

Terminal Reproductive Investment, Physiological Trade-offs and Pleiotropic Effects: Their effects produce complex immune/reproductive interactions in the cricket *Gryllus texensis*

Atsushi Miyashita^{1*}, Ting Yat M. Lee¹, Laura E. McMillan¹, Russel H. Easy², and Shelley A. Adamo¹

1. Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.

2. Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada.

*Author corresponding to: atmiyashita@dal.ca

Summary

1. Should females increase or decrease reproduction when attacked by pathogens? Two hypotheses provide opposite predictions. Terminal reproductive investment theory predicts an increase in reproduction, but hypothesized physiological trade-offs between reproduction and immune function might be expected to produce a decrease. There is evidence for both hypotheses. What determines the choice between the two responses remains unclear. We examine the effect of age on the reproductive response to immune challenge in long-wing females of the Texas field cricket, *Gryllus texensis*, when fed an ecologically valid (limited) diet.

21 2. The limited diet reduced reproductive output. However, immune challenge had no effect
22 on their reproductive output either in young or middle-aged crickets, which is contrary to
23 either prediction.

24 3. Flight muscle maintenance correlated negatively with reproductive output, suggesting a
25 physiological trade-off between flight muscle maintenance and reproduction. Within the
26 long-wing variant there was considerable variability in flight muscle maintenance. This
27 variability may mask physiological trade-offs between immunity and reproduction.

28 4. Middle-aged crickets had higher total phenoloxidase (PO) activity in their hemolymph,
29 compared to young females, which is contrary to the terminal investment theory. Given
30 that PO is involved in both immunity and reproduction, the increased PO may reflect
31 simultaneous investment in both functions.

32 5. We identified four proPO transcripts in a published RNA-seq dataset (transcriptome).
33 Three of the proPO genes were expressed either in the fat body or the ovaries (supporting
34 the hypothesis that PO is bifunctional); however, the two organs expressed different
35 subsets. The possible bifunctionality of PO suggests that it may not be an appropriate
36 immune measure for immune/reproductive trade-offs in some species.

37 6. Increasing age may not cue terminal reproductive investment prior to senescence.

38

39 **Key-words**

40 Life history theory, Ecoimmunology, phenoloxidase, Physiological trade-off, Terminal
41 investment

42

43 **Introduction**

44 Resources are finite in animals. The partitioning (i.e. allocation) of those resources among
45 resource-intensive traits such as immunity and reproduction can lead to physiological trade-offs,
46 resulting in negative correlations between them (e.g. in insects, Zera & Harshman 2001;
47 Lawniczak *et al.* 2007; Schwenke, Lazzaro & Wolfner 2015; in vertebrates, French *et al.* 2007,
48 McCallum and Trauth 2007; Kalbe *et al.* 2009; Nordling *et al.* 1998; and Mills *et al.* 2009).
49 Consistent with this argument, activation of an immune response leads to reduced reproductive
50 effort in a range of species (e.g. insects, see Schwenke *et al.* 2016). However, under some
51 conditions, an immune challenge leads to increased reproductive output, which is usually
52 interpreted as a type of fecundity compensation (Duffield *et al.* 2017). An immune challenge
53 signals a risk of early death from infection, and, therefore, a decline in an animal's residual
54 reproductive value. In response, the animal shifts investment away from somatic maintenance to
55 fuel a final bout of reproduction. This strategy is called terminal reproductive investment
56 (Clutton-Brock 1984). Whether an individual should increase or decrease reproduction when
57 infected depends on a range of poorly understood factors (e.g. age, Duffield *et al.* 2017).

58 Insects make good model systems for these types of questions, in part because their
59 reproductive output is easy to quantify, and their immune systems are simpler than those of
60 vertebrates (Adamo 2017). Moreover, insects like the cricket *Gryllus texensis* are large enough to
61 measure multiple immune components simultaneously (e.g. key insect immune components such
62 as phenoloxidase (PO) activity (Cerenius, Lee & Söderhäll 2008)).

63 Age is expected to reduce the fitness benefit gained from increasing immune function and
64 decreasing reproduction (i.e. a physiological trade-off) when infected (see Duffield *et al.*, 2017).
65 Cricket residual reproductive value declines with age (Shoemaker *et al.* 2006), and, therefore, the
66 fitness pay off for reducing current reproduction to preserve future reproduction should decline
67 over time. Furthermore, if declining immune function due to age (i.e. during senescence) reduces
68 the chance of recovery (e.g. (Adamo, Jensen & Younger 2001)), then it may be adaptive to
69 prioritize reproduction during an immune challenge in older animals. Therefore, age should
70 increase the likelihood that terminal reproductive investment will be activated by an immune
71 challenge (Duffield *et al.*, 2017). Supporting this, interactions between age, immune challenge
72 and reproductive investment have been observed in several male insect models such as *Gryllodes*
73 *sigillatus* (Duffield *et al.* 2018), *Drosophila nigrospiracula* (Polak & Starmer 1998), and
74 *Allonemobius socius* (Copeland & Fedorka 2012). However, evidence in female insects is
75 relatively scarce, even though reproductive output in females is often easier to quantify. Immune
76 challenge has a variable effect on female crickets (Table 1); possibly female age may help
77 explain this variability. In *G. texensis*, females retain high immunocompetence throughout their
78 adult stage, while in males it declines (Adamo, Jensen & Younger 2001). These results suggest
79 that females may have a reproductive resource allocation strategy that is different from males
80 (also see Rapkin *et al.* (2018) for sex-specific effects of macronutrient intake on trade-offs
81 between reproduction and immunity in *G. sigillatus*). In this study, we examine the effect of age
82 on the female reproductive response to infection.

83

84 Table 1. Effect of immune challenge on reproduction in female crickets

Species	Dosage	Age (post adult) at the start of treatment	Duration of immune challenge	Effect on reproduction	Reference
<i>Acheta domesticus</i>	100 µg/cricket of <i>Serratia marcescens</i> LPS 5 x 10 ⁴ live cells of <i>S. marcescens</i>	2 weeks 2 or 5 weeks	Acute	+ (positive) +	(Adamo 1999)
<i>Acheta domesticus</i>	1 or 2 nylon pieces/cricket (implantation)	18 days	Chronic (3 weeks)	- (negative)	(Bascuñán-García <i>et al.</i> , 2009)
<i>Gryllus texensis</i>	8.75 x 10 ³ live cells of <i>S. marcescens</i> 1 x 10 ⁵ live cells of <i>S. marcescens</i> 1.2 x 10 ⁵ live cells of <i>S. marcescens</i>	11 to 19 days 11 to 19 days 2 weeks	Acute	+ 0 (no effect) +	(Shoemaker <i>et al.</i> 2006)
<i>Gryllus texensis</i>	LD ₀₁ of <i>S. marcescens</i> live cells LD ₀₁ of <i>Bacillus cereus</i> live cells	2 weeks 2 weeks	Acute	0 -	(Adamo & Lovett 2011)
<i>Gryllus texensis</i>	20 µg/cricket of <i>S. marcescens</i> LPS 100 µg/cricket of <i>S. marcescens</i> LPS	13 to 19 days	Chronic (every three days for 12 days)	0 0	(Shoemaker & Adamo 2007)
<i>Gryllus texensis</i>	1 x 10 ⁴ heat-killed <i>S. marcescens</i>	1 day	Chronic (every three days for 17 days)	-	(Stahlschmidt <i>et al.</i> 2013)
<i>Hemideina crassidens</i>	100 µg <i>S. marcescens</i> LPS 500 µg <i>S. marcescens</i> LPS	Uncontrolled (field collection)	Chronic (every four days for 17 days)	- -	(Kelly 2011)
<i>Gryllodes sigillatus</i>	Nylon implantation (encapsulation response)	14 day	Chronic	0	Rapkin <i>et al.</i> 2018

85

86

87 In this study, we chose two age classes to assess the effect of immune challenge in this
 88 study: young (11 days as an adult) and middle-aged (21 days old). At 11 days of age (i.e. young
 89 crickets), females have mated and begun to produce eggs, but their reproductive activity
 90 (oviposition rate) is less than maximal in this cricket (Shoemaker, Parsons & Adamo 2006). By
 91 21 days of age, females are fully mature, with high oviposition rates (Shoemaker *et al.* 2006).
 92 However, they are still within the typical age for females found in the field (Murray & Cade

93 1995), thus they are not old in an ecological sense. We predicted that young female crickets
94 would respond to an immune challenge with decreased reproduction, but an enhancement of
95 immune function (e.g. increased lysozyme-like function). Middle-aged females, on the other
96 hand, would increase oviposition, but would show a more modest activation of their immune
97 response compared with younger females.

98 One technical difficulty in determining whether there has been a physiological trade-off
99 between immunity and reproduction is assessing immunity. Immune function is made up of
100 multiple components, which can sometimes be traded-off for each other (Adamo 2004b).
101 Immune systems can also reconfigure their molecular network pathways, and therefore a
102 reduction in a single immune component may be mistaken for a reduction in investment, as
103 opposed to a reconfiguration (Adamo *et al.* 2016). Finally, the primacy of different immune
104 pathways can shift depending on the physiological context (Armitage & Boomsma 2010; Piñera
105 *et al.* 2013; Adamo 2014; Adamo *et al.* 2016). Therefore, to monitor immunological investments
106 in crickets, it is important to measure multiple aspects of immune function on each animal. We
107 measured PO, glutathione (GSH, which helps buffer the self-damage caused by PO (Clark, Lu &
108 Strand 2010)), and lysozyme-like activity. PO and lysozyme-like activity respond differently to
109 immune challenges; lysozyme-like activity is inducible in response to pathogen challenge in
110 insects while PO may form a constitutive immune defense (Adamo 2004a).

111 Although PO activity is commonly used as a proxy for immune function in
112 ecoimmunology, PO is also involved in egg production in insects, which potentially complicates
113 the interpretation of PO levels in female insects. PO is involved in processes such as the tanning
114 of the egg chorion (Li & Christensen 1993; Li 1994) and/or the eggs' antimicrobial defense
115 (Rizki & Rizki 1990; Abdel-latief & Hilker 2008). In *G. texensis*, PO activity in eggs has also

116 been reported (Stahlschmidt *et al.* 2013). There appears to be several sources of PO in insects,
117 and this may depend on the species. Hemocytes have been viewed as a major source of PO
118 (Cerenius *et al.* 2008; Kanost & Gorman 2008; Lu *et al.* 2014); however, in some insects, the fat
119 body and the ovaries also express POs (e.g. mosquitoes, see Fig. 5 of Cui, Luckhart & Rosenberg
120 2000). Little is known in insects about how these POs are trafficked between organs, thus it
121 remains unclear whether the hemolymph PO level reflects either immune investment or
122 reproductive investment, or both. To fulfill the knowledge gap on molecular information about
123 PO production in crickets, we assess PO gene expression in both fat body and ovaries.

124

125 **Materials and Methods**

126 Animals

127 Female *G. texensis* crickets were originally obtained from San Antonio, Texas, USA, and have
128 been maintained in the laboratory for approximately 8 generations. The colony was maintained at
129 26°C on a 12/12 hour light/dark cycle, supplied with food and water *ad libitum*. Long-winged
130 adult females were weighed and isolated from the colony within 48 hour after the final molt (the
131 day which we call 'day 1' in this study). We did not use the short-wing morphs in this study. Each
132 of the isolated females was isolated in a plastic container and supplied with a shelter and water
133 bottle. Food was placed in the individual containers for 3 hours every 3 days. During those 3
134 hours, crickets could feed *ad libitum*. This diet has been shown to produce females with the same
135 fat content as females collected in the field (Adamo *et al.* 2012). On days 7 and 8 (female adult
136 age), each female was provided with three different males. Each male was placed in the female's
137 container for about 8 hours. After each mating, males were switched so as to ensure that each

138 female was exposed to three different males. All experiments were approved by the Animal
139 Care Committee of Dalhousie University (# I-11-025) and are in accordance with the Canadian
140 Council on Animal Care.

141

142 Treatments

143 Female crickets were randomly assorted by weight, and assigned one of the following eight
144 treatments on the day they were isolated from the colony. Days were counted from the day of
145 isolation (see timeline in Fig. 1).

146 *Early Controls (Control (E))*. Crickets were handled on day 11, and hemolymph samples
147 were collected on day 12 and day 36.

148 *Late Controls (Control (L))*. Crickets were handled on day 21, and hemolymph samples
149 were collected on day 22 and day 36.

