

1 **Bacterial analogs of plant piperidine alkaloids mediate microbial interactions in a
2 rhizosphere model system**

3

4 Gabriel L. Lozano^{1,2}, Hyun Bong Park^{3,4}, Juan I. Bravo^{1,2}, Eric A. Armstrong⁵, John M. Denu⁵,
5 Eric V. Stabb⁶, Nichole A. Broderick⁷, Jason M. Crawford^{3,4,8*}, Jo Handelsman^{1,2*}

6

7 ¹Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-
8 Madison

9 ²Department of Molecular, Cellular and Developmental Biology, Yale University

10 ³Department of Chemistry, Yale University

11 ⁴Chemical Biology Institute, Yale University

12 ⁵Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of
13 Wisconsin-Madison

14 ⁶Department of Microbiology, University of Georgia

15 ⁷Department of Molecular and Cell Biology, University of Connecticut

16 ⁸Department of Microbial Pathogenesis, Yale School of Medicine

17

18 * Co-correspondence: jason.crawford@yale.edu, jo.handelsman@wisc.edu

19

20

21

22

23

24 **ABSTRACT**

25 Plants expend significant resources to select and maintain rhizosphere communities that
26 benefit their growth and protect them from pathogens. A better understanding of assembly and
27 function of rhizosphere microbial communities will provide new avenues for improving crop
28 production. Secretion of antibiotics is one means by which bacteria interact with neighboring
29 microbes and sometimes change community composition. In our analysis of a taxonomically
30 diverse consortium from the soybean rhizosphere, we found that *Pseudomonas koreensis*
31 selectively inhibits growth of *Flavobacterium johnsoniae* and other members of the
32 Bacteroidetes grown in soybean root exudate. A genetic screen in *P. koreensis* identified a
33 previously uncharacterized biosynthetic gene cluster responsible for the inhibitory activity. The
34 metabolites were isolated based on biological activity and were characterized using tandem-mass
35 spectrometry, multidimensional NMR, and Mosher ester analysis, leading to the discovery of a
36 new family of bacterial piperidine alkaloids, koreenceine A-D (1-4). Three of these metabolites
37 are analogs of the plant alkaloid γ -coniceine. Comparative analysis of the koreenceine cluster
38 with the γ -coniceine pathway revealed distinct polyketide synthase (PKS) routes to the defining
39 piperidine scaffold, suggesting convergent evolution. Koreenceine-type pathways are widely
40 distributed among *Pseudomonas* species, and koreenceine C was detected in another
41 *Pseudomonas* sp. from a distantly related cluster. This work suggests that *Pseudomonas* and
42 plants convergently evolved the ability to produce similar alkaloid metabolites that can mediate
43 inter-bacterial competition in the rhizosphere.

44

45

46

47 **IMPORTANCE**

48 The microbiomes of plants are critical to host physiology and development. Microbes are
49 attracted to the rhizosphere due to massive secretion of plant photosynthates from roots.
50 Microorganisms that successfully join the rhizosphere community from bulk soil have access to
51 more abundant and diverse molecules, producing a highly competitive and selective
52 environment. In the rhizosphere, as in other microbiomes, there is little known about the genetic
53 basis for individual species' behaviors within the community. In this study, we characterized
54 competition between *Pseudomonas koreensis* and *Flavobacterium johnsoniae*, two common
55 rhizosphere inhabitants. We identified a widespread gene cluster in several *Pseudomonas* spp.,
56 which is necessary for the production of a novel family of piperidine alkaloids that are structural
57 analogs of plant alkaloids. We expand the known repertoire of antibiotics produced from
58 *Pseudomonas* in the rhizosphere and demonstrate the role of the metabolites in interactions with
59 other bacteria of the rhizosphere.

60

61 **KEYWORDS**

62 *Flavobacterium johnsoniae*, *Pseudomonas koreensis*, antibiotics, bacterial competition,
63 convergent evolution

64

65 INTRODUCTION

66 Plants were long thought to be defined by their genes and environments. It has recently
67 become apparent that plants are also shaped by their microbiomes — the communities of
68 microorganisms that live on, around, and inside them (1). Microbiomes modify many
69 environments, including humans, animals, oceans, soils, and hot springs. Comprehensive
70 investigations of the interactions between microbiomes and their environments, as well as the
71 interactions within microbiomes that contribute to their function and stability, are important to
72 understand diverse niches on Earth, including those associated with plants.

73 The rhizosphere comprises plant root surfaces and their surrounding soil
74 microenvironments. Bacteria are attracted to this environments by the massive amount of plant
75 photosynthate, in the form of sugars, organic acids, and amino acids, which is secreted from
76 roots (2). Bacteria that colonize the rhizosphere play an essential role in plant growth, and
77 resistance to pathogens. For example, some members secrete plant-like hormones, such as indole
78 acetic acid, gibberellic acid, cytokinin and abscisic acid, that promote plant growth (3), whereas
79 others suppress plant diseases by secreting diverse compounds such as zwittermicin A, 2,4-
80 diacetylphloroglucinol, and pyoluteorin (4). Thus, bacterial rhizosphere communities represent a
81 rich reservoir of bioactive metabolites.

82 Use of bacteria for biological control of plant disease has been pursued for decades, but
83 foreign microorganisms typically do not persist in native rhizosphere communities (5). Nutrient
84 abundance, host availability, and microbial interactions define indigenous microbial community
85 structures and limit colonization by invading bacteria. To engineer plant microbiomes to improve
86 agricultural systems, a better understanding of the inter-bacterial interactions that dominate the
87 rhizosphere is needed.

88 We developed *the hitchhikers of the rhizosphere* (THOR), a model system to examine the
89 molecular interactions among core bacterial members of the rhizosphere (6). This model system
90 is composed of *Bacillus cereus*, *Flavobacterium johnsoniae*, and *Pseudomonas koreensis*, which
91 belong to three dominant phyla within the rhizosphere — Firmicutes, Bacteroidetes, and
92 Proteobacteria, respectively. The three members display both competitive and cooperative
93 interactions. For example, *P. koreensis* inhibits growth of *F. johnsoniae*, but not in the presence
94 of *B. cereus*. Inhibition was only observed when bacteria were grown in soybean root exudate
95 and is specific for Bacteroidetes, since this phylum was the only one inhibited by *P. koreensis*
96 from a collection of taxonomically diverse rhizosphere bacteria (6). In this study, we
97 characterized the genetic and molecular mechanisms by which *P. koreensis* inhibits *F.*
98 *johnsoniae*. We determined that a new family of bacterial piperidine alkaloids designated
99 koreenceine A-D (1-4) are produced by an orphan polyketide synthase (PKS) pathway and
100 mediate inhibition of members of the Bacteroidetes. Koreenceines A, B and C are structural
101 analogs of the piperidine alkaloid γ -coniceine, produced by plants, and comparisons of the plant
102 and bacterial biosynthetic pathways support a convergent evolutionary model.

103

104 **RESULTS**

105 **Identification of an orphan *P. koreensis* pathway that is responsible for inhibiting growth** 106 **of *F. johnsoniae*.**

107 To identify the genes required for inhibition of *F. johnsoniae* by *P. koreensis* in root
108 exudate, we screened 2,500 *P. koreensis* transposon mutants and identified sixteen that did not
109 inhibit *F. johnsoniae* (Table 1). Two of these mutants mapped to an uncharacterized polyketide
110 biosynthetic cluster containing 11 genes (Fig. 1). We deleted the entire gene cluster ($\Delta kecA$ -

111 *kecF::tet*), which abolished inhibitory activity against *F. johnsoniae* and other members of the
112 Bacteroidetes (Fig. S1). We designed this pathway as an orphan pathway since the encoded
113 natural product is unknown.

114 We developed a defined medium in which *P. koreensis* simulated the gene cluster-
115 dependent inhibitory activity against *F. johnsoniae* that was observed in root exudate (Fig. S2A).
116 Since we identified two independent mutants in the gene encoding a sensor histidine kinase,
117 *cbrA*, that was required for activity in root exudate (Table 1), we developed a defined medium
118 with the goal of activating the CbrAB system (7), which controls the utilization of alternative
119 carbon sources such as amino acids (8). Adding to defined medium the same mix of the amino
120 acids that was used to supplement root exudate induced *P. koreensis* to produce inhibitory
121 activity in the defined media (Fig. S2A). We tested 19 different individual amino acids, and
122 identified five, including aspartate, that induce inhibition of *F. johnsoniae* by *P. koreensis* (Fig.
123 S2B). A non-hydrolysable analog of aspartate, *N*-methyl-DL-aspartate (Asp*), did not stimulate
124 inhibitory activity, suggesting that catabolism of certain amino acids is required for activity (Fig.
125 S2B).

126

127 **Characterization of koreenceine metabolites from the orphan *P. koreensis* pathway.**

128 To characterize the inhibitory metabolites from the orphan *P. koreensis* pathway, we
129 compared the metabolomes of the wild-type strain and the non-inhibitory mutant grown in root
130 exudate. High-performance liquid chromatography/mass spectrometry (HPLC/MS)-based
131 analysis of the crude organic extracts led to the identification of peaks 1-4 that were completely
132 abolished in the mutant (Fig. 2). We carried out bioassay-guided preparative-scale HPLC
133 fractionation of the crude organic extract from a culture (5 L) of the wild-type *P. koreensis*

134 grown in defined medium. Peaks **1**, **2** and **4** were detected in fractions with antimicrobial activity
135 against *F. johnsoniae*. High-resolution electrospray ionization-quadrupole-time-of-flight MS
136 (HRESIQTOFMS) data of **1-4** revealed *m/z* 208.2067, 210.2224, 226.2171, and 278.1885,
137 allowing us to calculate their molecular formulas as C₁₄H₂₆N, C₁₄H₂₈N, C₁₄H₂₇NO, and
138 C₁₄H₂₉ClNO₂, respectively (Fig. 2, Fig. S3). We then proceeded with mass-directed isolation of
139 these metabolites from a larger-scale culture in defined medium (12 L) of wild-type *P. koreensis*
140 for NMR-based structural characterization.

141 The chemical structures of **1-4** were characterized through ¹H, 2D-NMR (gCOSY,
142 gHSQC, and gHMBC), tandem MS, and Mosher ester analysis (Fig. 3, Fig. S3-7). Briefly, ¹H
143 NMR spectra combined with gHSQC of **2** revealed the presence of six methylene groups
144 including one downfield-shifted signal, six additional methylene, and one methyl group.
145 Consecutive COSY cross-peaks from a triplet methyl H-15 (δ_H 1.86) to a methylene H-7 (δ_H
146 2.53) established a partial structure of a nonane-like hydrocarbon chain. Additional COSY
147 correlations from a downfield-shifted methylene H-2 (δ_H 3.53) to a methylene H-5 (δ_H 2.72)
148 also constructed a shorter 4×CH₂ chain. Key HMBC correlations from H-2, H-4 and H-7 to C-6
149 allowed us to construct the piperidine core in **2**. In contrast, the ¹H NMR spectrum of **4** showed
150 the presence of a hydroxyl methine H-3 (δ_H 3.94), which was evident by COSY correlations
151 with both methylene H-2 and H-4. The connectivity between H-1' (δ_H 3.20) and H-4' (δ_H 3.59)
152 was established by additional COSY correlations, which was further supported to be a 4-
153 chlorobutanamine-like partial structure by the presence of a mono-chlorine isotope distribution

154 pattern in the HRESIQTofMS data. HMBC correlations from H-2 and H-1' to an amide carbon
155 C-1 unambiguously constructed the chemical structure of **4** to be *N*-(4-chlorobutyl)-3-
156 hydroxydecanamide. Modified Mosher's reaction on the secondary alcohol at C-3 determined the
157 absolute configuration of C-3 to be *R*, completing the absolute structure of **4**. The structure of
158 metabolite **1**, an analog of **2**, was elucidated based on the ^1H and COSY NMR data that indicate
159 the position of a *trans*-double bond between H-7 and H-8. Finally, the chemical structure of **3**
160 was deduced by comparative high-resolution tandem MS analyses with the closely related
161 metabolites **1** and **2**.

162

163 **Koreenceine structure-activity analysis.**

164 We estimated the minimal inhibitory concentration (MIC) values of koreenceine B (**2**)
165 and D (**4**), as $200 \mu\text{g mL}^{-1}$ for both metabolites against *F. johnsoniae*. We predicted that
166 koreenceine D does not have a major role in the inhibitory activity, since koreenceine D (**4**) is
167 present in root exudate cultures at levels 100-times less than koreenceine A (**1**), B (**2**), and C (**3**)
168 (Fig. 2). We could not estimate an MIC for koreenceine A, as its levels diminish during the
169 purification process. We synthesized koreenceine A and observed similar decomposition during
170 purification (data not shown). Thus, we tested a semi-purified fraction of koreenceine B with a
171 trace of koreenceine A, which had a stronger inhibitory effect than koreenceine B alone, (MIC
172 $40 \mu\text{g mL}^{-1}$). The significant increase in activity associated with trace amounts of koreenceine A
173 suggests that this molecule is the major inhibitory molecule against *F. johnsoniae* in the THOR
174 rhizosphere model or is synergistic with koreenceine B.

175

176 **Proposed biosynthesis of koreenceine metabolites.**

177 The defining piperidine core of koreenceine metabolites A-C is observed in plant
178 alkaloids such as γ -coniceine, a well characterized alkaloid from poison hemlock (*Conium*
179 *maculatum*) (9). We analyzed the putative activities of the genes in the koreenceine biosynthetic
180 cluster and identified genes with predicted or previously identified enzymatic activities needed
181 for the production of γ -coniceine in plants (10-13) (Fig. 1, Fig. 4). We propose the following
182 biosynthetic pathway of koreenceine A to C. The first five genes of the cluster, *kecABCDE*,
183 encode a type II polyketide synthase system: *kecA* encodes an acyl carrier protein (ACP); *kecB*
184 and *kecD* encode β -ketoacyl synthases (KSc α); and *kecC* and *kecE* encode partial β -ketoacyl
185 synthases with conserved thiolase domains (Chain-Length Factor-CLF or KSc β). This cluster may
186 encode production machinery for two-heterodimer systems, KecB-KecC and KecD-KecE, for
187 polyketide elongation over KecA, and might participate in the formation of a triketide
188 intermediate derived from the condensation of two malonyl units and a decanoyl-, 3-hydroxy-
189 decanoyl-, or a *trans*-2-decenoyl- unit. β -keto reductive modifications could be catalyzed by
190 KecG and KecH reductases (Figure 4). Aminotransferase KecF is predicted to catalyze
191 transamination of the aldehyde intermediate facilitating piperidine cyclization. KecF appears to
192 be a multidomain protein with a predicted aminotransferase at the *N*-terminus and a general
193 NAD(P)-binding domain (IPR036291) and a conserved protein domain COG5322 at the *C*-
194 terminus. Interestingly, long-chain fatty acyl-ACP reductases from Cyanobacteria share these
195 features and generate fatty aldehydes from the reduction of fatty acid intermediates bound to
196 ACP (14). We predict that KecF reduces the ACP-polyketide intermediate to a polyketide
197 aldehyde with the *C*-terminal domain, followed by transamination by the *N*-terminal domain.
198 Finally, the amine intermediate could undergo a non-enzymatic cyclization as observed in γ -

199 coniceine (12). We predict that koreenceine D is derived from koreenceine C by an unidentified
200 halogenase reaction, as analogous metabolite sets have been detected in plants (Fig. S8) (15).
201 The last three genes, *kecIJK*, may participate in the translocation of the koreenceine alkaloids
202 outside of the cell. KecI and KecJ are hypothetical proteins predicted to localize in the membrane
203 and KecK has homology with membrane-bound drug transporters.

