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ABSTRACT 1 

Background:  2 

Just as substance use disorders (SUDs), gambling disorder (GD) is characterized by an increase 3 

in cue-dependent decision-making (similar to Pavlovian-to-instrumental transfer, PIT). PIT, as 4 

studied in SUDs and healthy subjects, is associated with altered communication between 5 

Nucleus Accumbens (NAcc), amygdala, and orbitofrontal cortex (OFC). These neural 6 

differences are, however, poorly understood. For example, it is unclear whether they are due to 7 

the physiological effects of substance abuse, or rather related to learning processes and/or other 8 

etiological factors like innate traits associated with addiction. We have thus investigated 9 

whether network activation patterns during a PIT task are also altered in GD, an addictive 10 

disorder not involving substance abuse. We have specifically studied which neural PIT patterns 11 

were best at distinguishing GD from HC subjects, all to improve our understanding of the neural 12 

signatures of GD and of addiction-related PIT in general. 13 

Methods:  14 

30 GD and 30 HC subjects completed an affective decision-making task in a functional 15 

magnetic resonance imaging (fMRI) scanner. Gambling associated and other emotional cues 16 

were shown in the background during the task, allowing us to record multivariate neural PIT 17 

signatures focusing on a network of NAcc, amygdala and OFC. We built and tested a classifier 18 

based on these multivariate neural PIT signatures using cross-validated elastic net regression. 19 

Results and Discussion:  20 

As expected, GD subjects showed stronger PIT than HC subjects because they showed stronger 21 

increase in gamble acceptance when gambling cues were presented in the background. 22 

Classification based on neural PIT signatures yielded a significant AUC-ROC (0.70, p = 0.013). 23 
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When inspecting the features of the classifier, we observed that GD showed stronger PIT-related 1 

functional connectivity between NAcc and amygdala elicited by gambling background cues, as 2 

well as between amygdala and OFC elicited by negative and positive cues. 3 

Conclusion: 4 

We propose that HC and GD subjects are distinguishable by PIT-related neural signatures 5 

including amygdala-NAcc-OFC functional connectivity. Our findings suggest that neural PIT 6 

alterations in addictive disorders might not depend on the physiological effect of a substance of 7 

abuse, but on related learning processes or even innate neural traits, also found in behavioral 8 

addictions.  9 
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INTRODUCTION 1 

Gambling disorder (GD) has been classified as an addiction alongside substance-use disorders 2 

(SUDs), such as alcohol or cocaine dependence (American Psychiatric Association et al., 2013). 3 

This new classification was indicated because GD and SUDs share the same core symptoms 4 

(including craving, withdrawal, tolerance) and both GD and SUDs show similar neuro-5 

behavioral signatures (Clark, 2014; Clark et al., 2013; Leeman and Potenza, 2012; Petry et al., 6 

2014; Romanczuk-Seiferth et al., 2014). 7 

For instance, just like patients suffering from SUDs, GD subjects show increased neural activity 8 

elicited by addiction-related stimuli (i.e. “cues”) and a reduced neural response towards stimuli 9 

signaling natural rewards (Crockford et al., 2005; Goudriaan et al., 2010; Potenza et al., 2003; 10 

Rømer Thomsen et al., 2014). In addiction, a cue can be any formerly neutral stimulus that has 11 

been repeatedly paired with the effects of the addictive behavior (Mucha et al., 2000; Potenza 12 

et al., 2003). The effect of increased responsivity towards addiction-related cues is termed cue 13 

reactivity and is pivotal in explaining a range of behaviors related to addictive disorders, such 14 

as arousal, attentional bias, craving, and relapse (Beck et al., 2012; Carter and Tiffany, 1999; 15 

Field et al., 2009; Goudriaan et al., 2010; Heinz et al., 2003; Leyton and Vezina, 2012, 2013; 16 

Schacht et al., 2013; Vezina and Leyton, 2009; Wölfling et al., 2011). 17 

Besides cue reactivity, and just like in SUDs, GD subjects display impaired value-based 18 

decision-making. For example, GD subjects show increased risk taking, higher discounting of 19 

delayed rewards (delay discounting) and reduced loss aversion (Clark et al., 2013; Dixon et al., 20 

2003; Genauck et al., 2017; Glimcher and Rustichini, 2004; Lorains et al., 2014; MacKillop et 21 

al., 2011; Madden et al., 2009; Petry, 2012; Platt and Huettel, 2008; Romanczuk-Seiferth et al., 22 

2014; Wiehler and Peters, 2015). Impaired value-based decision-making in addiction may partly 23 

be explained, or even further exacerbated, by cues that modulate decision-making processes. 24 
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The modulating influence of conditioned cues on instrumental behavior (i.e. increasing the 1 

vigor with which a behavior is displayed or increasing the likelihood of choosing a certain 2 

option) has been termed Pavlovian-to-instrumental transfer (PIT) (Cartoni et al., 2016; De 3 

Tommaso et al., 2018; Schulreich et al., 2016; Talmi et al., 2008). PIT is one of the key effects 4 

deepening our understanding of cue-controlled behaviors (Dickinson Anthony and Balleine 5 

Bernard, 2002; Dickinson and Balleine, 1994; Holmes et al., 2010; Niv et al., 2007). 6 

Interestingly, PIT effects can persist even when the outcome of the instrumental behavior has 7 

been devalued (De Tommaso et al., 2018; Steenbergen et al., 2017), and a stronger PIT has been 8 

associated with heightened impulsivity (Garofalo and Robbins, 2017) and with reduced model-9 

based behavior (Sebold et al., 2016). This is why PIT has gained considerable attention in the 10 

field of addiction research. Increased PIT has been associated with SUDs in animal studies 11 

(Corbit et al., 2007; Corbit and Janak, 2007, 2016; Krank et al., 2008; Saddoris et al., 2011) and 12 

in human studies (Garbusow et al., 2016; Schad et al., 2018). 13 

Investigating PIT in GD is of particular importance to understanding addictive disorders in 14 

general, because GD is an addictive disorder independent of any neurotropic substance of abuse. 15 

The study of PIT in GD therefore helps us distinguish whether PIT effects seen in SUDs are a 16 

physiological result caused by the abused substance, or rather by addiction-related learning 17 

(Heinz, 2017, 113ff.), or even by innate traits putatively associated with developing and 18 

maintaining an addiction (Barker et al., 2012).  19 

So far only a small number of studies have investigated cue-induced effects on decision-making 20 

or PIT in GD subjects. It has been observed in GD subjects that delay discounting is increased 21 

under the influence of high-craving gambling cues vs. low-craving gambling cues (Dixon et al., 22 

