

Anthropogenic selection along directions of most evolutionary resistance

Running headline: Life-history evolvability in the medaka

Clémentine Renneville ¹, Alexis Millot ², Simon Agostini ², David Carmignac ¹, Gersende Maugars ^{3,4},
Sylvie Dufour ³, Arnaud Le Rouzic ⁵ and Eric Edeline ^{1,6*}

5

1: Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F-75252 Paris, France.

2: Ecole Normale Supérieure, PSL Research University, Département de biologie, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), 78 rue du château, 77140 Saint-Pierre-lès-Nemours, France.

10 3: Muséum National d'Histoire Naturelle, UMR BOREA Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD 207, SU, UCN, UA, 7 rue Cuvier CP 32, F-75231 Paris, France.

4: Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, Campus Adamstuen, Oslo, Norway.

15 5: Laboratoire Évolution, Génomes, Comportement, Écologie, CNRS - IRD - Univ Paris-Sud, Univ. Paris-Saclay, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France.

6: ESE Ecology and Ecosystem Health, INRA, Agocampus Ouest, 35042 Rennes, France.

* Corresponding author: Eric.Edeline@inra.fr, Tel: +33 (0)223 485 523, Fax: +33 (0)223 485 440

20

ABSTRACT

Selection from harvesting, habitat fragmentation or climate warming is often bivariate against both a late maturity and large body size in parallel. This bivariate nature of anthropogenic selection remains 25 largely overlooked, and the ability of populations to respond to it is poorly evaluated. Here, we use a laboratory experiment over 6 generations to measure the ability of wild-caught medaka fish (*Oryzias latipes*) to evolve in response to opposite anthropogenic selection regimes. Specifically, we selected medaka for maturity at 75 days-post-hatch and imposed random-(control), down- (anthropogenic, fishing-like) or up- (inverse anthropogenic) size selection. That is, we imposed a common positive 30 selection differential on maturity but antagonistic selection differentials on body size, which generated antagonistic selection gradients *on maturity as well*, such that inverse anthropogenic-selected medaka experienced a *negative* selection gradient on maturity. As predicted from selection gradients, inverse anthropogenic-selected medaka evolved faster somatic growth and delayed maturation, but with no correlated change in survival rate, fertility, egg size or pituitary gene expressions of luteinizing, 35 follicle-stimulating or growth hormone. In contrast, anthropogenic-selected medaka were unable to respond to selection gradients for a smaller body size and earlier maturity, indicating a functional limitation on this particular combination of traits. Our results demonstrate that humans may unintentionally select along directions of most evolutionary resistance in the phenotypic space, and that a consideration of the multivariate nature of selection is paramount to our ability to predict potential for 40 evolutionary rescue in the face of global change.

Key words: Body size, Evolutionary rescue, Evolvability, Fisheries, Gonadotropic axis, Harvesting, Neuroendocrinology, Probabilistic maturation reaction norms, Somatic growth rate, Somatotropic axis.

45

INTRODUCTION

Human-induced perturbations such as habitat fragmentation, harvesting or climate warming often converge towards both increasing background mortality and selecting against a large body size in wild populations (Edeline, 2016). Such anthropogenic mortality regimes generate bivariate selective 50 pressures acting in parallel on maturity and body size. Increased mortality, either size-independent or directed against large-sized individuals, directly selects for an earlier maturity by reducing the fitness of late-maturing individuals relative to early-maturing individuals (Heino *et al.*, 2015). In parallel,

selective removal of large-sized individuals directly selects against a large size-at-age, i.e., selects against a fast somatic growth. Due to the complex developmental, physiological and ecological 55 correlations between maturity and growth, predicting the evolutionary response of populations to such bivariate selection pressures is not straightforward.

These added anthropogenic selection pressures may warp original fitness landscapes to generate new, composite fitness landscapes on which overall fitness is reduced and the fitness peak moves towards 60 smaller trait values, i.e., towards an earlier age at maturation and a smaller body size-at-age (Fig. 1 provides a univariate illustration). In this context, the persistence of wild populations may critically rely on their capacity to track movements of the fitness peak, i.e., on their capacity to rapidly evolve earlier maturation and smaller body sizes. If adaptive change occurs fast enough, it may potentially restore a positive population growth and prevent extinction, a process termed “evolutionary rescue” (Fig. 1). 65 However, so far evidence for evolutionary rescue in the wild remains elusive (Carlson *et al.*, 2014) and the ability of populations to rapidly respond to anthropogenic change is seldom examined.

The phenotypic effects of a bivariate anthropogenic selection acting in parallel for both earlier maturity and smaller body sizes have been mostly explored in the context of fisheries, which generate high 70 mortalities and are often highly size-truncative against large individuals (Lagler, 1968; Law, 2000; Carlson *et al.*, 2007). As expected, fishing has been associated with phenotypic changes towards both earlier maturation and slower somatic growth rates in several wild populations (Haugen & Vøllestad, 2001; Olsen *et al.*, 2004; Edeline *et al.*, 2007; Swain *et al.*, 2007). Similar trends have been reported in response to size-selective hunting (Kuparinen & Festa-Bianchet, 2017) or cropping (Law & Salick, 75 2005).

However, studies based on data from the wild are repeatedly criticized for problems in measuring actual selection pressures, in quantifying the direct effects of size-selective mortality vs. evolution on changes in mean trait values in populations (Hairston *et al.*, 2005), or in controlling for the 80 confounding effects of phenotypic plasticity (Heino *et al.*, 2002). Hence, there is still debate as to whether changes towards earlier maturation and slower somatic growth in exploited populations are genetic (Borrell, 2013), or are occurring rapidly enough to influence population dynamics and thus probability of evolutionary rescue (Diaz Pauli & Heino, 2014).

85 Experimental harvesting experiments in the laboratory are potentially free of such problems because
they make it possible to accurately target the traits under selection, to fully control the pattern and
intensity of artificial selection, as well as to standardize environmental variation so that the effects of
phenotypic plasticity are alleviated. Despite these obvious strengths of experimental approaches in the
laboratory only a handful of such harvesting experiments have been performed in invertebrates (Edley
90 & Law, 1988; Cameron *et al.*, 2013) and fish (Conover & Munch, 2002; Amaral & Johnston, 2012; van
Wijk *et al.*, 2013; Uusi-Heikkilä *et al.*, 2015). These experiments have shown that size-at-age or size at
maturity in populations subject to small- vs. large-sized harvesting may (Edley & Law, 1988; Conover
& Munch, 2002; Amaral & Johnston, 2012; Cameron *et al.*, 2013; van Wijk *et al.*, 2013) or may not
(Uusi-Heikkilä *et al.*, 2015) evolve in the predicted direction. We provide a more detailed review of
95 these experiments as Supplementary material.

Such harvest-simulating experiments remain few, and it is thus unclear whether exploited populations
are always able to respond to size-selective harvesting. Importantly, none of these previous
experimental designs have examined potential for bivariate selection acting both on maturity and body
100 size in parallel. More generally, the many size-selective experiments performed so far on model
organisms such as *Drosophila* (Partridge *et al.*, 1999), chicken (Dunnington *et al.*, 2013) or mice
(Falconer & Mackay, 1996) have not selected on maturity in parallel. We are aware of one single study
having examined response to parallel selection on body size and development time in the hawkmoth
Manduca sexta (Davidowitz *et al.*, 2012, 2016). Results show that traits responded roughly as predicted
105 but the response of development time was weak and asymmetric (stronger response to selection for a
long than for a short development time), making the bivariate response to selection essentially erratic.

Whether and how other populations or species can adapt to a bivariate anthropogenic selective regime
remains unknown. Additionally, our understanding of the molecular and physiological regulations that
110 underlay adaptive response to anthropogenic selection remains limited (Duffy *et al.*, 2013; van Wijk *et
al.*, 2013; Uusi-Heikkilä *et al.*, 2015; Uusi-Heikkila *et al.*, 2017). This lack of knowledge not only
hampers our ability to predict life-history evolution (Davidowitz *et al.*, 2012, 2016), but also hinders
the development of molecular diagnosis tools to evaluate potential for (and signature of) evolutionary
rescue in wild populations.

115

To contribute filling these gaps in our knowledge, we examined the ability of a wild population of medaka fish (*Oryzias latipes*) to respond to anthropogenic selection in the laboratory. To keep selected lines synchronised all fish were similarly selected for maturity at 75 days-post-hatch (dph), an age at which 86% of the fish were mature on average. We contrasted selection by applying down, up and random size-selection. Selection for maturity at 75 dph prevented late-maturing fish to reproduce, and thus mimicked a positive anthropogenic selection on maturity. Onto this high-mortality background common to all lines, the added contrast in selection differentials on body size generated antagonistic selection gradients both on body size *and on maturity as well* (see Results). While down size selection generated selection gradients for increased maturity probability and smaller body size, up size selection generated selection gradients for *decreased* maturity and larger body size. Selection gradients are indeed not necessarily of the same sign as selection differentials when traits are phenotypically correlated, as it is the case for size and maturity. Our size-selection protocol thus generated three selected lines through (i) bivariate AS for both earlier maturation and slower somatic growth in parallel, (ii) bivariate inverse-anthropogenic selection for both later maturation and faster somatic growth in parallel, and (iii) bivariate intermediate selection that served as a control (intermediate) selective (CS) regime by imposing mild selection for earlier maturation and as little as possible selection on somatic growth in parallel.

We selected medaka during 6 generations, measuring each generation a total of 14 phenotypic and 135 neuroendocrine traits (Table 1). We isolated selected pairs and raised their offspring in individual tanks, keeping track of the pedigrees along the experiment. For the first time in a harvest-induced evolution experiment, this made it possible to standardize the number of offspring per individuals, maximize effective population sizes, and to control for the level of inbreeding throughout the selection procedure.

140 We made three specific predictions for medaka response to selection: (1) compared to CS medaka, AS medaka should evolve earlier maturation and slower somatic growth rates. We predicted and opposite pattern in IS medaka. (2) Life-history traits are often correlated, and selection on size-at-age only has been shown to induce correlated responses of reproductive and larval viability traits (Walsh *et al.*, 2006). Therefore, we predicted that evolution in AS medaka should be paralleled by evolution towards 145 a higher size-specific fecundity and/or larger egg sizes (Roff, 1992), as well as towards reductions in

size at hatch and larval survival (Walsh *et al.*, 2006). We predicted an opposite response in IS medaka. (3) The neuroendocrine control of vertebrate development involves pituitary hormones. Reproductive investment is stimulated by production of the luteinizing (LH), follicle-stimulating (FSH) and growth (GH) hormones, while somatic growth is stimulated by production of GH (Rousseau & Dufour, 2007; 150 Zohar *et al.*, 2010). Hence, compared to CS medaka we predicted altered GH, LH and FSH pituitary expressions in selected medaka, with potentially opposite alteration patterns in AS and IS lines.

Our results validate prediction (1) but in IS medaka only, because AS medaka did not show *any* response to selection. Prediction (2) was partially validated since egg size increased in AS medaka, but 155 size-at-hatch decreased in both AS and IS medaka, and larval survival was not affected by selection. Finally, prediction (3) was not supported because pituitary expressions for GH vs. LH and FSH were not significantly altered in evolving IS medaka.

METHODS

Fish origin and maintenance

160 Our starting medaka population descended from 100 wild-caught individuals sampled in Kiyosu (Toyohashi, Aichi Prefecture, Japan) in June 2011. The genome of the Kiyosu population is free of any significant structure and shows a high degree of polymorphism, indicating no recent population bottleneck (Spivakov *et al.*, 2014). These 100 breeders were maintained in five 20L aquariums and eggs were collected daily from July to September 2011. Hatched larvae were stocked in six 10 m³
165 outdoor ponds.

In 2013, around 100 adult fish were transferred from outdoor ponds to the laboratory where all the 9 subsequent generations (dubbed F₋₁ to F₇) were maintained under a constant cycle of 14h of light - 10h of darkness in 3L aquariums connected to a continuous flow-through system ensuring good water
170 quality. Temperature was maintained between 26 and 27.5°C. Fish were fed *ad libitum* with a mixed diet of dry food (Marin start, Le Gouessant Aquaculture) delivered 4 times per day using automatic microfeeders (Eheim 3581), and live food (*Artemia salina* nauplii and/or *Turbatrix aceti*) delivered once a day, 5 days per week. These light, temperature and food conditions are expected to provide optimal growth and maturation conditions to medaka (Kinoshita *et al.*, 2009).

