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ABSTRACT

Background:

Just as substance use disorders (SUDs), gambling disorder (GD) is characterized by an increase
in cue-dependent decision-making (similar to Pavlovian-to-instrumental transfer, PIT). PIT, as
studied in SUDs and healthy subjects, is associated with altered communication between
Nucleus Accumbens (NAcc), amygdala, and orbitofrontal cortex (OFC). These neural
differences are, however, poorly understood. For example, it is unclear whether they are due to
the physiological effects of substance abuse, or rather related to learning processes and/or other
etiological factors like innate traits associated with addiction. We have thus investigated
whether network activation patterns during a PIT task are also altered in GD, an addictive
disorder not involving substance abuse. We have specifically studied which neural PIT patterns
were best at distinguishing GD from HC subjects, all to improve our understanding of the neural

signatures of GD and of addiction-related PIT in general.
Methods:

30 GD and 30 HC subjects completed an affective decision-making task in a functional
magnetic resonance imaging (fMRI) scanner. Gambling associated and other emotional cues
were shown in the background during the task, allowing us to record multivariate neural PIT
signatures focusing on a network of NAcc, amygdala and OFC. We built and tested a classifier

based on these multivariate neural PIT signatures using cross-validated elastic net regression.
Results and Discussion:

As expected, GD subjects showed stronger PIT than HC subjects because they showed stronger
increase in gamble acceptance when gambling cues were presented in the background.

Classification based on neural PIT signatures yielded a significant AUC-ROC (0.70, p =0.013).
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When inspecting the features of the classifier, we observed that GD showed stronger PIT-related
functional connectivity between NAcc and amygdala elicited by gambling background cues, as
well as between amygdala and OFC elicited by negative and positive cues.

Conclusion:

We propose that HC and GD subjects are distinguishable by PIT-related neural signatures
including amygdala-NAcc-OFC functional connectivity. Our findings suggest that neural PIT
alterations in addictive disorders might not depend on the physiological effect of a substance of
abuse, but on related learning processes or even innate neural traits, also found in behavioral

addictions.
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INTRODUCTION

Gambling disorder (GD) has been classified as an addiction alongside substance-use disorders
(SUDs), such as alcohol or cocaine dependence (American Psychiatric Association et al., 2013).
This new classification was indicated because GD and SUDs share the same core symptoms
(including craving, withdrawal, tolerance) and both GD and SUDs show similar neuro-
behavioral signatures (Clark, 2014; Clark et al., 2013; Leeman and Potenza, 2012; Petry et al.,

2014; Romanczuk-Seiferth et al., 2014).

For instance, just like patients suffering from SUDs, GD subjects show increased neural activity
elicited by addiction-related stimuli (i.e. “cues”) and a reduced neural response towards stimuli
signaling natural rewards (Crockford et al., 2005; Goudriaan et al., 2010; Potenza et al., 2003;
Rgmer Thomsen et al., 2014). In addiction, a cue can be any formerly neutral stimulus that has
been repeatedly paired with the effects of the addictive behavior (Mucha et al., 2000; Potenza
et al., 2003). The effect of increased responsivity towards addiction-related cues is termed cue
reactivity and is pivotal in explaining a range of behaviors related to addictive disorders, such
as arousal, attentional bias, craving, and relapse (Beck et al., 2012; Carter and Tiffany, 1999;
Field et al., 2009; Goudriaan et al., 2010; Heinz et al., 2003; Leyton and Vezina, 2012, 2013,

Schacht et al., 2013; Vezina and Leyton, 2009; W6lfling et al., 2011).

Besides cue reactivity, and just like in SUDs, GD subjects display impaired value-based
decision-making. For example, GD subjects show increased risk taking, higher discounting of
delayed rewards (delay discounting) and reduced loss aversion (Clark et al., 2013; Dixon et al.,
2003; Genauck et al., 2017; Glimcher and Rustichini, 2004; Lorains et al., 2014; MacKillop et
al., 2011; Madden et al., 2009; Petry, 2012; Platt and Huettel, 2008; Romanczuk-Seiferth et al.,
2014; Wiehler and Peters, 2015). Impaired value-based decision-making in addiction may partly

be explained, or even further exacerbated, by cues that modulate decision-making processes.
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The modulating influence of conditioned cues on instrumental behavior (i.e. increasing the
vigor with which a behavior is displayed or increasing the likelihood of choosing a certain
option) has been termed Pavlovian-to-instrumental transfer (PIT) (Cartoni et al., 2016; De
Tommaso et al., 2018; Schulreich et al., 2016; Talmi et al., 2008). PIT is one of the key effects
deepening our understanding of cue-controlled behaviors (Dickinson Anthony and Balleine
Bernard, 2002; Dickinson and Balleine, 1994; Holmes et al., 2010; Niv et al., 2007).
Interestingly, PIT effects can persist even when the outcome of the instrumental behavior has
been devalued (De Tommaso et al., 2018; Steenbergen et al., 2017), and a stronger PIT has been
associated with heightened impulsivity (Garofalo and Robbins, 2017) and with reduced model-
based behavior (Sebold et al., 2016). This is why PIT has gained considerable attention in the
field of addiction research. Increased PIT has been associated with SUDs in animal studies
(Corbit et al., 2007; Corbit and Janak, 2007, 2016; Krank et al., 2008; Saddoris et al., 2011) and

in human studies (Garbusow et al., 2016; Schad et al., 2018).

Investigating PIT in GD is of particular importance to understanding addictive disorders in
general, because GD is an addictive disorder independent of any neurotropic substance of abuse.
The study of PIT in GD therefore helps us distinguish whether PIT effects seen in SUDs are a
physiological result caused by the abused substance, or rather by addiction-related learning
(Heinz, 2017, 113ff.), or even by innate traits putatively associated with developing and

maintaining an addiction (Barker et al., 2012).

So far only a small number of studies have investigated cue-induced effects on decision-making
or PIT in GD subjects. It has been observed in GD subjects that delay discounting is increased
under the influence of high-craving gambling cues vs. low-craving gambling cues (Dixon et al.,
2006; Miedl et al., 2014). GD subjects also have shown to be more strongly influenced by

gambling cues in a response inhibition task than HC subjects (van Holst et al., 2012). To
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investigate PIT in GD, Genauck et al. (2019) used a mixed-gambles task, i.e. a task where
participants have to decide whether they want to accept gambles that entail both possible gains
and losses. They coupled the task with emotional and gambling-related cues (affective mixed-
gambles task) to estimate subject-specific behavioral PIT parameters with regards to loss
aversion. The authors found that behavioral PIT parameters lend themselves to classify subjects
into HC vs. GD subjects. The most successful model to separate GD subjects from HC subjects
was the one explaining the shift in general gamble acceptance by the influence of different cue
categories, while loss aversion and loss-aversion specific PIT did not improve the distinction
between GD from HC. In the present study, subjects performed a very similar affective mixed-
gambles task in a functional magnetic resonance imaging (fMRI) scanner. Genauck et al. (2019)
successfully used the behavioral data of the present study as an independent sample to validate

their classifier.