2006; Miedl et al., 2014). GD subjects also have shown to be more strongly influenced by 23 

gambling cues in a response inhibition task than HC subjects (van Holst et al., 2012). To 24 
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investigate PIT in GD, Genauck et al. (2019) used a mixed-gambles task, i.e. a task where 1 

participants have to decide whether they want to accept gambles that entail both possible gains 2 

and losses. They coupled the task with emotional and gambling-related cues (affective mixed-3 

gambles task) to estimate subject-specific behavioral PIT parameters with regards to loss 4 

aversion. The authors found that behavioral PIT parameters lend themselves to classify subjects 5 

into HC vs. GD subjects. The most successful model to separate GD subjects from HC subjects 6 

was the one explaining the shift in general gamble acceptance by the influence of different cue 7 

categories, while loss aversion and loss-aversion specific PIT did not improve the distinction 8 

between GD from HC. In the present study, subjects performed a very similar affective mixed-9 

gambles task in a functional magnetic resonance imaging (fMRI) scanner. Genauck et al. (2019) 10 

successfully used the behavioral data of the present study as an independent sample to validate 11 

their classifier. 12 

We mentioned studies that suggest that GD is associated with increased PIT, despite the disorder 13 

being independent of any substance of abuse. However, it is unclear if there are also neural PIT 14 

signatures associated with cue-induced decision-making which distinguish GD from HC 15 

subjects, just like there are between SUD and HC subjects. If there are neural PIT signatures 16 

associated with GD then this would be additional evidence for functional brain changes related 17 

to addictive disorders independent of a substance of abuse (Goudriaan et al., 2010; Koehler et 18 

al., 2013; Romanczuk-Seiferth et al., 2015; Sescousse et al., 2013; van Holst et al., 2012). Our 19 

study is the first to investigate functional brain changes in GD compared to HC related to cue-20 

induced changes in value-based decision making. We expected that neural PIT signatures 21 

derived from SUD studies should underlie behavioral PIT increase also in GD, and thus lend 22 

themselves to distinguish GD from HC subjects. 23 
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At the neural level, PIT depends on the functions of amygdala and the ventral striatum (VS) 1 

(Corbit et al., 2001; Corbit and Balleine, 2005; de Borchgrave et al., 2002; Hall et al., 2001; 2 

Prévost et al., 2012; Talmi et al., 2008). The VS denotes the ventral parts of caudate and 3 

putamen in humans and it is often used interchangeably with the nucleus accumbens (NAcc) 4 

region. Garbusow et al. (2016) distinguished alcohol dependent relapsers from abstainers using 5 

a nucleus accumbens (NAcc) PIT signal, reaching an accuracy of 71% in leave-one-out cross-6 

validation. Note that cue reactivity, which PIT arguably is based upon, is also associated with 7 

altered activity of amygdala and NAcc in addictive disorders (Kühn and Gallinat, 2011; Schacht 8 

et al., 2013). 9 

In addition to possible activity differences in limbic regions being associated with PIT, recent 10 

literature suggests that functional NAcc-amygdala connectivity plays a role in decision-making 11 

changes due to emotional cues (Charpentier et al., 2015). Other authors have argued that 12 

Pavlovian influence on instrumental behavior require the modulation of ongoing processes in 13 

the striatum by the amygdala (Cardinal et al., 2002; Guitart-Masip et al., 2010). Bi-directional 14 

NAcc-amygdala connectivity could thus be enhanced in GD subjects during presentation of 15 

addiction-relevant cues. Holmes et al. (2010) and Cardinal et al. (2002) further suggest a 16 

contribution of the orbital frontal cortex in integrating information about Pavlovian and 17 

instrumental processes, together with the striatum and amygdala. The ANDREA (affective 18 

neuroscience of decision through reward-based evaluation of alternatives) model makes similar 19 

predictions when explaining transient changes in gamble acceptance in decision-making tasks 20 

(Litt et al., 2008) (Fig. 2). In particular, this model suggests that the evaluation of a gamble 21 

involving possible gains and losses leads to a subjective value signal in the OFC. Amygdala 22 

inputs to OFC can modulate those subjective value representations when positively valued or 23 

salient stimuli (e.g. gambling cues) are shown in the background. Since there is some evidence 24 
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that GD subjects show cue-induced changes in instrumental behavior and decision-making in 1 

response to gambling cues, putatively related to stronger behavioral PIT effects (Dixon et al., 2 

2006; Genauck et al., 2019; Miedl et al., 2012; van Holst et al., 2012), this could mean that 3 

gambling cues increase the subjective gamble value represented in OFC via amygdala 4 

projections. We thus expected that stronger gambling-cue PIT-related functional connectivity 5 

from amygdala to OFC should help distinguish GD from HC. 6 

In summary, we hypothesized that a neural PIT signature made up of several PIT-related fMRI 7 

contrasts could distinguish GD from HC subjects. We therefore compiled per subject a feature 8 

vector comprised of cue reactivity and PIT-related contrasts in amygdala and NAcc, and of 9 

functional connectivity parameters in a network of NAcc, amygdala and OFC. Hence the feature 10 

vector represented each subject’s neural PIT signature, in the form of multiple functional 11 

magnetic resonance imaging (fMRI) aggregates (Seo et al., 2018; Whelan et al., 2014). We used 12 

all subjects’ neural PIT signatures to estimate a classifier which would distinguish GD from HC 13 

subjects. We expected that PIT-related predictors would be found among the most important 14 

ones followed by the cue-reactivity predictors. Using cross-validation we assessed the 15 

generalizability of this classifier to new samples. Classifying GD and HC subjects using 16 

multivariate patterns aims to bring us closer to a clinically relevant characterization of the neural 17 

disturbances related to GD, especially when there are many relevant variables involved (Ahn et 18 

al., 2016; Ahn and Vassileva, 2016; Cerasa et al., 2018; Gabrieli et al., 2015; Guggenmos et al., 19 

2018; Yarkoni and Westfall, 2017). To our knowledge, our study is the first one to use fMRI-20 

based classification for investigating GD and its neural basis of increased PIT.  21 
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METHODS AND MATERIALS 1 

Sample 2 

The GD group consisted of subjects who were active gamblers, while the HC group consisted 3 

of subjects that had none or little experience in gambling. We recruited GD subjects via eBay 4 

classifieds, and notices in Berlin casinos and gambling halls. GD subjects were diagnosed using 5 

the German short questionnaire for gambling behavior (KFG) (cutoff  ≥ 16) (Petry and Baulig, 6 

1996). The KFG classifies subjects according to DSM-IV criteria for pathological gambling. 7 

However, in the following we use the DSM-5 term “gambling disorder” interchangeably, 8 

because the criteria largely overlap (Rodríguez-Testal et al., 2014). Any known history of a 9 

neurological disorder or a current psychological disorder (except tobacco dependence) as 10 

assessed by the Screening of the Structured Clinical Interview for DSM-IV Axis I Disorders 11 

(SCID-I) (First et al., 2002) led to exclusion from the study. For further information on 12 

administered questionnaires, see Supplements (Section 1.1). There were 13 subject dropouts 13 

due to technical errors, positive drug screenings, incidental cerebral anatomical findings or MRI 14 

contraindications. We dropped five more subjects to improve the matching of the groups on 15 

covariates of no interest (age, smoking severity, education, and see below). The final sample 16 

consisted of 30 GD and 30 HC subjects (Tab. 1). According to the South Oaks Gambling Screen 17 

(Lesieur and Blume, 1987; Stinchfield, 2002) (3-point Likert scales), GD subjects differed in 18 

gambling habits to HC only in frequency of playing slot machines (most frequent answer of 19 