150 *Early Immune Challenge (IC (E))*. On day 11, crickets were injected with 2 μ L of a
151 mixture of heat-killed pathogen cells (*Serratia marcescens*, *Bacillus cereus* and
152 *Beauveria bassiana*.) The dose of each pathogen was approximately 1/10 of the LD50
153 dose prior to heat inactivation. Hemolymph samples were collected on day 12 and day
154 36.

155 *Late Immune Challenge (IC (L))*. Crickets were injected on day 21 with 2 μ L of the same
156 heat-killed pathogen mixture described above. Hemolymph samples were collected on
157 day 22 and day 36.

158 *Early Sham (Sham (E))*. On day 11, crickets were poked by an empty injection needle, but
159 not injected with any sample. Hemolymph samples were collected on day 12 and 36.

160 *Late Sham (Sham (L))*. On day 21, crickets were poked by an empty injection needle, but
161 not injected with any sample. The hemolymph samples were collected on day 22 and 36.
162 *No Treatment Control (NTC)*. Hemolymph samples were collected on day 36.
163 *No treatment Control (ad lib feeding) (NTC (ad lib))*. Hemolymph samples were collected
164 on day 36 and crickets were fed *ad libitum*.
165

166 Figure 1. Experimental Schedules

167 The crickets used in this study (except for ones for the ovarian gene expression experiment) went
168 through one of the eight experimental timelines shown in the chart. Details are described in
169 Materials and Methods.

170

171

172 Reproductive Output

173 We monitored the number of eggs laid in the cotton balls twice a week. Five eggs were
174 subsampled from each cotton ball and placed separately in centrifuge tubes (1.5mL) with a small
175 piece of cotton and 500 μ L of water. In cases where the number of eggs laid in the cotton ball
176 was less than five, all eggs were sampled. These eggs were then kept at 26°C and monitored for
177 35 days. Hatch date, hatchling survival (daily), and hatchling body mass at 35 days after the
178 hatch day were monitored for the sampled eggs. Eggs were censored and assumed not viable if
179 they had not hatched within 35 days. The reproductive value (RV), a proxy for fitness, was
180 calculated as a product of the number of eggs and the hatch ratio. For example, if a female laid
181 50 eggs and 3 out of the 5 subsampled eggs hatched, then the reproductive value would be 30.

182 Dissection

183 If still viable, crickets were dissected on day 36. For each cricket, we: 1) measured body mass, 2)
184 collected fat body tissues for gene expression analyses (described below), 3) counted eggs in the
185 lateral oviducts, and 4) observed flight muscle state (functional/histolysed as described by Zera
186 2003). We also measured length of the hind leg femurs and recorded the average of the two legs.
187 For gene expression analysis in the ovaries, we dissected a group of females on day 15 that were
188 independent of the rest of the study and collected both the fat body and the ovaries. These
189 crickets were also given the intermittent diet during adulthood.

190

191 Hemolymph Collection

192 We collected hemolymph samples by poking the membrane under the pronotum plate with an
193 ice-cold pipette tip (to retard coagulation), and the hemolymph was collected as it exited the
194 wound. We collected 8 μ L of hemolymph which was mixed with 55 μ L of ice-cold MilliQ water
195 in a 1.5 mL centrifuge tube. Samples were then split into three fractions (20 μ L for the PO and
196 Bradford assays, 23 μ L for the GSH assay, and the rest (20 μ L) for the Lysozyme assay).
197 Immediately after the sample collection, we spun the hemolymph sample for the GSH assay (23
198 μ L) at 18,800 g for 10 min at 4 °C, and 20 μ L of the supernatant was immediately mixed with 20
199 μ L of 100 mg/mL meta-phosphoric acid. After 5-minute incubation at room temperature, we
200 spun the samples at 2,900 g for 3 min at room temperature. 35 μ L of the deproteinated
201 supernatant was collected in a new 1.5 mL centrifuge tube. All the samples for PO, Bradford,
202 GSH, or Lysozyme assays were stored at -80°C until use.

203 Hemolymph Assays

204 Total PO activity and total protein concentration were measured as described previously (Adamo
205 2004a). GSH concentration was measured as described previously (McMillan, Miller & Adamo
206 2017). A detailed information for the assays is described in the Supplementary file. Briefly, for
207 lysozyme-like activity, hemolymph samples were collected as described above. Samples were
208 thawed and spun at 12,000 g for 3 min at 4 °C. 5 µL of the supernatant was mixed with 45 µL
209 *Micrococcus luteus* cell (Sigma #M3770) suspension (10 mg/20 mL Phosphate-buffered Saline
210 (PBS), pH = 7) in a 96-well (flat bottom) plate. The mixture was incubated at 30 °C, and we
211 measured OD₄₅₀ every 30 seconds for 50 minutes. Lysozyme derived from chicken egg white
212 was used to produce a standard curve (Sigma-Aldrich, #62971-10G-F). A blank (PBS) were run
213 concurrently. The mean value from triplicate technical replicates was used for each sample.

214 Gene Identification

215 To identify the gene transcripts in the cricket, we first constructed a transcriptome database
216 based on a raw sequence of RNA reads available online (National Center for Biotechnology
217 Information (NCBI, <https://www.ncbi.nlm.nih.gov/>). The accession number of the bioproject is
218 PRJNA429132 (submitted by Natural History Museum, Berlin, Germany). We then set up a
219 searching pipeline (written in Python programming language, the code is available at the author's
220 GitHub repository at <https://github.com/atmiyashita/CricketGeneFinder2018/>). The code: 1)
221 fetches cDNA sequences in arthropods from NCBI Nucleotide database that are associated with
222 the target protein name (i.e. 'vitellogenin', 'phenoloxidase' etc.), 2) runs BLAST locally using the
223 fetched sequence as a query and the transcriptome (of *G. texensis*) as a database, 3) outputs the
224 result in xml format, and 4) returns a summary. The hit sequences were then confirmed by blastx
225 at

226 https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearch&LINK

227 [LOC=blasthome](#) to confirm its homology at amino acid sequence level (i.e. primary structure).

228 For vitellogenin, we further performed a physiological validation in this study, because the

229 sequence similarity was relatively low (compared to proPO, see figure S1).

230

231 Gene Expression Analysis

232 The primers used in this study are listed in Table S1. We followed the MIQE guideline (Bustin *et*

233 *al.* 2009; Taylor *et al.* 2010) for the qPCR experiments. The fat body (the speckled white tissues

234 found in the abdominal cavity) was collected carefully to minimize collecting other tissues such

235 as the trachea. The ovaries were collected carefully so as not to contaminate the sample with fat

236 body. We washed ovaries once with PBS to further avoid potential contamination of the sample

237 with hemocytes. The tissues were stored in 300 μ L of RNAlater (Thermo Fisher Scientific,

238 #AM7020) in 1.5mL centrifuge tubes and frozen at -80°C until further use. Detailed information

239 for RNA extraction, cDNA synthesis, and quantification is described in the Supplementary

240 information.

241 Data Analysis

242 In this study, we isolated 240 female adult crickets assigned across 8 treatment groups. 8 out of

243 the 240 crickets did not mate (i.e. 232 crickets contained spermatheca filled with sperm when

244 dissected). These 8 were excluded from the analysis. 66 crickets were also excluded from the

245 analysis because some data were lost (e.g. due to death, Fig. S2). Thus, we acquired a complete

246 dataset on 166 female crickets that: 1) mated, 2) survived for 36 days. We noted some inter-trial

247 variation in the baseline level of immune factors, so we treated the trial numbers as a random

248 factor in the linear mixed models. Unless stated otherwise, we used packages 'lme4' and
249 'lmerTest' running on R (version 'Short Summer' (3.4.2)) for the linear mixed models. The details
250 for each analysis is described in the figure legends. As a measurement of condition, the Scaled
251 Mass Index (SMI) (Kelly, Tawes & Worthington 2014) was calculated for each cricket.

253

254 **Results**

255 Effect of food availability on overall reproductive output

256 Controls that were food-limited (NTC) produced fewer eggs than controls fed *ad libitum*. (i.e.

257 (NTC (*ad lib*)) (Fig. 2A). *Ad lib* fed crickets also laid more eggs, and had more eggs in the lateral

258 oviducts on day 36 than did food-limited crickets (Fig. 2B and 2C). The ratio of eggs laid by day

259 36 over total eggs produced, was similar between the two feeding conditions (Fig. 2D). The

260 relative number of eggs laid compared with eggs held in reserve in the lateral oviduct did not

261 vary with diet (Student's t-test; $t = 0.87$, $df = 29$, $p = 0.39$). Also, 3 out of 20 females had pink

262 (functional) flight muscles on day 36 in NTC group, compared to 3 out of 19 females in NTC (*ad*

263 *lib*) group, suggesting that the feeding condition did not affect the likelihood of flight muscle

264 histolysis by day 36 (Chi-squared test; $\chi^2 = 1.3e-31$, $df = 1$, $p = 1$).

265

266 **Figure 2. Effect of feeding condition on reproductive output**

267 The feeding condition (intermittent vs. *ad libitum*) significantly affected the reproductive output

268 of the crickets. (A) The total number of eggs produced by day 36 (a sum of the laid eggs and the

269 eggs found in the lateral oviducts) was significantly lower in the NTC than NTC (*ad lib*). (B,C)

270 The number of eggs laid by day 36 (B) and the number of eggs found in the lateral oviducts (C)

271 were also significantly lower in the intermittent feeding condition. The p-values shown in the

272 figure is calculated by Welch Two Sample t-test. (D) The portion of laid eggs (i.e. laid:total ratio)

273 was comparable between the two feeding conditions.

274

275

276 Treatment effects on immune function and survival

277 IC (E) and IC (L) groups did not show any differences in PO level, GSH level, and PO:GSH
278 ratio in the hemolymph 24 hours after the immune challenge (i.e. day 12 and 22) compared with
279 controls (Fig. S4). The hemolymph protein concentration in the IC (E) group increased relative
280 to controls 24 h after the immune challenge (Fig. S4). IC (L) showed higher lysozyme-like
281 activity relative to controls 24 hours after the challenge (Fig. S4). Only one group produced
282 effects that lasted until day 36, the IC (L) on GSH (Fig. S4). The overall survival rate on day 12,
283 22, and 36 was 100% (210/210), 99% (207/210), and 79% (166/210) as shown in Fig. S2, and
284 there was no difference in survival across the seven groups (Fig. S2B; $\chi^2 = 9.8$, df = 6, p = 0.13).

285

286 No effect of immune challenges on reproductive output

287 The total number of eggs produced, the number of eggs laid, and the number of eggs in the
288 lateral oviducts, and the ratio of laid eggs to the total number of eggs on day 36 was comparable
289 across all seven treatment groups (Fig. 3). No effect of treatment was observed at any time point
290 (Fig. S5).

291

292 **Figure 3. No effect of immune challenge on reproductive output**

293 There was no significant effect of treatments on overall (36-day) reproductive outputs measured
294 as (A) number of eggs laid, (B) number of total eggs produced, (C) number of eggs found in the

295 lateral oviducts, and (D) ratio of laid:total number of eggs. Also, there was no acute effect on the
296 reproductive output immediately after the treatments (E and F). Detailed time course is also
297 shown in Fig. S5, which corroborates the lack of treatment effect on reproductive output.

298

299

300 Association between dispersion capability and reproductive output.

301 Most crickets had white (histolysed) flight muscle on day 36 (130 of 150 observations), which
302 was observed equally across the eight groups ($\chi^2 = 3.9$, $df = 7$, $p = 0.79$). The crickets that still
303 retained pink (functional) flight muscles on day 36 produced and laid fewer eggs than the
304 crickets with histolysed flight muscle (Fig. 4A, B). The number of eggs found in the lateral
305 oviduct on day 36 was not significantly different between the two morphs (Fig. 4C), but the
306 laid:total ratio was significantly lower in pink-muscle crickets (Fig. 4D). The body condition
307 measure, SMI, was comparable between the two morphs on day 1, but was higher in the white-
308 muscle morph on day 36 (Fig. 4E). Also, an increase in SMI over time was observed in the
309 white-muscle morph, but not in the pink-muscle morph (Fig. 4E). The body mass on day 1 was
310 significantly higher in pink-muscle crickets, but that on day 36 was comparable between the two
311 morphs (Fig. 4F). Increase in body mass over time was only observed in the white-muscle morph
312 (Fig. 4F).

