

1
2
3
4
5
6 Reconciling DNA replication and transcription in a hyphal organism: Spatial
7 dynamics of transcription complexes in live *Streptomyces coelicolor* A3(2)
8
9

10 Leena Nieminen^{1,2} and Paul A. Hoskisson^{2*}
11
12

13 ¹School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University
14 Riccarton, Edinburgh, United Kingdom.

15 ²Strathclyde Institute of Pharmacy and Biomedical Sciences, University of
16 Strathclyde, Glasgow, United Kingdom.
17
18

19
20 * **Corresponding author:** Strathclyde Institute of Pharmacy and Biomedical
21 Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE. UK.
22 Tel. +44 (0)141 548 2819 Fax +44 (0)141 548 4124 Email:
23 Paul.hoskisson@strath.ac.uk
24

25 **Key Words:** *Streptomyces*, RNA polymerase dynamics, Transcription, Translation,
26 DNA replication.
27

28 **Summary**

29

30 Reconciling transcription and DNA replication in the growing hyphae of the
31 filamentous bacterium *Streptomyces* presents several physical constraints on growth
32 due to their apically extending and branching, multigenomic cells and chromosome
33 replication being independent of cell division. Using a GFP translational fusion to the
34 β -subunit of RNA polymerase (*rpoC-egfp*), in its native chromosomal location, we
35 observed growing *Streptomyces* hyphae using time-lapse microscopy throughout the
36 lifecycle and under different growth conditions. The RpoC-eGFP fusion co-localised
37 with DNA around 1.8 μ m behind the extending tip, whereas replisomes localise
38 around 4-5 μ m behind the tip, indicating that at the growing tip, transcription and
39 chromosome replication are to some degree spatially separated. Dual-labeled RpoC-
40 egfp/DnaN-mCherry strains also indicate that there is limited co-localisation of
41 transcription and chromosome replication at the extending hyphal tip. This likely
42 facilitates the use of the same DNA molecule for active transcription and
43 chromosome replication in growing cells, independent of cell division. This
44 represents a novel, but hitherto unknown mechanism for reconciling two fundamental
45 processes that utilise the same macromolecular template that allows for rapid growth
46 without compromising chromosome replication in filamentous bacteria and may have
47 implications for evolution of filamentous growth in microorganisms, where uncoupling
48 of DNA replication from cell division is required.

49

50

51 **Introduction**

52 The processes of transcription and chromosome replication both occupy the same
53 cellular template and understanding how such conflicts are reconciled is fundamental
54 to understanding the complexities of bacterial growth and the structure of the
55 dynamic bacterial nucleoid^{1,2,3}. In eukaryotes this problem is solved by segregating
56 growth and replication in to separate stages within the cell cycle. In bacteria, this is
57 not the case and spatial organisation of the nucleoids is dependent on the growth
58 habits and morphology of the specific bacterium¹. Bacterial RNAP is highly sensitive
59 to environmental cues and is subject to significant compaction and expansion forces
60 due to the action of DNA-binding proteins, DNA supercoiling, macromolecular
61 crowding, interaction with cytoskeletal proteins and translocation^{4,5} impacting on other
62 cell processes such as DNA replication. *Streptomyces* are filamentous saprophytic
63 bacteria that have a complex lifecycle, where a single unigenomic spore gives rise to
64 a multi-compartment, multi-genomic vegetative hyphal mass that can forage for
65 nutrients through tip extension. In response to nutrient limitation or stress,
66 specialised multigenomic aerial hyphae are raised in to the air that form septa,
67 resulting in the formation of a unigenomic compartment which completes
68 development in to a mature spore^{6,7}. This hyphal growth habit is remarkably similar
69 to that of the filamentous fungi and represents an excellent example of how two
70 groups of organisms have adapted to life in soil through convergent evolution.
71 Several aspects of *Streptomyces* biology challenge our understanding of bacterial
72 nucleoid structure/function and cell division, its links to chromosome replication and
73 segregation and how this is reconciled with transcriptional activity. The large (8-10
74 Mbp) linear chromosome found in *Streptomyces*, appears to be largely uncondensed
75 during vegetative growth⁸ but is highly ordered in terms of its structure and
76 transcriptional activity⁹ and unlike the majority of bacteria it can be replicated
77 independently of cell division¹⁰. *Streptomyces* are unusual amongst bacteria as
78 many of the genes required for cell division are dispensable for vegetative growth
79 such as *ftsZ*, *ftsQ*, and *mreB*, contrary to what is observed in unicellular bacteria¹⁰⁻¹².
80 The temporal and spatial location and activity of key cellular proteins and nucleoids
81 in *Streptomyces* is likely to have significant implications for our understanding of
82 growth and development in hyphal bacteria. It is known that chromosome replication
83 does not occur at the apex of hyphal tips in *Streptomyces*^{8,13,14} yet it is asynchronous
84 and non-uniform along extending hyphae⁸. What is less well understood is whether

85 there is any hierarchical organisation of transcription in growing *Streptomyces*
86 hyphae. In unicellular bacteria transcriptional foci or patches occur in discrete
87 locations in rapidly growing cells and are associated with the rRNA operons in
88 bacterial chromosomes¹⁵⁻¹⁸. Recently we have begun to understand the evolutionary
89 mechanisms that minimise these conflicts in unicellular bacteria such as genome
90 organisation, avoidance of co-occupancy and recycling of stalled replisomes/RNA
91 polymerase (RNAP) holoenzyme on DNA^{2,3}. In *Streptomyces* however, the hyphal
92 lifestyle represents a fundamental evolutionary problem, that is, to reconcile the
93 issues of chromosome replication and transcription in tandem with the structural
94 complications of the presence of linear chromosomes and that chromosome
95 replication is independent of cell division. To attempt to understand this problem we
96 made a translational fusion of *rpoC* with *egfp* in its native chromosomal location and
97 studied the dynamics of transcription throughout the lifecycle of *Streptomyces* using
98 time-lapse microscopy in live cells.