204

205 **Convergent evolution of pathways for production of γ -coniceine-like alkaloids in plants and**
206 ***P. koreensis*.**

207 The biosynthetic pathway for production of γ -coniceine is still under investigation, but
208 ^{14}C -feeding experiments in *C. maculatum* coupled with chemical degradation of the labeled
209 products suggest that γ -coniceine is not derived from an amino acid as are other plant alkaloids,
210 but rather it is derived from a polyketide chain produced by the condensation of acetate units
211 (10). Type III polyketide synthases common in plants are iterative homodimers that orchestrate
212 the acyl-CoA mediated priming, extension, and cyclization reactions for polyketide products
213 without the use of acyl carrier proteins (16). Recently, Hotti et al. found CPKS5, a non-chalcone
214 synthase/stilbene synthase (CHS/STS)-type III polyketide synthase expressed in tissues that
215 contain γ -coniceine (Fig. 4) (11). The pathway that we identified in *P. koreensis* predicted two
216 type II PKSs are involved in production of the polyketide intermediate (Fig. 1). Although the
217 pathway that we identified in *P. koreensis* produces compounds related to the plant alkaloids, the
218 PKSs from the plant and bacterial kingdoms share little similarity. We propose that convergent
219 evolution led to two different polyketide pathways for the production of γ -coniceine-like
220 metabolites in plants and bacteria.

221

222 **Distribution of the koreenceine cluster.**

223 Similar koreenceine-like clusters have previously been identified by functional screens
224 for antimicrobial activities (17, 18); however, there are no reports of the metabolites produced.
225 We identified 179 koreenceine-like clusters in genomes in NCBI (June 2018). The majority of
226 these clusters are in *Pseudomonas* genomes, although we found some partial clusters lacking
227 *kecIJK* in *Xenorhabdus* and *Streptomyces* spp. genomes (Fig. 5A). We used maximum-likelihood
228 analysis of the amino acid sequence of the aminotransferase-reductase protein, KecF, as a
229 representative of the koreenceine cluster for phylogenetic reconstruction. We observed four main
230 clades that are each associated with a bacterial genus (Fig. 5A). Clades A and B, which contain
231 93% of the clusters, are found in *Pseudomonas* genomes. The koreenceine gene cluster identified
232 in *P. koreensis* in this study belongs to Clade A; other Clade A clusters are located in the same
233 genomic context in *P. koreensis* and *P. mandelii*, two closely related species in the *P. fluorescens*
234 complex (19) (Fig. 5B). Clades C and D were found in *Streptomyces* and *Xenorhabdus* spp.,
235 respectively.

236 Clade A and the *P. koreensis* and *P. mandelii* genomes are phylogenetically parallel (Fig.
237 5C). We hypothesize that the gene cluster was acquired before *Pseudomonas fluorescens*
238 complex diversification from a common ancestor of *P. koreensis* and *P. mandelii* and maintained
239 in these *Pseudomonas* spp. by vertical transmission. In contrast, Clade B contains clusters
240 present in *P. putida* and several species of the *P. fluorescens* complex, in which there is no
241 conservation in the genome localization, and the clusters are frequently associated with elements
242 that mediate horizontal gene transfer (Fig. 5B). This suggests different strategies to maintain
243 koreenceine-type gene clusters in diverse *Pseudomonas* species.

244 Another *Pseudomonas* isolate (SWI36) was reported to inhibit *B. cereus*, and its activity
245 was dependent on a koreenceine-type gene cluster from clade B (18), but we found that it did not
246 inhibit *F. johnsoniae*. Under certain conditions, *P. koreensis* inhibited *B. cereus*, and the activity
247 was dependent on the koreenceine cluster, suggesting a similarity with the SWI36 cluster (Fig.
248 S9). Indeed, targeted metabolomic analysis of *Pseudomonas* sp. SWI36 cell-free culture detected
249 koreenceine C (Fig. S10). These data suggest that different koreenceine-like gene clusters in
250 *Pseudomonas* genomes have the capacity to synthesize koreenceine metabolites.

251

252 DISCUSSION

253 In this work, we aimed to understand the molecular basis for the growth inhibition of *F.*
254 *johnsoniae* by *P. koreensis* on a route to elucidating interactions within the rhizosphere
255 microbiome. We have shown that *P. koreensis* inhibits *F. johnsoniae* growth through the
256 production and secretion of novel secondary metabolites, koreenceine A-D (1-4), which have
257 structural similarity with the plant metabolite γ -coniceine. Based on the biosynthetic gene cluster
258 identified through our genetic screen, we propose a type II polyketide biosynthetic pathway for
259 these bacterial alkaloids. Traditionally type II polyketide synthases are iterative heterodimer
260 systems. It is currently unclear if the two heterodimer systems present in the biosynthetic cluster
261 act in a modular or iterative manner, but the number of putative β -ketoacyl synthase genes in the
262 pathway is consistent with modular biosynthesis. Plants also use a polyketide pathway mediated
263 by an iterative type III polyketide synthase, providing a new example of convergent evolution
264 between these organisms for the synthesis of related alkaloids. The piperidine core of the
265 koreenceine metabolites is found in well-known plant alkaloids, such as the active cytotoxin γ -
266 coniceine from poison hemlock (*C. maculatum*). Thus, koreenceine alkaloids may play roles in

267 inter-bacterial and inter-Domain communication or inhibition that changes the rhizosphere
268 community structure.

269 Members of the genus *Pseudomonas* are ubiquitous in nature and thrive in soil, on plants,
270 and on moist surfaces. *P. koreensis* and other members of the *Pseudomonas fluorescens* complex
271 are often studied for their capacity to colonize the rhizosphere and protect plants from pathogens.
272 Previous research demonstrated that *P. fluorescens* suppresses plant disease through production
273 of phenazine-1-carboxylic acid (PCA), which targets the fungal pathogen *Gaeumannomyces*
274 *graminis* (20). *P. fluorescens* also produces a suite of antimicrobial compounds including 2,4-
275 diacetylphloroglucinol, pyoluteorin, pyrrolnitrin, lipopeptides, and hydrogen cyanide (4), and
276 members of the *P. fluorescens* complex also produce plant hormones, such as indole acetic acid
277 and gibberellic acid, that stimulate plant growth. In this paper, we expand the known repertoire
278 of metabolites from the *P. fluorescens* complex with koreenceine A-D. Unlike most of the *P.*
279 *fluorescens* metabolites that inhibit fungal pathogens, the koreenceines mediate interactions
280 between *P. koreensis* and diverse members of the Bacteroidetes, including *F. johnsoniae*, in a
281 family-specific manner (6). Competition between members of the *P. fluorescens* complex and
282 *Flavobacterium* spp. in natural settings has been reported; *in vivo* studies showed a selective
283 reduction of *Flavobacterium* spp. in the *Arabidopsis thaliana* rhizosphere when *Pseudomonas*
284 sp. CH267 was added to soil (21). Together, these results highlight the relevance of
285 characterizing bacterial-bacterial interactions in the rhizosphere.

286 We identified a gene cluster necessary for the production of the koreenceine metabolites.
287 Other koreenceine-like clusters have been predicted to mediate (22) and others are associated
288 with (17, 18) antagonistic activity against diverse microorganisms. Thirty-five percent of *P.*
289 *koreensis* and *P. mandelii* genomes in NCBI contain this cluster and there are at least 160

290 *Pseudomonas* genomes harboring a related cluster, indicating the widespread nature of this
291 cluster among *Pseudomonas* spp. Despite its ubiquity, structural characterization of the products
292 of the biosynthetic cluster have been identified slowly.

293 Bioinformatic analysis of the proposed activities of the genes in the cluster enabled us to
294 propose a biosynthetic pathway for the formation of a C₁₄ polyketide with a piperidine-type ring
295 from a non-canonical type II PKS system (Fig. 2). In bacteria, piperidine-type rings could be
296 derived from lysine cyclization (23), as observed in plants, or by a two-step reduction-
297 transamination route of polyketide intermediates (24). We propose that the multidomain protein
298 KecF may direct both steps: reduction of the acyl-intermediate to generate the acyl-aldehyde and
299 transamination. This differs from the established route, in which the two activities are encoded in
300 different genes, and the reduction domain represents the terminal domain of a type I polyketide
301 synthase (Fig. 4) (24). We propose that β -ketoacyl synthase(s) incorporate trans-2-decenoyl-,
302 decanoyl-, or 3-hydroxy-decanoyl units to generate koreenceine A, B or C, respectively. It is
303 unclear if these acyl units are recruited as CoA esters from the β -oxidation pathway or as ACP
304 esters from fatty acid synthesis, although the *R* configuration in koreenceine D suggests substrate
305 sampling from the fatty acid synthesis pool (*i.e.*, fatty acyl-ACP).

306 Koreenceine A-C share structural features with γ -coniceine, the metabolite responsible
307 for the toxicity of the poison hemlock, a plant once used in death sentences, and the means by
308 which Socrates took his own life after receiving such a sentence (399 BC). The structural
309 similarity is the result of convergent evolution. Their functions may also be related— γ -coniceine
310 and its derivative make hemlock (*Conium maculatum*) toxic to animals (9) and *P. koreensis*
311 might protect plant roots with koreenceines. γ -coniceine is also considered a plant hormone (9,

312 25). Thus, future work will focus on characterizing the effect of koreenceine A-C on plant
313 development and protection.

314

315 ACKNOWLEDGMENTS

316 We gratefully acknowledge Dr. Sailendharan Sudakaran for discussing phylogenetic
317 analysis. We thank Dr. Hans Wildschutte for *Pseudomonas* sp SWI36 and its mutant. This work
318 was supported by the Office of the Provost at Yale University, funding from the Wisconsin
319 Alumni Research Foundation through the University of Wisconsin–Madison Office of the Vice
320 Chancellor for Research and Graduate Education, and NSF grant MCB-1243671.

321

322 MATERIALS AND METHODS

323 **Bacterial strains and culture conditions.** *F. johnsoniae* CI04, *P. koreensis* CI12, *B.*
324 *cereus* UW85, *Pseudomonas* sp. SWI36, *Flavobacterium johnsoniae* CI64, *Chryseobacterium*
325 sp. CI02, *Chryseobacterium* sp. CI26, *Sphingobacterium* sp. CI01, and *Sphingobacterium* sp.
326 CI48 were propagated on 1/10th-strength tryptic soy agar and grown in liquid culture in ½-
327 strength tryptic soy broth (TSB) at 28°C with vigorous shaking.

328

329 **Production of root exudates and defined media.** Soybean seeds were surface sterilized
330 with 6% sodium hypochlorite for 10 min, washed with sterile deionized water, transferred to
331 water agar plates, and allowed to germinate for three days in the dark at 25°C. Seedlings were
332 grown in a hydroponic system using modified Hoagland's plant growth solution (26), which was
333 collected after 10 days of plant growth in an environmental chamber (12-h photoperiod, 25°C),
334 filter sterilized and stored at -20°C until used as root exudate. A defined medium was based on

335 basal salt medium (1.77 g mL^{-1} Na_2HPO_4 ; 1.70 g mL^{-1} KH_2PO_4 ; 1.00 g mL^{-1} $(\text{NH}_4)_2\text{SO}_4$; 0.16 g
336 mL^{-1} $\text{MgCl}_2 \cdot 6\text{H}_2\text{O}$; 5.00 g mL^{-1} $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$). A carbon source (pyruvate, mannitol, or
337 glucose) was added to a final concentration of 4 mM . An amino acid mix of equal parts alanine,
338 aspartate, leucine, serine, threonine, and valine was added to the root exudate or the defined
339 minimal media at a final concentration of 6 mM . Individual amino acids and *N*-methyl-DL-
340 aspartate were also added to a final concentration of 6 mM .

341

342 ***P. koreensis* mutant library generation by transposon mutagenesis.** *P. koreensis* CI12
343 and *E. coli* S17-1 λ pir with pSAM_BT20 (27) with ampicillin ($100 \text{ \mu g mL}^{-1}$) were first grown
344 individually for 16 h in LB at 28°C and 37°C , respectively, with agitation. Cells were washed
345 and resuspended in LB to an $\text{OD}_{600} = 2.0$. One volume of *E. coli* S17-1 λ pir with pSAM_BT20
346 was mixed with two volumes of *P. koreensis* CI12 were mixed. Cells were harvested ($6000 \times g$,
347 6 min), resuspended in $100 \mu\text{L}$ of LB, and spotted on LBA. Plates were incubated at 28°C for 16
348 h. Each conjugation mixture was scraped off the plate, resuspended in 2.5 mL of LB, and $350\text{-}\mu\text{L}$
349 aliquots were plated on LB containing gentamicin (50 \mu g mL^{-1}) and chloramphenicol (10 \mu g
350 mL^{-1}) to select for *P. koreensis* CI12 transconjugants. Plates were incubated for two days at
351 28°C .

352

353 **Genetic screen of *P. koreensis* mutants defective in inhibitory activity.** *P. koreensis*
354 CI12 mutants were grown for 16 h in 96-deepwell plates filled with $\frac{1}{2}$ -strength TSB, covered
355 with sterile breathable sealing films, and incubated at 28°C with agitation. For each plate, the
356 first well was inoculated with wild type *P. koreensis* CI12, and the last well was left without *P.*

357 *koreensis* CI12. *F. johnsoniae* CI04 was grown and washed as described above. Root exudate
358 was inoculated with $\sim 10^7$ *F. johnsoniae* CI04 cells per mL, and 200 μ L aliquots were added to
359 each well of 96-well microplates. Next, two μ L from each mutant *P. koreensis* CI12 culture was
360 transferred to the corresponding wells on the microplates, which were then covered by sealing
361 films and incubated at 28°C with slight agitation for two days. Five μ L from each well were then
362 spotted on Casitone-yeast extract agar (CYE) (10 g L⁻¹ casitone; 5 g L⁻¹ yeast extract; 8 mM
363 MgSO₄; 10 mM Tris buffer; 15 g L⁻¹ agar) containing kanamycin (10 μ g mL⁻¹) to select for *F.*
364 *johnsoniae*, and plates were incubated at 28°C for two days. Mutants that did not inhibit *F.*
365 *johnsoniae* were streaked on a second plate for further analysis. The loss of inhibitory activity of
366 candidate *P. koreensis* mutants was verified in a second co-culture, and mutant growth was then
367 compared to wild-type growth to rule out candidates that failed to inhibit *F. johnsoniae* due to
368 their own growth deficiency.

369

370 **Location transposons in *P. koreensis* mutants defective in *F. johnsoniae* inhibition.**

371 For each mutant, one mL of liquid culture grown for 16 h was harvested (6000 \times g, 6 min), and
372 cells were resuspended in 400 mL of TE (10 μ M TrisHCl pH 7.4; 1 μ M EDTA pH 8.0). Samples
373 were boiled for 6 min, centrifuged (6000 \times g, 6 min), and two μ L of supernatant was used as a
374 template for DNA amplification. Transposon locations were determined by arbitrarily primed
375 PCR which consisted of a nested PCR using first-round primer GenPATseq1 and either AR1A or
376 AR1B and second-round primer GenPATseq2 and AR2 (Table 2). PCR products from the
377 second round were purified by gel extraction (QIAquick Gel Extraction Kit; QIAGEN) and then
378 sequenced using primer GenPATseq2.

379 **Chromosomal deletion of the koreenceine gene cluster in *P. koreensis*.** The
380 koreenceine cluster was deleted by allelic exchange and replaced with a tetracycline resistant
381 cassette. The *kekA-K* deletion cassette was constructed by a modified version of overlap
382 extension (OE) PCR strategy. Fragments one kb upstream and one kb downstream of the *kekA-K*
383 genes were amplified using primers mutSGCA_For/mutSGCA_Rev and
384 mutSGCB_For/mutSGCB_Rev respectively (Table 2). The PCR products were cloned in
385 pENTR/D-TOPO, generating pkekA-K_ENTR. Primers mutSGCA_Rev and mutSGCB_For
386 were designed to include a KpnI site in their overlapping region to allow introduction of a
387 resistance gene. A tetracycline resistance cassette was amplified from pACYC184 using primers
388 TetA_For/TetA_Rev, which contain KpnI sites in the 5' region, and cloned into pENTR/D-
389 TOPO to generate pTetA_ENTR. A *mob* element was amplified from pJN105 using primers
390 pJN105Mob_For/pJN105Mob_Rev (Table 2), in which an AscI site in the 5' region was added,
391 and cloned in pENTR/D-TOPO, generating pmob_ENTR. The tetracycline cassette was
392 recovered from pTetA_ENTR using KpnI, and cloned between the region upstream and
393 downstream of the pkekA-K_ENTR, and the *mob* element was recovered from pmob_ENTR
394 using AscI, and cloned into an AscI site in the pENTR backbone, generating pkekA-
395 K_TetA_mob_ENTR. Conjugation mixtures of *P. koreensis* CI12 and *E. coli* S17-1λpir carrying
396 the pkekA-K_TetA_mob_ENTR vector were prepared following the procedure for the
397 transposon mutant generation. Double recombinant *P. koreensis* CI12 transconjugants were
398 selected by their ability to grow on tetracycline ($10 \mu\text{g mL}^{-1}$) and inability to grow on kanamycin
399 ($50 \mu\text{g mL}^{-1}$). The *kekA-K* deletion mutant was confirmed by PCR using primers mutSGCA_For
400 and mutSGCB_Rev. The *kekA-K* deletion mutant was further confirmed by evaluating growth of
401 *F. johnsoniae*, and other members of the Bacteroidetes, in its presence.

