

TORC2 dependent phosphorylation modulates calcium regulation of fission yeast myosin.

Karen Baker¹, Irene A. Gyamfi¹, Gregory I. Mashanov², Justin E. Molloy²,
Michael A. Geeves¹ and Daniel P. Mulvihill^{1,3}

¹ School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK.

² The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK

³ Author for correspondence e-mail: d.p.mulvihill@kent.ac.uk

Tel: +44 (0) 1227 827239

Key words: pombe, endocytosis, calmodulin, Tor kinase.

Running Title: Phosphorylation & calcium co-dependent myosin regulation

30 **Abstract**

31 All cells have the ability to respond to changes in their environment. Signalling
32 networks modulate cytoskeleton and membrane organisation to impact cell
33 cycle progression, polarised cell growth and multicellular development
34 according to the environmental setting. Using diverse *in vitro*, *in vivo* and single
35 molecule techniques we have explored the role of myosin-1 signalling in
36 regulating endocytosis during both mitotic and meiotic cell cycles. We have
37 established that a conserved serine within the neck region of the sole fission
38 yeast myosin-1 is phosphorylated in a TORC2 dependent manner to modulate
39 myosin function. Myo1 neck phosphorylation brings about a change in the
40 conformation of the neck region and modifies its interaction with calmodulins,
41 Myo1 dynamics at endocytic foci, and promotes calcium dependent switching
42 between different calmodulin light chains. These data provide insight into a
43 novel mechanism by which myosin neck phosphorylation modulates acto-
44 myosin dynamics to control polarised cell growth in response to mitotic and
45 meiotic cell-cycle progression and the cellular environment.

46

47 **Introduction**

48 The actin cytoskeleton underpins cellular organisation by maintaining cell
49 shape and through the transmission of mechanical signals between the cell
50 periphery and nucleus, to influence protein expression, organisation and
51 cellular architecture in response to needs of the cell. Myosins, actin-associated
52 motor-proteins, work in collaboration to facilitate global cytoskeletal
53 organisation and a plethora of transport processes including cell migration,
54 intracellular transport, tension sensing and cell division (O'Connell *et al*, 2007).
55 While there are many classes of myosin, each contains an actin binding
56 ATPase motor domain, which exerts force against actin, a lever arm or neck
57 region that contains light chain binding IQ motifs, and a tail region which
58 specifies cargo binding and other molecular interactions.
59 Although different classes of myosin perform very different cellular functions
60 they all operate by the same basic mechanism, whereby the motor domain
61 undergoes cyclical interactions with actin coupled to the breakdown of ATP.
62 Each molecule of ATP that is converted to ADP and inorganic phosphate can
63 generate movement along actin of between 5-25 nm and force of up to 5 pN.
64 Regulation of acto-myosin motility is multi-faceted (Heissler & Sellers, 2016a),
65 combining regulatory pathways operating via the actin track (historically called
66 thin-filament regulation), or myosin-linked regulation (historically called thick
67 filament regulation) which is often mediated via phosphorylation of the heavy
68 chain or light chain(s) or by calcium-regulation of light chain binding (Heissler
69 & Sellers, 2016b). It has been shown that phosphorylation at the conserved
70 "TEDS" motif within the myosin motor domain of class 1 myosin affects acto-
71 myosin interaction (Bement & Mooseker, 1995); phosphorylation within the tail
72 region of class 5 myosin controls cargo binding (Rogers *et al*, 1999), whereas
73 phosphorylation of class 2 myosin light chains and/or heavy chain can change
74 the folded state of the heavy chain, affecting both actin interaction and ability to
75 form filaments (Redowicz, 2001; Kendrick-Jones *et al*, 1987; Pasapera *et al*,
76 2015). So, phosphoregulation of myosin can occur in the head, neck and tail
77 regions and also the light chains and its effects are manifold and vary across
78 myosin classes and between paralogues within the same class. Its effect on

79 motile function is still not fully understood for many myosins, especially within
80 yeast (East & Mulvihill, 2011).

81 The fission yeast, *Schizosaccharomyces pombe*, genome encodes for 5
82 myosin heavy chains from classes 1, 2, and 5 (Win *et al*, 2002), representing
83 the basic subset of these actin-associated motor proteins found in eukaryotic
84 cells. The single class 1 myosin, Myo1, is a 135 kDa protein, with motor domain,
85 neck region (with two canonical IQ motifs) and a 49 kDa tail region containing
86 a, so-called, tail-homology-2 domain, PH domain, SH3 domain and a carboxyl-
87 terminal acidic region that associates with and activates the Arp2/3 complex to
88 nucleate actin polymerisation (Lee *et al*, 2000). The myosin motor has a
89 conserved TEDS site, phosphorylated by a Ste20 protein kinase, to modulate
90 the protein's ability to associate with actin (Attanapola *et al*, 2009). Myo1
91 associates with membranes, primarily at sites of cell growth, where it is required
92 for endocytosis, actin organisation and spore formation (Sirotnik *et al*, 2005;
93 Lee *et al*, 2000; Itadani *et al*, 2007).

94 Calmodulin or calmodulin-like light chains associate with the IQ motifs within
95 the myosin neck, providing a mechanism to regulate the length and stiffness of
96 the lever arm (Trybus *et al*, 2007) and behaviour of the motor domain (Adamek
97 *et al*, 2008). Calmodulins are ubiquitous calcium binding proteins that associate
98 with and regulate the cellular function of diverse proteins. Calcium associates
99 with up to four EF hand motifs within the calmodulin molecule to bring about a
100 change in its conformation to modulate its affinity for IQ motifs within binding
101 partner proteins (Crivici & Ikura, 1995). *S. pombe* encodes for two calmodulin
102 like proteins, Cam1 and Cam2 (Takeda & Yamamoto, 1987; Itadani *et al*, 2007).
103 Cam1 is a typical calmodulin that associates with IQ domain containing proteins
104 in a calcium dependent manner, to affect functions as diverse as endocytosis,
105 spore formation, cell division or maintaining spindle pole body integrity (Takeda
106 & Yamamoto, 1987; Moser *et al*, 1995; 1997; Itadani *et al*, 2010). Unlike Cam1,
107 Cam2 is not essential and is predicted to be insensitive to calcium, however
108 like Cam1 it has been reported to regulate Myo1 (Sammons *et al*, 2011; Itadani
109 *et al*, 2007). While cells lacking Cam2 show defects in spore formation they
110 have no significant growth-associated phenotypes during the vegetative growth
111 cycle.

112 TOR (Target of Rapamycin) signaling plays a key role in modulating cell growth
113 in response to changes in cell cycle status and environmental conditions
114 (Laplante & Sabatini, 2012). The mTOR kinase forms two distinct protein
115 complexes TOR complex 1 (TORC1) and TORC2, each defined by unique
116 components that are highly conserved across species. While both TORC1 and
117 TORC2 have been implicated in the control of cell migration and F-actin
118 organisation (Liu & Parent, 2011), TORC2 plays a key role in regulating the
119 actin cytoskeleton in yeasts, *Dictyostelium discoideum* and mammalian cells
120 (Jacinto *et al*, 2004; Baker *et al*, 2016; Lee *et al*, 2005). While the basic principle
121 of control of each regulatory signal (e.g. phosphorylation and calcium signalling)
122 are understood, the interplay between parallel modes of regulation is relatively
123 unknown. *S. pombe*, contains both TORC1 and TORC2 complexes (Petersen,
124 2009).

125 In the current study, we have used molecular cell biological, biochemical and
126 single molecule techniques to help identify and characterise a novel TORC2
127 phosphorylation-dependent system for regulating calcium-dependent switching
128 of different calmodulin light chain(s) binding to the neck region of Myo1. We
129 have established the contribution that each calmodulin plays in regulating this
130 conserved motor protein and how they affect the conformation of the myosin
131 lever arm. We propose a concerted mechanism of regulation by both calcium
132 and phosphorylation that controls motility and function of Myo1 in response to
133 signals controlling cell cycle progression.

134 **Results**

135 **Fission yeast myosin-1 is phosphorylated within the IQ neck domain.**

136 Analysis of extracts from exponentially growing fission yeast cells indicates its
137 sole class I myosin, Myo1, is subject to multiple phosphorylation events (**Figure 1A**). Phosphoproteomics studies (Carpy *et al*, 2014; Wilson-Grady *et al*, 2008)
138 revealed a conserved phosphoserine residue located within the IQ motif
139 containing neck region of class I & V myosins (**Figure 1B**). The location of this
140 AGC family kinase consensus phosphoserine site (Pearce *et al*, 2010) has the
141 potential to impact myosin activity and function by affecting conformation of the
142 lever arm as well as light chain binding. A phosphospecific antibody was raised
143 to confirm phosphorylation of the Myo1 serine 742 (Myo1^{S742}), and established
144 that it is phosphorylated in a TORC2 signalling and growth media dependent
145 manner (**Figure 1C-E**). Consistent with the TORC2 dependent pathway
146 modulating cell growth in response to media quality (Petersen & Nurse, 2007),
147 replacing the serine with a non-phosphorylatable alanine residue within
148 *myo1.S742A* cells resulted in an inability to inhibit growth when cultured in
149 media containing minimal nitrogen (**Figure 1F**).

151

152 **Phosphorylation modulates Myo1 lever arm length.**

153 As serine 742 lies within the IQ motif containing neck region of myosin-1, we
154 explored whether Myo1^{S742} phosphorylation affects calmodulin binding and
155 conformation of the neck region. Isoforms of the Ca²⁺ sensitive fission yeast
156 calmodulin (Cam1 and Cam1.T6C) were isolated in their native amino-
157 terminally (Nt) acetylated forms using bacteria co-expressing the fission yeast
158 NatA amino- α -acetyl-transferase complex (Eastwood *et al*, 2017). A FRET
159 based fusion was generated with CyPet donor and YPet acceptor fluorophores
160 (Nguyen & Daugherty, 2005) juxtaposed around the Cam1 protein to monitor
161 Ca²⁺ dependent changes in Cam1 conformation (**Figure 2A**). This FRET-Cam1
162 fusion (**Figure 2B**), and Nt-acetylated IAANS labelled Cam1.T6C (**Figure 2C**)
163 established Ca²⁺ binding brings about a change in the Cam1 conformation.
164 Calculated pCa values for the Cam1-FRET (**Figure 2B** pCa₅₀: 6.12), reflect
165 global change in Cam1 conformation, while the IAANS dependent pCa (**Figure**

166 **2C** pCa_{50} : 6.54) reflects Ca^{2+} dependent changes in the local environment at
167 the amino lobe of Cam1. Quin-2, fluorescence of which increases upon Ca^{2+}
168 binding (Tsien, 1980), was used to establish Ca^{2+} ions release from Cam1 with
169 3 distinct rate constants (137, 12.9 and 2.0 s^{-1}) (**Figure 2D**).

170 To characterise Cam1 binding to the IQ neck region of the fission yeast myosin-
171 1, recombinant FRET constructs were produced in which CyPet and YPet were
172 separated by individual or both Myo1 IQ motifs (Myo1^{IQ1}-FRET, Myo1^{IQ2}-FRET,
173 Myo1^{IQ12}-FRET) (**Figure 2E & S1**). Cam1 binding to the IQ motif(s) stabilises
174 the α -helix and results in a calcium regulated drop in FRET signal (**Figure 2E-F**). Analysis of interactions between Cam1 and Myo1^{IQ12}-FRET revealed Cam1
175 molecules associated with the combined Myo1^{IQ12} motifs with 2 distinct phases,
176 each contributing 50% of the overall change in signal (**Figure 2G**). The first
177 Cam1-Myo1^{IQ12} binding event corresponds to an affinity of less than 0.1 μM
178 (binding was too tight to calculate affinity with higher precision), while the
179 second event correlates with an approximately 10-fold weaker binding affinity
180 (0.68 μM). This association was seen to be sensitive to calcium (pCa of 5.87)
181 (**Figure 2I**), illustrating Cam1 only associates with Myo1 in low cellular Ca^{2+}
182 concentrations. Interestingly while Cam1 was seen to bind tightly to Myo1^{IQ1}
183 alone ($K_d < 0.1 \mu M$), no detectable association was observed for the equivalent
184 single Myo1^{IQ2} motif (**Figure 2J**). Together these data are consistent with a
185 sequential cooperative binding mechanism by which the stable residency of
186 Cam1 in the first IQ position is required before calmodulin can bind to Myo1^{IQ2}.
187

188 Replacing serine 742 within the IQ neck region with a phosphomimetic
189 aspartate residue had no significant impact upon the affinity, calcium sensitivity
190 or cooperative nature of the interaction between Myo1 and Cam1 (**Figure 2G**).
191 However, the phosphomimetic replacement resulted in a change in maximum
192 FRET signal upon Cam1 binding (F_{max} 46.05 vs 31.64) (**Figure 2G & H**)
193 indicating Myo1^{S742} phosphorylation changes the conformation of the lever arm
194 upon Cam1 binding, rather than modulating the affinity for Cam1.

195

196 **Phosphorylation regulates Myo1 dynamics and endocytosis.**

197 To explore *in vivo* Myo1 and calmodulin dynamics we generated prototroph S.

198 *pombe* strains in which endogenous *myo1*, *cam1*, or *cam2* genes were fused
199 to cDNA encoding for monomeric fluorescent proteins (**Figure 3A**). Using high-
200 speed (20 Hz) single molecule TIRF analysis we explored how Myo1^{S742}
201 phosphorylation impacts Myo1 and Cam1 dynamics and function within the cell.
202 Myo1 and Cam1 associated with the cell membrane in two distinct ways: we
203 observed rapid transient associations of single molecules at the cell membrane,
204 characterised by low-intensity single stepwise changes in intensity as well
205 longer endocytic events which were much brighter and had a very different
206 time-course. Single molecules of Myo1 and Cam1 bound transiently at the cell
207 membrane and moved with low mobility ($0.03 \mu\text{m}^2\cdot\text{s}^{-1}$), ~10-times slower than
208 diffusion of integral membrane proteins (Mashanov *et al*, 2010). The individual,
209 diffraction-limited fluorescent spots appeared and disappeared in a stepwise
210 fashion (i.e. within a single video frame). Event durations were exponentially
211 distributed with mean lifetime of 2.2 s^{-1} ($n = 152$) (**Movie 1**). In contrast, during
212 endocytic events, the fluorescence signal increased gradually, rising to a peak
213 amplitude consistent with ~45 molecules of mNeongreen.Myo1 (rate ~ 13
214 molecules.s $^{-1}$), which dwelled for ~ 6 s, before falling to baseline (rate ~ 14
215 molecules.s $^{-1}$) (**Figure 3B, Movie 2**). The estimated number of Myo1 molecules
216 is lower than reported in an earlier study (Sirotnik *et al*, 2010) perhaps due to
217 differences in imaging techniques, as TIRF imaging illuminates the specimen
218 to a depth of $\sim 100\text{nm}$ whereas confocal imaging would extend to $> 400\text{nm}$).
219 The duration (T_{dur}) of endocytic events (measured as described in the Methods)
220 was $13.84 \text{ s} \pm 0.39$ (mean \pm SEM, $n=50$) (**Figure 3C**) and while there was
221 significant variation in the maximum mNeongreen.Myo1 intensity ($2373 \pm$
222 155), there was no correlation between maximum intensity and event duration
223 (**Figure 3D**). Fluorescence intensity dynamics of Cam1.GFP during endocytic
224 events were similar to mNeongreen.Myo1, but T_{dur} was significantly shorter (P
225 <0.0001), $10.99 \text{ s} \pm 0.21$ ($n=52$) while the peak intensity was roughly double
226 that measured for mNeongreen.Myo1 and equivalent to ~ 90 GFP molecules
227 (**Figure 3E**) consistent with Cam1 occupying both IQ sites within the Myo1 neck
228 region. The briefer event duration observed for Cam1 might be explained by
229 Cam1 dissociating from Myo1 before Myo1 leaves the endocytic patch. This
230 idea was confirmed using two-colour imaging of *mNeongreen.myo1*
231 *cam1.mCherry* cells which showed Myo1 and Cam1 arrived simultaneously at

232 the endocytic patch, but Cam1.mCherry disassociated ~3 s before
233 mNeongreen.Myo1 (Figure 3F, S2).

