

1 **Title.**

2 *In vitro* activity of the new β -lactamase inhibitors relebactam and vaborbactam in combination
3 with β -lactams against *Mycobacterium abscessus* complex clinical isolates

4

5 **Authors and affiliations.** Amit Kaushik,^a Nicole C. Ammerman,^a Jin Lee,^a Olumide Martins,^a
6 Barry N. Kreiswirth,^b Gyanu Lamichhane,^a Nicole M. Parrish,^c Eric L. Nuermberger^a

7

8 ^aCenter for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore,
9 Maryland, USA

10 ^bPublic Health Research Institute Tuberculosis Center, New Jersey Medical School - Rutgers,
11 The State University of New Jersey, Newark, New Jersey, USA

12 ^cDepartment of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland,
13 USA

14

15 **Key words.** β -lactamase inhibitors, β -lactams, relebactam, vaborbactam, carbapenems,
16 cephalosporins, *Mycobacterium abscessus*

17

18 **Running title.** Relebactam/vaborbactam with β -lactams vs. *M. abscessus*

19 **Abstract**

20 Pulmonary disease due to infection with *Mycobacterium abscessus* complex (MABC) is
21 notoriously difficult to treat, in large part due to MABC's intrinsic resistance to most antibiotics,
22 including β -lactams. MABC organisms express a broad-spectrum β -lactamase that is resistant
23 to traditional β -lactam-based β -lactamase inhibitors but inhibited by a newer non- β -lactam-
24 based β -lactamase inhibitor, avibactam. Consequently, the susceptibility of MABC to some β -
25 lactams is increased in the presence of avibactam. Therefore, we hypothesized that two new
26 non- β -lactam-based β -lactamase inhibitors, relebactam and vaborbactam, would also increase
27 susceptibility of MABC to β -lactams. The objective of the present study was to evaluate the *in*
28 *vitro* activity of various marketed β -lactams alone and in combination with either relebactam or
29 vaborbactam against multidrug-resistant MABC clinical isolates. Our data demonstrate that both
30 β -lactamase inhibitors significantly improved the anti-MABC activity of many carbapenems
31 (including imipenem and meropenem) and cephalosporins (including cefepime, ceftaroline, and
32 cefuroxime). As a meropenem/vaborbactam combination is now marketed and an
33 imipenem/relebactam combination is currently in phase III trials, these fixed combinations may
34 become the β -lactams of choice for the treatment of MABC infections. Furthermore, given the
35 evolving interest in dual β -lactam regimens, our results identify select cephalosporins, such as
36 cefuroxime, with superior activity in the presence of a β -lactamase inhibitor, deserving of further
37 evaluation in combination with these carbapenem/ β -lactamase inhibitor products.

38 **Introduction**

39 *Mycobacterium abscessus* (or *M. abscessus* subsp. *abscessus*), *M. massiliense* (or *M.*
40 *abscessus* subsp. *massiliense*), and *M. bolletii* (or *M. abscessus* subsp. *bolletii*) comprise the *M.*
41 *abscessus* complex (MABC) (1). These rapidly-growing nontuberculous mycobacteria,
42 ubiquitous in the environment, are opportunistic human pathogens associated with a wide range
43 of maladies, from localized skin lesions to systemic disease. Individuals with cystic fibrosis and
44 other forms of bronchiectasis are especially vulnerable to MABC pulmonary disease, an
45 infection that is notoriously difficult to eradicate due in large part to MABC's broad, intrinsic
46 resistance to most antibiotics, including many anti-mycobacterial drugs (2-4). The paucity of
47 effective treatment regimens has recently gained attention as the prevalence of MABC
48 pulmonary disease is apparently increasing (5-7), justly highlighting the need for additional
49 treatment options.

50

51 Like several other pathogenic and nonpathogenic mycobacteria, MABC organisms possess a
52 constitutively expressed, broad-spectrum β -lactamase, Bla_{Mab} , which contributes to the intrinsic
53 resistance of MABC to most β -lactam antibiotics (8-12). Several studies have indicated that
54 Bla_{Mab} is not significantly inhibited by β -lactam-based β -lactamase inhibitors, namely
55 clavulanate, tazobactam, and sulbactam (9, 13-15). In contrast, the non- β -lactam-based
56 β -lactamase diazabicyclooctane (DBO) inhibitor avibactam does inhibit Bla_{Mab} , thereby reducing
57 the minimum inhibitory concentration (MIC) of many β -lactams for MABC, especially
58 carbapenems and cephalosporins, to clinically achievable concentrations (16-20). Avibactam is
59 marketed solely in combination with the cephalosporin ceftazidime (trade name AVYCAZ® in the
60 United States). However, ceftazidime has little or no demonstrable activity against MABC, even
61 in combination with avibactam and against *M. abscessus* strains in which the gene encoding
62 Bla_{Mab} has been entirely deleted (8, 9, 18). Thus, the current requirement to co-administer
63 ceftazidime in order to potentiate the activity of other more effective β -lactams with avibactam

64 complicates this treatment strategy for MABC infections, as ceftazidime might only incur risk of
65 adverse effects without perceived benefit.

66

67 Relebactam and vaborbactam are two newer non- β -lactam-based β -lactamase inhibitors
68 developed for use with the carbapenems imipenem and meropenem, respectively (21).
69 Whereas relebactam is a DBO β -lactamase inhibitor structurally related to avibactam,
70 vaborbactam is a novel boronic acid-based inhibitor. While neither of these β -lactamase
71 inhibitors are expected to be clinically available as sole formulations, both of the paired
72 carbapenems have activity against MABC. Imipenem alone has good activity and is currently
73 recommended as part of first-line treatments for MABC pulmonary disease (2, 3). Activity of
74 meropenem, while comparatively less than imipenem when used alone, is increased
75 comparable to that of imipenem in the presence of avibactam (8, 16, 18). As the
76 meropenem/vaborbactam combination is already clinically available (trade name VABOMERETM
77 in the United States), and the imipenem/cilastatin/relebactam combination is currently being
78 evaluated in multiple phase III clinical trials (ClinicalTrials.gov identifiers NCT02493764,
79 NCT03583333, NCT03293485, NCT02452047), we set out to assess the impact of these β -
80 lactamase inhibitors on the anti-MABC activity of a variety of β -lactam drugs. The objective of
81 this study was to evaluate the activity of β -lactams alone and in combination with either
82 relebactam or vaborbactam, against MABC, including multidrug-resistant (MDR) clinical
83 isolates.

84

85 **Results**

86 **Impact of culture medium on the *in vitro* growth of MABC clinical isolates**

87 Clinical and Laboratory Standards Institute (CLSI) guidelines recommend the use of cation-
88 adjusted Mueller-Hinton broth (CAMHB) for susceptibility testing of antimicrobials against
89 rapidly-growing mycobacteria, including MABC; for MIC determination, the guidelines state that

90 cultures should be examined after 3 days of incubation, to be extended up to 5 days if growth of
91 the non-drug-containing control sample is insufficient (22). Early in our work, we found that
92 MABC clinical isolates in our collection, isolates resistant to almost all antimicrobials currently
93 used to treat MABC infection (16), grow slowly in CAMHB, and that, on average, MIC values
94 could not be determined until nearly 5 days of incubation (**Fig. S1A**). Such a long incubation
95 period can be problematic when evaluating the activity of some β -lactams due to their innate
96 instability in aqueous media, independent of the presence of β -lactamase enzymes (8, 23-25),
97 which could potentially result in artificially high MIC values. The clinical strains grow better in
98 Middlebrook 7H9 broth supplemented with 10% (v/v) oleic acid-albumin-dextrose-catalase
99 (OADC) enrichment (**Fig. S1B**), a liquid laboratory medium for culturing mycobacteria (26-28).
100 Therefore, Middlebrook 7H9 liquid medium was primarily used in this study.