We mentioned studies that suggest that GD is associated with increased PIT, despite the disorder
being independent of any substance of abuse. However, it is unclear if there are also neural PIT
signatures associated with cue-induced decision-making which distinguish GD from HC
subjects, just like there are between SUD and HC subjects. If there are neural PIT signatures
associated with GD then this would be additional evidence for functional brain changes related
to addictive disorders independent of a substance of abuse (Goudriaan et al., 2010; Koehler et
al., 2013; Romanczuk-Seiferth et al., 2015; Sescousse et al., 2013; van Holst et al., 2012). Our
study is the first to investigate functional brain changes in GD compared to HC related to cue-
induced changes in value-based decision making. We expected that neural PIT signatures
derived from SUD studies should underlie behavioral PIT increase also in GD, and thus lend

themselves to distinguish GD from HC subjects.
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At the neural level, PIT depends on the functions of amygdala and the ventral striatum (VS)
(Corbit et al., 2001; Corbit and Balleine, 2005; de Borchgrave et al., 2002; Hall et al., 2001;
Prévost et al., 2012; Talmi et al., 2008). The VS denotes the ventral parts of caudate and
putamen in humans and it is often used interchangeably with the nucleus accumbens (NAcc)
region. Garbusow et al. (2016) distinguished alcohol dependent relapsers from abstainers using
a nucleus accumbens (NAcc) PIT signal, reaching an accuracy of 71% in leave-one-out cross-
validation. Note that cue reactivity, which PIT arguably is based upon, is also associated with
altered activity of amygdala and NAcc in addictive disorders (Kiihn and Gallinat, 2011; Schacht

et al., 2013).

In addition to possible activity differences in limbic regions being associated with PIT, recent
literature suggests that functional NAcc-amygdala connectivity plays a role in decision-making
changes due to emotional cues (Charpentier et al., 2015). Other authors have argued that
Pavlovian influence on instrumental behavior require the modulation of ongoing processes in
the striatum by the amygdala (Cardinal et al., 2002; Guitart-Masip et al., 2010). Bi-directional
NAcc-amygdala connectivity could thus be enhanced in GD subjects during presentation of
addiction-relevant cues. Holmes et al. (2010) and Cardinal et al. (2002) further suggest a
contribution of the orbital frontal cortex in integrating information about Pavlovian and
instrumental processes, together with the striatum and amygdala. The ANDREA (affective
neuroscience of decision through reward-based evaluation of alternatives) model makes similar
predictions when explaining transient changes in gamble acceptance in decision-making tasks
(Litt et al., 2008) (Fig. 2). In particular, this model suggests that the evaluation of a gamble
involving possible gains and losses leads to a subjective value signal in the OFC. Amygdala
inputs to OFC can modulate those subjective value representations when positively valued or

salient stimuli (e.g. gambling cues) are shown in the background. Since there is some evidence
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that GD subjects show cue-induced changes in instrumental behavior and decision-making in
response to gambling cues, putatively related to stronger behavioral PIT effects (Dixon et al.,
2006; Genauck et al., 2019; Miedl et al., 2012; van Holst et al., 2012), this could mean that
gambling cues increase the subjective gamble value represented in OFC via amygdala
projections. We thus expected that stronger gambling-cue PIT-related functional connectivity

from amygdala to OFC should help distinguish GD from HC.

In summary, we hypothesized that a neural PIT signature made up of several PIT-related fMRI
contrasts could distinguish GD from HC subjects. We therefore compiled per subject a feature
vector comprised of cue reactivity and PIT-related contrasts in amygdala and NAcc, and of
functional connectivity parameters in a network of NAcc, amygdala and OFC. Hence the feature
vector represented each subject’s neural PIT signature, in the form of multiple functional
magnetic resonance imaging (fMRI) aggregates (Seo et al., 2018; Whelan et al., 2014). We used
all subjects’ neural PIT signatures to estimate a classifier which would distinguish GD from HC
subjects. We expected that PIT-related predictors would be found among the most important
ones followed by the cue-reactivity predictors. Using cross-validation we assessed the
generalizability of this classifier to new samples. Classifying GD and HC subjects using
multivariate patterns aims to bring us closer to a clinically relevant characterization of the neural
disturbances related to GD, especially when there are many relevant variables involved (Ahn et
al., 2016; Ahn and Vassileva, 2016; Cerasa et al., 2018; Gabrieli et al., 2015; Guggenmos et al.,
2018; Yarkoni and Westfall, 2017). To our knowledge, our study is the first one to use fMRI-

based classification for investigating GD and its neural basis of increased PIT.
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METHODS AND MATERIALS

Sample

The GD group consisted of subjects who were active gamblers, while the HC group consisted
of subjects that had none or little experience in gambling. We recruited GD subjects via eBay
classifieds, and notices in Berlin casinos and gambling halls. GD subjects were diagnosed using
the German short questionnaire for gambling behavior (KFG) (cutoff > 16) (Petry and Baulig,
1996). The KFG classifies subjects according to DSM-1V criteria for pathological gambling.
However, in the following we use the DSM-5 term “gambling disorder” interchangeably,
because the criteria largely overlap (Rodriguez-Testal et al., 2014). Any known history of a
neurological disorder or a current psychological disorder (except tobacco dependence) as
assessed by the Screening of the Structured Clinical Interview for DSM-IV Axis | Disorders
(SCID-I) (First et al., 2002) led to exclusion from the study. For further information on
administered questionnaires, see Supplements (Section 1.1). There were 13 subject dropouts
due to technical errors, positive drug screenings, incidental cerebral anatomical findings or MRI
contraindications. We dropped five more subjects to improve the matching of the groups on
covariates of no interest (age, smoking severity, education, and see below). The final sample
consisted of 30 GD and 30 HC subjects (Tab. 1). According to the South Oaks Gambling Screen
(Lesieur and Blume, 1987; Stinchfield, 2002) (3-point Likert scales), GD subjects differed in
gambling habits to HC only in frequency of playing slot machines (most frequent answer of
GD: “3: once a week or more”, HC: “1: not at all”) (t = 5.35, p <0.001), casinos (most frequent
answer of GD: “3: once a week or more”, HC: “1: not at all”) (t = 3.67, p = 0.001), and sports
betting (most frequent answer of GD: “2: less than once a week”, HC: “1: not at all”) (t = 2.84,

p = 0.003). GD and HC were matched on relevant variables (net personal income, age, alcohol
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1 use), except for years in school (primary and secondary). We thus tested for stability of our

2  classifier by adjusting for years in school.