99

100 **Materials and Methods**

101

102 **Bacterial strains, plasmids, growth conditions and conjugal transfer from *E.***
103 ***coli* to *Streptomyces***

104 The *S. coelicolor* strains and cosmids used in this study are summarised in Table 1.
105 All strains were grown on mannitol and soya flour (MS) agar¹⁹, solid nutrient agar²⁰
106 or minimal medium with mannitol²¹. Conjugation from the *E. coli* strain ET12567
107 (*dam*⁻ *dcm*⁻ *hsdS*) containing the driver plasmid pUZ8002, was used to bypass the
108 methyl-specific restriction system of *S. coelicolor*²¹.

109

110 **Construction of the *RpoC-eGFP* fusion strains**

111 The *rpoC-egfp* fusion was created using ReDirect technology²² in its native
112 chromosomal location. The *egfp-aac(3)IV-oriT* cassette was amplified using
113 oligonucleotides containing 39 nucleotide homologous extensions to chromosomal
114 sequence of the 3' end of *rpoC* (SCO4655) and its adjacent flanking region (For - 5'-
115 CCGCTGGAGGGACTACGACTACGGTCCGTACAACCAGTACCTGCCGGGCCGG
116 GCTGCCGGGGCCGGAGGTGAGCAAGGGCGAGGAGCT-3' and Rev - 5'-
117 CTCGGGGTGACCGCCCTTCGGTCGTATCAAGCTGCCCGCTTCCGGGGATCCG
118 TCGACC-3') as used by Ruban-Osmialowska et al.,⁸ in cosmid D40A, creating
119 cosmid pLN301 (*rpoC-egfp*). The cosmid, pLN301 was moved in to the non-
120 methylating *E. coli* strain ET12567/pUZ8002 to facilitate conjugation in to *S.*
121 *coelicolor*, creating strain sLN301 (M145; *rpoC-egfp*) and was confirmed by
122 sequencing and Southern hybridization (data not shown). Cosmid pLN301 was also
123 moved in to the *relA* deletion strain M570 (*hyg* resistant) and mutant strains were
124 selected on hygromycin and apramycin resistance, kanamycin sensitivity, creating
125 sLN401. In addition pLN301 was conjugated in to DJ542, an unmarked *dnaN*-
126 *mCherry* fusion. Strains were confirmed by sequencing and Southern hybridization
127 (data not shown).

128 Using fluorescent microscopy and a previously established time-lapse fluorescent
129 microscopy procedure²³ we monitored RpoC-eGFP as a reporter of RNAP spatial
130 and temporal dynamics under a range of conditions (see Results). Nucleic acid
131 staining was achieved using SYTO42 (Life Technologies Corp.) and membranes
132 were stained using FM4-64 (Life Technologies Corp.) according to the
133 manufacturers instructions. Images were captured using a Nikon TE2000S inverted

134 fluorescence microscopy. Exposure times were 20 ms for phase-contrast and 100
135 ms for fluorescence imaging. Images were analysed using IPLab scientific imaging
136 software version 3.7 (Scanalytics, Inc., Rockville, USA). Statistical analysis was
137 performed using Microsoft Office Excel software.

138

139

140 **Results and Discussion**

141

142 **RpoC-eGFP patches show dynamic localisation throughout the lifecycle of**
143 ***Streptomyces coelicolor*.**

144

145 To determine the location and dynamics of RNAP during the complex lifecycle of *S.*
146 *coelicolor* we constructed a fusion of eGFP to the β' subunit of RNAP core enzyme
147 (SCO4655^{15-18,24}). The *rpoC-egfp* fusion strain (sLN301) was found to sporulate
148 normally and to grow at the same apical extension rate as the wild-type strain,
149 enabling us to conclude that the fusion protein was functional (Fig. 1). We observed
150 the location of RNAP throughout the lifecycle of *S. coelicolor* (Fig. 1) by monitoring
151 RpoC-eGFP localization in combination with fluorescence stains for nucleic acids
152 (SYTO42) and cell membranes (FM4-64).

153 RNAP was distributed throughout the apically extending germ tubes of sLN301
154 (*rpoC-egfp*) and co-localised with nucleic acids stained with SYTO42 (Fig. 1 A-D).
155 Localisation of RNAP and nucleic acids was found to be in close proximity to the
156 extending hyphal tip ($< 1 \mu\text{m}$). As the extending hyphae mature, the distance
157 between RNAP and the apically extending tip increases. These branching vegetative
158 hyphae exhibit distinct nucleic acid (nucleoid) patches that co-localise with RNAP in
159 distinct areas within the hyphae (Fig. 1. E-K; See below also). Moreover the distance
160 from the tip to the first RNAP patch appears to be around $2 \mu\text{m}$ throughout the
161 vegetative mycelium ($1.8 \mu\text{m} \pm 0.3 \mu\text{m}$; $n=29$), suggesting that transcription is
162 spatially constrained at the extending tip as observed in other hyphae.

163 Examining the distribution RNAP during the growth of aerial hyphae indicated that
164 RNAP and nucleic acids were distributed throughout the extending aerial hyphae
165 without showing the discrete pattern behind the extending tip observed in vegetative
166 hyphae (Fig. 1, L-O). This may represent the requirement for complete distribution of
167 transcriptional activity throughout the aerial hyphae for the maturation of spore
168 chains. Examination of mature spore chains show that RNAP co-localised with the
169 condensed and segregated nucleoids within the septated spore chains (Fig. 1, P-S).

170

171

172

173 **RNAP tracks behind the extending hyphal tip.**

174

175 To characterize the dynamics of RNAP in extending hyphae time-lapse images of *S.*
176 *coelicolor* sLN301 (*rpoC-egfp*) were generated as phase-contrast images merged
177 with GFP images (FITC filter) every 30 minutes during growth on minimal medium
178 plus mannitol as a carbon source. RpoC-eGFP was observed in discrete patches
179 and tracked behind the extending hyphal tip (Fig. 2A) at a mean distance of 1.8 μm
180 ($\pm 0.3 \mu\text{m}$; n=29) with the dimensions of the patches being 2.5 μm (+/- 1.6 μm ;
181 n=116). The emerging branches on the vegetative hyphae also showed the same
182 distribution pattern of RpoC-eGFP patches as the extending primary hyphae. There
183 appears to be some variation in the intensity of the RNAP-eGFP patches within the
184 hyphae, although no obvious pattern could be determined, it may be that this
185 variation is due to the differences in expression levels of various regions in the
186 genome, such as the rRNA operons¹⁵⁻¹⁸.