101

102 **Activity of β -lactams with relebactam or vaborbactam against *M. abscessus* ATCC 19977**

103 We first evaluated the impact of relebactam and vaborbactam on the activity of β -lactams
104 against a well-characterized MABC strain, *M. abscessus* ATCC 19977 (29). MICs of drugs
105 representing the four major sub-classes of β -lactams (carbapenems, cephalosporins,
106 monobactams, and penicillins) were determined in the presence and absence of relebactam or
107 vaborbactam at 4 μ g/ml (**Table 1**). Neither of these β -lactamase inhibitors exhibited
108 antimicrobial activity on their own. The MICs of relebactam alone and vaborbactam alone were
109 both >256 μ g/ml, and neither drug inhibited bacterial growth in a disk diffusion assay (**Fig. S2**).
110 As expected, without co-exposure to a β -lactamase inhibitor, the strain was able to grow in
111 relatively high concentrations of all β -lactams tested, with imipenem having the lowest MIC at
112 8 μ g/ml. Overall, the MICs of penicillins and the monobactam aztreonam were not affected by
113 either β -lactamase inhibitor, although the MIC of amoxicillin did shift from >256 μ g/ml to 32
114 μ g/ml in the presence of relebactam. In contrast, all carbapenems and more than half of the
115 cephalosporins tested exhibited decreased MICs in the presence of either relebactam or

116 vaborbactam. The magnitude of the MIC shift associated with each β -lactamase inhibitor was
117 similar for most of these β -lactams, but for two of the carbapenems (tebipenem and ertapenem)
118 and three of the cephalosporins (cefdinir, cefuroxime, and ceftaroline) the MICs associated with
119 relebactam were one dilution lower than that associated with vaborbactam. Similar activity was
120 also observed in a disk diffusion assay (**Fig. S2**).

121

122 **Activity of β -lactams with relebactam or vaborbactam against MABC clinical isolates**

123 The promising antimicrobial activity of the carbapenems and select cephalosporins, namely
124 cefdinir, cefpodoxime, cefuroxime, ceftazime, cefotaxime, cefoxitin, ceftaroline, and ceftriaxone,
125 in combination with either relebactam or vaborbactam against the ATCC 19977 strain prompted
126 us to evaluate the activity of these combinations against a collection of 28 MABC clinical
127 isolates with MDR phenotypes (16). The MICs of the carbapenems and cephalosporins against
128 each clinical isolate are presented in **Tables S1** and **S2**, respectively. With the exception of
129 cefoxitin, the MICs of each β -lactam decreased in the presence of either β -lactamase inhibitor
130 (**Table 2**). As observed with the ATCC 19977 strain, both β -lactamase inhibitors were mostly
131 associated with MIC shifts of similar magnitude, although the MIC₅₀, MIC₉₀, and MIC range limits
132 associated with relebactam were one or two dilutions lower than those associated with
133 vaborbactam for tebipenem, biapenem, and meropenem. For tebipenem, 25/28 (89%) isolates
134 has lower MIC values with relebactam compared to vaborbactam, and for biapenem and
135 meropenem, 14/28 (50%) and 10/28 (36%) of the isolates, respectively, had lower MICs with
136 relebactam compared to vaborbactam. For the carbapenems, the most striking shifts in MIC
137 distribution were observed with tebipenem and ertapenem (**Fig. 1A,B**), while the lowest MIC
138 values were obtained with imipenem, meropenem, biapenem, and doripenem (**Fig. 1C-F**). The
139 MIC₅₀ value for each of these carbapenems was 4-8 μ g/ml in the presence of either
140 β -lactamase inhibitor, suggesting that they have similar intrinsic activity in the absence of
141 hydrolysis by Bla_{Mab}. For the cephalosporins, the largest shifts in MIC distribution associated

142 with the β -lactamase inhibitors were observed for ceftaroline, ceftriaxone, and cefuroxime (**Fig.**
143 **2A-C**), while the shifts were comparatively smaller for cefotaxime and cefepime (**Fig. 2D,E**). The
144 MIC distribution of cefoxitin was not affected by the presence of either relebactam or
145 vaborbactam (**Fig. 2F**). The lowest MICs in association with a β -lactamase inhibitor were
146 observed with cefuroxime, cefepime, cefdinir, and ceftaroline.

147

148 For a selection of β -lactams, MIC values with and without the β -lactamase inhibitors were also
149 determined in CAMHB. For the ATCC 19977 strain, the MICs were determined after 3 days of
150 incubation, while the MICs for clinical isolates could not be determined before day 4 or 5 of
151 incubation (**Table S3**). For three of the clinical isolates (strains 2N, 11N, and JHHKB), adequate
152 growth for determining MIC values did not occur within 5 days. With the exception of imipenem
153 and cefdinir, the MIC_{50} values of the tested β -lactams were higher, both the presence and
154 absence of relebactam or vaborbactam (**Table S4**), relative to the MIC_{50} values determined in
155 Middlebrook 7H9 liquid medium (**Table 2**). The MIC values the ATCC 19977 strain also tended
156 to be higher in CAMHB (**Table S3**).

157

158 **Discussion**

159 This study demonstrates that certain β -lactams, namely carbapenems and cephalosporins,
160 exhibit improved activity against MABC in the presence of vaborbactam or relebactam, two new
161 non- β -lactam-based β -lactamase inhibitors. Vaborbactam and relebactam reduced the MIC_{50} ,
162 MIC_{90} , and MIC range limits of meropenem and imipenem, respectively, by one or two dilutions
163 in both 7H9 and CAMHB media. Since meropenem and imipenem MICs against MABC clinical
164 isolates commonly lie at or around the recommended susceptibility breakpoints, these
165 carbapenem/ β -lactamase inhibitor combinations can be expected to improve PK/PD target
166 attainment for the carbapenems and increase efficacy over either carbapenem alone. We
167 recently observed similar reductions of carbapenem MICs with avibactam against the same

168 clinical isolates (16). However, as avibactam is currently marketed only with ceftazidime, a
169 cephalosporin with poor intrinsic activity itself against MABC, the carbapenem/β-lactamase
170 inhibitor combinations studied here appear more advantageous by not requiring combination of
171 the carbapenem with ceftazidime/avibactam, which imposes the risk of ceftazidime-related side
172 effects in order to gain the value of Bla_{Mab} inhibition. Further confirmation of these results
173 against a larger number of clinical isolates might promote meropenem/vaborbactam or, pending
174 future regulatory approval, imipenem/relebactam to become the β-lactams of choice against
175 MABC infections.

