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Abstract: The step-wise acquisition of genetic abnormalities in cancer is thought to represent a
major driver of disease initiation, relapse and therapy resistance. Acute myeloid leukemia (AML)
represents a prime example of an aggressive cancer that develops in a multi-step manner from
multipotent hematopoietic progenitors via pre-leukemic intermediates to leukemic cells. While bulk
and single-cell genomics provide powerful tools to study the phylogenetics of cancer evolution, the
specific transcriptomic changes induced by the accumulation of mutations remain largely
unexplored. Here, we introduce MutaSeq, a combined single-cell genetic and transcriptomics
platform for the identification of molecular consequences of cancer evolution. Through in-depth
profiling of an AML patient, we demonstrate that MutaSeq is capable of: (1) fine-mapping clonal and
developmental hierarchies (2) quantifying the ability of leukemic and pre-leukemic clones to give
rise to mature lineages and (3) identifying surface markers and mRNA transcripts specific to pre-
leukemic, leukemic, and residual healthy cells. The experimental and analytical approach presented
here is broadly applicable to other types of cancer, and can help identify targets for eradicating both

pre-cancerous and cancerous reservoirs of relapse.
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Introduction

Tumorigenesis is a multistep process, where an accumulation of mutations frequently drives
initiation and subsequent progression from a benign neoplasm to an invasive carcinoma and finally
to a therapy-resistant disease. Ultimately, an elevated clonal heterogeneity is associated with a worse
clinical outcome across cancer types (Andor et al, 2016; Maley et al, 2006). Moreover, a large fraction
of cancer deaths may not be caused by the dominant clone found at diagnosis, but rather by clones
that were initially of low abundance but emerge and progress to a highly aggressive state during
therapy (Mcgranahan & Swanton, 2017). A better understanding of the molecular consequences of
pre-malignant, malignant and subclonal mutations would enable the identification of common

pathways associated with disease progression.

This process is exemplified by the etiology of acute myeloid leukemia (AML). In 10-20% of healthy
individuals >70 years of age, the acquisition of pre-leukemic mutations in hematopoietic stem cells
(HSCs) results in the dominance of a small number of HSC-derived clones (Jaiswal et al, 2014). This
process, known as clonal hematopoiesis of indeterminate potential (CHIP), is associated with an
increased risk of cardiovascular mortality and the development of hematological cancers, such as
AML (Jaiswal et al, 2014, 2017). Pre-leukemic stem cells are capable of giving rise to healthy blood
and immune cells, but frequently display skewed lineage output and decreased differentiation rates
(Chan & Majeti, 2013; Shlush et al, 2014; Pronier et al, 2011). Additional mutations can cause a
complete block in differentiation and thereby result in the malignant accumulation of clonal myeloid
progenitor cells arrested in their ability to differentiate into mature blood cells. These highly
proliferative ‘blasts’ are unable to efficiently self-renew, but are thought to depend on leukemic stem
cells (LSCs) for their continuous production (Meacham & Morrison, 2013; Kreso & Dick, 2014).
Blasts, LSCs, and pre-LSCs may be capable to survive chemotherapy and to evolve into more
aggressive clones that drive relapse (Ding et al, 2012; Shlush et al, 2017; Hou et al, 2012).
Accordingly, chemotherapy usually results in remission, but due to frequent recurrence 5-year
overall survival rates are less than 5% for patients >65 years of age (Thein et al, 2013). A highly
specific strategy to distinguish between residual healthy, pre-leukemic, and leukemic stem- and
progenitor cells is required to determine the molecular consequences of clonal evolution and to

identify drug targets active in all potential reservoirs of relapse.

Single-cell genomics approaches can potentially provide both the single-cell genetic information
needed to distinguish between (sub)clones, as well as the single-cell transcriptomic information
needed to unravel the molecular consequences of clonal evolution and to identify differentiation
stages. Published work has made use of single-cell RNA-seq data to distinguish between healthy and
cancer cells based on copy number variation or a single point mutation (Giustacchini et al, 2017;
Filbin et al, 2018; Tirosh et al, 2016; Patel et al, 2014). However, a multiplex readout of mutations is
required to distinguish between healthy HSCs, pre-LSCs and various leukemic clones. Here, we

introduce an experimental and analytical pipeline for multiplex mutation tracking by targeted
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amplification in single cell RNA-sequencing (“MutaSeq”) and demonstrate its utility for the
identification of molecular differences between healthy, pre-leukemic and leukemic stem cells as well

as their differential ability to give rise to various hematopoietic lineages.

Results

Herein, we develop a method capable of generating high quality transcriptomic data in combination
with multiplex mutational information from individual cells. We first evaluated different strategies
for targeting mutations as part of a low-cost single-cell RNA-sequencing (scRNA-seq) workflow
based on a highly sensitive, modified version of Smart-Seq2 (SmartSeq.HSC from Velten et al, 2017).
In particular, we designed primers to target genomic sites during reverse transcription or cDNA
amplification steps. We found that inclusion of targeting primers during reverse transcription
frequently resulted in the formation of undesired byproducts (Figure EV1a-d). By contrast, when
sites of interest were targeted during cDNA amplification, high quality transcriptome data was
robustly obtained and the average number of target sites captured per cell was doubled compared to
a non-targeted approach (Figure EV1a,b,e). While amplicon length had little effect on target capture
rate, the use of short (90-145bp) targeted amplicons during cDNA amplification and the direct
incorporation of sequencing adapters (Filbin et al, 2018) increased the number of reads on target
(Figure EV1b). We termed this protocol multiplex mutational tracking by targeted amplification of
cDNA in single-cell RNA-sequencing (MutaSeq) (Figure 1a). An automated pipeline for primer design
that minimizes off-target sites and potential primer-dimer formation is available at

https://git.embl.de/velten/PrimerDesign. With homemade Tn5 transposase (Hennig et al, 2018), the

cost of library preparation in MutaSeq is below US$4 per cell in a 96-well format, and around $2 in a

384-well format.