175 Each generation, larvae were introduced in their aquariums at a density of 18.6 ± 3.9, 18.1 ± 3.5, 19.2 ± 3.0 (mean ± SD) larvae per aquarium in the control-selected (CS), anthropogenic-selected (AS) and inverse anthropogenic-selected (IS) lines, respectively. Selection was performed on aquariums of at least 10 individuals at 60 dph (see selection protocol below), in which initial larval densities per
180 aquarium were 19.6 ± 1.6, 19.2 ± 1.9, 19.8 ± 1.0 (mean ± SD) in the CS, AS and IS lines, respectively. At 15 dph, densities were manually homogenized as much as possible to reach 17.0 ± 2.34, 16.1 ± 2.1, 17.7 ± 2.0 (mean ± SD) individuals per aquarium. Finally, at 75 dph densities per aquarium were 15.0 ± 2.4, 14.2 ± 2.1, 15.6 ± 2.4 (mean ± SD) in the CS, AS and IS lines, respectively.

185 Breeding design, pedigree and fish numbers

Fish initially transferred from outdoor ponds to the laboratory were allowed to mate randomly in groups of 3-6 fish per aquarium to produce the F₋₁ generation. In F₋₁ and F₀, we randomly bred 54 (F₋₁) and 56 (F₀) pairs, respectively, to alleviate maternal and grand maternal effects, as well as to break any

genetic structure or linkage disequilibrium that could remain from the wild-caught population. In
190 subsequent generations (F_1 to F_7) we proceeded with selection (see below). Eggs from each breeding pair were pooled for incubation in the same jar in a common recirculation system, and larvae from the same clutch were transferred to the same growth aquarium so as to form sibling families. This way, we were able to keep track of individual pedigrees so as to estimate individual inbreeding rate as $2k-1$, where k is one's kinship coefficient with oneself (as calculated from the pedigree data using the
195 kinship2 R package (Sinnwell *et al.*, 2014)).

In each generation we performed selection (see below) on 636 fish on average (212 fish/line). Specifically, we kept 4 breeders (2 males and 2 females) in each of 10 families per line to form the
200 subsequent generation (20 breeding pairs/line/generation). By controlling pairing and normalizing the number of offspring per pair, we were able to maximize the effective population size. Additionally, we formed breeding pairs so as to minimize inbreeding. Assuming no inbreeding in F_1 , mean inbreeding rate was 9.6% (± 1.9 SD) by F_7 (11.5 \pm 2.4% in the IS line, 8.5 \pm 0.9% in the AS line, 9.1 \pm 1.0% in the CS line). This corresponds to an average effective population size (“inbreeding effective numbers” *sensu* Crow & Kimura, 1970) of $N_e = 30.2$ (31.7 in CS, 34.0 in AS and 24.8 in IS lines), i.e.,
205 corresponds to an unusually large N_e for pedigree-recording artificial selection in a vertebrate species.

Phenotyping and hormonal measurements

Each generation, eggs from each breeding pair were collected during a period corresponding to mother's 88 to 92 dph. Eggs were counted and each clutch was photographed and ImageJ was then
210 used to measure individual egg perimeters (9795 eggs measured from F_1 to F_7). Hatched larvae were collected during a 5-day time window so as to synchronize birth dates as much as possible. Individual age was calculated as the median hatching date of each sibling family.

At 0 (hatching), 15, 60 and 75 dph each single individual was photographed and ImageJ was then used
215 to measure standard body length (from the tip of the snout to the base of the caudal fin, 16808 individual measurements from F_1 to F_7). Additionally, each individual at each phenotyping was sexed as immature (I), female (F) or male (M) according to their secondary sexual characters (Yamamoto, 1975). This method detected the onset of secondary sexual characteristics, which was a nondestructive proxy for the onset of maturity. All fish manipulations were performed after anaesthesia in tricaine

220 methane sulfonate (MS222), except at 0 and 15 dph when larvae and juveniles were manipulated with a
Pasteur pipette and photographed in a droplet.

In addition to phenotyping, a subsample of fish were individually measured for pituitary mRNA levels
of β -subunits of gonadotropin hormones (LH β and FSH β) and GH. At about 40 dph in each generation
225 from F₁ to F₇, 10 to 15 fish per line were randomly sampled and dissected for endocrine measurements
(233 fish measured for all three hormones from F₁ to F₇). F₀ preliminary data indicated that the onset of
secondary sexual characteristics occurred roughly between 40 and 60 dph, and we chose to dissect fish
at 40 dph so as to sample fish at the initiation of puberty. Fish were phenotyped as described above,
sacrificed and dissected under a binocular microscope for the pituitary which was immediately
230 immersed in 250 μ L Trizol (Ambion) and stored at -20°C. Pituitary mRNA levels of LH β , FSH β and
GH were measured using reverse transcription quantitative real-time polymerase chain reaction (RT-
qPCR). Further details on the RT-qPCR procedure are provided in Supplementary Methods.

Selection differentials and gradients

235 We applied a common, positive selection differential on maturity and a contrasted, line-dependent
selection differential on body length that, combined, produced a control-selected (CS), an
anthropogenic-selected (AS), and an inverse-anthropogenic (IS) lines. Specifically, the size-dependent
selection differential was applied both on families at 60 dph and on mature individuals at 75 dph, an
age at which on average 86% of the fish were mature. At 60 dph, we discarded families of less than 10
240 individuals (viability selection) and, among the remaining families, we kept 10 families at random (CS)
or that had the smallest (AS) or largest (IS) average standard body length. At 75 dph, we individually-
selected breeders (see above) *among mature fish only* based on their individual standard body length,
generating selection differentials of +12.5% maturity probability and +0.71 mm, +10.4% maturity
probability and -0.89 mm, and +12.8% maturity probability and +2.12 mm in the CS, AS and IS lines,
245 respectively. This selection procedure resulted in keeping on average 12% of individuals per line at
each generation (number of breeders / total number of fish before selection at 75 dph).

Selection differentials are not a proper measure of selection when selection acts on several correlated
characters (here body size and maturity showed a 53% correlation at 75 dph), in which case the
250 measurement of selection should rely on the estimation of selection gradients (Lande & Arnold, 1983;

Phillips & Arnold, 1989). We estimated directional selection gradients as the coefficients of the linear regression of standard body length (mm) and maturity coded as 0 or 1 (both standardized to zero mean) on relative fitness ω (%) defined as $\omega_i = v_i / \bar{v}_{G[i], L[i]}$ where v_i is the number of progeny produced by individual i surviving to age 75 dph in the next generation, and $\bar{v}_{G[i], L[i]}$ is mean absolute fitness in the generation and line (population) to which individual i belongs.

Line replication

In the context of selection experiments where the number of individuals is limited, line replication trades off with increasing effective population size N_e . Maximizing N_e should prime, because a large N_e decreases genetic drift, limits the effect of linkage disequilibrium on selection limits, and delays the unavoidable increase in inbreeding (Robertson, 1960; Hill & Robertson, 1966), see e.g. Weber & Diggins (1990) for experimental evidence. In particular, avoiding genetic drift and inbreeding is crucial when studying the evolution of correlated characters (Phillips *et al.*, 2001). Given this trade off, and because the logistical constraints linked to controlled pairing, pedigree tracking and intensive phenotyping limited the total number of fish to be processed at each generation to an average 636/generation, we chose to derive three large-population lines ($3 \times N_e = 30$) rather than replicating small-population treatments. By doing this, we lost the ability to measure experimentally the respective contributions of drift vs. selection to the observed phenotypic (non)divergence among the lines – note, however, that we could still estimate it theoretically from the effective population size, which is precisely known from the pedigree. In any case, an accurate measurement of the phenotypic divergence due to genetic drift requires a very high number of line replicates (Lynch, 1988).

Previous laboratory harvesting experiments in fish have used line duplicates in simple designs with no control for effective population size, pedigrees or inbreeding, but however report adult population size 275 N . Based on a median $N_e/N = 0.23$ in random-mating populations (Palstra & Fraser, 2012), N_e was expected to range from 5.5 to 17.9 in Amaral & Johnston (2012), and to be on average 23.0 in Conover & Munch (2002) and 28.7 in van Wijk *et al.* (2013). Therefore, our design compares favourably in terms of N_e with that of previous experiments which, despite a lower N_e , found line duplicates to respond very similarly to size selection. We were thus *a priori* expecting limited effects of genetic drift 280 over six generations in our non-replicated lines. Our results *a posteriori* confirm this expectation in showing that all but one (egg size) out of 12 traits that were not directly under selection significantly

diverged among the AS and IS lines (see Table 1 in Results below).

Data analyses

285 The aim of our statistical analyses was to estimate and test significance for the overall effect of anthropogenic selection on medaka life-history and neuroendocrine traits. A visual appreciation of time series response to selection on body length (Fig. 2B) shows that the divergence between the three selected lines somehow stabilized from generation F₃. Hence, in our analyses we pooled data from generations F₃ to F₇ and treated generation as a random effect. A detailed description of the statistical
290 models used is provided as Supplementary Methods.

We visualized the effect of anthropogenic selection on the maturation process using probabilistic maturation reaction norms (PMRNs). Maturation reaction norms have been developed to account for the plastic effects of the growth trajectory on the maturation process, such that a shift in the maturation
295 reaction norm may be interpreted as an evolutionary shift in maturation (Stearns & Koella, 1986). Technically, the maturation reaction norm approach is most robustly implemented by modelling the maturity data using logistic regressions, in which case maturation reaction norms become so-called PMRNs (Heino *et al.*, 2002). The PMRN approach has often been applied to assessing potential for evolutionary shifts in the maturation process of exploited fish populations (Heino & Dieckmann, 2008).

300

We computed line-specific PMRNs, defined as the length- and age-dependent 50% probability for an immature medaka to initiate maturity (as informed by the onset of secondary sexual characteristics), using the methods of Barot *et al.* (2004) and Van Dooren *et al.* (2005). The methods consisted in (1) computing *maturity* “ogives”, (2) computing *maturation* probabilities and (3) computing line-specific
305 PMRNs. More details are provided as Supplementary Methods.

MCMC parameter estimation

All statistical models used in analysing data (Table S2) were fitted using Markov chain Monte Carlo (MCMC) in JAGS 4.2.0 (Plummer, 2003). For each model, we ran three independent MCMC chains
310 thinned at a period of 5 iterations until parameter convergence was reached, as assessed using the Gelman–Rubin statistic (Gelman & Rubin, 1992). Weakly informative priors for regression parameters were defined as normal distributions with zero mean and 1000 standard deviation and for variance

parameters as a uniform distribution between 0 and 100.

315 We tested the significance of effects from posterior parameter distributions in a test equivalent to a two-way t test. In these tests, the MCMC P-value was twice the proportion of the posterior for which the sign was opposite to that of the mean posterior value. We further assessed goodness of fit of our models by using a Bayesian P-value (Gelman *et al.*, 1996). Briefly, we computed residuals for the actual data as well as for synthetic data simulated from estimated model parameters (i.e., residuals from fitting the
320 model to “ideal” data). The Bayesian P-value is the proportion of simulations in which ideal residuals are larger than true residuals. If the model fits the data well, the Bayesian P-value is close to 0.5. Bayesian P values for our models ranged from 0.49 to 0.66, indicating excellent model fit. All models were fitted using an “effect” parametrization (Table S2), i.e., by setting one level of each factor as a reference levels as is done by default in R. All data and codes used in this study are provided as
325 Supplementary Material.

RESULTS

Selection differentials and gradients

As expected from our selection protocol, selection differentials were different among the selected lines for standard body length but not for maturity, i.e., all lines similarly experienced a selection differential

330 for increased maturity probability but contrasted selection differentials on body size (Fig. 2, grey, T-shaped arrows). In contrast to selection differentials, selection gradients show that our selection procedure produced also contrasted selection gradients on maturity among the selected lines (Fig. 2, black, curved arrows). Selection gradients, not differentials are needed to measure selection on correlated traits such as maturity and body size (Lande & Arnold, 1983; Phillips & Arnold, 1989).