176

177 The significant reductions in MIC values for carbapenems and cephalosporins against MABC in
178 the presence of vaborbactam and relebactam provide indirect evidence that both of these β-
179 lactamase inhibitors inhibit Bla_{Mab} , thus revealing the intrinsic antimicrobial activity of the paired
180 β-lactams against their transpeptidase targets in MABC (30). Although carbapenems clearly
181 have greater intrinsic potency than the cephalosporins against the MABC isolates tested here,
182 vaborbactam and relebactam, like avibactam previously (16), also significantly reduced the
183 MICs of a variety of marketed cephalosporins. A key question is whether these β-lactamase
184 inhibitors increase the susceptibility of MABC to the cephalosporins to levels that are clinically
185 relevant based on drug exposures that are achievable in patients.

186

187 One way to address this question is to compare the observed MICs in the context of CLSI
188 interpretive categories and MIC breakpoints set for the antimicrobial susceptibility testing of
189 these β-lactams (22, 31). Breakpoints for the interpretive categories of susceptible,
190 intermediate, and resistant are not based solely on the natural MIC distribution, but also on
191 microbiological and pharmacological data, and are “considered to be robust predictors of clinical
192 outcome” (31). Among the drugs tested in this study, recommended breakpoints for rapidly-
193 growing mycobacteria are currently only available for imipenem, meropenem, and cefoxitin

194 (Table S5), three β -lactams currently recommended for use for treatment of mycobacterial
195 infections and expected to reach active concentrations in patients (2, 3). However, CLSI-
196 recommended breakpoints for infections caused by other bacterial genera are available for all of
197 the cephalosporins tested in this study (31). Although these cephalosporin breakpoints should
198 not be used to predict susceptibility of MABC for clinical decision-making at this time, they can
199 be considered as surrogate indicators of potential susceptibility to drug exposures that are
200 achievable in patients. As previously observed for avibactam (16), vaborbactam and relebactam
201 did not significantly affect the MICs of cefoxitin (MIC_{50} 32 μ g/ml with or without either β -
202 lactamase inhibitor) against our isolates (Tables 1,2), further confirming cefoxitin's stability in
203 the presence of Bla_{Mab} (9), while also calling into question whether selected cephalosporins
204 could be superior to cefoxitin for treatment of MABC if combined with an effective β -lactamase
205 inhibitor. However, the addition of vaborbactam and/or relebactam decreased the MIC_{50} values
206 of cefotaxime, ceftriaxone, cefuroxime and cefepime for MABC to concentrations at or within
207 one dilution of the CLSI susceptible/intermediate breakpoints for these drugs against
208 *Enterobacteriaceae* or anaerobic bacteria (Table S5), thus indicating that MABC may be
209 susceptible to clinically achievable concentrations of these cephalosporins in the presence of
210 vaborbactam or relebactam. With MICs consistently one dilution lower than cefoxitin in the
211 presence of vaborbactam or relebactam, cefuroxime is particularly attractive given its narrower
212 spectrum of activity, longer half-life and lower plasma protein binding compared to cefoxitin.
213 Moreover, at a standard dose of 1.5 g every 8 hours, cefuroxime is expected to have higher
214 probability than cefoxitin at a dose of 2 g every 8 hours of achieving adequate $T_{>MIC}$ even when
215 MIC distributions for the two drugs are similar, as shown by Moine *et al.* (32). Further studies
216 are needed to determine whether cefuroxime or an alternative cephalosporin might have
217 superior efficacy compared to the currently recommended agent cefoxitin when combined with a
218 β -lactamase inhibitor.

219

220 Recent studies suggest that combining different classes of β -lactams against MABC (30, 33)
221 and other bacteria (34, 35) may be synergistic due to targeting a wider spectrum of enzymes
222 that appear to be uniquely relevant to synthesis of peptidoglycan in MABC (36, 37). For
223 example, Kumar *et al.* recently demonstrated synergy between doripenem and cefdinir against
224 MABC (30). Remarkably, despite its poor activity when tested alone or in combination with
225 avibactam, ceftazidime demonstrates synergy with either imipenem or ceftaroline against
226 MABC, whether avibactam is present or not (38). These studies suggest that a dual- β -lactam
227 combination may be superior to a single β -lactam for treatment of MABC pulmonary disease. In
228 this context, our finding that several marketed cephalosporins exhibit greater activity than
229 ceftazidime in the presence of vaborbactam and relebactam indicates that administering a
230 carbapenem/ β -lactamase inhibitor combination together with a more intrinsically active
231 cephalosporin, such as cefuroxime, may have superior activity compared to the same
232 carbapenem combined with ceftazidime/avibactam or another cephalosporin or the same
233 carbapenem/ β -lactamase inhibitor alone.

234

235 Another interesting finding of our study is that the MICs of the carbapenems and
236 cephalosporins, alone and in combination with relebactam or vaborbactam, against the ATCC
237 19977 strain were often similar to MICs against the MABC clinical isolates (**Tables S1, S2**). For
238 all of the 15 drugs tested, the MIC for the ATCC 19977 strain fell within one dilution of the MIC_{50}
239 for the clinical isolates (**Tables 1, 2**). Thus, the MDR clinical isolates, which were isolated from
240 patients with cystic fibrosis and therefore likely previously exposed to β -lactam drugs, were still
241 largely vulnerable to those cephalosporins and carbapenems with activity against MABC
242 transpeptidase targets. These findings also suggest that the widely used and well-characterized
243 *M. abscessus* strain ATCC 19977 (29) is a suitable model strain for the evaluation of β -lactam
244 activity, with or without β -lactamase inhibitors, and therefore can serve as a valuable tool for

245 studying the molecular mechanisms of intrinsic susceptibility and resistance of MABC to
246 β -lactams.
247
248 CLSI guidelines state that broth MIC testing of rapidly-growing mycobacteria, including MABC,
249 should be performed using CAMHB (22), but we found that our MABC clinical isolates grew
250 poorly in this medium, allowing MIC reading to be done after 4, 5, or even 6 days of incubation
251 (**Fig. S1, Table S3**). Due to concerns that the inherent instability of β -lactams may lead to
252 artificially high MIC values after such prolonged incubation periods (8, 23-28), we relied
253 primarily on Middlebrook 7H9 liquid medium for the broth MIC assays in this study. However, we
254 also evaluated a selection of carbapenems and cephalosporins in CAMHB, and found that, in
255 general, the MICs were indeed higher in CAMHB compared to Middlebrook 7H9 medium
256 (**Tables 2, S4**). We also observed that MICs against strain ATCC 19977, which grew
257 equivalently in either type of media, tended to be higher in CAMHB, indicating that media-
258 specific factors may influence the anti-MABC activity of β -lactams. There are other reports of
259 higher β -lactam MICs against strain ATCC 19977 in CAMHB compared to in Middlebrook 7H9
260 liquid medium (16, 18, 19). As CAMHB is recommended for use in clinical microbiology
261 laboratories for antimicrobial susceptibility testing of MABC isolates from patient samples, it will
262 be important to understand the basis of these apparent media-dependent discrepancies in
263 MABC susceptibility to β -lactams. Ultimately, the imperative is to understand which MICs in any
264 given medium correlate with *in vivo* activity. Preclinical animal models suitable for testing the
265 antimicrobial activity of β -lactams against MABC would be useful to address this issue, but the
266 absence of a well-qualified animal model is currently a critical missing link in our ability to
267 translate *in vitro* activity to clinical utility.
268
269 In conclusion, the data presented in this study demonstrate that the β -lactamase inhibitors
270 vaborbactam and relebactam markedly improve the anti-MABC activity of many carbapenems