3 Table 1: Sample characteristics, means and p-values calculated by two-sided permutation test.

variable HC(30) | se GD (30) se pooled se p perm test

years in school 10.87 0.19 10.13 0.24 0.21 0.031
vocational school 2.73 0.29 2.07 0.25 0.27 0.108
net personal income | 1028.61 92.27 | 1105.89 | 138.93 115.6 0.667
personal debt 8500 | 3396.88 24000 | 9590.36 6493.62 0.097
Fagerstrom 1.97 0.43 3.03 0.51 0.47 0.138
age 35.37 1.66 37.37 2.01 1.84 0.459
AUDIT 4.8 0.59 4.87 1.05 0.82 1
BDI-II 5.1 1.03 11.57 1.72 1.38 0.002
SOGS 1.73 0.47 8.8 0.67 0.57 <0.001
KFG 2.37 0.74 35 1.64 1.19 <0.001
BIS-15 31.8 0.99 36.33 1.08 1.03 0.004
GBQ persistence 1.96 0.2 3.28 0.19 0.2 <0.001
GBQillusions 2.41 0.24 3.73 0.22 0.23 <0.001
ratio female 0.20 - 0.20 - - 1.000
ratio unemployed 0.17 - 0.20 - - 1.000
ratio smokers 0.60 - 0.77 - - 0.262
ratio right-handed 0.97 - 0.84 - - 0.204

*chi-square test used; se: bootstrapped standard errors; years in school: years in primary and secondary school; vocational
school is vocational school and university; Fagerstrom: smoking severity (Heatherton et al., 1991); AUDIT: alcohol use
disorders identification test (Dybek et al., 2006); BDI II: Beck’s Depression Inventory (Beck et al., 1996), SOGS: South Oaks
Gambling Screen (Lesieur and Blume, 1987); KFG: Kurzfragebogen zum Glickspielverhalten, Short Questionnaire Pathological

Gambling, German diagnostic tool and severity measure based on the DSM-IV (Petry and Baulig, 1996); BIS-15: short version

© o0 N o o1 b

of the Barratt Impulsiveness Scale for impulsivity (Meule et al., 2011; Patton et al., 1995); GBQ persistence and GBQillusions:
10 from the Gamblers’ Beliefs Questionnaire (Steenbergh et al., 2002)
11 Procedure and data acquisition

12 Before scanning, all subjects underwent urine drug testing to exclude any influence of cannabis,
13 amphetamines, cocaine, methamphetamines, opiates, or benzodiazepines. They then were

14  instructed on the task and completed the PIT task in a 3-Tesla SIEMENS Trio MRI (2 runs of
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about 23 minutes). EPI scans were acquired, as well as structural MRI. For further details on

MRI sequences see Supplements (Section 1.5).

Affective mixed-gambles task

We were inspired by established mixed-gambles decision-making tasks (Genauck et al., 2017;
Tometal., 2007) and mixed-gambles decision-making tasks with the influence of affective cues
(Charpentier et al., 2015; Genauck et al., 2019). As affective cues, four sets of images were
assembled: 1) 67 gambling images, showing a variety of gambling scenes, and paraphernalia
(gambling cues); 2) 31 images showing negative consequences of gambling (negative cues); 3)
31 images showing positive effects of abstinence from gambling (positive cues); 4) 24 neutral
IAPS images (neutral cues). For a description of the images and their categories see
Supplements (Section 1.2). The cues of all categories were presented in random order and each
gambling cue only appeared once. For negative, positive, and neutral cue categories, we
randomly drew images from each pool until we had presented 45 images of each category and
each image at least once. Hence, we ran 202 trials in each subject. Subjects were each given
20€ for wagering. Every trial began with a fixation cross (inter-trial-interval, I1TI, 4sto 8s). Then
a cue as described above was presented and subjects were instructed to remember each cue for
a paid recognition task after the experiment. After 4s (jittered), a mixed gamble, involving a
possible gain and a possible loss, with probability P = 0.5 each, was superimposed on the cue.
After another 4s (jittered) of decision time, we asked subjects to indicate how willing they were
to accept the gamble by button press. This way we kept decision and motor processes apart.
Subjects had to choose how willing they were to accept the gamble on a 4-point Likert-scale to
ensure task engagement (Tom et al., 2007) (Fig. 1). Gambles were created by randomly drawing
with replacement from a matrix with possible gambles consisting of 12 levels of gains (14, 16,

..., 36) and 12 levels of losses (-7, -8, ..., -18) (Fig. 1) (Genauck et al., 2017; Kahneman and
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Tversky, 1979; Tom et al., 2007; Tversky and Kahneman, 1992). In every subject, we stratified
gambles according to mean and variance of gain, loss, gamble variance, and Euclidean distance
from gamble matrix (ed, i.e. gamble difficulty). We informed subjects that after completing the
experiment five of their gamble decisions with ratings of “somewhat yes” or “yes” would be

randomly chosen and played for real money.
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ITI: 4 to 8s

approx.4s

approx.4s

somewhat yes somewhat no no

Figure 1: The affective mixed-gambles task. One trial is depicted. Subjects first saw a fixation cross with variable
inter-trial-interval (ITl, 4s to 8s). Then a cue with randomly chosen affective content (67 drawn from 67 gambling
related, 45 drawn from 31 with positive consequences of abstinence, 45 drawn from 31 with negative
consequences of gambling, 45 drawn from 24 neutral images) was presented for about 4s. Subjects were
instructed to remember the cue for a paid recognition task after all trials. Then a gamble involving a possible gain
and a possible loss was superimposed on the cue (e.g. -11 and +32). Subjects were instructed to shift their
attention at this point to the proposed gamble and evaluate it. Position of gain and loss was counterbalanced
(left/right). Gain was indicated by a '+' sign and loss by a '-' sign. After 4s (jittered) subjects were asked to make
a choice between four levels of acceptance (yes, somewhat yes, somewhat no, no; here translated from German
version which used “ja, eher ja, eher nein, nein”). Direction of options (from left to right or vice versa) and side
of gain amount was random. Directly after decision, the ITI started. If subjects failed to respond within 2.5s, ITI

started and trial was counted as missing. RT: reaction time.
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Cue ratings

After the affective mixed-gambles task, subjects rated all cues using the Self-Assessment
Manikin (SAM) assessment technique (valence, arousal, dominance) (Bradley and Lang, 1994)
and additional visual analogue scales. Additional questions were: 1) “How strongly does this
image trigger craving for gambling?”’; 2) “How appropriately does this image represent one or
more gambles?”; 3) “How appropriately does this image represent possible negative effects of
gambling?”’; 4) “How appropriately does this image represent possible positive effects of
gambling abstinence?”. All cue ratings were z-standardized within subject. Cue ratings were
analyzed one-by-one using linear mixed-effects regression, using Imer from the Ime4 package
in R (Bates et al., 2015), where cue category (and, in the respective models, clinical group)
denoted the fixed effects and subjects and cues denoted the sources of random effects. Model
comparisons were used to test for the effect of cue category and group and their interaction
using y?-square difference tests. We report relevant contrast-p’s only if the overall effect of the
relevant factor (group, category, groupXcategory) was significant. For significance testing of

those contrast-p’s, we use Wald z-tests as implemented in Ime4.