To demonstrate the potential of MutaSeq in AML, we performed an in-depth investigation of the
genetic and non-genetic heterogeneity of the bone marrow of a 78-year old patient who presented
with an AML with normal karyotype, surface marker expression of CD34, CD13, CD38 and HLA-DR
and a blast count of 45%. We identified somatic variants present in CD34+ bone marrow cells from
this patient by deep exome sequencing in comparison to a non-hematopoietic germline control. This
revealed a missense mutation in the splice factor SRSFZ, two frameshift mutations in the
methylcytosine dioxygenase TETZ, and eleven additional nonsynonymous mutations present with
high (near 50%) allele frequency (Figure 1b). Moreover, three nonsynonymous mutations were
found at an allele frequency of 15-25%, including a frameshift mutation in the myeloid lineage
transcription factor CEBPA and a missense mutation in KLF7. Twenty-seven mutations, including all
coding mutations present at an allele frequency of >10%, were targeted by MutaSeq (table EV1, EV2).
We then systematically compared the performance of MutaSeq and non-targeted Smart-Seq2 in a
dataset of 658 (MutaSeq) and 206 (Smart-Seq2) bone marrow derived CD34+ cells from that patient.
In line with the initial protocol comparison, MutaSeq increased the number of target sites covered

per single cell from a median of 1 to a median of 4 (Figure 1c). Importantly, the transcriptome data
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from both methods covered a median of >3500 genes per CD34+ cell and were highly correlated
between methods (Pearson R = 0.9), suggesting that MutaSeq provides increased coverage of
mutational sites, while retaining excellent transcriptomic data quality (Figure 1c,d). For genes
expressed at intermediate or high levels, MutaSeq recapitulated the variant allele frequencies
measured by exome sequencing more accurately than Smart-Seq2 (Figure 1e,f). Mutations occurring
in lowly or non-expressed genes (RPKM < 1) could not be called by either method. In case of
frameshift mutations, coverage of the mutant alleles was generally decreased, likely as a
consequence of nonsense mediated decay (Figure 1f). The three key target sites in SRSF2, CEBPA and
KLF7 were efficiently captured in 30 to 96% of cells and hence at 1.6 to 5.8 times the number
achieved by the classical Smart-Seq2 approach (Figure 1g). Together, these results demonstrate the
ability of MutaSeq to efficiently cover genomic target sites in expressed genes during single-cell RNA-

sequencing experiments.

Given the information from deep exome sequencing (Figure 1b), the KLF7 and CEBPA mutations
could co-occur in a single subclone, or demarcate two independent subclones. To unambiguously
identify the number of subclones and their evolutionary hierarchy, we clustered the mutational
profile established by MutaSeq on single cells and used SCITE (Jahn et al, 2016) to infer a likely clonal
hierarchy. These results demonstrate that most covered mutations co-occur within single cells,
whereas the KLF7 mutation and the CEBPA mutation were mutually exclusive if taking an empirically
determined false positive rate of 3% into account (Figure 2a, and see methods/figure EV3).
Additionally, a large fraction of cells carried the persistent SRSF2 mutation, without mutation calls in
KLF7 and CEBPA. To confirm these results, we expanded 278 colonies from single CD34+ leukemic
cells and performed targeted sequencing of all 27 mutations from clonal DNA (see methods and
Figure EV1f). The result confirmed the presence of a founding SRSF2 clone and two additional
distinct subclones marked by CEBPA and KLF7 mutations, as indicated by MutaSeq (Figure 2b,c).
Therefore, the mutational sites highly covered by single-cell RNA sequencing (SRSF2, CEBPA and
KLF7) are ideal markers for these clones. Together, these analyses demonstrate that MutaSeq is a

powerful tool to confidently identify subclonal structures at the single-cell level.

It has previously been shown that pre-leukemic mutations arise early in AML evolution, likely in
healthy hematopietic stem cells (HSCs), and can therefore be detected in all blood and immune
lineages. Subsequent mutations often result in differentiation blocks and transformation into
leukemic stem cells (Shlush et al, 2014). We envisioned that MutaSeq would be ideal for classifying
mutations as leukaemic or pre-leukaemic, since it captures both cell type and mutational
information. We therefore generated a dataset of 1430 bone marrow cells from the same patient,
with enrichment for lineage-negative (Lin-) and CD34+ compartments (Figure EV1g), and FACS-
based quantification (‘indexing’) of multiple differentiation markers (Lin, CD33, CD34, CD38,
CD45RA, CD90, CD135) or putative leukemic stem cell markers (Tim3, Gpr56). In these data, we

identified a large and heterogeneous cluster of CD34+ leukemic cells (see below) as well as 8
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additional CD34- clusters (Figure 3a, b). Based on the analysis of marker gene expression and
differential expression tests (Table EV3, Figure 3b,c, EV2), the CD34- clusters were identified as
Neutrophils, B-cells, two clusters of NK cells distinguished by the expression of KLRB1 (CD161)
(Kurioka et al, 2018), and four clusters of T cells, (CD45RA-CCR7+SELL+ central memory T cells,
CD45RA-CCR7-SELL-NKG7+ effector memory T cells, Lin+CD45RA+CD8A+CD8B+ cytotoxic effector T
cells, and a CD4-CD8-CD45RA+CD3+ subset of T cells that expressed the T cell receptor delta chain
and other markers of CD16+ yd T cells described by Ryan et al, 2016). Together, these results
underline the ability of MutaSeq to distinguish between highly related cell types, such as T and NK

cell subsets.