271 and cephalosporins and should improve the clinical utility of some of these β -lactams. Each of
272 these β -lactamase inhibitors is currently formulated with a carbapenem: vaborbactam with
273 meropenem and relebactam with imipenem, and our data suggest that these fixed combinations
274 will be more useful for the treatment of MABC disease than either carbapenem alone, especially
275 in the case of meropenem. Moreover, the combinations of meropenem/vaborbactam and, if it is
276 approved in the future, imipenem/relebactam, would make it unnecessary to combine the
277 carbapenems with the marketed ceftazidime/avibactam combination in order to gain effective β -
278 lactamase inhibition. Hence, they may quickly become the preferred β -lactams for MABC lung
279 disease. Finally, given the burgeoning interest in combining β -lactams from different classes to
280 obtain synergistic effects against mycobacteria, our findings suggest several cephalosporins
281 whose potency is enhanced by Bla_{Mab} inhibition that are worthy of combining with a fixed
282 carbapenem/ β -lactamase inhibitor combination. Cefuroxime may be of particular interest given
283 its intrinsic potency and relatively narrow spectrum of activity. Future studies should examine
284 the efficacy of such dual β -lactam/ β -lactamase inhibitor combinations at clinically relevant
285 exposures in preclinical models of MABC infection.

286

287 MATERIALS AND METHODS

288 **Bacterial strains.** *M. abscessus* strain ATCC 19977 was purchased from the American Type
289 Culture Collection (Manassas, VA, USA) and maintained per the provider's instructions. The
290 MABC clinical isolates were obtained from the Johns Hopkins Hospital Clinical Microbiology
291 Laboratory as previously described (16) and were maintained in the laboratory similarly as the
292 ATCC 19977 strain. These isolates, from predominantly the sputum of patients with cystic
293 fibrosis, are resistant to most antimicrobials currently available for treatment of MABC lung
294 disease. Their drug resistance profiles were previously described (16).

295

296 **β-lactams and β-lactamase inhibitors.** Faropenem, tebipenem, and biapenem were
297 purchased from Octagon Chemicals Limited (Hangzhou, China). Doripenem hydrate, cefdinir,
298 cefoxitin sodium salt, ceftazidime hydrate, cloxacillin sodium salt monohydrate, dicloxacillin
299 sodium salt monohydrate, flucloxacillin, and oxacillin sodium salt were purchased from Sigma-
300 Aldrich (St. Louis, MO, USA). Ertapenem sodium salt, cefixime trihydrate, cefpodoxime free
301 acid, cefuroxime sodium salt, cephalexin monohydrate, cefazolin sodium salt, cefoperazone
302 sodium salt, cefotaxime sodium salt, ceftriaxone disodium salt hemi(heptahydrate), cephalothin
303 sodium salt, moxalactam sodium salt, aztreonam, and amoxicillin trihydrate were purchased
304 from Research Product International (Mount Prospect, IL, USA). Imipenem monohydrate,
305 meropenem trihydrate, and cefepime dihydrochloride monohydrate were purchased from
306 Carbosynth (San Diego, CA, USA). Ceftaroline was manufactured by Astra-Zeneca.
307 Vaborbactam was purchased from MedChem Express (Monmouth Junction, NJ, USA).
308 Relebactam was purchased from Advanced ChemBlocks, Inc. (Burlingame, CA, USA). The
309 purity of all compounds was >95%. Drug powders were stored at either 4°C or 20°C, per the
310 manufacturers' instructions to ensure stability. Drugs were dissolved in dimethyl sulfoxide or
311 deionized water, again per the manufacturers' instructions, on the day of use in MIC or disk
312 diffusion assays.

313

314 **Media.** Middlebrook 7H9 broth supplemented with 0.5% (v/v) glycerol, 10% (v/v) Middlebrook
315 OADC enrichment, and 0.05% (v/v) Tween 80, was used as the growth medium for all routine
316 culturing of MABC strains, including from frozen stocks. Two types of MIC assay media were
317 used in this study. 7H9 assay medium consisted of Middlebrook 7H9 broth supplemented with
318 0.5% (v/v) glycerol and 10% (v/v) Middlebrook OADC enrichment, without Tween 80; CAMHB
319 assay medium consisted only of Mueller-Hinton II broth powder. 7H11 agar supplemented with
320 0.5% (v/v) glycerol and 10% (v/v) Middlebrook OADC enrichment was used for disk diffusion
321 assays. Middlebrook 7H9 broth powder, Middlebrook OADC enrichment, 7H11 agar, and

322 CAMHB were purchased from Becton, Dickinson, and Co., (Hunt Valley, MD, USA). Glycerol
323 and Tween 80 were purchased from Thermo Fisher Scientific (Waltham, MA, USA).

324

325 **Growth curves.** MABC strains were grown from frozen stock in growth medium, shaking, at
326 37°C, until the cultures reached log-phase growth (optical density at 600 nm [OD₆₀₀] between
327 0.4 to 0.7). The bacterial suspensions were then adjusted to an OD₆₀₀ of 0.01 using 7H9 and
328 CAMHB MIC assay media, in a total volume of 15 mL in 50-mL polystyrene tubes. The cultures
329 were incubated without agitation at 30°C, and the OD₆₀₀ of each culture was measured after 2,
330 3, 5, and 7 days of incubation.

331

332 **MIC broth microdilution assays.** MIC assays were performed in 96-well, round-bottom plates.
333 MABC strains were grown from frozen stock in growth medium, shaking, at 37°C, until the
334 cultures reached log-phase growth. The bacterial suspensions were then adjusted to 1×10^5 to
335 5×10^5 colony forming units per milliliter in assay medium, and 100 μ L of this bacterial
336 suspension was added to each well, except for the no bacteria controls. Drug stock solutions
337 prepared from powder were diluted in assay medium to achieve the appropriate concentrations
338 in a final assay volume of 200 μ L. Vaborbactam and relebactam were used at a final
339 concentration of 4 μ g/ml (31, 39), a concentration readily achievable for both β -lactamase
340 inhibitors in human plasma (40, 41). Plates were sealed and incubated, undisturbed, at 30°C for
341 at least 72 hours or until there was sufficient growth in the drug-free bacterial growth control
342 wells (22). The MIC was defined as the lowest concentration of β -lactam that prevented growth
343 as observed by the naked eye. Two biological replicates of all MIC assays were performed.
344 MIC₅₀ and MIC₉₀ were defined as the MIC at which at least 50% and 90% of the clinical MABC
345 strains were inhibited, respectively.