Behavioral data

We modeled the choice data within each subject’s behavioral data by submitting dichotomized
choices (somewhat no & no: 0; somewhat yes & yes: 1) into logistic regression. We
dichotomized choices to increase the precision when estimating behavioral parameters, in line
with previous studies (Barkley-Levenson et al., 2013; Genauck et al., 2017, 2019; Tom et al.,
2007). Predictors were centralized values of gain, centralized absolute values of loss, Euclidean
distance (ed) from gamble matrix as indicator of gamble simplicity (see Fig. S1) (Tom et al.,

2007), and cue category (c). 12 steps of gain (14, 16, 18, ..., 36) and 12 steps of loss (-7, -8, -9,
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..., -18) formed a 12-by-12 gamble matrix, which was aggregated to 4-by-4 (e.g. gain steps 14,
16, 18 were all denoted as 16 and loss steps -18, -17, -16 were denoted as -17) as done in
previous fMRI versions of this task (Genauck et al., 2017; Tom et al., 2007). We defined the

gamble value (Q) on single-trial level as:

Q = o + Xgain * Bgain + Xioss * Pross + €d * Pea + 7 B¢ [1]
We call this model the laec model. Here cTis a transposed column vector, denoting the dummy
code of the cue’s category on any given trial and £, is a column vector holding the regression
weights describing the shift in gamble value with respect to the cue category. Hence, ¢T * B, is

a scalar product describing the additive effect of cue category. We fit the logistic regression

based on Eq. [1] with...
P(gamble acceptance) = 1/(1+ exp(—Q)) [2]

within a generalized linear mixed-effects model, using glmer from the Ime4 package in R (Bates
et al., 2015). Here, gain, loss, ed, cue category denoted the fixed effects and subjects and cues
denoted the sources of random effects. To test if the groups differed in the parameters of the
laec model, we expanded the model by an additional fixed effect of group modulating the effect
of gain, loss, ed, and cue category (laecg). Statistical testing of the model comparison was
performed using 2-square difference tests, as well as the comparison of Akaike and Bayesian
information criterion (AIC, BIC). For statistical tests of single parameters in the laecg model,
we used Wald z-tests as implemented in Ime4. For more analyses of the behavioral data, please

see Supplements (Sections 1.4, 2.1).
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FMRI data

Preprocessing and single-subject model of fMRI data

Imaging analyses were performed in SPM12 running on Matlab (R2014a). Please see
Supplements (Section 1.5) for description of preprocessing of MRI data. We modeled the

preprocessed fMRI single-subject data using three onset regressors:

1) Onset “cue” from Os, boxcar, denoting moments of cue presentation vs. none presentation (1
vs. 0, duration: 4s plus jitter, i.e. time for showing the cue and then cue plus gamble). This onset
regressor had three parametric modulators (serially orthogonalized). pmod(1): gamble cue >
neutral cue, pmod(2): negative cue > neutral cue, pmod(3): positive cue > neutral cue (always

coded 1 vs. -1).

2) Onset “cue plus gamble” from 4s plus jitter, boxcar, modeled the time when gamble
presentation was on (1 vs. 0, duration: 4s plus jitter, i.e. the time when cue and gamble were
presented but no response options available yet). This onset regressor had seven parametric
modulators (serially orthogonalized). pmod(1-3): gain, loss, ed, mean-centered aggregated from
twelve to four steps, see behavioral analysis; pmod(4): acceptance of gamble > non-acceptance
(1 vs. -1); pmod(5-7): PIT modulators for the three cue categories (Garbusow et al., 2016; Schad
et al, 2018). For example, the PIT regressor “acceptXgambling”, pmod(5), modeled
“acceptance during gambling cues vs. not accepting during gambling cues” > “accepting during

neutral cues vs. not accepting during neutral cues”, i.e. (1 vs. -1) > (1 vs. -1).

3) Onset “cue plus gamble plus response options” from 8s plus jitter, boxcar, modeled the time
when motor response could be performed (1 vs. 0, duration: reaction time until response was

made)
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Missing trials were modeled with a boxcar regressor (1 vs. 0), with duration set at length of
trial. Regressors were convolved with the canonical hemodynamic response function,

downsampled to match the number of EPI scans and entered into a GLM (Fig. S2).

Extracting fMRI features for classifier building

We were interested whether PIT fMRI contrasts from a number of brain regions (regions of
interest, ROIs) could predict if a subject belongs to the HC or the GD group. We hence extracted
the mean activity for cue reactivity (gambling, negative, positive; pmod(1-3) of onset regressor
1) and for the PIT contrasts (acceptXgambling, acceptXnegative, acceptXpositive; pmod(5-7)
of onset regressor 2) using the within-subject means from the ROIs NAcc R/L and amygdala

R/L. NAcc and amygdala ROIs were taken from the Neuromorphometrics SPM12 brain atlas.

To keep in line with accounts of PIT depending on NAcc-Amy connectivity (Charpentier et al.,
2015; Guitart-Masip et al., 2010) and on amygdala-OFC connectivity (Holmes et al., 2010; Litt
et al., 2008) (Fig. 2), we also extracted functional connectivity (generalized psycho-
physiological interaction, gPPI) (McLaren et al., 2012) for the PIT contrasts. We used the seeds
amygdala R/L and NAcc R/L (see Supplements, Section 1.7). For the seeds amygdala R/L we
extracted the mean from target ROIs OFC R/L (4 subregions on either side), and from target
ROIs NAcc R/L. For the seeds NAcc R/L, we extracted from the target ROIs Amy R/L.
Information from left medial OFC was not available due to signal loss in that region. Collecting
all the extracts per subject, we had at this point for each subject a vector representing his or her
specific neural PIT pattern. We z-standardized this vector for each subject. We then reduced the
dimensionality of this vector for each subject by computing means (For cue reactivity: mean
between respective left and right ROI; For functional connectivity: mean connectivity value
between respective left and right ROl with respect to each PIT contrast, e.g. for the connectivity

from NAcc to posterior OFC with respect to the PIT contrast “acceptXgambling” the mean of
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connectivity values from R NAcc to R posterior OFC, from L NAcc to R posterior OFC, from

R NAcc to L posterior OFC, and from R NAcc to L posterior OFC).