313

314 **Figure 4. Flight capability is negatively correlated with reproductive output**

315 Total number of produced eggs (A), number of laid eggs (B), and the laid:total ratio (D) was
316 higher in the crickets that had histolysed (white) flight muscle on day 36. The number of eggs

317 found in the lateral oviducts showed a trend toward significance (C). SMI represents Scaled
318 Mass Index (E). d01 and d36 represents day 1 and day 36 (E and F).

319

320 Age-dependent changes in immune measures

321 Phenoloxidase activity was higher in 22 day old and 36 day old adult females than in 12 day old
322 adult females (Fig. 5A), Other parameters we measured in the hemolymph (GSH, PO:GSH ratio,
323 lysozyme-like activity, and protein level) did not show age-dependent differences (Fig. 5B-E).
324 The PO level showed a modest positive correlation with reproductive output ($r^2 = 0.11$,
325 $p=1.03e-07$) (Fig. S6).

326

327 **Figure 5. Age-dependent increase of PO level**

328 Age-dependent change in hemolymph parameters. The PO level (μg (tyrosinase equivalent)/mL),
329 the GSH level (μM), the PO:GSH ratio, the lysozyme-like activity ($\mu\text{g}/\text{mL}$), and the protein level
330 ($\mu\text{g}/\text{mL}$) are log10-transformed and shown in the chart. The numbers below each chart represent
331 the ages at which the blood was collected. For days 12, 22, and 36, results from Control (E/L)
332 and NTC are plotted. Each dot represents an individual cricket. The treatment effects were
333 examined using Mixed Linear Models (using 'lme4' package in R), considering cohort identity
334 (i.e. experimental date) as a random factor in the model. Only PO showed a significant increase
335 over age (A), while other parameters showed no trend (B-E).

336

337 Expression of proPOs in the ovaries

338 We detected three proPO transcripts in the ovary and the fat body. proPO1 was consistently
339 expressed in the fat body and the ovaries at comparable levels (Fig. 6A). proPO2 was expressed
340 specifically in the ovaries (Fig. 6B), while proPO3 was expressed specifically in the fat body
341 (Fig. 6C). Vitellogenin was expressed specifically in the fat body (Fig. 6D).

342

343

344 **Figure 6. Ovaries produce phenoloxidase (PO) in the cricket**

345 Gene expression levels of proPOs (A-C) and Vitellogenin (D) were measured in the fat body and
346 the ovaries. Experimental procedures are described in Materials and Methods. Translated
347 sequences of each transcript is shown in Figure S1. The values were normalized by two reference
348 genes, and the relative expression levels (arbitrary units), where the expression level for the
349 reference is set to be 1.0.

351 Discussion

352 Food limitation reduced the total number of eggs produced, corroborating earlier studies that this
353 diet reduces reproduction (e.g. Adamo *et al.* 2012). We had assumed that under low food
354 availability, females would have proportionately fewer eggs in reserve in the lateral oviducts
355 than did *ad lib* controls. In other words, we expected that food-limited females would lay
356 proportionately more of their eggs in order to maintain egg output even as egg production fell.
357 However, females maintained the same proportion of eggs in reserve when food-limited as when
358 resources were abundant. Possibly females reduce their risk of low offspring survival by laying
359 eggs in different places at different times. This strategy of oviposition site diversification would
360 explain why females are found with eggs in their lateral oviducts even in the field (Adamo 1999).

361 Despite the evidence that the food-limited diet reduced the resources needed for
362 reproduction (i.e. because food-limited crickets had fewer total eggs), we found no evidence of a
363 physiological trade-off between immunity and reproduction in either young or middle-aged adult
364 females in response to an immune challenge. This result corroborates other studies in crickets
365 that did not find a reduction in reproduction after a single immune challenge or repeated immune
366 challenges (Table 1). Previous studies on this species have demonstrated that the immune
367 challenge we used induces a robust immune response in female crickets (Adamo 2004a; 2010).
368 Moreover, in this study, we found an increase in lysozyme-like activity 24 h later in older
369 (middle-aged) females, suggesting that the minimal effect was not due to a lack of immune
370 response. However, it is possible that the heat-killed challenge did not induce an enough effect to
371 trigger a physiological trade-off, although the immune challenge does trigger sickness
372 behaviours in this cricket (Sullivan, Fairn & Adamo 2016). It is also possible that the decrease in

373 reproduction was small, which was not noticeable given the large variability in egg number and
374 egg-laying behaviour. Assuming the same effect size and variability as found in our data set (for
375 example, the effect size (Cohen's d) was 0.05 between the numbers of eggs laid in NTC and IC
376 (E) groups), we would need more than 780 crickets/group to potentially find a positive effect.
377 Such a small effect is inconsistent with most studies on immune/reproductive trade-offs (e.g.
378 Stahlschmidt *et al.* 2013).

379 This discrepancy may be explained by unique aspects of cricket life history. Long-
380 winged *G. texensis* crickets histolyze their wing muscles at some point during their adult life
381 (authors' personal observation), which releases additional resources for reproduction in other
382 cricket species (Zera, Sall & Grudzinski 1997; Zera, Potts & Kobus 1998). Once the muscles are
383 histolyzed, they are no longer capable of flight (Zera & Denno 1997). The additional resources
384 provided by the wing muscles may reduce trade-offs between immunity and reproduction.
385 Mathematical models of trade-offs have demonstrated that trade-offs may be difficult to
386 demonstrate if the variance in resource acquisition is large compared with that in resource
387 allocation (van Noordwijk & de Jong 1986; Zera & Harshman 2001; Metcalf 2016). In this study
388 we observed large variability in the timing of flight muscle histolysis within each group,
389 suggesting that there is considerable individual difference in available resources at any particular
390 time point. Supporting our hypothesis that flight muscle histolysis may provide an important
391 boost in resources for reproduction, flight muscle histolysis showed a strong association with
392 reproductive output. Future studies should note whether wing muscles have been histolyzed
393 when studying physiological trade-offs in crickets.

394 There was also no evidence of terminal reproductive investment in either age class. We
395 expected that older (i.e. middle-aged) female crickets should increase reproduction when given

396 heat-killed bacteria, as has been observed previously (Shoemaker *et al.* 2006). However, there
397 was no evidence that females became more sensitive to an immune challenge with age. In
398 previous reports from our laboratory, female crickets showed terminal reproductive investment,
399 even at a young age (Adamo 1999; Shoemaker *et al.* 2006), but those immune challenges were
400 close to a lethal dose. The effect of a sub-lethal dose of bacteria on reproduction was only
401 observed in *G. texensis* when moist sand was used for egg-laying substrate, and was not
402 observed when moist-cotton was used, as in this study (Shoemaker *et al.* 2006). *G. texensis*
403 females prefer to oviposit in moist sand over moist cotton (Shoemaker *et al.* 2006), which may
404 have affected the terminal investment thresholds. This point needs to be validated in future
405 studies.

406 There is an alternative explanation for the lack of terminal investment with age in this
407 study: the threshold for terminal reproductive investment may not decrease with age until the
408 beginning of senescence. Although crickets can survive for more than 8 weeks in the laboratory,
409 they show signs of senescence after only 4 weeks (Shoemaker *et al.* 2006). This is consistent
410 with our study that showed an increase in mortality only at the last time point (i.e. 36 days, Fig.
411 S2). Crickets were not given an immune challenge at this time point, and, therefore, were not
412 tested for terminal reproductive investment at a time when mortality due to age was increasing.
413 Prior to senescence, the risk of death for female crickets may be the same each day, unless
414 predator or pathogen prevalence increases. Decreasing the threshold for terminal reproductive
415 investment prior to senescence may not be advantageous for female crickets when oviposition
416 site is important for offspring survival (Shoemaker *et al.*, 2006) and optimal oviposition sites are
417 not available.

418 Instead, females may depress egg production and/or egg laying, even when infected, until
419 conditions are favourable for offspring development. In some females of this species, completing
420 a dispersal flight may also signal better oviposition opportunities. Flight is known to increase egg
421 production in this and other cricket species (Guerra & Pollack 2009; Zeng, Zhu & Zhao 2014),
422 although some long-winged females histolyze their flight muscles at a young age even without a
423 dispersal flight (Zera, Sall & Grudzinski 1997). The threshold for terminal reproductive
424 investment may be very high prior to wing muscle histolysis. Given that this event occurs at
425 different dates across individuals, the effect may be masked by the number of non-responders.

426 Contrary to the terminal investment theory, in which individuals are assumed to invest
427 less in somatic maintenance with age, we found an age-dependent increase in PO. This is
428 consistent with an earlier study that found an age-dependent increase in PO in female, but not in
429 male, *G. texensis* (Adamo *et al.* 2001). An increase in PO activity with age has been found in
430 females of other species, and this increase can lead to Malpighian tubule damage in old female
431 *Tenebrio molitor* (Khan, Agashe & Rolff, 2017). Whether PO-induced damage is involved with
432 the increase in mortality observed by us on day 36 is unknown. However, given that the PO:GSH
433 ratio remained constant across ages (GSH buffers the self-damaging toxicity of PO), the self-
434 damaging cost of the increased PO may be minor.

435 The increase in PO activity with age may not represent an increase in immune investment,
436 or be an example of immune dysregulation. The increase in PO may represent an increase in
437 reproductive investment. PO is needed for the tanning and defense of insect eggs (Rizki & Rizki
438 1990; Li & Christensen 1993; Li 1994; Abdel-latief & Hilker 2008), and in some insects, it
439 appears to be synthesized by sources outside of the ovary and transported to the ovaries through
440 the blood (e.g. mosquito (Kim *et al.* 2005)). Therefore, increases in PO hemolymph levels may

441 represent an increase in reproductive effort, which incidentally also increases the amount of PO
442 available for immunity, and may lead to immunopathology in old age (Khan, Agashe & Rolff
443 2017). We have 3 lines of evidence for this in our study. PO activity rises in middle-aged (day-
444 22) crickets, which is prior to senescence (Fig. S2). Middle-aged females have a high
445 reproductive output, consistent with an increased need for PO to maintain increasing egg
446 production (Fig. S5). The age-dependent increase in PO is observed only in female *G. texensis*
447 (Adamo *et al.* 2001), suggesting that the rise of PO is involved with female-specific life-history
448 traits such as egg production. Finally, we detected proPO gene expression in the fat body, and,
449 therefore, it could supply PO to both hemolymph and ovary. However, we also found that the
450 ovary expressed two subtypes of proPO genes, and, therefore it is uncertain to what extent the
451 ovary and fat body contribute to egg PO. We have not done an in-depth molecular analysis of
452 the proPOs expressed in the ovaries, but the differential expression of proPO subtypes between
453 the fat body (primarily an immune organ, but also involved in reproduction via vitellogenin (yolk
454 protein) production, Arrese & Soulages 2010)), and the ovary indicates the complexity and
455 pleiotropic nature of PO. Identifying the circulating PO subtype(s) in the hemolymph and in the
456 eggs would help answer this question. It is these types of mechanistic details that are needed to
457 understand trade-offs (e.g. Zera and Harshman 2001; Duffield *et al.* 2017). This complexity also
458 suggests that PO is not an ideal proxy for immune investment in immune/reproductive trade-off
459 studies in female insects.

460 The lack of effect of age on the terminal reproductive response to infection in female
461 crickets in this study reflects the generally weak effect of age on the reproductive response to
462 infection in other female animals (Duffield *et al.*, 2017; Adamo 1999; Sanz *et al.* 2001; Cotter et

463 al. 2011). These results suggest that age has little effect on the threshold for terminal
464 reproductive investment in females during an infection prior to senescence.

465

467

468 **Authors' Contribution**

469 AM and SA conceived the ideas and designed methodology; RE established the qPCR methods;
470 AM, ML, LM collected the data; AM and SA analyzed the data; AM wrote R and Python codes;
471 AM and SA led the writing of the manuscript.

472 **Acknowledgment**

473 We thank Beatrice Chiang, Lynn Ann and Lindsey Puddicombe for cricket colony maintenance.
474 We also thank Anne Johnsen, Madeline Fawley, Brianna Limkilde, Bakhmala Khan and Galen
475 Pickett for help with data collection. We thank Ian Weaver for providing equipment. This study
476 was supported by an JSPS (Japan Society for the Promotion of Science) Overseas Research
477 Fellowship to AM and an NSERC (Natural Science and Engineering Research Council of
478 Canada) Discovery Grant to SA.