GD: “3: once a week or more”, HC: “1: not at all”) (t = 5.35, p < 0.001), casinos (most frequent 20 

answer of GD: “3: once a week or more”, HC: “1: not at all”) (t = 3.67, p = 0.001), and sports 21 

betting  (most frequent answer of GD: “2: less than once a week”, HC: “1: not at all”) (t = 2.84, 22 

p = 0.003). GD and HC were matched on relevant variables (net personal income, age, alcohol 23 
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use), except for years in school (primary and secondary). We thus tested for stability of our 1 

classifier by adjusting for years in school. 2 

Table 1: Sample characteristics, means and p-values calculated by two-sided permutation test. 3 

variable HC (30) se GD (30) se pooled se p perm test 

years in school 10.87 0.19 10.13 0.24 0.21 0.031 

vocational school 2.73 0.29 2.07 0.25 0.27 0.108 

net personal income 1028.61 92.27 1105.89 138.93 115.6 0.667 

personal debt 8500 3396.88 24000 9590.36 6493.62 0.097 

Fagerström 1.97 0.43 3.03 0.51 0.47 0.138 

age 35.37 1.66 37.37 2.01 1.84 0.459 

AUDIT 4.8 0.59 4.87 1.05 0.82 1 

BDI-II 5.1 1.03 11.57 1.72 1.38 0.002 

SOGS 1.73 0.47 8.8 0.67 0.57 <0.001 

KFG 2.37 0.74 35 1.64 1.19 <0.001 

BIS-15 31.8 0.99 36.33 1.08 1.03 0.004 

GBQ persistence 1.96 0.2 3.28 0.19 0.2 <0.001 

GBQ illusions 2.41 0.24 3.73 0.22 0.23 <0.001 

ratio female 0.20 - 0.20 - - 1.000 

ratio unemployed 0.17 - 0.20 - - 1.000 

ratio smokers 0.60 - 0.77 - - 0.262 

ratio right-handed 0.97 - 0.84 - - 0.204 

*chi-square test used; se: bootstrapped standard errors; years in school: years in primary and secondary school; vocational 4 

school is vocational school and university; Fagerström: smoking severity (Heatherton et al., 1991); AUDIT: alcohol use 5 

disorders identification test (Dybek et al., 2006); BDI II: Beck’s Depression Inventory (Beck et al., 1996), SOGS: South Oaks 6 

Gambling Screen (Lesieur and Blume, 1987); KFG: Kurzfragebogen zum Glückspielverhalten, Short Questionnaire Pathological 7 

Gambling, German diagnostic tool and severity measure based on the DSM-IV (Petry and Baulig, 1996); BIS-15: short version 8 

of the Barratt Impulsiveness Scale for impulsivity (Meule et al., 2011; Patton et al., 1995); GBQ persistence and GBQ illusions: 9 

from the Gamblers’ Beliefs Questionnaire (Steenbergh et al., 2002) 10 

Procedure and data acquisition 11 

Before scanning, all subjects underwent urine drug testing to exclude any influence of cannabis, 12 

amphetamines, cocaine, methamphetamines, opiates, or benzodiazepines. They then were 13 

instructed on the task and completed the PIT task in a 3-Tesla SIEMENS Trio MRI (2 runs of 14 
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about 23 minutes). EPI scans were acquired, as well as structural MRI. For further details on 1 

MRI sequences see Supplements (Section 1.5). 2 

Affective mixed-gambles task 3 

We were inspired by established mixed-gambles decision-making tasks (Genauck et al., 2017; 4 

Tom et al., 2007) and mixed-gambles decision-making tasks with the influence of affective cues 5 

(Charpentier et al., 2015; Genauck et al., 2019). As affective cues, four sets of images were 6 

assembled: 1) 67 gambling images, showing a variety of gambling scenes, and paraphernalia 7 

(gambling cues); 2) 31 images showing negative consequences of gambling (negative cues); 3) 8 

31 images showing positive effects of abstinence from gambling (positive cues); 4) 24 neutral 9 

IAPS images (neutral cues). For a description of the images and their categories see 10 

Supplements (Section 1.2). The cues of all categories were presented in random order and each 11 

gambling cue only appeared once. For negative, positive, and neutral cue categories, we 12 

randomly drew images from each pool until we had presented 45 images of each category and 13 

each image at least once. Hence, we ran 202 trials in each subject. Subjects were each given 14 

20€ for wagering. Every trial began with a fixation cross (inter-trial-interval, ITI, 4s to 8s). Then 15 

a cue as described above was presented and subjects were instructed to remember each cue for 16 

a paid recognition task after the experiment. After 4s (jittered), a mixed gamble, involving a 17 

possible gain and a possible loss, with probability P = 0.5 each, was superimposed on the cue. 18 

After another 4s (jittered) of decision time, we asked subjects to indicate how willing they were 19 

to accept the gamble by button press. This way we kept decision and motor processes apart. 20 

Subjects had to choose how willing they were to accept the gamble on a 4-point Likert-scale to 21 

ensure task engagement (Tom et al., 2007) (Fig. 1). Gambles were created by randomly drawing 22 

with replacement from a matrix with possible gambles consisting of 12 levels of gains (14, 16, 23 

…, 36) and 12 levels of losses (-7, -8, …, -18) (Fig. 1) (Genauck et al., 2017; Kahneman and 24 
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Tversky, 1979; Tom et al., 2007; Tversky and Kahneman, 1992). In every subject, we stratified 1 

gambles according to mean and variance of gain, loss, gamble variance, and Euclidean distance 2 

from gamble matrix (ed, i.e. gamble difficulty). We informed subjects that after completing the 3 

experiment five of their gamble decisions with ratings of “somewhat yes” or “yes” would be 4 

randomly chosen and played for real money.  5 
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 1 

Figure 1: The affective mixed-gambles task. One trial is depicted. Subjects first saw a fixation cross with variable 2 

inter-trial-interval (ITI, 4s to 8s). Then a cue with randomly chosen affective content (67 drawn from 67 gambling 3 

related, 45 drawn from 31 with positive consequences of abstinence, 45 drawn from 31 with negative 4 

consequences of gambling, 45 drawn from 24 neutral images) was presented for about 4s. Subjects were 5 

instructed to remember the cue for a paid recognition task after all trials. Then a gamble involving a possible gain 6 

and a possible loss was superimposed on the cue (e.g. -11 and +32). Subjects were instructed to shift their 7 

attention at this point to the proposed gamble and evaluate it. Position of gain and loss was counterbalanced 8 

(left/right). Gain was indicated by a '+' sign and loss by a '-' sign. After 4s (jittered) subjects were asked to make 9 

a choice between four levels of acceptance (yes, somewhat yes, somewhat no, no; here translated from German 10 

version which used “ja, eher ja, eher nein, nein”). Direction of options (from left to right or vice versa) and side 11 

of gain amount was random. Directly after decision, the ITI started. If subjects failed to respond within 2.5s, ITI 12 

started and trial was counted as missing. RT: reaction time. 13 
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Cue ratings 1 

After the affective mixed-gambles task, subjects rated all cues using the Self-Assessment 2 