To ensure that the task had produced meaningful signal, we checked for PIT effects in amygdala
and NAcc across groups and for cue reactivity difference between groups in amygdala, NAcc

and OFC using years in school as a covariate of no interest in all cases.

ANDREA model DLPFC: Outputs

cost signal for
losses only

Amy: Outputs
salience signal
biased for loss
signals from DRN

DRN: Computes a
TD PE signal

~

ok{'r (negative)

input
context
cue
o3 - VS: Integrates
g 3 | positive and
; = ~O_ negative TD PE
o |8 signals
input
objective
value VTA: Computes a

TD PE signal
(positive)

output
subjective
value

Figure 2: The ANDREA model. The model describes how loss aversion may arise in the brain during a mixed-
gambles task and in addition the model makes a specific prediction how contextual cues can influence the
subjective representation of gain and loss (this part of the model is highlighted in red). Namely, the amygdala is
encoding and forwarding the value signal of the contextual cue, thereby modulating the subjective value
representation in OFC (Litt et al., 2008). GD subjects should show a stronger functional connectivity from
amygdala to OFC with respect to accepting gambles during presentation of e.g. gambling cues because this would
increase the value of the gamble stored in OFC into positive direction and thus increase the likelihood of gamble

acceptance.
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Building the classifier based on fMRI data

The neural PIT vectors per subject were stacked into a data set. Since HC and GD were not
perfectly matched on years in school, we added this variable to the data set, which was then
submitted to logistic elastic net regression, with group as dependent variable. Elastic net
regression is well suited for cases where there are few observations and many predictor variables
that may contain groups of correlated variables (Ahn and Vassileva, 2016; Whelan et al., 2014;
Zou and Hastie, 2005) (see Supplements 1.8). Using tuning of its two hyper-parameters (Zou
and Hastie, 2005) it is also well suited to produce models that do not over-fit but generalize well
to new data, especially when using cross-validation for tuning (Arlot and Celisse, 2010; Bratu
et al., 2008; Varma and Simon, 2006). The algorithm tuned for optimal generalization
performance on out-of-sample data using the area under the receiver-operating curve, AUC-
ROC, (Ahn et al., 2016; Ahn and Vassileva, 2016; Whelan et al., 2014; Zacharaki et al., 2009).
AUC-ROC ranges from 0.5 (chance) to 1 (perfect sensitivity and specificity) (Provost et al.,

1998).

We assessed the generalizability of the above algorithm 1000 times via 10-fold cross-validation
(Arlot and Celisse, 2010) which yielded a distribution of classifiers and thus of AUC-ROC’s.
Note that the cross-validation to estimate generalizability led to the cross-validations used in
the elastic net regression to become nested (Arlot and Celisse, 2010; Bratu et al., 2008; Varma
and Simon, 2006; Whelan et al., 2014). For a graphical illustration of the algorithm with cross-
validation to estimate the generalization performance, see Fig. 3. The data and R Code can be

found here: https://github.com/pransito/PIT_GD_MRI_release. We computed the mean of the

obtained AUC-ROC’s and estimated its p-value by performing the exact same 1000 CV rounds

but each time with only “years in school” as predictor (baseline classifier). We then subtracted

the AUC-ROC’s of the baseline classifiers one-by-one from the 1000 AUC-ROC’s of the full
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classifiers. This yielded a distribution of classification improvement (i.e., improvement of
AUC-ROC due to using the full classifier instead of the baseline classifier). We tested this
distribution against the value of classification improvement under the null-hypothesis (i.e. zero

improvement) to obtain a p-value of significance of classification improvement.

After assessing the generalizability of the model by cross-validation, we then fit the model to
the entire data set (no splitting in training and test data) in order to build the final interpretable
and reportable classifier. Since the modelling is probabilistic, we repeated this 1000 times. We
plotted the ensuing distribution of regression weight vectors as per-parameter means with 95%

percentile bounds.

PREDICTION OF GROUP

1000 REPETITIONS OF 10-FOLD CROSS-VALIDATION OF ALGORITHM:

START:
Take complete
data

Get Training Extracting neural PIT parameters per subject from fMRI
Data (90%) data

Submit to repeated nested CV elastic
Classifier net regression, producing a mean
classifier

Get Test Data
(10 %)

Collect decision Compute AUC-
values ROC, by

according to comparing with

10-fold CV true values, exit

Compute
. decision values
of test subjects

Extract neural
PIT parameters

Repeat 10 times

Figure 3: Classifier building algorithm with cross-validation (CV) to estimate generalization error. Nested CV
was used for tuning the hyperparameters of the elastic net regression (Varma and Simon, 2006; Zou and Hastie,
2005). This was done repeatedly with different nested CV folds (10 times, 10-fold nested CV) to estimate a robust

mean model within each repetition of classifier estimation.
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Inspecting the classifier based on fMRI data

In order to interpret the final classifier’s regression weights as an activation pattern (a), i.e. to
know how greatly each predictor contributed to distinguishing GD from HC subjects in the
classifier, we calculated:

a =cov(X) * w [3]
(Haufe et al., 2014), where w is the regression weight vector (a column vector), or in other
words, the classifier. X is the matrix of predictors for all subjects and cov(X) is the covariance

matrix of X. Additionally, we calculated between-group t-tests (HC vs. GD) for all predictors.

Ethics

Subjects gave written informed consent. The study was conducted in accordance with the World
Medical Association Declaration of Helsinki and approved by the ethics committee of Charité

- Universitatsmedizin Berlin.
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RESULTS

Cue ratings

Gambling cues were seen as more appropriately representing one or more gambling games than
any other cue category: gambling > neutral (B = 1.509, p < 0.001), gambling > negative ( =
1.142, p < 0.001), gambling > positive (f = 1.459, p < 0.001). They elicited more craving
compared to neutral in GD subjects than in HC subjects (GD gambling > neutral: B =1.749, HC
gambling > neutral: B = 0.719, p(GD>HC) < 0.001). HC subjects indicated significantly more
craving in response to gambling cues compared to neutral cues (p < 0.001). GD subjects did not
rate gambling cues as more positively valenced than HC: GD > HC ( = -0.055, p < 0.712). GD
subjects did not rate gambling cues as more arousal-inducing compared to HC subjects (GD
gambling > neutral: 0.142, HC gambling > neutral: 0.047, p = 0.525). HC subjects did not rate
gambling cues as more arousal inducing than neutral cues (p = 0.662). Gambling cues lead to
higher dominance ratings overall: gambling > neutral (p = 0.368, p <0.001). GD subjects rated

gambling cues as more dominance inducing than HC subjects: GD > HC (B =0.328, p=0.021).