480

481 **Reference**

482 1. Abdel-latif M, Hilker M. Innate immunity: Eggs of *Manduca sexta* are able to respond to
483 parasitism by *Trichogramma evanescens*. *Insect Biochemistry and Molecular Biology*. 2008;38:
484 136–145. doi:10.1016/j.ibmb.2007.10.001

485 2. Adamo SA. The Effects of Stress Hormones on Immune Function May be Vital for the Adaptive
486 Reconfiguration of the Immune System During Fight-or-Flight Behavior. *Integrative and*
487 *Comparative Biology*. 2014;54: 419–426. doi:10.1093/icb/icu005

488 3. Adamo SA, Lovett MME. Some like it hot: the effects of climate change on reproduction, immune
489 function and disease resistance in the cricket *Gryllus texensis*. *Journal of Experimental Biology*.
490 2011;214: 1997–2004. doi:10.1242/jeb.056531

491 4. Adamo SA. Why should an immune response activate the stress response? Insights from the insects
492 (the cricket *Gryllus texensis*). *Brain, Behavior, and Immunity*. 2010;24: 194–200.
493 doi:10.1016/j.bbi.2009.08.003

494 5. Adamo SA. Evidence for adaptive changes in egg laying in crickets exposed to bacteria and
495 parasites. *Animal Behaviour*. 1999;57: 117–124. doi:10.1006/anbe.1998.0999

496 6. Adamo SA. Estimating disease resistance in insects: phenoloxidase and lysozyme-like activity and
497 disease resistance in the cricket *Gryllus texensis*. *Journal of Insect Physiology*. 2004;50: 209–216.
498 doi:10.1016/j.jinsphys.2003.11.011

499 7. Adamo SA. How should behavioural ecologists interpret measurements of immunity? *Animal*
500 *Behaviour*. 2004;68: 1443–1449. doi:10.1016/j.anbehav.2004.05.005

501 8. Adamo SA. The stress response and immune system share, borrow, and reconfigure their
502 physiological network elements: Evidence from the insects. *Hormones and Behavior*. 2017;88: 25–
503 30. doi:10.1016/j.yhbeh.2016.10.003

504 9. Adamo SA, Baker JL, Lovett MME, Wilson G. Climate Change and Temperate Zone Insects: The
505 Tyranny of Thermodynamics Meets the World of Limited Resources. *Environmental Entomology*.
506 2012;41: 1644–1652. doi:10.1603/EN11188

507 10. Adamo SA, Easy RH, Kovalko I, MacDonald J, McKeen A, Swanburg T, et al. Predator stress-
508 induced immunosuppression: trade-off, immune redistribution or immune reconfiguration? *The*
509 *Journal of Experimental Biology*. 2016; jeb.153320. doi:10.1242/jeb.153320

510 11. Adamo SA, Jensen M, Younger M. Changes in lifetime immunocompetence in male and female
511 *Gryllus texensis* (formerly *G. integer*): trade-offs between immunity and reproduction. *Animal*
512 *Behaviour*. 2001;62: 417–425. doi:10.1006/anbe.2001.1786

513 12. Armitage SAO, Boomsma JJ. The effects of age and social interactions on innate immunity in a
514 leaf-cutting ant. *Journal of Insect Physiology*. 2010;56: 780–787.
515 doi:10.1016/j.jinsphys.2010.01.009

516 13. Arrese EL, Soulages JL. Insect Fat Body: Energy, Metabolism, and Regulation. *Annual Review of*
517 *Entomology*. 2010;55: 207–225. doi:10.1146/annurev-ento-112408-085356

518 14. Bascuñán-García AP, Lara C, Córdoba-Aguilar A. Immune investment impairs growth, female
519 reproduction and survival in the house cricket, *Acheta domesticus*. *Journal of Insect Physiology*.
520 2010;56: 204–211. doi:10.1016/j.jinsphys.2009.10.005

521 15. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE Guidelines:
522 Minimum Information for Publication of Quantitative Real-Time PCR Experiments. *Clinical
523 Chemistry*. 2009;55: 611–622. doi:10.1373/clinchem.2008.112797

524 16. Cerenius L, Lee BL, Söderhäll K. The proPO-system: pros and cons for its role in invertebrate
525 immunity. *Trends in Immunology*. 2008;29: 263–271. doi:10.1016/j.it.2008.02.009

526 17. Clark KD, Lu Z, Strand MR. Regulation of melanization by glutathione in the moth *Pseudoplusia
527 includens*. *Insect Biochemistry and Molecular Biology*. 2010;40: 460–467.
528 doi:10.1016/j.ibmb.2010.04.005

529 18. Clutton-Brock TH. Reproductive Effort and Terminal Investment in Iteroparous Animals. *The
530 American Naturalist*. 1984;123: 212–229. doi:10.1086/284198

531 19. Copeland EK, Fedorka KM. The influence of male age and simulated pathogenic infection on
532 producing a dishonest sexual signal. *Proceedings of the Royal Society B: Biological Sciences*.
533 2012;279: 4740–4746. doi:10.1098/rspb.2012.1914

534 20. Cotter SC, Ward RJS, Kilner RM. Age-specific reproductive investment in female burying beetles:
535 independent effects of state and risk of death: Age-specific reproductive investment. *Functional
536 Ecology*. 2011;25: 652–660. doi:10.1111/j.1365-2435.2010.01819.x

537 21. Cui L, Luckhart S, Rosenberg R. Molecular characterization of a prophenoloxidase cDNA from the
538 malaria mosquito *Anopheles stephensi*. *Insect Molecular Biology*. 2000;9: 127–137.
539 doi:10.1046/j.1365-2583.2000.00169.x

540 22. Duffield KR, Bowers EK, Sakaluk SK, Sadd BM. A dynamic threshold model for terminal
541 investment. *Behavioral Ecology and Sociobiology*. 2017;71: 185. doi:10.1007/s00265-017-2416-z

542 23. Duffield KR, Hampton KJ, Houslay TM, Hunt J, Rapkin J, Sakaluk SK, et al. Age-dependent
543 variation in the terminal investment threshold in male crickets: AGE-DEPENDENT VARIATION
544 IN TERMINAL INVESTMENT. *Evolution*. 2018;72: 578–589. doi:10.1111/evo.13443

545 24. French SS, DeNardo DF, Moore MC. Trade-Offs between the Reproductive and Immune Systems:
546 Facultative Responses to Resources or Obligate Responses to Reproduction? *The American
547 Naturalist*. 2007;170: 79–89.

548 25. Guerra PA, Pollack GS. Flight behaviour attenuates the trade-off between flight capability and
549 reproduction in a wing polymorphic cricket. *Biology Letters*. 2009;5: 229–231.
550 doi:10.1098/rsbl.2008.0570

551 26. Kalbe M, Eizaguirre C, Dankert I, Reusch TB., Sommerfeld RD, Wegner KM, et al. Lifetime
552 reproductive success is maximized with optimal major histocompatibility complex diversity.
553 *Proceedings of the Royal Society B: Biological Sciences*. 2009;276: 925–934.
554 doi:10.1098/rspb.2008.1466

555 27. Kanost MR, Gorman MJ. PHENOLOXIDASES IN INSECT IMMUNITY. *Insect Immunology*.
556 Elsevier; 2008. pp. 69–96. doi:10.1016/B978-012373976-6.50006-9

557 28. Kelly CD. Reproductive and physiological costs of repeated immune challenges in female
558 Wellington tree weta (Orthoptera: Anostostomatidae): IMMUNE CHALLENGES IN FEMALE
559 TREE WETA. *Biological Journal of the Linnean Society*. 2011;104: 38–46. doi:10.1111/j.1095-
560 8312.2011.01714.x

561 29. Kelly CD, Tawes BR, Worthington AM. Evaluating indices of body condition in two cricket
562 species. *Ecology and Evolution*. 2014;4: 4476–4487. doi:10.1002/ece3.1257

563 30. Khan I, Agashe D, Rolff J. Early-life inflammation, immune response and ageing. *Proceedings of*
564 *the Royal Society B: Biological Sciences*. 2017;284: 20170125. doi:10.1098/rspb.2017.0125

565 31. Kim SR, Yao R, Han Q, Christensen BM, Li J. Identification and molecular characterization of a
566 prophenoloxidase involved in *Aedes aegypti* chorion melanization. *Insect Molecular Biology*.
567 2005;14: 185–194. doi:10.1111/j.1365-2583.2004.00547.x

568 32. Lawniczak M, Barnes A, Linklater J, Boone J, Wigby S, Chapman T. Mating and immunity in
569 invertebrates. *Trends in Ecology & Evolution*. 2007;22: 48–55. doi:10.1016/j.tree.2006.09.012

570 33. Li J. Egg chorion tanning in *Aedes aegypti* mosquito. *Comparative Biochemistry and Physiology*
571 *Part A: Physiology*. 1994;109: 835–843. doi:10.1016/0300-9629(94)90231-3

572 34. Li J, Christensen BM. Involvement of l-tyrosine and phenol oxidase in the tanning of *Aedes aegypti*
573 eggs. *Insect Biochemistry and Molecular Biology*. 1993;23: 739–748. doi:10.1016/0965-
574 1748(93)90048-W

575 35. Lu A, Zhang Q, Zhang J, Yang B, Wu K, Xie W, et al. Insect prophenoloxidase: the view beyond
576 immunity. *Frontiers in Physiology*. 2014;5. doi:10.3389/fphys.2014.00252

577 36. McCallum ML, Trauth SE. PHYSIOLOGICAL TRADE-OFFS BETWEEN IMMUNITY AND
578 REPRODUCTION IN THE NORTHERN CRICKET FROG (*ACRIS CREPITANS*). *Herpetologica*.
579 2007;63: 269–274. doi:10.1655/0018-0831(2007)63[269:PTBIAR]2.0.CO;2

580 37. Metcalf CJE. Invisible Trade-offs: Van Noordwijk and de Jong and Life-History Evolution. *The*
581 *American Naturalist*. 2016;187: iii–v. doi:10.1086/685487

582 38. Mills SC, Grapputo A, Jokinen I, Koskela E, Mappes T, Oksanen TA, et al. Testosterone-Mediated
583 Effects on Fitness-Related Phenotypic Traits and Fitness. *The American Naturalist*. 2009;173: 475–
584 487. doi:10.1086/597222

585 39. Murray A-M, Cade WH. Differences in age structure among field cricket populations (Orthoptera;
586 Gryllidae): possible influence of a sex-biased parasitoid. *Canadian Journal of Zoology*. 1995;73:
587 1207–1213. doi:10.1139/z95-144

588 40. Nordling D, Andersson M, Zohari S, Lars G. Reproductive effort reduces specific immune
589 response and parasite resistance. *Proceedings of the Royal Society B: Biological Sciences*.
590 1998;265: 1291–1298. doi:10.1098/rspb.1998.0432

591 41. Piñera AV, Charles HM, Dinh TA, Killian KA. Maturation of the immune system of the male
592 house cricket, *Acheta domesticus*. *Journal of Insect Physiology*. 2013;59: 752–760.
593 doi:10.1016/j.jinsphys.2013.05.008

594 42. Polak M, Starmer WT. Parasite-induced risk of mortality elevates reproductive effort in male
595 *Drosophila*. *Proceedings of the Royal Society B: Biological Sciences*. 1998;265: 2197–2201.
596 doi:10.1098/rspb.1998.0559

597 43. Rapkin J, Jensen K, Archer CR, House CM, Sakaluk SK, Castillo E del, et al. The Geometry of
598 Nutrient Space-Based Life-History Trade-Offs: Sex-Specific Effects of Macronutrient Intake on
599 the Trade-Off between Encapsulation Ability and Reproductive Effort in Decorated Crickets. *The*
600 *American Naturalist*. 2018;191: 452–474. doi:10.1086/696147

601 44. Rizki RM, Rizki TM. Encapsulation of parasitoid eggs in phenoloxidase-deficient mutants of
602 *Drosophila melanogaster*. *Journal of Insect Physiology*. 1990;36: 523–529. doi:10.1016/0022-
603 1910(90)90104-N

604 45. Sanz JJ, Arriero E, Moreno J, Merino S. Interactions between hemoparasite status and female age
605 in the primary reproductive output of pied flycatchers. *Oecologia*. 2001;126: 339–344.
606 doi:10.1007/s004420000530

607 46. Schwenke RA, Lazzaro BP, Wolfner MF. Reproduction–Immunity Trade-Offs in Insects. *Annual
608 Review of Entomology*. 2016;61: 239–256. doi:10.1146/annurev-ento-010715-023924

609 47. Shoemaker KL. Interactions between immunity and reproduction in the cricket, *Gryllus texensis*.
610 Dalhousie University. 2003.