Manikin (SAM) assessment technique (valence, arousal, dominance) (Bradley and Lang, 1994) 3 

and additional visual analogue scales. Additional questions were: 1) “How strongly does this 4 

image trigger craving for gambling?”; 2) “How appropriately does this image represent one or 5 

more gambles?”; 3) “How appropriately does this image represent possible negative effects of 6 

gambling?”; 4) “How appropriately does this image represent possible positive effects of 7 

gambling abstinence?”. All cue ratings were z-standardized within subject. Cue ratings were 8 

analyzed one-by-one using linear mixed-effects regression, using lmer from the lme4 package 9 

in R (Bates et al., 2015), where cue category (and, in the respective models, clinical group) 10 

denoted the fixed effects and subjects and cues denoted the sources of random effects. Model 11 

comparisons were used to test for the effect of cue category and group and their interaction 12 

using χ2-square difference tests. We report relevant contrast-β’s only if the overall effect of the 13 

relevant factor (group, category, groupXcategory) was significant. For significance testing of 14 

those contrast-β’s, we use Wald z-tests as implemented in lme4. 15 

Behavioral data 16 

We modeled the choice data within each subject’s behavioral data by submitting dichotomized 17 

choices (somewhat no & no: 0; somewhat yes & yes: 1) into logistic regression. We 18 

dichotomized choices to increase the precision when estimating behavioral parameters, in line 19 

with previous studies (Barkley-Levenson et al., 2013; Genauck et al., 2017, 2019; Tom et al., 20 

2007). Predictors were centralized values of gain, centralized absolute values of loss, Euclidean 21 

distance (ed) from gamble matrix as indicator of gamble simplicity (see Fig. S1) (Tom et al., 22 

2007), and cue category (c). 12 steps of gain (14, 16, 18, …, 36) and 12 steps of loss (-7, -8, -9, 23 
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…, -18) formed a 12-by-12 gamble matrix, which was aggregated to 4-by-4 (e.g. gain steps 14, 1 

16, 18 were all denoted as 16 and loss steps -18, -17, -16 were denoted as -17) as done in 2 

previous fMRI versions of this task (Genauck et al., 2017; Tom et al., 2007). We defined the 3 

gamble value (𝑄) on single-trial level as: 4 

        𝑄 = 𝛽0 + 𝑥𝑔𝑎𝑖𝑛 ∗ 𝛽𝑔𝑎𝑖𝑛 + 𝑥𝑙𝑜𝑠𝑠 ∗ 𝛽𝑙𝑜𝑠𝑠 + 𝑒𝑑 ∙ 𝛽𝑒𝑑 + 𝑐𝑇 ∗ 𝛽𝑐    [1] 5 

We call this model the laec model. Here 𝑐𝑇is a transposed column vector, denoting the dummy 6 

code of the cue’s category on any given trial and 𝛽𝑐 is a column vector holding the regression 7 

weights describing the shift in gamble value with respect to the cue category. Hence, 𝑐𝑇 ∗ 𝛽𝑐  is 8 

a scalar product describing the additive effect of cue category. We fit the logistic regression 9 

based on Eq. [1] with… 10 

   𝑃(𝑔𝑎𝑚𝑏𝑙𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒)  =  1/(1 + 𝑒𝑥𝑝(−𝑄))     [2] 11 

within a generalized linear mixed-effects model, using glmer from the lme4 package in R (Bates 12 

et al., 2015). Here, gain, loss, ed, cue category denoted the fixed effects and subjects and cues 13 

denoted the sources of random effects. To test if the groups differed in the parameters of the 14 

laec model, we expanded the model by an additional fixed effect of group modulating the effect 15 

of gain, loss, ed, and cue category (laecg). Statistical testing of the model comparison was 16 

performed using χ2-square difference tests, as well as the comparison of Akaike and Bayesian 17 

information criterion (AIC, BIC). For statistical tests of single parameters in the laecg model, 18 

we used Wald z-tests as implemented in lme4. For more analyses of the behavioral data, please 19 

see Supplements (Sections 1.4, 2.1). 20 
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FMRI data 1 

Preprocessing and single-subject model of fMRI data 2 

Imaging analyses were performed in SPM12 running on Matlab (R2014a). Please see 3 

Supplements (Section 1.5) for description of preprocessing of MRI data. We modeled the 4 

preprocessed fMRI single-subject data using three onset regressors: 5 

1) Onset “cue” from 0s, boxcar, denoting moments of cue presentation vs. none presentation (1 6 

vs. 0, duration: 4s plus jitter, i.e. time for showing the cue and then cue plus gamble). This onset 7 

regressor had three parametric modulators (serially orthogonalized). pmod(1): gamble cue > 8 

neutral cue, pmod(2): negative cue > neutral cue, pmod(3): positive cue > neutral cue (always 9 

coded 1 vs. -1). 10 

2) Onset “cue plus gamble” from 4s plus jitter, boxcar, modeled the time when gamble 11 

presentation was on (1 vs. 0, duration: 4s plus jitter, i.e. the time when cue and gamble were 12 

presented but no response options available yet). This onset regressor had seven parametric 13 

modulators (serially orthogonalized). pmod(1-3): gain, loss, ed, mean-centered aggregated from 14 

twelve to four steps, see behavioral analysis; pmod(4): acceptance of gamble > non-acceptance 15 

(1 vs. -1); pmod(5-7): PIT modulators for the three cue categories (Garbusow et al., 2016; Schad 16 

et al., 2018). For example, the PIT regressor “acceptXgambling”, pmod(5), modeled 17 

“acceptance during gambling cues vs. not accepting during gambling cues” > “accepting during 18 

neutral cues vs. not accepting during neutral cues”, i.e. (1 vs. -1) > (1 vs. -1). 19 

3) Onset “cue plus gamble plus response options” from 8s plus jitter, boxcar, modeled the time 20 

when motor response could be performed (1 vs. 0, duration: reaction time until response was 21 

made) 22 
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Missing trials were modeled with a boxcar regressor (1 vs. 0), with duration set at length of 1 

trial. Regressors were convolved with the canonical hemodynamic response function, 2 

downsampled to match the number of EPI scans and entered into a GLM (Fig. S2). 3 

Extracting fMRI features for classifier building 4 

We were interested whether PIT fMRI contrasts from a number of brain regions (regions of 5 

interest, ROIs) could predict if a subject belongs to the HC or the GD group. We hence extracted 6 

the mean activity for cue reactivity (gambling, negative, positive; pmod(1-3) of onset regressor 7 

1) and for the PIT contrasts (acceptXgambling, acceptXnegative, acceptXpositive; pmod(5-7) 8 

of onset regressor 2) using the within-subject means from the ROIs NAcc R/L and amygdala 9 

R/L. NAcc and amygdala ROIs were taken from the Neuromorphometrics SPM12 brain atlas. 10 

To keep in line with accounts of PIT depending on NAcc-Amy connectivity (Charpentier et al., 11 