We next mapped the contribution of each individual sub-clone to the mature immune cell
populations (Figure 3d,e). SRSF2 mutations were observed in all lineages with allele frequencies in
neutrophils and NK cells being only slightly reduced when compared to the CD34+ precursor and
blast cluster. In contrast, SRSFZ2 allele frequencies were strongly depleted in B cells and particularly T
cells. Together, these data suggest that the SRSFZ mutation is a pre-leukemic event that has likely
been acquired during adulthood when B cell, and in particular T cell, generation is attenuated, while
other lineages maintain high turn-over rates. The high penetrance of the mutation into the neutrophil
and NK cell lineages, suggests that the pre-leukemic SRSF2-mutated clone has effectively taken over
hematopoiesis. Importantly, these analyses account for differential allelic drop-out rates as a
function of library quality and target gene expression (see methods, Figure EV3). Sequencing of DNA
of sorted mature immune lineages confirmed a high abundance of SRSF2 mutant cells in B cells, NK
cells and Neutrophils (Figure 3e, inlay).

The CEBPA mutation did occur at low frequency in the mature lineages, but was observed in about
30% of CD34+ cells (Figure 3f). These data suggest that the clonal divergence into the CEBPA-
mutated subclone is associated with a block in differentiation and a transition from a pre-leukemic to
a leukemic state. In contrast, the KLF7 mutation was observed in all lineages with no evidence for
depletion or enrichment in terms of its frequency relative to SRSF2 mutations, thereby qualifying this
subclone as preleukemic. These analyses demonstrate the ability of MutaSeq to distinguish between
pre-leukemic and leukemic clones, and link additional subclonal mutations to the acquisition of a

differentiation block.

To characterize the cellular heterogeneity of the CD34+ compartment, we first projected our data on
single-cell RNA-seq data from healthy human hematopoiesis and used the STEMNET algorithm to
estimate the degree of priming into myeloid, lymphoid, megakaryocyte and erythroid lineage (Velten
et al, 2017) (Figure 4a). We found that a number of cells resembled healthy myeloid, lymphoid,
megakaryocyte and erythroid progenitors. We did not observe a significant association of subclonal
mutations with altered degrees of lineage priming (Figure 4b); however, the fractions of cells with

neutrophil and lymphoid priming were overall significantly decreased in this AML patient, while the
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fractions of low-primed, megakaryocyte-primed and eosinophil/basophil primed cells were
increased (Figure 4c). Like in healthy reference individuals, CD38 expression was correlated with the
overall degree of healthy lineage priming (Figure 4d and Velten et al, 2017), and
megakaryocyte/erythroid progenitors displayed a normal CD45RA-CD135- surface phenotype.
Interestingly, most leukemic cells were CD33-CD45RA+CD135+/-, whereas phenotypic common
myeloid progenitors or CD33+ cells were virtually absent. These analyses demonstrate the ability of

MutaSeq to identify developmental hierarchies in leukemic stem and progenitor cells.

Beyond serving as markers for stages of differentiation, FACS-based indexing of surface markers
permits the investigation of differences in surface marker expression between pre-leukemic and
leukemic CD34+ cells. We found that surface expression of GPR56, which has previously been
suggested to enrich for highly aggressive leukemic stem cells (Pabst et al, 2016), was significantly
associated with an increased abundance of CEBPA mutated leukemic cells (Figure 5a,b). In contrast,
KLF7 mutant cells were enriched in the CD45RAlow population. Importantly, in all these analyses
covariates affecting allelic dropout rates were taken into account (see methods). This demonstrates
the ability of MutaSeq to correlate both transcriptomic and clonal information with surface marker
expression, opening the possibility for systematic characterization of cancer stem cell markers at the

single-cell level.

Finally, we investigated the effects of leukemic and pre-leukemic mutations on gene expression.
Interestingly, when comparing residual healthy CD34+ cells with CD34+ cells that acquired the pre-
leukemic SRSFZ mutation, the FIS1 gene was most significantly upregulated in the mutant cells. FIS1
activation has previously been shown to be critical for the transformation of healthy HSCs to LSCs
(Pei et al, 2018) (Figure 5c). The subsequently acquired leukemic CEBPA mutation caused expression
changes in several genes (Figure 5d). For example, tumor suppressor genes (TSGs) were significantly
enriched among transcripts downregulated in the CEBPA mutant clone (p = 0.03, hypergeometric
test). These included MLL3 (KMTZ2C) and the nuclear orphan receptor NR4A1, both playing important
roles in the development of AML and can mediate impairment of HSPC differentiation on their own
(Chen et al, 2014; Wenzl et al, 2015). The gene most strongly upregulated in the CEBPA-mutant clone
was PTRF (CAVINI), which has previously been found to be one of few genes consistently
upregulated across AML genotypes (Lee et al, 2006). Principal component analysis confirmed that
the CEBPA mutation substantially affected gene expression in the CD34+ compartment (Figure 5a).
By contrast, the effects of the KLF7 mutation were subtle, in line with its minor impact on HSPC
differentiation capacity. However, we did observe a small but significant increase in the fraction of
KLF7-mutated cells in G2/M phase of the mitotic cell cycle, suggesting that the KLF7 mutation may
increase the proliferation rate of CD34+ cells (Figure 5a).