187

188 **RNAP patches co-localise with DNA but not at the hyphal tip.**

189 Examining vegetative hyphae by phase contrast, RNAP-eGFP (FITC filter) and
190 fluorescent staining of nucleic acids (SYTO42) and membranes (FM4-64) it can be
191 seen that RNAP patches clearly co-localize with DNA (Fig. 2B). However nucleic
192 acids stained by SYTO 42 extends to the hyphal tip, whereas RNAP-eGFP was
193 never observed at the tip of extending hyphae. When compared to the patches for
194 replisomes, measured by Wolanski et al.,¹⁴ at 5.3 μm ($\pm 2.0 \mu\text{m}$) behind the hyphal
195 tip, the RNAP-eGFP patches were found located at a mean of 1.8 μm behind the hyphal
196 tip suggesting there is a spatial separation of transcription and DNA
197 replication at the hyphal tip. These data, obtained from single tagged strains,
198 suggest that one or more chromosomes are actively transcribing at the extending tip,
199 yet active replication occurs behind this. To further examine this spatial separation
200 hypothesis, a double fluorescent strain *dnaN-mCherry/rpoC-egfp* (sLN501) was
201 constructed. In sLN501 (*dnaN-mCherry/rpoC-egfp*) RNAP patches were observed to
202 lag behind the tip, as previously observed and DnaN-mCherry tagged replication
203 factories were located distal to these. Discrete RpoC-eGFP patches, un-associated
204 with DnaN-mCherry were observed proximal to the extending tip (Fig 2C), further
205 supporting our hypothesis of spatially separated transcription and DNA replication at

206 the apical tip of extending *Streptomyces* hyphae. These data suggest there is a
207 hierarchy of chromosome occupancy at the tip of extending hyphae that is
208 summarized in our model (Fig. 2 D). Whilst the molecular mechanism underpinning
209 this spatial constraint is currently unknown, it is thought that avoiding co-occupancy
210 of the DNA template occurs, at least to some extent, in eukaryotes²⁵. The unusual
211 combination of linear chromosomes and apical growth in *Streptomyces*, coupled with
212 DNA replication being independent of cell division and chromosome segregation,
213 suggests that this mechanism may have evolved to allow active transcription at the
214 actively growing tips, independent of DNA replication and cell division. This is
215 consistent with the replisome trafficking data of Wolanski et al.,¹⁴ and intriguingly
216 could involve the pleiotrophic regulator AdpA, which has recently been shown to
217 control chromosome replication through competition with DnaA at *oriC*²⁶.

218

219 **RNAP shows *relA*-dependant pausing during nitrogen starvation**

220 To investigate how environmental cues may affect RNAP dynamics in *S. coelicolor*
221 we examined the effect of the stringent response on RNAP localisation. The highly
222 phosphorylated guanosine nucleotide ppGpp is known to mediate growth rate
223 dependent gene expression in bacteria through direct interaction with RNAP during
224 the stringent response^{27,28}. In *Streptomyces*, ppGpp is synthesised by RelA, and has
225 previously been shown to influence control over antibiotic production and
226 morphological development in response to nutrient limitation²⁹⁻³¹, however, what is
227 not known is how RelA influences the dynamics of RNAP within *Streptomyces* cells
228 in response to nutrient downshift. To test this, we grew *S. coelicolor* sLN301 (WT
229 *rpoC-egfp*) and sLN401 (Δ *relA rpoC-egfp*) on cellophane discs placed upon on solid
230 nutrient agar (Rich medium, amino acid/peptide based nitrogen source). Once cells
231 were growing exponentially, cellophane squares were removed and applied to
232 minimal medium containing sodium nitrate as the sole nitrogen source (30 mM,³²) to
233 induce nitrogen-starvation and the stringent response. Following nitrogen downshift,
234 the dynamics of RNAP patches was followed (Fig. 3), in strain sLN301 (WT *rpoC-*
235 *egfp*) cell growth paused and RpoC-eGFP patches remained static, presumably
236 during the stringent response and the synthesis of ppGpp by RelA. After 60 mins
237 mycelial growth resumed, but from new branch points in the mycelium and following
238 120 mins, apical growth was within the normal distribution range of RpoC-eGFP
239 patches. The resumption of growth via branching is intriguing and may involve the

240 serine/threonine protein kinase, AfsK. It is known that branching is affected by
241 environmental conditions³³ and that AfsK plays a role in the onset of secondary
242 metabolism and sporulation, both nutrient dependent processes³⁴⁻³⁶. Recently it has
243 been shown that AfsK co-localizes and directly regulates DivIVA in
244 *Streptomyces*^{36,37}. Induction of AfsK results in branching and it is believed that
245 phosphorylation of DivIVA results in disassembly of the apical polarisome and the
246 assembly of new growth patches at branch points. Interestingly this may represent a
247 mechanism of altering growth habit in response to nutrient limitation, increasing the
248 nutrient foraging ability of bacterial colonies. Repeating the experiment with sLN401
249 (*ΔrelA rpoC-egfp*) resulted in no cessation of growth and no increased branching
250 following nitrogen-downshift. Intriguingly this suggests a role for the stringent
251 response in reprogramming the growth habit (apical growth and branching) of
252 *Streptomyces* in response to nitrogen-downshift, however neither AfsK or DivIVA
253 were identified as direct targets in a microarray study of a *ΔrelA* mutant and a ppGpp
254 inducible strain³⁸, suggesting there is an as yet unknown mechanism integrating
255 these signals.