2015; Guitart-Masip et al., 2010) and on amygdala-OFC connectivity (Holmes et al., 2010; Litt 12 

et al., 2008) (Fig. 2), we also extracted functional connectivity (generalized psycho-13 

physiological interaction, gPPI) (McLaren et al., 2012) for the PIT contrasts. We used the seeds 14 

amygdala R/L and NAcc R/L (see Supplements, Section 1.7). For the seeds amygdala R/L we 15 

extracted the mean from target ROIs OFC R/L (4 subregions on either side), and from target 16 

ROIs NAcc R/L. For the seeds NAcc R/L, we extracted from the target ROIs Amy R/L. 17 

Information from left medial OFC was not available due to signal loss in that region. Collecting 18 

all the extracts per subject, we had at this point for each subject a vector representing his or her 19 

specific neural PIT pattern. We z-standardized this vector for each subject. We then reduced the 20 

dimensionality of this vector for each subject by computing means (For cue reactivity: mean 21 

between respective left and right ROI; For functional connectivity: mean connectivity value 22 

between respective left and right ROI with respect to each PIT contrast, e.g. for the connectivity 23 

from NAcc to posterior OFC with respect to the PIT contrast “acceptXgambling” the mean of 24 
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connectivity values from R NAcc to R posterior OFC, from L NAcc to R posterior OFC, from 1 

R NAcc to L posterior OFC, and from R NAcc to L posterior OFC). 2 

To ensure that the task had produced meaningful signal, we checked for PIT effects in amygdala 3 

and NAcc across groups and for cue reactivity difference between groups in amygdala, NAcc 4 

and OFC using years in school as a covariate of no interest in all cases.  5 

 6 

Figure 2: The ANDREA model. The model describes how loss aversion may arise in the brain during a mixed-7 

gambles task and in addition the model makes a specific prediction how contextual cues can influence the 8 

subjective representation of gain and loss (this part of the model is highlighted in red). Namely, the amygdala is 9 

encoding and forwarding the value signal of the contextual cue, thereby modulating the subjective value 10 

representation in OFC (Litt et al., 2008). GD subjects should show a stronger functional connectivity from 11 

amygdala to OFC with respect to accepting gambles during presentation of e.g. gambling cues because this would 12 

increase the value of the gamble stored in OFC into positive direction and thus increase the likelihood of gamble 13 

acceptance.  14 
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Building the classifier based on fMRI data 1 

The neural PIT vectors per subject were stacked into a data set. Since HC and GD were not 2 

perfectly matched on years in school, we added this variable to the data set, which was then 3 

submitted to logistic elastic net regression, with group as dependent variable. Elastic net 4 

regression is well suited for cases where there are few observations and many predictor variables 5 

that may contain groups of correlated variables (Ahn and Vassileva, 2016; Whelan et al., 2014; 6 

Zou and Hastie, 2005) (see Supplements 1.8). Using tuning of its two hyper-parameters (Zou 7 

and Hastie, 2005) it is also well suited to produce models that do not over-fit but generalize well 8 

to new data, especially when using cross-validation for tuning (Arlot and Celisse, 2010; Bratu 9 

et al., 2008; Varma and Simon, 2006). The algorithm tuned for optimal generalization 10 

performance on out-of-sample data using the area under the receiver-operating curve, AUC-11 

ROC, (Ahn et al., 2016; Ahn and Vassileva, 2016; Whelan et al., 2014; Zacharaki et al., 2009). 12 

AUC-ROC ranges from 0.5 (chance) to 1 (perfect sensitivity and specificity) (Provost et al., 13 

1998).  14 

We assessed the generalizability of the above algorithm 1000 times via 10-fold cross-validation 15 

(Arlot and Celisse, 2010) which yielded a distribution of classifiers and thus of AUC-ROC’s. 16 

Note that the cross-validation to estimate generalizability led to the cross-validations used in 17 

the elastic net regression to become nested (Arlot and Celisse, 2010; Bratu et al., 2008; Varma 18 

and Simon, 2006; Whelan et al., 2014). For a graphical illustration of the algorithm with cross-19 

validation to estimate the generalization performance, see Fig. 3. The data and R Code can be 20 

found here: https://github.com/pransito/PIT_GD_MRI_release. We computed the mean of the 21 

obtained AUC-ROC’s and estimated its p-value by performing the exact same 1000 CV rounds 22 

but each time with only “years in school” as predictor (baseline classifier). We then subtracted 23 

the AUC-ROC’s of the baseline classifiers one-by-one from the 1000 AUC-ROC’s of the full 24 
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classifiers. This yielded a distribution of classification improvement (i.e., improvement of 1 

AUC-ROC due to using the full classifier instead of the baseline classifier). We tested this 2 

distribution against the value of classification improvement under the null-hypothesis (i.e. zero 3 

improvement) to obtain a p-value of significance of classification improvement. 4 

After assessing the generalizability of the model by cross-validation, we then fit the model to 5 

the entire data set (no splitting in training and test data) in order to build the final interpretable 6 

and reportable classifier. Since the modelling is probabilistic, we repeated this 1000 times. We 7 

plotted the ensuing distribution of regression weight vectors as per-parameter means with 95% 8 

percentile bounds.  9 

 10 

Figure 3: Classifier building algorithm with cross-validation (CV) to estimate generalization error. Nested CV 11 

was used for tuning the hyperparameters of the elastic net regression (Varma and Simon, 2006; Zou and Hastie, 12 

2005). This was done repeatedly with different nested CV folds (10 times, 10-fold nested CV) to estimate a robust 13 

mean model within each repetition of classifier estimation.  14 
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Inspecting the classifier based on fMRI data 1 

In order to interpret the final classifier’s regression weights as an activation pattern (a), i.e. to 2 

know how greatly each predictor contributed to distinguishing GD from HC subjects in the 3 

classifier, we calculated: 4 

𝒂 = 𝑐𝑜𝑣(𝑋)  ∗   𝑤       [3] 5 

(Haufe et al., 2014), where 𝑤 is the regression weight vector (a column vector), or in other 6 

words, the classifier. 𝑋 is the matrix of predictors for all subjects and cov(𝑋) is the covariance 7 

matrix of 𝑋. Additionally, we calculated between-group t-tests (HC vs. GD) for all predictors. 8 

Ethics 9 

Subjects gave written informed consent. The study was conducted in accordance with the World 10 

Medical Association Declaration of Helsinki and approved by the ethics committee of Charité 11 

- Universitätsmedizin Berlin.  12 
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RESULTS 1 

Cue ratings 2 

Gambling cues were seen as more appropriately representing one or more gambling games than 3 

any other cue category: gambling > neutral (β = 1.509, p < 0.001), gambling > negative (β = 4 

1.142, p < 0.001), gambling > positive (β = 1.459, p < 0.001). They elicited more craving 5 

compared to neutral in GD subjects than in HC subjects (GD gambling > neutral: β = 1.749, HC 6 

gambling > neutral: β = 0.719, p(GD>HC) < 0.001). HC subjects indicated significantly more 7 

craving in response to gambling cues compared to neutral cues (p < 0.001). GD subjects did not 8 

rate gambling cues as more positively valenced than HC: GD > HC (β = -0.055, p < 0.712). GD 9 

subjects did not rate gambling cues as more arousal-inducing compared to HC subjects (GD 10 

gambling > neutral: 0.142, HC gambling > neutral: 0.047, p = 0.525). HC subjects did not rate 11 

gambling cues as more arousal inducing than neutral cues (p = 0.662). Gambling cues lead to 12 

higher dominance ratings overall: gambling > neutral (β = 0.368, p < 0.001). GD subjects rated 13 

gambling cues as more dominance inducing than HC subjects: GD > HC (β = 0.328, p = 0.021). 14 