Together, these analyses demonstrate that MutaSeq can be used to interrogate the molecular and

cellular consequences of clonal evolution during carcinogenesis.
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Discussion

Here we introduce MutaSeq, an experimental and analytical pipeline that combines high quality
transcriptomic profiling with multiplex mutational mapping of single cells. MutaSeq is capable of
simultaneously determining subclonal structures, identifying subclone-specific gene expression
patterns, and mapping developmental hierarchies in leukemic stem and progenitor cells. This makes
MutaSeq a powerful tool for the identification of the molecular consequences of clonal evolution in

cancer, and will help prioritize drug targets that are active in both cancerous and precancerous cells.

In the AML patient studied here, we have found that initial pre-leukemic SRSF2, TET2 and SPEN
mutations resulted in the clonal expansion of developmentally immature cells with skewed lineage
priming but a high net contribution to all blood and immune lineages except T cells. On a molecular
level, the transition from healthy to pre-leukemic CD34+ cells was accompanied by increased
expression of FIS1, a process that has recently been characterized as crucial for LSC maintenance (Pei
et al, 2018). Clonal evolution subsequently resulted in the expansion of two subclones in addition to
the remaining founder clone. Of these, only one subclone (mutation in the myeloid transcription
factor CEBPA) was associated with a strict block in differentiation. Concomitantly, the leukemic
CEBPA-clone down-regulated several tumor suppressor genes, including genes whose loss has
previously been linked to the acquisition of a differentiation block and leukemogenesis (Chen et al,
2014; Wenzl et al, 2015). Together, these results demonstrate the ability of MutaSeq to identify how
clonal evolution gives rise to intra-patient heterogeneity and differentiation blocks in

leukemogenesis.

In addition, MutaSeq allows the combined simultaneous transcriptional and mutational profiling of
single cells with the recording of candidate surface markers by flow cytometry. In our study we
tested whether distinct differentiation markers and proposed LSC markers associate with subclonal
divergence. Indeed, GPR56, which has previously been suggested to serve as a LSC marker (Pabst et
al, 2016), was specifically upregulated in the CEBPA-mutant subclone, and therefore upon transition
from a pre-leukemic to an leukemic state. This demonstrates the use of MutaSeq to identify or

characterize potential LSC makers at the single-cell and subclonal level.

MutaSeq has distinct advantages and disadvantages compared to other methods for mutational
profiling during single-cell RNA-seq currently proposed on preprint servers. GoT-Seq (Nam et al,
biorxiv) performs targeted amplifications from cDNA libraries obtained from droplet-based single-
cell RNA-seq, and therefore is biased towards mutations near the cDNA 3’ or 5’ end. Moreover, it
provides a decreased molecular sensitivity compared to MutaSeq (median 4420 genes detected per
CD34+ bone marrow cell, compared to ~2300 in GoT-Seq). For mutations in three highly expressed
genes, GoT-Seq enabled mutation calls in >60% of CD34+ bone marrow cells, whereas MutaSeq
achieved a similar coverage for genes of substantially lower expression (SRSF2, CEBPA and EAPP are

expressed at 15% to 45% the level CALR). GoT-Seq has a more streamlined workflow but unlike
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MutaSeq is incompatible with FACS index-recording of surface markers. TARGET-Seq (Rodriguez-
Meira et al, biorxiv) performs amplification from genomic DNA that is released into the lysis buffer
through a protease digestion step. This offers obvious advantages in the detection of lowly expressed
genes, intergenic mutations, or genes subject to nonsense mediated decay. On the downside, the
TARGET-Seq protocol requires two additional PCR steps subsequent to the initial pre-amplification
and thereby approximately doubles the hands-on time required. In contrast, in the MutaSeq
workflow, amplification of the target is achieved as part of the default library preparation protocol.
Alternatively, mutations can also be called from single-cell RNA-seq data without targeted
amplification (Petti et al, biorxiv). However, a low coverage of mutations was thereby achieved, with
maximally 26% of cells covering the best-covered mutation across five separate experiments. The
advantage of this workflow is that it can be applied to existing data, but insights on clonal identity
remain restricted. Together, the four protocols proposed serve distinct requirements, with MutaSeq
offering an excellent balance between mutation detection rate and throughput.

In conclusion, MutaSeq is a highly powerful method for identifying the molecular consequences of
clonal evolution in cancer. The proposed experimental design, methodology, and data analysis
workflow of our study can serve as a blueprint for future large-scale efforts to characterize cellular

and molecular properties of LSCs and pre-LSCs and may also be adapted to solid cancers.

Material and Methods

Patient and sample collection

The AML sample was collected from a diagnostic bone marrow aspiration from a 78-year-old
individual at the University hospital in Heidelberg, Germany, after obtaining informed written
consent. Bone marrow mononuclear cells were isolated by density gradient centrifugation and stored
in liquid nitrogen until further use. All experiments involving human samples were conducted in
compliance with the Declaration of Helsinki and all relevant ethical regulations and were approved

by the ethics committee of the medical faculty of the University of Heidelberg.

Deep exome sequencing

DNA was extracted from 9x103 flow sorted CD34+ cells from a bone marrow sample or buccal swab
as healthy reference. Sequencing libraries were constructed using the SureSelect XT HS enrichment
system (Agilent), and a mean on-exon sequencing coverage of >90x was obtained. Genomic
alignments were performed using BWA MEM (Li, 2013) and cancer variants were identified using
MuTeCT2 v3.8 (Cibulskis et al, 2013), following GATK best practice recommendations. Variants were
annotated using ANNOVAR (Wang et al, 2010), and all coding variants present at an allele frequency
of at least 10%, plus several variants present at a lower allele frequency were selected for targeting

in MutaSeq (table EV1).