Negatively valenced cues were seen as evoking smaller valence ratings than all other categories:
negative < neutral (B =0.651, p <0.001), negative < positive (f = 1.538, p <0.001), negative <
gambling (f =0.977, p <0.001). Negative cues lead to lower dominance ratings (B = -0.297, p

< 0.001). There were no group differences on any rating scale with regards to the negative cues.

Negative cues were more representative of negative effects of gambling than any other group:
negative > neutral (B = 1.398, p <0.001), negative > positive (f = 1.388, p <0.001), negative >
gambling (f = 0.826, p <0.001). GD subjects perceived negative cues as less representative for
negative consequences of gambling than HC subjects (HC: 2.03, GD: 1.388, p < 0.001). Positive

cues were more representative of positive effects of abstinence from gambling than any other
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category: positive > neutral (f = 0.970, p < 0.001), positive > negative (f = 0.848, p < 0.001)
and positive > gambling (f = 0.639, p < 0.001), and rated as more positive (valence) than any
other category: positive > neutral (f = 0.886, p < 0.001), positive > negative (f = 1.538, p <
0.001) and positive > gambling ( = 0.561, p < 0.001). Positive cues lead to higher dominance
ratings: positive > neutral (f = 0.683, p <0.001). There were no group differences on any rating

scale with regards to the positive cues. (Fig. S3).

Describing the behavioral choice data

Here we present results comparing the laec model against the laecg model (i.e. with an effect
of group onto the fixed effects of gain, loss, ed and category). Comparing the two models, we
observed a significant ¥? difference test result (x> = 26.6, df = 7, p < 0.001; with AAIC = 12.6,
ABIC = -39.0). Inspecting the estimated parameters of the laecg model, we observed that
acceptance rate during neutral images with all other parameters at zero (i.e. at their mean, except
for ed, actually zero) was for HC: 59.0% and for GD: 38.8%, pwad = 0.155. Gambling cues
were associated with stronger increase in gamble acceptance in GD subjects (A% = 44) than in
HC subjects (A% = -8, pwaid = 0.003). The same was true for negative (GD: A% =23, HC: A%
=-16, pwaid = 0.049) and positive cues (GD: A% =23, HC: A% =0, pwaid = 0.030) (Fig. 4). For

further behavioral results, please see Supplements (Section 2.1).
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Shift in mean acceptance across categories
(relative to neutral, based on laecg model)
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Figure 4: Shift in acceptance rate during gambles per category and group. Based on the laecg model. GD subjects
show stronger increase in gamble acceptance (compared to neutral) in comparison to HC subjects during the
presentation of all three cue categories in the background. Cls based on standard errors of parameter estimates.

Stars denote significant post-hoc contrasts.

Prediction of group using fMRI data

Across groups and in line with previous findings (Garbusow et al., 2016; Guitart-Masip et al.,
2010; Prévost et al., 2012; Talmi et al., 2008), there was for gambling-cues PIT a significant
effect in right amygdala: [15 -6 -15], psvc = 0.027, puncor = 0.003, k = 17, trendwise effects in
left NAcc: [-6 12 -3], psvc = 0.082, puncor = 0.015, k = 6, right NAcc: [6 12 -3], psvc = 0.060,
Puncor = 0.014, k=9, and in left amygdala: [-24 -3 -18], psvc = 0.071, puncor = 0.009, k = 31.

In line with previous findings (Goudriaan et al., 2010; Limbrick-Oldfield et al., 2017; Potenza
et al., 2003), there was for the cue reactivity contrast GD > HC (gambling cues) a trendwise
effect in right amygdala: [18 -3 -15], psvc = 0.091, puncor = 0.012, k = 5. Further, there was for

HC > GD (positive cues) a significant effect in left NAcc: [-6 6 -6], psvc = 0.033, puncor = 0.005,
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k =4, and in right NAcc: [6 9 -6], psvc = 0.035, puncor = 0.007, k = 4. For HC > GD (negative
cues), there was a trendwise effect in left lateral OFC: [-36 36 -18], psvc = 0.089, puncor = 0.004,

k =24, and in right anterior OFC: [24 45 -12], psvc = 0.080, puncor = 0.005, k = 8.

The mean AUC-ROC of the full classifier using neural PIT signatures was 70.0% (mean for the

baseline classifier, i.e. covariate-only classifier: 61.5%, p = 0.013) (Fig. 5).

AUC densities for elastic net classifier compared to baseline classifier

20

151
:%' classifier
- [ |baseline
@ 10/
810 [ Ifull

5,

0,

0.60 0.65 0.70 0.75
AUC ROC

Figure 5: Classification performance of classifier using fMRI neural PIT signatures. Blue is the density plot of
1000 AUC-ROCs obtained from running 1000 repetitions of cross validation of the full classifier using neural PIT
signatures. The green line shows the mean of these 1000 AUC-ROCs. In red you see the same density estimate
for the baseline classifier, i.e. the covariate-only classifier, as a control condition. The full classifier performs
significantly better (p = 0.013).

We ran the algorithm on the complete data set of fMRI variables. Inspecting the classifier’s
logistic regression weights (see Fig. S4) (after transformation to predictor importance, see Eq.
3, and according to t-tests), we saw that the top predictor was negative-cues-PIT-related

functional connectivity from amygdala to anterior OFC, with a negative sign (Fig. 6). This
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1 means that the stronger not accepting a gamble was associated with increase in correlation
2  between amygdala and anterior OFC, the less likely the subject was a GD person (and rather a
3 HC subject). In other words, GD subjects showed lower such functional connectivity than HC.
4 The next top three predictors were gambling-cues-related functional connectivity from NAcc to
5 amygdala (positive sign), positive-cues-related functional connectivity from amygdala to lateral

6  OFC (positive sign), and years in school (negative sign) (see Fig. 6, 7).

Inspection of predictor importance and t-tests
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1 2 3
bars: t-values
points with whiskers: mean predictor importance with 95% quantiles over CV rounds

8 Figure 6: Estimated predictor importance. Points and quantiles are estimated predictor importance with 95%-
9 guantiles over 1000 classifier estimation rounds. The larger the absolute size of an importance value the stronger
10 the predictor adds to distinguishing HC from GD in the classifier. Bars show t-values of simple between- group t-
11 tests. Significant t-tests are highlighted (Welch-test, p < 0.05, two-sided). Delimitations are at 1.96 and -1.96 to