611 48. Shoemaker KL, Parsons NM, Adamo SA. Egg-laying behaviour following infection in the cricket
612 *Gryllus texensis*. *Canadian Journal of Zoology*. 2006;84: 412–418. doi:10.1139/z06-013

613 49. Shoemaker KL, Adamo SA. Adult female crickets, *Gryllus texensis*, maintain reproductive output
614 after repeated immune challenges. *Physiological Entomology*. 2007;32: 113–120.
615 doi:10.1111/j.1365-3032.2006.00552.x

616 50. Stahlschmidt ZR, Adamo SA. Warm and cozy: temperature and predation risk interactively affect
617 oviposition site selection. *Animal Behaviour*. 2013;86: 553–558.
618 doi:10.1016/j.anbehav.2013.06.009

619 51. Sullivan K, Fairn E, Adamo SA. Sickness behaviour in the cricket *Gryllus texensis* : Comparison
620 with animals across phyla. *Behavioural Processes*. 2016;128: 134–143.
621 doi:10.1016/j.beproc.2016.05.004

622 52. Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M. A practical approach to RT-qPCR—
623 Publishing data that conform to the MIQE guidelines. *Methods*. 2010;50: S1–S5.
624 doi:10.1016/j.ymeth.2010.01.005

625 53. van Noordwijk AJ, de Jong G. Acquisition and Allocation of Resources: Their Influence on
626 Variation in Life History Tactics. *The American Naturalist*. 1986;128: 137–142.
627 doi:10.1086/284547

628 54. Veenstra JA. Isolation and structure of corazonin, a cardioactive peptide from the American
629 cockroach. *FEBS Letters*. 1989;250: 231–234. doi:10.1016/0014-5793(89)80727-6

630 55. Zeng Y, Zhu D-H, Zhao L-Q. Critical Flight Time for Switch from Flight to Reproduction in the
631 Wing Dimorphic Cricket *Velarifictorus aspersus*. *Evolutionary Biology*. 2014;41: 397–403.
632 doi:10.1007/s11692-014-9272-9

633 56. Zera AJ. The Endocrine Regulation of Wing Polymorphism in Insects: State of the Art, Recent
634 Surprises, and Future Directions. *Integrative and Comparative Biology*. 2003;43: 607–616.
635 doi:10.1093/icb/43.5.607

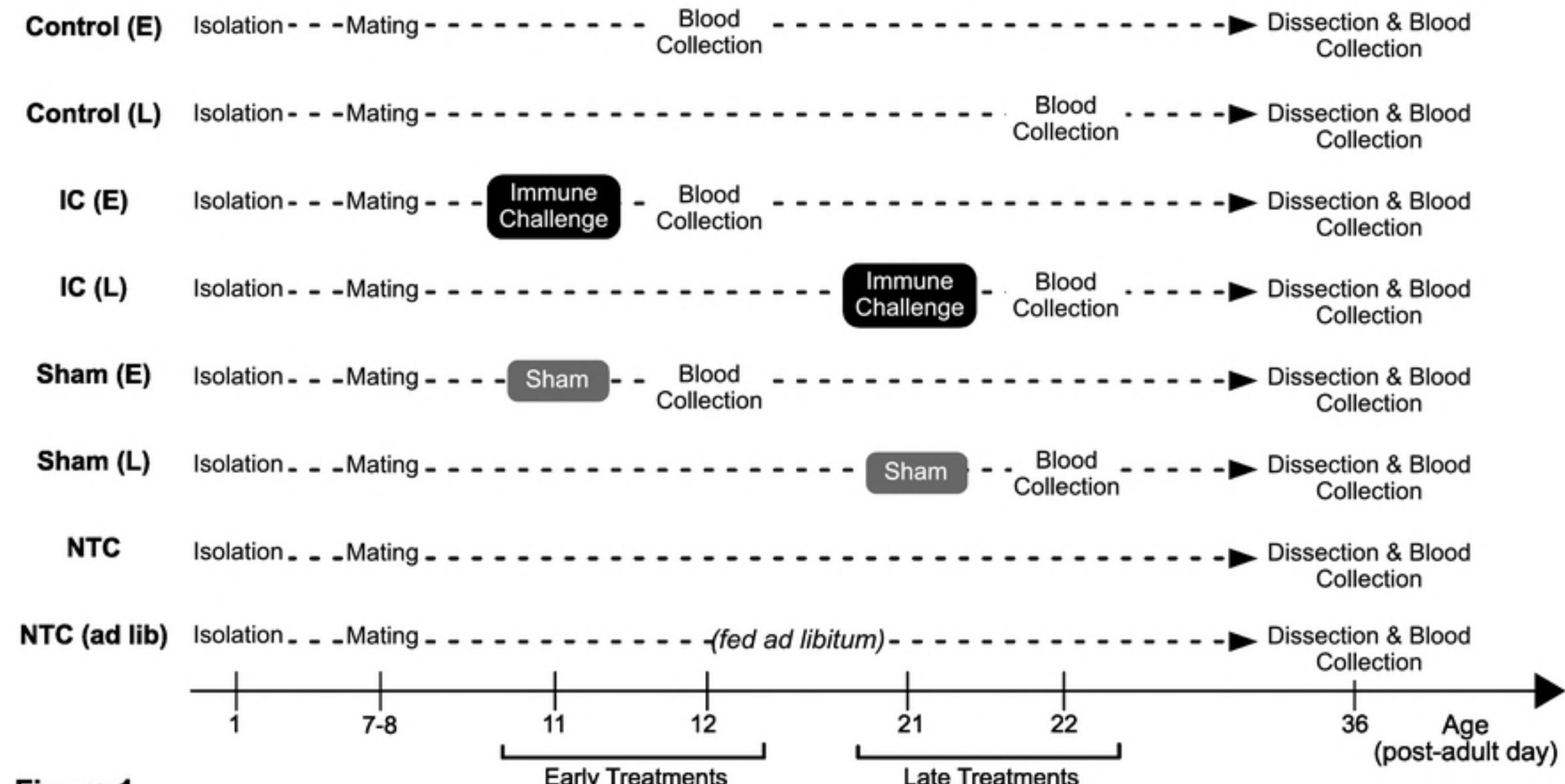
636 57. Zera AJ, Denno RF. PHYSIOLOGY AND ECOLOGY OF DISPERSAL POLYMORPHISM IN
637 INSECTS. *Annual Review of Entomology*. 1997;42: 207–230. doi:10.1146/annurev.ento.42.1.207

638 58. Zera AJ, Harshman LG. The Physiology of Life History Trade-Offs in Animals. *Annual Review of
639 Ecology and Systematics*. 2001;32: 95–126. doi:10.1146/annurev.ecolsys.32.081501.114006

640 59. Zera AJ, Potts J, Kobus K. The Physiology of Life-History Trade-offs: Experimental Analysis of a
641 Hormonally Induced Life-History Trade-off in *Gryllus assimilis*. *The American Naturalist*.
642 1998;152: 7–23. doi:10.1086/286146