FACS sorting
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Bone marrow mononuclear cells were stained for 30 minutes on ice according to standard protocols.
For single cell liquid cultures and MutaSeq, cells were stained with fluorescent-labelled antibodies
against lineage markers (CD4, CD8, CD19, CD20, CD41a, CD235a) and additional markers (CD45RA,
CD135, GPR56, CD34, CD38, CD90, CD33, Tim3), and sorted according to the gating scheme
illustrated in Figure EV1g. For the mature bulk populations sort (Figure 3e), cells were stained with
antibodies against CD45, CD3, CD19, CD56, CD33, CD14 and CD15, and live cells were gated as
CD45+CD3+ T cells, CD45+CD19+ B cells, CD45+CD19-CD3-CD56+ NK cells, or CD45+CD19-CD3-
CD56-CD33+CD15+CD14- Neutrophils. BD FACS Fusion (BD Biosciences) equipped with 405nm,

488nm, 561nm and 640nm lasers were used. A list of all antibodies used can be found in table EV4.

Primer Design
Primers for MutaSeq (Figure 1), for other single-cell targeting protocols tested (Figure EV1), as well
as for targeted DNA sequencing were designed using the computational pipeline available at

http://git.embl.de/velten/PrimerDesign . For MutaSeq, the refgene transcripts spanning each

genomic site of interest were selected as template; if multiple refgene transcripts were found for one
site, a consensus transcript containing only exonic sequences present in all variants was created. We
then used primer3 (Untergasser et al, 2012) to design five possible pairs of primers, with an
amplicon length of 90-145bp and a melting temperature of (nominally) 60°C. BLAST was used to
remove primer pairs which potentially form off-target amplicons. Then, the pair complementarity
(i.e. potential to form dimers) was computed for each possible combination of primers (forward-
reverse, forward-forward and reverse-reverse), and the set of primer pairs that minimizes the total
sum of complementarities was selected using a stepwise optimization algorithm. Nextera adapters
were then added (fwd: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG, rev:
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG).

For the protocol that combines targeting during the RT and targeting during the PCR (Figure EV1a,
‘Targeted RT + Direct library PCR’), an RT primer was added upstream of the PCR amplicon. For the
protocol that only targets during the RT (Figure EV1a, ‘Targeted RT’), the same RT primers were
fused to the ISPCR oligo sequence (AAGCAGTGGTATCAACGCAGAGT, Picelli et al, 2013). For the
protocol labeled ‘Targeted PCR’ in Figure 1b, a primer pair with amplicon length 200-350 and no
adapters was used.

For targeted DNA-seq experiments, the genomic sequence surrounding the target was used as
template. Inner primers were designed as in the case of MutaSeq, and outer primers surrounding the
inner PCR product with an amplicon length of 200-350bp and a nominal annealing temperature of
58°C were added.

Alist of all primers used for this study is included in Table EV2.

Single cell RNA sequencing with targeting of genomic sites of interest
MutaSeq is based on the Smart-Seq2 protocol (Picelli et al, 2013, 2014) with the modifications

introduced by (Velten et al, 2017). For lysis, we used 5uL of a buffer containing 0.1uL RNAsin+
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(Promega), 0.04uL 10% Triton X-100 (SigmaAldrich), 0.1pL of 100uM Smart-Seq2 Oligo-dT primer
(SigmaAldrich), 1uL dNTP mix (10mM each, NEB), and 0.075uL of a 1:1,000,000 dilution of ERCC
spike in mix 1 (Ambion). We added an additional polyadenylated in vitro transcript, pGIBS-Thr
(Pelechano et al, 2012), to every second well (A1, A3, B2, B4 etc.) to control for false positives (see
below). A site on pGIBS-Thr was targeted during MutaSeq in the same way as genomic target sites.
Plates were snap frozen directly after sorting and later thawed at 10°C in a PCR machine for 5’ and
denatured at 72°C for 3’. 5pL of a buffer containing 0.25uL RNAsin+, 2pL 5x SMART FS buffer, 0.5pL
DTT 20mM, 1puL. SmartScribe enzyme (all TaKaRa) and 0.2uL. 50pM Smart-Seq2 TSO (Exiqon) were
then added and RT was performed for 90" at 42°C, 10 cycles of [50°C, 2’ and 42°C, 2’], and enzyme
inactivation at 70°C for 15’. Then, we added 15uL PCR mix containing 12.5pl. KAPA HiFi HS
mastermix (Merck), 0.25uL. 10uM Smart-Seq2 ISPCR primer (SigmaAldrich) and 0.5uL of a pool of all
targeting primers, present at 1uM each. cDNA amplification was performed by 98°C 3’, 21 cycles of
[98°C, 20”, 67°C, 60”, 72°C 6’] and 72°C, 5’. cDNA was the cleaned up using an equal volume (25uL)
of CleanPCR beads (CleanNA) and tagmented using homemade Tn5 (Hennig et al, 2018).

For the alternatives to MutaSeq displayed in Figure 1b, the same protocol was used only that the
annealing time during PCR was reduced to 15” if no targeting primers were present at PCR stage. For
targeting during the RT, 0.0625 pL (“Targeted RT’ in Figure EV1a) or 0.35uL (‘Targeted RT + Direct
library PCR’) of a pool of all targeting RT primers, present at 1pM each, was added to the lysis buffer;

see Figure EV1c-e for the effect of varying primer concentrations.