346

347 **Disk diffusion assays.** MABC strain ATCC 19977 was grown from frozen stock to mid-log
348 phase in growth medium until mid-log phase (OD₆₀₀ at least 0.5). If necessary, bacterial
349 suspensions were adjusted to an OD₆₀₀ of 0.5, and 1 ml of the suspension was spread over
350 7H11 agar in a 100 mm-diameter petri dish. All drugs were prepared from powder in dimethyl
351 sulfoxide at 10 mg/ml, further diluted in Middlebrook 7H9 broth to 1 mg/ml, and the drug
352 solutions were applied to paper disks, 7 mm in diameter, which had been prepared from
353 Whatman qualitative filter paper, grade 1 (Sigma-Aldrich, St. Louis, MO, USA) and sterilized
354 prior to use. For the β -lactams, 20 μ l, delivering 20 μ g of drug, were applied to each disk. For
355 the β -lactamase inhibitors alone, either 20 or 4 μ l, delivering 20 or 4 μ g, respectively, were
356 applied to the disks. When used in combination with a β -lactam, 4 μ l, delivering 4 μ g of either
357 relebactam or vaborbactam were applied to the appropriate disks. The disks were then air-dried
358 and transferred using sterile forceps to the MABC-covered agar plates. The disks were pressed
359 lightly on the agar surface to ensure contact with the bacteria. Plates were sealed in plastic
360 bags and incubated for 4 days at 37°C.

361

362 **Acknowledgments**

363 This study was funded by the National Institutes of Health (R21-AI137814 to ELN).

364

365 **References**

- 366 1. Griffith DE, Brown-Elliott BA, Benwill JL, Wallace RJ,Jr. 2015. *Mycobacterium abscessus*.
367 "Pleased to meet you, hope you guess my name...". Ann Am Thorac Soc 12:436-439. doi:
368 10.1163/AnnalsATS.201501-0150I.
- 369 2. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM,
370 Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace
371 RJ,Jr, Winthrop K, ATS Mycobacterial Diseases Subcommittee, American Thoracic Society,
372 Infectious Disease Society of America. 2007. An official ATS/IDSA statement: diagnosis,

373 treatment, and prevention of nontuberculous mycobacterial diseases. *Am J Respir Crit Care*
374 *Med* 175:367-416. doi: 10.1164/rccm.200604-571ST.

375 3. Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurenson IF, Leitch A, Loebinger
376 MR, Milburn HJ, Nightingale M, Ormerod P, Shingadia D, Smith D, Whitehead N, Wilson R,
377 Floto RA. 2017. British Thoracic Society guidelines for the management of non-tuberculous
378 mycobacterial pulmonary disease (NTM-PD). *Thorax* 72 Suppl 2:ii1-ii64. doi:
379 10.1136/thoraxjnl-2017-210927.

380 4. Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, Noone PG, Bilton D,
381 Corris P, Gibson RL, Hempstead SE, Koetz K, Sabadosa KA, Sermet-Gaudelus I, Smyth
382 AR, van Ingen J, Wallace RJ, Winthrop KL, Marshall BC, Haworth CS, US Cystic Fibrosis
383 Foundation and European Cystic Fibrosis Society. 2016. US Cystic Fibrosis Foundation and
384 European Cystic Fibrosis Society consensus recommendations for the management of non-
385 tuberculous mycobacteria in individuals with cystic fibrosis. *Thorax* 71 Suppl 1:i1-22. doi:
386 10.1136/thoraxjnl-2015-207360.

387 5. Lee MR, Sheng WH, Hung CC, Yu CJ, Lee LN, Hsueh PR. 2015. *Mycobacterium*
388 *abscessus* complex infections in humans. *Emerg Infect Dis* 21:1638-1646. doi:
389 10.3201/2109.141634.

390 6. Adjemian J, Olivier KN, Prevots DR. 2018. Epidemiology of pulmonary nontuberculous
391 mycobacterial sputum positivity in patients with cystic fibrosis in the United States, 2010-
392 2014. *Ann Am Thorac Soc* 15:817-826. doi: 10.1513/AnnalsATS.201709-727OC.

393 7. Mougari F, Guglielmetti L, Raskine L, Sermet-Gaudelus I, Veziris N, Cambau E. 2016.
394 Infections caused by *Mycobacterium abscessus*: epidemiology, diagnostic tools and
395 treatment. *Expert Rev Anti Infect Ther* 14:1139-1154. doi:
396 10.1080/14787210.2016.1238304.

397 8. Rominski A, Schulthess B, Müller DM, Keller PM, Sander P. 2017. Effect of β -lactamase
398 production and β -lactam instability on MIC testing results for *Mycobacterium abscessus*. J
399 Antimicrob Chemother 72:3070-3078. doi: 10.1093/jac/dkx284.

400 9. Soroka D, Dubée V, Soulier-Escrihuela O, Cuinet G, Hugonnet JE, Gutmann L, Mainardi JL,
401 Arthur M. 2014. Characterization of broad-spectrum *Mycobacterium abscessus* class A β -
402 lactamase. J Antimicrob Chemother 69:691-696. doi: 10.1093/jac/dkt410.

403 10. Kwon HH, Tomioka H, Saito H. 1995. Distribution and characterization of β -lactamases of
404 mycobacteria and related organisms. Tuber Lung Dis 76:141-148. doi: 10.1016/0962-
405 8479(95)90557-X.

406 11. Fattorini L, Oliva B, Orefici G. 1986. Expression and some properties of β -lactamase from
407 *Mycobacterium fortuitum*. Drugs Exp Clin Res 12:973-977.

408 12. Zhang Y, Steingrube VA, Wallace RJ,Jr. 1992. β -Lactamase inhibitors and the inducibility of
409 the β -lactamase of *Mycobacterium tuberculosis*. Am Rev Respir Dis 145:657-660. doi:
410 10.1164/ajrccm/145.3.657.

411 13. Ramírez A, Ruggiero M, Aranaga C, Cataldi A, Gutkind G, de Waard JH, Araque M, Power
412 P. 2017. Biochemical characterization of β -lactamases from *Mycobacterium*
413 *abscessus* complex and genetic environment of the β -lactamase-encoding gene. Microb
414 Drug Resist 23:294-300. doi: 10.1089/mdr.2016.0047.

415 14. Kaushik A, Makkar N, Pandey P, Parrish N, Singh U, Lamichhane G. 2015. Carbapenems
416 and rifampin exhibit synergy against *Mycobacterium tuberculosis* and *Mycobacterium*
417 *abscessus*. Antimicrob Agents Chemother 59:6561-6567. doi: 10.1128/AAC.01158-15.

418 15. Soroka D, Ourghanian C, Compain F, Fichini M, Dubée V, Mainardi JL, Hugonnet JE,
419 Arthur M. 2017. Inhibition of β -lactamases of mycobacteria by avibactam and clavulanate. J
420 Antimicrob Chemother 72:1081-1088. doi: 10.1093/jac/dkw546.

421 16. Kaushik A, Gupta C, Fisher S, Story-Roller E, Galanis C, Parrish N, Lamichhane G. 2017.
422 Combinations of avibactam and carbapenems exhibit enhanced potencies against drug-

423 resistant *Mycobacterium abscessus*. Future Microbiol 12:473-480. doi: 10.2217/fmb-2016-
424 0234.