Negatively valenced cues were seen as evoking smaller valence ratings than all other categories: 15 

negative < neutral (β = 0.651, p < 0.001), negative < positive (β = 1.538, p < 0.001), negative < 16 

gambling (β = 0.977, p < 0.001). Negative cues lead to lower dominance ratings (β = -0.297, p 17 

< 0.001). There were no group differences on any rating scale with regards to the negative cues. 18 

Negative cues were more representative of negative effects of gambling than any other group: 19 

negative > neutral (β = 1.398, p < 0.001), negative > positive (β = 1.388, p < 0.001), negative > 20 

gambling (β = 0.826, p < 0.001). GD subjects perceived negative cues as less representative for 21 

negative consequences of gambling than HC subjects (HC: 2.03, GD: 1.388, p < 0.001). Positive 22 

cues were more representative of positive effects of abstinence from gambling than any other 23 
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category: positive > neutral (β = 0.970, p < 0.001), positive > negative (β = 0.848, p < 0.001) 1 

and positive > gambling (β = 0.639, p < 0.001), and rated as more positive (valence) than any 2 

other category: positive > neutral (β = 0.886, p < 0.001), positive > negative (β = 1.538, p < 3 

0.001) and positive > gambling (β = 0.561, p < 0.001). Positive cues lead to higher dominance 4 

ratings: positive > neutral (β = 0.683, p < 0.001). There were no group differences on any rating 5 

scale with regards to the positive cues. (Fig. S3). 6 

Describing the behavioral choice data 7 

Here we present results comparing the laec model against the laecg model (i.e. with an effect 8 

of group onto the fixed effects of gain, loss, ed and category). Comparing the two models, we 9 

observed a significant χ2 difference test result (χ2 = 26.6, df = 7, p < 0.001; with ΔAIC = 12.6, 10 

ΔBIC = -39.0). Inspecting the estimated parameters of the laecg model, we observed that 11 

acceptance rate during neutral images with all other parameters at zero (i.e. at their mean, except 12 

for ed, actually zero) was for HC: 59.0% and for GD: 38.8%, pWald = 0.155. Gambling cues 13 

were associated with stronger increase in gamble acceptance in GD subjects (∆% = 44) than in 14 

HC subjects (∆% = -8, pWald = 0.003). The same was true for negative (GD: ∆% = 23, HC: ∆% 15 

= -16, pWald = 0.049) and positive cues (GD: ∆% = 23, HC: ∆% = 0, pWald = 0.030) (Fig. 4). For 16 

further behavioral results, please see Supplements (Section 2.1). 17 
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 1 

Figure 4: Shift in acceptance rate during gambles per category and group. Based on the laecg model. GD subjects 2 

show stronger increase in gamble acceptance (compared to neutral) in comparison to HC subjects during the 3 

presentation of all three cue categories in the background. CIs based on standard errors of parameter estimates. 4 

Stars denote significant post-hoc contrasts. 5 

Prediction of group using fMRI data 6 

Across groups and in line with previous findings (Garbusow et al., 2016; Guitart-Masip et al., 7 

2010; Prévost et al., 2012; Talmi et al., 2008), there was for gambling-cues PIT a significant 8 

effect in right amygdala: [15 -6 -15], pSVC = 0.027, puncor = 0.003, k = 17, trendwise effects in 9 

left NAcc: [-6 12 -3], pSVC = 0.082, puncor = 0.015, k = 6, right NAcc: [6 12 -3], pSVC = 0.060, 10 

puncor = 0.014, k = 9, and in left amygdala: [-24 -3 -18], pSVC = 0.071, puncor = 0.009, k = 31. 11 

In line with previous findings (Goudriaan et al., 2010; Limbrick-Oldfield et al., 2017; Potenza 12 

et al., 2003), there was for the cue reactivity contrast GD > HC (gambling cues) a trendwise 13 

effect in right amygdala: [18 -3 -15], pSVC = 0.091, puncor = 0.012, k = 5. Further, there was for 14 

HC > GD (positive cues) a significant effect in left NAcc: [-6 6 -6], pSVC = 0.033, puncor = 0.005, 15 
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k = 4, and in right NAcc: [6 9 -6], pSVC = 0.035, puncor = 0.007, k = 4. For HC > GD (negative 1 

cues), there was a trendwise effect in left lateral OFC: [-36 36 -18], pSVC = 0.089, puncor = 0.004, 2 

k = 24, and in right anterior OFC: [24 45 -12], pSVC = 0.080, puncor = 0.005, k = 8. 3 

The mean AUC-ROC of the full classifier using neural PIT signatures was 70.0% (mean for the 4 

baseline classifier, i.e. covariate-only classifier: 61.5%, p = 0.013) (Fig. 5). 5 

 6 

 7 

Figure 5: Classification performance of classifier using fMRI neural PIT signatures. Blue is the density plot of 8 

1000 AUC-ROCs obtained from running 1000 repetitions of cross validation of the full classifier using neural PIT 9 

signatures. The green line shows the mean of these 1000 AUC-ROCs. In red you see the same density estimate 10 

for the baseline classifier, i.e. the covariate-only classifier, as a control condition. The full classifier performs 11 

significantly better (p = 0.013). 12 

We ran the algorithm on the complete data set of fMRI variables. Inspecting the classifier’s 13 

logistic regression weights (see Fig. S4) (after transformation to predictor importance, see Eq. 14 

3, and according to t-tests), we saw that the top predictor was negative-cues-PIT-related 15 

functional connectivity from amygdala to anterior OFC, with a negative sign (Fig. 6). This 16 
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means that the stronger not accepting a gamble was associated with increase in correlation 1 

between amygdala and anterior OFC, the less likely the subject was a GD person (and rather a 2 

HC subject). In other words, GD subjects showed lower such functional connectivity than HC. 3 

The next top three predictors were gambling-cues-related functional connectivity from NAcc to 4 

amygdala (positive sign), positive-cues-related functional connectivity from amygdala to lateral 5 

OFC (positive sign), and years in school (negative sign) (see Fig. 6, 7). 6 

7 

Figure 6: Estimated predictor importance. Points and quantiles are estimated predictor importance with 95%-8 

quantiles over 1000 classifier estimation rounds. The larger the absolute size of an importance value the stronger 9 

the predictor adds to distinguishing HC from GD in the classifier. Bars show t-values of simple between- group t-10 

tests. Significant t-tests are highlighted (Welch-test, p < 0.05, two-sided). Delimitations are at 1.96 and -1.96 to 11 

mark points of statistical significance for t-test. Importance values/t-values are grouped by the kind of fMRI 12 
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predictor: cue reactivity related, PIT related, Psychological-physiological-interaction (i.e. PPI) related. PPIs are 1 

further grouped by seed region and target extraction (e.g. “to OFC”). PIT: pavlovian-to-instrumental transfer; 2 