234 Analysis of Myo1 and Cam1 dynamics in *myo1.S742A* cells during endocytosis
235 revealed Myo1^{S742A} had average assembly/disassembly rates and plateau
236 intensity identical to wild type Myo1, but T_{dur} was 1.5 sec shorter (12.3s +/- 0.31
237 n=67) (Figure 3G & S2). Consistent with the *in vitro* data, the *myo1.S742A*
238 mutation did not impact on the ability of Cam1 molecules associating at both IQ
239 motifs, as average assembly/disassembly rates, and plateau intensity for Cam1
240 were the same in both wild type and *myo1.S742A* cells. However, we found
241 that Myo1^{S742A} and Cam1 proteins disassociated simultaneously and somewhat
242 earlier during the endocytic event in this strain.

243 These TIRF imaging data were consistent with widefield 3D-timelapse imaging
244 that showed lifetimes of Myo1 and Cam1 foci were shorter in *myo1.S742A* cells
245 when compared to *myo1⁺* (Figure 3H). In contrast, while the *myo1.S742A* allele
246 did not affect accumulation of Cam2 or LifeACT to sites of endocytosis (Figure
247 3I), the rate of endocytosis differs between old end and new ends of *myo1-*
248 *S742A* cells compared to wild type (Figure 4A). Therefore, while Myo1^{S742}
249 phosphorylation does not impact assembly of Myo1-Cam1 endocytic foci, it
250 regulates myosin activity to change the function of the ensemble of endocytic
251 proteins during bipolar growth.

252

253 **Myo1 S742 is phosphorylated in a cell cycle dependent manner to
254 regulate polarised cell growth.**

255 Upon cell division fission yeast cells grow exclusively from the old cell end that
256 existed in the parental cell. At a point during interphase (called New End Take
257 Off -NETO) there is a transition to a bipolar growth (Mitchison & Nurse, 1985).
258 This cell cycle switch in growth pattern correlates precisely with a parallel
259 redistribution of endocytic actin patches (Marks & Hyams, 1985). As the
260 *myo1.S742A* allele only affected actin dynamics at the old cell end during
261 bipolar growth we examined whether this post-translational modification was
262 subject to cell cycle dependent variance. Analysis of extracts from cell division
263 cycle mutants arrested in G1 (*cdc10.v50* cells) or late G2 (*cdc25.22* cells)

264 revealed Myo1^{S742} is phosphorylated in a cell cycle dependent manner (Figure
265 4B). This was confirmed by monitoring Myo1^{S742} phosphorylation in cells
266 synchronised with respect to cell cycle progression (Figure S3). These data
267 established that Myo1^{S742} phosphorylation peaks in early interphase (G1 cells),
268 prior to the transition to a bipolar growth pattern, and steadily decreases until
269 becoming undetectable towards the end of G2. Analysis of growth kinetics
270 revealed *myo1.S742A* cells grow slower than wild type (Figure 4C), and have
271 a longer average length (*myo1⁺*: $9.77 \pm 1.77 \mu\text{m}$; *myo1.S742A*: $13.2 \pm 2.47 \mu\text{m}$.
272 t-test >99% significance n>500). In addition, a significant proportion of
273 *myo1.S742A* cells demonstrate polarity defects, with 24.7% of cells having a
274 bent morphology (i.e. growth deviates by >5° from longitudinal axis), compared
275 to 1% seen in wild type (Figure 4D-E). Consistent with these observations,
276 *myo1.S742* mutants exhibit defects in the transition from monopolar to polar
277 growth. Cell wall staining revealed a significantly higher proportion of
278 *myo1.S742A* cells exhibit monopolar growth compared to equivalent wild type,
279 indicating disruption in the switch from monopolar to bipolar growth (Figure 4E).
280 This was confirmed by tracking the cellular distribution of the actin patch
281 marker, Sla2/End4, following cell division. Sla2 failed to redistribute to the newly
282 divided end of *myo1.S742A* cells during interphase (Figure 4F). Together these
283 data show that cell cycle variation in Myo1^{S742} phosphorylation modulates the
284 myosin lever arm to regulate endocytosis and polarised growth.

285

286 **Cam2 associates with internalised endosomes and not Myo1 during**
287 **vegetative growth.**

288 Myo1 has been reported to associate with a second calmodulin like protein,
289 Cam2, via its second IQ motif (Sammons *et al*, 2011). However, our data
290 indicate Cam1 occupies both Myo1 IQ motifs during endocytosis. Widefield
291 microscopy revealed Myo1 and Cam1 dynamics (Figure 5A) at endocytic foci
292 differ significantly from Cam2 which is recruited to sites of endocytosis later
293 than Myo1 and Cam1, but prior to budding off, where, like CAPZA^{Acp1}, Sla2 and
294 actin, it remains associated with laterally oscillating internalised endosomes
295 (Figure 5B-C). Similarly, simultaneous imaging of Cam1 and Cam2 in
296 *cam1.mCherry cam2.gfp* cells revealed each protein localises to many foci

297 lacking the other calmodulin, indicating differences in the timing of endocytic
298 recruitment (**Figure 5D**). While Cam1 recruitment to endocytic foci is abolished
299 in the absence of Myo1 (**Figure 5E**), the intensity, volume and number of Cam2
300 foci increases in the absence of Myo1 (**Figure 5F Table 1**). However,
301 internalisation and lateral “oscillating” dynamics of Cam2, and actin were
302 dependent on Myo1 (**Figure 5F & G**). Therefore, while Cam1 and Cam2 both
303 localise to sites of endocytosis, they appear to do so at different times, and each
304 have differing Myo1 dependencies.

305 TIRF analysis revealed on average a total of ~30 Cam2 molecules recruit to
306 each endocytic foci, and the kinetics of its recruitment to foci differ significantly
307 to that observed for both Myo1 and Cam1. Cam2 often had a linear binding
308 relationship (**Figure 6A**), which contrasts to the sigmoidal profiles observed for
309 Myo1 and Cam1 (**Figure 3C & E**). TIRFM confirmed Cam2 remained associated
310 with endocytic vesicles after they were internalised and their connection with
311 the cell membrane was broken (**Movie 3**). Background corrected intensity
312 traces of Cam2 dynamics at the membrane patch before, during, and after the
313 end of endocytosis showed the signal rapidly dropped to baseline (<1s) (**Figure**
314 **6A**), with the Cam2 labelled vesicles remaining visible close to the membrane
315 at the limit of the evanescent field. A large number of these mobile internalised
316 Cam2 labelled vesicles were seen moving within the cytoplasm with relatively
317 low cytosolic background signal (**Movie 3**), indicating much Cam2 associates
318 with endocytic vesicles and remains bound to mature endosomes. During the
319 latter stages of endocytosis, Cam2 was internalised on the endosome while
320 Myo1 remained at the plasma membrane during endosome abscission (Sirotnik
321 *et al*, 2010; Berro & Pollard, 2014; Picco *et al*, 2015). Timing of the Myo1 and
322 Cam2 fluorescence signals did not correlate; Cam2 was associated with the
323 endocytic vesicle moving away from the cell surface during endocytosis and
324 remaining associated with the early endosome at the time of scission. Whereas,
325 Myo1 and Cam1 remained immobile and stayed close to the cell surface
326 (plasma membrane) throughout the endocytic cycle.

327 To correlate Myo1-Cam1 association at sites of endocytosis with scission of the
328 endosome into the cytoplasm, we followed Cam1 and Cam2 dynamics
329 simultaneously in *cam1.mCherry cam2.gfp* cells (**Movie 4**). An average curve

330 generated from profiles of >30 complete individual endocytic events (**Figure 6B**)
331 shows Cam2 moves away from the cell surface shortly after Cam1 leaves but
332 before Myo1, with the time of abscission (T_{scis}) occurring on average 13.4 sec
333 after the event starts (T_{start}). Therefore endosome scission takes place during
334 the Myo1 disassembly phase, and around the time Cam1 dissociates from
335 Myo1.

336 Intriguingly, while the overall distribution of Myo1 and Cam1 appeared
337 unaffected in *cam2Δ* cells, the number, volume and intensity of foci were
338 significantly reduced (**Figure 6C-D Table 1**). TIRF-based analysis of the spatial
339 distribution of Myo1 and Cam1 at endocytic foci revealed that Cam1 organised
340 into more dispersed foci in the absence of Cam2 (**Figure 6E-F**), indicating Cam2
341 plays a role in organising the Myo1-Cam1 complex at the plasma membrane.

342

343 **Serine 742 phosphorylation increases the affinity of a single Cam2 for**
344 **Myo1.**

345 *In vitro* analysis revealed two Cam2 molecules can associate with the
346 unphosphorylated Myo1^{IQ12} region (**Figure 6G**) with 2 distinct phases. In
347 contrast to Cam1 binding, 70% of the signal change is associated with an
348 affinity of 1.10 μ M. The smaller tighter signal change is not accurately
349 measurable, but the combined change in signal is consistent with 2 binding
350 events. As predicted from sequence analysis, Cam2 was not seen to associate
351 with calcium (**Figure 2D**), and its conformation and interactions with Myo1 were
352 insensitive to the divalent cation (**Figure 6H**). Like Cam1, Cam2 had a higher
353 affinity for the first IQ motif (0.4 μ M) than both IQ12 together, and did not bind
354 to IQ2 alone (**Figure 2J**). Cam1 calcium binding, as measured by IAANS
355 labelling or change in Quin-2 fluorescence were unaffected by Cam2, while gel
356 filtration and fluorescence binding assays provided no evidence of a direct
357 physical interaction between the two proteins (**Figure S4**). Interestingly a
358 difference was observed in fluorescence amplitudes between Cam1 and Cam2
359 binding to the IQ12 motif, may indicate an impact upon lever arm length, (**Figure**
360 **6H**), potentially providing a mechanism to directly control Myo1 motor activity.
361 Myo1^{S742} phosphorylation had no measurable impact upon the dynamics and

362 distribution of Cam2 within fission yeast cells undergoing normal vegetative
363 growth (**Figure 7A Table 1**). In contrast, *in vitro* analysis revealed Cam2 was
364 only able to occupy one of the two IQ motifs in the Myo1^{S742D-IQ12} protein, be
365 that with an increased affinity to the unphosphorylated protein (0.25 μ M) (**Figure**
366 **6G**), indicating Cam2 impacts Myo1 function outside of the vegetative life cycle.

367

368 **Cam1 and Cam2 associate with Myo1 during meiosis.**

369 Calcium levels within log phase yeast cells are relatively low (100-200 nM) (Ma
370 *et al*, 2011; Miseta *et al*, 1999), and provides favourable conditions for Cam1 to
371 associate with Myo1 (pCa - 5.87). Analysis of cell fluorescence indicated the
372 relative abundance of Myo1 : Cam1 : Cam2 within the *S. pombe* cell to be 0.2
373 : 1.45 : 1 (**Table 1**), which is similar to the ratios defined by quantitative
374 proteomic analysis of 0.45 : 1.56 : 1 (Marguerat *et al*, 2012). Similarly, image
375 analysis of Cam1-GFP fluorescence revealed 1.7% of Cam1 to be associated
376 with discrete foci within cells (**Table 1**), 40% of which is dependent upon Myo1,
377 with the majority associating with the SPB (**Figure 5D**). This indicates ~0.68%
378 of cellular Cam1 associates with Myo1 at dynamic endocytic foci. These relative
379 protein levels, binding affinities and low Ca^{2+} concentrations favour Cam1
380 binding to Myo1, over Cam2 at both IQ sites (**Figure 7B**), consistent with *in vivo*
381 observations.

382 While Ca^{2+} levels are low during vegetative growth, sporadic prolonged calcium
383 bursts occur upon pheromone release during mating (Carbó *et al*, 2016; Iida *et*
384 *al*, 1990), and levels elevate significantly (~10 fold) during the subsequent
385 meiosis and sporulation (Suizu *et al*, 1995). Cam1 would be less likely to bind
386 to Myo1 in these conditions (pCa 5.87). Myo1^{S742} is phosphorylated from G1,
387 through cell fusion, persisting until completion of spore formation (**Figure 7C**).
388 In addition Cam2 abundance increases significantly in relation to Cam1 during
389 G1 upon mating and entry into meiosis (Mata & Bähler, 2006; Mata *et al*, 2002).
390 These provide conditions that would favour Myo1-Cam2 interactions over
391 Cam1 (**Figure 7B**), which is consistent with both Myo1 and Cam2 playing
392 important role at the leading edge of forespore membrane formation during
393 meiosis (Toya *et al*, 2001; Itadani *et al*, 2007). Consistent with this prediction,

394 Myo1, Cam1, Cam2 foci lifetime and dynamics differ significantly to those
395 observed in vegetative cells ($P<0.0001$), lasting significantly longer (>1 min) in
396 meiotic and sporulating cells (Figure 7D & E). In contrast to vegetative cells,
397 during meiosis and subsequent spore formation, like Myo1 and Cam1, Cam2
398 and actin foci were less dynamic, lacking any oscillation and remain in a fixed
399 position with significantly longer lifetime than within actively growing cells
400 (Figure 7D, Movie 5-8).

401 Finally, we used the *myo1.S742A* allele to explore the impact of Myo1^{S742}
402 phosphorylation on Myo1, Cam1 and Cam2 dynamics and function during
403 meiosis. In contrast to wild type, the lifetime of Cam1 foci were significantly
404 shorter in *myo1.S742A* cells, and did not correlate with Myo1 and Cam2
405 dynamics, both of which differed significantly from *myo1⁺* cells (Figure 7F). The
406 majority of Cam2 foci remained present in the cell for greater than 2 mins in
407 meiotic cells lacking Myo1^{S742} phosphorylation, which also differed significantly
408 from Myo1^{S742A} dynamics, indicating normal Cam1 and Cam2 interactions with
409 Myo1 were abolished. Consistent with *myo1.S742A* cells grown to stationary
410 phase in minimal media (Figure 1F), heterothallic (h^{90}) G1 arrested nitrogen
411 starved *myo1.S742A* cells failed to inhibit polar growth (Figure 7G), mating cells
412 accumulated with abnormal shmoos tips, and meiosis often resulted in cells with
413 too few unequally sized spores (Figure 7G arrowheads). This spore defect
414 phenotype is similar to that observed in *cam2 Δ* cells (Itadani et al, 2007), which
415 is consistent with a model whereby increase in cellular Ca^{2+} and Myo1^{S742}
416 phosphorylation are both key for Cam2 association with and regulation of Myo1.
417 These data support a model by which changes in calcium levels and TORC2
418 dependent phosphorylation status provide a simple two stage mechanism for
419 modulating motor activity by modifying lever arm length as well as switching
420 calmodulin light chain preference to regulate myosin function in response to
421 changing needs of the cell (Figure 7B).