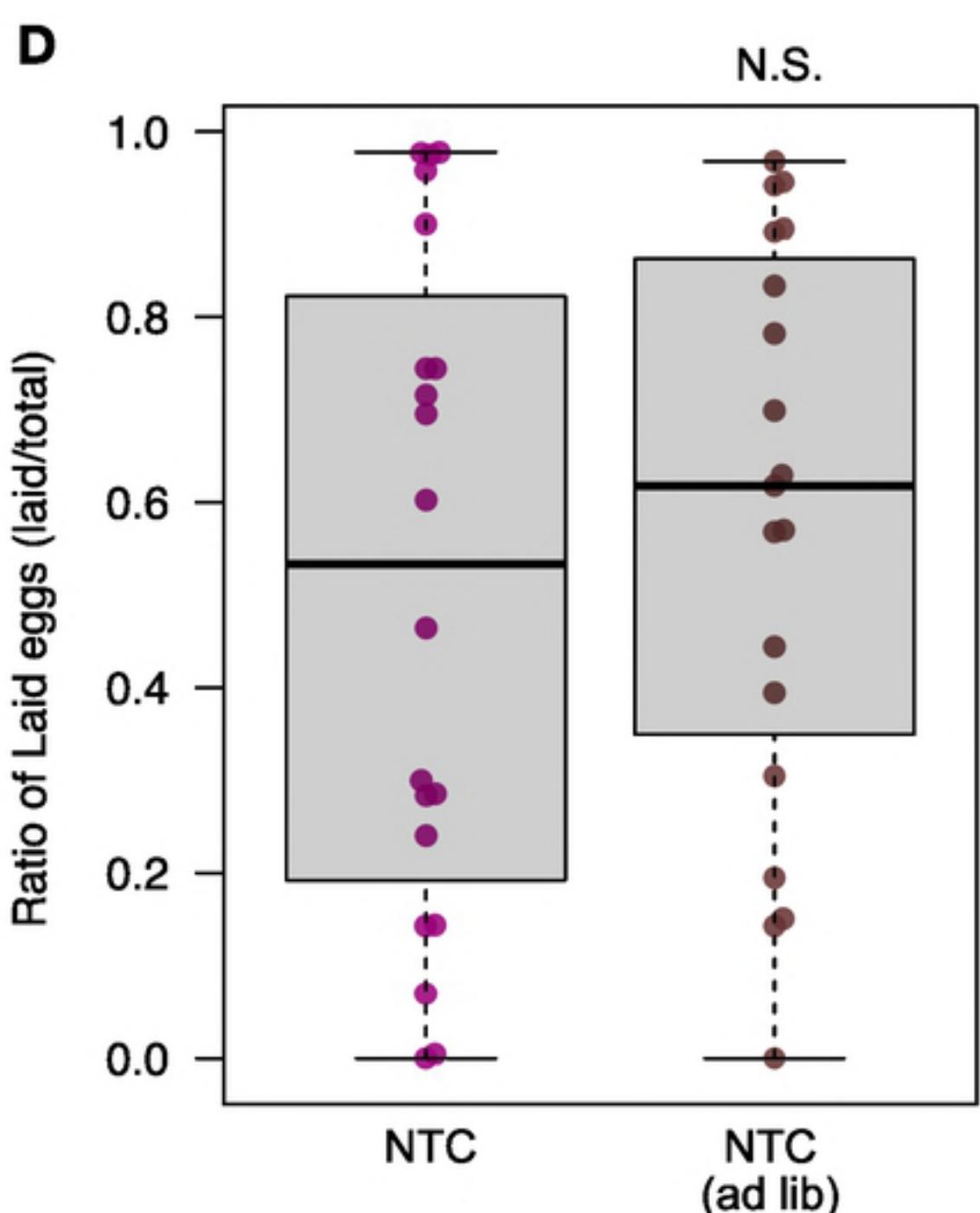
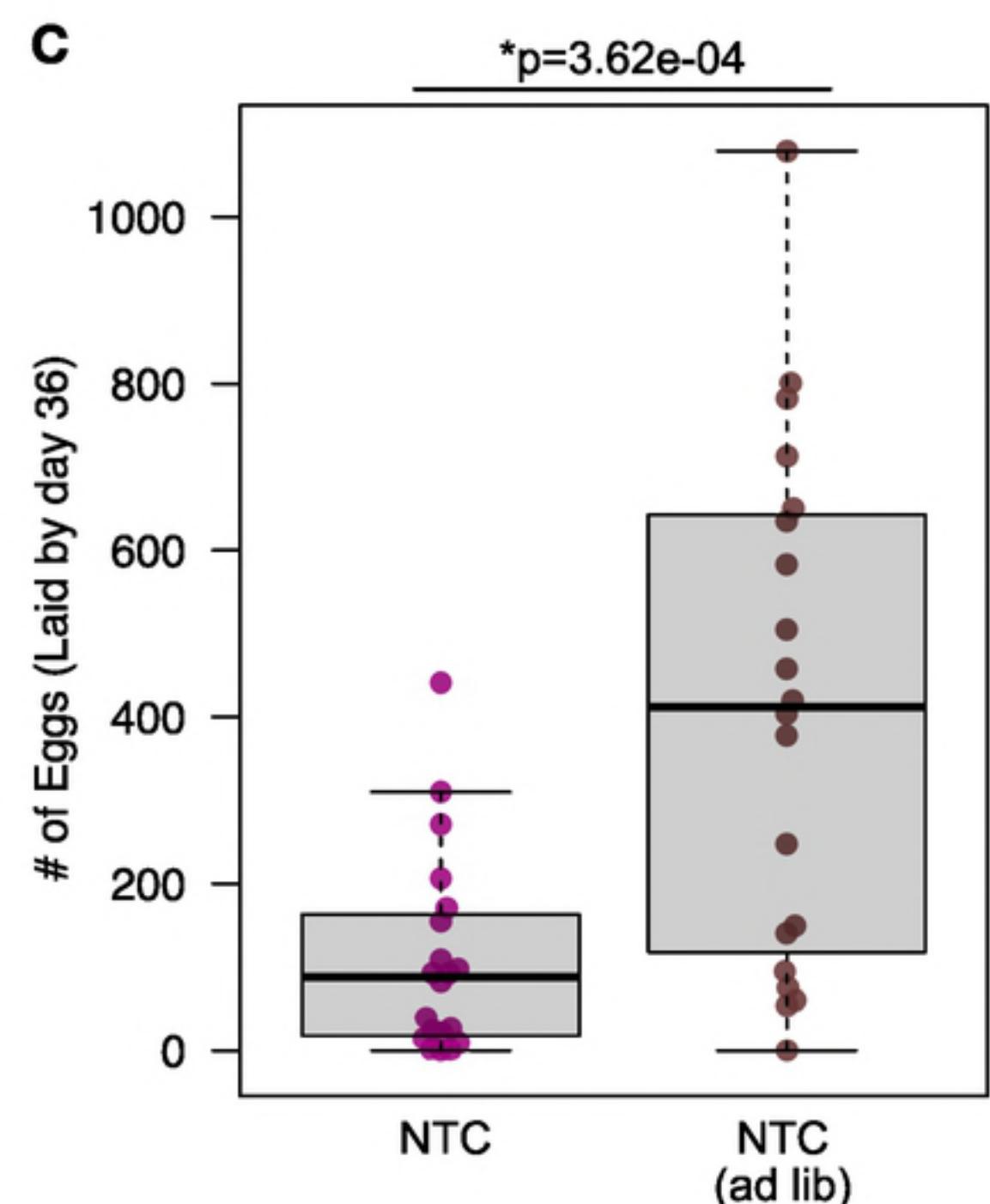
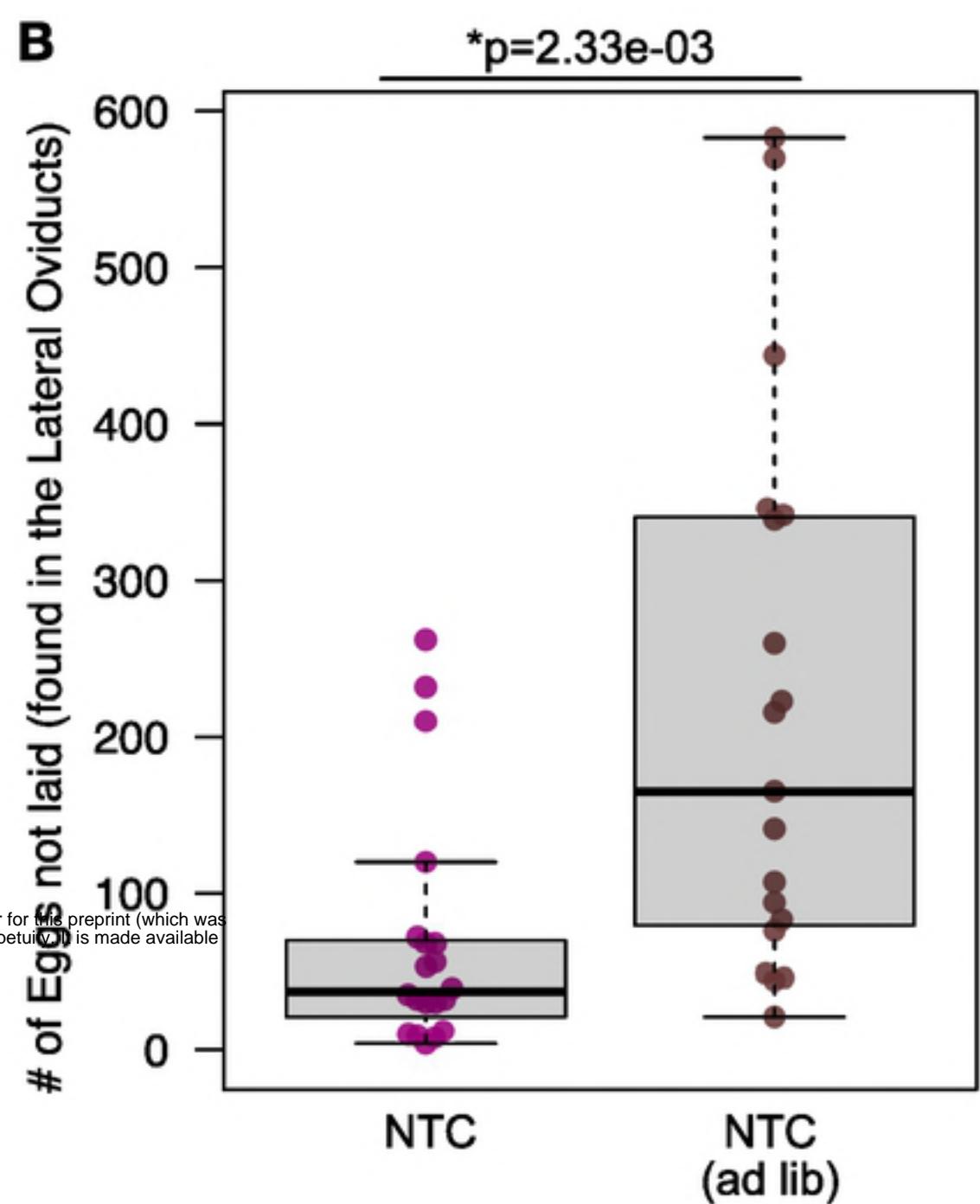
643 60. Zera AJ, Sall J, Grudzinski K. Flight-Muscle Polymorphism in the Cricket *Gryllus firmus*: Muscle
644 Characteristics and Their Influence on the Evolution of Flightlessness. *Physiological Zoology*.
645 1997;70: 519–529. doi:10.1086/515865