Single cell cultures

Bone Marrow mononuclear cells were stained and Lin- or Lin-CD34+ single cells were index-sorted
into ultra-low attachment 96-well plates (Corning) containing 100uL StemSpan SFEM media (Stem
Cell Technologies). Media was supplemented with penicillin/streptomycin (100ng/mL), L-glutamine
(100ng/mL) and the following human cytokines (all from Peprotech): SCF (20ng/mL), FIt3-L
(20ng/mL), TPO (50ng/mL), IL-3 (20ng/mL), IL-6 (20ng/mL), G-CSF (20ng/mL), EPO (40ng/mL),
IL-5 (20ng/mL), M-CSF (20ng/mL), GM-CSF (50ng/mL). After 21 days at 5% CO; and 37°C, colonies

were imaged by microscopy, and processed as detailed in the following.

Targeted DNA sequencing by nested PCR amplification

Single cell derived colonies or mature immune populations were transferred into 50puL buffer RLT
(Qiagen). Cleanup was performed using CleanPCR beads (CleanNA) at a 1.8x volume ratio and eluted
in 20pL. 10mM Tris-HCI pH 7.8. 4.5uL were transferred to a PCR plate containing 7.5pL Kapa HiFi HS
mastermix and 3 pL of a pool of all outer primers (each primer at 0.5uM) were added, followed by a
PCR program of 98°C 3’, 30 cycles of [98°C, 20”, 63°C, 60”, 72°C 10”] and 72°C, 5’ and subsequent
enzymatic cleanup with 2.5ul. 10x Exol buffer, 0.4uL Exol (NEB) and 0.4uL FastAP (ThermoFisher),
30’ incubation at 37°C and 5’ inactivation at 95°C. Afterwards, 1uL was transferred to a PCR tube
containing 5.9uL water, 7.5uL Kapa HiFi HS mastermix and 0.6uL of a pool of all outer primers (each
primer at 0.5uM), followed by a PCR program of 98°C 3’, 15 cycles of [98°C, 20", 65°C, 15", 72°C 30”],
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72°C, 5" and enzymatic cleanup as above. 1pL was then transferred to a PCR with nextera indexing
primers as described in (Hennig et al, 2018) and amplified with 98°C 3’, 10 cycles of [98°C, 20”, 60°C,
15”,72°C 30”] and 72°C, 5’. Sample bioanalyzer traces are shown in Figure EV1f.

Processing of Next Generation Sequencing data

Raw sequencing reads from MutaSeq and Smart-Seq2 experiments were processed using the BBDuk
software to trim both the standard Illumina Nextera adapters and the ISPCR adapter. Reads were
then mapped to the hg38 human genome (Ensembl release 89), with ERCC and pGIBS-Thr sequences
appended, using STAR v2.6 (Dobin et al, 2013), with the outFilterMismatchNmax parameter set to 5.
Exonic gene counts were tabulated, keeping only reads that did not overlap with targeted regions,
overlapped with only one annotated genomic feature, and were longer than 30 bp. Reads covering
the reference and mutant alleles for sites of interest were counted in each single cell using the
deepSNV R package (Gerstung et al, 2012), and cells were classified as dropout if less than k reads
covered a given location, mutant if at least 5% of the base calls covered the mutant allele, and
reference otherwise. k was set to 10% the average number of reads on the site across all cells.
Thereby, the false positive rate of MutaSeq was controlled at 3%, as estimated using the pGIBS-Thr
synthetic spike in control included in every second well (Figure EV3a,b).

For DNA sequencing experiments, reads were mapped to the hg38 human genome using bwa mem

(v0.7.17) (Li, 2013). Mutation calls were made as described above.

Reconstruction of clonal hierarchies

The CEBPA and KLF7 mutations were mutually exclusive in 109 cells with both alleles covered, and
co-occurred in 2 cells. The SCITE model can be used to formally infer a clonal hierarchy by
considering both false positive rates and allelic dropout rates (Jahn et al, 2016). We fitted the SCITE
model to the data using an FP rate of 0.001 to be maximally conservative with regard to false
positives, and learnt an average allelic dropout rate from the data. This consistently resulted in the
split displayed in figure 2 across five independent MCMC chains, both for the MutaSeq and for the
Colony-Seq data.

Single cell gene expression data analysis

Gene count tables were loaded into R and further processed using the Seurat R package (Butler et al,
2018). Cells with less than 500 distinct genes observed and cells with more than 5% of UMIs
stemming from mitochondrial genes were removed. During initial clustering, we identified an outlier
group of 26 cells that all originated from the bottom rows of various plates; these cells were removed
and likely originate from an ‘edge effect’. PCA was then performed on significantly variable genes,
and the first 9 PCs were selected as input for clustering and t-SNE, based on manual inspection of a
PC variance plot (“PC elbow plot”). Clustering was performed using the default method from the
Seurat package, with resolution parameter set to 6. While lower resolution parameters caused

biologically distinct T cell subsets to be merged into a single cluster, this relatively large parameter
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resulted in the heterogeneous CD34+ cluster to be split in a large number of subgroups. For the
analyses at the cell type level (Figure 3), all CD34+ cells were treated as one group, and marker genes
for each population were identified using the FindMarkersAll function and ROC-based test statistics.