425 17. Lefebvre AL, Le Moigne V, Bernut A, Veckerlé C, Compain F, Herrmann JL, Kremer L,
426 Arthur M, Mainardi JL. 2017. Inhibition of the β -lactamase Bla_{Mab} by avibactam improves the
427 *in vitro* and *in vivo* efficacy of imipenem against *Mycobacterium abscessus*. Antimicrob
428 Agents Chemother 61:e02440-16. doi: 10.1128/AAC.02440-16.

429 18. Dubée V, Bernut A, Cortes M, Lesne T, Dorchene D, Lefebvre AL, Hugonnet JE, Gutmann
430 L, Mainardi JL, Herrmann JL, Gaillard JL, Kremer L, Arthur M. 2015. β -lactamase inhibition
431 by avibactam in *Mycobacterium abscessus*. J Antimicrob Chemother 70:1051-1058. doi:
432 10.1093/jac/dku510.

433 19. Dubée V, Soroka D, Cortes M, Lefebvre AL, Gutmann L, Hugonnet JE, Arthur M, Mainardi
434 JL. 2015. Impact of β -lactamase inhibition on the activity of ceftaroline against
435 *Mycobacterium tuberculosis* and *Mycobacterium abscessus*. Antimicrob Agents Chemother
436 59:2938-2941. doi: 10.1128/AAC.05080-14.

437 20. Lefebvre AL, Dubée V, Cortes M, Dorchêne D, Arthur M, Mainardi JL. 2016. Bactericidal and
438 intracellular activity of β -lactams against *Mycobacterium abscessus*. J Antimicrob
439 Chemother 71:1556-1563. doi: 10.1093/jac/dkw022.

440 21. Zhanell GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S, Zhanell M, Lagacé-Wiens
441 PRS, Walkty A, Denisuk A, Golden A, Gin AS, Hoban DJ, Lynch JP,3rd, Karlowsky JA.
442 2018. Imipenem-relebactam and meropenem-vaborbactam: Two novel carbapenem- β -
443 lactamase inhibitor combinations. Drugs 78:65-98. doi: 10.1007/s40265-017-0851-9.

444 22. Clinical and Laboratory Standards Institute (CLSI). 2011. Susceptibility testing of
445 mycobacteria, nocardiae, and other aerobic actinomycetes; Approved standard - Second
446 edition. CLSI document M24-A2. Vol. 31 No. 5. Clinical and Laboratory Standards Institute,
447 Wayne, PA, USA.

448 23. Viaene E, Chanteux H, Servais H, Mingeot-Leclercq MP, Tulkens PM. 2002. Comparative
449 stability studies of antipseudomonal β -lactams for potential administration through portable
450 elastomeric pumps (home therapy for cystic fibrosis patients) and motor-operated syringes
451 (intensive care units). *Antimicrob Agents Chemother* 46:2327-2332. doi:
452 10.1128/AAC.46.8.2327-2332.2002.

453 24. Lemaire S, Van Bambeke F, Mingeot-Leclercq MP, Tulkens PM. 2005. Activity of three β -
454 lactams (ertapenem, meropenem and ampicillin) against intraphagocytic *Listeria*
455 *monocytogenes* and *Staphylococcus aureus*. *J Antimicrob Chemother* 55:897-904. doi:
456 10.1093/jac/dki094.

457 25. Srivastava S, van Rijn SP, Wessels AM, Alffenaar JW, Gumbo T. 2016. Susceptibility testing
458 of antibiotics that degrade faster than the doubling time of slow-growing mycobacteria:
459 Ertapenem sterilizing effect versus *Mycobacterium tuberculosis*. *Antimicrob Agents*
460 *Chemother* 60:3193-3195. doi: 10.1128/AAC.02924-15.

461 26. Cortes MA, Nessar R, Singh AK. 2010. Laboratory maintenance of *Mycobacterium*
462 *abscessus*. *Curr Protoc Microbiol Chapter 10:Unit 10D.1.* doi:
463 10.1002/9780471729259.mc10d01s18.

464 27. BD Diagnostics - Diagnostic Systems. 2009. Difco & BBL Manual. *Manual of Microbiological*
465 *Culture Media*. Becton, Dickinson and Company, Sparks, MD, USA.
466 <https://www.bd.com/resource.aspx?IDX=9572>.

467 28. Larsen MH, Biermann K, Jacobs WR,Jr. 2007. Laboratory maintenance of *Mycobacterium*
468 *tuberculosis*. *Curr Protoc Microbiol Chapter 10:Unit 10A.1.* doi:
469 10.1002/9780471729259.mc10a01s6.

470 29. Ripoll F, Pasek S, Schenowitz C, Dossat C, Barbe V, Rottman M, Macheras E, Heym B,
471 Herrmann JL, Daffé M, Brosch R, Risler JL, Gaillard JL. 2009. Non mycobacterial virulence
472 genes in the genome of the emerging pathogen *Mycobacterium abscessus*. *PLoS One*
473 4:e5660. doi: 10.1371/journal.pone.0005660.

474 30. Kumar P, Chauhan V, Silva JRA, Lameira J, d'Andrea FB, Li SG, Ginell SL, Freundlich JS,
475 Alves CN, Bailey S, Cohen KA, Lamichhane G. 2017. *Mycobacterium abscessus* L,D-
476 transpeptidases are susceptible to inactivation by carbapenems and cephalosporins but not
477 penicillins. *Antimicrob Agents Chemother* 61:e00866-17. doi: 10.1128/AAC.00866-17.

478 31. Clinical and Laboratory Standards Institute (CLSI). 2017. Performance standards for
479 antimicrobial susceptibility testing, M100, 27th edition. Clinical and Laboratory Standards
480 Institute, Wayne, PA, USA.

481 32. Moine P, Fish DN. 2013. Pharmacodynamic modelling of intravenous antibiotic prophylaxis
482 in elective colorectal surgery. *Int J Antimicrob Agents* 41:167-173. doi:
483 10.1016/j.ijantimicag.2012.09.017.

484 33. Story-Roller E, Lamichhane G. 2018. Overcoming β -lactam resistance in *Mycobacterium*
485 *abscessus*. Abstract 803, IDWeek 2018 conference, 2-6 October 2018, San Francisco,
486 California, USA. <https://idsa.confex.com/idsa/2018/webprogram/start.html>.

487 34. Beganovic M, Luther MK, Rice LB, Arias CA, Rybak MJ, LaPlante KL. 2018. A review of
488 combination antimicrobial therapy for *Enterococcus faecalis* bloodstream infections and
489 infective endocarditis. *Clin Infect Dis* 67:303-309. doi: 10.1093/cid/ciy064.

490 35. Gonzalo X, Drobniowski F. 2013. Is there a place for β -lactams in the treatment of multidrug-
491 resistant/extensively drug-resistant tuberculosis? Synergy between meropenem and
492 amoxicillin/clavulanate. *J Antimicrob Chemother* 68:366-369. doi: 10.1093/jac/dks395.

493 36. Story-Roller E, Maggioncalda EC, Cohen KA, Lamichhane G. 2018. *Mycobacterium*
494 *abscessus* and β -lactams: Emerging insights and potential opportunities. *Front Microbiol*
495 9:2273. doi: 10.3389/fmicb.2018.02273.