646


648

650

651




652

653

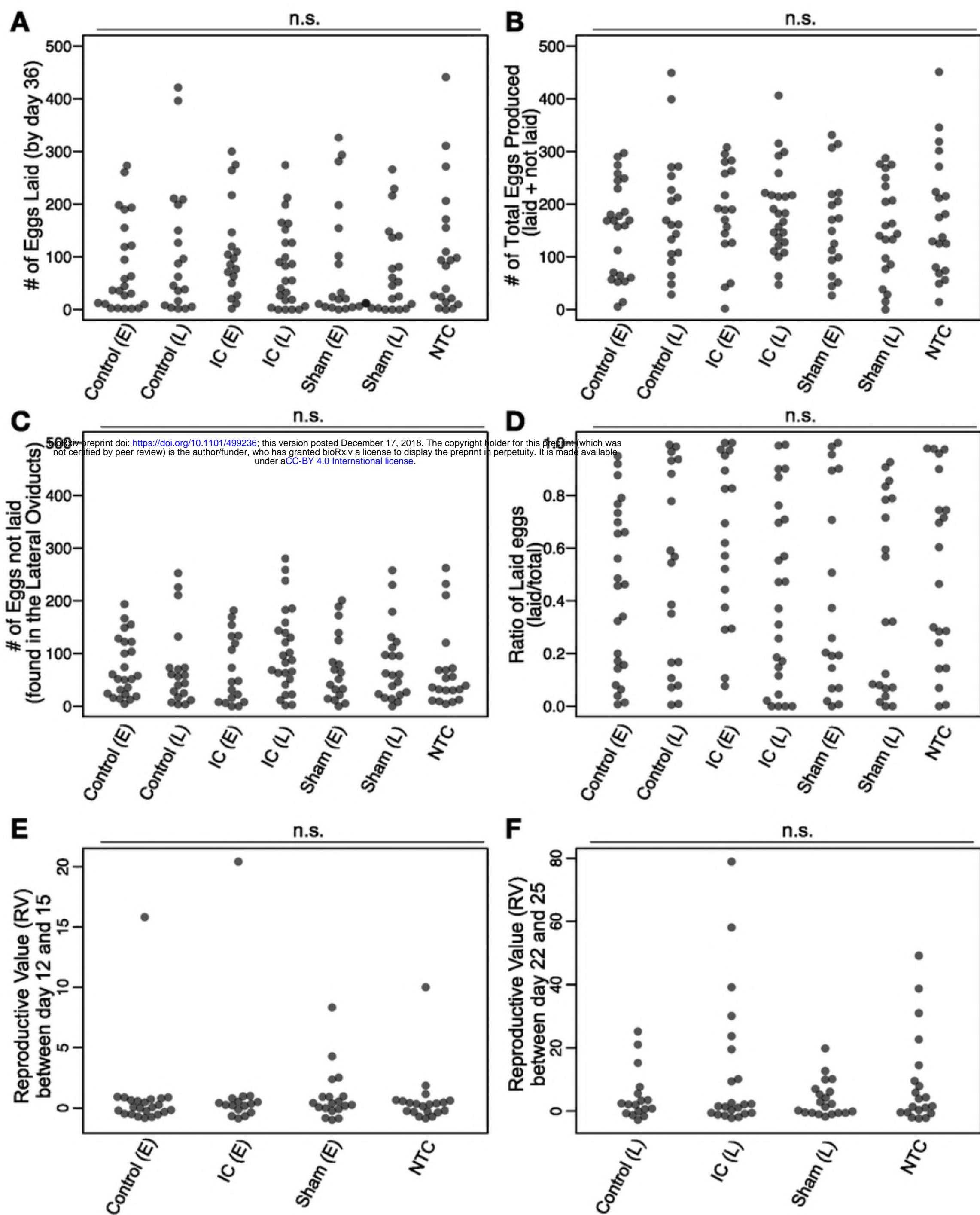

Figure 1

figure 1

Figure 2

figure 2

Figure 3
figure 3

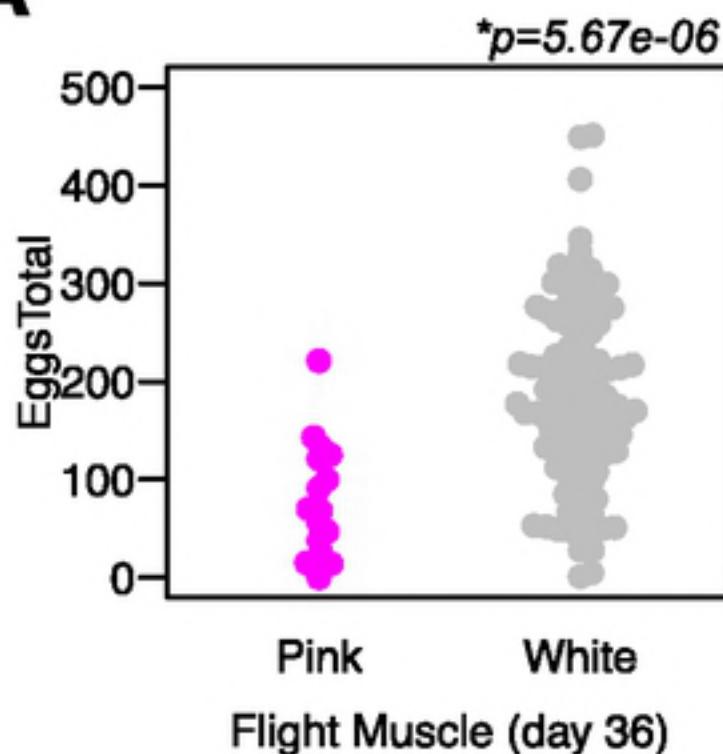
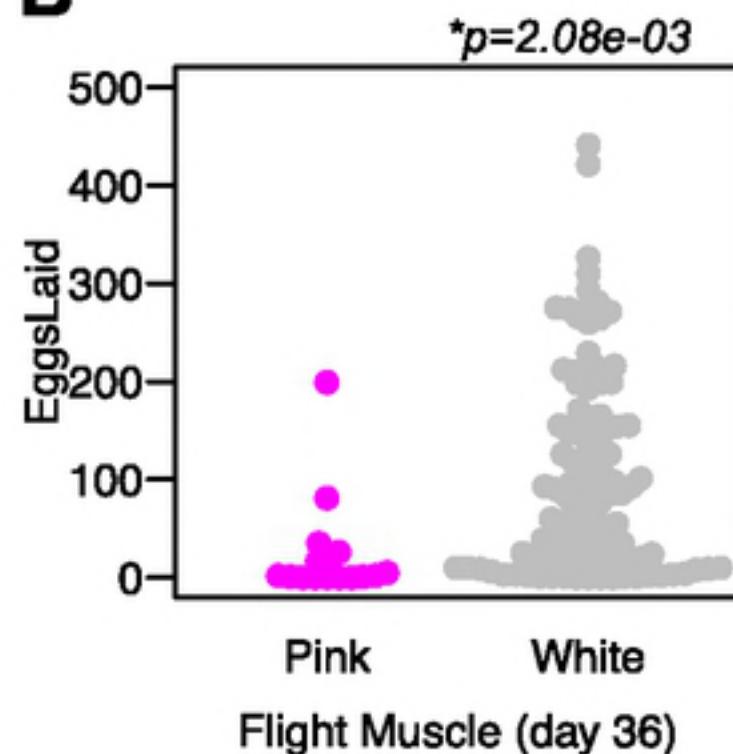
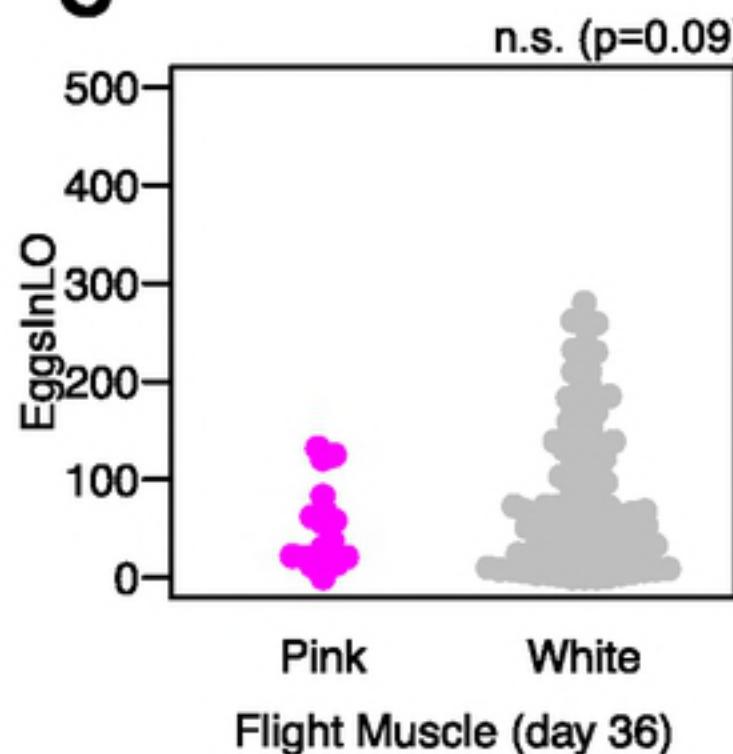
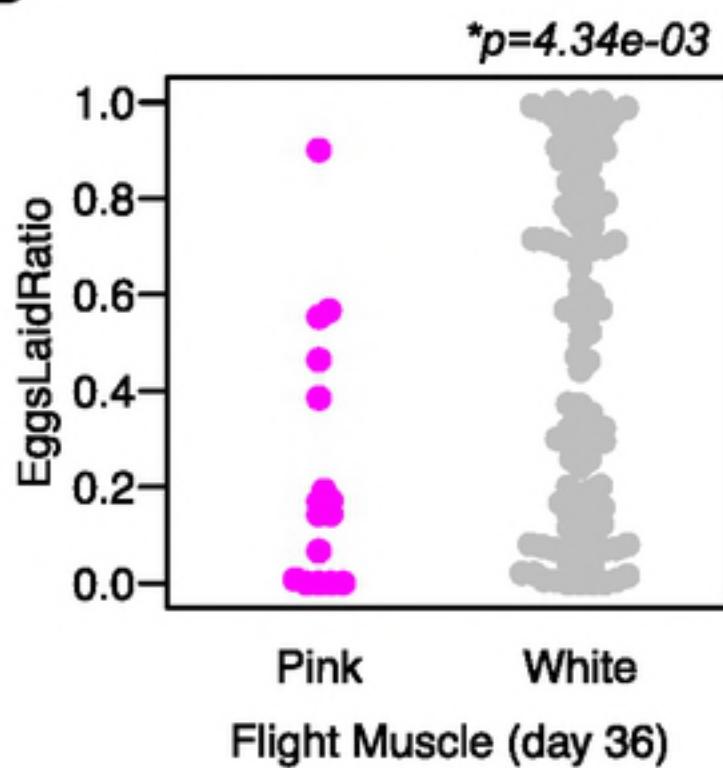
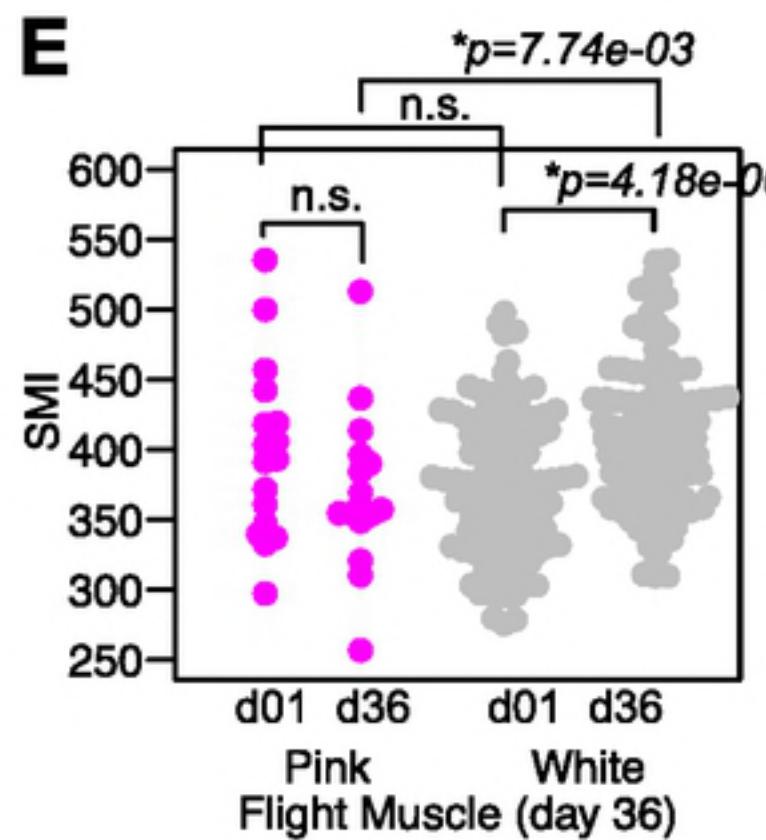