To compare CD34+ cells from the patient to CD34+ cells from a healthy individual, we made use of
the STEMNET algorithm (Velten et al, 2017). In short, STEMNET uses data from 1034 healthy CD34+
hematopoietic stem and progenitor cells to identify genes specific to lineage restricted progenitor
populations (Neutrophil, Eosinophil/Basophil, B-cell, Monocyte, Erythroid and Megakaryocyte
progenitors). STEMNET then computes the probability that a stem, progenitor or leukemic cell can
be assigned to any of these classes. STEMNET thereby places cells with a large similarity to healthy
progenitor cells on the corners of a simplex, while any cell that does not resemble a healthy
progenitor cell is placed in the centre. The visualization in figure 4a,b results from the projection of

this simplex on the unit circle (Velten et al, 2017).

Joint analysis of single cell gene expression and mutational data

The probability that MutaSeq covers a target genomic site in a single cell depends on the expression
of the gene in that cell (Figure EV3c and see also Figure 1e). For a purely qualitative analysis, cells
can be classified as ‘mutant’ if the mutant allele is observed, and as ‘reference’ if only the reference
allele is observed. However, a reference call can then originate either from a mutant cell with a
dropout event or a non-mutant cell. The apparent fraction of non-mutant cells is therefore higher in
cells with a high drop-out rate, and correlated with the expression of the target gene (Figure EV3c).
The sequencing depth per cell also affects dropout rate and thereby the apparent abundance of
mutant cells (Figure EV3c). To account for these confounders, the association between a feature F of
interest (e.g. cell type identity in Figure 3e or surface marker expression in Figure 5a) and mutational
status was computed using weighted multivariate logistic regression

Mg~ Xy + N+ F

Where M; € {0,1} is the mutational status at a genomic site s, X, is the log-normalized, scaled
expression of the gene spanning s (i.e. the number of reads aligning anywhere in the gene body), and
N is the number of genes observed per cell as a measure of library quality. The logarithm of the total
reads covering the exact genomic site s was used as weights, since the probability of dropout in
either allele was tightly correlated to the number of reads on that site (Figure EV3d). Cells with no
coverage of the genomic site of interest were thereby excluded. The resulting models were then
compared to a reduced model that omits the feature term F, and p-values were computed using
ANOVA and a likelihood ratio test. For the identification of genes with differential expression
between clones, expression values were used as the feature F and the same test was applied. P-values
were adjusted for multiple testing using the Benjamini-Hochberg procedure. For all continuous

features F, including gene expression values, sample ranks were used.
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In Figures 3e, f and 5b, binned estimates of allele frequency were computed as the weighted means of
single-cell mutation status, using the same weights introduced above. Non-parametric bootstrapping

with 1000 sampling repeats was used to obtain confidence intervals.

Data availability
Raw sequencing data and VCF files will be made available through the European Genome-phenome
Archive (EGA) upon publication or earlier upon justified request. Processed data is further available

as dataset EV1.
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Figure legends

Figure 1. MutaSeq permits efficient targeting of mutations during single-cell RNA-sequencing.
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a. Overview of the MutaSeq protocol. Targeting primers (orange) are included during the cDNA
amplification step of the Smart-Seq2 protocol. Targeting primers are directly fused to
illumina library adapters (dark green). Tagmentation introduces the same adapters to the
full-length cDNA product.

b. Overview of clonal and subclonal mutations present in the patient studied here. Variant allele
frequency was computed from deep exome sequencing with a mean coverage of >90x.

c. Number of target sites and genes covered per cell, across n=206 (Smart-Seq2) or n=658
CD34+ (MutaSeq) leukemic cells.

d. Correlation in mean gene expression, across n=206 (Smart-Seq2) or n=658 CD34+ (MutaSeq)
leukemic cells.

e. Scatter plot depicting the relationship between gene expression level and mutation site
coverage in Smart-Seq2 (grey dots) and MutaSeq (red dots).

f. Allele frequency estimates derived from deep exome sequencing compared to allele
frequency estimates derived from MutaSeq (red dots) or Smart-Seq2 (grey dots)

g. Fractions of cells covering key non-synonymous mutations observed in the patient.

Figure 2. MutaSeq permits the reconstruction of clonal hierarchies.

a. Left panel: Heatmap depicting mutation calls across n=872 cells with coverage of at least two
mutation sites. Right panel: Summarized output of SCITE (Jahn et al, 2016).

b. Left panel: Heatmap depicting mutation calls across n=206 colonies. Right panel:
Summarized output of SCITE.

c. Clone sizes estimated from single-cell MutaSeq, colony DNA-seq, and deep exome seq. For
MutaSeq and colony-seq, residual healthy cells were defined as no observed mutation in
SRSF2, TET2, SPEN and EAPP. Fractions were computed using means of mutational status,
weighted by on-site coverage. For exome-seq, residual healthy cells were defined as one

minus the mean allele frequency of all clonal mutations.

Figure 3. MutaSeq quantifies the contribution of leukemic clones to mature immune lineages.

a. t-SNE visualization of cell types present in total bone marrow of a leukemia patient. For
detail on cell type annotation, see main text and Figure EV2.

b. Surface marker expression (FACS index values) of all cells sequenced.

c. Expression of marker genes for mature lineages superimposed on the t-SNE from panel a, see
also figure EV2a.

d. Mutation calls for four key mutations superimposed on the t-SNE from panel a.