402 **General information for the analysis and identification of metabolites.** ^1H and 2D-

403 (gCOSY, gHSQC, and gHMBC) NMR spectra were obtained on an Agilent (USA) 600 MHz

404 NMR spectrometer with a cold probe, and the chemical shifts were recorded as δ values (ppm)

405 with methanol- d_4 as the standard NMR solvent. Materials were routinely analyzed on an Agilent

406 6120 single quadrupole liquid chromatography-mass spectrometry (LC/MS) system (Column:

407 Phenomenex kinetex C₁₈ column, 250 \times 4.6 mm, 5 μm ; Flow rate: 0.7 ml min⁻¹; Mobile phase

408 composition: H₂O and acetonitrile (ACN) containing 0.1% trifluoroacetic acid (TFA); Method:

409 0-30 min, 10-100% ACN; hold for 5 min, 100% ACN; 1 min, 100-10% ACN). High-resolution

410 electrospray ionization mass spectrometry (HR-ESIMS) data were obtained using an Agilent

411 iFunnel 6550 Q-TOF (quadrupole-time-of-flight) mass spectrometer fitted with an electrospray

412 ionization (ESI) source coupled to an Agilent (USA) 1290 Infinity high performance liquid

413 chromatography (HPLC) system. Open column chromatography was carried out on a Waters

414 Sep-Pak[®] Vac 35cc (10g) C₁₈ column. Metabolite isolations were performed using an Agilent

415 (USA) Prepstar HPLC system with an Agilent (USA) Polaris C₁₈-A 5 μm (21.2 \times 250 mm)

416 column, a Phenomenex (USA) Luna C₁₈(2) (100 \AA) 10 μm (10.0 \times 250 mm) column, a

417 Phenomenex (USA) Luna C₈(2) (100 \AA) 10 μm (10.0 \times 250 mm) column, and an Agilent Polaris

418 5 Amide-C18 (250 \times 10.0 mm) column.

419
420 **Isolation of metabolites.** *P. koreensis* CII2 was grown in defined medium with pyruvate
421 as carbon source and supplemented with the amino acid mix or 3mM of glutamate for 3 days.
422 Crude extract was generated by liquid-liquid extraction using one volume of 2-butanol per one

423 volume of filter supernatant, and dried by rotary evaporation. The crude extracts (400 mg) from
424 the 12-L culture supernatant were resuspended in water and methanol (1:1 ratio), adsorbed onto
425 Celite[®] 110, and dried by rotary evaporation. The resulting powdery materials were loaded on the
426 Waters Sep-Pak[®] Vac 35cc (10g) C₁₈ cartridge, and the metabolites were separated by solvent
427 fractionation, eluting with a step gradient from 20-100% aqueous methanol to yield five sub-
428 fractions (20%, 40%, 60%, 80%, and 100% methanol containing 0.1% TFA). Reversed-phase
429 LC-MS analysis (10-100% aqueous acetonitrile in 0.1% trifluoroacetic acid, 30-min gradient)
430 revealed that the 60% fraction included both molecules **1** and **2**, and the fraction was dried under
431 reduced pressure. This fraction (60 mg) was then separated by reversed-phase HPLC equipped
432 with an Agilent Polaris C₁₈-A 5 μ m (21.2 \times 250 mm) column with an isocratic solvent system
433 (50% acetonitrile in water, 0.1% TFA, over 20 min, 8 mL min⁻¹, 1-min fraction collection
434 interval). Compound **1** from the pooled fraction (11+12) (t_R = 25.3 min, 0.2 mg) was partially
435 purified over the Phenomenex Luna C₈ (2) 10 μ m (10.0 \times 250mm) column with a linear gradient
436 elution (20-80% acetonitrile in water, 0.1% TFA, over 30 min). The combined HPLC fraction
437 (11+12) was subsequently purified by reversed-phase HPLC (Phenomenex Luna C₁₈ (2) 10 μ m
438 (10.0 \times 250mm) column) with a linear gradient elution (20-80% acetonitrile in water, 0.1% TFA,
439 over 30 min) to yield pure compound **2** (t_R = 25.8 min, 1.2 mg). Compound **4** was detected in the
440 80% aqueous methanol Sep-Pak fraction and was separated over an Agilent Polaris C₁₈-A 5 μ m
441 (21.2 \times 250 mm) column (Flow rate: 8.0 ml/min; Gradient elution: 10-100% aqueous acetonitrile
442 in 0.1% TFA for 30 min, 1-min fraction collection). HPLC fraction 24 was then separated over
443 the Phenomenex Luna C₁₈ (2) 10 μ m (10.0 \times 250mm) column with 50-100% acetonitrile in

444 water containing 0.1% TFA over 30 min at a flow rate of 4 ml min⁻¹ followed by the subjection
445 to Agilent Polaris 5 Amide-C18 (250 × 10.0 mm) with the same elution system (Flow rate: 4 ml
446 min⁻¹: Purification method: 50-100% acetonitrile in water containing 0.1% TFA over 30 min) to
447 yield pure compound **4** (*t*_R = 9.43 min, 0.7 mg).

448

449 (*E*)-6-(non-1-en-1-yl)-2,3,4,5-tetrahydropyridine (**1**): colorless solid; ¹H NMR (CD₃OD, 600
450 MHz) δ 7.21-7.12 (1H, m, H-8), 6.35 (1H, d, *J* = 16.0 Hz, H-7), 3.59 (2H, m, H-2), 2.91 (2H, m,
451 H-5), 2.30 (2H, m, H-9), 1.77 (2H, m, H-3), 1.71 (2H, m, H-4), 1.42 (2H, m, H-10), 1.27-1.20
452 (8H, m, H-11, H-12, H-13, H-14), 0.84 (3H, t, *J* = 7.0 Hz, H-15); HR-ESI-QTOF-MS [M+H]⁺
453 *m/z* 208.2067 (calcd for C₁₄H₂₆N, 208.2065).

454

455 6-nonyl-2,3,4,5-tetrahydropyridine (**2**): colorless solid; ¹H NMR (CD₃OD, 600 MHz) δ 3.53
456 (2H, t, *J* = 5.5 Hz, H-2), 2.72 (2H, t, *J* = 6.1 Hz, H-5), 2.53 (2H, m, H-7), 1.73 (2H, m, H-3), 1.68
457 (2H, m, H-4), 1.54 (2H, dt, *J* = 14.6, 6.8 Hz, H-8), 1.28-1.15 (12H, m, H-9, H-10, H-11, H-12,
458 H-13, H-14), 0.83 (3H, t, *J* = 7.0 Hz, H-15), ¹³C NMR (CD₃OD, 125 MHz) δ 192.1 (C-6), 44.4
459 (C-2), 37.7 (C-7), 31.6 (C-13), 29.4 (C-5), 28.0-29.0 (C-9, C-10, C-11, C-12), 25.5 (C-8), 22.5
460 (C-14), 19.2 (C-3), 16.8 (C-4), 14.4 (C-15); HR-ESI-QTOF-MS [M+H]⁺ *m/z* 210.2224 (calcd for
461 C₁₄H₂₈N, 210.2222).

462

463 (*R*)-*N*-(4-chlorobutyl)-3-hydroxydecanamide (**4**): colorless solid; ¹H NMR (CD₃OD, 600 MHz)
464 δ 3.94 (1H, m, H-3), 3.59 (2H, t, *J* = 6.5 Hz, H-4'), 3.20 (2H, m, H-1'), 2.27 (2H, m, H-2), 1.78

465 (2H, m, H-3'), 1.63 (2H, dt, J = 14.3, 7.0 Hz, H-2'), 1.43 (2H, m, H-4), 1.36-1.25 (10H, m, H-5,
466 H-6, H-7, H-8, H-9), 0.90 (3H, t, J = 6.9 Hz, H-10), ^{13}C NMR (CD₃OD, 125 MHz) δ 172.6 (C-
467 1), 68.2 (C-3), 44.1 (C-4'), 43.8 (C-2), 37.9 (C-1'), 36.8 (C-4), 31.8 (C-8), 29.5 (C-3'), 29.4 (C-5
468 or C-6, C-7), 26.3 (C-2'), 22.6 (C-5 or C-6, C-9), 13.4 (C-10); HR-ESI-QTOF-MS [M+H]⁺ m/z
469 278.1885 (calcd for C₁₄H₂₉ClNO₂, 278.1887).

470

471 **Determination of absolute configuration of metabolite 4.** The absolute configuration
472 of **4** was determined using the modified Mosher's method with *R*- and *S*- α -methoxy-
473 (trifluoromethyl)phenylacetyl chloride (MTPA-Cl) (28). Compound **4** (0.5 mg) was prepared in
474 two vials (0.25 mg), and each sample was dissolved in 250 μL of dried pyridine-*d*₅ in vials
475 purged with N₂ gas. Dimethylaminopyridine (DMAP) (0.5 mg) was added to both vials followed
476 by the addition of 5 μL of *S*- and *R*-MTPA-Cl solution (2% v/v) at room temperature. After 18 h,
477 the reaction mixtures were dried under reduced pressure. ^1H NMR spectra of the Mosher esters
478 (*S*-MTPA ester and *R*-MTPA ester) were collected in methanol-*d*₄, and the chemical shift
479 differences of the Mosher esters of **4** were calculated in $\Delta\delta_{\text{S}-\text{R}}$.

480

481 **Characterization of *Pseudomonas* sp. SWI36.** *Pseudomonas* sp. SWI36 and *P.*
482 *koreensis* inhibitory interactions against *B. cereus* and *F. johnsoniae* were evaluated with a
483 modified spread-patch method. Strains were grown separately for 20 h. One-mL aliquots of
484 cultures of each strain were centrifuged (6000 \times *g*, 6 min), resuspended in one ml of the same
485 medium (undiluted cultures), and a 1:100 dilution of *B. cereus* and *F. johnsoniae* was prepared in

486 the same medium (diluted culture). Nutrient agar plates were spread with 100 μ L of either *B.*
487 *cereus* or *F. johnsoniae* diluted cultures and spotted with 10 μ L of the undiluted cultures of
488 *Pseudomonas* sp. SWI36 and *P. koreensis*. Plates were then incubated at 28°C and inspected for
489 zones of inhibition after two days. Crude extract of *Pseudomonas* sp. SWI36 and *Pseudomonas*
490 sp. SWI36 *kecF*::Tn culture in nutrient broth were prepared as above. Extracted materials were
491 analyzed on a LC/MS system consisting of a Thermo Fisher Scientific (Waltham, MA) Q
492 Exactive orbitrap mass spectrometer with an electrospray ionization (ESI) source coupled to a
493 Vanquish UHPLC (Column: Thermo Accucore Vanquish C18 column, 100 \times 2.1 mm, 1.5 μ m;
494 Flow rate: 0.2 ml min^{-1} ; mobile phase composition: H₂O and acetonitrile (ACN) containing
495 0.1% trifluoroacetic acid (TFA); method: 0-1 min, 10% ACN; 1-4 min, 10-35% ACN; 4-12 min,
496 35-70% ACN; 12-16 min, 70-98% ACN; 16-20 min hold with 98% ACN; 20-21 min, 98-10%
497 ACN; 21-23 min, 10% ACN). MS1 scans were acquired with positive ionization over a *m/z*
498 range of 188-1275 with settings of 1e6 AGC, 100 ms maximum integration time, and 70k
499 resolution.

500

501 **Phylogenetic analysis.** Genetic regions with homology to the koreenceine biosynthetic
502 cluster were identified by BLAST alignment tools (29) using *P. koreensis* CI12 KecF protein
503 sequence in the NCBI database. All the KecF homologues identified were part of koreenceine-
504 like cluster. Genomes harboring koreenceine-like clusters are listed in Table S1. Protein and
505 nucleotide sequence alignments of *kecF* were performed with MAFFT version 7 (30) and were
506 manually adjusted using as a guide the residues-wise confidence scores generated by
507 GUIDANCE2 (31). Best-fit models of amino acid or nucleotide replacement were selected.
508 Evolutionary analyses were inferred by Maximum Likelihood (ML) methods conducted in

509 MEGA X (32). The *P. koreensis* and *P. mandelii* phylogenomic reconstruction was done by the
510 phylogenetic and molecular evolutionary (PhaME) analysis software (33). PhaME identified
511 SNPs from the core genome alignments, and the phylogenetic relationships were inferred by ML
512 using FastTree. Phylogenetic trees were visualized using interactive tree of life (iTOL) (34).

513

514 **REFERENCES**

515 1. **Berg G, Grube M, Schloter M, Smalla K.** 2014. Unraveling the plant microbiome:
516 looking back and future perspectives. *Front Microbiol* **5**:148.

517 2. **Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM.** 2006. The role of root exudates in
518 rhizosphere interactions with plants and other organisms. *Annu Rev Plant Biol* **57**:233–
519 266.

520 3. **Arshad M, Frankenberger WT Jr.** 1998. Plant growth-regulating substances in the
521 rhizosphere: microbial production and functions. *Adv Agron* **62**:45–151.

522 4. **Handelsman J, Stabb EV.** 1996. Biocontrol of soilborne plant pathogens. *Plant Cell*
523 **8**:1855–1869.

524 5. **Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P.**
525 2013. Structure and functions of the bacterial microbiota of plants. *Annu Rev Plant Biol*
526 **64**:807–838.

527 6. **Lozano GL, Bravo JI, Garavito Diago MF, Park HB, Hurley A, Peterson SB, Stabb
528 EV, Crawford JM, Broderick NA, Handelsman J.** 2018. Introducing THOR, a model
529 microbiome for genetic dissection of community behavior. *bioRxiv* 499715.

530 7. **Valentini M, García-Mauriño SM, Pérez-Martínez I, Santero E, Canosa I, Lapouge
531 K.** 2014. Hierarchical management of carbon sources is regulated similarly by the CbrA/B

532 systems in *Pseudomonas aeruginosa* and *Pseudomonas putida*. *Microbiology* **160**:2243–
533 2252.

534 8. **Nishijyo T, Haas D, Itoh Y.** 2001. The CbrA-CbrB two-component regulatory system
535 controls the utilization of multiple carbon and nitrogen sources in *Pseudomonas*
536 *aeruginosa*. *Mol Microbiol* **40**:917–931.

537 9. **Vetter J.** 2004. Poison hemlock (*Conium maculatum* L.). *Food Chem Toxicol* **42**:1373–
538 1382.

539 10. **Leete E.** 1964. Biosynthesis of the hemlock alkaloids. The incorporation of acetate-1-C¹⁴
540 into coniine and conhydrine. *J Am Chem Soc* **86**:2509–2513.

541 11. **Hotti H, Seppänen-Laakso T, Arvas M, Teeri TH, Rischer H.** 2015. Polyketide
542 synthases from poison hemlock (*Conium maculatum* L.). *FEBS J* **282**:4141–4156.

543 12. **Roberts MF.** 1971. The formation of γ -coniceine from 5-ketoctanal by a transaminase of
544 *Conium maculatum*. *Phytochemistry* **10**:3057–3060.

545 13. **Roberts MF.** 1981. Enzymic synthesis of γ -coniceine in *Conium maculatum* chloroplasts
546 and mitochondria. *Plant Cell Rep* **1**:10–13.

547 14. **Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB.** 2010. Microbial
548 biosynthesis of alkanes. *Science* **329**:559–562.