496 37. Lavollay M, Fourgeaud M, Herrmann JL, Dubost L, Marie A, Gutmann L, Arthur M, Mainardi
497 JL. 2011. The peptidoglycan of *Mycobacterium abscessus* is predominantly cross-linked by
498 L,D-transpeptidases. *J Bacteriol* 193:778-782. doi: 10.1128/JB.00606-10.

499 38. Pandey R, Chen L, Shashkina E, Manca C, Bonomo RA, Jenkins SG, Kreiswirth BN. 2017.

500 Evaluation of ceftaroline-avibactam activity *in vitro* and *ex vivo* against *Mycobacterium*

501 *abscessus* complex. Abstract 2276, IDWeek 2017 conference, 4-8 October 2017, San

502 Diego, California, USA. <https://idsa.confex.com/idsa/2017/webprogram/start.html>.

503 39. Lomovskaya O, Sun D, Rubio-Aparicio D, Nelson K, Tsivkovski R, Griffith DC, Dudley MN.

504 2017. Vaborbactam: Spectrum of β -lactamase inhibition and impact of resistance

505 mechanisms on activity in *Enterobacteriaceae*. *Antimicrob Agents Chemother* 61:e01443-

506 17. doi: 10.1128/AAC.01443-17.

507 40. Rhee EG, Rizk ML, Calder N, Nefliu M, Warrington SJ, Schwartz MS, Mangin E, Boundy K,

508 Bhagunde P, Colon-Gonzalez F, Jumes P, Liu Y, Butterton JR. 2018. Pharmacokinetics,

509 safety, and tolerability of single and multiple doses of relebactam, a β -lactamase inhibitor, in

510 combination with imipenem and cilastatin in healthy participants. *Antimicrob Agents*

511 *Chemother* 62:10.1128/AAC.00280-18. Print 2018 Sep. doi: 10.1128/AAC.00280-18.

512 41. Griffith DC, Loutit JS, Morgan EE, Durso S, Dudley MN. 2016. Phase 1 study of the safety,

513 tolerability, and pharmacokinetics of the β -lactamase inhibitor vaborbactam (RPX7009) in

514 healthy adult subjects. *Antimicrob Agents Chemother* 60:6326-6332. doi:

515 10.1128/AAC.00568-16.

TABLE 1 MIC values of β -lactams with and without β -lactamase inhibitors^a against *M. abscessus* strain ATCC 19977

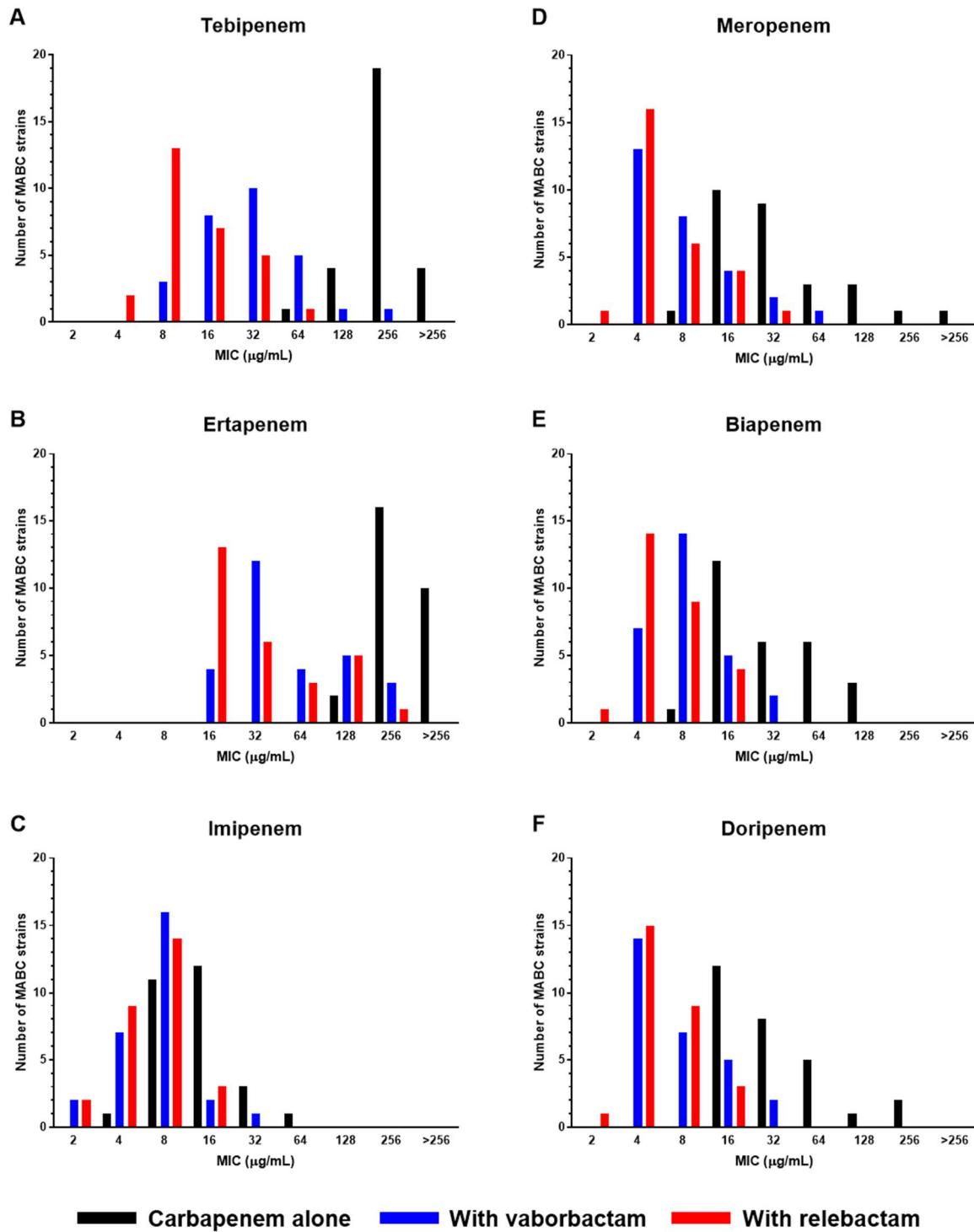
β -lactam tested	MIC (μ g/ml) in 7H9 media ^b		
	Alone	With relebactam	With vaborbactam
Oral (carba)penems			
Faropenem	128	32	32
Tebipenem	256	8	16
Parenteral carbapenems			
Biapenem	16	4	4
Doripenem	16	4	4
Ertapenem	>256	16	32
Imipenem	8	4	4
Meropenem	16	4	4
Oral cephalosporins			
Cefdinir	64	16	32
Cefixime	>256	256	256
Cefpodoxime	>256	64	64
Cefuroxime ^c	256	16	32
Cephalexin	>256	256	256
Parenteral cephalosporins			
Cefazolin	>256	>256	>256
Cefepime	32	16	16
Cefoperazone	>256	>256	>256
Cefotaxime	256	64	64
Cefoxitin	32	32	32
Ceftaroline	>256	16	32
Ceftazidime	>256	>256	>256
Ceftriaxone	>256	64	64
Cephalothin	>256	>256	>256
Moxalactam	256	128	128
Monobactam			
Aztreonam	>256	>256	>256
Penicillins			
Amoxicillin	>256	32	>256
Cloxacillin	>256	>256	>256
Dicloxacillin	>256	>256	>256
Flucloxacillin	>256	>256	>256
Oxacillin	>256	>256	>256

^a Relebactam and vaborbactam were each used at a fixed concentration of 4 μ g/ml.