12 mark points of statistical significance for t-test. Importance values/t-values are grouped by the kind of fMRI
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predictor: cue reactivity related, PIT related, Psychological-physiological-interaction (i.e. PPI) related. PPIs are
further grouped by seed region and target extraction (e.g. “to OFC”). PIT: pavlovian-to-instrumental transfer;
OFC: orbital frontal cortex; AOFC, LOFC, POFC, MOFC: anterior, lateral, posterior, medial orbital frontal cortex; R:

right

PIT during negative cues:
PPI from the seed left Amygdala to right anterior OFC

Contrast estimates and 90% C 1.
B EQI
028

02r

015 -

01

0.05 -

-0.05 -

01k

contrast estimate at [24, 57, 6]

015 -

02 L I L

HC contrast GD

Figure 7: Generalized psycho-physiological interaction (gPPI) T-map for Pavlovian-to-instrumental transfer
(PIT) during negative cues contrast (HC > GD). Displayed at p < 0.05. Illustration of contrast that contributed to
most important predictor of the classifier. A: from left amygdala to right anterior orbito-frontal cortex (OFC),
centered at peak within region of interest, [24, 57, -6], punc = 0.024, k > 0. Cluster extends into right superior
frontal gyrus. Also visible is significant activity in right posterior OFC, which was also picked up by the classifier.
B: plot of subjects’ beta values at peak voxel for the contrast in A. HC: healthy controls, GD: gambling disorder

subjects
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DISCUSSION

GD is characterized by impaired decision making (Wiehler and Peters, 2015) and craving in
response to gambling associated images (Crockford et al., 2005; Goudriaan et al., 2010). There
is evidence that there is significant influence of cue-induced emotional states onto value-based
decision-making in GD subjects (Dixon et al., 2006; Genauck et al., 2019; Miedl et al., 2012;
van Holst et al., 2012). The influence of cues onto value-based decision-making may be
regarded as a form of Pavlovian-to-Instrumental Transfer (PIT), the increase of which has been
associated with addictive disorders in general (Corbit and Janak, 2007; Garbusow et al., 2016;

Genauck et al., 2013; Mitchell et al., 2016; Schad et al., 2018).

In the current study, we hypothesized that GD subjects should be distinguishable by neural PIT
signatures based on fMRI contrasts recorded during an affective mixed-gambles task. We
therefore built a classifier using fMRI PIT contrasts to distinguish GD from HC subjects
focusing on brain structures known to be relevant in PIT, like amygdala and NAcc (ventral
striatum). We also incorporated amygdala’s connectivity to OFC, and amygdala’s and NAcc’s
connectivity to each other. We further included neural cue reactivity contrasts as predictors. All
these predictors yielded a neural PIT signature per subject which could be used to classify

subjects into the GD or HC group.

Our results support our first hypothesis, showing that neural PIT signatures based on fMRI data
gathered from the affective mixed-gambles task may successfully classify out-of-sample
subjects into GD and HC, with a cross-validated mean AUC-ROC of 70.0% (p = 0.013). This
performance on out-of-sample data is similar to other studies using MRI data for classification
in the field of addictive disorders (Guggenmos et al., 2018; Pariyadath et al., 2014; Seo et al.,
2015, 2018; Whelan et al., 2014). To our knowledge, however, the present study is the first one

to use fMRI classification for investigating a behavioral addiction, namely GD, and the neural
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basis of increased PIT. This means that it is possible to characterize a non-substance related
addiction to a considerable degree by a single neuro-functional signature, namely a neural PIT
signature in a network of amygdala, NAcc and OFC, derived from PIT and SUD literature. This
further implies that addictive disorders, in general, may be associated with PIT-related neural
changes, independent of a substance of abuse, which means that neural PIT changes may be a
product of addiction-related learning and neural plasticity or even of an innate trait (Barker et

al., 2012).

Concerning the predictors in the classifier, we hypothesized that gambling-cue PIT-related
functional connectivity from amygdala to OFC should be increased. We found that multiple
PIT-related functional connectivities from amygdala to OFC were significant predictors in the
classifier. For example, gambling-cues PIT-related functional connectivity from amygdala to
OFC was increased in GD compared to HC subjects, in line with our hypothesis and in line with
the general prediction that in GD subjects amygdala modulates the value computation in OFC,
when addiction-related cues are presented in the background (Cardinal et al., 2002; Holmes et
al., 2010; Litt et al., 2008). Furthermore, the top predictor in the classifier was PIT-related
functional connectivity from amygdala to anterior OFC in trials with a negative cue, with a
negative predictor weight. This means that the stronger the rejection of a gamble during the
presentation of negative cues was associated with an increase in correlation between amygdala
and anterior OFC, the less likely the subject was a GD person (and rather a HC subject). In other
words, GD subjects showed weaker such functional connectivity than HC. GD subjects,
compared to HC subjects, showed significantly more gambling during the presentation of
negative cues than during the presentation of neutral cues. HC subjects may not show this effect
because of stronger signal transmission related to negative cues from amygdala to OFC.

Similarly, it has been found that reduced loss aversion in GD subjects was associated with
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reduced loss-related functional connectivity from amygdala to ventral medial prefrontal cortex
in a pure mixed-gambles task (Genauck et al., 2017). This highlights that impaired decision-
making in GD during a pure mixed-gambles task, as well as during an affective mixed-gambles

task, may draw from the same functional neural substrate.

We looked at the next two top predictors expecting that PIT-related (as opposed to purely cue
reactivity related) neural predictors should be among these. Indeed, we found that the next top
predictor was gambling-cues PIT-related functional connectivity from NAcc to amygdala
(positive sign), a connectivity important for cue-induced effects in mixed-gambles tasks
(Charpentier et al., 2015). This means that the more gamble acceptance during presentation of
gambling cues was associated with an increase in correlation between NAcc and amygdala, the
more likely the subject was a GD person. In other words, GD subjects showed stronger such
functional connectivity than HC. NAcc is seen as encoding temporal difference prediction
errors, i.e. it fires when an unexpected reward signal is perceived from one moment to the next
(McClure et al., 2003; Niv and Schoenbaum, 2008; O’Doherty et al., 2003; Schultz et al., 1997).
GD subjects rated gambling pictures as more craving-inducing and reacted with significantly
stronger gamble acceptance increase than HC when gambling-associated cues were shown in
the background. We also saw an important regression weight given to gambling-cues PIT-
related functional connectivity from amygdala to OFC, in line with our initial hypothesis.
Therefore, it may be that gambling cues elicit a prediction error in NAcc that modulates
amygdala activity, which in turn modulates the value representation in OFC in such a way that
GD subjects are more inclined than HC subjects to accept the gamble at hand. This is in line
with a previous study, where it has been found that GD subjects display increased functional
connectivity from amygdala to posterior OFC related to increasing possible gains in a pure