256

257 **Disruption of transcription or translation results in altered RNAP dynamics in**
258 **hyphae**

259 To further understand the dynamics of RNAP in live *S. coelicolor* hyphae, we used
260 antibiotic rifampicin to inhibit transcription and chloramphenicol to inhibit translation.
261 *S. coelicolor* sLN301 (WT *rpoC-egfp*) was grown in the absence of each antibiotic on
262 cellophane, once cells were growing exponentially, cellophane squares were
263 removed and applied to the same medium containing 50 % of the minimum inhibitory
264 concentrations (MIC) of each antibiotic (Fig. 4). Treatment of *S. coelicolor* sLN301
265 (WT *rpoC-egfp*) with rifampicin resulted in no cessation of the apical extension rate
266 of hyphae, however RpoC-eGFP patches became dispersed, consistent with dis-
267 association of RNAP from the nucleoid (Fig. 4); resulting in an overall increase in the
268 size of fluorescent patches from 2.5 μm (\pm 1.5 μm ; n=54) in untreated to 4.3 μm (\pm
269 3.0 μm ; n=30). Rifampicin inhibits initiation and re-initiation of transcription through
270 targeting β -subunit of RNAP core enzyme and this dispersal of RNAP patches
271 following rifampicin treatment has also been observed in *Escherichia coli*¹⁷.
272 Treatment of sLN301 (WT *rpoC-egfp*) with chloramphenicol resulted in a cessation of

273 apical extension over a 120 min period and condensation of the RpoC-eGFP
274 patches (Fig. 4), which is consistent with observations in other organisms³⁹. The
275 RpoC-eGFP patches also move away from the apical tip following treatment 2.0 μm
276 ($\pm 0.4 \mu\text{m}$; n=14) in untreated to 4.5 μm ($\pm 2.5 \mu\text{m}$; n=15). Moreover, it has also been
277 shown that active transcription is required for such compaction¹⁷ suggesting that the
278 compaction observed in *S. coelicolor* indicates that transcriptional activity is
279 occurring in these patches and that active transcription is not occurring at the tip as
280 shown above (Fig.1). The coupling of transcription and translation in bacteria has
281 potentially profound effects on the structure of the nucleoid¹⁷, the two antibiotics
282 used in this study both inhibit translation, but in different ways; chloramphenicol
283 directly inhibits translation, but does not prevent transcription, yet rifampicin inhibits
284 transcription and due to the coupling of these processes in bacteria it also inhibits
285 translation¹⁷. It has also been shown that transcriptional activity is adjusted in
286 bacteria to meet the translational needs of cells under various growth conditions⁴⁰
287 suggesting that mechanisms to reconcile potentially conflicting key cellular
288 processes such as transcription, translation and DNA replication can help reduce the
289 extreme effects such process can have on growth and nucleoid structure.

290

291

292

293

294

295

296 **Summary**

297 The tip growth habit of *Streptomyces* challenges our understanding of how
298 transcription and replisome occupancy of the same template in bacteria can occur.
299 One way to resolve this is to spatially separate the two processes. Intriguingly,
300 eukaryotic organisms temporally separate key cellular processes such as growth and
301 replication. The data presented here suggest that the tip of the actively growing
302 *Streptomyces* hyphae spatially separates DNA replication and transcription. In these
303 rapidly extending areas of the mycelium, transcription and replication on the same
304 template may lead to collisions, and separating these transcribing nucleoids from
305 replicating nucleoids offers an attractive means to achieving this. Whilst the
306 mechanism of this spatial separation is currently unknown, spatial or temporal
307 separations of conflicting processes is an attractive mechanism to maximise apical
308 growth with minimal conflict between transcription and DNA replication. This may be
309 especially important for soil organisms such as *Streptomyces* or fungi that, through
310 convergent evolution, exhibit similar apical growth habits in a resource-limited
311 ecological niche.

312

313 **Acknowledgements**

314 We would like to thank Dr Dagmara Jakimowicz, University of Wroclaw, Poland for
315 the gift of the *dnaN-mCherry* strain and helpful comments on the manuscript. We
316 would also like to thank Prof. Mervyn Bibb FRS and Dr Andrew Hesketh of the John
317 Innes Centre for the gift of the *relA* mutant. We would like to thank Dr Paul R Herron,
318 University of Strathclyde, for microscopy assistance and discussions.

319

320

321 **6. References**

322 1. Kois-Ostrowska, A. et al. Unique Function of the Bacterial Chromosome
323 Segregation Machinery in Apically Growing *Streptomyces* - Targeting the
324 Chromosome to New Hyphal Tubes and its Anchorage at the Tips. *PLoS*
325 *Genet* 1–25 (2016).

326 2. Merrikh, H., Zhang, Y., Grossman, A. D. & Wang, J. D. Replication–
327 transcription conflicts in bacteria. *Nat Rev Micro* **10**, 449–458 (2012).

328 3. McGlynn, P., Savery, N. J. & Dillingham, M. S. The conflict between DNA
329 replication and transcription. *Molecular Microbiology* **85**, 12–20 (2012).

330 4. Woldringh, C. L. The role of co-transcriptional translation and protein
331 translocation (transertion) in bacterial chromosome segregation. *Molecular*
332 *Microbiology* **45**, 17–29 (2002).

333 5. Cabrera, J. E., Cagliero, C., Quan, S., Squires, C. L. & Jin, D. J. Active
334 Transcription of rRNA Operons Condenses the Nucleoid in *Escherichia coli*:
335 Examining the Effect of Transcription on Nucleoid Structure in the Absence of
336 Transertion. *J. Bacteriol.* **191**, 4180–4185 (2009).

337 6. Flärdh, K. & Buttner, M. J. Streptomyces morphogenetics: dissecting
338 differentiation in a filamentous bacterium. *Nat Rev Micro* **7**, 36–49 (2009).

339 7. Hoskisson, P. A., Rigali, S., Fowler, K., Findlay, K. C. & Buttner, M. J. DevA, a
340 GntR-like transcriptional regulator required for development in *Streptomyces*
341 *coelicolor*. *J. Bacteriol.* **188**, 5014–5023 (2006).

342 8. Ruban-Osmialowska, B., Jakimowicz, D., Smulczyk-Krawczyszyn, A., Chater,
343 K. F. & Zakrzewska-Czerwinska, J. Replisome Localization in Vegetative and
344 Aerial Hyphae of *Streptomyces coelicolor*. *J. Bacteriol.* **188**, 7311–7316
345 (2006).

346 9. McArthur, M. & Bibb, M. In vivo DNase I sensitivity of the *Streptomyces*

347 *coelicolor* chromosome correlates with gene expression: implications for
348 bacterial chromosome structure. *Nucleic acids research* **34**, 5395–5401
349 (2006).

