are highlighted with purple border and blue annotation.
Figure 2: Trait module correlations with P values for the top 5 modules. WGCNA identified
27 modules, out of which 5 modules showed nominal- moderate statistical significance with any
of 4 alcohol related trait (AUDIT, alcohol consumption (gms/ day), duration of drinking (years),
DSM4 AD (classification). Thistle2 module also passed the multiple test correction (27 modules,
4 traits; 0.05/31 = 1.6 x 107).

Figure 3: Enrichment analysis of genes in thistle2 module that are differentially expressed
in alcoholics and controls. (A) More than 50% of genes in calcium signaling pathways were
found to be down-regulated in the thistle2 module. (B) Enrichment analysis for GO:BP terms
showed downregulation of genes related to response to nicotine and postsynaptic potential. (C)
Nearly 15 genes mapped to network related to amino-acid metabolism with many genes that
were involved in G-protein coupled receptor signalling, calcium signaling and opioid signaling

pathway. The nominally significant genes in the UKBB-alc and PGC-SUD GWAS are marked
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with red boundaries (4DCY5 P =7.07 x 10”7 in UKBB-AC, ADCY7, P =22 x 10 in UKBB-
AC), ILI2B,P =1.1 x 107 in PGC-AD, PIK3C2G,P =6.8 x 10~ in UKBB-AC, PIK3R4,P =
3.4 x 107 in PGC-AD, CHRNAG6 in UKBB-AC P = 7.60x 10~, CHRNA2 in PGC-AD P = 1.4 x
10, MNI in PGC-AD P =9.1 x 10~ and HAPLN! in UKBB-AC P = 1.9 x 10).

Figure 4: Enrichment analysis of brown4 module genes that were differentially expressed
genes (FDR* < 0.05) among alcoholics and controls. (A) Pathway analysis showed significant
upregulation of genes related immune signaling and metabolism. (B) Enrichment analysis for
GO:BP terms showed enrichment of genes related to inflamatory response. (C) The genes in the
brown4 module mapped to network involved in infectious and respiratory diseases. The genes that

were nominally significant in the UKBB-Alc and PGC- SUD GWAS are highlighted with purple.
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