549 15. **Blitzke T, Porzel A, Masaoud M, Schmidt J.** 2000. A chlorinated amide and piperidine
550 alkaloids from *Aloe sabaea*. *Phytochemistry* **55**:979–982.

551 16. **Abe I, Morita H.** 2010. Structure and function of the chalcone synthase superfamily of
552 plant type III polyketide synthases. *Nat Prod Rep* **27**:809–838.

553 17. **Chung EJ, Lim HK, Kim J-C, Choi GJ, Park EJ, Lee MH, Chung YR, Lee S-W.**
554 2008. Forest soil metagenome gene cluster involved in antifungal activity expression in

555 *Escherichia coli*. Appl Environ Microbiol **74**:723–730.

556 18. **Davis E, Sloan T, Aurelius K, Barbour A, Bodey E, Clark B, Dennis C, Drown R,**
557 **Fleming M, Humbert A, Glasgo E, Kerns T, Lingro K, McMillin M, Meyer A, Pope**
558 **B, Stalevicz A, Steffen B, Steindl A, Williams C, Wimberley C, Zenas R, Butela K,**
559 **Wildschutte H.** 2017. Antibiotic discovery throughout the Small World Initiative: a
560 molecular strategy to identify biosynthetic gene clusters involved in antagonistic activity.
561 Microbiologyopen **6**:e00435.

562 19. **Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R, Redondo-Nieto**
563 **M.** 2016. Genomic and genetic diversity within the *Pseudomonas fluorescens* complex.
564 PLoS ONE **11**:e0150183.

565 20. **Thomashow LS, Weller DM.** 1988. Role of a phenazine antibiotic from *Pseudomonas*
566 *fluorescens* in biological control of *Gaeumannomyces graminis* var. *tritici*. J Bacteriol
567 **170**:3499–3508.

568 21. **Haney CH, Samuel BS, Bush J, Ausubel FM.** 2015. Associations with rhizosphere
569 bacteria can confer an adaptive advantage to plants. Nat Plants **1**:15051.

570 22. **Martins dos Santos VAP, Timmis KN, Tümmler B, Weinel C.** 2004. Genomic features
571 of *Pseudomonas putida* strain KT2440, pp. 77–112. In *Pseudomonas*. Springer US,
572 Boston, MA.

573 23. **Bis DM, Ban YH, James ED, Alqahtani N, Viswanathan R, Lane AL.** 2015.
574 Characterization of the nocardiopsin biosynthetic gene cluster reveals similarities to and
575 differences from the rapamycin and FK-506 pathways. ChemBioChem **16**:990–997.

576 24. **Peng H, Wei E, Wang J, Zhang Y, Cheng L, Ma H, Deng Z, Qu X.** 2016. Deciphering
577 piperidine formation in polyketide-derived indolizidines reveals a thioester reduction,

578 transamination, and unusual imine reduction process. *ACS Chem Biol* **11**:3278–3283.

579 25. **Reynolds T.** 2005. Hemlock alkaloids from Socrates to poison aloes. *Phytochemistry*
580 **66**:1399–1406.

581 26. **Hoagland DR, Arnon DI.** 1950. The water-culture method for growing plants without
582 soil. *Calif Agric Exp Stat Circ* **347**:1–32.

583 27. **Sivakumar R, Ranjani J, Vishnu US, Jayashree S, Lozano GL, Miles J, Broderick N,**
584 **Guan C, Gunasekaran P, Handelsman J, Rajendhran J.** 2018. Evaluation of InSeq to
585 identify genes essential for *Pseudomonas aeruginosa* PGPR2 corn root colonization.
586 bioRxiv 377168.

587 28. **Hoye TR, Jeffrey CS, Shao F.** 2007. Mosher ester analysis for the determination of
588 absolute configuration of stereogenic (chiral) carbinol carbons. *Nat Protoc* **2**:2451–2458.

589 29. **Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.** 1990. Basic local alignment
590 search tool. *J Mol Biol* **215**:403–410.

591 30. **Katoh K, Standley DM.** 2013. MAFFT multiple sequence alignment software version 7:
592 improvements in performance and usability. *Mol Biol Evol* **30**:772–780.

593 31. **Sela I, Ashkenazy H, Katoh K, Pupko T.** 2015. GUIDANCE2: accurate detection of
594 unreliable alignment regions accounting for the uncertainty of multiple parameters.
595 *Nucleic Acids Res* **43**:W7–14.

596 32. **Kumar S, Stecher G, Li M, Knyaz C, Tamura K.** 2018. MEGA X: Molecular
597 evolutionary genetics analysis across computing platforms. *Mol Biol Evol* **35**:1547–1549.

598 33. **Ahmed SA, Lo C-C, Li P-E, Davenport KW, Chain PSG.** 2015. From raw reads to
599 trees: Whole genome SNP phylogenetics across the tree of life. bioRxiv 032250.

600 34. **Letunic I, Bork P.** 2016. Interactive tree of life (iTOL) v3: an online tool for the display

601 and annotation of phylogenetic and other trees. Nucleic Acids Res **44**:W242–5.

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624 **FIGURES AND TABLES**

625

626 **FIG 1.** Koreenceine biosynthetic locus and the predicted function of each gene. Black arrows
627 indicate locations of the transposons of the mutants identified.

628

629 **FIG 2.** Extracted ion chromatograms of koreenceine A-D for wild type and *kecA-K* deletion
630 mutant.

631

632 **FIG 3.** Structural characterization of koreenceines A) Chemical structures of compounds **1-4**. B)
633 Key COSY and HMBC NMR correlations of compounds. C) $\Delta\delta_{S-R}$ in ppm for the MTPA esters
634 of compound **4**.

635

636 **FIG 4.** Predicted biosynthetic pathway for γ -coniceine in plants and proposed biosynthetic
637 pathway for koreenceine B in *P. koreensis*. Similar functions are color coded to highlight the
638 similarity between both routes in plants and koreenceine biosynthetic locus.

639

640 **FIG 5.** Phylogenetic analysis of the koreenceine biosynthetic locus and its distribution across
641 bacteria. A) Maximum likelihood phylogenetic tree estimated from the amino acid sequence of
642 KecF, and the corresponding structure of the koreenceine-like gene cluster present in each clade.
643 B) Schematic representation of the koreenceine-like biosynthetic locus and its genomic context
644 from several *Pseudomonas* spp. from clade A and clade B. Genes conserved in all genomes from
645 *P. mandelii* and *P. koreensis* are in dark gray, meanwhile variable or unique genes are in gray.
646 Genes that likely experienced horizontal gene transfer events are in yellow. C) Comparison of

647 the phylogenies of *kecF* genes and their associated *Pseudomonas* genomes belonging to Clade A
648 *kecF* homologues. Both phylogenies correspond to maximum likelihood analyses of the
649 nucleotide sequence of the genes or the core genome. The dotted lines connect the cluster with
650 its corresponding *Pseudomonas* genome.

651
652 **Table 1.** *P. koreensis* mutants identified in the genetic screen with loss of inhibitory activity
653 against *F. johnsoniae*.

654
655 **Table 2.** Primers used in this study.

656
657 **FIG S1.** Genetic validation of the role of koreenceine gene cluster in inhibition of *F. johnsoniae*
658 and other Bacteroidetes. Several Bacteroidetes members of the soybean rhizosphere population
659 when grown alone, with *P. koreensis* wild type, or *P. koreensis* CI12 *kecA-K::tet*. ND, not
660 detected.

661
662 **FIG S2.** Development of a minimal medium to mimic *P. koreensis* inhibition against *F.*
663 *johnsoniae*. A) *P. koreensis* and *F. johnsoniae* in co-culture in a define medium with glucose,
664 mannitol or pyruvate as a carbon sources with or without amino acid mixture. B) *P. koreensis*
665 and *F. johnsoniae* in co-culture in a defined minimal media with or without amino acid mixture,
666 or a single amino acid, or N-methyl-DL-aspartate (Asp*) a non-hydrolysable analog of aspartate.

667
668 **FIG S3.** HRESIQTofMS spectral data of compounds 1- 4
669

670 **FIG S4.** NMR spectra of compound 1

671

672 **FIG S5.** NMR spectra of compound 2

673

674 **FIG S6.** (A-D) NMR spectra of compound 4 (E) ^1H NMR spectra comparison of *S*-MTPA (blue)

675 and *R*-MTPA (maroon) of compound 4 (F) gCOSY NMR spectrum of *S*-MTPA of compound 4

676 (G) gCOSY NMR spectrum of *R*-MTPA of compound 4

677

678 **FIG S7.** Tandem MS spectra of compounds 1-4

679

680 **FIG S8.** Predicted uncharacterized halogenation reaction and oxidation/reduction of γ -

681 coniceine and koreenceine C.

682

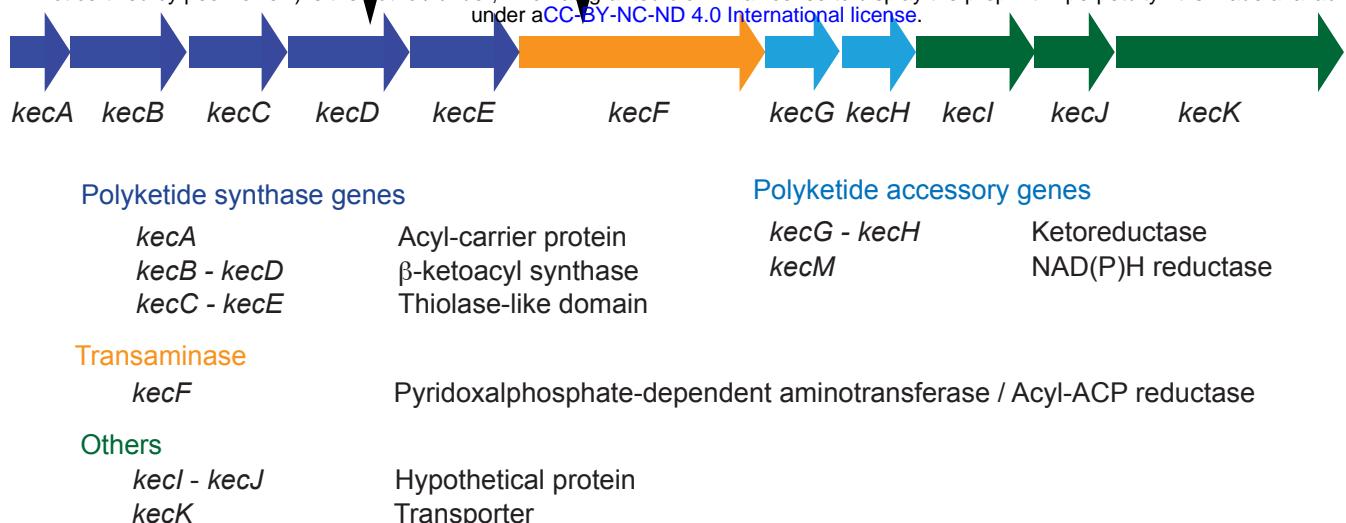
683 **FIG S9.** Activity profile of *P. koreensis* and *Pseudomonas* sp. SWI36 against *B. cereus* and *F.*

684 *johsoniae*.

685

686 **FIG S10.** Extracted ion chromatograms of koreenceine C for *Pseudomonas* sp SWI36 wild type

687 and *kecF::Tn* mutant.


688

689 **Table S1.** Bacterial genomes containing gene clusters with high similarity to the koreenceine

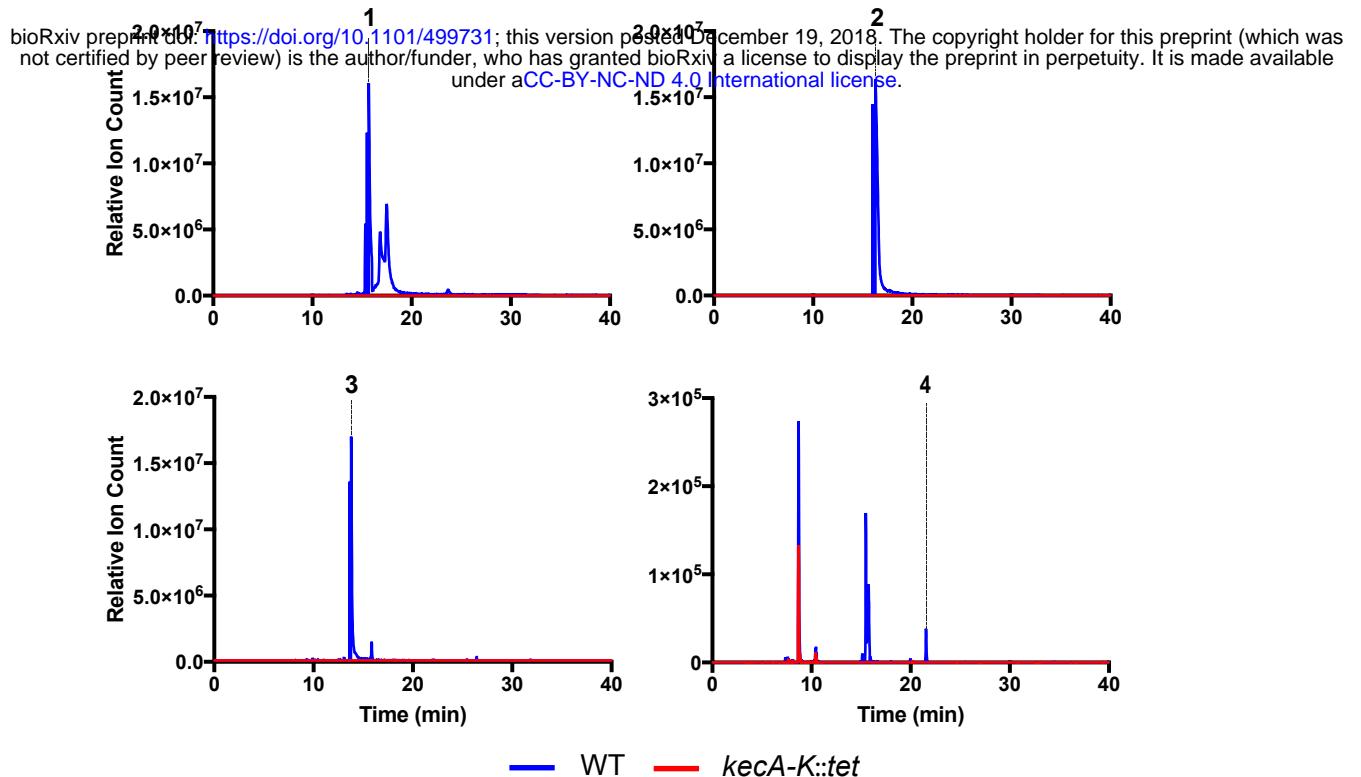

690 cluster.

FIG 1.

bioRxiv preprint doi: <https://doi.org/10.1101/499731>; this version posted December 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

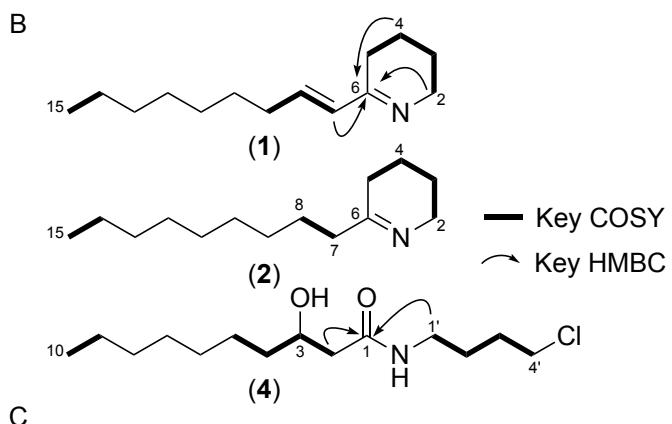
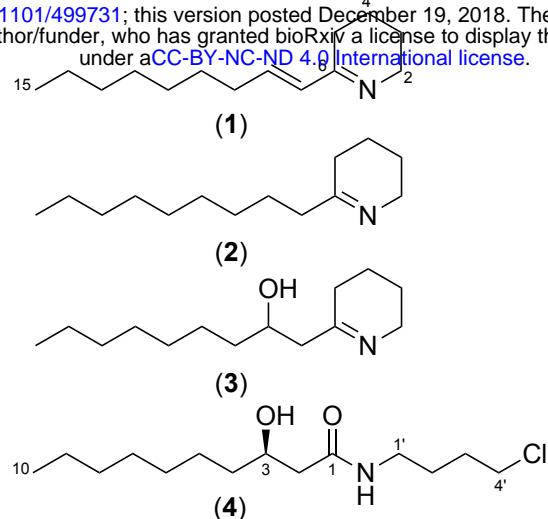



FIG 2.