e. Quantification of the fraction of cells carrying an SRSF2 mutation in the various populations.
Fractions were computed using the mean of mutational status, weighted by the logarithm of
reads spanning the genomic site of interest; error bars indicate 90% confidence intervals
estimated from a non-parametric bootstrap. P-values were computed using a weighted

generalized linear model that accounts for the potentially confounding variables library size
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and SRSF2 gene expression (see methods). Multiple testing correction was performed using
the method of Benjamini and Hochberg, and asterisk indicate significance as follows: ***, paq;
< 0.001; ** padj < 0.01; *, pagj < 0.1. Inset: Fraction of SRSF2 mutated cells estimated from
MutaSeq are compared to SRSFZ2 allele frequencies measured by targeted DNA-seq of mature
T cells, B cells, neutrophils and NK cells (circles), and exome-seq of CD34+ cells (triangle);
see panel f for color code.

f.  Quantification of the fraction of cells carrying the subclonal CEBPA or KLF7 mutations in
relation the fraction of cells carrying the SRSF2 mutation. Calculations were done as in panel
e; B-cells were omitted due to insufficient coverage. p-values were calculated against the null
hypothesis that the ratio between subclonal mutation and SRSFS2 mutation was constant in

all populations (dotted line).

Figure 4. MutaSeq identifies residual healthy lineage priming in leukemic CD34+ cells.

a. Identification of healthy-like lineage priming in all cells from the heterogeneous
LSC/Blast/HSPC cluster (Figure 3a). Data were projected on a dataset of CD34+ cells from a
healthy individual (see Velten et al, 2017 and methods).

b. Superimposition of mutation calls on the projection from panel a.

c. Quantitative comparison of the number of cells with various directions of lineage priming
between a healthy and a leukemic individual. The number of cells with a lineage priming of >
-0.7 (triangles in panel b) were compared; p-values and confidence intervals were computed
using fisher’s test.

d. Superimposition of the direction and degree of healthy-like lineage priming on FACS index

values.

Figure 5. MutaSeq identifies the effects of mutations on gene expression in CD34+ cells

a. Tests for correlation between the presence or absence of mutations in the three clonal
markers SRSF2, CEBPA and KLF7, and a variety of features including surface marker
expression (left panel), scores from principal component analysis (middle panel) and cell
cycle scores computed using the default method from Seurat (Butler et al, 2018) and the
expression of marker genes typically used for this application (Whitfield et al, 2002) (right
panel). P values were computed by accounting for potentially confounding variables such as
expression of the target gene and library size, see methods; multiple testing correction was
performed using the method of Benjamini and Hochberg.

b. Estimation of the fraction of cells carrying a mutation in CEBPA in 20 equal-sized bins of
GPR56 surface expression. Means and 90% confidence intervals were computed as in fugure
3e, see also methods.

c. Identification of genes affected by SRSF2 mutational status, see methods.

d. Identification of genes affected by CEBPA mutational status, see methods. Highlighted in red

are tumor suppressor genes from the TSGene 2.0 database (Zhao et al, 2016).
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Tables & table legends

Table EV1. Identification of somatic variants targeted in MutaSeq.

Table EV2. List of primers used in MutaSeq.

Table EV3. Identification of marker genes for mature lineages.

Table EV4. Antibodies used for flow cytometry.

Dataset EV1. Count tables, mutation calls, and other data from the MutaSeq experiment.

Tables EV1-EV4 are available as excel files accompanying this submission.

Expanded View Figure legends
Figure EV1. Development of MutaSeq

a. Comparison of different strategies of targeting the mutations of interest. In the ‘targeted RT’
protocol, a reverse transcription primer carrying the ISPCR sequence was placed
downstream of the sites of interest. In the ‘targeted RT+ direct library PCR’ protocol, a
targeted RT primer without ISPCR sequence was used in conjunction with targeting primers
included during PCR. In the ‘targeted PCR’ protocol, PCR primers were used to generate
amplicons of 250-350 bases, whereas in the ‘direct library PCR’ protocol, shorter amplicons
were used and primers were fused to Nextera sequencing adapters; see also Figure 1a. 8-16
K562 cells were sequenced with each protocol and the number of genes observed per cell as
well as the number of target sites covered was quantified. Error bars indicate the standard
error of the mean.

b. Boxplot comparing the mean number of reads per target in the different protocols.

c. Bioanalyzer traces for the ‘targeted RT’ protocol and varying RT primer concentrations.

d. Bioanalyzer traces for the ‘targeted RT + direct library PCR’ protocol and varying RT primer
concentrations.

e. Bioanalyzer traces for the ‘direct library PCR’ protocol (MutaSeq) and varying PCR primer
concentrations.

f. Representative bioanalyzer traces from the nested protocol for targeted DNA amplification

g. FACS sorting scheme used. 8 plates of Total Bone Marow cells, 4 plates of lineage negative

cells and 10 plates of CD34+ cells were processed for MutaSeq.

Figure EV2: Characterization of T and NK cell subtypes
a. Gene expression of select marker genes highlighted on the t-SNE from Figure la. Gray: No
expression, dark red: low expression, orange: maximal expression.
b. Top differentially expressed genes between T-cell subsets; MAST was used for differential

expression testing (Finak et al, 2015).

Figure EV3: Analysis of false negatives and false positives
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a. Abundance of the pGIBS-Thr spike in across wells from four representative plates. pGIBS-Thr
was spiked in to every second well (wells A1, A3, B2, B4, etc).

b. Estimation of the false positive rate using the pGIBS-Thr spike in. Dashed bold line indicates
the threshold used for classifying a site as dropout.

c. The fraction of CD34+ cells with a dropout in SRSF2, as well as the fraction of non-dropout
cells with a mutant allele observed, in relation to the expression of SRSF2 and the number of
genes observed per cell.

d. Number of reads covering the genomic site of interest in the SRSF2 gene in relation to the

fraction of dropouts in the reference and alternative allele.
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