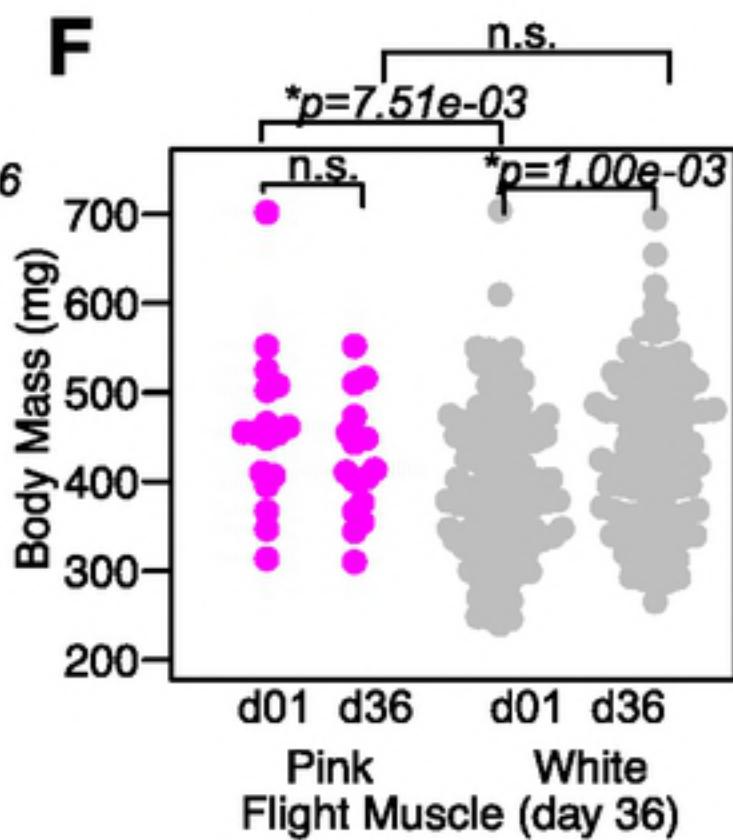
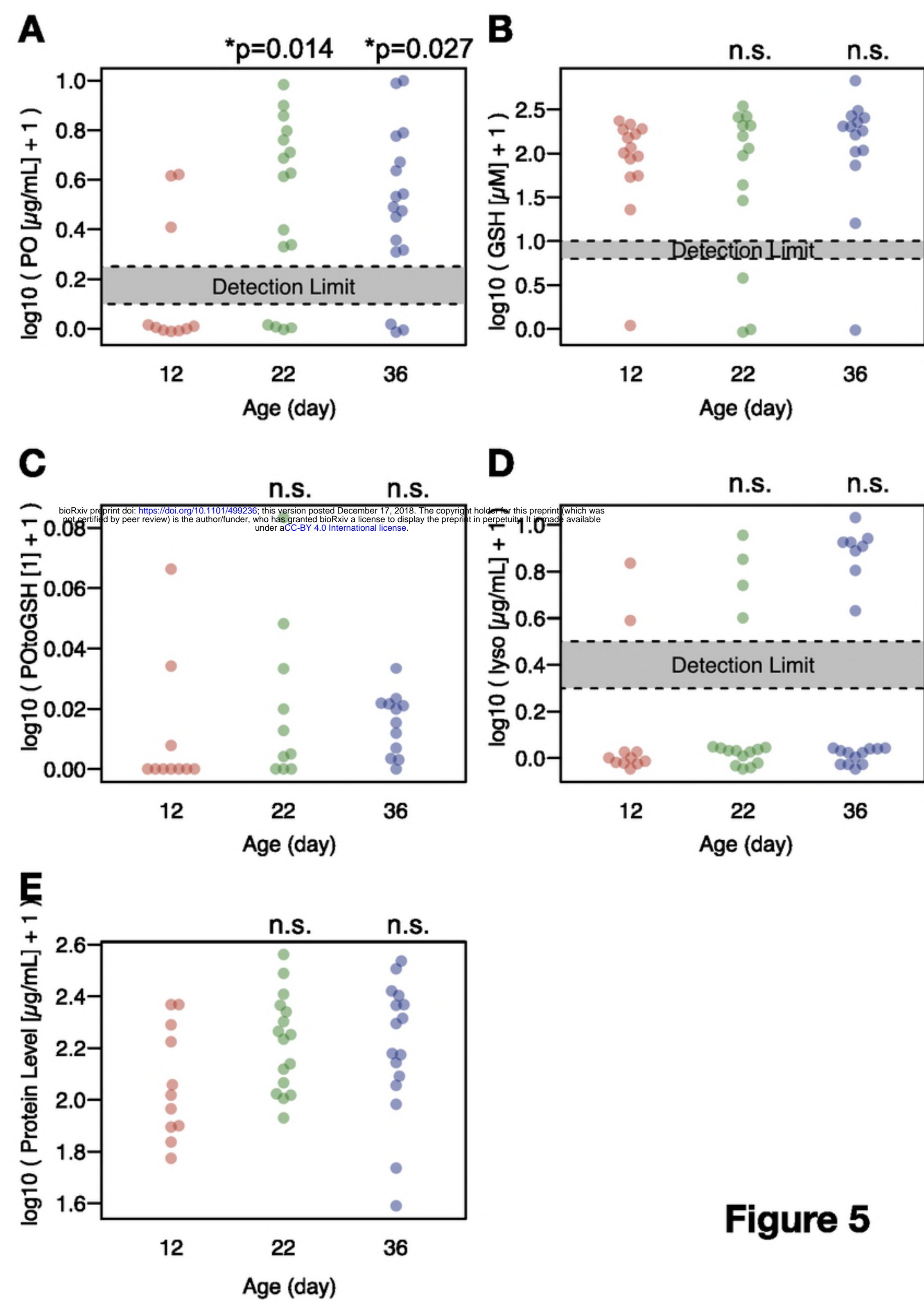
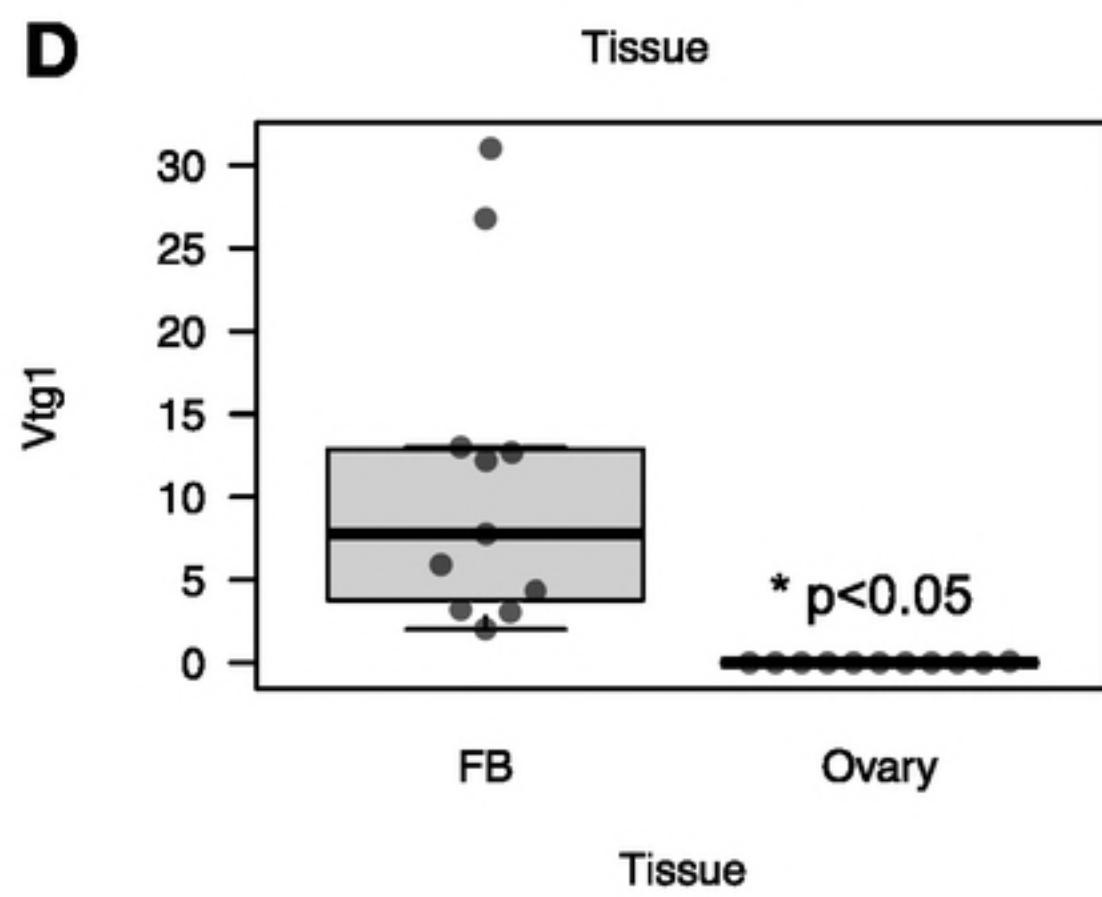
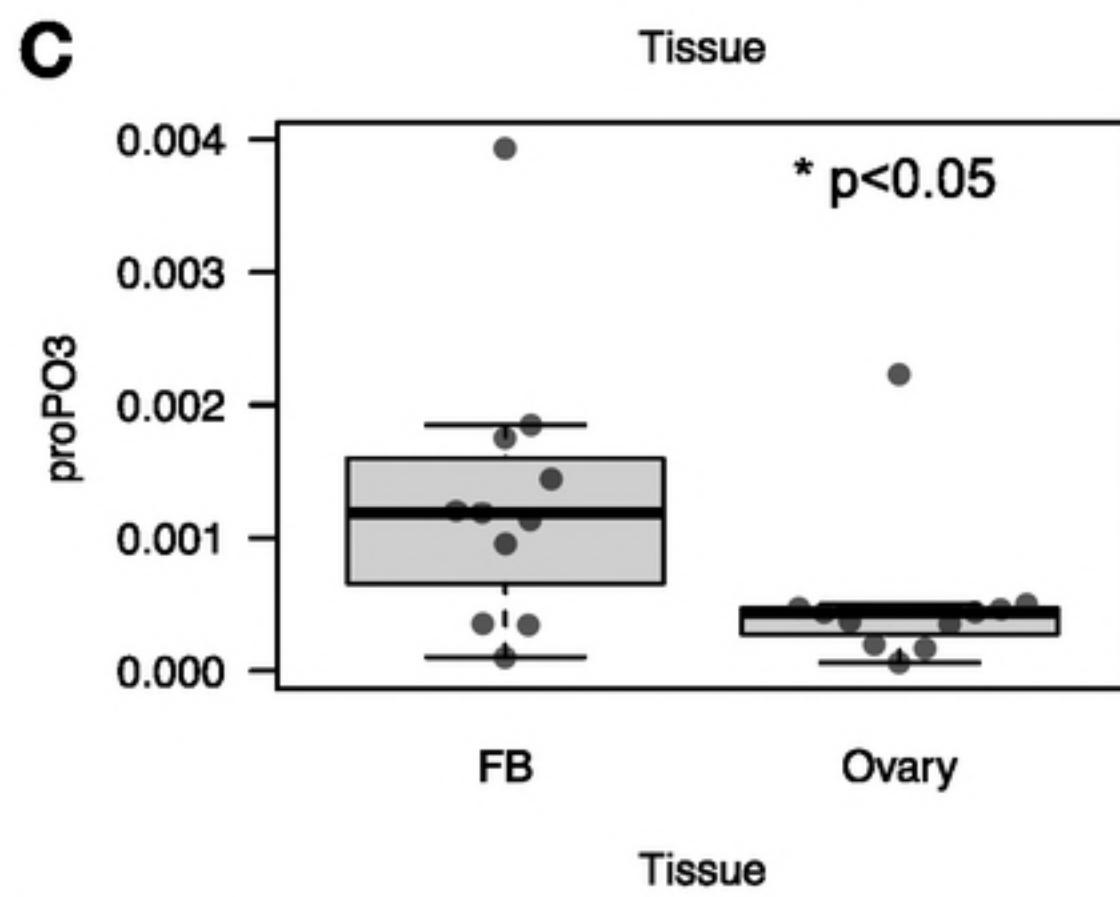
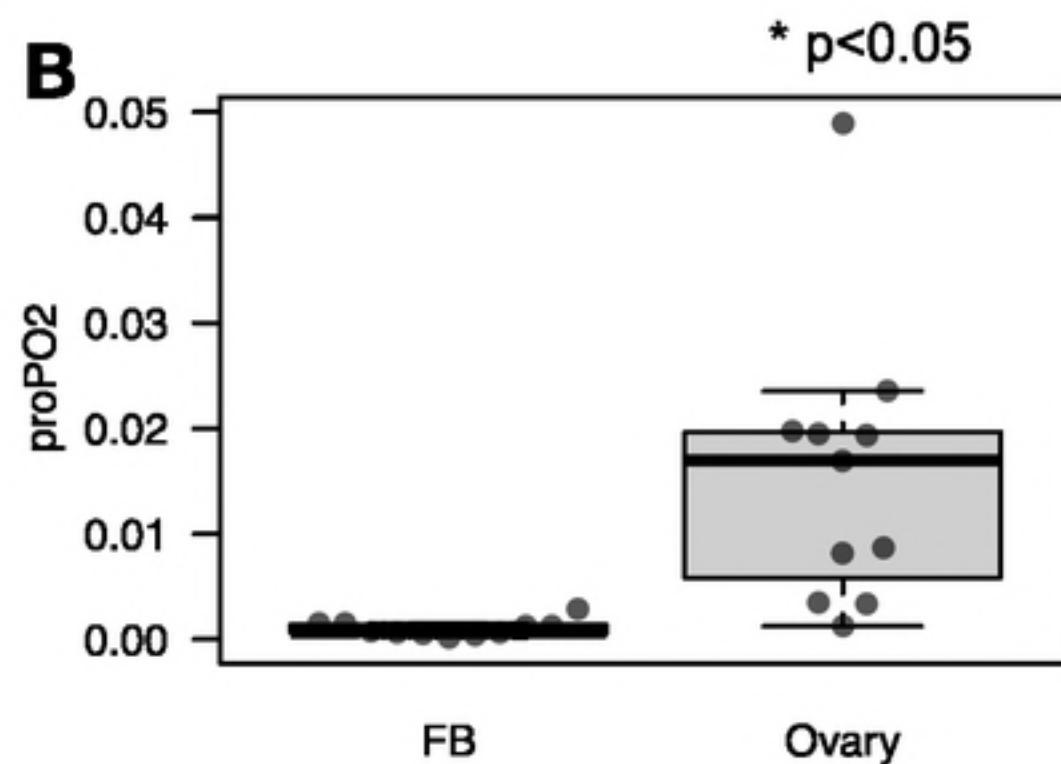
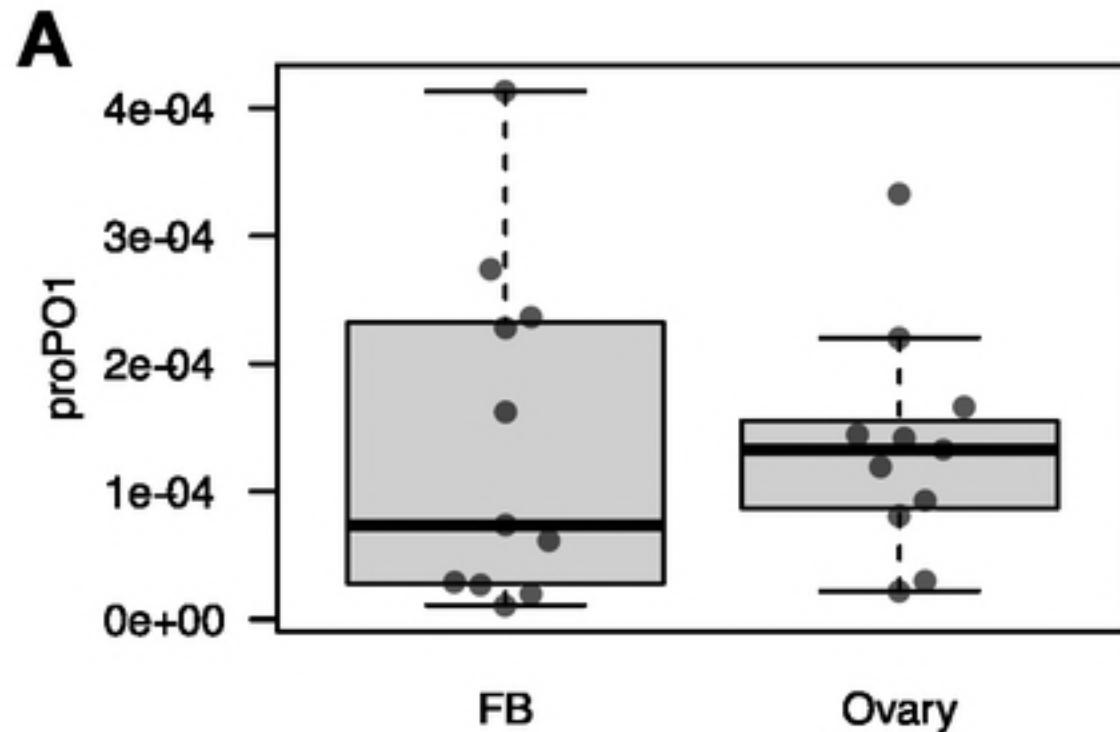











A**B****C****D****E****F****Figure 4**

figure 4

Figure 5

Figure 6
figure 6