335 Therefore, while control-selected (CS) fish experienced a mild positive gradient for maturity, anthropogenic-selected (AS) medaka were strongly selected for maturity because small-sized mature fish were few. In contrast, anthropogenic-selected (IS) fish, despite experiencing a positive selection differential on maturity, were in fact negatively selected on maturity because largest-sized medaka were on average larger than the bulk of mature medaka.

340

Specifically, from F_1 to F_7 , selection gradients on maturity expressing % change in relative fitness with a change from immaturity to maturity were on average +81%, +215% and -65% in the CS, AS and IS lines, respectively. Selection gradients on standard body length expressing % change in relative fitness with a 1 mm increase in standard body length were on average +4%.mm⁻¹, -27%.mm⁻¹, +43%.mm⁻¹ in 345 the CS, AS and IS lines, respectively. Relative to CS medaka, selection gradients were +134% and -146% on maturity and -31%.mm⁻¹ and +40%.mm⁻¹ on standard body length in the AS and IS lines, respectively. Therefore, relative to the CS line our artificial selection design accurately reproduced the typical bivariate anthropogenic selection for both slower somatic growth and earlier maturation in the AS line and an almost exact opposite pattern in the IS line.

350

We used simulations to more deeply explore the conditions that may give rise to a negative selection gradient on maturity despite a positive selection differential (R code provided as Supplementary material). We simulated individual growth and maturation trajectories in which individuals varied randomly for somatic growth rate, asymptotic length, and the length- and age-dependent probability to 355 mature. We then applied bivariate selection at 75 dph by removing all immature individuals (positive differential on maturity) and by keeping only the largest individuals among mature (positive differential

on body size). Computation of selection gradients show that selection gradients on maturity become negative when the body size-maturation correlation and the strength of selection on body size both increase (Fig. S2).

360

Body size and maturation response to selection

The average body length in all lines was substantially affected by a generation environmental effect, with no obvious trend (Fig S1). In contrast, there was a substantial trend towards decreased maturity probability at 75 day-post-hatch (dph) in all the lines (not shown). In order to account for these 365 environmental effects, all subsequent analyses were performed by comparing selected lines with the CS line. Qualitative (directions of) responses to selection for the 14 measured traits are summarized in Table 1, while quantitative statistical results are provided in Supplementary Table S2.

As predicted from selection gradients, IS medaka evolved towards a larger standard body length at 75 370 dph in both mature (Figs. 3A and S1A, Table S2) and immature fish (Figs. 3B and S1B, Table S2). Additionally, compared to CS, IS medaka had a lower maturity probability at an average body length and age (Table S2), indicating evolution towards delayed maturity. We visualized this effect using probabilistic maturation reaction norms (PMRNs), which show the estimated combination of age and 375 lengths at which maturation probability is 50%. The PMRN itself and its slope were larger in IS compared to CS medaka (Fig. 4), confirming that AS medaka had evolved delayed maturation compared with CS medaka.

In contrast to predictions, neither standard body length at 75 dph (Figs. 3 and S1, Table S2) nor 380 maturity probability at an average body length and age (Table S2) responded to selection in AS medaka. Accordingly, the PMRNs of CS and AS medaka largely overlapped (Fig. 4), indicating that overall maturation response to selection in AS medaka was negligible. Therefore, our prediction (1) was validated only in IS and not in AS medaka, indicating an asymmetric life-history response to anthropogenic selection.

385 **Response to selection in non directly-selected traits**

Our prediction (2) was that evolution in selected life-history traits should be paralleled by evolution in correlated traits, and in particular in size-specific fecundity, egg sizes, size at hatch and larval survival

(Roff, 1992; Walsh *et al.*, 2006). However, only one out of 12 non directly-selected traits did respond to selection. Egg size was significantly increased in AS compared to CS medaka (Tables 1 and S2).

390

In contrast with prediction (2), we found that medaka body length at hatch was significantly decreased in *both* AS and IS medaka compared to CS medaka, and we found no effect of selection on survival (Table 1, Table S2). Noticeably, body length at hatch was also the only of the 14 monitored traits that was significantly influenced by inbreeding, more inbred individuals having a larger size at hatch (Table 395 S2). None of the other traits investigated showed any significant effect of inbreeding (Table S2).

395

Our prediction (3) was also invalidated since pituitary expression levels of growth hormone (GH), of the β subunits of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were among the traits that were not significantly influenced by selection (Table 1, Table S2). Additionally, pituitary 400 gene expressions for the three hormones were highly positively correlated (Table S2).

400

DISCUSSION

Medaka response to bivariate selection on maturity and body size was asymmetric. Compared to a 405 control (intermediate) selective (CS) regime, medaka were able to respond to bivariate, inverse-anthropogenic selection (IS) favouring later maturation and faster somatic growth in parallel. By generation F₇, standard body length of mature CS and IS fish at 75 dph were 20.5 vs. 22.0 mm, a 7% difference. This difference is in the range of responses to selection observed in other fish harvesting experiments for the random- vs. small-harvested lines: 62.3 vs. 76.1 mm (22% difference) in the 410 Atlantic silverside *Menidia menidia* (Conover & Munch, 2002) (mean lengths estimated from mass data using mass-length relationship in Duffy *et al.* (2013)), 10% (raw data not available) in zebra fish *Danio rerio* (Amaral & Johnston, 2012), 19.3 vs. 20.8 mm (7.5%) in the guppy *Poecilia reticulata* (van Wijk *et al.*, 2013), and 29.2 vs 29.5 mm for asymptotic length (<1% difference) or 22.6 vs. 22.9 mm for length at maturity (1.2% difference) in zebra fish (Uusi-Heikkilä *et al.*, 2015).

410

415

In contrast, maturation and somatic growth in anthropogenic-selected (AS) and CS medaka remained similar, suggesting an inability of medaka to adapt to an anthropogenic selection regime. Therefore, our results suggest that life-history evolutionary rescue in response to anthropogenic perturbations might

simply be impossible in some populations or species. Such an asymmetric response to selection was not
420 found in previous experiments on Atlantic silverside (Conover & Munch, 2002), zebra fish by Amaral & Johnston (2012) or guppy (van Wijk *et al.*, 2013), but compares with the results of Uusi-Heikkilä *et al.* (2015) in zebra fish showing that the magnitude of response to size-dependent selection was trait-specific and contingent upon the direction of selection. More generally, artificial selection experiments in insects suggest that weak, asymmetric or erratic responses to selection are commonplace when
425 development time is selected simultaneously with a morphological trait (Scheiner & Istock, 1991; Zijlstra *et al.*, 2003; Fischer *et al.*, 2006; Davidowitz *et al.*, 2016). Asymmetric and reversed responses might even be a general (and not well understood) feature of responses to multivariate selection (Lynch & Walsh, 2018 p.607).

430 In our experiment, lack of response to selection in AS medaka could not be ascribed to an absence of selection (cumulated selection gradients in the AS relative to CS line were +802% on maturity and -183% on body length at 75 days-post-hatch), nor due to differences in survival, fecundity or population size which were all identical among the selected lines, nor due to inbreeding which was by F_7 identical among the CS and AS lines. Instead, the absence of evolution in AS relative to CS medaka lines
435 suggests that physiological, developmental or functional constraints limit the range of pathways that life-history evolution may follow in medaka (Lande, 1979; Arnold, 1992; Schluter, 1996).

Here in particular, it is apparent that there is little (no) scope for the evolution of a combined smaller body size and earlier maturity in medaka. This particular functional constraint (*sensu* Arnold, 1992) is
440 likely to be commonplace in short-lived, *r*-selected species because maturation is expected to occur shortly after reaching a functional size limit in these species. In contrast, in long-lived, *K*-selected species, delayed maturation allows for an evolutionary response to *r*-like selection, and thus increases probability for evolutionary rescue in response to anthropogenic selection. In Atlantic cod (*Gadus morhua*) for instance, several decades of rapid evolution towards earlier maturation and slower somatic
445 growth preceded stock collapse (Olsen *et al.*, 2004; Swain, 2011), suggesting that evolution might have rescued the populations until a functional size limit was reached.

So far, most theoretical, empirical or experimental studies of harvest-induced evolution have focused on univariate selection acting either on maturity or on size-at-age. This assumption of univariate

450 selection simplifies analyses but seems unrealistic since human-induced selection is often (at least) bivariate by acting both on maturity and body size in parallel. The importance of considering multivariate selection and trait correlations to properly predict evolutionary trajectories has long been stressed (Lande, 1979; Lande & Arnold, 1983; Phillips & Arnold, 1989; Arnold, 1992; Schlüter, 1996). Our results provide an illustration of this fact in the context of understanding and managing the 455 response of populations to anthropogenic perturbations. An ubiquitous inability to respond to bivariate selection for both an earlier maturity and smaller body size in other species than medaka might contribute to explain apparent lack of phenotypic response to harvesting in some wild fish stocks (Devine & Heino, 2011; Silva *et al.*, 2013; Marty *et al.*, 2014), why the occurrence of harvest-induced evolution remains controversial (Borrell, 2013), or why examples of evolutionary rescue are so few in 460 the wild (Carlson *et al.*, 2014).

Hormonal response to selection

As a first approach to uncovering the molecular regulation of adaptive life-history evolution in medaka, we used RT-qPCR measurement of candidate genes in the pituitary. We specifically targeted genes 465 known to play a central role in the regulation of somatic growth and reproduction. In teleosts, growth hormone (GH) is a pleiotropic pituitary hormone related not only to somatic growth rate (Reinecke *et al.*, 2005; Canosa *et al.*, 2007) but also to maturation, osmoregulation and stress (Le Gac *et al.*, 1993; Rousseau & Dufour, 2007). Its action can be direct by stimulating cell growth in skeletal muscles expressing its receptor, or indirect by stimulating insulin-like growth factors expression and secretion 470 in liver (Rousseau & Dufour, 2007). The luteinizing (LH) and follicle-stimulating (FSH) hormones are known to stimulate steroidogenesis and gametogenesis in teleosts as in other vertebrates (Zohar *et al.*, 2010).

We expected pituitary expression of LH, FSH and GH to be altered in response to selection in AS and 475 IS medaka. Instead, despite we did observe the expected phenotypic response to selection in IS medaka we could not detect any significant neuroendocrine response, suggesting that pituitary gene expression may not be a major target of size- and maturity-dependent selection in the medaka. Instead, IS selection may have primarily acted downstream of the pituitary such as at the pituitary hormone receptor level, on IGF and its receptors (Duffy *et al.*, 2013) or maybe acted on different growth- or metabolism- 480 regulating systems such as the corticotropin neuroendocrine axis, or metabolic hormones ghrelin and

leptin (Rousseau & Dufour, 2007). Interestingly, pituitary activity of the somatotropic and gonadotropic axes were highly positively linked in medaka, suggesting that somatotropic and reproductive hormones were synergistic in their effects on medaka development. Future transcriptomic approaches on central and peripheral tissues will provide a deeper understanding of the molecular regulation of response to 485 anthropogenic selection in our medaka lines.

Conclusions

Asymmetric response to anthropogenic selection in medaka is a warning signal that calls for increasing research efforts to assess life-history evolvability in the wild. A crucial line of work in achieving this 490 goal will consist in accurately measuring the multivariate components of selection that act on correlated life-history traits, both in the wild and in laboratory experiments. The other key element of this effort will rely on developing diagnosis tools to evaluate potential for (and signature of) adaptive response to anthropogenic selection. In the future, comprehensive approaches melting wide-spectrum candidate genes, transcriptomics and genome scans of experimentally-selected and wild populations will 495 probably be needed to finely decipher the molecular architectures that regulate the adaptive evolution of life histories and ultimately support the maintenance of biodiversity and ecosystem productivity.

500 **Acknowledgments.** We are grateful to Prof. Kiyoshi Naruse (NIBB, Okazaki, Japan) for his support in obtaining and maintaining medaka from Toyohashi. We are also thankful to Prof. Finn-Arne Weltzien for providing several primer sequences for our candidate genes. We thank the people who helped us at the laboratory: Beatriz Decencière, Julien Hirsninger, Alice Lamoureux, Alexandre Macé and Yohann Chauvier.