350 10. McCormick, J. R. Cell division is dispensable but not irrelevant in
351 *Streptomyces*. *Curr. Opin. Microbiol.* **12**, 689–698 (2009).

352 11. McCormick, J. R., McCormick, J. R., Losick, R. & Losick, R. Cell division gene
353 ftsQ is required for efficient sporulation but not growth and viability in
354 *Streptomyces coelicolor* A3(2). **178**, 5295–5301 (1996).

355 12. Mazza, P. *et al.* MreB of *Streptomyces coelicolor* is not essential for vegetative
356 growth but is required for the integrity of aerial hyphae and spores. *Molecular*
357 *Microbiology* **60**, 838–852 (2006).

358 13. Yang, M. C. & Losick, R. Cytological evidence for association of the ends of
359 the linear chromosome in *Streptomyces coelicolor*. *J. Bacteriol.* **183**, 5180–
360 5186 (2001).

361 14. Wolanski, M. *et al.* Replisome Trafficking in Growing Vegetative Hyphae of
362 *Streptomyces coelicolor* A3(2). *J. Bacteriol.* **193**, 1273–1275 (2011).

363 15. Lewis, P. J. Bacterial subcellular architecture: recent advances and future
364 prospects. *Molecular Microbiology* **54**, 1135–1150 (2004).

365 16. Lewis, P. J., Doherty, G. P. & Clarke, J. Transcription factor dynamics.
366 *Microbiology* **154**, 1837–1844 (2008).

367 17. Cabrera, J. E. & Jin, D. J. The distribution of RNA polymerase in *Escherichia*
368 *coli* is dynamic and sensitive to environmental cues. *Molecular Microbiology*
369 **50**, 1493–1505 (2003).

370 18. Migocki, M. D., Lewis, P. J., Wake, R. G. & Harry, E. J. The midcell replication
371 factory in *Bacillus subtilis* is highly mobile: implications for coordinating

372 chromosome replication with other cell cycle events. *Molecular Microbiology*
373 **54**, 452–463 (2004).

374 19. Hobbs, G., Frazer, C., Gardner, D. J., Cullum, J. & Oliver, S. Dispersed growth
375 of *Streptomyces* in liquid culture. *Applied Microbiology and Biotechnology* **31**,
376 (1989).

377 20. Hoskisson, P. A., Hobbs, G. & Sharples, G. P. Response of *Micromonospora*
378 *echinospora* (NCIMB 12744) spores to heat treatment with evidence of a heat
379 activation phenomenon. *Letters in Applied Microbiology* **30**, 114–117 (2000).

380 21. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. *Practical*
381 *Streptomyces Genetics*. (John Innes Foundation, 2000).

382 22. Gust, B., Challis, G. L., Fowler, K., Kieser, T. & Chater, K. F. PCR-targeted
383 Streptomyces gene replacement identifies a protein domain needed for
384 biosynthesis of the sesquiterpene soil odor geosmin. *Proceedings of the*
385 *National Academy of Sciences* **100**, 1541–1546 (2003).

386 23. Jyothikumar, V., Tilley, E. J., Wali, R. & Herron, P. R. Time-lapse microscopy
387 of *Streptomyces coelicolor* growth and sporulation. *Applied and Environmental*
388 *Microbiology* **74**, 6774–6781 (2008).

389 24. Bentley, S. D. *et al.* Complete genome sequence of the model actinomycete
390 *Streptomyces coelicolor* A3(2). *Nature* **417**, 141–147 (2002).

391 25. Sutherland, H. & Bickmore, W. A. Transcription factories: gene expression in
392 unions? *Nature Reviews Genetics* **10**, 457–466 (2009).

393 26. Wolanski, M., Jakimowicz, D. & Zakrzewska-Czerwinska, J. AdpA, key
394 regulator for morphological differentiation regulates bacterial chromosome
395 replication. *Open Biology* **2**, 120097–120097 (2012).

396 27. Vrentas, C. E. *et al.* Still Looking for the Magic Spot: The Crystallographically

397 Defined Binding Site for ppGpp on RNA Polymerase Is Unlikely to Be
398 Responsible for rRNA Transcription Regulation. *Journal of Molecular Biology*
399 **377**, 551–564 (2008).

400 28. Dalebroux, Z. D. & Swanson, M. S. ppGpp: magic beyond RNA polymerase.
401 *Nat Rev Micro* **10**, 203–212 (2012).

402 29. Chakraburty, R. & Bibb, M. The ppGpp synthetase gene (*relA*) of
403 *Streptomyces coelicolor* A3(2) plays a conditional role in antibiotic production
404 and morphological differentiation. *J. Bacteriol.* **179**, 5854–5861 (1997).

405 30. Hesketh, A., Sun, J. & Bibb, M. Induction of ppGpp synthesis in *Streptomyces*
406 *coelicolor* A3(2) grown under conditions of nutritional sufficiency elicits actII-
407 ORF4 transcription and actinorhodin biosynthesis. *Molecular Microbiology* **39**,
408 136–144 (2001).

409 31. Sun, J. H., Hesketh, A. & Bibb, M. Functional Analysis of *relA* and *rshA*, two
410 *relA/spoT* homologues of *Streptomyces coelicolor* A3(2). *J. Bacteriol.* **183**,
411 3488–3498 (2001).

412 32. Karandikar, A., Sharples, G. P. & Hobbs, G. Differentiation of *Streptomyces*
413 *coelicolor* A3 (2) under nitrate-limited conditions. *Microbiology* **143**, 3581–3590
414 (1997).

415 33. Nieminen, L., Webb, S., Smith, M. C. M. & Hoskisson, P. A. A flexible
416 mathematical model platform for studying branching networks: experimentally
417 validated using the model actinomycete, *Streptomyces coelicolor*. *PLoS ONE*
418 **8**, e54316 (2013).

419 34. Ueda, K., Umeyama, T., Beppu, T. & Horinouchi, S. The aerial mycelium-
420 defective phenotype of *Streptomyces griseus* resulting from A-factor deficiency
421 is suppressed by a Ser/Thr kinase of *S. coelicolor* A3(2). *Gene* **169**, 91–95

422 (1996).