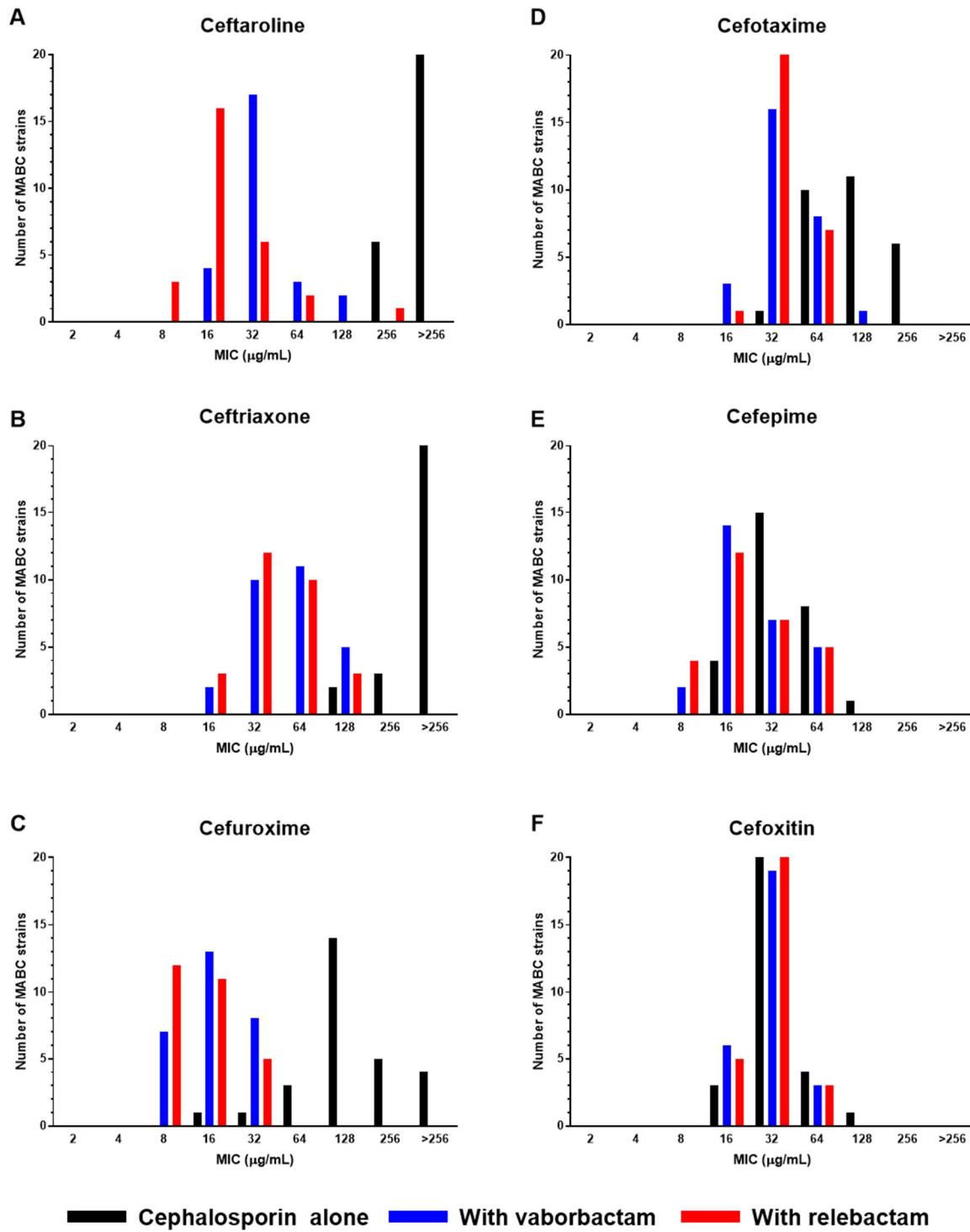
^b Assay medium was Middlebrook 7H9 broth supplemented with 0.5% (v/v) glycerol and 10% (v/v) Middlebrook OADC enrichment; MIC values were determined after 72 hours of incubation at 30°C.

^c Cefuroxime is available in both oral and parenteral formulations.

TABLE 2 MIC values of β -lactams with and without β -lactamase inhibitors^a against 28 MDR MABC clinical isolates


β -lactam tested	MICs (μ g/mL) in 7H9 media ^b for MABC clinical isolates ^c								
	Alone			With relebactam			With vaborbactam		
	Range	MIC ₅₀	MIC ₉₀	Range	MIC ₅₀	MIC ₉₀	Range	MIC ₅₀	MIC ₉₀
Oral (carba)penems									
Faropenem	64 - >256	128	256	16 – 64	32	64	16 – 64	32	64
Tebipenem	64 - >256	256	>256	4 – 64	8	32	8 – 256	32	64
PARENTERAL carbapenems									
Biapenem	8 - 128	32	128	2 – 16	4	16	4 – 32	8	16
Doripenem	16 - 256	32	128	2 – 16	4	16	4 – 32	4	16
Ertapenem	128 - >256	256	>256	16 – 256	32	128	16 – 256	32	256
Imipenem	4 – 64	16	32	2 – 16	8	16	2 – 32	8	16
Meropenem	8 - >256	32	128	2 – 32	4	16	4 – 64	8	32
Oral cephalosporins									
Cefdinir	32 - 256	64	128	8 – 64	16	64	8 – 128	16	64
Cefpodoxime	64 - >256	256	>256	32 – 128	64	64	32 – 128	64	128
Cefuroxime ^d	16 - >256	128	>256	8 – 32	16	32	8 – 32	16	32
PARENTERAL cephalosporins									
Cefepime	16 – 128	32	64	8 – 64	16	64	8 – 64	16	64
Cefotaxime	32 – 256	128	256	16 – 64	32	64	16 – 128	32	64
Cefoxitin	16 – 128	32	64	16 – 64	32	64	16 – 64	32	64
Ceftaroline	256 - >256	>256	>256	8 – 256	16	64	8 – 128	32	64
Ceftriaxone	128 - >256	>256	>256	16 – 128	32	128	16 – 128	64	128

^a Relebactam and vaborbactam were each used at a fixed concentration of 4 μ g/ml.


^b Assay medium was Middlebrook 7H9 broth supplemented with 0.5% (v/v) glycerol and 10% (v/v) Middlebrook OADC enrichment; MIC values were determined after 72 hours of incubation at 30°C.

^c MIC values for each strain are provided in **Table S1** (carbapenems) and **Table S2** (cephalosporins).

^d Cefuroxime is available in both oral and parenteral formulations.

FIG. 1 MIC distributions of carbapenems, alone and in combination with 4 $\mu\text{g/ml}$ relebactam or vaborbactam, against 28 MABC clinical isolates.

FIG. 2 MIC distributions of cephalosporins, alone and in combination with 4 $\mu\text{g/ml}$ relebactam or vaborbactam, against 28 MABC clinical isolates.