505 **Funding.** This work has benefited from technical and human resources provided by CEREEP-Ecotron IleDeFrance (CNRS/ENS UMS 3194) as well as financial support from the Regional Council of Ile-de-France under the DIM Program R2DS bearing the references I-05-098/R and 2015-1657. It has received a support under the program "Investissements d'Avenir" launched by the French government and implemented by ANR with the references ANR-10-EQPX-13-01 Planaqua and ANR-11-INBS-510 0001 AnaEE France, and from IDEX SUPER (project Convergences MADREPOP J14U257). GM, ALR and EE also acknowledge support from the Research Council of Norway (projects EvoSize RCN 251307/F20 and REEF RCN 255601/E40).

Author contributions

515 EE, ALR, GM and SD designed the study. CR, DC, AM, SA maintained the fish and performed selection, breeding, phenotyping and data collection. CR and GM performed mRNA measurements. EE and ALR made final analyses and finalized paper writing.

Ethical statement

520 The protocols used in this study were designed to minimize discomfort, distress and pain of animals, and were approved by the Darwin Ethical committee (case file #Ce5/2010/041).

Data archiving statement

All data and codes used in this paper will be archived online.

525

Competing interests

The authors declare no competing financial interests.

530 **Supplementary material**

Supplementary introduction.

Supplementary methods.

Table S1. Primers for RT-qPCR.

Table S2. Quantitative statistical results.

535 Supplementary Figure S1.

Data and codes (to be archived).

References

Amaral, I.P.G. & Johnston, I.A. 2012. Experimental selection for body size at age modifies early life-history traits and muscle gene expression in adult zebrafish. *J. Exp. Biol.* **215**: 3895.

Arnold, S.J. 1992. Constraints on phenotypic evolution. *Am. Nat.* **140**: S85–S107.

Barot, S., Heino, M., O'Brien, L. & Dieckmann, U. 2004. Estimating reaction norms for age and size at maturation when age at first reproduction is unknown. *Evol. Ecol. Res.* **6**: 659–678.

Borrell, B. 2013. Ocean conservation: a big fight over little fish. *Nature* **493**: 597–598.

Cameron, T.C., O'Sullivan, D., Reynolds, A., Pierton, S.B. & Benton, T.G. 2013. Eco-evolutionary dynamics in response to selection on life-history. *Ecol. Lett.* **16**: 754–763.

Canosa, L.F., Chang, J.P. & Peter, R.E. 2007. Neuroendocrine control of growth hormone in fish. *Gen. Comp. Endocrinol.* **151**: 1–26.

Carlson, S.M., Cunningham, C.J. & Westley, P.A.H. 2014. Evolutionary rescue in a changing world. *Trends Ecol. Evol.* **29**: 521–530.

Carlson, S.M., Edeline, E., Vøllestad, L.A., Haugen, T.O., Winfield, I.J., Fletcher, J.M., *et al.* 2007. Four decades of opposing natural and human-induced artificial selection acting on Windermere pike (*Esox lucius*). *Ecol. Lett.* **10**: 512–521.

Conover, D.O. & Munch, S.B. 2002. Sustaining fisheries yields over evolutionary time scales. *Science* **297**: 94–96.

Crow, J.F. & Kimura, M. 1970. *An introduction to population genetics theory*, 1st ed. Harper & Row, New York.

Davidowitz, G., Nijhout, H.F. & Roff, D.A. 2012. Predicting the response to simultaneous selection: genetic architecture and physiological constraints. *Evolution* **66**: 2916–2928.

Davidowitz, G., Roff, D. & Nijhout, H.F. 2016. Synergism and antagonism of proximate mechanisms enable and constrain the response to simultaneous selection on body size and development time: an empirical test using experimental evolution. *Am. Nat.* **188**: 499–520.

Devine, J.A. & Heino, M. 2011. Investigating the drivers of maturation dynamics in Barents Sea haddock (*Melanogrammus aeglefinus*). *Fish. Res.* **110**: 441–449.

Diaz Pauli, B. & Heino, M. 2014. What can selection experiments teach us about fisheries-induced evolution? *Biol. J. Linn. Soc.* **111**: 485–503.

Duffy, T.A., Picha, M.E., Borski, R.J. & Conover, D.O. 2013. Circulating levels of plasma IGF-I during recovery from size-selective harvesting in *Menidia menidia*. *Comp. Biochem. Physiol. A. Mol. Integr. Physiol.* **166**: 222–227.

Dunnington, E.A., Honaker, C.F., McGilliard, M.L. & Siegel, P.B. 2013. Phenotypic responses of chickens to long-term, bidirectional selection for juvenile body weight—Historical perspective. *Poult. Sci.* **92**: 1724–1734.

Edeline, E. 2016. Life history evolution, human impacts on. In: *The encyclopedia of evolutionary biology* (R. Kliman, ed), pp. 335–342. Academic Press, Oxford.

Edeline, E., Carlson, S.M., Stige, L.C., Winfield, I.J., Fletcher, J.M., James, J.B., et al. 2007. Trait changes in a harvested population are driven by a dynamic tug-of-war between natural and harvest selection. *Proc. Natl. Acad. Sci.* **104**: 15799–15804.

Edley, M.T. & Law, R. 1988. Evolution of life histories and yields in experimental populations of *Daphnia magna*. *Biol. J. Linn. Soc.* **34**: 309–326.

Falconer, D.S. & Mackay, T.F.C. 1996. *Introduction to quantitative genetics*, 4th ed. Longman, Harlow, Essex, UK.

Fischer, K., Zwaan, B.J. & Brakefield, P.M. 2006. Realized correlated responses to artificial selection on pre-adult life-history traits in a butterfly. *Heredity* **98**: 157.

Gelman, A., Meng, X.L. & Stern, H. 1996. Posterior predictive assessment of model fitness via realized discrepancies. *Stat. Sin.* **6**: 733–807.

Gelman, A. & Rubin, D.B. 1992. Inference from iterative simulation using multiple sequences. *Stat. Sci.* 457–472.

Hairston, N.G., Ellner, S.P., Geber, M.A., Yoshida, T. & Fox, J.A. 2005. Rapid evolution and the convergence of ecological and evolutionary time. *Ecol. Lett.* **8**: 1114–1127.

Haugen, T.O. & Vøllestad, L.A. 2001. A century of life-history evolution in grayling. *Genetica* **112–113**: 475–491.

Heino, M., Diaz Pauli, B. & Dieckmann, U. 2015. Fisheries-induced evolution. *Annu. Rev. Ecol. Evol. Syst.* **46**: 461–480.

Heino, M. & Dieckmann, U. 2008. Detecting fisheries-induced life-history evolution: an overview of the reaction-norm approach. *Bull. Mar. Sci.* **83**: 69–93.

Heino, M., Dieckmann, U. & Godø, O.R. 2002. Measuring probabilistic reaction norms for age and

size at maturation. *Evolution* **56**: 669–678.

Hill, W.G. & Robertson, A. 1966. The effect of linkage on limits to artificial selection. *Genet. Res.* **8**: 269–294.

Kinoshita, M., Murata, K., Naruse, K. & Tanaka, M. 2009. *Medaka. Biology, management and experimental protocols*, 1st ed. Wiley, Ames (USA).

Kuparinen, A. & Festa-Bianchet, M. 2017. Harvest-induced evolution: insights from aquatic and terrestrial systems. *Philos. Trans. R. Soc. B Biol. Sci.* **372**.

Lagler, K.F. 1968. Capture, sampling and examination of fishes. In: *Methods for assessment of fish production in fresh waters* (W. E. Ricker, ed), p. 313. Blackwell Publishing Ltd, Oxford.

Lande, R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. *Evolution* **33**: 402–416.

Lande, R. & Arnold, S.J. 1983. The measurement of selection on correlated characters. *Evolution* **37**: 1210–1226.

Law, R. 2000. Fishing, selection, and phenotypic evolution. *ICES J. Mar. Sci. J. Cons.* **57**: 659–668.

Law, W. & Salick, J. 2005. Human-induced dwarfing of Himalayan snow lotus, *Saussurea laniceps* (Asteraceae). *Proc. Natl. Acad. Sci. U. S. A.* **102**: 10218–10220.

Le Gac, F., Blaise, O., Fostier, A., Le Bail, P.Y., Loir, M., Mourot, B., et al. 1993. Growth hormone (GH) and reproduction: a review. *Fish Physiol. Biochem.* **11**: 219–232.

Lynch, M. 1988. Design and analysis of experiments on random drift and inbreeding depression. *Genetics* **120**: 791.

Lynch, M. & Walsh, B. 2018. *Evolution and selection of quantitative traits*, 1st ed. Oxford University Press, New York.

Marty, L., Rochet, M.-J. & Ernande, B. 2014. Temporal trends in age and size at maturation of four North Sea gadid species: Cod, haddock, whiting and Norway pout. *Mar. Ecol. Prog. Ser.* **497**.

Olsen, E.M., Heino, M., Lilly, G.R., Morgan, M.J., Brattley, J., Ernande, B., et al. 2004. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. *Nature* **428**: 932–935.

Palstra, F.P. & Fraser, D.J. 2012. Effective/census population size ratio estimation: a compendium and appraisal. *Ecol. Evol.* **2**: 2357–2365.

Partridge, L., Langelan, R., Fowler, K., Zwaan, B. & French, V. 1999. Correlated responses to selection on body size in *Drosophila melanogaster*. *Genet. Res.* **74**: 43–54.

Phillips, P.C. & Arnold, S.J. 1989. Visualizing multivariate selection. *Evolution* **43**: 1209–1222.

Phillips, P.C., Whitlock, M.C. & Fowler, K. 2001. Inbreeding changes the shape of the genetic covariance matrix in *Drosophila melanogaster*. *Genetics* **158**: 1137–1145.

Plummer, M. 2003. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Vienna, Austria.

Reinecke, M., Bjornsson, B.T., Dickhoff, W.W., McCormick, S.D., Navarro, I., Power, D.M., *et al.* 2005. Growth hormone and insulin-like growth factors in fish: where we are and where to go. *Gen. Comp. Endocrinol.* **142**: 20–24.

Robertson, A. 1960. A theory of limits in artificial selection. *Proc. R. Soc. Lond. B Biol. Sci.* **153**: 234–249.

Roff, D.A. 1992. *The evolution of life histories*, 1st ed. Chapman & Hall, New York.

Rousseau, K. & Dufour, S. 2007. Comparative aspects of GH and metabolic regulation in lower vertebrates. *Neuroendocrinology* **86**: 165–174.

Scheiner, S.M. & Istock, C.A. 1991. Correlational selection on life history traits in the pitcher-plant mosquito. *Genetica* **84**: 123–128.

Schlüter, D. 1996. Adaptive radiation along lines of least genetic resistance. *Evolution* **50**: 1766–1774.

Silva, A., Faria, S. & Nunes, C. 2013. Long-term changes in maturation of sardine, *Sardina pilchardus*, in Portuguese waters. *Sci. Mar.* **77**: 429–438.

Sinnwell, J.P., Therneau, T.M. & Schaid, D.J. 2014. The kinship2 R package for pedigree data. *Hum. Hered.* **78**: 91–93.

Spivakov, M., Auer, T.O., Perivali, R., Dunham, I., Dolle, D., Fujiyama, A., *et al.* 2014. Genomic and phenotypic characterization of a wild medaka population: towards the establishment of an isogenic population genetic resource in fish. *G3 Genes Genomes Genet.* **4**: 433–445.

Stearns, S.C. & Koella, J.C. 1986. The evolution of phenotypic plasticity in life-history traits: predictions of reaction norms for age and size at maturity. *Evolution* **40**: 893–913.

Swain, D.P. 2011. Life-history evolution and elevated natural mortality in a population of Atlantic cod (*Gadus morhua*). *Evol. Appl.* **4**: 18–29.

Swain, D.P., Sinclair, A.F. & Mark Hanson, J. 2007. Evolutionary response to size-selective mortality in an exploited fish population. *Proc. R. Soc. B Biol. Sci.* **274**: 1015.

Uusi-Heikkilä, S., Savilammi, T., Leder, E., Arlinghaus, R. & Primmer, C.R. 2017. Rapid, broad-scale gene expression evolution in experimentally harvested fish populations. *Mol. Ecol.* **26**: 3954–3967.

Uusi-Heikkilä, S., Whiteley, A.R., Kuparinen, A., Matsumura, S., Venturelli, P.A., Wolter, C., *et al.* 2015. The evolutionary legacy of size-selective harvesting extends from genes to populations. *Evol. Appl.* **8**: 597–620.