423 35. Umeyama, T., Lee, P. C., Ueda, K. & Horinouchi, S. An AfsK/AfsR system
424 involved in the response of aerial mycelium formation to glucose in
425 *Streptomyces griseus*. *Microbiology* **145**, 2281–2292 (1999).

426 36. Hempel, A. M. *et al.* The Ser/Thr protein kinase AfsK regulates polar growth
427 and hyphal branching in the filamentous bacteria *Streptomyces*. *Proc. Natl.
428 Acad. Sci. U.S.A.* **109**, E2371–9 (2012).

429 37. Flärdh, K., Richards, D. M., Hempel, A. M., Howard, M. & Buttner, M. J.
430 Regulation of apical growth and hyphal branching in *Streptomyces*. *Curr. Opin.
431 Microbiol.* **15**, 737–743 (2012).

432 38. Hesketh, A., Chen, W. J., Ryding, J., Chang, S. & Bibb, M. The global role of
433 ppGpp synthesis in morphological differentiation and antibiotic production in
434 *Streptomyces coelicolor* A3(2). *Genome Biol* **8**, R161 (2007).

435 39. van Helvoort, J. M., Kool, J. & Woldringh, C. L. Chloramphenicol causes fusion
436 of separated nucleoids in *Escherichia coli* K-12 cells and filaments. *J.
437 Bacteriol.* **178**, 4289–4293 (1996).

438 40. Proshkin, S., Rahmouni, A. R., Mironov, A. & Nudler, E. Cooperation between
439 translating ribosomes and RNA polymerase in transcription elongation.
440 *Science* **328**, 504–508 (2010).

441 41. Redenbach, M. *et al.* A set of ordered cosmids and a detailed genetic and
442 physical map for the 8 Mb *Streptomyces coelicolor* A3(2) chromosome.
443 *Molecular Microbiology* **21**, 77–96 (1996).

444

445

446

447

448

449

450 **Table 1.** Strains and plasmids used in this study

451

Strain or plasmid	Genotype/comments	Source or reference
S. coelicolor strains		
M145	Prototrophic, SCP1 ⁻ SCP2 ⁻	21
sLN301	Prototrophic, SCP1 ⁻ SCP2 ⁻ ; <i>rpoC-egfp</i>	This work.
M570	Δ <i>relA</i>	29
sLN401	Δ <i>relA</i> ; <i>rpoC-egfp</i>	This work.
DJ542	M145 <i>dnaN-mCherry</i> - unmarked with antibiotic resistance	Jakimowicz, Unpublished
sLN501	M145, <i>rpoC-egfp</i> fusion in a DJ542 background – dual GFP & mCherry fluorescence	This work.
Cosmids		
D40A	SuperCos derived cosmid vector with a genomic fragment containing the <i>rpoC</i> gene.	41
pLN301	Cosmid D40A with an in-frame eGFP fusion to the 3` end of <i>rpoC</i> gene	This work.

452 **Figure legends**

453

454 **Fig. 1. RpoC-eGFP patches show dynamic localisation throughout the lifecycle**
455 **of *Streptomyces coelicolor*.** Representative images of a germinating spore in
456 phase contrast (**A**), germinating spore stained with SYTO 42 (DNA staining; **B**),
457 RpoC-eGFP localisation in a germinating spore (**C**), germinating spore stained with
458 FM4-64 (membrane stain; **D**). Representative images of vegetative hyphae in phase
459 contrast (**E**), vegetative hyphae stained with SYTO 42 (DNA staining; **F**), RpoC-
460 eGFP localisation in a vegetative hypha (**G**), vegetative hyphae stained with FM4-64
461 (membrane stain; **H**), a multiprobe image (RNAP-eGFP in green and FM4-64 in red;
462 **I**), a multiprobe image (RpoC-eGFP in green and SYTO 42 in red; **J**), a multiprobe
463 image (RpoC-eGFP, FM4-64 & SYT042; **K**). Representative images of aerial hyphae
464 in phase contrast (**L**), aerial hyphae stained with SYTO 42 (DNA staining; **M**), RpoC-
465 eGFP localisation in an aerial hypha (**N**), aerial hypha stained with FM4-64
466 (membrane stain; **O**). Representative images of a spore chain in phase contrast (**P**),
467 a spore chain stained with SYTO 42 (DNA staining; **Q**), RpoC-eGFP localisation in a
468 spore chain (**R**), a spore chain stained with FM4-64 (membrane stain; **S**).
469

470

471 **Fig. 2. RpoC-eGFP patches track behind the extending hyphal tip. (A)** Time-
472 lapse images of growing *S. coelicolor* hyphae (LN301; *rpoC-egfp*) showing the
473 absence of RNAP-eGFP patches at the tip of extending vegetative hyphae. (See
474 also Supplementary video 1 - <http://dx.doi.org/10.6084/m9.figshare.1181785>) **B:**
475 **RpoC-eGFP patches co-localise with DNA, but not at the hyphal tip.**
476 Representative images of a vegetative hypha in phase contrast, stained with SYTO
477 42 (DNA staining), RNAP-eGFP, FM4-64 (membrane stain) and a multiprobe image
478 (RNAP-eGFP in green and FM4-64 in red). **C: The majority of RpoC-eGFP**
479 **patches do not co-localise with DnaN-mCherry at the hyphal tip, but do co-**
480 **localise behind the tip.** Representative images of a vegetative hypha in phase
481 contrast (**A**), DnaN-mCherry (**B**) RNAP-eGFP (**C**) and a multiprobe image (**D**) of
482 RNAP-eGFP (green) and DnaN-mCherry (Red). **D:** Schematic representation of a
483 hyphal tip (polarisome), indicating the locations of nucleic acids, transcription (this
484 work) and replisome location¹⁴⁻¹⁸ suggesting there is a spatial separation of
485 transcription and chromosome replication at the hyphal tip.