422 **Discussion**

423 Myosins are subject to diverse systems of regulation, which include
424 composition of the actin track, cargo and light chain interactions, as well as
425 phosphorylation. Here we describe a newly discovered mechanism by which
426 phosphorylation of the myosin heavy chain (Figure 1) regulates light chain
427 specificity, lever arm conformation and flexibility, to modulate and control
428 cellular function. During the vegetative life cycle, within basal levels of cellular
429 calcium, the fission yeast myosin-1 preferentially associates with two molecules
430 of the calcium regulated calmodulin light chain Cam1 (Figures 2 & 3). During
431 early stages of the cell cycle TORC2 dependent phosphorylation of the Myo1
432 neck region, to which the light chain(s) bind, changes the length of the Cam1
433 associated lever arm to moderate its activity to regulate the rate of endocytosis
434 (Figure 4).

435 During the sexual cycle, Myo1^{S742} remains phosphorylated (Figure 7). This
436 combined with the increase in cytosolic Ca²⁺ levels leads to a switch in light
437 chain preference to a single molecule of the calcium insensitive calmodulin like,
438 Cam2. The single Cam2 molecule is likely to bind IQ1 of S742 phosphorylated
439 Myo1, as comparison with the structure of the IQ region of Myosin-1 and
440 calmodulin (Lu *et al*, 2014), phosphorylation of S742 is likely to impact
441 calmodulin interactions at the 1st IQ position. Furthermore, our data reveals that
442 Cam2 is unable to associate with IQ2 alone, as it is necessary for one
443 calmodulin to occupy IQ1 in order for a second to bind to IQ2. This switch in
444 light chain occupancy may provide a mechanism to change the stiffness of the
445 Myo1 neck region (i.e. the “lever arm”) and thereby modulate the movement
446 and force it produces during the acto-myosin ATPase cycle and/or the load-
447 sensitivity of its actin-bound lifetime.

448 While Myo1 is capable of associating with phospholipid membranes via its
449 Plekstrin Homology (PH) domain, *in vivo* data suggests that this alone is not
450 sufficient to enable a stable interaction at the plasma membrane (Figure 8A).
451 The build-up of the early endocytic markers, such as Pan1 or Sla1, are
452 necessary to catalyse its nucleation to early endocytic patches allowing Myo1
453 foci to form at the site of membrane invagination. This is consistent with our
454 observation that once initiated, Myo1-Cam1 foci do not collapse, but go on to

455 complete the endocytic event ([Figure 8B](#)) (Sun *et al*, 2015; Barker *et al*, 2007).
456 Similarly, the size of this early marker “patch” has a direct impact upon the
457 number of Myo1 molecules recruited to the plasma membrane, which is
458 consistent with the role of Pan1 in enhancing the Arp2/3 actin nucleating activity
459 of myosin-1 foci in yeast (Barker *et al*, 2007).
460 The local concentration of Myo1 at the endocytic patch appears critical, rather
461 than the absolute number of Myo1 molecules, as the latter does not affect the
462 duration of the Myo1 driven event. Indeed the duration of Myo1’s residency at
463 the plasma membrane is driven by Cam1 and phosphorylation regulated neck
464 length. Interestingly neither of these factors affect the rate of Myo1 or Cam1
465 recruitment or disassociation from the membrane.
466 Therefore the size of the Pan1 patch determines the number of Myo1 molecules
467 necessary to generate a critical local concentration of Arp2/3 nucleated actin
468 filaments ([Figure 8C](#)) (Barker *et al*, 2007). At the critical concentration myosin
469 heads are able to interact with actin filaments nucleated from either adjacent
470 Myo1 tails or WASP activated Arp2/3 complexes, tethered to the membrane via
471 molecules such as the Talin like Sla2 ([Figure 8D](#)) (Sirotkin *et al*, 2005; 2010).
472 The Myo1 is then primed to act as a tension sensor against the actin filament,
473 as it pushes against the membrane of the internalised endosome, which grows
474 against the significant 0.85 MPa (8.3 atm) turgor pressure within the cell (Minc
475 *et al*, 2009) ([Figure 8E](#)). While observations within budding yeast indicate motor
476 activity from a ring of myosins at the lip of the endosome (Mund *et al*, 2018) is
477 necessary for endocytic internalisation the mechanism by which the myosin
478 interacts with actin to facilitate this is unknown (Sun *et al*, 2006).
479 The number of Myo1 molecules at the plasma membrane foci remains constant,
480 as the membrane is internalised, until 2 seconds after Cam1 disassociates from
481 Myo1 ([Figure 8F](#)). While the trigger for Cam1 release is unknown, the rapid
482 ensemble nature of the event indicates it is likely to be initiated by a rapid
483 localised spike in calcium. This could perhaps be driven by a critical level of
484 membrane deformation coupled to calcium influx - similar to processes
485 proposed for mechano-transduction and the role of mammalian myosin-1 within
486 the stereocilia of the inner ear (Adamek *et al*, 2008; Batters *et al*, 2004).
487 Alternatively, mechanical forces acting on Myo1 may drive Cam1 dissociation.

488 Genetics studies from budding yeast indicate that calmodulin mutants, unable
489 to bind Ca^{2+} , release normally from myosin-1 (Geiser *et al*, 1991). Research
490 using mammalian brush border myosin-1, indicates that changes in lipid
491 composition of membranes to which the motor is associated are sufficient to
492 displace calmodulin from the IQ region (Hayden *et al*, 1990). In fission yeast
493 this change in lipid could be rapidly triggered by PI4-kinase phosphorylation
494 (Cam2 is the light chain for PI4 kinase (Sammons *et al*, 2011)). This is
495 consistent with timing of Cam2 membrane recruitment and could go some way
496 to explain why Myo1 foci are more dispersed in absence of Cam2.

497 Once Cam1 detaches from the Myo1 molecule, the neck loses rigidity (Figure
498 8F), reducing tension between the myosin motor and actin filament, causing it
499 to detach rapidly from F-actin (Lewis *et al*, 2012; Mentes *et al*, 2018). Given
500 the off-rate of single Myo1 molecules from the plasma membrane is $\sim 2 \text{ sec}^{-1}$
501 (Figure 3B), lack of association with actin would mean that Myo1 would leave
502 the endocytic patch a second or so after losing its Cam1 light chain. Together
503 these events account for the 2 sec delay between disappearance of Cam1 and
504 Myo1 from the membrane. The same drop in tension at the plasma membrane
505 could provide the signal for scission of the endosome (Palmer *et al*, 2015).

506 The conformation and rigidity of the Myo1 lever arm would therefore play a key
507 role in modulating the tension sensing properties of the motor domain. This is
508 consistent with our data, where wild type phosphorylatable Myo1 resides at the
509 membrane ~ 1.8 sec longer than unphosphorylated Myo1^{S742A} (Figure S2).
510 Phosphorylation-dependent changes in the conformation of the myosin neck
511 provide a simple mechanism to modulate the rate of endocytosis according to
512 the size and needs of the cell. Similarly, in the presence of Ca^{2+} and Myo1^{S742}
513 phosphorylation, a single Cam2 resides at IQ1 motif of the neck (Figure 7B),
514 again modulating neck conformation adjacent the motor domain as well as
515 allowing flexibility within the carboxyl half of the neck region. This would provide
516 a relatively tension insensitive motor, that stalls against the actin polymer, and
517 would therefore persist significantly longer at the endocytic foci, as observed
518 here (Figure 7E). These changes in lever arm properties change the overall
519 rate of endocytosis, as observed in differences for actin labelled endosomes to
520 internalise (Figure 4A).

521 Thus phosphorylation-dependent changes in the calcium regulated
522 conformation and rigidity of the myosin lever arm could provide a universal
523 mechanism for regulating the diverse cytoplasmic activities and functions of
524 myosin motors within all cells.

525

526 **Materials and Methods**

527 **Yeast cell culture:** Cell culture and maintenance were carried out according to
528 (Moreno *et al*, 1991) using Edinburgh minimal medium with Glutamic acid
529 nitrogen source (EMMG) unless specified otherwise. Cells were cultured at 25
530 °C unless stated otherwise and cells were maintained as early to mid-log phase
531 cultures for 48 hours before being used for analyses. Genetic crosses were
532 undertaken on MSA plates (Egel *et al*, 1994). All strains used in this study were
533 prototroph and listed in Supplementary Table 1.

534 **Molecular Biology:** *cam1⁺* (SPAC3A12.14), *cam1.T6C* and *cam2⁺*
535 (SPAC29A4.05) genes were amplified as *Nde1* - *BamH1* fragments from
536 genomic *S. pombe* DNA using o226/o227 and o393/o394 primers and cloned
537 into pGEM-T-Easy (Promega, Madison, WI, USA). After sequencing the
538 subsequent genes were cloned into pJC20 (Clos *et al.*, 1990) to generate
539 bacterial calmodulin expression constructs. DNA encoding for the FRET
540 optimized fluorophores CyPet and YPet (Nguyen and Daugherty, 2005) were
541 each amplified using primers o405 / o406 and o403 / o404 respectively. o406
542 also incorporated DNA at the 3' end of the CyPet ORF encoding for the first IQ
543 motif of the Myo1 neck region, while o404 included DNA encoding a Gly3His6
544 tag at the 3' of the YPet ORF. The two DNA fragments were cloned into pGEM-
545 T-Easy in a three-way ligation reaction to generate pGEM-CyPet-Myo1IQ1-
546 YPet. The CyPet-Myo1^{IQ1}-YPet DNA was subsequently sequencing and cloned
547 as a *Nde1* - *BamH1* fragment into pJC20 (Clos & Brandau, 1994) to generate
548 pJC20CyPet-Myo1^{IQ1}-YPet. Complementary oligonucleotides o425 & o426
549 were annealed together and ligated into BgIII – Xho1 cut pJC20CyPet-Myo1^{IQ1}-
550 YPet to generate pJC20CyPet-Myo1^{IQ12}-YPet. Similarly, complementary
551 oligonucleotides o429 & o430 were annealed together and subsequently
552 ligated into Sal1-BgIII cut pJC20CyPet-Myo1^{IQ1}-YPet and the subsequent Xho1
553 fragment was excised to generate pJC20CyPet-Myo1^{IQ2}-YPet. Site directed
554 mutagenesis was carried out using pJC20CyPet-Myo1^{IQ12}-YPet template and
555 o427 & o428 primers to generate pJC20CyPet-Myo1^{IQ12}S742D-YPet.
556 Complementary oligonucleotides o449 & o450 were annealed together and
557 ligated into Nru1 – Xho1 digested pJC20CyPet-Myo1^{IQ12}S742D-YPet to
558 generate pJC20CyPet-Myo1^{IQ12}S742A-YPet. All plasmids were sequenced

559 upon construction. Strains with fluorophore tagged alleles of *cam1*⁺ and *cam2*⁺
560 were generated as described previously using appropriate template and
561 primers (Bähler *et al*, 1998). Strains in which the *myo1.S742A*, *myo1.S742D*,
562 *mNeongreen-my01*, *mNeongreen-my01.S742A*, or *mNeongreen-my01.S742D*
563 alleles replaced the endogenous *myo1*⁺ gene (SPBC146.13c) were generated
564 using a marker switching method (Maclver *et al*, 2003). Oligonucleotides are
565 described in Supplementary Table 2.

566 **Protein expression & purification:** All recombinant proteins were expressed
567 and purified from BL21 DE3 *E. coli* cells, except Cam1 proteins where BL21
568 DE3 pNatA cells (Eastwood *et al*, 2017) were used to allow amino-terminal
569 acetylation (**Figure S1**). *Calmodulin purification:* Cell lysates were resuspended
570 in Buffer A (50 mM Tris, 2 mM EDTA, 1 mM DTT, 0.1 mM PMSF, pH 7.5) and
571 precleared by high speed centrifugation (48,500 RCF; 30 min; 4 °C), before
572 ammonium sulphate was added to the supernatant at 35 % saturation,
573 incubated for 30 minutes at 4 °C. Precipitated proteins were removed by
574 centrifugation (48,500 RCF; 30 min; 4 °C). For Cam1 purifications the
575 precipitation cleared supernatant was added to a pre-equilibrated 10 ml phenyl
576 sepharose (CL-4B) column (Buffer B: 50 mM Tris, 1 mM DTT, 1 mM NaN₃, 5
577 mM CaCl₂, pH 8.0), washed in 4 volumes of Buffer B before eluted as fractions
578 in Buffer C (50 mM Tris, 1 mM DTT, 1 mM NaN₃, 5 mM EGTA, pH 8.0). For
579 Cam2 purification the precipitation cleared supernatant underwent a second
580 round of ammonium sulphate precipitation and clearing, and the subsequent
581 supernatant subjected to isoelectric precipitation (pH 4.3) and centrifugation
582 (48,500 RCF: 30 minutes; 4 °C). The resultant pellet was resuspended in Buffer
583 A, heated to 80 °C for 5 minutes and denatured proteins removed by
584 centrifugation (16,000 RCF; 5 min). *His*-tagged proteins were purified in native
585 conditions using prepacked, pre-equilibrated 5ml Ni²⁺ columns.

586 **Fast reaction kinetics:** All transient kinetics were carried out using a HiTech
587 Scientific DF-61 DX2 Stopped Flow apparatus (TgK Scientific, Bradford-upon-
588 Avon, UK) at 20°C. All data was acquired as the average of 3-5 consecutive
589 shots and analysed using the KineticStudio software supplied with the
590 equipment. Quin-2 fluorescence was excited at 333 nm and used a Schott
591 GG445 cut off filter to monitor fluorescence above 445 nm. IAANS (2-(4'-

592 (iodoacetamido)anilino)-naphthalene-6-sulfonic acid) was excited at 335 nm
593 and fluorescence was monitored through a GG455 filter. For the FRET
594 measurements, CyPet was excited at 435 nm and YPet emission was
595 monitored through a combination of a Wrattan Gelatin No12 (Kodak) with a
596 Schott GG495 nm filter to monitor fluorescence at 525-530 nm.

597 **Fluorescence spectra:** Emission spectra were obtained using a Varian Cary
598 Eclipse Fluorescence Spectrophotometer (Agilent Technologies, Santa Clara,
599 CA) using a 100 μ l Quartz cuvette. For FRET measurements samples were
600 excited at 435 nm (CyPet excitation) and emission was monitored from 450 –
601 600 nm with both slits set to 1 nm. Affinity experiments were carried out using
602 1 μ M IQ-FRET protein with varying concentrations of Cam1 or Cam2 in a final
603 volume of 100 μ l in analysis buffer of 140 mM KCl, 20 mM MOPS, pH 7.0 with
604 or without 2 mM MgCl₂ and with 2 mM of EGTA, CaCl₂ or Ca²⁺-EGTA as
605 required.

606 **Live cell imaging:** Live cell widefield fluorescence imaging was undertaken as
607 described previously (Baker *et al*, 2016). For Total Internal Reflection
608 Fluorescence Microscopy (TIRFM) *S. pombe* cells were immobilized on №1, Ø
609 25 mm lectin coated coverslips and placed into imaging chambers filled with
610 EMMG medium. A previously described custom TIRF Microscope (Mashanov
611 *et al*, 2003) was used to image individual cells at a rate of 20 fps in either single
612 or dual colour mode. Lasers: 488 nm/100 mW and 561 nm/150 mW (*Omicron*,
613 Germany); emission filters 525/50 nm and 585/29 nm, dichroic mirror 552 nm
614 (Semrock, NY); all lenses and mirrors (*Thorlabs*, NJ), except two Ø 3 mm
615 mirrors (*Comar Optics*, UK) which directed light in and out of the 100× 1.45 NA
616 objective lens (*Olympus*, Japan). Sequences of images were captured using
617 one or two iXon897BV cameras (*Andor Technology*, UK) with custom made
618 acquisition software. 100% laser power (488 nm) was used to image individual
619 mNeongreen-Myo1 and Cam1-GFP molecules. The laser intensity was
620 reduced to ≤ 20% during endocytosis imaging experiments to minimize
621 photobleaching. All imaging was undertaken at 23 °C.