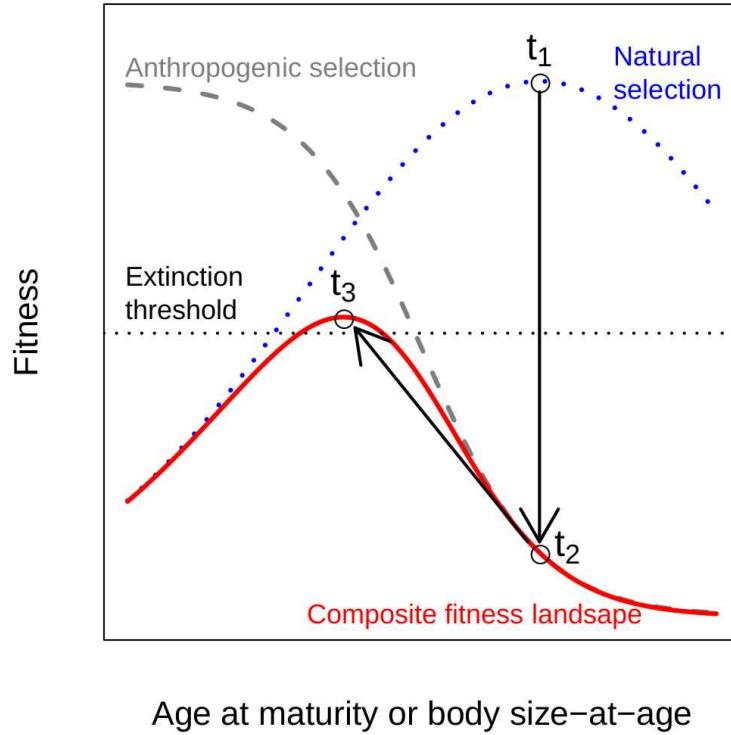
Van Dooren, T.J.M., Tully, T. & Ferrière, R. 2005. The analysis of reaction norms for age and size at maturity using maturation rate models. *Evolution* **59**: 500–506.

van Wijk, S.J., Taylor, M.I., Creer, S., Dreyer, C., Rodrigues, F.M., Ramnarine, I.W., *et al.* 2013. Experimental harvesting of fish populations drives genetically based shifts in body size and maturation. *Front. Ecol. Environ.* **11**: 181–187.

Walsh, M.R., Munch, S.B., Chiba, S. & Conover, D.O. 2006. Maladaptive changes in multiple traits caused by fishing: impediments to population recovery. *Ecol. Lett.* **9**: 142–148.

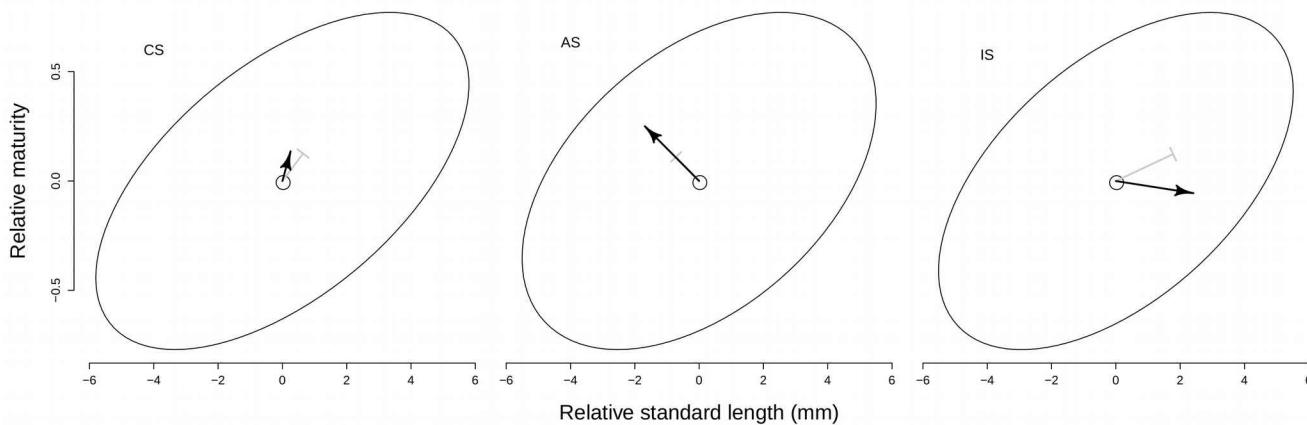
Weber, K.E. & Diggins, L.T. 1990. Increased selection response in larger populations. II. Selection for ethanol vapor resistance in *Drosophila melanogaster* at two population sizes. *Genetics* **125**: 585–597.

Yamamoto, T. 1975. *Medaka (killifish): biology and strains*, 1st ed. Keigaku Pub. Co, Tokyo.

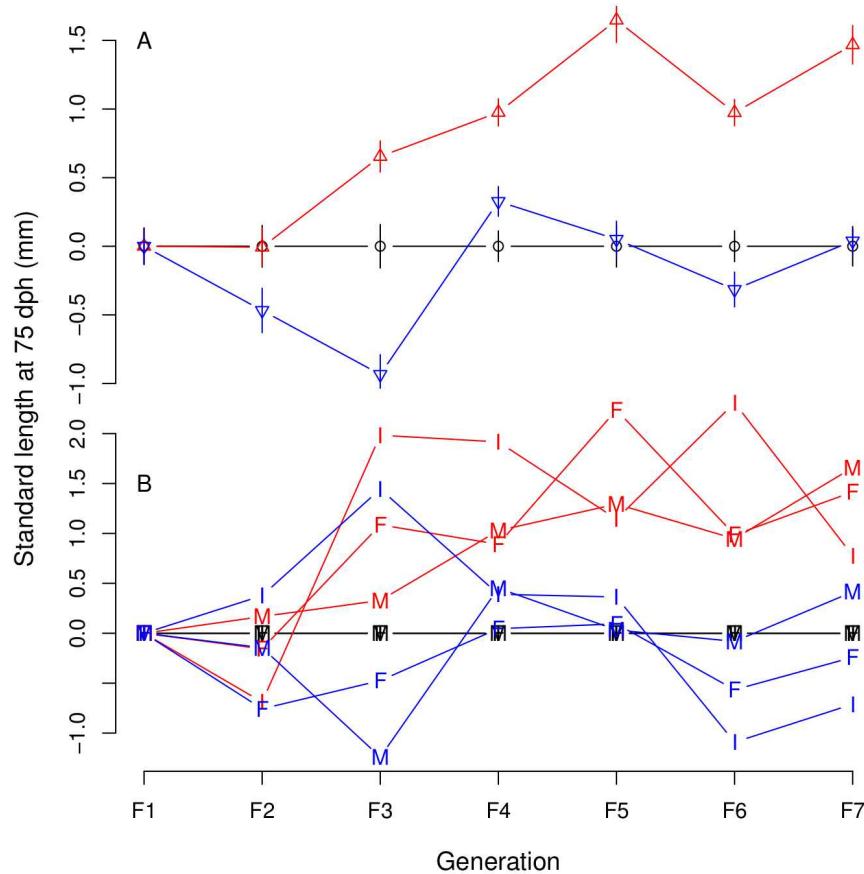

Zijlstra, W.G., Steigenga, M.J., Brakefield, P.M. & Zwaan, B.J. 2003. Simultaneous selection on two fitness-related traits in the butterfly *Bicyclus anynana*. *Evol. Int. J. Org. Evol.* **57**: 1852–1862.

Zohar, Y., Munoz-Cueto, J.A., Elizur, A. & Kah, O. 2010. Neuroendocrinology of reproduction in teleost fish. *Gen. Comp. Endocrinol.* **165**: 438–455.

540 **Table 1. Effect summary of anthropogenic (AS) and inverse-anthropogenic (IS) selection relative
to control (intermediate) selection on life-history and neuroendocrine traits in medaka.** Upward-
and downward-pointing arrows indicate a statistically-significant increase or decrease, respectively, in
trait values. Horizontal arrows indicate no significant effect of selection. “Model” refers to the
statistical models as described in Supplementary Methods. Posterior summaries for model parameters
are provided in Table S2. Fertility was defined as the probability for a breeding pair to spawn at least 1
545 egg.

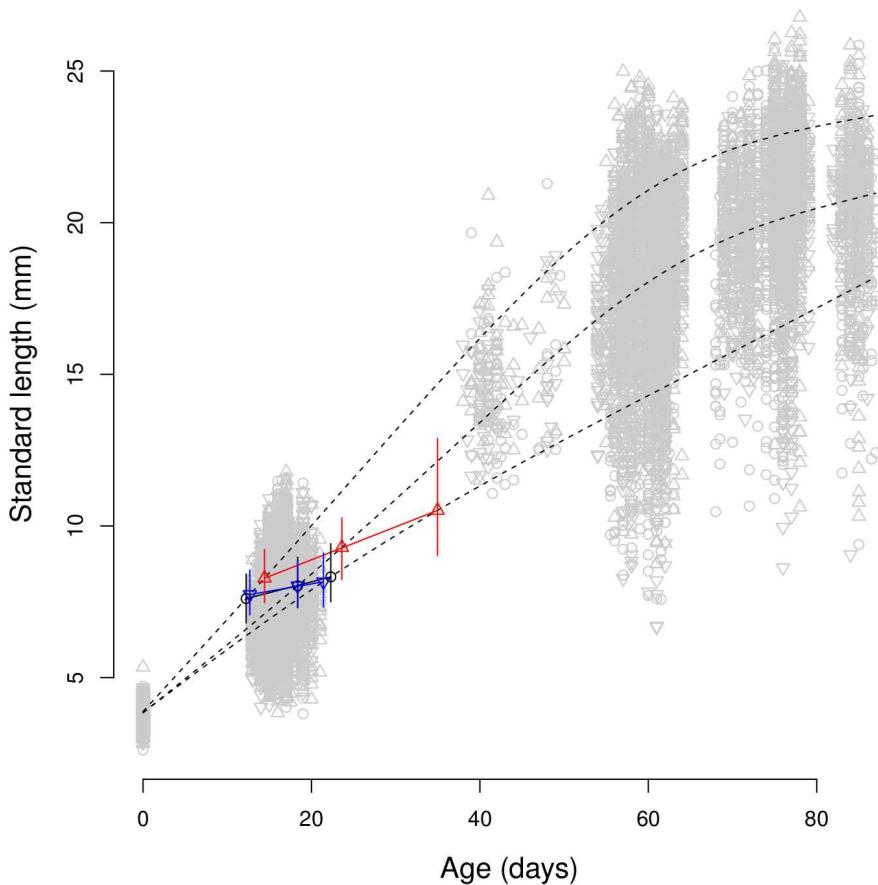

Trait	Model	AS	IS
Standard body length at 75 dph	1	→	↑
Maturity probability	2	→	↓
Egg-to-larvae survival		→	→
Larvae-to-15 dph survival		→	→
15-to-60 dph survival	3	→	→
60-to-75 dph survival		→	→
Fertility	4	→	→
Non-zero fecundity		→	→
Egg size	5	↑	→
Mean incubation time	6	→	→
Standard body length at hatch	7	↓	↓
Pituitary LH β		→	→
Pituitary FSH β	8	→	→
Pituitary GH		→	→

550



555 **Fig. 1. First three steps of evolutionary rescue in human-perturbed populations.** In the absence of anthropogenic selection, the population mean trait resides at the naturally-selected optimum (dotted blue curve, t_1). Superposition of anthropogenic selection (dashed grey curve) instantaneously warps the natural fitness landscape to generate a new, composite fitness landscape (solid red curve) on which the population mean trait value is associated with a fitness at which the population crosses the extinction 560 threshold (t_2). Rapid adaptive evolution through a few generations towards the newly-selected adaptive optimum restores a fitness at which the population may persist (t_3).

565



570 **Fig. 2. Bivariate selection differentials and gradients on standard body length and maturity in each medaka line.** Grey, T-headed arrows: selection differentials; Black, curved arrows: selection gradients; CS: control (intermediate)-selected line; AS: anthropogenic-selected line; IS: inverse anthropogenic-selected line. The ellipses represent the 95% confidence regions for the phenotype. Represented phenotypes, differentials and gradients were averaged across generations from F_1 to F_7 . Selection gradients were scaled to phenotypic units by multiplying gradient estimates by phenotypic 575 variances.