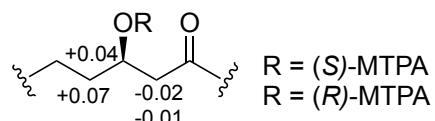
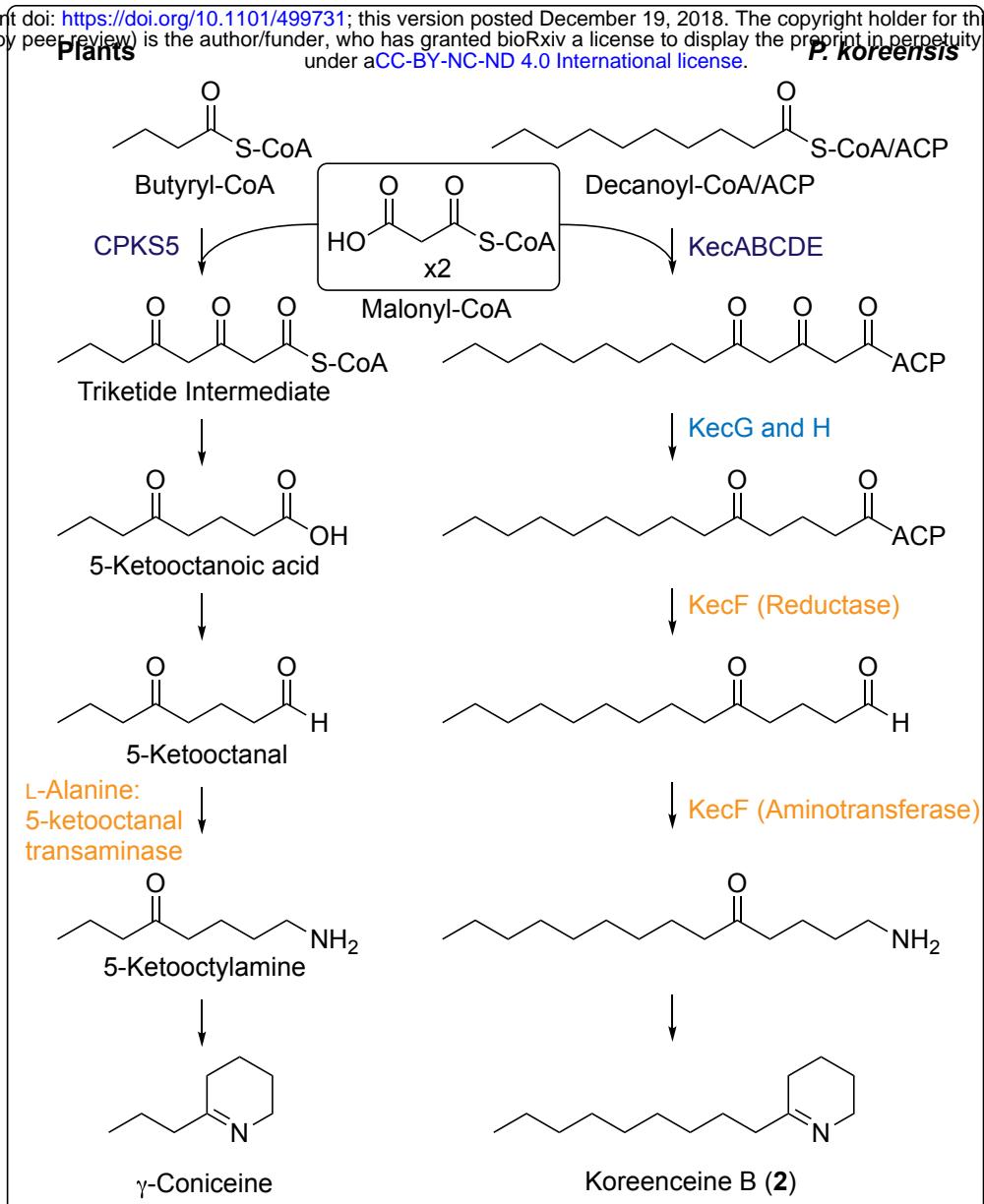


FIG 3.

bioRxiv preprint doi: <https://doi.org/10.1101/499731>; this version posted December 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



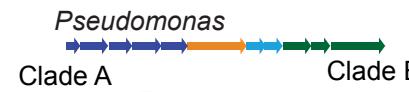

C

FIG 4.

bioRxiv preprint doi: <https://doi.org/10.1101/499731>; this version posted December 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

FIG 5.**A****C***Pseudomonas* *kecF* phylogeny

Clade B

FW300N1B4, BS2952, M1ACH, BS2, 31E5, 31E6, P2673, P2406, LMG26867, 43NM1, 43NM1, PD30, C3, Root329, 3112, JR1, LMG21607, FW305BF8, MPRE5, FSLW50299, GM16, GM24, OV657, CI12, GV091, H16, NZ011, a390, LMG25716, 447, LBP160603, Irchels3a12, Irchels3h9, ok266, OV221, Irchels3f10, AD21, BW11P2, MS82, MS586, R152017, R242017, B172017, B202017, B152017, B262017, B352017, R272017, B22017, B72017

Clade A

Pseudomonas core genome phylogeny*P. mandelii**P. koreensis***B**Clade A *P. mandelii* JR-1

C3

FSL W5-0299

P2406

P. koreensis

CI12

ok266

GM24

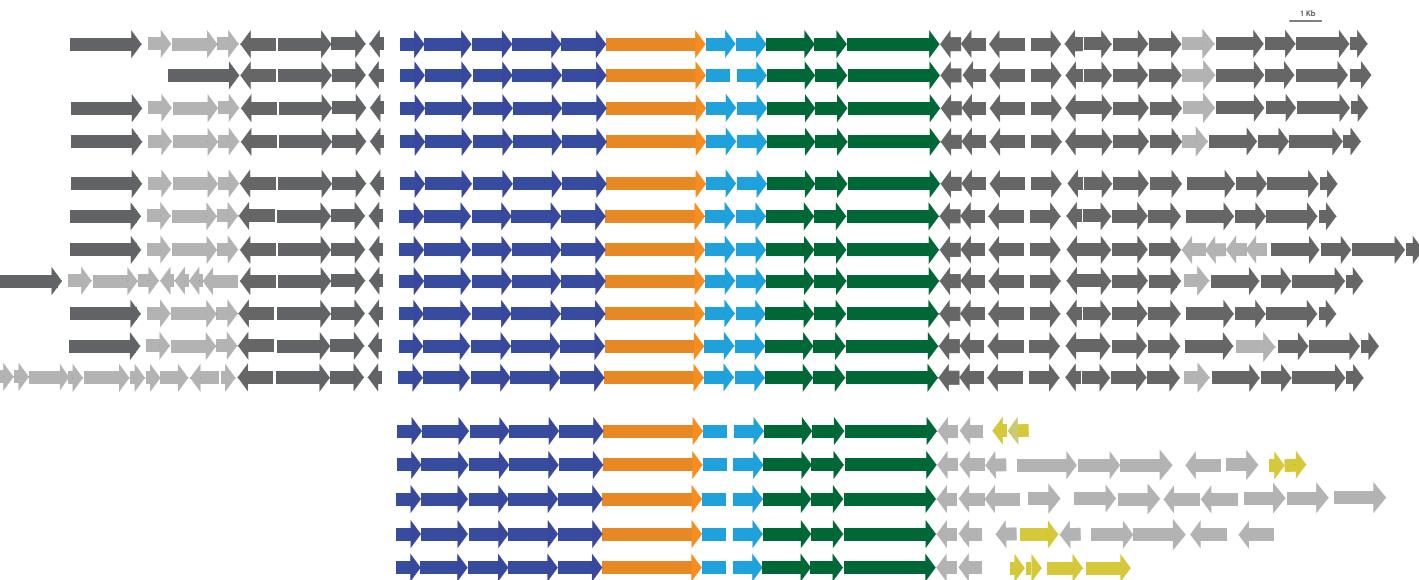
LMG 25716

MS586

B35(2017)

B35(2017)

Clade B


RIT357

SB3101

SF1

NyZ12

TND35

Table 1.

Mutant	ID	Predicted Function	Class
1	OOH83074	Pyridoxalphosphate dependent aminotransferase	Secondary metabolites production
2	OOH83072	3-oxoacyl-ACP synthase	Secondary metabolites production
3, 4	OOH76777	Two-component sensor histidine kinase CbrA	Cell signaling and transcription regulation
5, 6	OOH78126	CysB family transcriptional regulator	Cell signaling and transcription regulation
7	OOH78405	Multi-sensor hybrid histidine kinase	Cell signaling and transcription regulation
8	OOH81884	Outer membrane protein assembly factor BamC	Cell surface
9	OOH77437	Peptidoglycan-associated lipoprotein	Cell surface
10	OOH75718	Phospholipid/glycerol acyltransferase	Cell surface
11	OOH75539	Acetylglutamate kinase	Metabolism
12	OOH81129	Methylcitrate synthase	Metabolism
13	OOH76758	Ketol-acid reductoisomerase	Metabolism
14	OOH80977	Succinyl-CoA synthetase subunit alpha	Metabolism
15	OOH81130	2-methylisocitrate dehydratase	Metabolism
16 ^a	OOH76781	3-methyl-2-oxobutanoate hydroxymethyltransferase	Metabolism
	OOH76782	Pantoate-beta-alanine ligase	Metabolism

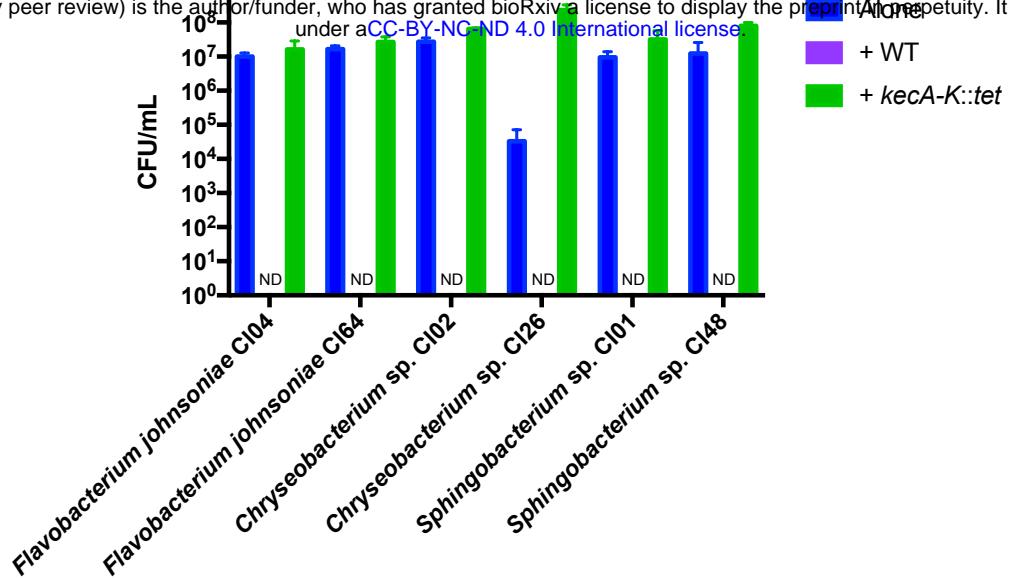
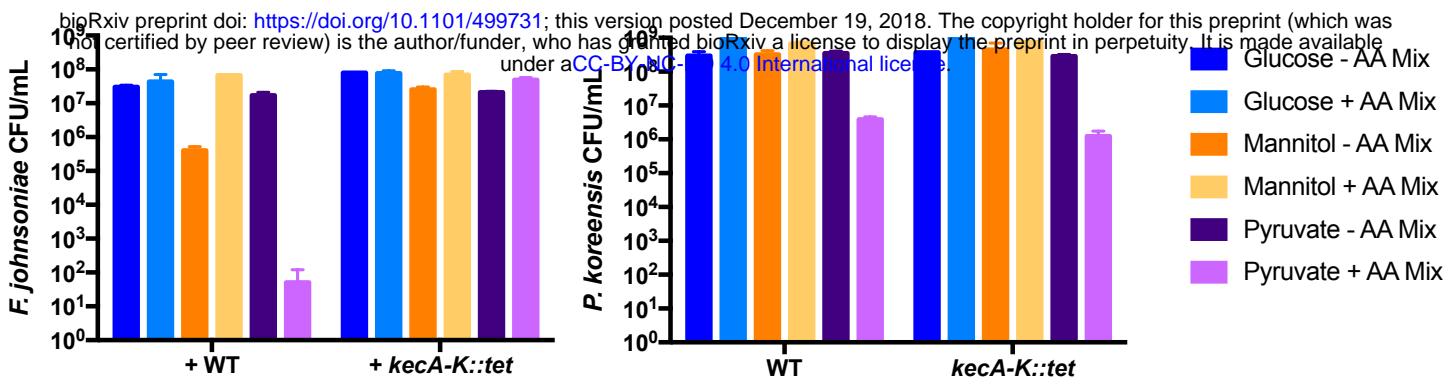

^a Transposon insertion in the promoter, 5' region, of an operon conformed for these two genes

Table 2.

Name	Sequence
GenPATseq1	CTTGGATGCCGAGGCATAG
GenPATseq2	CTGTACAAAAAAACAGTCATAACAAGCCATG
AR1A	GGCCACCGCGTCGACTAGTACNNNNNNNNNTAAT
AR1B	GGCCACCGCGTCGACTAGTACNNNNNNNNNGATGC
AR2	GGCCACCGCGTCGACTAGTAC
mutSGCA_For	CACCCGCAAGCCTGCAATAGACGGAC
mutSGCA_Rev	CCTGTCGTCTCAGGAAAGGTGCGGTACCTCTATCTCCCTATATGTCGTGAC
mutSGCB_For	GTCACGACATATAGGGAGATAGAAGGTACCGCACCTTCCTGAGACGACAGG
mutSGCB_Rev	GCACCTGACATTGCTATCCGATC
TetA_For	CACCGGTACCTCCTCCAAGCCAGTTACCTCGG
TetA_Rev	GGTACCTGCTCAGGTCGCAGACGTTTG
pJN105Mob_For	TAGGCGCGCCTGGGTCAAGCTCGTGGC
pJN105Mob_Rev	CACCGGCGCGCCCAATTGTTCAAGCCGAGATCGGC


FIG S1.

bioRxiv preprint doi: <https://doi.org/10.1101/499731>; this version posted December 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

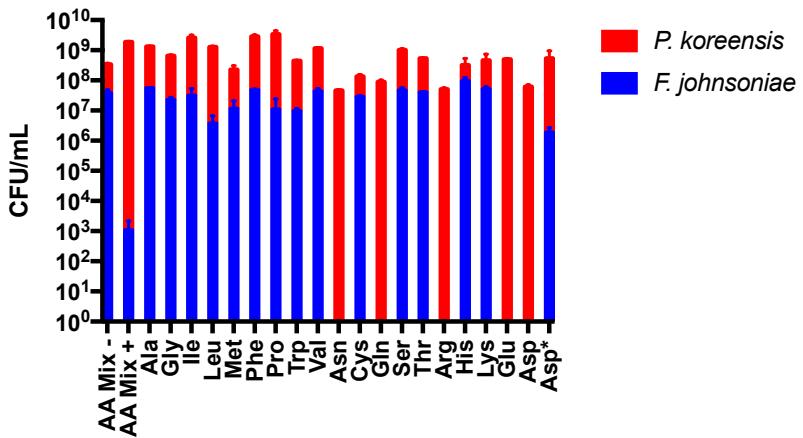


FIG S2.

