

1 Access COI barcode efficiently using high throughput

2 Single-End 400 bp sequencing

3 Chentao Yang^{1,2}, Shangjin Tan^{1,2}, Guangliang Meng^{1,2}, David G Bourne^{3,4,5},

4 Paul A. O'Brien^{3,4,5}, Junqiang Xu^{1,2}, Sha Liao^{1,2}, Ao Chen^{1,2}, Xiaowei Chen^{1,2}, Shanlin Liu^{1,2*}

5 1. BGI-Shenzhen, Shenzhen 518083, China

6 2. China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China

7 3. College of Science and Engineering, James Cook University, Townsville, QLD, Australia

8 4. Australian Institute of Marine Science, Townsville, QLD, Australia

9 5. AIMS@JCU, Townsville, QLD, Australia

10 *Corresponding address: Shanlin Liu, Email: liushanlin@genomics.cn

11 **Summary**

12 1. Over the last decade, the rapid development of high-throughput sequencing
13 platforms has accelerated species description and assisted morphological
14 classification through DNA barcoding. However, constraints in barcoding costs led
15 to unbalanced efforts which prevented accurate taxonomic identification for
16 biodiversity studies.

17 2. We present a high throughput sequencing approach based on the HIFI-SE
18 pipeline which takes advantage of Single-End 400 bp (SE400) sequencing data
19 generated by BGISEQ-500 to produce full-length Cytochrome c oxidase subunit I
20 (COI) barcodes from pooled polymerase chain reaction amplicons. HIFI-SE was
21 written in Python and included four function modules of *filter*, *assign*, *assembly*
22 and *taxonomy*.

23 3. We applied the HIFI-SE to a test plate which contained 96 samples (30 corals, 64
24 insects and 2 blank controls) and delivered a total of 86 fully assembled HIFI COI
25 barcodes. By comparing to their corresponding Sanger sequences (72 sequences
26 available), it showed that most of the samples (98.61%, 71/72) were correctly and
27 accurately assembled, including 46 samples that had a similarity of 100% and 25

32 of ca. 99%.

33 4. Our approach can produce standard full-length barcodes cost efficiently, allowing
34 DNA barcoding for global biomes which will advance DNA-based species
35 identification for various ecosystems and improve quarantine biosecurity efforts.

36

37 **Key-words:** DNA Barcode; High-throughput sequencing; BGISEQ-500;
38 SE400; COI; Biodiversity

39

40

41 **Introduction**

42

43 Since it was first proposed by Hebert *et al.* (Hebert, Cywinska & Ball 2003), DNA
44 barcoding has attracted global synergistic efforts resulting in well-curated and
45 centralized reference databases. The Barcode of Life Data systems (BOLD)
46 (Ratnasingham & Hebert 2007), for example, has been growing into a repository of
47 greater than 5.8 million barcodes representing 282,738 species (accessed in Nov.
48 2018). The strength of DNA barcoding includes its application across all stages of life,
49 from lava to adult and even predator feces (Symondson 2002; Valentini, Pompanon &
50 Taberlet 2009) and stomach contents (Krehenwinkel *et al.* 2017). This, along with the
51 ease of barcoding accessibility and analysis, has led to its use in a wide spectrum of
52 scientific and commercial areas, such as cryptic species discovery (Bączkiewicz *et al.*
53 2017), biodiversity monitoring (Bohmann *et al.* 2014; Tang *et al.* 2015; Thomsen &
54 Willerslev 2015), conservation biology (Krishnamurthy, Francis & conservation 2012),
55 inspection of illegal trade of endangered species (Collins *et al.* 2012) and discovery of
56 illegal ingredients in medicine (Coghlan *et al.* 2012).