OFC: orbital frontal cortex; AOFC, LOFC, POFC, MOFC: anterior, lateral, posterior, medial orbital frontal cortex; R: 3 

right 4 

 5 

 6 

Figure 7: Generalized psycho-physiological interaction (gPPI) T-map for Pavlovian-to-instrumental transfer 7 

(PIT) during negative cues contrast (HC > GD). Displayed at p < 0.05. Illustration of contrast that contributed to 8 

most important predictor of the classifier. A: from left amygdala to right anterior orbito-frontal cortex (OFC), 9 

centered at peak within region of interest, [24, 57, -6], punc = 0.024, k > 0. Cluster extends into right superior 10 

frontal gyrus. Also visible is significant activity in right posterior OFC, which was also picked up by the classifier. 11 

B: plot of subjects’ beta values at peak voxel for the contrast in A. HC: healthy controls, GD: gambling disorder 12 

subjects  13 

14 
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DISCUSSION 1 

GD is characterized by impaired decision making (Wiehler and Peters, 2015) and craving in 2 

response to gambling associated images (Crockford et al., 2005; Goudriaan et al., 2010). There 3 

is evidence that there is significant influence of cue-induced emotional states onto value-based 4 

decision-making in GD subjects (Dixon et al., 2006; Genauck et al., 2019; Miedl et al., 2012; 5 

van Holst et al., 2012). The influence of cues onto value-based decision-making may be 6 

regarded as a form of Pavlovian-to-Instrumental Transfer (PIT), the increase of which has been 7 

associated with addictive disorders in general (Corbit and Janak, 2007; Garbusow et al., 2016; 8 

Genauck et al., 2013; Mitchell et al., 2016; Schad et al., 2018). 9 

In the current study, we hypothesized that GD subjects should be distinguishable by neural PIT 10 

signatures based on fMRI contrasts recorded during an affective mixed-gambles task. We 11 

therefore built a classifier using fMRI PIT contrasts to distinguish GD from HC subjects 12 

focusing on brain structures known to be relevant in PIT, like amygdala and NAcc (ventral 13 

striatum). We also incorporated amygdala’s connectivity to OFC, and amygdala’s and NAcc’s 14 

connectivity to each other. We further included neural cue reactivity contrasts as predictors. All 15 

these predictors yielded a neural PIT signature per subject which could be used to classify 16 

subjects into the GD or HC group. 17 

Our results support our first hypothesis, showing that neural PIT signatures based on fMRI data 18 

gathered from the affective mixed-gambles task may successfully classify out-of-sample 19 

subjects into GD and HC, with a cross-validated mean AUC-ROC of 70.0% (p = 0.013). This 20 

performance on out-of-sample data is similar to other studies using MRI data for classification 21 

in the field of addictive disorders (Guggenmos et al., 2018; Pariyadath et al., 2014; Seo et al., 22 

2015, 2018; Whelan et al., 2014). To our knowledge, however, the present study is the first one 23 

to use fMRI classification for investigating a behavioral addiction, namely GD, and the neural 24 
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basis of increased PIT. This means that it is possible to characterize a non-substance related 1 

addiction to a considerable degree by a single neuro-functional signature, namely a neural PIT 2 

signature in a network of amygdala, NAcc and OFC, derived from PIT and SUD literature. This 3 

further implies that addictive disorders, in general, may be associated with PIT-related neural 4 

changes, independent of a substance of abuse, which means that neural PIT changes may be a 5 

product of addiction-related learning and neural plasticity or even of an innate trait (Barker et 6 

al., 2012). 7 

Concerning the predictors in the classifier, we hypothesized that gambling-cue PIT-related 8 

functional connectivity from amygdala to OFC should be increased. We found that multiple 9 

PIT-related functional connectivities from amygdala to OFC were significant predictors in the 10 

classifier. For example, gambling-cues PIT-related functional connectivity from amygdala to 11 

OFC was increased in GD compared to HC subjects, in line with our hypothesis and in line with 12 

the general prediction that in GD subjects amygdala modulates the value computation in OFC, 13 

when addiction-related cues are presented in the background (Cardinal et al., 2002; Holmes et 14 

al., 2010; Litt et al., 2008).  Furthermore, the top predictor in the classifier was PIT-related 15 

functional connectivity from amygdala to anterior OFC in trials with a negative cue, with a 16 

negative predictor weight. This means that the stronger the rejection of a gamble during the 17 

presentation of negative cues was associated with an increase in correlation between amygdala 18 

and anterior OFC, the less likely the subject was a GD person (and rather a HC subject). In other 19 

words, GD subjects showed weaker such functional connectivity than HC. GD subjects, 20 

compared to HC subjects, showed significantly more gambling during the presentation of 21 

negative cues than during the presentation of neutral cues. HC subjects may not show this effect 22 

because of stronger signal transmission related to negative cues from amygdala to OFC. 23 

Similarly, it has been found that reduced loss aversion in GD subjects was associated with 24 
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reduced loss-related functional connectivity from amygdala to ventral medial prefrontal cortex 1 

in a pure mixed-gambles task (Genauck et al., 2017). This highlights that impaired decision-2 

making in GD during a pure mixed-gambles task, as well as during an affective mixed-gambles 3 

task, may draw from the same functional neural substrate. 4 

We looked at the next two top predictors expecting that PIT-related (as opposed to purely cue 5 

reactivity related) neural predictors should be among these. Indeed, we found that the next top 6 

predictor was gambling-cues PIT-related functional connectivity from NAcc to amygdala 7 

(positive sign), a connectivity important for cue-induced effects in mixed-gambles tasks 8 

(Charpentier et al., 2015). This means that the more gamble acceptance during presentation of 9 

gambling cues was associated with an increase in correlation between NAcc and amygdala, the 10 

more likely the subject was a GD person. In other words, GD subjects showed stronger such 11 

functional connectivity than HC. NAcc is seen as encoding temporal difference prediction 12 

errors, i.e. it fires when an unexpected reward signal is perceived from one moment to the next 13 

(McClure et al., 2003; Niv and Schoenbaum, 2008; O’Doherty et al., 2003; Schultz et al., 1997). 14 

GD subjects rated gambling pictures as more craving-inducing and reacted with significantly 15 

stronger gamble acceptance increase than HC when gambling-associated cues were shown in 16 

the background. We also saw an important regression weight given to gambling-cues PIT-17 

related functional connectivity from amygdala to OFC, in line with our initial hypothesis. 18 

Therefore, it may be that gambling cues elicit a prediction error in NAcc that modulates 19 

amygdala activity, which in turn modulates the value representation in OFC in such a way that 20 

GD subjects are more inclined than HC subjects to accept the gamble at hand. This is in line 21 

with a previous study, where it has been found that GD subjects display increased functional 22 

connectivity from amygdala to posterior OFC related to increasing possible gains in a pure 23 

mixed-gambles task (Genauck et al., 2017). This highlights again that impaired decision-24 
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making in GD during a pure mixed-gambles task, as well as during an affective mixed-gambles 1 

task may draw from the same functional neural substrate. Also, it has been observed before that 2 