A

B

FIG S3.

bioRxiv preprint doi: <https://doi.org/10.1101/499731>; this version posted December 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

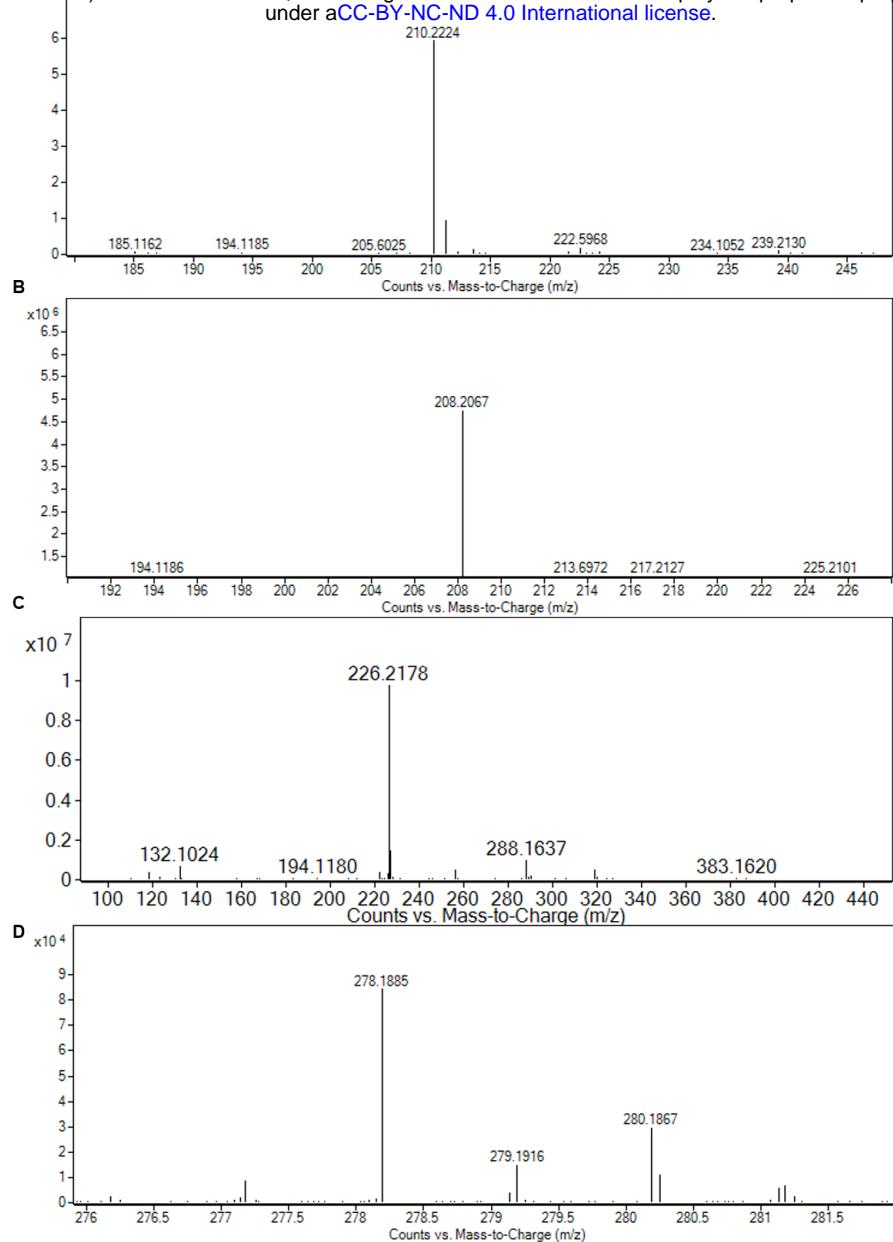
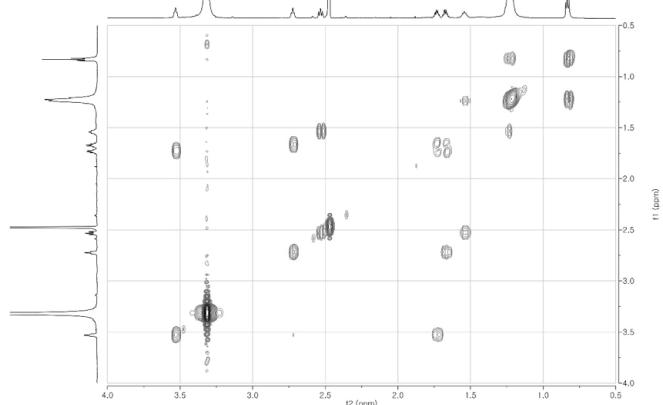
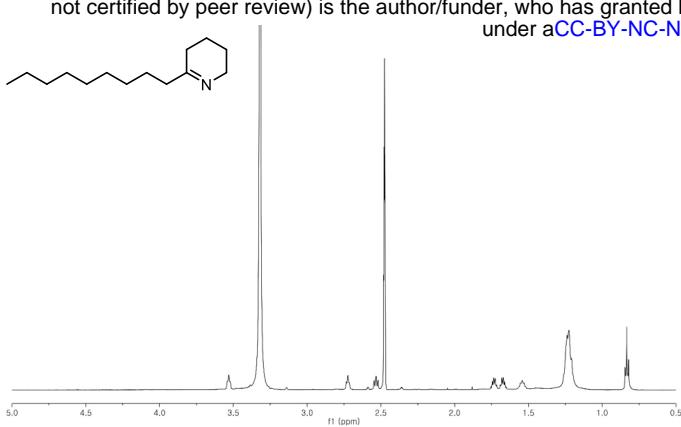
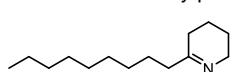
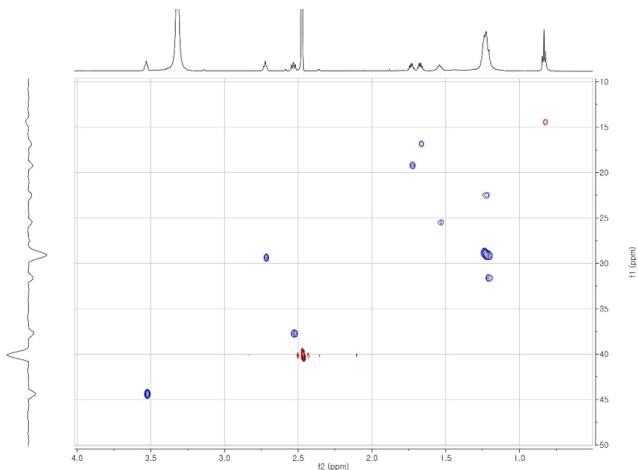
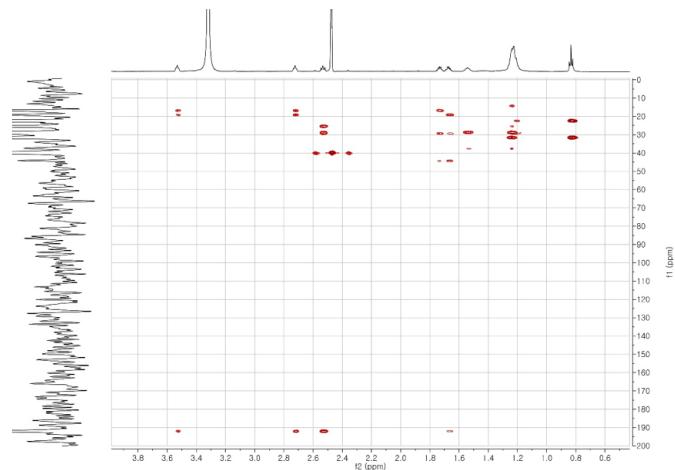
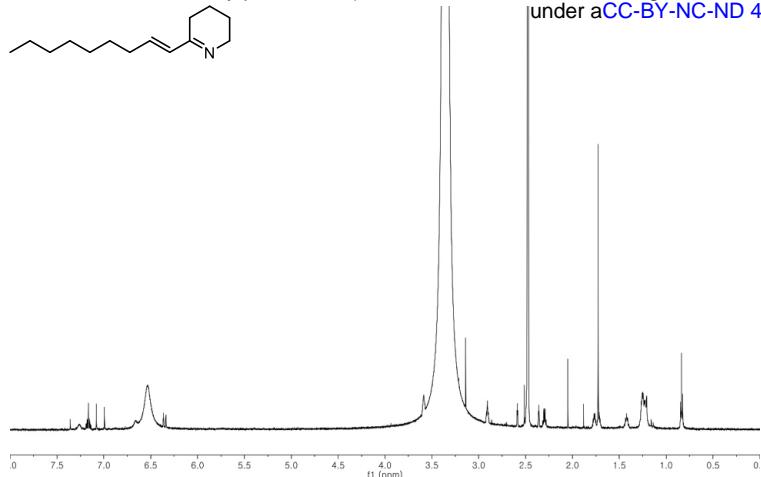
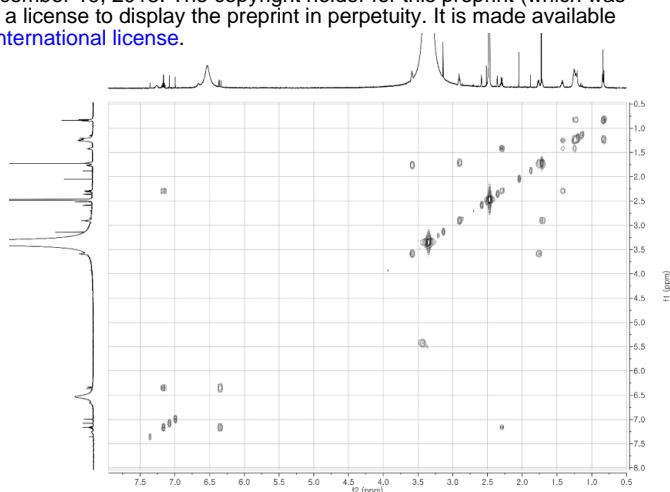






FIG S4.


A bioRxiv preprint doi: <https://doi.org/10.1101/499731>; this version posted December 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

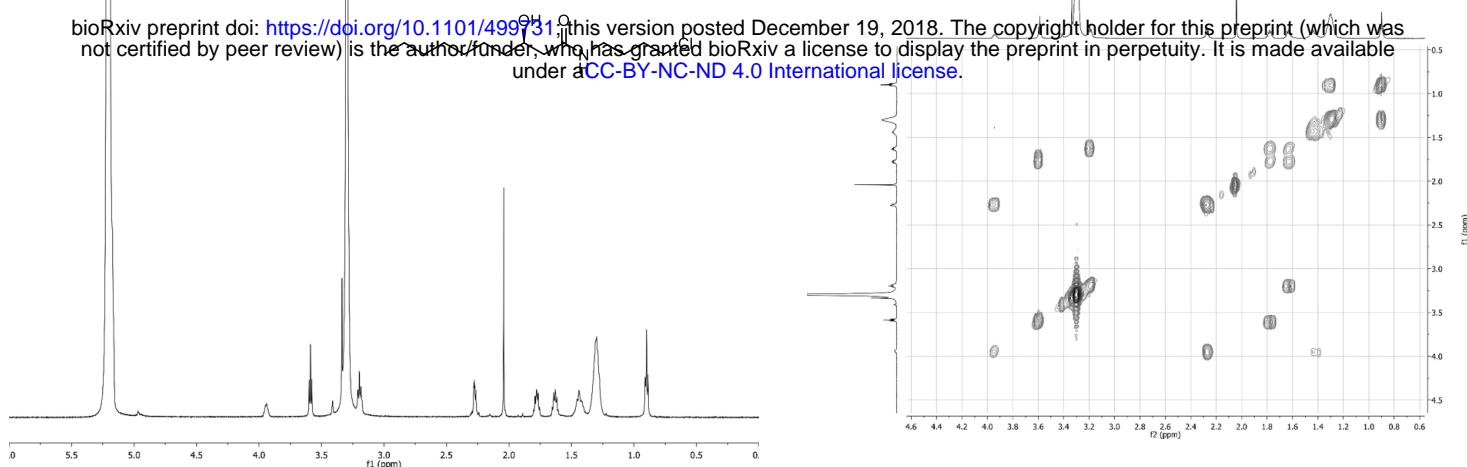
C


D


FIG S5.

A

bioRxiv preprint doi: <https://doi.org/10.1101/499731>; this version posted December 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



B

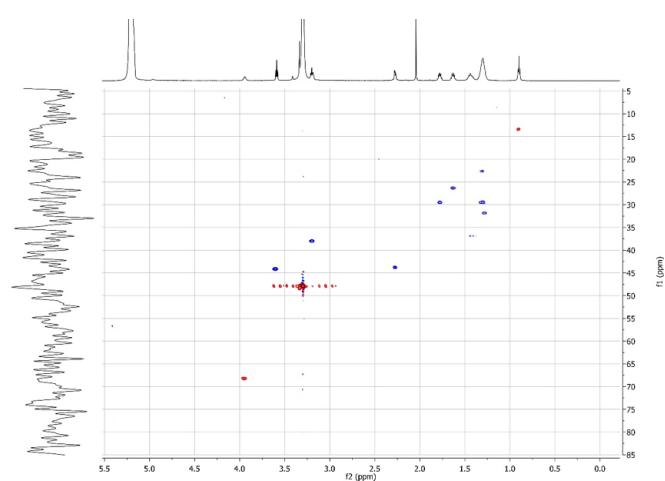
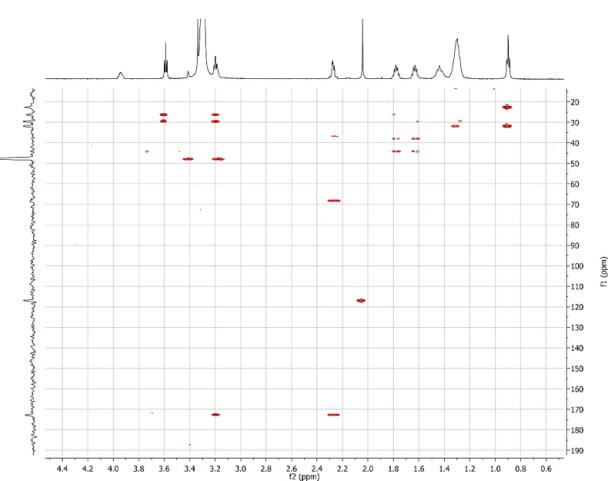
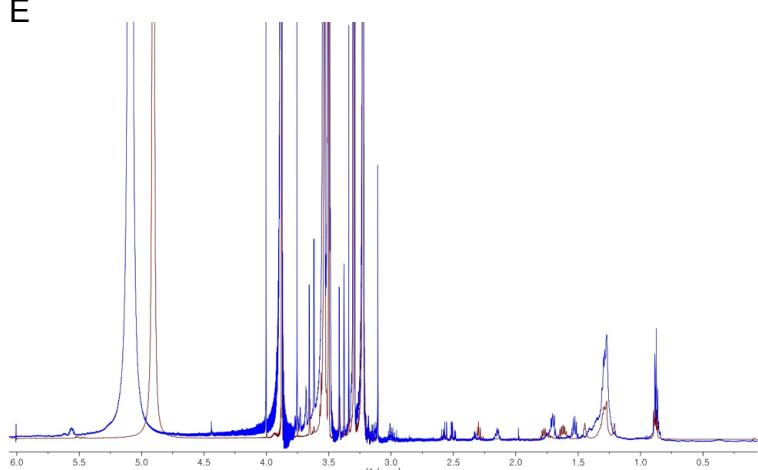
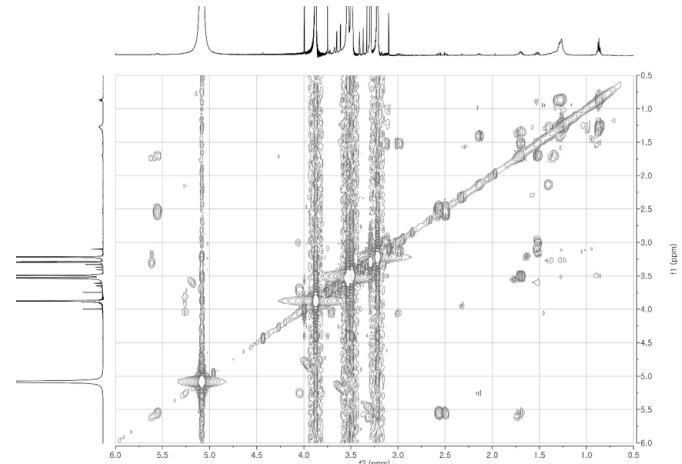
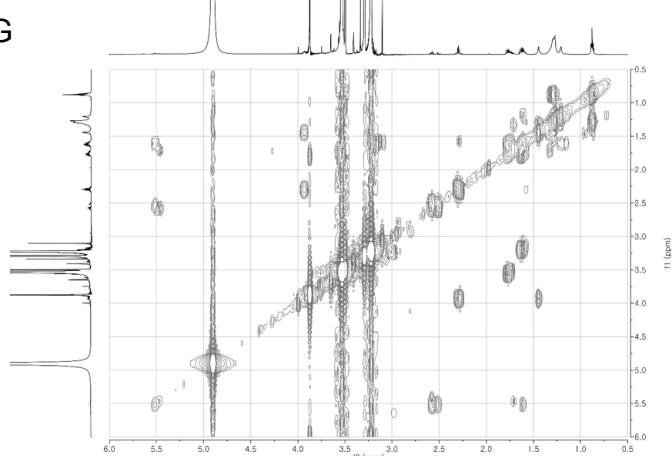


FIG S6.