mixed-gambles task (Genauck et al., 2017). This highlights again that impaired decision-
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making in GD during a pure mixed-gambles task, as well as during an affective mixed-gambles
task may draw from the same functional neural substrate. Also, it has been observed before that
NAcc and amygdala seem to hold relevant signal related to PIT in healthy subjects (Prévost et
al., 2012) and to increased PIT in addicted subjects (Garbusow et al., 2016). Interestingly,
previous studies (Garbusow et al., 2016; Schad et al., 2018) have observed that in recently
detoxified treatment-seeking AD patients, images of alcoholic beverages in the background
have a suppressing effect on the instrumental task in the foreground. Contrarily, we have seen
that gambling cues elicit a stronger gamble acceptance increase in GD than in HC. This may be
because we have included only active non-treatment-seeking gamblers, who at that stage of
disease show little activity working against their automated response towards addiction-related

cues.

The third top predictor was also PIT related, in line with our hypothesis that PIT-related
predictors should be more important than cue reactivity predictors. It was positive-cues PIT-
related functional connectivity from amygdala to lateral OFC. This means that the stronger the
acceptance of a gamble during the presentation of positive cues was associated with an increase
in correlation between amygdala and OFC, the more likely the subject was a GD person. In
other words, GD subjects showed stronger such functional connectivity than HC. This may be
seen as parallel to the finding on behavioral level that GD subjects react with more gambling
increase to positive pictures than HC subjects. It seems that both positive cues and gambling
cues lead to increased gambling and similarly increased connectivity between amygdala and
OFC in GD subjects. Also, negative cues lead to increased gambling. This is surprising because
one could have expected to see decreased gambling during negative and positive cues or no
effect of those cue categories (Genauck et al., 2019). On the other hand, perhaps all three cue

categories have special salience for GD subjects, because they may have already thought about
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and experienced the positive and negative effects of their gambling behavior and this might
conjure motivation to act. Negative cues might have even evoked a need for loss chasing and
thus more gambling (Ciccarelli et al., 2019). Thus, generally, all three cue categories may lead
to increased vigor/motivation, leading to a stronger propensity to accept gambles. Future studies

should further explore the effect of positive and negative stimuli on gambling in GD.

Although we discussed the top-three predictors, note that our classifier is truly multivariate. Of
the 30 neural PIT signature predictors, 22 received a significant regression weight (and 24 a
significant activation weight), despite elastic net regression allowing for total deselection of
predictors (Zou and Hastie, 2005). This means that just like on the behavioral level, where GD
subjects reacted more strongly than HC to all non-neutral categories, we see that fMRI activities
related to all non-neutral categories was relevant for characterizing GD. Cue reactivity
regression weights are relatively small and the classifier heavily draws on PIT-related variables
(the top-three predictors were PIT related). This emphasizes the importance of PIT as a defining

marker for addictive disorders beyond cue reactivity.

We used the same cues as Genauck et al. (2019) in a new sample of GD and HC subjects and,
in line with that study, we also observed that GD subjects rate the gambling cues as more craving
inducing. Also, in the other categories cues were perceived as expected. The ratings and the
result that neural PIT signatures successfully distinguish GD from HC subjects reinforce the
notion that GD subjects’ cue reactivity facilitates riskier decision-making when addiction-

related cues are presented in the background of a gamble task.

Changes in NAcc’s structure (Koehler et al., 2015) and function (Koehler et al., 2013; Linnet

et al., 2010; Miedl et al., 2014; Reuter et al., 2005; Romanczuk-Seiferth et al., 2015) related to
GD have been observed in previous studies. The same is true for amygdala’s structure (Elman

et al., 2012; Takeuchi et al.) and function (Genauck et al., 2017), as well as for OFC’s structure
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(Lietal., 2018) and function (Cavedini et al., 2002; Goudriaan et al., 2010). Our study adds to
these findings by considering the functions of these structures concurrently and in a network.
Our results support the notion that GD, similar to SUD, is characterized by neural incentive
sensitization (Limbrick-Oldfield et al., 2017; Ramer Thomsen et al., 2014) (Limbrick-Oldfield
et al., 2017; Rgmer Thomsen et al., 2014) such that in GD a network of amygdala, NAcc and

OFC facilitate gambling decisions in the face of gambling cues.
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STRENGTHS AND LIMITATIONS

The main strength of our study is that we have used a classification approach to assess the
usefulness of known neural PIT contrasts to characterize GD in out-of-sample data. Using this
approach, we have estimated the single-subject relevance of these fMRI signals. Our results
therefore have not only explanatory value in elucidating the basis of increased PIT in GD, but
also predictive value, given that they are likely to be found in new samples of GD and matched
HC subjects (Yarkoni and Westfall, 2017). Furthermore, we are to our knowledge the first to
address the neural underpinnings of PIT in a behavioral addiction using a machine learning
approach. Unfortunately, we have no independent validation sample to externally validate our
results (Genauck et al., 2019; Guggenmos et al., 2018). Further studies are needed to collect
such data. As we have laid out, there are multiple ways in which the brain may produce an overt
PIT, involving at least amygdala, NAcc and OFC. To increase statistical power, we have omitted
other conceptualization of PIT, e.g. as an interference task (Sommer et al., 2017), and hence
any limbic-dorso-lateral-prefrontal connectivity (Bray et al., 2008). Future studies should
explore this. In the current study we did not address the distinction between outcome-specific
and general PIT (Bray et al., 2008; Corbit and Janak, 2007; Eder and Dignath, 2016; Hogarth
and Chase, 2012; Lewis et al., 2013; Steenbergen et al., 2017). This would be a valuable next

step for future studies in GD.
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CONCLUSION

We have observed that it is possible to classify HC and GD subjects based on the neural
correlates of PIT in a network of NAcc, amygdala and OFC. Our findings further the
understanding of GD and show that PIT is relevant for characterizing non-substance-related
addictive disorders also on neural level. PIT alterations at the neural level related to an addictive
disorder might thus not depend on the direct effect of a substance of abuse, but rather on related

learning processes or even on innate traits.
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ONLINE RESOURCES

R code and data (stored in an .RData file which is loaded with the R code) to run the classifier
estimation and cross-validation, as well as the classical hierarchical regression analyses can be
found in the following link. Further you can find there also more detailed data concerning the
MRI sequences, as well as the preprocessing of MRI data and the fMRI single subject design:

https://qgithub.com/pransito/PIT GD MRI release
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