622 **Image analysis:** *Widefield data* was analysed using Autoquant software
623 (*MediaCybernetics*, Rockville, MD, USA). All 3d image stacks were subjected
624 to blind 3d deconvolution before analysis. Average size and number and

625 cellular distribution of foci were calculated from all foci present within ≥ 30 cells
626 for each sample examined. Timing of foci events were calculated from
627 kymographs generated in Metamorph software (*Molecular Devices*, Sunnyvale,
628 CA, USA). The proportion of cells displaying a bent cell phenotype was
629 determined from more than >350 calcofluor (1 mg.ml^{-1}) stained cells for each
630 strain. Bent cells were defined by a deviation in the direction of growth of $> 5^\circ$
631 from the longitudinal axis. *TIRF* data analyses, including single molecule
632 detection and tracking, was undertaken using GMimPro software (Mashanov &
633 Molloy, 2007). Endocytic events were identified by creating an image
634 representing the standard deviation of each pixel over the whole video
635 sequence (known as a “z-projection”). Bright spots in this image correspond to
636 regions of the yeast cell that showed large intensity fluctuations. Regions of
637 interest (ROIs) $\sim 0.5\text{ }\mu\text{m}$ diameter (5×5 pixels) were created to enclose the site
638 of endocytosis and changes in the averaged ROI intensity over the entire video
639 record were saved for future analysis. To correct for local variation in
640 background signal, the average intensity in a region $1.5\text{ }\mu\text{m}$ diameter around
641 the endocytosis site (but not including the central ROI) was subtracted. Data
642 from ROIs that were contaminated by other endocytosis events, occurring in
643 close proximity and close in time, were manually excluded from the analysis. It
644 was critical to identify accurately the start and end of each endocytosis event
645 so that individual traces could be averaged. To facilitate this, the rising and
646 falling phases of the intensity trace were fitted with a straight line (60 data
647 points, 3 sec duration), see **Figure 3C** for example. The intercept of this line
648 with the baseline intensity gave the t_{start} and t_{end} values and event duration
649 ($T_{\text{dur}} = t_{\text{end}} - t_{\text{start}}$) (see **Figure 6A**). Intensity traces for each given condition were
650 synchronised to the starting point (t_{start}) and averaged (except Cam2-GFP
651 traces which were synchronised using t_{start} measured from simultaneously
652 acquired Cam1-mCherry signal). Similarly, traces were synchronised to their
653 end point (t_{end}) and averaged. The mean duration of the events (T_{dur}) for each
654 condition was then used to reconstruct the mean intensity changes with
655 calculated errors for event amplitude and timing (**Table 2**). Since the falling and
656 rising phases of most events fitted well to a simple linear equation, the slope of
657 the fitted lines was used to estimate the rate of accumulation and dissociation
658 of the fluorescent molecules. As Cam2-GFP remained bound to the endocytic

659 vesicle, when vesicle scission occurred intensity fell rapidly to zero as the
660 vesicle diffused from the TIRF evanescent field; the time of scission was
661 defined as t_{scis} (Figure 6C). Single particle tracking was performed using,
662 GMimPro (Mashanov & Molloy, 2007) (ASPT module) so that the paths (or
663 trajectories) of individual Myo1 molecules bound to cell membrane could be
664 traced. Trajectories were analysed to yield mean intensities for individual
665 NeonGreen and eGFP labelled proteins, which could be used to estimate the
666 number of fluorescently-tagged molecules associated with each endocytotic
667 event. Intensity-versus-time plots were generated from averages of >30 foci for
668 each protein in each genetic background examined.

669
670

671

672 **Acknowledgements**

673 We thank Professors M. Balasubramanian, I. Hagan, P. Nurse, C. Shimoda and
674 T. Pollard for strains; and Dr Ben Goult for stimulating discussions and
675 comments on the manuscript. This work was supported by the University of
676 Kent and funding from the Biotechnology and Biological Sciences Research
677 Council (BB/J012793/1 & BB/M015130/1), a Royal Society Industry Fellowship
678 to DPM; a CASE industrial bursary from Cairn Research Ltd to KB and by the
679 Francis Crick Institute which receives core funding from Cancer Research UK
680 (FC001119), the UK Medical Research Council (FC001119) and the Wellcome
681 Trust (FC001119) GIM and JEM.

682

683 **References**

684 Adamek N, Coluccio LM & Geeves MA (2008) Calcium sensitivity of the
685 cross-bridge cycle of Myo1c, the adaptation motor in the inner ear.
686 *Proceedings of the National Academy of Sciences* **105**: 5710–5715

687 Attanapola SL, Alexander CJ & Mulvihill DP (2009) Ste20-kinase-dependent
688 TEDS-site phosphorylation modulates the dynamic localisation and
689 endocytic function of the fission yeast class I myosin, Myo1. *J. Cell. Sci.*
690 **122**: 3856–3861

691 Baker K, Kirkham S, Hálová L, Atkin J, Franz-Wachtel M, Cobley D, Krug K,
692 Macek B, Mulvihill DP & Petersen J (2016) TOR complex 2 localises to
693 the cytokinetic actomyosin ring and controls the fidelity of cytokinesis. *J.*
694 *Cell. Sci.* **129**: 2613–2624

695 Barker SL, Lee L, Pierce BD, Maldonado-Báez L, Drubin DG & Wendland B
696 (2007) Interaction of the endocytic scaffold protein Pan1 with the type I
697 myosins contributes to the late stages of endocytosis. *Molecular Biology*
698 *of the Cell* **18**: 2893–2903

699 Batters C, Arthur CP, Lin A, Porter J, Geeves MA, Milligan RA, Molloy JE &
700 Coluccio LM (2004) Myo1c is designed for the adaptation response in the
701 inner ear. *EMBO J.* **23**: 1433–1440

702 Bähler J, Wu JQ, Longtine MS, Shah NG, McKenzie A, Steever AB, Wach A,
703 Philippsen P & Pringle JR (1998) Heterologous modules for efficient and
704 versatile PCR-based gene targeting in *Schizosaccharomyces pombe*.
705 *Yeast* **14**: 943–951

706 Bement WM & Mooseker MS (1995) TEDS rule: a molecular rationale for
707 differential regulation of myosins by phosphorylation of the heavy chain
708 head. *Cell Motil. Cytoskeleton* **31**: 87–92

709 Berro J & Pollard TD (2014) Local and global analysis of endocytic patch
710 dynamics in fission yeast using a new ‘temporal superresolution’
711 realignment method. *Molecular Biology of the Cell* **25**: 3501–3514

712 Carbó N, Tarkowski N, Ipiña EP, Dawson SP & Aguilar PS (2016) Sexual
713 pheromone modulates the frequency of cytosolic Ca²⁺ bursts in
714 *Saccharomyces cerevisiae*. *Molecular Biology of the Cell* **28**: 501–510

715 Carpy A, Krug K, Graf S, Koch A, Popic S, Hauf S & Macek B (2014) Absolute
716 proteome and phosphoproteome dynamics during the cell cycle of
717 *Schizosaccharomyces pombe* (Fission Yeast). *Mol. Cell Proteomics* **13**:
718 1925–1936

719 Clos J & Brandau S (1994) pJC20 and pJC40--two high-copy-number vectors
720 for T7 RNA polymerase-dependent expression of recombinant genes in
721 *Escherichia coli*. *Protein Expression and Purification* **5**: 133–137

722 Crivici A & Ikura M (1995) Molecular and structural basis of target recognition
723 by calmodulin. *Annu Rev Biophys Biomol Struct* **24**: 85–116

724 East DA & Mulvihill DP (2011) Regulation and function of the fission yeast
725 myosins. *J. Cell. Sci.* **124**: 1383–1390

726 Eastwood TA, Baker K, Brooker HR, Frank S & Mulvihill DP (2017) An
727 enhanced recombinant amino-terminal acetylation system and novel in
728 vivohigh-throughput screen for molecules affecting α -synuclein
729 oligomerisation. *FEBS Letters* **106**: 8157–9

730 Egel R, Willer M, Kjaerulff S, Davey J & Nielsen O (1994) Assessment of
731 pheromone production and response in fission yeast by a halo test of
732 induced sporulation. *Yeast* **10**: 1347–1354

733 Geiser JR, van Tuinen D, Brockerhoff SE, Neff MM & Davis TN (1991) Can
734 calmodulin function without binding calcium? *Cell* **65**: 949–959

735 Hayden SM, Wolenski JS & Mooseker MS (1990) Binding of brush border
736 myosin I to phospholipid vesicles. *J. Cell Biol.* **111**: 443–451

737 Heissler SM & Sellers JR (2016a) Various Themes of Myosin Regulation.
738 *Journal of Molecular Biology* **428**: 1927–1946

739 Heissler SM & Sellers JR (2016b) Kinetic Adaptations of Myosins for Their
740 Diverse Cellular Functions. *Traffic* **17**: 839–859

741 Iida H, Yagawa Y & Anraku Y (1990) Essential role for induced Ca^{2+} influx
742 followed by $[\text{Ca}^{2+}]_i$ rise in maintaining viability of yeast cells late in the
743 mating pheromone response pathway. A study of $[\text{Ca}^{2+}]_i$ in single
744 *Saccharomyces cerevisiae* cells with imaging of fura-2. *J. Biol. Chem.*
745 **265**: 13391–13399

746 Itadani A, Nakamura T & Shimoda C (2007) Localization of type I myosin and
747 F-actin to the leading edge region of the forespore membrane in
748 *Schizosaccharomyces pombe*. *Cell Struct. Funct.* **31**: 181–195

749 Itadani A, Nakamura T, Hirata A & Shimoda C (2010) Schizosaccharomyces
750 pombe Calmodulin, Cam1, Plays a Crucial Role in Sporulation by
751 Recruiting and Stabilizing the Spindle Pole Body Components
752 Responsible for Assembly of the Forespore Membrane. *Eukaryotic Cell* **9**:
753 1925–1935

754 Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A & Hall MN (2004)
755 Mammalian TOR complex 2 controls the actin cytoskeleton and is
756 rapamycin insensitive. *Nat. Cell Biol.* **6**: 1122–1128

757 Kendrick-Jones J, Smith RC, Craig R & Citi S (1987) Polymerization of
758 vertebrate non-muscle and smooth muscle myosins. *Journal of Molecular*
759 *Biology* **198**: 241–252

760 Laplante M & Sabatini DM (2012) mTOR signaling in growth control and
761 disease. *Cell* **149**: 274–293

762 Lee S, Comer FI, Sasaki A, McLeod IX, Duong Y, Okumura K, Yates JR III,
763 Parent CA & Firtel RA (2005) TOR Complex 2 Integrates Cell Movement
764 during Chemotaxis and Signal Relay in Dictyostelium. *Molecular Biology*
765 of the Cell **16**: 4572–4583

766 Lee WL, Bezanilla M & Pollard TD (2000) Fission yeast myosin-I, Myo1p,
767 stimulates actin assembly by Arp2/3 complex and shares functions with
768 WASp. *The Journal of Cell Biology* **151**: 789–800

769 Lewis JH, Greenberg MJ, Laakso JM, Shuman H & Ostap EM (2012) Calcium
770 regulation of Myosin-I tension sensing. *Biophysical Journal* **102**: 2799–
771 2807

772 Liu L & Parent CA (2011) Review series: TOR kinase complexes and cell
773 migration. *The Journal of Cell Biology* **194**: 815–824

774 Lu Q, Li J, Ye F & Zhang M (2014) Structure of myosin-1c tail bound to
775 calmodulin provides insights into calcium-mediated conformational
776 coupling. *Nat Struct Mol Biol* **22**: 81–88

777 Ma Y, Sugiura R, Koike A, Ebina H, Sio SO & Kuno T (2011) Transient
778 Receptor Potential (TRP) and Cch1-Yam8 Channels Play Key Roles in
779 the Regulation of Cytoplasmic Ca²⁺ in Fission Yeast. *PLoS ONE* **6**:
780 e22421

781 MacIver FH, Glover DM & Hagan IM (2003) A ‘marker switch’ approach for
782 targeted mutagenesis of genes in *Schizosaccharomyces pombe*. *Yeast*
783 **20**: 587–594

784 Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R & Bähler J (2012)
785 Quantitative analysis of fission yeast transcriptomes and proteomes in
786 proliferating and quiescent cells. *Cell* **151**: 671–683

787 Marks J & Hyams JS (1985) Localization of F-actin through the cell division
788 cycle of *Schizosaccharomyces pombe*. *European Journal of Cell Biology*
789 **39**: 27–32

790 Mashanov GI & Molloy JE (2007) Automatic detection of single fluorophores
791 in live cells. *Biophysj* **92**: 2199–2211

792 Mashanov GI, Nobles M, Harmer SC, Molloy JE & Tinker A (2010) Direct
793 observation of individual KCNQ1 potassium channels reveals their
794 distinctive diffusive behavior. *J. Biol. Chem.* **285**: 3664–3675

795 Mashanov GI, Tacon D, Knight AE, Peckham M & Molloy JE (2003)
796 Visualizing single molecules inside living cells using total internal reflection
797 fluorescence microscopy. *29*: 142–152

798 Mata J & Bähler J (2006) Global roles of Ste11p, cell type, and pheromone in
799 the control of gene expression during early sexual differentiation in fission
800 yeast. *Proc. Natl. Acad. Sci. U.S.A.* **103**: 15517–15522

801 Mata J, Lyne R, Burns G & Bähler J (2002) The transcriptional program of
802 meiosis and sporulation in fission yeast. *Nat Genet* **32**: 143–147

803 Mentes A, Huehn A, Liu X, Zwolak A, Dominguez R, Shuman H, Ostap EM &
804 Sindelar CV (2018) High-resolution cryo-EM structures of actin-bound
805 myosin states reveal the mechanism of myosin force sensing.
806 *Proceedings of the National Academy of Sciences* **115**: 1292–1297

807 Minc N, Boudaoud A & Chang F (2009) Mechanical forces of fission yeast
808 growth. *Curr. Biol.* **19**: 1096–1101

809 Miseta A, Fu L, Kellermayer R, Buckley J & Bedwell DM (1999) The Golgi
810 apparatus plays a significant role in the maintenance of Ca²⁺
811 homeostasis in the vps33Delta vacuolar biogenesis mutant of
812 *Saccharomyces cerevisiae*. *J. Biol. Chem.* **274**: 5939–5947

813 Mitchison JM & Nurse P (1985) Growth in cell length in the fission yeast
814 *Schizosaccharomyces pombe*. *J. Cell. Sci.* **75**: 357–376

815 Moreno S, Klar A & Nurse P (1991) Molecular genetic analysis of fission yeast
816 *Schizosaccharomyces pombe*. *Meth. Enzymol.* **194**: 795–823

817 Moser MJ, Flory MR & Davis TN (1997) Calmodulin localizes to the spindle
818 pole body of *Schizosaccharomyces pombe* and performs an essential
819 function in chromosome segregation. *J. Cell. Sci.* **110** (Pt 15): 1805–1812