486

486 **Fig. 3. RpoC-eGFP patches in Wild-Type *S. coelicolor* exhibit pauses**
487 **following nitrogen-downshift when compared to a Δ relA mutant.** Time-lapse
488 images of growing *S. coelicolor* hyphae (sLN301; *rpoC-egfp*) in nitrogen rich (nutrient
489 agar) medium over 180 min. (See also Supplementary video 2 -
490 <http://dx.doi.org/10.6084/m9.figshare.1181781>). Time-lapse images of growing *S.*
491 *coelicolor* hyphae (sLN301; *rpoC-egfp*) following nitrogen downshift over 180 min.
492 (See also Supplementary video 3 - <http://dx.doi.org/10.6084/m9.figshare.1181780>).
493 Time-lapse images of growing M570 *S. coelicolor* hyphae (Δ relA; *rpoC-egfp*)
494 following nitrogen downshift over 180 min. (See also Supplementary video 4 -
495 <http://dx.doi.org/10.6084/m9.figshare.1181782>)

496

497

498 **Fig. 4. RpoC-eGFP patches exhibit altered dynamics following inhibition of**
499 **either transcription or translation.** Time-lapse images of growing *S. coelicolor*
500 hyphae (sLN301; *rpoC-egfp*) without any antibiotic treatment. Time-lapse images of
501 growing *S. coelicolor* hyphae (sLN301; *rpoC-egfp*) following treatment with
502 chloramphenicol (Cm; 13 mg ml⁻¹). See also Supplementary video 5 -
503 <http://dx.doi.org/10.6084/m9.figshare.1181783>. Time-lapse images of growing *S.*
504 *coelicolor* hyphae (sLN301; *rpoC-egfp*) following treatment with rifampicin (rif; 32 mg
505 ml⁻¹). See also Supplementary video 6 -
506 <http://dx.doi.org/10.6084/m9.figshare.1181784>.

507

508 **Supplementary data**

509

510 **Supp Video 1: RpoC-eGFP patches tracking behind the extending hyphal tip.**
511 Video of growing *S. coelicolor* hyphae (LN301; *rpoC-egfp*) showing the absence of
512 RNAP-eGFP patches at the tip of extending vegetative hyphae. Images taken at 10
513 min intervals and converted to video using IPLab scientific imaging software version
514 3.7 (Scanalytics, Inc., Rockville, USA).

515 <http://dx.doi.org/10.6084/m9.figshare.1181785>

516

517 **Supp Video 2: RpoC-eGFP patches in Wild-Type *S. coelicolor*.** Video of growing
518 *S. coelicolor* hyphae (sLN301; *rpoC-egfp*) in nitrogen rich (nutrient agar) medium
519 over 180 min. Images taken at 10 min intervals and converted to video using IPLab

520 scientific imaging software version 3.7 (Scanalytics, Inc., Rockville, USA).

521 <http://dx.doi.org/10.6084/m9.figshare.1181781>

522

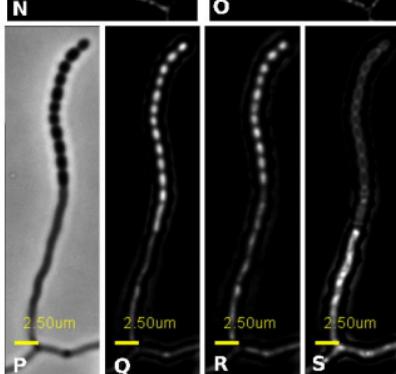
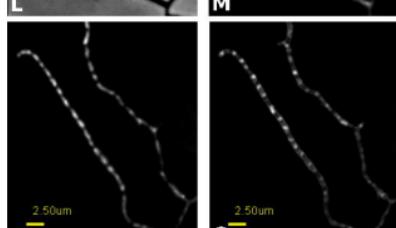
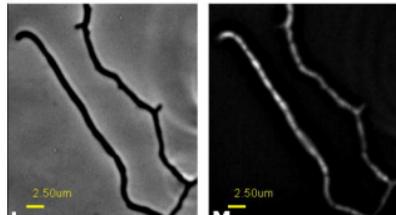
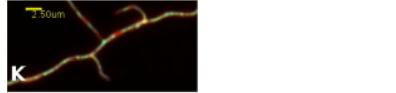
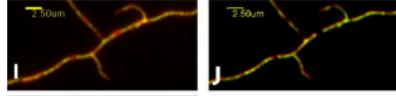
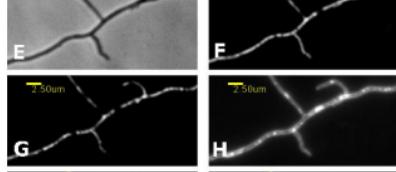
523 **Supp Video 3: RpoC-eGFP patches in Wild-Type *S. coelicolor* exhibit pauses**
524 **following nitrogen-downshift.** Video of growing WT *S. coelicolor* hyphae (sLN301;
525 *rpoC-egfp*) following nitrogen downshift over 180 min. Images taken at 10 min
526 intervals and converted to video using IPLab scientific imaging software version 3.7
527 (Scanalytics, Inc., Rockville, USA).

528 <http://dx.doi.org/10.6084/m9.figshare.1181780>

529

530 **Supp Video 4: RpoC-eGFP patches in a Δ re Δ A mutant of *S. coelicolor* exhibit**
531 **pauses following nitrogen-downshift.** Video of growing *S. coelicolor* hyphae
532 (Δ re Δ A; *rpoC-egfp*) following nitrogen downshift over 180 min. Images taken at 10
533 min intervals and converted to video using IPLab scientific imaging software version
534 3.7 (Scanalytics, Inc., Rockville, USA).

535 <http://dx.doi.org/10.6084/m9.figshare.1181782>







536

537 **Supp Video 5: RpoC-eGFP patches exhibit altered dynamics following**
538 **inhibition of translation.** Video of growing *S. coelicolor* hyphae (sLN301; *rpoC-*
539 *egfp*) following treatment with chloramphenicol (Cm; 13 mg ml $^{-1}$). Images taken at 10
540 min intervals and converted to video using IPLab scientific imaging software version
541 3.7 (Scanalytics, Inc., Rockville, USA).