NAcc and amygdala seem to hold relevant signal related to PIT in healthy subjects (Prévost et 3 

al., 2012) and to increased PIT in addicted subjects (Garbusow et al., 2016). Interestingly, 4 

previous studies (Garbusow et al., 2016; Schad et al., 2018) have observed that in recently 5 

detoxified treatment-seeking AD patients, images of alcoholic beverages in the background 6 

have a suppressing effect on the instrumental task in the foreground. Contrarily, we have seen 7 

that gambling cues elicit a stronger gamble acceptance increase in GD than in HC. This may be 8 

because we have included only active non-treatment-seeking gamblers, who at that stage of 9 

disease show little activity working against their automated response towards addiction-related 10 

cues.  11 

The third top predictor was also PIT related, in line with our hypothesis that PIT-related 12 

predictors should be more important than cue reactivity predictors. It was positive-cues PIT-13 

related functional connectivity from amygdala to lateral OFC. This means that the stronger the 14 

acceptance of a gamble during the presentation of positive cues was associated with an increase 15 

in correlation between amygdala and OFC, the more likely the subject was a GD person. In 16 

other words, GD subjects showed stronger such functional connectivity than HC. This may be 17 

seen as parallel to the finding on behavioral level that GD subjects react with more gambling 18 

increase to positive pictures than HC subjects. It seems that both positive cues and gambling 19 

cues lead to increased gambling and similarly increased connectivity between amygdala and 20 

OFC in GD subjects. Also, negative cues lead to increased gambling. This is surprising because 21 

one could have expected to see decreased gambling during negative and positive cues or no 22 

effect of those cue categories (Genauck et al., 2019). On the other hand, perhaps all three cue 23 

categories have special salience for GD subjects, because they may have already thought about 24 
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and experienced the positive and negative effects of their gambling behavior and this might 1 

conjure motivation to act. Negative cues might have even evoked a need for loss chasing and 2 

thus more gambling (Ciccarelli et al., 2019). Thus, generally, all three cue categories may lead 3 

to increased vigor/motivation, leading to a stronger propensity to accept gambles. Future studies 4 

should further explore the effect of positive and negative stimuli on gambling in GD. 5 

Although we discussed the top-three predictors, note that our classifier is truly multivariate. Of 6 

the 30 neural PIT signature predictors, 22 received a significant regression weight (and 24 a 7 

significant activation weight), despite elastic net regression allowing for total deselection of 8 

predictors (Zou and Hastie, 2005). This means that just like on the behavioral level, where GD 9 

subjects reacted more strongly than HC to all non-neutral categories, we see that fMRI activities 10 

related to all non-neutral categories was relevant for characterizing GD. Cue reactivity 11 

regression weights are relatively small and the classifier heavily draws on PIT-related variables 12 

(the top-three predictors were PIT related). This emphasizes the importance of PIT as a defining 13 

marker for addictive disorders beyond cue reactivity. 14 

We used the same cues as Genauck et al. (2019) in a new sample of GD and HC subjects and, 15 

in line with that study, we also observed that GD subjects rate the gambling cues as more craving 16 

inducing. Also, in the other categories cues were perceived as expected. The ratings and the 17 

result that neural PIT signatures successfully distinguish GD from HC subjects reinforce the 18 

notion that GD subjects’ cue reactivity facilitates riskier decision-making when addiction-19 

related cues are presented in the background of a gamble task. 20 

Changes in NAcc’s structure (Koehler et al., 2015) and function (Koehler et al., 2013; Linnet 21 

et al., 2010; Miedl et al., 2014; Reuter et al., 2005; Romanczuk-Seiferth et al., 2015) related to 22 

GD have been observed in previous studies. The same is true for amygdala’s structure (Elman 23 

et al., 2012; Takeuchi et al.) and function (Genauck et al., 2017), as well as for OFC’s structure 24 
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(Li et al., 2018) and function (Cavedini et al., 2002; Goudriaan et al., 2010). Our study adds to 1 

these findings by considering the functions of these structures concurrently and in a network. 2 

Our results support the notion that GD, similar to SUD, is characterized by neural incentive 3 

sensitization (Limbrick-Oldfield et al., 2017; Rømer Thomsen et al., 2014) (Limbrick-Oldfield 4 

et al., 2017; Rømer Thomsen et al., 2014) such that in GD a network of amygdala, NAcc and 5 

OFC facilitate gambling decisions in the face of gambling cues. 6 

 7 

 8 

 9 

 10 

 11 

12 
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STRENGTHS AND LIMITATIONS 1 

The main strength of our study is that we have used a classification approach to assess the 2 

usefulness of known neural PIT contrasts to characterize GD in out-of-sample data. Using this 3 

approach, we have estimated the single-subject relevance of these fMRI signals. Our results 4 

therefore have not only explanatory value in elucidating the basis of increased PIT in GD, but 5 

also predictive value, given that they are likely to be found in new samples of GD and matched 6 

HC subjects (Yarkoni and Westfall, 2017). Furthermore, we are to our knowledge the first to 7 

address the neural underpinnings of PIT in a behavioral addiction using a machine learning 8 

approach. Unfortunately, we have no independent validation sample to externally validate our 9 

results (Genauck et al., 2019; Guggenmos et al., 2018). Further studies are needed to collect 10 

such data. As we have laid out, there are multiple ways in which the brain may produce an overt 11 

PIT, involving at least amygdala, NAcc and OFC. To increase statistical power, we have omitted 12 

other conceptualization of PIT, e.g. as an interference task (Sommer et al., 2017), and hence 13 

any limbic-dorso-lateral-prefrontal connectivity (Bray et al., 2008). Future studies should 14 

explore this. In the current study we did not address the distinction between outcome-specific 15 

and general PIT (Bray et al., 2008; Corbit and Janak, 2007; Eder and Dignath, 2016; Hogarth 16 

and Chase, 2012; Lewis et al., 2013; Steenbergen et al., 2017). This would be a valuable next 17 

step for future studies in GD.  18 

19 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 12, 2019. ; https://doi.org/10.1101/498725doi: bioRxiv preprint 

https://doi.org/10.1101/498725
http://creativecommons.org/licenses/by/4.0/


Alexander Genauck 37 

 

CONCLUSION 1 

We have observed that it is possible to classify HC and GD subjects based on the neural 2 

correlates of PIT in a network of NAcc, amygdala and OFC. Our findings further the 3 

understanding of GD and show that PIT is relevant for characterizing non-substance-related 4 

addictive disorders also on neural level. PIT alterations at the neural level related to an addictive 5 

disorder might thus not depend on the direct effect of a substance of abuse, but rather on related 6 

learning processes or even on innate traits.  7 
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ONLINE RESOURCES 1 

R code and data (stored in an .RData file which is loaded with the R code) to run the classifier 2 

estimation and cross-validation, as well as the classical hierarchical regression analyses can be 3 

found in the following link. Further you can find there also more detailed data concerning the 4 

MRI sequences, as well as the preprocessing of MRI data and the fMRI single subject design: 5 

https://github.com/pransito/PIT_GD_MRI_release  6 

  7 
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