580 **Fig. 3. Medaka body-size time series response to bivariate selection on maturity and body size (centred on the mean of the CS line).** A: mean standard body length of mature fish (\pm SE) at 75 dph. Blue bottom-pointing triangles: anthropogenic-selected (AS) line; Red, top-pointing triangles: inverse anthropogenic-selected (IS) line; Black circles: control-selected (CS) line. B: same as A but separately for immature (I), male (M) and female (F) fish and without error bars.

585

590 **Fig. 4. Medaka maturation response to bivariate selection on maturity and body size.** Light grey
595 dots are raw length and age data. Black dotted curves represent simulated slow, medium and fast
growth trajectories. Coloured solid lines and dots represent 50% probabilistic maturation reaction
norms (PMRNs) and their intersection with the simulated growth curves, respectively. Error bars
around the coloured dots represent 95% MCMC confidence intervals. Top-pointing triangles: inverse
anthropogenic-selected (IS) line; Circles: control-selected (CS) line; Bottom-pointing triangles:
anthropogenic-selected (AS) line.

SUPPLEMENTARY INFORMATION FOR

Anthropogenic selection along directions of most evolutionary resistance

600

SUPPLEMENTARY INTRODUCTION: REVIEW OF PREVIOUS HARVEST-SIMULATING EXPERIMENTS IN THE LABORATORY

605 Edley & Law (1988) have applied small- vs. large-sized harvesting to a standard mixture of *Daphnia magna* clones during a 150 day period. Clones exposed to small-harvesting evolved rapid somatic growth through small size classes and delayed maturation, while clones exposed to large-harvesting evolved a slow growth through small size classes and earlier maturation. Computation of reproductive values showed that evolution resulted in a redistribution of reproductive investment towards size classes that were not harvested.

610

(Cameron *et al.*, 2013) exposed soil mites *Sancassania berlesei* to juvenile or adult harvesting during 70 weeks. In line with theoretical predictions (Heino *et al.*, 2015), they found that juvenile harvesting induced evolution towards earlier maturation, while adult harvesting induced evolution towards delayed maturation. Interestingly, they also found that the amplitude of harvest-induced evolution was 615 overwhelmed by evolution to delayed maturation in all treatments. This change was interpreted by authors as a response to the captive environment, in which density and competition for resources were increased compared to the natural environment from where mites were initially sampled.

620 Conover & Munch (2002) applied small- vs. large-sized harvesting at 190 days postfertilization during 5 generations in six experimental populations of the Atlantic silverside *Menidia menidia* maintained in 700 L tanks (about 100 breeders/generation/population, random mating, unknown effective population sizes). The Atlantic silverside is an annual fish, and it was assumed that all individuals were mature at 625 selection such that selection was imposed on somatic growth only. Conover & Munch (2002) found that the mean weight of fish evolved in the expected direction such that, by generation F₅, an average fish aged 190 days postfertilization weighed 4.5 g in the small-harvested line but 2.5 g in the large-harvested line (3.5 g in the random-harvested line). These differences were due to differences in somatic growth rate and underlying traits (Walsh *et al.*, 2006).

630 Amaral & Johnston (2012) applied small- vs. large-sized harvesting at 90 days postfertilization on six populations of zebra fish *Danio rerio* maintained in 25 L tanks (24 to 78 breeders/generation/population, random mating, unknown effective population sizes). After four generations, the selected lines changed in the expected directions with the small- and large-harvested lines evolving mean standard body lengths 2% lower and 10% larger than in the random-harvested line, respectively (actual body length values not available).

635

van Wijk *et al.*, (2013) applied small- vs. large-sized harvesting in the guppy *Poecilia reticulata* during a 3-generation experiment in five experimental populations maintained in 120 L aquariums (125 breeders/generation/population, random mating, unknown effective population sizes). Male guppy stop growing at maturation, and selection was applied on the body length of mature males only. After 640 3 generations of selection, body lengths of mature male guppy were on average 21 mm in the small-harvested vs. 18 mm in the large-harvested lines (19 mm in the random-harvested line). However, age of males was not standardized, such that it is unclear whether selection acted on male age at maturation, on male somatic growth rate or on both male traits simultaneously.

645 Finally, Uusi-Heikkilä *et al.*, (2015) applied small- vs. large-sized harvesting during 5 generations on six experimental populations of zebra fish that were maintained in 320 L tanks (120 breeders/generation/population, mating by groups of 2 or 4 fish, unknown effective population sizes). Zebra fish were harvested at an age corresponding to 50% of mature fish in the random-harvested line and reproduced 14 days later. Response to selection was contingent upon both the trait considered and 650 upon the direction of selection. Compared to the random-harvested line, the small-harvested line showed no change in juvenile somatic growth rate or asymptotic length and matured at a later age (but not size), while the large-harvested line showed no change in juvenile somatic growth rate but evolved lower asymptotic length and maturation at a smaller size (but not age).

655

SUPPLEMENTARY METHODS

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR)

After sample homogenization by agitation (15 sec vortexing), total RNA were extracted according to the manufacturer's indications, suspended in 10 μ L RNase-free water, and treated with DNase I (Dnase I recombinant RNase-free, Roche Diagnostics). Then cDNA were produced from 5 μ L of total RNA using RT Superscript III (RT Superscript III First Strand cDNA Synthesis Kit; Invitrogen, Life Technologies) and random hexamer primers (50 ng; Invitrogen, Life Technologies), at 50°C for 60 min after an initial step of 25°C for 10 min. Medaka specific primer sets for FSH were designed with primer3 software (Koressaar & Remm, 2007) on two successive exons, or on exon junctions. Gene specific primer sets for LH β , FSH β , GH and actin- β (used as reference gene to correct for technical noise), were previously designed (see Supporting Information, Table S1). Efficiency and amplification specificity were checked for each primer set. The sets with the highest efficiency were chosen for the following quantification experiment.

670

Messengers RNAs were assayed using Light Cycler system (LightCycler® device; Roche Diagnostics) with the LightCycler FastStart Master plus SYBR Green I kit (Roche Diagnostics) as recommended by the manufacturer, from 4 μ L of diluted 1:10 cDNA samples and the specific primers concentrated at 500 nM (Eurofins). The PCR conditions were 95°C for 10 min followed by 50 cycles at 95°C for 5 sec, 675 60°C for 10 sec and 72°C for 5 sec.

Expression levels of mRNA for LH β , FSH β , GH and actin- β in each individual fish were measured in duplicate using the “relative quantification” method (Applied Biosystems User Bulletin #2¹). Briefly, the standard relationships between fluorescence and gene-specific sample RNA concentrations were constructed using a bulk RNA pool, hereafter dubbed “calibrator”. The Lightcycler software estimated the number C_q of quantification cycles needed to reach the inflection point (second derivative equal to 0) of fluorescence amplification for a series of 7 calibrator volumes. From this, the software estimated the intercept and slope parameters for the gene-specific, linear relationship between \log_{10} calibrator volume and C_q . These linear relationships were then used to predict sample-specific mRNA expressions in \log_{10} calibrator volume units (i.e., “arbitrary” units) for LH β , FSH β , GH and actin- β from their

1 http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_040980.pdf

sample-specific C_q . At each PCR run, a known amount of the calibrator plus a blank (water) were measured for C_q so as to adjust for possible inter-run noise. Following standard practises, we used as input data relative pituitary gene expression, calculated as the natural logarithm of the ratio between mRNA expression for the interest gene and mRNA expression for actin- β (see model 5 below). In 690 particular, this approach corrects for the effects of variability in pituitary size.

Statistical analyses

The aim of our statistical analyses was to estimate and test significance for the overall effect of selection on the selected phenotypes (somatic growth and maturity probability) and correlated life-695 history and physiological traits. We pooled data from generations F_3 to F_7 and treated generation as a random effect, because a visual appreciation of response to selection (Figs. 2A-B in Results) showed that the divergence between the three selected lines somehow stabilized from generation F_3 .

Standard body length at 75 dph

700 We modelled response to selection as the effect of selected line on Sdl at 75 dph ($Sdl75$) of each individual i :

$$\begin{aligned} Sdl75_i &\sim N(\mu_i, \sigma^2) \\ \mu_i &= \alpha_{G[i]} + \alpha_{L[i]} + \alpha_{S[i]} + \beta_1 Age_i + \beta_2 Inb_i \quad \text{Model 1,} \\ \alpha_G &\sim N(0, \sigma_G^2) \end{aligned}$$

705 where $Sdl75$ is standard body length of mature fish at 75 dph, N is the normal distribution, subscripts $G[i]$, $L[i]$ and $S[i]$ denote effects of the generation (F_3 to F_7) treated as a normally-distributed random effect, selected line (AS, IS and CS) and sex (I, M or F) groups, respectively, to which individual i belongs. Age is age in dph coded as a continuous variable, Inb is individual inbreeding coefficient computed as $2*(k-1/2)$, where k is one's kinship coefficient 710 with oneself. Finally, σ^2 is residual variance in $Sdl75$ and σ_G^2 is the variance of the generation effect.

Probabilistic maturation reaction norms

715 We computed maturity “ogives” as:

$$\begin{aligned}
 y_i &\sim Bern(p_i) \\
 \ln\left(\frac{p_i}{1-p_i}\right) &= \alpha_{G[i]} + \alpha_{L[i]} + \beta_{1,L[i]} Sdl_i + \beta_{2,L[i]} Age_i + \beta_3 Inb_i \quad \text{Model 2,} \\
 \alpha_G &\sim N(0, \sigma_G^2)
 \end{aligned}$$

720 where y_i is the maturity status of an individual fish i (0 or 1), $Bern$ is the Bernoulli distribution of “success” (maturity) probability p , \ln is the natural logarithm, Sdl is standard body length. Other subscripts or variables are as described above. By letting the effects of both Sdl and Age on p varying for each selected line this model captured potential effects of selection on both the intercept and slope of the PMRN.

725 We then computed the *maturity* probability $m(a_\tau, s_\tau)$ at each growth increment τ as described by Barot *et al.*, (2004):

$$m(a_\tau, s_\tau) = \frac{o(a_\tau, s_\tau) - o(a_{\tau-1}, s_{\tau-1})}{1 - o(a_{\tau-1}, s_{\tau-1})} ,$$

730 where $o(a_\tau, s_\tau)$ is age- and length-dependent *maturity* probability at the end of growth increment τ as predicted by model 2. We did so for slow, median and fast simulated growth curves (Van Dooren *et al.*, 2005; Harney *et al.*, 2013).

Finally, we computed line-specific PMRNs as the age and length combination (a_t, s_t) at which 735 maturity probability reached 50%, i.e., as the age and length combination that satisfied the following condition (Van Dooren *et al.*, 2005; Harney *et al.*, 2013):

$$1 - \prod_{\tau=1}^t (1 - m(a_\tau, s_\tau)) = 0.5 .$$

740 We estimated (a_t, s_t) using 200 growth increments equally spread between ages 0 and 87 dph. Full error distribution for (a_t, s_t) was obtained by iterating the procedure for each MCMC sample of the

parameter set in model 2.

Survival

745 We tested for differential mortality among the selected medaka lines using models of the form:

$$\begin{aligned}
 N(t+1)_i &\sim \text{Bin}(N(t)_i, p_i) \\
 \ln\left(\frac{p_i}{1-p_i}\right) &= \alpha_{G[i]} + \alpha_{L[i]} + \beta_1 Mo.inb_i + \beta_2 Fa.inb_i + \epsilon_i & \text{Model 3,} \\
 \alpha_G &\sim N(0, \sigma_G^2) \\
 \epsilon_i &\sim N(0, \sigma_\epsilon^2)
 \end{aligned}$$

where $N(t+1)_i$ is the number of individuals still alive at time $t+1$ in sibling family i , Bin is the Binomial distribution, $Mo.inb$ is mother inbreeding coefficient, $Fa.inb$ is father inbreeding coefficient. Other subscripts are as described above. We fitted separately four models for t to $t+1$ steps corresponding to the egg-larvae (egg-to-0 dph), larvae-juvenile (0-to-15 dph), juvenile-adult (15-to-60 dph) and adult-adult (60-to-75 dph) transitions. σ_G^2 is as described above and ϵ is an overdispersion effect accounting for the fact that observed variance was larger than canonical variance of the Binomial distribution.