542 <http://dx.doi.org/10.6084/m9.figshare.1181783>

543

544 **Supp Video 6: RpoC-eGFP patches exhibit altered dynamics following**
545 **inhibition of transcription.** Video of growing *S. coelicolor* hyphae (sLN301; *rpoC-*
546 *egfp*) following treatment with rifampicin (rif; 32 mg ml $^{-1}$). Images taken at 10 min
547 intervals and converted to video using IPLab scientific imaging software version 3.7
548 (Scanalytics, Inc., Rockville, USA). <http://dx.doi.org/10.6084/m9.figshare.1181784>

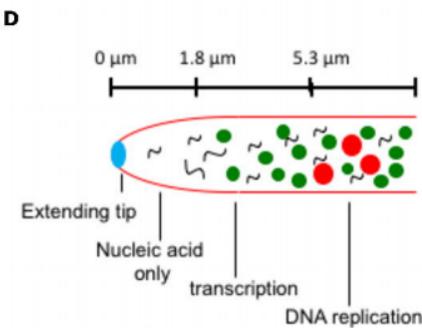
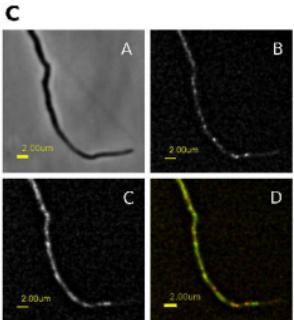
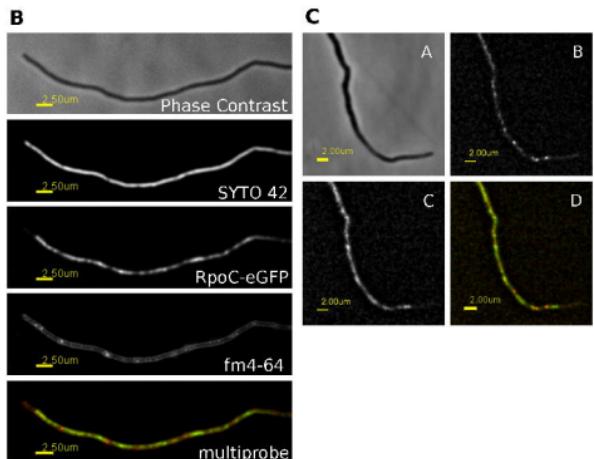
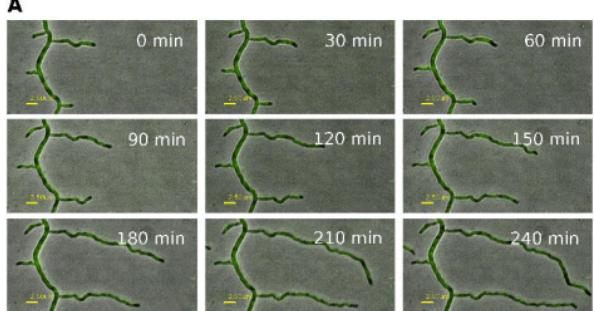





Fig. 3

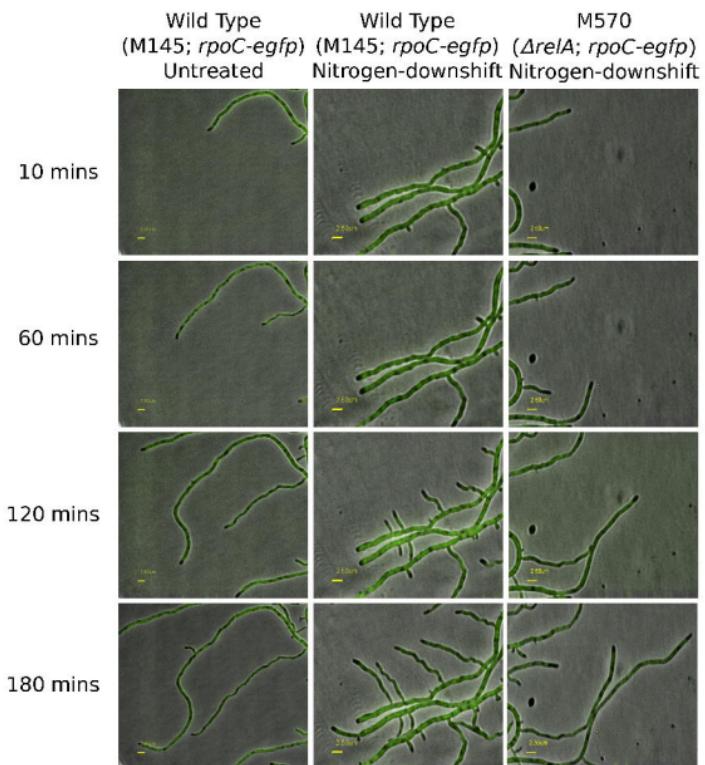
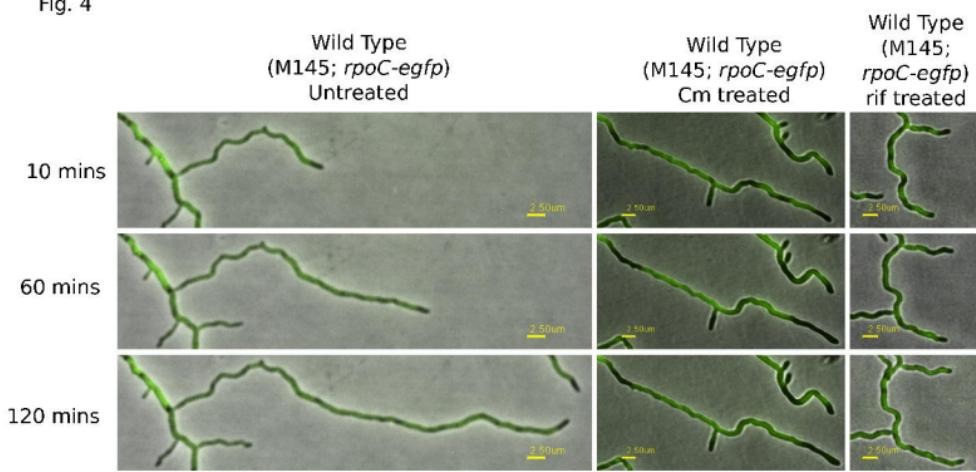



Fig. 4