820 Moser MJ, Lee SY, Klevit RE & Davis TN (1995) Ca²⁺ binding to calmodulin
821 and its role in *Schizosaccharomyces pombe* as revealed by mutagenesis
822 and NMR spectroscopy. *J. Biol. Chem.* **270**: 20643–20652

823 Mund M, van der Beek JA, Deschamps J, Dmitrieff S, Hoess P, Monster JL,
824 Picco A, Nedelec F, Kaksonen M & Ries J (2018) Systematic Nanoscale
825 Analysis of Endocytosis Links Efficient Vesicle Formation to Patterned
826 Actin Nucleation. *Cell* **174**: 1–13

827 Nguyen AW & Daugherty PS (2005) Evolutionary optimization of fluorescent
828 proteins for intracellular FRET. *Nat Biotechnol* **23**: 355–360

829 O'Connell CB, Tyska MJ & Mooseker MS (2007) Myosin at work: motor
830 adaptations for a variety of cellular functions. *Biochim. Biophys. Acta*
831 **1773**: 615–630

832 Palmer SE, Smaczynska-de Rooij II, Marklew CJ, Allwood EG, Mishra R,
833 Johnson S, Goldberg MW & Ayscough KR (2015) A dynamin-actin
834 interaction is required for vesicle scission during endocytosis in yeast.
835 *Curr. Biol.* **25**: 868–878

836 Pasapera AM, Plotnikov SV, Fischer RS, Case LB, Egelhoff TT & Waterman
837 CM (2015) Rac1-dependent phosphorylation and focal adhesion
838 recruitment of myosin IIA regulates migration and mechanosensing. *Curr.*
839 *Biol.* **25**: 175–186

840 Pearce LR, Komander D & Alessi DR (2010) The nuts and bolts of AGC
841 protein kinases. *Nat Rev Mol Cell Biol* **11**: 9–22

842 Petersen J (2009) TOR signalling regulates mitotic commitment through
843 stress-activated MAPK and Polo kinase in response to nutrient stress.
844 *Biochem. Soc. Trans* **37**: 273–277 Available at:
845 <http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19143645&retmode=ref&cmd=prlinks>

847 Petersen J & Nurse P (2007) TOR signalling regulates mitotic commitment
848 through the stress MAP kinase pathway and the Polo and Cdc2 kinases.
849 *Nature Publishing Group* **9**: 1263–1272

850 Picco A, Mund M, Ries J, Nedelec F & Kaksonen M (2015) Visualizing the
851 functional architecture of the endocytic machinery. *eLife* **4**:

852 Redowicz MJ (2001) Regulation of nonmuscle myosins by heavy chain
853 phosphorylation. *J. Muscle Res. Cell. Motil.* **22**: 163–173

854 Rogers SL, Karcher RL, Roland JT, Minin AA, Steffen W & Gelfand VI (1999)
855 Regulation of melanosome movement in the cell cycle by reversible
856 association with myosin V. *The Journal of Cell Biology* **146**: 1265–1276

857 Sammons MR, James ML, Clayton JE, Sladewski TE, Sirotkin V & Lord M
858 (2011) A calmodulin-related light chain from fission yeast that functions
859 with myosin-I and PI 4-kinase. *J. Cell. Sci.* **124**: 2466–2477

860 Sirotkin V, Beltzner CC, Marchand J-B & Pollard TD (2005) Interactions of
861 WASp, myosin-I, and verprolin with Arp2/3 complex during actin patch
862 assembly in fission yeast. *The Journal of Cell Biology* **170**: 637–648

863 Sirotkin V, Berro J, Macmillan K, Zhao L & Pollard TD (2010) Quantitative
864 analysis of the mechanism of endocytic actin patch assembly and
865 disassembly in fission yeast. *Molecular Biology of the Cell* **21**: 2894–2904

866 Suizu T, Tsutsumi H, Kawado A, Suginami K, Imayasu S & Murata K (1995)
867 Calcium ion influx during sporulation in the yeast *Saccharomyces*
868 *cerevisiae*. *Can. J. Microbiol.* **41**: 1035–1037

869 Sun Y, Leong NT, Wong T & Drubin DG (2015) A Pan1/End3/Sla1 complex
870 links Arp2/3-mediated actin assembly to sites of clathrin-mediated
871 endocytosis. *Molecular Biology of the Cell* **26**: 3841–3856

872 Sun Y, Martin AC & Drubin DG (2006) Endocytic Internalization in Budding
873 Yeast Requires Coordinated Actin Nucleation and Myosin Motor Activity.
874 *Developmental Cell* **11**: 33–46

875 Takeda T & Yamamoto M (1987) Analysis and in vivo disruption of the gene
876 coding for calmodulin in *Schizosaccharomyces pombe*. *Proc. Natl. Acad.*
877 *Sci. U.S.A.* **84**: 3580–3584

878 Toya M, Motegi F, Nakano K, Mabuchi I & Yamamoto M (2001) Identification
879 and functional analysis of the gene for type I myosin in fission yeast.
880 *Genes Cells* **6**: 187–199

881 Trybus KM, Gushchin MI, Lui H, Hazelwood L, Krementsova EB, Volkmann N
882 & Hanein D (2007) Effect of calcium on calmodulin bound to the IQ motifs
883 of myosin V. *J. Biol. Chem.* **282**: 23316–23325

884 Tsien RY (1980) New calcium indicators and buffers with high selectivity
885 against magnesium and protons: design, synthesis, and properties of
886 prototype structures. *Biochemistry* **19**: 2396–2404

887 Wilson-Grady JT, Villén J & Gygi SP (2008) Phosphoproteome analysis of
888 fission yeast. *J. Proteome Res.* **7**: 1088–1097

889 Win TZ, Mulvihill DP & Hyams JS (2002) Take five: a myosin class act in
890 fission yeast. *Cell Motil. Cytoskeleton* **51**: 53–56

891

892

893 **Figure Legends**

894 **Figure 1. Myo1 serine 742 phosphorylation is TORC2 dependent.** (A) Anti-
895 Myo1 western blot of extracts from WT, *gad8Δ*, *ste20Δ* and *myo1.S742A* cells
896 separated using Phos-Tag SDS-PAGE reveals Myo1 is subject to multiple
897 phosphorylation events (*). (B) Sequence alignment of myosin IQ regions
898 shows Myo1^{S742} lies within an AGC consensus sequence, conserved in class I
899 and V myosins. (C) Western blots of extracts from *myo1*⁺ and *myo1-S742A*
900 cells stained with Ponceau S and probed with phospho-specific anti-Myo1^{S742}
901 antibodies demonstrate antigen specificity. (D) Myo1^{S742} is not phosphorylated
902 in *ste20Δ* cells lacking the fission yeast TORC2 regulator Rictor^{Ste20}. (E)
903 Myo1^{S742} is phosphorylated in cells cultured in minimal media containing
904 Glutamic acid (EMMG) but not in EMM2 with an ammonium chloride nitrogen
905 source. (F) WT and *myo1.S742A* cells grown to starvation in EMMG for 72 hrs.
906 In contrast to WT, *myo1.S742A* cells fail to stop growing upon media induced
907 G1 arrest. Scale – 5 μ m.

908 **Figure 2. *In vitro* characterisation of interactions between Myo1 and**
909 **Cam1.** (A) Predicted models of the CyPet-Cam1-YPet FRET reporter protein
910 (Cam1-FRET) in the absence (upper panel) and presence (lower panel) of
911 Ca^{2+} . (B) pCa curve plotting Ca^{2+} dependent changes of Cam1-FRET protein
912 conformation (Δ in FRET signal). (C) pCa curve plotting Ca^{2+} dependent
913 changes in IAANS fluorescence of IAANS labelled Cam1-T6C. (D) Transient
914 curves of changes in Quin2 fluorescence brought by Ca^{2+} release from Cam1
915 (black) and Cam2 (red). (E) Predicted models of the CyPet-Myo1^{IQ12}-YPet
916 FRET reporter protein (Myo1^{IQ12}-FRET) in the absence (upper panel) or
917 presence (lower panel) of Calmodulin binding. (F) Spectra of Myo1^{IQ12}-FRET
918 reporter alone (black line) or with Cam1 in the presence Ca^{2+} (red dotted line)
919 or absence (grey dotted line) of Ca^{2+} . (G) Curves plotting Cam1 dependent
920 changes of FRET donor signal of wild type (black) or S742D phosphomimetic
921 (blue) Myo1^{IQ12}-FRET proteins. (H) Spectra of Myo1^{IQ12}-FRET (black traces)
922 and Myo1^{IQ12-S742D}-FRET (blue traces) in the absence (dashed lines) or
923 presence (solid lines) of Cam1 illustrate differences in conformation of the Myo1
924 neck region. (I) pCa curve plotting Ca^{2+} dependent changes in acceptor

925 fluorescence of Myo1^{IQ12}-FRET. (J) Curves plotting Cam1 (black) and Cam2
926 (red) dependent changes of FRET donor signal of Myo1-FRET proteins
927 containing single IQ domains (IQ1 – empty shapes; IQ2 – filled shapes).

928 **Figure 3. Myo1 and Cam1 dynamics in wild type and *myo1.S742A* cells.**
929 (A) Maximum projections of 31-z stack widefield images of *mNG.myo1*,
930 *cam1.gfp* and *cam2.gfp* cells (Scales - 5 μ m). (B) An example relative intensity
931 trace of a mNeongreen.Myo1 endocytic event. Linear fitting (60 points) was
932 used to find the highest slope for both rising and falling edges. The intercept
933 with zero intensity level was used to calculate T_{begin} , T_{end} , and subsequently the
934 duration of the event. Insert: An arrow shows the location of the endocytosis
935 event (5X5 pixels area). (C) Averaged profile from 50 individual Myo1
936 membrane association events described in (B), synchronised relative to T_{begin}
937 (grey line) and T_{end} (black line). (D) Plot of event duration (sec) against number
938 of Myo1 molecules (fluorescence amplitude). (E) Averaged profile from 52
939 individual Cam1 membrane association events from TIRFM timelapse analysis
940 of *cam1.gfp* cells. (F) Example of fluorescence trace from simultaneously
941 tracking Myo1 and Cam1 membrane binding and disassociation events from
942 TIRFM timelapse analysis of *mNeongreen.myo1 cam1.mCherry* cells. (G)
943 Averaged profiles of combined averages of individual Myo1 (black line and grey
944 s.d.) and Myo1.S742A (grey line) membrane association events from TIRFM
945 timelapse analysis of *mNeongreen.myo1* and *mNeongreen.myo1.S742A* cells
946 respectively. (H) Analysis of mean duration of Myo1 and Cam1 endocytic
947 events in wt and *myo1.S742A* cells from widefield imaging ($n > 30$). Asterisks
948 denote differences with >99% confidence. (I) Analysis of mean LifeACT and
949 Cam2 signal at endocytic foci in WT and *myo1.S742A* cells ($n > 30$). No
950 differences observed at 95% level of confidence. All error bars - s.d.

951 **Figure 4. Myo1 S742 is phosphorylated in a cell cycle dependent manner**
952 **to affect polarised growth.** (A) Actin foci periodicity at ends of WT and
953 *myo1.S742A* cells in G2 phase ($n > 30$). Asterisks denote difference with >99%
954 confidence. (B) Graphic highlighting Cdc10 and Cdc25 execution points in
955 relation to cell cycle phases and periods of monopolar / bipolar growth (left).
956 Myo1^{S742} is phosphorylated in *cdc10.v50* arrested G1 cells, but not in pre-mitotic

957 G_2 *cdc25.22* arrested cells (right panels). (C) Averaged growth curves from 3
958 independent experiments of prototroph WT (empty circles) and *myo1.S742A*
959 (grey filled circles) cells cultured in EMMG at 34 °C. Error bars - s.d. (D) Myosin-
960 1 distribution and cell morphology of prototroph *mNeongreen.myo1⁺* and
961 *mNeongreen.myo1.S742A* cells cultured in EMMG at 34 °C. Asterisks highlight
962 long bent cells. Scale - 10 μ m. (E) Calcofluor stained WT and *myo1.S742A*
963 cells. Asterisks highlight long bent cells displaying monopolar growth. Scale - 5
964 μ m. (F) Ratio *Sla2-mCherry* fluorescence at “new”: “old” cell end, averaged
965 from >30 growing mid-log *sla2-mCherry myo1⁺* (upper panel) and *sla2-mCherry*
966 *myo1.S742A* (lower panel) cells. Boxes plot median and quartile for each length
967 measured, lines are plotted from the mean average value at each length
968 measured.

969 **Figure 5. Cam2 associates with internalised endocytic vesicles.** (A)
970 Kymographs of GFP labelled foci from maximum projections of 13-z plane
971 timelapse images of *mNeongreen.myo1* (upper panel), *cam1.gfp* (middle
972 panel) and *cam2.gfp* (bottom panel) cells. Myo1 and Cam1 endocytic foci did
973 not move on the membrane (black arrows). Spindle Pole Body (asterisk) and
974 myosin V (white arrow) associated Cam1 are highlighted. In contrast Cam2 foci
975 displayed extensive lateral movements. (B) Kymographs generated from single
976 z-plane timelapse images of single endocytic foci surface during vesicle
977 formation and subsequent internalisation. While Myo1 and Cam1 only
978 associate with the plasma membrane, Cam2, Sla2 and actin are internalised
979 on the vesicle after scission. (C) Kymographs of Cam2 and Sla2 co-
980 internalisation in *sla2.mCherry cam2.gfp* cells. (D) Maximum projection of 31-z
981 slice image of *cam1.mCherry cam2.gfp* cells reveals Cam1 (magenta) and
982 Cam2 (green) colocalise to a subset of endocytic foci. (E-G) Single frames (left
983 panels) and time kymographs (right panels) from maximum projections of 13-z
984 plane timelapse images of *cam1.gfp* (E), *cam2.gfp* (F) and *LifeACT.mCherry*
985 (G) in either *myo1⁺* (upper panels) or *myo1 Δ* (lower panels) cells show only
986 Cam1 endocytic foci recruitment is dependent upon Myo1. Myo1 is required for
987 internalisation of Cam2-GFP and LifeACT.mCherry labelled foci. Scales - 5 μ m.

988 **Figure 6. Cam2 impacts endosome organisation.** (A) An example of the

989 fluorescence trace of Cam2 membrane binding and vesicle internalisation
990 event from TIRFM analysis of *cam2.gfp* cells. An abrupt drop in the
991 fluorescence was marked as "scission time" (grey vertical line). An arrow shows
992 the location of the monitored endocytic event (5X5 pixels area). (B) Averaged
993 profile from 32 individual Cam2 membrane association events (green line)
994 described in (A), together with Cam1-mCherry profile (red) from two-colour
995 TIRFM imaging of *cam1.mCherry cam2.gfp* cells. Events were synchronized
996 relative Cam1 T_{begin} Dashed line denotes mean timing of vesicle scission. (C)
997 Maximum projection of 31-z slice widefield image of a mixture of prototroph
998 *yfp.myo1 sid4.tdT*omato and *yfp.myo1 cam2Δ* cells. (D) Maximum projection of
999 31-z slice widefield image of a mixture of prototroph *cam1.gfp sid4.tdT*omato
1000 and *cam1.gfp cam2Δ* (arrows) cells. (E) Magnification of TIRF heat map of
1001 endocytic Cam1 in *cam2⁺* (upper panel) and *cam2Δ* (lower panel) cells.
1002 Squares correspond to regions extending outward from centre of focus. (F) Plot
1003 of mean distribution of Cam1 across > 40 endocytic sites in WT and *cam2Δ*
1004 cells. (G) Curves plotting Cam2 dependent changes of FRET donor signal of
1005 wild type (black) or S742D phosphomimetic (blue) Myo1^{IQ12}-FRET proteins. (H)
1006 Spectra of Myo1^{IQ12}-FRET reporter alone (black line), with Cam2 in the
1007 presence Ca^{2+} (grey solid line) or absence (grey dotted line) of Ca^{2+} , or with
1008 Cam1 in the absence of Ca^{2+} (black dotted line). Scales – 5 μ m.