Size-specific fertility and fecundity

Our aim here was to test for possible effects of size-dependent selection on medaka size-specific fecundity. Counts F of clutch size per breeding pair i were zero-inflated Poisson-distributed and 760 modeled as:

$$\begin{aligned}
 F_i &\sim \text{Pois}((1-\pi_i)\lambda_i) \\
 \pi_i &\sim \text{Bern}(p_i) \\
 \ln\left(\frac{p_i}{1-p_i}\right) &= \gamma_{G[i]} + \gamma_{L[i]} + \delta_1 Mo.inb_i + \delta_2 Fa.inb_i + \delta_3 \ln(Mo.sdl)_i & \text{Model 4,} \\
 \ln(\lambda_i) &= \text{offset}_i + \alpha_{G[i]} + \alpha_{L[i]} + \beta_1 Mo.inb_i + \beta_2 Fa.inb_i + \beta_3 \ln(Mo.sdl)_i + \epsilon_i \\
 \gamma_G &\sim N(0, \sigma_{\gamma_G}^2) \\
 \alpha_G &\sim N(0, \sigma_{\alpha_G}^2) \\
 \epsilon_i &\sim N(0, \sigma_\epsilon^2)
 \end{aligned}$$

765 where *Pois* is the Poisson distribution with mean (and variance) equal to the product of probability for a nonzero count $1 - \pi$ with nonzero counts λ . This way, we were able to simultaneously test the effects of the predictors both on the probability for a breeding pair to be infertile (p) and on the fecundity of a fertile pair (λ).

770 *offset* is the natural logarithm of number of days during which eggs were collected (varied from 4 to 5 days), *Mo.sdl* is mother's standard body length (here ln-transformed to linearize the fecundity-size relationship), and ϵ is an overdispersion effect accounting for the fact that variance overwhelmed the mean in non-zero medaka egg counts. Other subscripts or variables are as described above. In this model, the effect of mother Sdl is accounted for, such that a significant effect of the selected line would indicate that size-dependent selection affects medaka fertility or fecundity beyond 775 direct effects on Sdl.

Egg size

Egg size was automatically measured in ImageJ as individual egg perimeter Pm_i in mm and modelled as follows:

780

$$\begin{aligned} Pm_i &\sim N(\mu_i, \sigma^2) \\ \mu_i &= \alpha_{G[i]} + \alpha_{L[i]} + \beta_1 Mo.sdl_i + \beta_2 Mo.inb_i + \beta_3 Fa.inb_i && \text{Model 5,} \\ \alpha_G &\sim N(0, \sigma_G^2) \end{aligned}$$

where the variables are as described above.

785 *Incubation time*

Incubation time for eggs from each breeding pair It_i was computed as the time laps (days) between weighted mean data of spawning and weighted mean date of hatching for larvae collected from mother's 95 to 100 dph. We evaluated the effect of selection on It_i in:

$$\begin{aligned} Pm_i &\sim N(\mu_i, \sigma^2) \\ \mu_i &= \alpha_{G[i]} + \alpha_{L[i]} + \beta_1 Mo.sdl_i + \beta_2 Mo.inb_i + \beta_3 Fa.inb_i && \text{Model 6,} \\ \alpha_G &\sim N(0, \sigma_G^2) \end{aligned}$$

where variables are described above.

Larval size at hatch

795 We model individual standard body length at hatch $Sdl0$ as:

$$\begin{aligned} Sdl0_i &\sim N(\mu_i, \sigma^2) \\ \mu_i &= \alpha_{G[i]} + \alpha_{L[i]} + \beta_1 Mo.sdl_i + \beta_2 Inb_i \quad \text{Model 7,} \\ \alpha_G &\sim N(0, \sigma_G^2) \end{aligned}$$

where variables are described above.

800

Hormonal profile

Measurements of LH β , FSH β and GH represent a multivariate phenotype recorded on the same individuals. This interdependency of measurements should be accounted for when analysing the effects of selection on traits. Therefore, we modelled the relative pituitary gene expression (see definition 805 above) of individual i using a multivariate normal model of the form:

$$\begin{aligned} \ln\left(\frac{[G]_i}{[ACT]_i}\right) &\sim MVN(\mu_{ij}, \Sigma) \\ \mu_{ij} &= \alpha_{j,G[i]} + \alpha_{j,L[i]} + \alpha_{j,S[i]} + \beta_j Inb_i + \gamma_j Sdl_i \quad \text{Model 8,} \\ \alpha_{j,G} &\sim N(0, \sigma_{j,G}^2) \end{aligned}$$

where $[G]_i$ is the RT-qPCR-measured concentration of the interest gene j (LH β , FSH β and GH)

810 in the pituitary of individual i , $[ACT]_i$ is the RT-qPCR-measured concentration of the reference gene (actin- β) in the pituitary of the same individual i , MVN is the multivariate normal distribution, Σ is the variance-covariance matrix of the MVN. We specified an uninformative inverse Wishart prior distribution for Σ such as $\Sigma^{-1} \sim W(R, \rho)$ where W is the Wishart distribution, R is a scale matrix (diagonal matrix of dimension j) and $\rho = j$ denotes degrees of freedom (Lunn *et al.*, 815 2012). In practice R , which is supplied as data, contains ρ on the diagonal and 0s in non-diagonal entries (see scripts in Supplementary material). Covariances were transformed to correlations using $corr(X, Y) = cov(X, Y) / \sqrt{var(X)var(Y)}$.

820 **Supplementary references**

Amaral, I.P.G. & Johnston, I.A. 2012. Experimental selection for body size at age modifies early life-history traits and muscle gene expression in adult zebrafish. *J. Exp. Biol.* **215**: 3895.

Barot, S., Heino, M., O'Brien, L. & Dieckmann, U. 2004. Estimating reaction norms for age and size at maturation when age at first reproduction is unknown. *Evol. Ecol. Res.* **6**: 659–678.

Cameron, T.C., O'Sullivan, D., Reynolds, A., Piertney, S.B. & Benton, T.G. 2013. Eco-evolutionary dynamics in response to selection on life-history. *Ecol. Lett.* **16**: 754–763.

Conover, D.O. & Munch, S.B. 2002. Sustaining fisheries yields over evolutionary time scales. *Science* **297**: 94–96.

Edley, M.T. & Law, R. 1988. Evolution of life histories and yields in experimental populations of *Daphnia magna*. *Biol. J. Linn. Soc.* **34**: 309–326.

Harney, E., Van Dooren, T.J.M., Paterson, S. & Plaistow, S.J. 2013. How to measure maturation: a comparison of probabilistic methods used to test for genotypic variation and plasticity in the decision to mature. *Evolution* **67**: 525–538.

Heino, M., Díaz Pauli, B. & Dieckmann, U. 2015. Fisheries-induced evolution. *Annu. Rev. Ecol. Evol. Syst.* **46**: 461–480.

Koressaar, T. & Remm, M. 2007. Enhancements and modifications of primer design program Primer3. *Bioinforma. Oxf. Engl.* **23**: 1289–1291.

Lunn, D., Jackson, C., Best, N., Thomas, A. & Spiegelhalter, D. 2012. *The BUGS book: a practical introduction to Bayesian analysis*, 1st ed. Chapman & Hall, Boca Raton.

Usui-Heikkilä, S., Whiteley, A.R., Kuparinen, A., Matsumura, S., Venturelli, P.A., Wolter, C., et al. 2015. The evolutionary legacy of size-selective harvesting extends from genes to populations. *Evol. Appl.* **8**: 597–620.

Van Dooren, T.J.M., Tully, T. & Ferrière, R. 2005. The analysis of reaction norms for age and size at maturity using maturation rate models. *Evolution* **59**: 500–506.

van Wijk, S.J., Taylor, M.I., Creer, S., Dreyer, C., Rodrigues, F.M., Ramnarine, I.W., et al. 2013. Experimental harvesting of fish populations drives genetically based shifts in body size and maturation. *Front. Ecol. Environ.* **11**: 181–187.

Walsh, M.R., Munch, S.B., Chiba, S. & Conover, D.O. 2006. Maladaptive changes in multiple traits caused by fishing: impediments to population recovery. *Ecol. Lett.* **9**: 142–148.

SUPPLEMENTARY TABLES

Table S1: Primers for RTqPCR.

Gene-specific primers (fw for forward and rv for reverse) were designed for amplification and quantification of mRNA of various medaka pituitary hormones by qRT-PCR using actin- β as a reference gene. GH: growth hormone, LH β : luteinizing hormone β subunit, FSH β follicle-stimulating hormone β subunit.

Target gene	Primer name	5'-3' sequence	Amplicon size (pb)	Tm (°C)	Reference	Code
Actin- β	ACT β fw	ACCCTGTCCTGCTCACTGAA	91	59.4	Takagi et al 1994	D89627.1
	ACT β rv	GCAGGGCTGTTGAAAGTCTC		59.4		
GH	GH fw	TCGCTCTTGCTGGGAGTT	102	57.3	Provided by F.A. Weltzien	LOC101171460
	GH rv	ACATTCTGATTGCCCTGAT		55.3		
FSH β	FSH β fw2	GTCCACACCACCATATGCGA	97	59.4	Designed for this study	LOC110013854
	FSH β rv2	AGTCCCCACTGCAGATCTT		57.3		
Lh β	Lh β fw2	TGCCTTACCAAGGACCCCTTGATG	136	64.4	Ogiwara et al 2013	AB541982
	Lh β rv2	AGGGTATGTGACTGACGGATCCAC		64.4		

References:

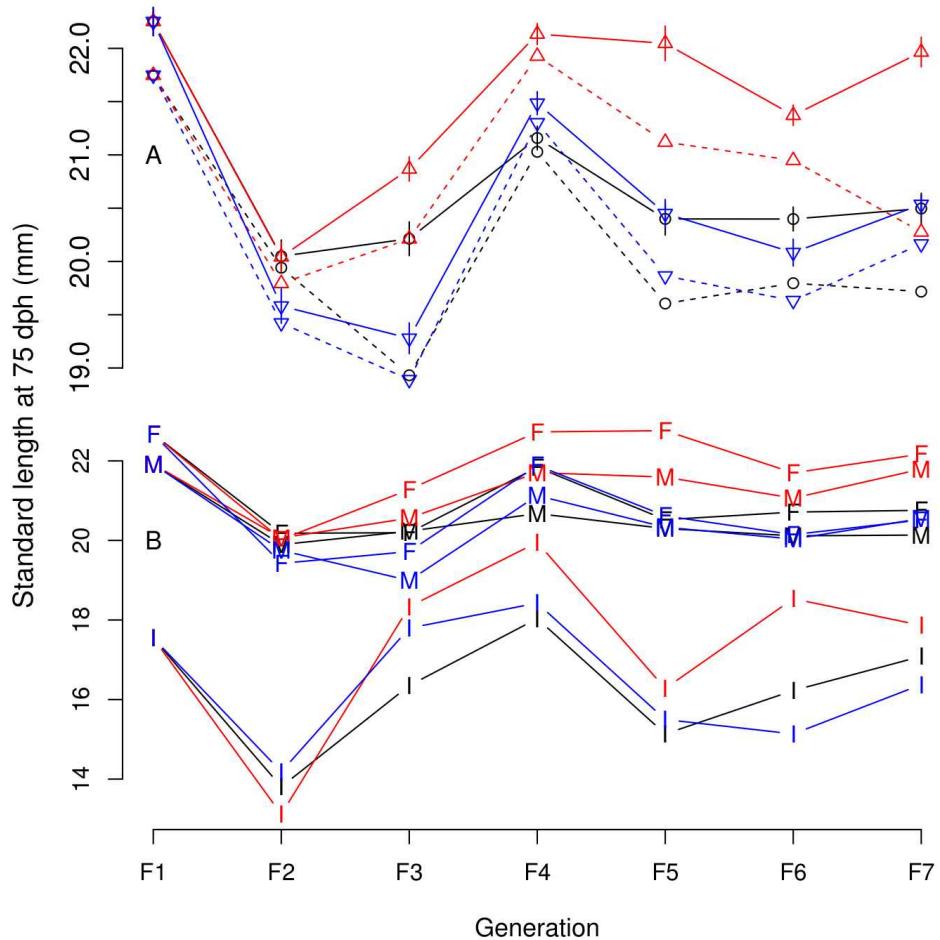
Ogiwara, K., Fujimori, C., Rajapakse, S. & Takahashi, T. 2013. Characterization of luteinizing hormone and luteinizing hormone receptor and their indispensable role in the ovulatory process of the medaka. *PLoS One* **8**: e54482.