A


C


D


E

F

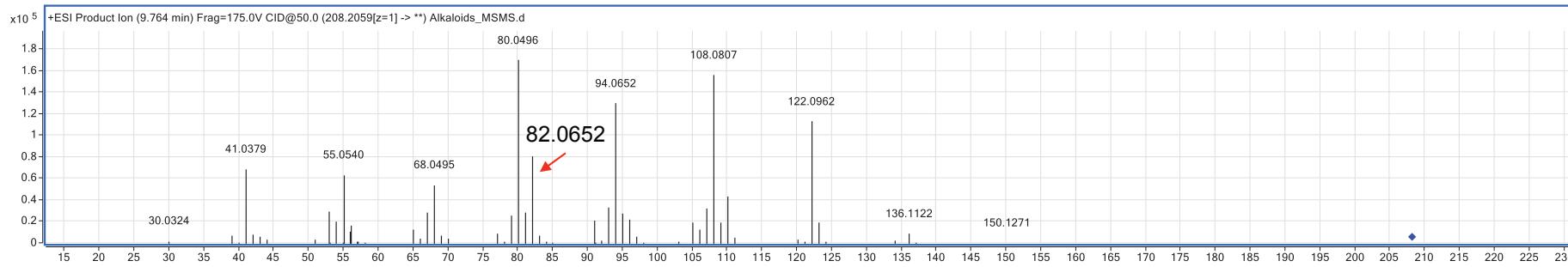
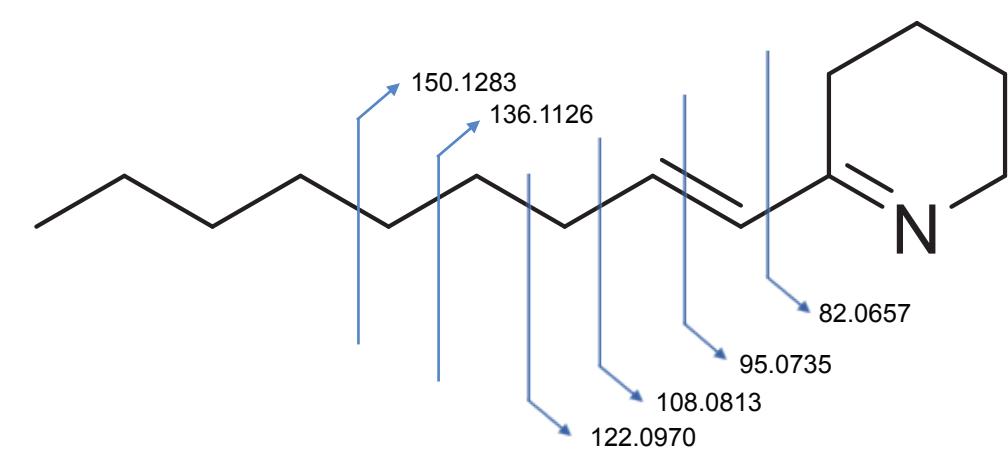
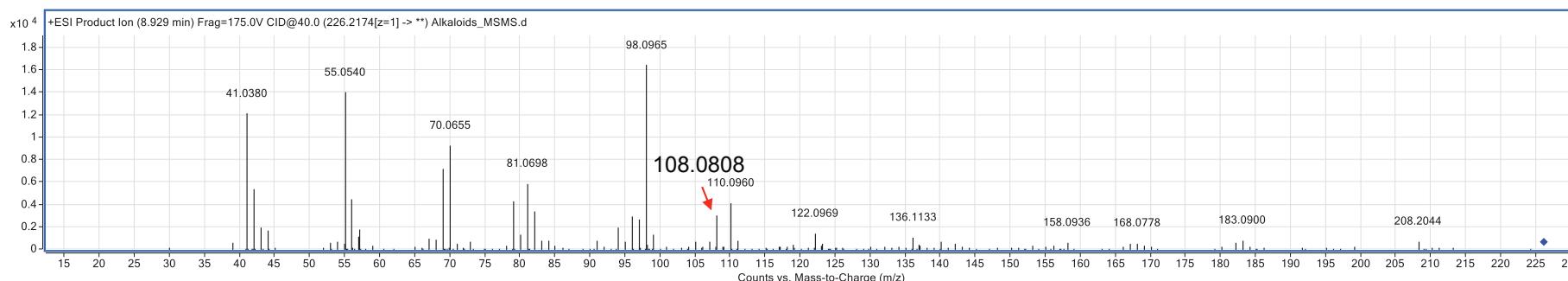

G

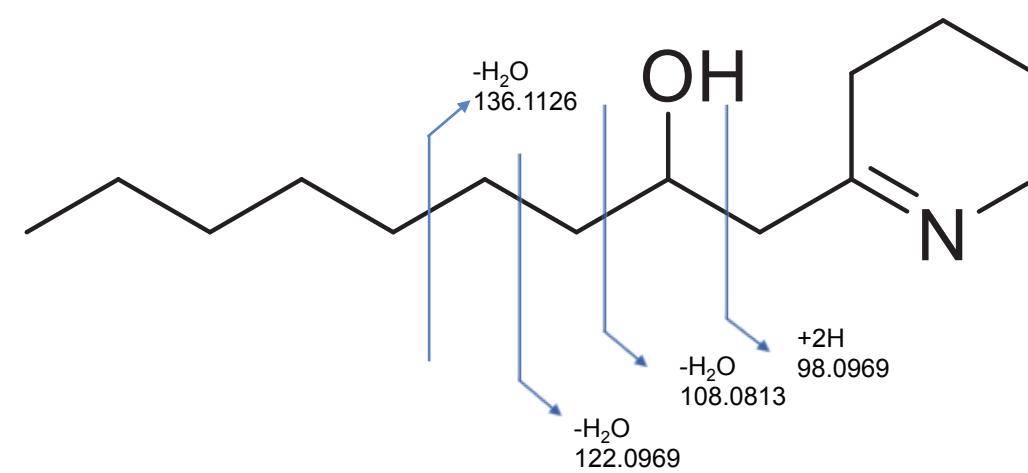
FIG S7.


Compound 1

Observed MS/MS fragmentation pattern of koreenceine A

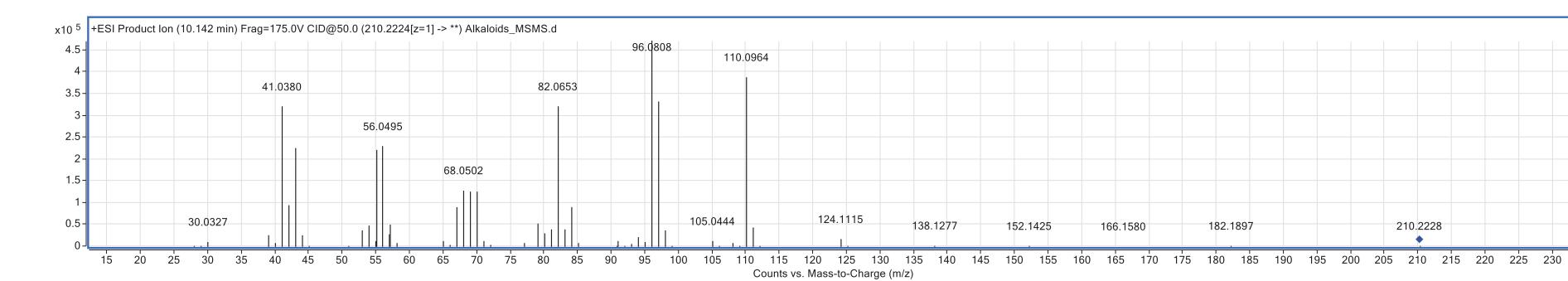

bioRxiv preprint doi: <https://doi.org/10.1101/499731>; this version posted December 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Calculated MS/MS fragmentation pattern of koreenceine A

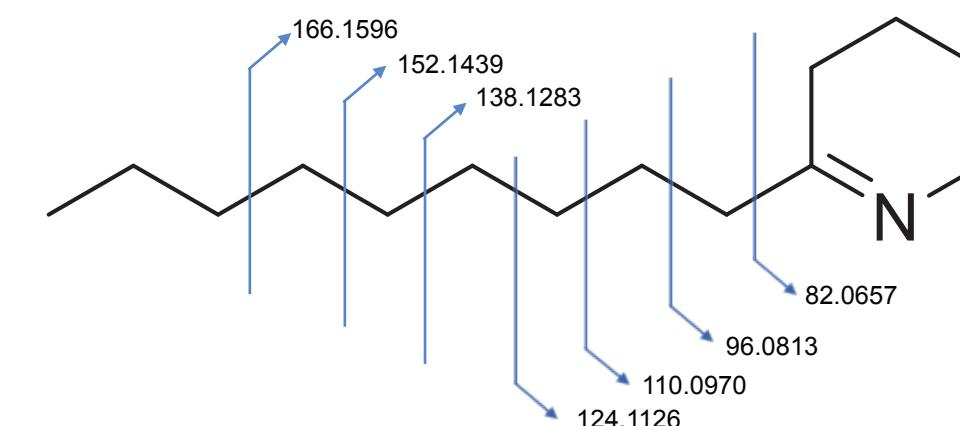


Compound 3

Observed MS/MS fragmentation pattern of koreenceine C

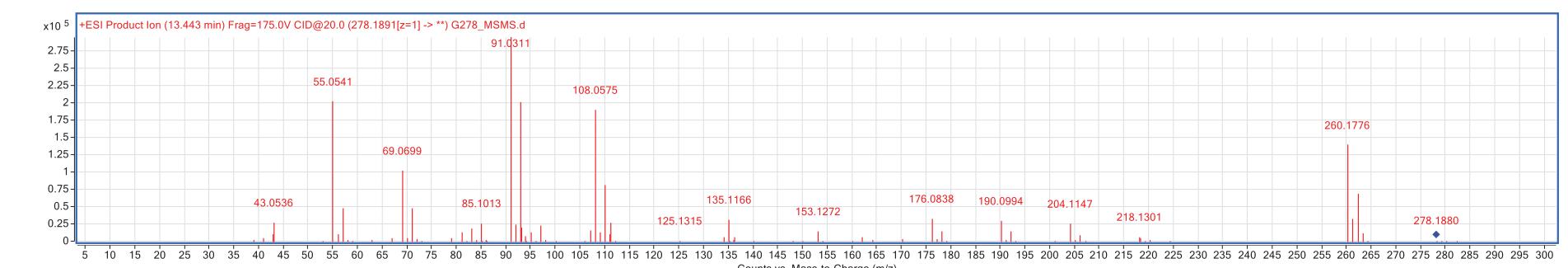


Calculated MS/MS fragmentation pattern of koreenceine C

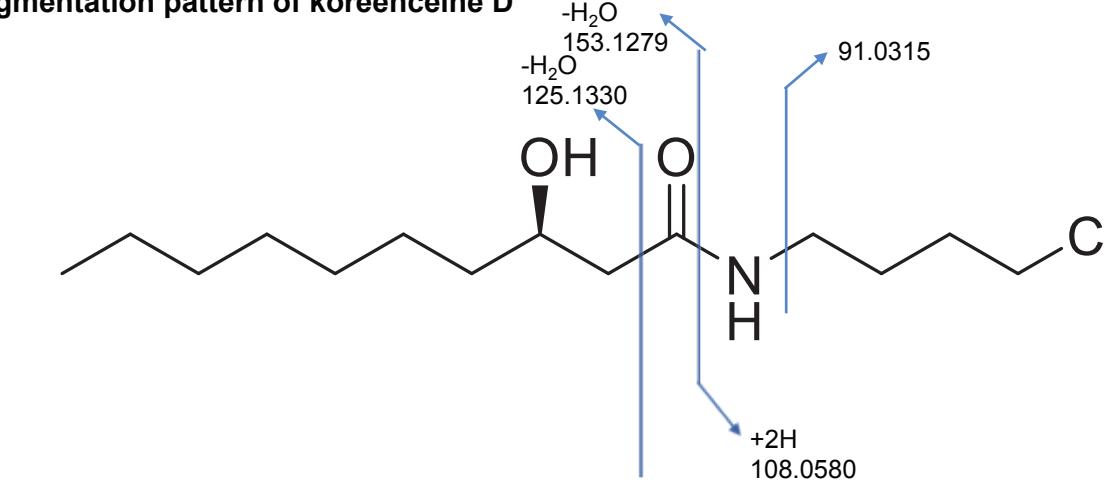


Compound 2

Observed MS/MS fragmentation pattern of koreenceine B

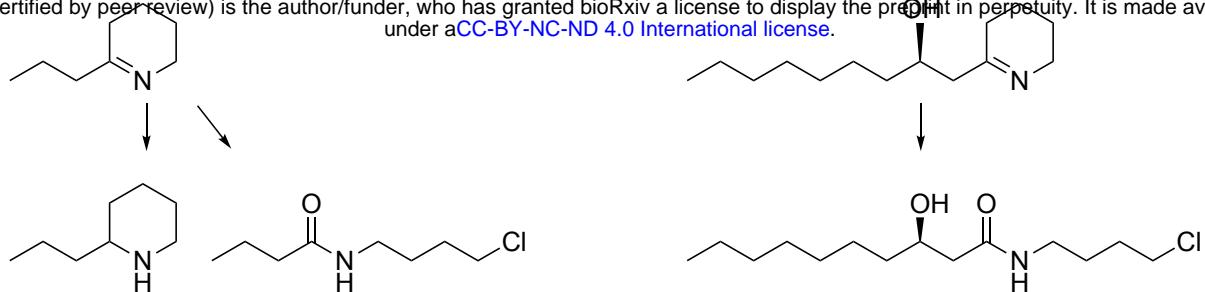


Calculated MS/MS fragmentation pattern of koreenceine B

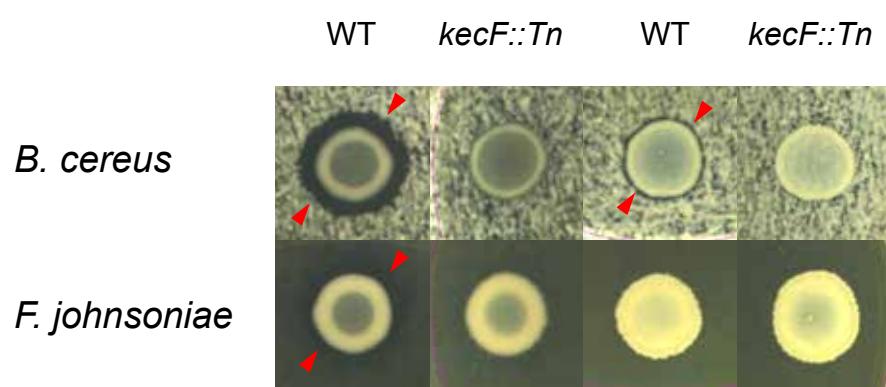


Compound 4

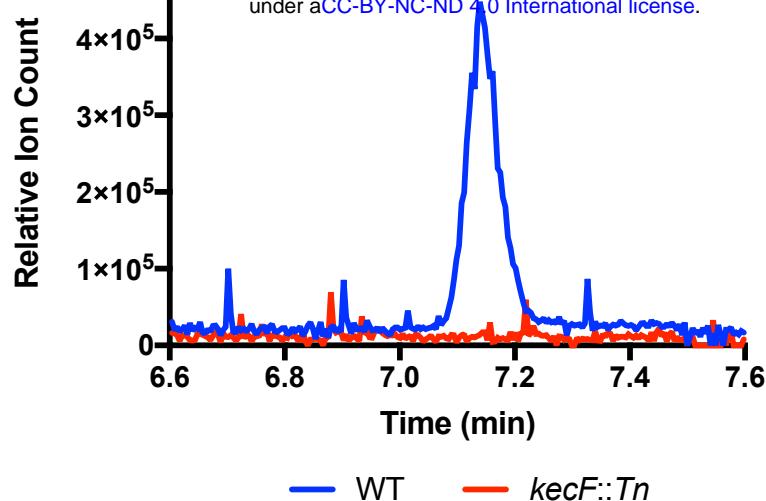
Observed MS/MS fragmentation pattern of koreenceine D



Calculated MS/MS fragmentation pattern of koreenceine D


FIG S8.

bioRxiv preprint doi: <https://doi.org/10.1101/499731>; this version posted December 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


FIG S9.

bioRxiv preprint doi: <https://doi.org/10.1101/499731>; this version posted December 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

FIG S10.

bioRxiv preprint doi: <https://doi.org/10.1101/499731>; this version posted December 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Table S1.