1009 **Figure 7. Myo1 S742 phosphorylation regulated Cam1 and Cam2**
1010 **dynamics during meiosis.** (A) Kymographs of Cam2.GFP foci dynamics in
1011 *myo1⁺* (upper panel) and *myo1.S742A* (lower panel) cells. (B) Scheme of
1012 consequence of phosphorylation of Myo1 Ser742 (small empty circle) and Ca^{2+}
1013 levels upon Cam1 (light grey filled circle) and Cam2 (dark grey filled circle)
1014 binding to the IQ1 (solid thick black line) and IQ2 (compound line) motifs of
1015 Myo1, and impact on relative orientation of the myosin lever arm (dashed
1016 arrow). Highlighted combination of unphosphorylated Myo1^{S742} & Ca^{2+} does not
1017 normally occur in wild type cells. (C) Western blots of extracts from G1 arrested
1018 *cdc10.v50 myo1⁺*, *cdc10.v50 myo1-S742A* cells, conjugation arrested *fus1Δ*
1019 cells or spores, probed with phospho-specific anti-Myo1^{S742} antibodies confirm
1020 Myo1S742 remains phosphorylated throughout the sexual cycle. (D) Maximum
1021 projection of 13-z slice GFP fluorescence image and transmitted light image

1022 from a timelapse of vegetative (cell 1) and meiotic (cell 2) *gfp-act1* cells. Image
1023 from a GFP-act signal. Kymographs in the right panels were generated along
1024 the two dotted axes. (E) Histograms of lifetimes of Myo1 (black bars), Cam1
1025 (white bars) and Cam2 (grey bars) foci in vegetative (left panel) and meiotic
1026 (right panel) cells. (F) Lifetimes of Myo1, Cam1 and Cam2 foci in WT (white
1027 bars) and *myo1.S742A* (black bars) meiotic cells. (G) Micrographs of
1028 *myo1.S742A* cell morphology on starvation media. * highlight cells with growth
1029 and polarity defects; arrows highlight cells with elongated or abnormally bent
1030 shmooring tips; and arrow heads highlight meioses resulting in defective spore
1031 formation. Scales – 5 μ m.

1032 **Figure 8. Model of Myo1 tension dependent interactions at the plasma**
1033 **membrane.** (A) Myo1 (green) transiently associates with the plasma
1034 membrane. (B) In the presence of early markers of endocytosis (blue) this
1035 interaction is stabilised, and Myo1 accumulates to a critical concentration at the
1036 endocytic foci (C), whereupon myosin heads associate with growing Arp2/3
1037 (purple) nucleated actin polymers (yellow) attached to the membrane (D), and
1038 monitor tension between the actin filament and internalised plasma membrane
1039 (E). Upon release of the calmodulin light chain (red), the myosin-1 would its
1040 ability to monitor tension and subsequently disengage from the actin polymer
1041 and membrane (F).

1042

1043 **Supplementary Data Legends**

1044 **Supplementary Figure 1. Purified proteins used during *in vitro* studies.**

1045 Coomassie stained SDS-PAGE gel of recombinant proteins expressed and
1046 purified during this study. From left to right lanes contain (L) protein standard;
1047 (1) Nt-acetylated Cam1; (2) Nt-acetylated Cam1-T6C; (3) Cam1-FRET; (4)
1048 Cam2; (5) IQ12 peptide (not used during this study); (6) Myo1IQ12-FRET; and
1049 (7) Myo1IQ12S742D-FRET.

1050 **Supplementary Figure 2. Relative TIRF profiles.** Combined profiles of
1051 averages from TIRFM timelapse analysis of Myo1 and Cam1 dynamics in wild
1052 type or *myo1.S742A* strains. (A) Myo1 (blue) and Cam1 (red) membrane
1053 association in wild type cells. (B) Myo1 membrane association in wild type
1054 (blue) and *myo1.S742A* (red) cells. (C) Myo1 (blue) and Cam1 (red) membrane
1055 association in *myo1.S742A* cells. (D) Cam1 membrane association in wild type
1056 (blue) and *myo1.S742A* (red) cells.

1057 **Supplementary Figure 3. Myo1^{S742} phosphorylation fluctuates in a cell**

1058 cycle dependent manner. A *cdc10.v50* culture was synchronized in G1 by
1059 shifting to 36°C for 240 min before returning to 25°C at time 0. Samples of cells
1060 were taken every 20 minutes from the release and processed for western
1061 blotting to monitor of Myo1^{S742} phosphorylation (A). The membrane was
1062 subsequently probed with anti-Myo1 antibodies (B) to monitor total Myo1. Equal
1063 loading was monitored by Ponceau staining of the membrane. (C) Densitometry
1064 measurements of the bands in these blots are plotted along with the % of cells
1065 in the culture with septa.

1066 **Supplementary Figure 4. Cam1 and Cam2 do not interact directly.** (A)
1067 Overlaid OD280 spectra were recorded from eluate from a Superdex 75 gel
1068 filtration column which had been loaded with either Cam1 (grey line), Cam2
1069 (black line) or Cam1 and Cam2 (red line) under identical 4 mM EGTA buffer
1070 conditions. (B) Maximum IAANS fluorescence values (440 nm) of 0.5 μ M
1071 Cam1-IAANS at a range of pCa values. Black symbols show values of Cam1-
1072 IAANS, red symbols show values of Cam1-IAANS with 5 μ M Cam2 protein. 2
1073 mM Ca- EGTA buffers were used to give indicated pCa values. pCa50 values

1074 calculated from Origin fitting analysis - Hill equation.

1075 **Supplementary Figure 5. Multiple labelling strategies for Myo1, Cam1 and**
1076 **Cam2 disrupts normal distribution.** Cam1 has increased cytoplasmic signal
1077 and reduced signal at endocytic foci in cells expressing both *cam1.gfp* and
1078 *mCherry.myo1* (A (GFP-green, mCherry-magenta)) compared to cells
1079 expressing *cam1.gfp* alone (B). Similarly, Cam1 has increased cytoplasmic
1080 signal and reduced relative signal at endocytic foci in *CFP-my01 cam1.mCherry*
1081 cells (C). (D) Growth curves of prototroph *cam1.gfp* (green) and *cam1.gfp*
1082 *mCherry.myo1* cells cultured in EMMG at 25 °C. (E) Cam1 (green) localisation
1083 is disrupted in *cam1.gfp cam2.mCherry* cells, with less Cam1 on endocytic foci,
1084 and localising to the mitotic spindle which is never observed in cells expressing
1085 FP labelled Cam1 alone.

1086 **Supplementary Movie 1:** Timelapse of TIRFM imaged *mNeongreen.myo1*
1087 cells showing rapid single molecule interactions of Myo1 at the plasma
1088 membrane. Frame Rate: 15 msec / frame.

1089 **Supplementary Movie 2:** Timelapse of TIRFM imaged *mNeongreen.myo1*
1090 cells showing endocytosis associated interactions of Myo1 at the plasma
1091 membrane. Frame rate: 50 msec / frame.

1092 **Supplementary Movie 3:** Timelapse of TIRFM imaged *cam2.gfp* cells showing
1093 Cam2 recruiting to endocytic vesicles, to which it remains associated after
1094 scission and internalisation of the endosome. Frame rate: 50 msec / frame.

1095 **Supplementary Movie 4:** Timelapse of TIRFM imaged *cam1.mCherry*
1096 *cam2.gfp* cells showing early recruitment of Cam1 (red) subsequent
1097 recruitment of Cam2 (green) to sites of endocytosis. Cam1 disassociates prior
1098 to vesicle scission, while Cam2 remains associated with the internalised
1099 endosome. Frame rate: 50 msec / frame.

1100 **Supplementary Movie 5:** Timelapse of maximum projections from 13-z slice
1101 widefield images of *mNeongreen.myo1* cells showing typical examples of Myo1
1102 dynamics in vegetative and meiotic cells. Frame rate: 650 msec / frame.

1103 **Supplementary Movie 6:** Timelapse of maximum projections from 13-z slice
1104 widefield images of *cam1.gfp* cells showing typical examples of Cam1
1105 dynamics in vegetative and meiotic cells. Frame rate: 650 msec / frame.

1106 **Supplementary Movie 7:** Timelapse of maximum projections from 13-z slice
1107 widefield images of *cam2.gfp* cells showing typical examples of Cam2
1108 dynamics in vegetative and meiotic cells. Frame rate: 650 msec / frame.

1109 **Supplementary Movie 8:** Timelapse of maximum projections from 13-z slice
1110 widefield images of *gfp.act1* cells showing typical examples of Act1 dynamics
1111 in vegetative and meiotic cells. Frame rate: 650 msec / frame.

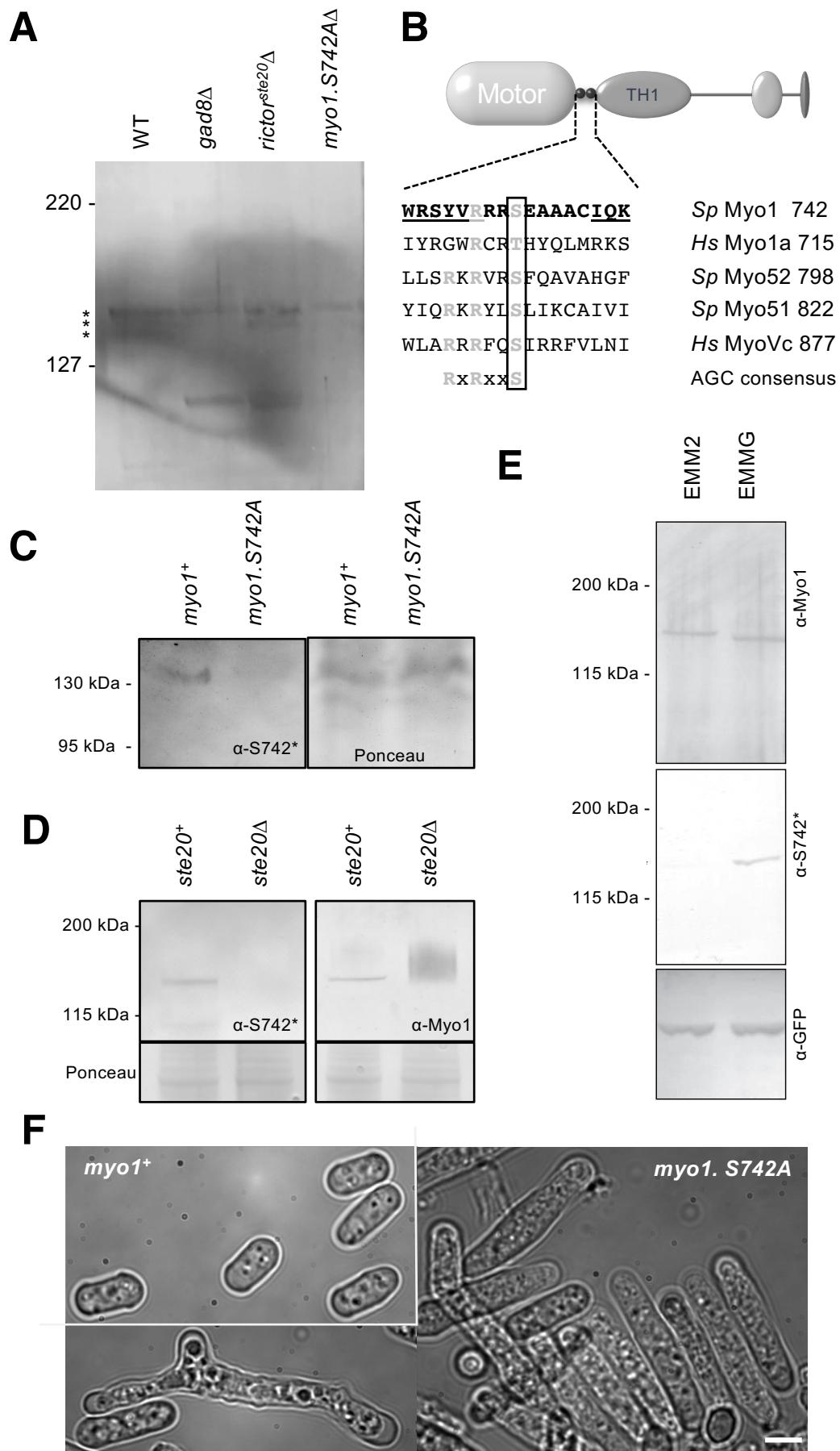
1112 **Supplementary Table 1:** Strains used during this study.

1113 **Supplementary Table 2:** Oligonucleotides used during this study.

Myo1	<i>mNeonGreen-myo1</i>	<i>mNeonGreen-myo1-S742A</i>	<i>YFP-myo1 cam2Δ</i>	-
Whole cell fluorescence (AU)	9,453,813	0.86 (0.8628)	0.90 (0.0295)	-
Cell size (μm ²)	98.9	0.84 (0.0863)	0.95 (0.4542)	-
Maximum intensity (AU)	33,477	0.92 (0.1446)	0.62 (0.0001)	-
Number of foci	15.9	0.82 (0.0203)	0.84 (0.0261)	-
Average foci volume (μm ³)	0.98	0.98 (0.8595)	0.64 (0.0001)	-
Total foci volume (μm ³)	15.2	0.75 (0.0020)	0.53 (0.0001)	-
Total foci fluorescence (AU)	139,712	0.76 (0.0061)	0.45 (0.0001)	-
Average foci lifetime (s)	14.0	10.9 (0.0001)	ND	-
N =	32	30	37	-
Cam1	<i>cam1-gfp</i> (<i>myo1⁺</i>)	<i>cam1-gfp myo1-S742A</i>	<i>cam1-gfp cam2Δ</i>	<i>cam1-gfp myo1Δ</i>
Whole cell fluorescence (AU)	61,530,900	0.89 (0.0197)	0.97 (0.7145)	1.14 (0.0733)
Cell size (μm ²)	86.1	0.99 (0.9271)	1.08 (0.2016)	1.00 (0.9748)
Maximum intensity (AU)	251,700	0.82 (0.0563)	0.72 (0.0001)	1.41 (0.0001)
Number of foci	14.1	0.96 (0.6960)	0.93 (0.3200)	0.42 (0.0001)
Average foci volume (μm ³)	1.12	0.67 (0.0081)	0.74 (0.0321)	1.52 (0.0188)
Total foci volume (μm ³)	14.33	0.68 (0.0004)	0.78 (0.0703)	0.56 (0.0001)
Total foci fluorescence (AU)	1,020,350	0.63 (0.0002)	0.66 (0.0013)	0.60 (0.0001)
Average foci lifetime (s)	10.4	9.4 (0.0001)	13.3 (0.0001)	-
N =	25	15	56	27
Cam2	<i>cam2-gfp</i> (<i>myo1⁺</i>)	<i>cam2-gfp myo1-S742A</i>	-	<i>cam2-gfp myo1Δ</i>
Whole cell fluorescence (AU)	39,259,937	1.01 (0.8063)	-	1.48 (0.0001)
Cell size (μm ²)	79.3	0.89 (0.2385)	-	1.15 (0.3114)
Maximum intensity (AU)	267,547	0.98 (0.6339)	-	0.78 (0.0001)
Number of foci	20.8	0.94 (0.4155)	-	1.26 (0.0048)
Average foci volume (μm ³)	0.82	1.11 (0.0737)	-	1.63 (0.0001)
Total foci volume (μm ³)	16.53	1.05 (0.4287)	-	2.10 (0.0001)
Total foci fluorescence (AU)	859,161	1.06 (0.3374)	-	1.82 (0.0001)
N =	20	31	-	17
LifeAct	<i>LifeAct</i> (<i>myo1⁺</i>)	<i>LifeAct myo1-S742A</i>	ND	<i>LifeAct myo1Δ</i>
Whole cell fluorescence (AU)	17,116,300	1.14 (0.0936)	-	1.15 (0.2851)
Cell size (μm ²)	84.5	1.01 (0.8787)	-	1.14 (0.1529)
Maximum intensity (AU)	94,671	1.06 (0.4403)	-	0.64 (0.016)
Number of foci	19.8	0.94 (0.5502)	-	1.22 (0.0147)
Average foci volume (μm ³)	0.73	1.19 (0.0346)	-	0.95 (0.6822)
Total foci volume (μm ³)	13.96	1.15 (0.1771)	-	1.14 (0.2759)
Total foci fluorescence (AU)	327,017	1.18 (0.1832)	-	1.03 (0.8674)
N =	23	23	-	23

Table 1:

AutoQuantX3 Image analysis data of wide-field fluorescence data of cells. Mutant strains were imaged in mix experiments with wild type cells, analysis for these cells is shown relative to the wild type control cells for each experiment. Statistical significance determined by an unpaired *t*-test is shown in brackets, a statistical significance of *p* < 0.05 is indicated in red.