Takagi, S., Sasado, T., Tamiya, G., Ozato, K., Wakamatsu, Y., Takeshita, A., et al. 1994. An efficient expression vector for transgenic medaka construction. *Mol. Mar. Biol. Biotechnol.* **3**: 192–199.

Table S2. Summary of MCMC parameter estimates for models 1 to 8. We used an “effect” model parametrization in which the intercept is the mean value of the response variable (on the link scale) in the reference level of factor predictors. ΔX are estimates for the difference between mean value of the response variable in the factor level X and model intercept. Estimate for the random generation effect is 840 a standard deviation. Int: model intercept, F: female, I: immature, M: male, CS: control-selected line, AS: anthropogenic-selected line, IS: inverse anthropogenic-selected line, Inb: individual inbreeding coefficient, Sdl: standard body length. * indicates that numeric predictors were scaled to zero mean and unity standard deviation. Shaded lines in the table are for standard deviation parameters. ZIP in model 845 4 refers to the zero-inflated Poisson distribution. Corr.X.Y in model 8 is the correlation between pituitary expression levels of hormones X and Y. For further details, see model description above.

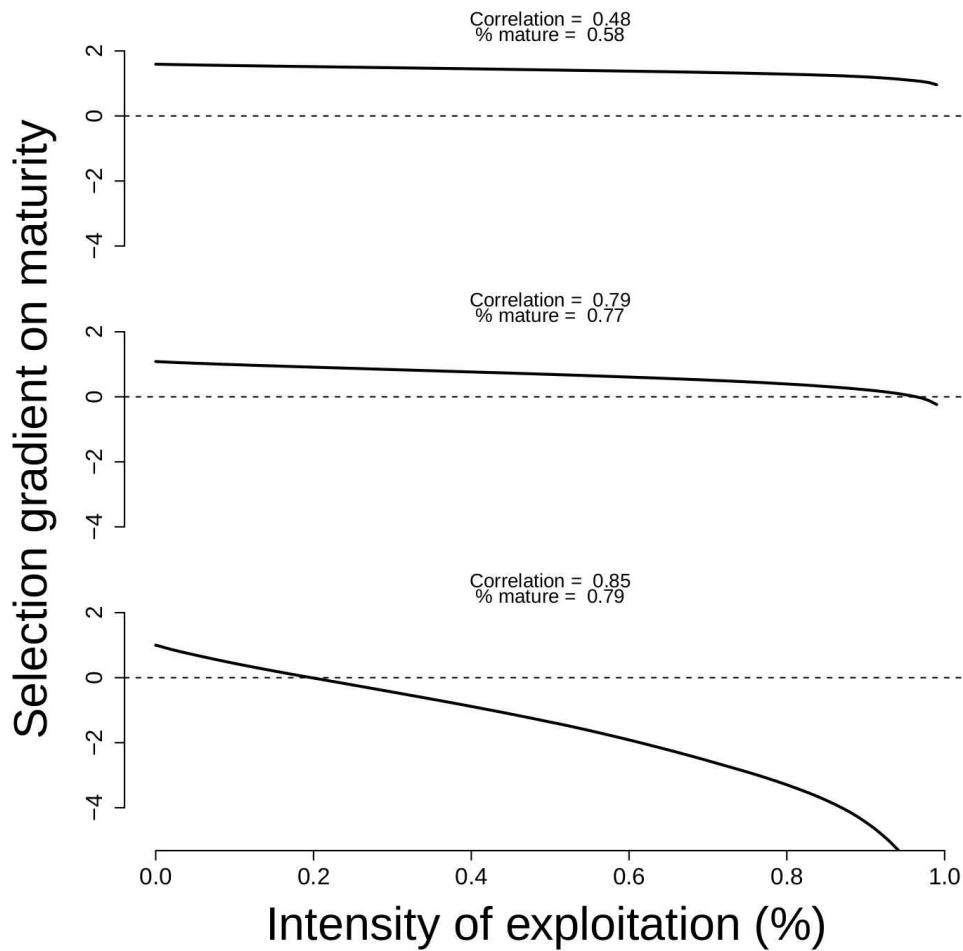
Model	Response (Trait)	N	Distribution	Link	Effect	Mean estimate	SD of the estimate	MCMC P-value
1	Sdl75	3503	Normal	Id	Int = CS, SexF	20.754	0.508	
					ΔIS , SexF	1.232	0.083	0.000
					ΔAS , SexF	-0.018	0.080	0.806
					$\Delta SexI$, CS	-3.927	0.095	0.000
					$\Delta SexM$, CS	-0.579	0.070	0.000
					Age*	-0.066	0.116	0.587
					Inb*	-0.028	0.066	0.685
					SD of generation (random)	0.863	0.636	
					SD of residuals	1.879	0.023	
2	Maturity probability (ogive)	7247	Bernoulli	logit	Int = CS	2.151	0.298	
					ΔIS	-0.998	0.108	0.000
					ΔAS	0.163	0.127	0.199
					ΔSdl , CS	2.456	0.108	0.000
					ΔSdl , IS	-0.071	0.149	0.640
					ΔSdl , AS	-0.170	0.150	0.261
					Age*, CS	-0.607	0.075	0.000
					ΔAge^* , IS	-0.259	0.106	0.011
					ΔAge^* , AS	0.246	0.105	0.022
					Inb*	-0.089	0.079	0.256
					SD of generation (random)	0.520	0.352	

Continues on next page


Model	Response (Trait)	N	Distribution	Link	Effect	Mean estimate	SD of the estimate	MCMC P-value
Egg-to-larvae survival	318	Bin	logit	Int = CS	0.871	0.620		
				ΔIS	-0.388	0.240	0.108	
				ΔAS	-0.089	0.232	0.701	
				Mo.inb*	-0.095	0.197	0.627	
				Fa.inb*	-0.206	0.203	0.311	
				SD of generation (random)	1.069	0.806		
				SD of overdispersion (random)	1.474	0.082		
Larvae-to-15 dph survival	318	Bin	logit	Int = CS	2.650	0.552		
				ΔIS	0.304	0.270	0.259	
				ΔAS	-0.364	0.240	0.125	
				Mo.inb*	-0.105	0.199	0.578	
				Fa.inb*	-0.046	0.197	0.822	
				SD of generation (random)	0.960	0.640		
				SD of overdispersion (random)	1.251	0.110		
3	301	Bin	logit	Int = CS	5.628	1.383		
				ΔIS	0.104	0.644	0.885	
				ΔAS	0.295	0.608	0.630	
				Mo.inb*	0.054	0.469	0.895	
				Fa.inb*	0.102	0.481	0.828	
				SD of generation (random)	2.148	1.660		
				SD of overdispersion (random)	2.287	0.307		
15-to-60 dph survival	309	Bin	logit	Int = CS	5.644	1.302		
				ΔIS	0.143	0.650	0.838	
				ΔAS	0.517	0.595	0.371	
				Mo.inb*	0.003	0.492	1.016	
				Fa.inb*	0.098	0.487	0.820	
				SD of generation (random)	2.050	1.618		
				SD of overdispersion (random)	2.414	0.313		

Continues on next page

Model	Response (Trait)	N	Distribution	Link	Effect	Mean estimate	SD of the estimate	MCMC P-value
4	Fecundity	318	Bernoulli fertility probability in ZIP	logit	Int = CS	-3.708	1.474	
					ΔIS	0.979	0.727	0.170
					ΔAS	0.030	0.570	0.964
					Mo.inb*	-0.531	0.684	0.448
					Fa.inb*	-0.512	0.666	0.441
			Poisson non-zero fecundity in ZIP	ln	Mo.sdl*	-0.914	0.327	0.007
					SD of generation (random)	2.039	2.138	
					Int = CS	2.465	0.078	
					ΔIS	-0.095	0.110	0.384
					ΔAS	-0.151	0.092	0.096
5	Egg perimeter	5828	Normal	Id	Mo.inb*	-0.011	0.067	0.875
					Fa.inb*	0.040	0.073	0.619
					Mo.sdl*	0.162	0.060	0.001
					SD of generation (random)	0.123	0.110	
					SD of overdispersion (random)	0.600	0.029	
					Int = CS	4.302	0.264	
					ΔIS	0.025	0.025	0.319
					ΔAS	0.077	0.022	0.000
					Mo.sdl*	-0.007	0.013	0.567
					Mo.inb*	-0.024	0.018	0.194
6	Incubation time	267	Normal	Id	Fa.inb*	-0.024	0.018	0.199
					SD of generation (random)	0.533	0.310	
					SD of residuals	0.602	0.005	
					Int = CS	7.782	0.204	
					ΔIS	0.120	0.158	0.441
					ΔAS	0.181	0.139	0.204
					Mo.sdl*	-0.142	0.081	0.085
					Mo.inb*	-0.027	0.095	0.769
					Fa.inb*	0.005	0.094	0.974
					SD of generation (random)	0.330	0.221	
					SD of residuals	0.847	0.038	


Continues on next page

Model	Response (Trait)	N	Distribution	Link	Effect	Mean estimate	SD of the estimate	MCMC P-value
7	Sdl0	4616	Normal	Id	Int = CS	3.903	0.062	
					ΔIS	-0.132	0.011	0.000
					ΔAS	-0.058	0.009	0.000
					Mo.sdl*	0.013	0.006	0.017
					Inb*	0.035	0.008	0.000
					SD of generation (random)	0.113	0.066	
					SD of residuals	0.240	0.002	
					Int = CS, SexF	-2.953	0.289	
					ΔIS, SexF	-0.206	0.206	0.316
					ΔAS, SexF	0.188	0.207	0.360
8	LH β /actin- β log-ratio	193	MVN	Id	ΔSexI, CS	-0.391	0.218	0.071
					ΔSexM, CS	-0.202	0.211	0.346
					Inb*	0.159	0.140	0.244
					Sdl*	0.367	0.100	0.000
					SD of generation (random)	0.445	0.353	
					SD of residuals	1.261	0.137	
					Int = CS, SexF	-3.373	0.431	
					ΔIS, SexF	-0.169	0.273	0.539
					ΔAS, SexF	0.257	0.274	0.344
					ΔSexI, CS	-0.989	0.285	0.000
8	FSH β /actin- β log-ratio	193	MVN	Id	ΔSexM, CS	-0.111	0.279	0.697
					Inb*	0.110	0.205	0.594
					Sdl*	0.180	0.132	0.175
					SD of generation (random)	0.657	0.540	
					SD of residuals	2.209	0.234	
					Int = CS, SexF	-0.919	0.499	
					ΔIS, SexF	0.227	0.256	0.389
					ΔAS, SexF	0.443	0.258	0.078
					ΔSexI, CS	-0.232	0.274	0.403
					ΔSexM, CS	0.003	0.263	0.988
9	GH/actin- β log-ratio	193	MVN	Id	Inb*	0.117	0.180	0.510
					Sdl*	-0.007	0.125	0.953
					SD of generation (random)	0.802	0.556	
					SD of residuals	1.972	0.208	
	Corr.LH β .FSH β					0.747	0.033	0.000
	Corr.LH β .GH					0.792	0.028	0.000
	Corr.FSH β .GH					0.809	0.026	0.000

Fig. S1. Raw medaka body-size time series response to bidirectional anthropogenic selection. A:

855 mean standard body length of all (dashed lines) and mature fish (solid lines with \pm SE) at 75 dph. Blue bottom-pointing triangles: anthropogenic-selected (AS) line, Red, top-pointing triangles: inverse anthropogenic-selected (IS) line, Black circles: control-selected (CS) line. B: same as A but separately for immature (I), male (M) and female (F) fish and without error bars.

860 **Fig. S2. Selection gradient on maturity at 75 days post hatch (dph) from simulated individual growth and maturation data.** The correlation indicates Pearson correlation between body size and maturity in the simulated dataset. The percentage of mature individuals at 75 dph is also indicated. Intensity of exploitation indicates % removal of the smallest-sized mature fish. R code to produce the figure is provided as a supplementary material.