Name	Abbreviation	GenBank assembly accession	Koreenceine-like cluster clade
[<i>Flavobacterium</i>] sp. 29	29	GCA_002754355	A
<i>Pseudomonas asplenii</i> 4A7	4A7	GCA_002891515	A
<i>Pseudomonas baetica</i> a390	a390	GCA_003031005	A
<i>Pseudomonas baetica</i> LMG 25716	LMG25716	GCA_002813455	A
<i>Pseudomonas fluorescens</i> NZ011	NZ011	GCA_000276585	A
<i>Pseudomonas fluorescens</i> BW11P2	BW11P2	GCA_001679645	A
<i>Pseudomonas fluorescens</i> C3	C3	GCA_000967955	A
<i>Pseudomonas fluorescens</i> H16	H16	GCA_000802985	A
<i>Pseudomonas fluorescens</i> MS82	MS82	GCA_003055645	A
<i>Pseudomonas jessenii</i> LBp-160603	LBp160603	GCA_003205375	A
<i>Pseudomonas koreensis</i> CI12	CI12	GCA_002003425	A
<i>Pseudomonas mandelii</i> JR-1	JR1	GCA_000257545	A
<i>Pseudomonas mandelii</i> PD30	PD30	GCA_000690555	A
<i>Pseudomonas mandelii</i> LMG 21607	LMG21607	GCA_900106065	A
<i>Pseudomonas prosekii</i> LMG 26867	LMG26867	GCA_900105155	A
<i>Pseudomonas prosekii</i> P2406	P2406	GCA_003122265	A
<i>Pseudomonas prosekii</i> P2673	P2673	GCA_003122305	A
<i>Pseudomonas</i> sp. 31-12	3112	GCA_003151075	A
<i>Pseudomonas</i> sp. 43NM1	43NM1	GCA_002836905	A
<i>Pseudomonas</i> sp. AD21	AD21	GCA_002878485	A
<i>Pseudomonas</i> sp. B15(2017)	B152017	GCA_002113215	A
<i>Pseudomonas</i> sp. B17(2017)	B172017	GCA_002113765	A
<i>Pseudomonas</i> sp. B2(2017)	B22017	GCA_002113685	A
<i>Pseudomonas</i> sp. B20(2017)	B202017	GCA_002113125	A
<i>Pseudomonas</i> sp. B26(2017)	B262017	GCA_002113045	A
<i>Pseudomonas</i> sp. B35(2017)	B352017	GCA_002113645	A
<i>Pseudomonas</i> sp. B7(2017)	B72017	GCA_002112745	A
<i>Pseudomonas</i> sp. FSL W5-0299	FSLW50299	GCA_002005125	A
<i>Pseudomonas</i> sp. FW305-BF8	FW305BF8	GCA_002883215	A
<i>Pseudomonas</i> sp. GM16	GM16	GCA_000282155	A
<i>Pseudomonas</i> sp. GM24	GM24	GCA_000282235	A
<i>Pseudomonas</i> sp. GV091	GV091	GCA_003053805	A
<i>Pseudomonas</i> sp. Irchel s3a12	Irchels3a12	GCA_900187485	A
<i>Pseudomonas</i> sp. Irchel s3f10	Irchels3f10	GCA_900187515	A
<i>Pseudomonas</i> sp. Irchel s3h9	Irchels3h9	GCA_900187475	A

<i>Pseudomonas</i> sp. MPR-E5	MPRE5	GCA_002883015	A
<i>Pseudomonas</i> sp. MS586	MS586	GCA_001594225	A
<i>Pseudomonas</i> sp. Ok266	ok266	GCA_900110195	A
<i>Pseudomonas</i> sp. OV221	OV221	GCA_003391605	A
<i>Pseudomonas</i> sp. OV657	OV657	GCA_003386585	A
<i>Pseudomonas</i> sp. R15(2017)	R152017	GCA_002112685	A
<i>Pseudomonas</i> sp. R23(2017)	R232017	GCA_002112575	A
<i>Pseudomonas</i> sp. R24(2017)	R242017	GCA_002113465	A
<i>Pseudomonas</i> sp. R27(2017)	R272017	GCA_002113445	A
<i>Pseudomonas</i> sp. Root329	Root329	GCA_001424925	A
<i>Pseudomonas fluorescens</i> BS2	BS2	GCA_000308175	B
<i>Pseudomonas fluorescens</i> AHK-1	AHK1	GCA_003363095	B
<i>Pseudomonas fluorescens</i> FW300-N1B4	FW300N1B4	GCA_001625455	B
<i>Pseudomonas</i> <i>hunanensis</i> P11	P11	GCA_002910975	B
<i>Pseudomonas</i> <i>marginalis</i> BS2952	BS2952	GCA_900105325	B
<i>Pseudomonas</i> <i>monteili</i> SB3078	SB3078	GCA_000510285	B
<i>Pseudomonas</i> <i>monteili</i> SB3101	SB3101	GCA_000510325	B
<i>Pseudomonas</i> <i>monteili</i> MO2	MO2	GCA_001571445	B
<i>Pseudomonas</i> <i>plecoglossicida</i> DJ-1	DJ1	GCA_002307455	B
<i>Pseudomonas</i> <i>plecoglossicida</i> MR134	MR134	GCA_002864885	B
<i>Pseudomonas</i> <i>plecoglossicida</i> MR135	MR135	GCA_002864795	B
<i>Pseudomonas</i> <i>plecoglossicida</i> MR170	MR170	GCA_002864845	B
<i>Pseudomonas</i> <i>plecoglossicida</i> MR69	MR69	GCA_002864775	B
<i>Pseudomonas</i> <i>plecoglossicida</i> MR70	MR70	GCA_002864905	B
<i>Pseudomonas</i> <i>plecoglossicida</i> MR83	MR83	GCA_002864865	B
<i>Pseudomonas</i> <i>plecoglossicida</i> NyZ12	NyZ12	GCA_000831585	B
<i>Pseudomonas</i> <i>plecoglossicida</i> TND35	TND35	GCA_000764405	B
<i>Pseudomonas</i> <i>putida</i> B6-2	B62	GCA_000226035	B
<i>Pseudomonas</i> <i>putida</i> BIRD-1	BIRD1	GCA_000183645	B
<i>Pseudomonas</i> <i>putida</i> F1	F1	GCA_000016865	B
<i>Pseudomonas</i> <i>putida</i> HB3267	HB3267	GCA_000325725	B
<i>Pseudomonas</i> <i>putida</i> JB	JB	GCA_001767335	B
<i>Pseudomonas</i> <i>putida</i> KT2440	KT2440	GCA_000007565	B
<i>Pseudomonas</i> <i>putida</i> LS46	LS46	GCA_000294445	B
<i>Pseudomonas</i> <i>putida</i> ND6	ND6	GCA_000264665	B
<i>Pseudomonas</i> <i>putida</i> S12	S12	GCA_000495455	B
<i>Pseudomonas</i> <i>putida</i> SJTE-1	SJTE1	GCA_000271965	B
<i>Pseudomonas</i> <i>putida</i> Idaho	Idaho	GCA_000226475	B
<i>Pseudomonas</i> <i>putida</i> CA-3	CA3	GCA_002810225	B

<i>Pseudomonas putida</i> DPA1	DPA1	GCA_002891885	B
<i>Pseudomonas putida</i> strain DZ-C18	DZC18	GCA_002094795	B
<i>Pseudomonas putida</i> FDAARGOS_409	FDAARGOS409	GCA_002554535	B
<i>Pseudomonas putida</i> H	H	GCA_001077495	B
<i>Pseudomonas putida</i> HB13667	HB13667	GCA_001306495	B
<i>Pseudomonas putida</i> INSal382	INSal382	GCA_001653615	B
<i>Pseudomonas putida</i> JLR11	JLR11	GCA_001183585	B
<i>Pseudomonas putida</i> KCJK7911	KCJK7911	GCA_003053335	B
<i>Pseudomonas putida</i> N1R	N1R	GCA_900156185	B
<i>Pseudomonas putida</i> P1	P1	GCA_001865225	B
<i>Pseudomonas putida</i> PD1	PD1	GCA_000799625	B
<i>Pseudomonas putida</i> SF1	SF1	GCA_001027965	B
<i>Pseudomonas putida</i> UV4	UV4	GCA_002165695	B
<i>Pseudomonas putida</i> UV4/95	UV495	GCA_002165665	B
<i>Pseudomonas putida</i> TRO1	TRO1	GCA_000367825	B
<i>Pseudomonas taiwanensis</i> SJ9	SJ9	GCA_000500605	B
<i>Pseudomonas</i> sp. 22 E 5	22E5	GCA_900004705	B
<i>Pseudomonas</i> sp. 2822-17	282217	GCA_002742485	B
<i>Pseudomonas</i> sp. 2995-1	29951	GCA_002742505	B
<i>Pseudomonas</i> sp. 31 E 5	31E5	GCA_900005815	B
<i>Pseudomonas</i> sp. 31 E 6	31E6	GCA_900005935	B
<i>Pseudomonas</i> sp. B12(2017)	B122017	GCA_002113785	B
<i>Pseudomonas</i> sp. B13(2017)	B132017	GCA_002113245	B
<i>Pseudomonas</i> sp. B14(2017)	B142017	GCA_002113255	B
<i>Pseudomonas</i> sp. B22(2017)	B222017	GCA_002113105	B
<i>Pseudomonas</i> sp. B23(2017)	B232017	GCA_002113725	B
<i>Pseudomonas</i> sp. B24(2017)	B242017	GCA_002113085	B
<i>Pseudomonas</i> sp. B28(2017)	B282017	GCA_002113025	B
<i>Pseudomonas</i> sp. B4(2017)	B42017	GCA_002113565	B
<i>Pseudomonas</i> sp. B8(2017)	B82017	GCA_002113575	B
<i>Pseudomonas</i> sp. C5pp	C5pp	GCA_000814065	B
<i>Pseudomonas</i> sp. CC6-YY-74	CC6YY74	GCA_002025205	B
<i>Pseudomonas</i> sp. FFUPPS41	FFUPPS41	GCA_002858645	B
<i>Pseudomonas</i> sp. FW305-E2	FW305E2	GCA_002901725	B
<i>Pseudomonas</i> sp. GTC 16473	GTC16473	GCA_001753855	B
<i>Pseudomonas</i> sp. GTC 16482	GTC16482	GCA_001319995	B
<i>Pseudomonas</i> sp. Irchel 3H9	Irchel3H9	GCA_900187495	B
<i>Pseudomonas</i> sp. JY-Q	JYQ	GCA_001655295	B
<i>Pseudomonas</i> sp. Leaf58	Leaf58	GCA_001422615	B

<i>Pseudomonas</i> sp. LG1E9	LG1E9	GCA_003290225	B
<i>Pseudomonas</i> sp. MIACH	MIACH	GCA_001269925	B
<i>Pseudomonas</i> sp. MR 02	MR02	GCA_002797475	B
<i>Pseudomonas</i> sp. NBRC 111118	NBRC111118	GCA_001320085	B
<i>Pseudomonas</i> sp. NBRC 111121	NBRC111121	GCA_001320165	B
<i>Pseudomonas</i> sp. NBRC 111125	NBRC111125	GCA_001320295	B
<i>Pseudomonas</i> sp. NBRC 111136	NBRC111136	GCA_001320745	B
<i>Pseudomonas</i> sp. NBRC 111139	NBRC111139	GCA_001753955	B
<i>Pseudomonas</i> sp. OV577	OV577	GCA_003386595	B
<i>Pseudomonas</i> sp. P21	p21	GCA_001642705	B
<i>Pseudomonas</i> sp. PGPPP2	PGPPP2	GCA_002255825	B
<i>Pseudomonas</i> sp. RIT357	RIT357	GCA_000632245	B
<i>Pseudomonas</i> sp. RW405	RW405	GCA_003184135	B
<i>Pseudomonas</i> sp. SID14000	SID14000	GCA_002165135	B
<i>Pseudomonas</i> sp. SMT-1	SMT1	GCA_003204195	B
<i>Pseudomonas</i> sp. SWI36	SWI36	GCA_002948105	B
<i>Pseudomonas</i> sp. XWY-1	XWY1	GCA_002953115	B
<i>Streptomyces</i> <i>albulus</i> CCRC 11814	CCRC11814	GCA_000403765	C
<i>Streptomyces</i> <i>albulus</i> NK660	NK660	GCA_000695235	C
<i>Streptomyces</i> <i>albulus</i> PD-1	SaPD1	GCA_000504065	C
<i>Streptomyces</i> <i>albus</i> ZpM	ZpM	GCA_000963515	C
<i>Streptomyces</i> <i>diastatochromogenes</i> NRRL B-1698	NRRLB1698	GCA_001418405	C
<i>Streptomyces</i> <i>noursei</i> ATCC 11455	ATCC11455	GCA_001704275	C
<i>Streptomyces</i> <i>yunnanensis</i> CGMCC 4.3555	CGMCC43555	GCA_900142595	C
<i>Streptomyces</i> sp. MspMP-M5	MspMPM5	GCA_000373585	C
<i>Streptomyces</i> sp. NRRL F-4489	NRRLF4489	GCA_001509485	C
<i>Xenorhabdus</i> <i>bovienii</i> CS03	CS031	GCA_000973125	D
<i>Xenorhabdus</i> <i>bovienii</i> CS03	CS032	GCA_000973125	D
<i>Xenorhabdus</i> <i>bovienii</i> feltiae Florida	Florida	GCA_000736675	D
<i>Xenorhabdus</i> <i>bovienii</i> feltiae France	France	GCA_000736655	D
<i>Xenorhabdus</i> <i>bovienii</i> feltiae Moldova	Moldova	GCA_000736595	D
<i>Xenorhabdus</i> <i>bovienii</i> intermedium	intermedium	GCA_000736615	D
<i>Xenorhabdus</i> <i>bovienii</i> kraussei	kraussei	GCA_00073669	D
<i>Xenorhabdus</i> <i>bovienii</i> kraussei Quebec	Quebec	GCA_000736555	D
<i>Xenorhabdus</i> <i>bovienii</i> oregonense	oregonense	GCA_000736535	D
<i>Xenorhabdus</i> <i>bovienii</i> punctauvense	punctauvense	GCA_000736635	D
<i>Xenorhabdus</i> <i>khoisanae</i> MCB sp. ICMP 17674	ICMP17674	GCA_001037465	D
<i>Xenorhabdus</i> <i>poinarii</i> G6	G6	GCA_000968175	D
<i>Xenorhabdus</i> sp. NBAII XenSa04	XenSa04	GCA_000798625	D

Uncultured bacterium	pEAF66	EU099626
----------------------	--------	----------