Protein (<i>myo1</i> allele)	Duration (SEM)	Amplitude (SEM)	Rise rate (SEM)	Drop rate (SEM)	N
Myo1 (<i>myo1</i> ⁺)	13.84(0.39) ^{1,2,3}	2373(155)	536(40.4)	567(43)	50
Cam1 (<i>myo1</i> ⁺)	10.99(0.21) ¹	4539(292)	1074(83)	1028(69)	52
Myo1 (<i>myo1.S742A</i>)	12.28(0.31) ^{2,4}	2274(128)	536(34)	570(41)	67
Cam1 (<i>myo1.S742A</i>)	12.15(0.38) ^{3,4}	4629(301)	1153(98)	1031(77)	43

Significance differences observed in durations of: ¹ Myo1 (wt cells) and Cam1 (wt cells) foci p<0.0001; ² Myo1 (wt cells) and Myo1 (*myo1.S742A* cells) foci p<0.002; ³ Myo1 (wt cells) and Cam1 (*myo1.S742A* cells) foci p<0.0064.

⁴ No significant difference observed between duration of Myo1 (*myo1.S742A* cells) and Cam1 (*myo1.S742A* cells) foci p<0.79.

Table 2:
Image analysis data of TIRF data of cells of the indicated genotype.

Figure 1

Figure 2

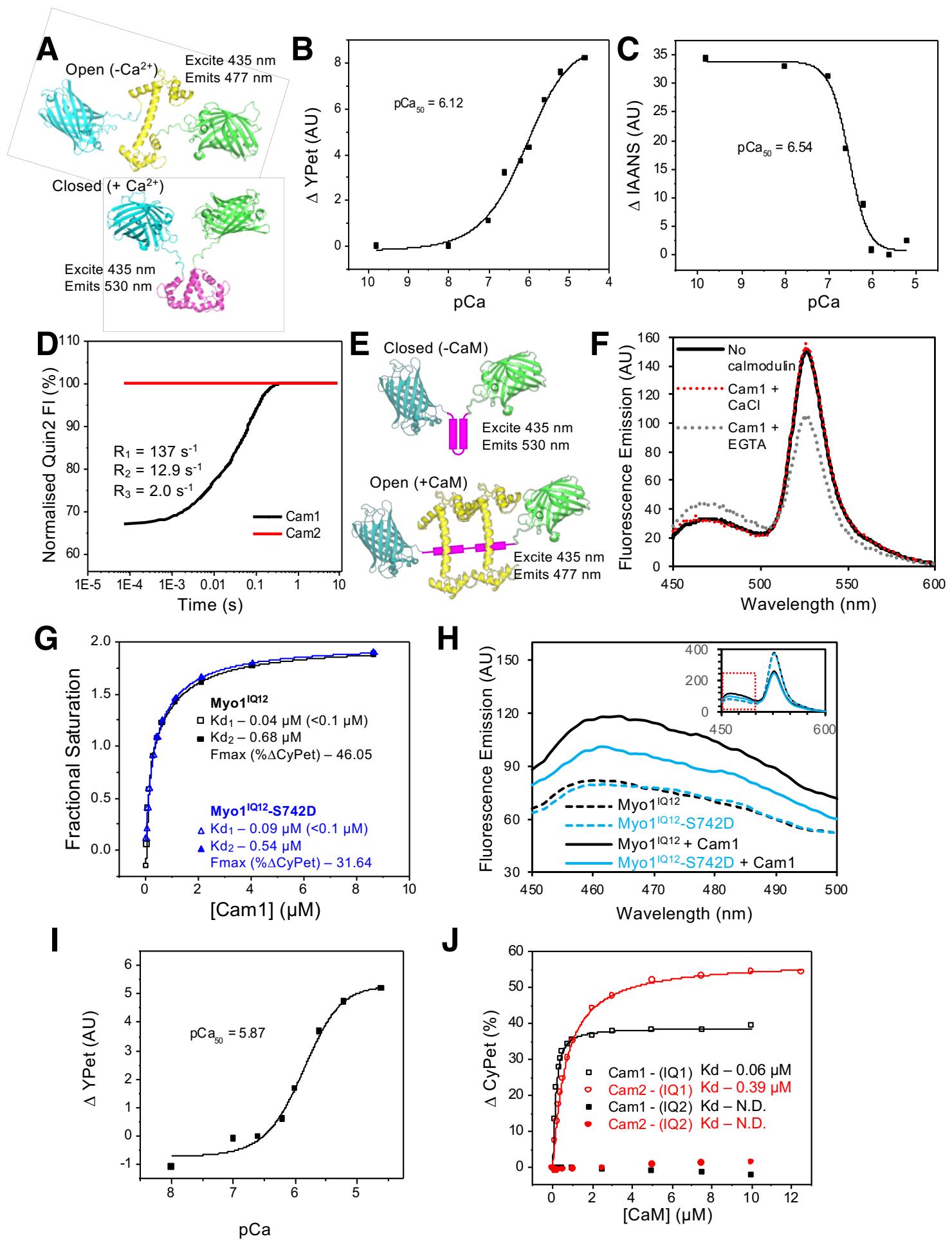


Figure 3

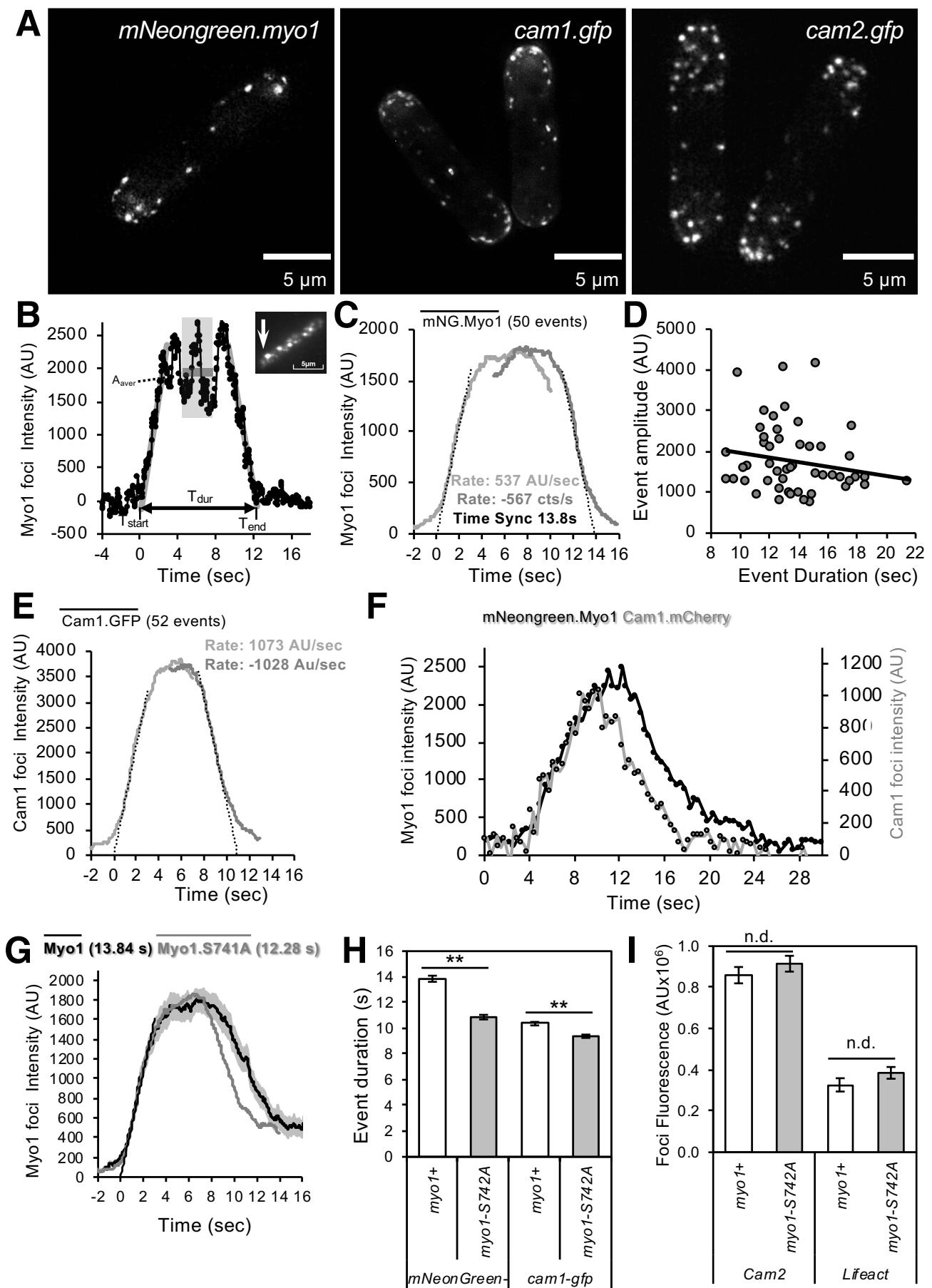


Figure 4

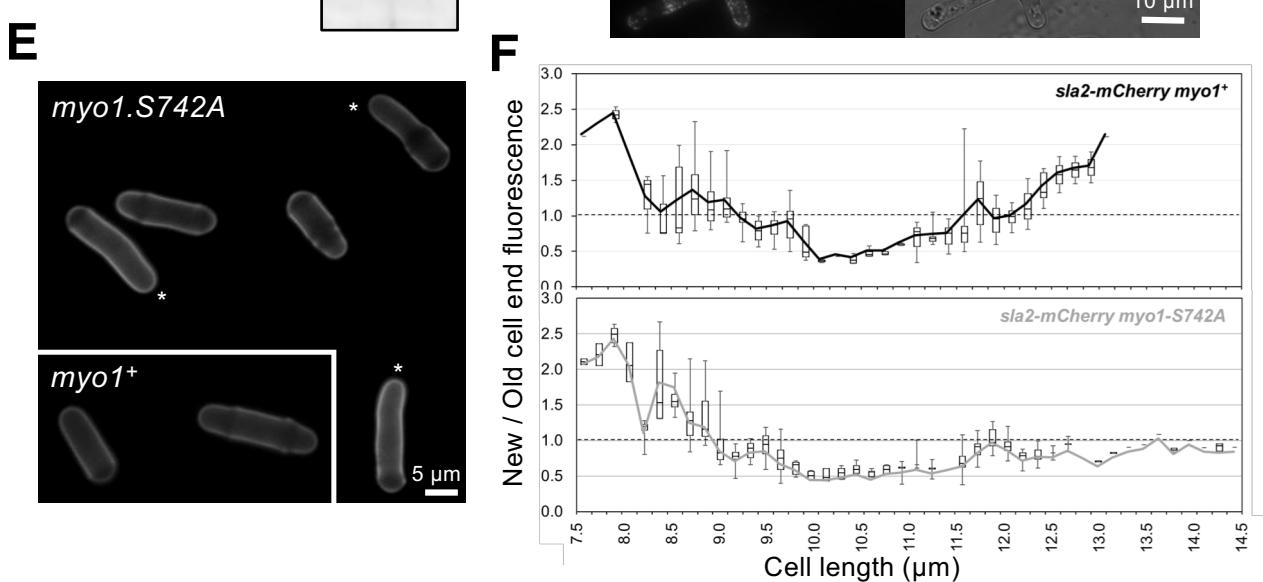
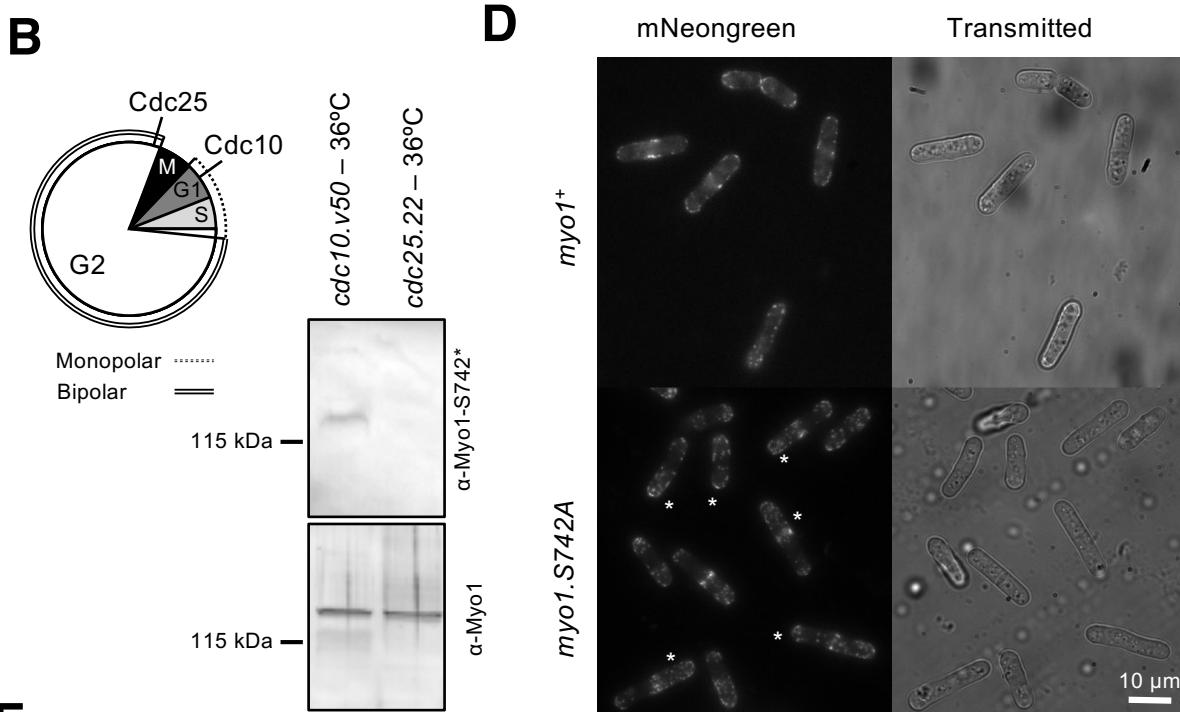
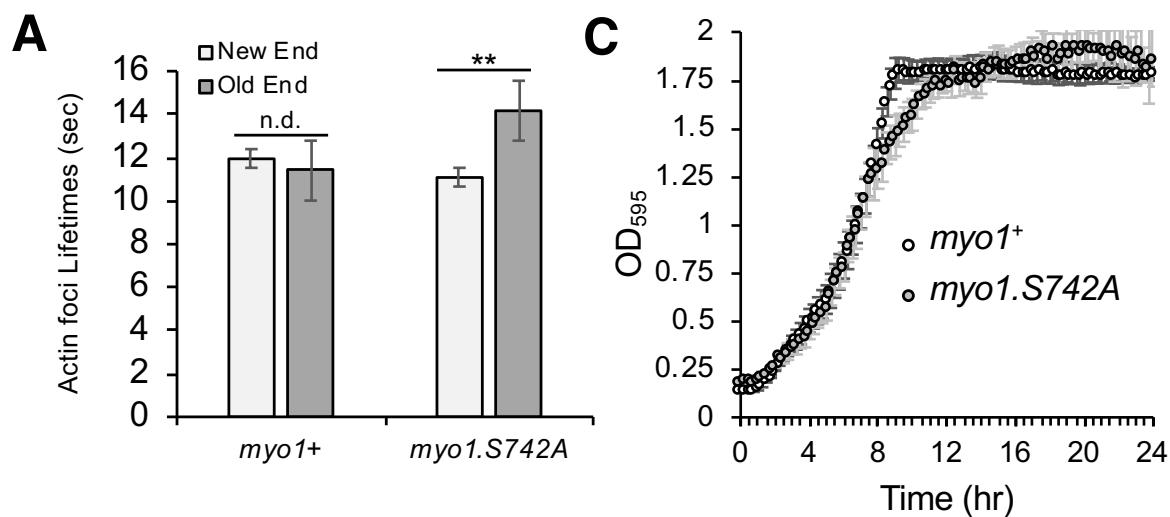
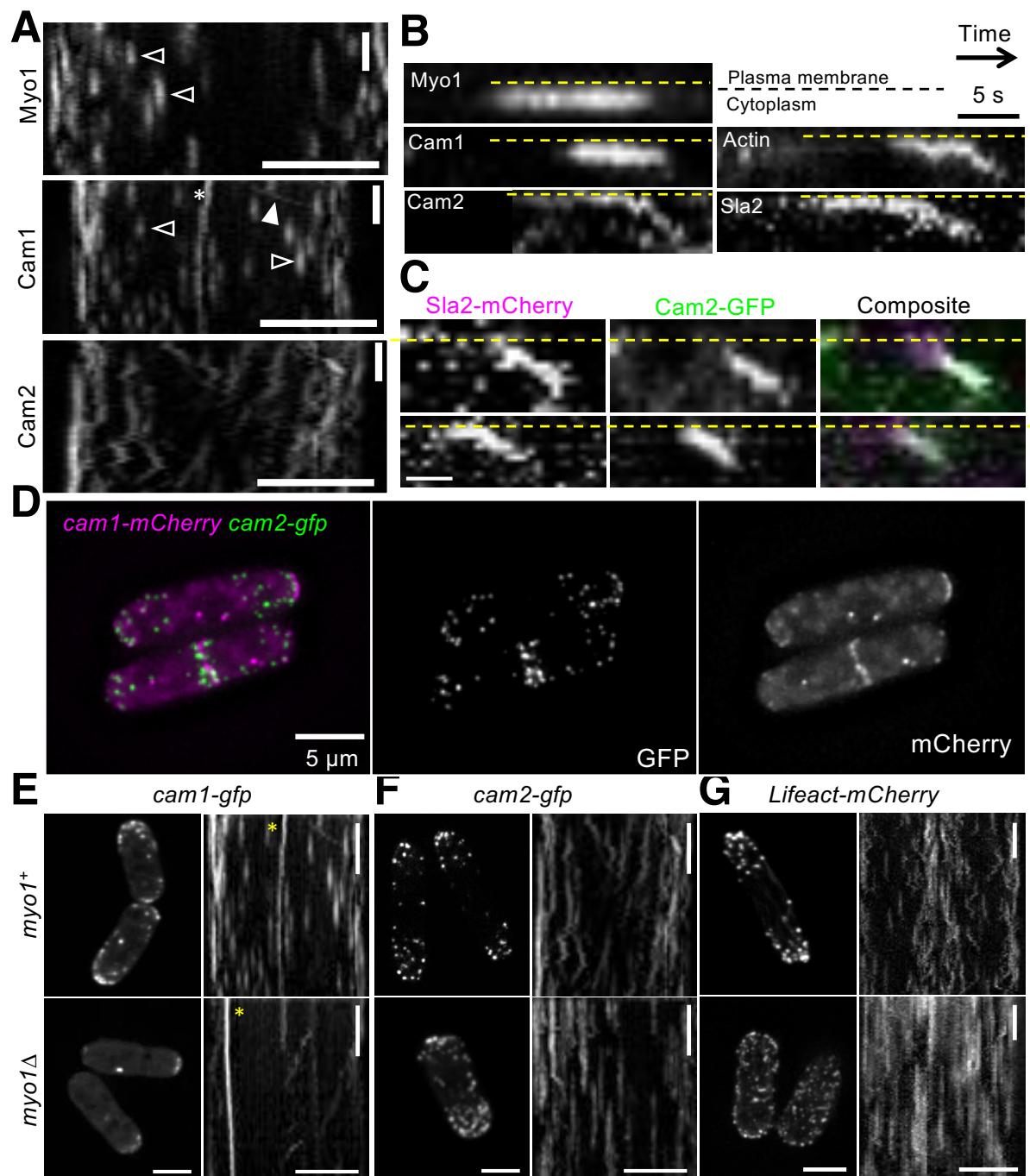





Figure 5

Figure 6

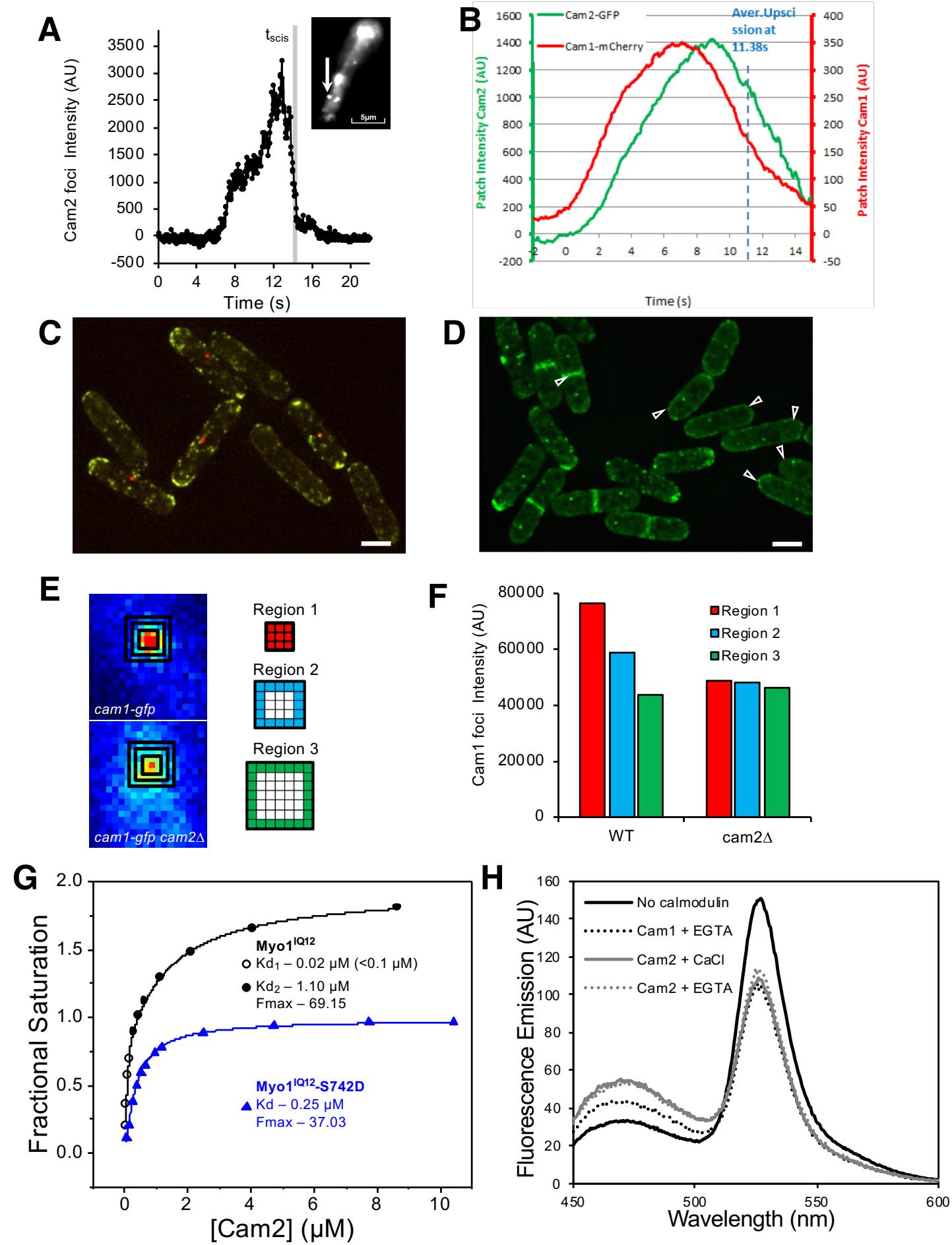


Figure 7

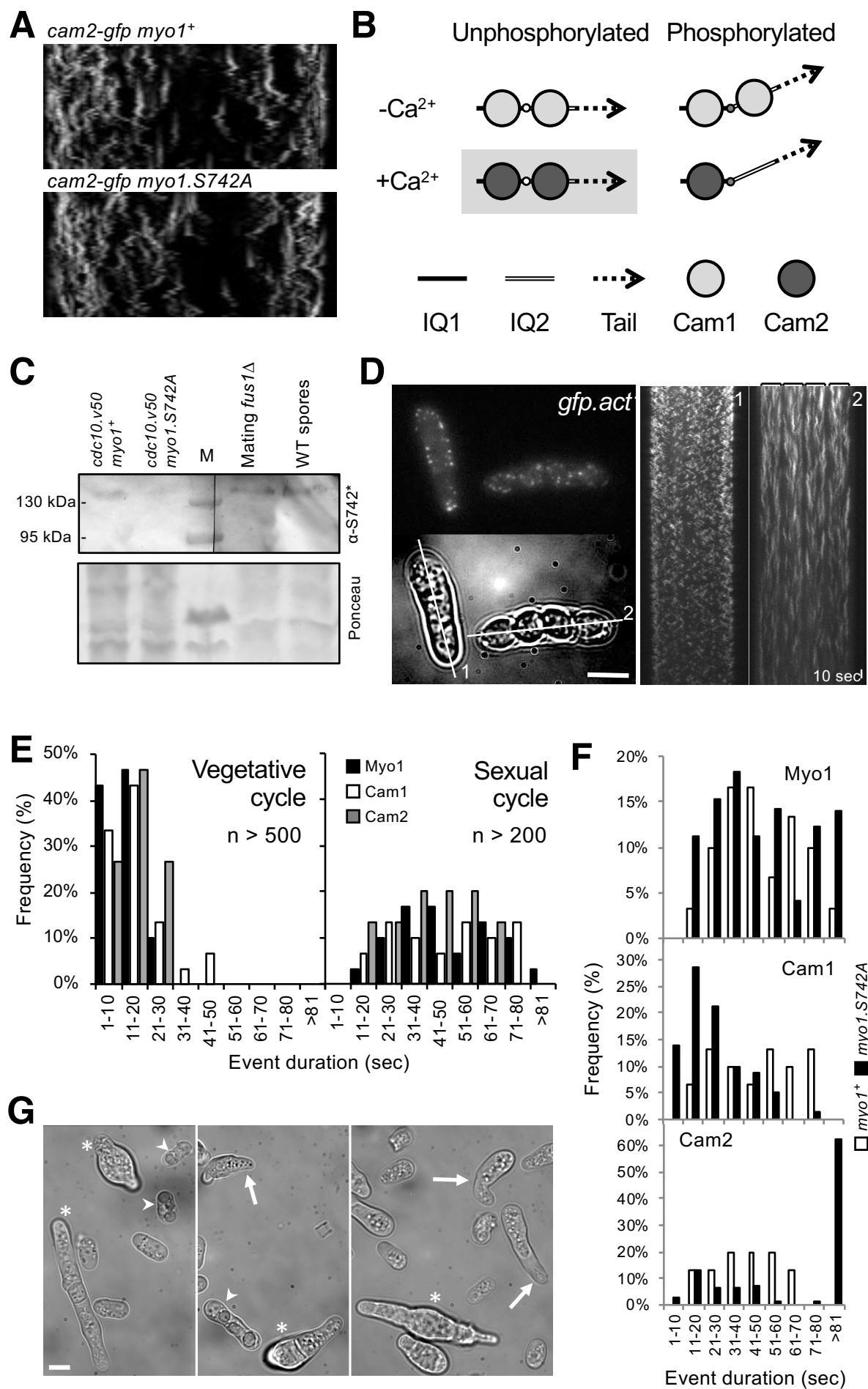
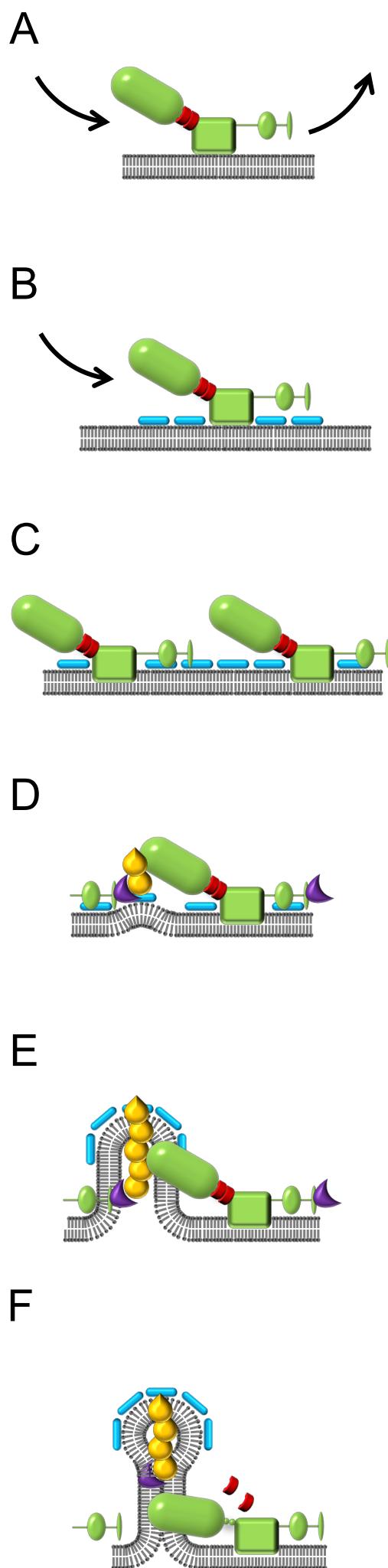



Figure 8