57

58 Even though barcode sequences have been accumulating rapidly in the last decade,
59 the available reference databases are limited by poor and biased spatial coverage and
60 skewed taxonomic coverage (Yoccoz 2012). Biodiversity initiatives typically suffer from
61 insufficient funding for DNA-based taxonomy work, and scientists have been
62 attempting to achieve barcode sequences in a cost-efficient way via high-throughput
63 sequencing (HTS) platforms. However, these methods, owing to their read lengths,
64 only deliver a fraction of the standard barcode (Meier *et al.* 2016), or require either
65 extra laboratory workloads of multiple rounds of PCRs (Shokralla *et al.* 2015; Cruaud
66 *et al.* 2017), or an extra K-mer based assembly step leading to accuracy uncertainty
67 (Liu *et al.* 2017). Long reads from the Single Molecular Real Time (SMRT) sequencing
68 platform or nanopore platform may achieve reliable standard barcode sequences,
69 however, at a higher cost (Liu *et al.* 2017; Hebert *et al.* 2018). Standard barcode (COI,
70 cytochrome c oxidase I gene) for animals with its flanking primers and tags is ca. 700
71 bp in length, the HTS platform offers significant advantages since it allows for accurate
72 COI barcode assembly by connecting the 5' and 3' reads provided the HTS platform
73 can generate reads of a length \geq 400 bp, with a minimum overlap of \sim 80 bp.

74

75 The BGISEQ-500 platform has launched a new test sequencing kit capable of single-
76 end 400 bp sequencing (SE400), which offers a simple and reliable way to achieve
77 DNA barcodes efficiently. In this study, we explore the potential of the BGISEQ-500
78 SE400 sequencing in DNA barcode reference construction and provide an updated
79 HIFI-SE barcode software package that can generate *COI* barcode assemblies using
80 HTS reads of a length of 400 bp.

81

82

83 **Overview of the HIFI-SE barcode pipeline**

84

85 *Experimental process*

86

87 1) DNA preparation

88 DNA of each well in the plate should be extracted separately before PCR. The Glass
89 Fiber Plate method (Ivanova, Deward & Hebert 2006) is recommended because of
90 relatively high efficiency and low cost.

91

92 2) PCR amplification

93 96 paired tags were added to both ends of the common *COI* barcode primer set
94 (LCO1490 and HCO2198 (O. Folmer 1994)) (Supplementary Table S1). Each tag was
95 5 bp in length and had \geq 2 bp difference from each other. Each PCR reaction (25 μ L)
96 contained 1 μ L DNA template, 16.2 μ L molecular biology grade water, 2.5 μ L 10 \times buffer
97 (Mg^{2+} plus), 2.5 μ L dNTP mix (10 mM), 1 μ L each forward and reverse primers (10
98 mM), and 0.3 μ L TaKaRa Ex Taq polymerase (5 U/ μ L) (Takara, Dalian, China). The
99 amplification program included a thermocycling profile of 94°C for 60s, 5 cycles of 94°C
100 for 30 s, 45 °C for 40 s, and an extension at 72 °C for 60 s, followed by 35 cycles of
101 94 °C for 30 s, 51 °C for 40 s, and 72 °C for 60 s, with a final extension at 72 °C for 10
102 min, and a final on-hold at 12 °C.

103

104 3) Library construction and sequencing

105 One microliter of each amplicon was mixed together and subsequently sent to BGI-
106 Shenzhen for library preparation and sequencing (BGISEQ-500 SE400 module)

107 following the BGISEq-500 library construction protocol (Supplementary File 1).

108

109 *Bioinformatics*

110 The software package is written in Python and is deposited in PyPI
111 (<https://pypi.org/project/HIFI-SE/>), consisting of three main function modules of ‘filter’,
112 ‘assign’, and ‘assembly’ (Fig. 2). Full functions and a tutorial are detailed in the
113 software manual (Supplementary File 2)

114

115 1) Data filtering

116 It removed low quality reads of 1) reads with ambiguous bases; 2) reads with an
117 expected error number $E^* > 10$ with E^* being calculated using a formula of $E^* =$
118 $\sum_{i=1}^n 10^{-Qi/10}$, where n represents sequence length and Qi represents base quality of
119 the i^{th} base on reads.

120

121 2) Read assignment

122 Reads were demultiplexed by index and then classed to the 5' and 3' ends by primer
123 sequences. Both require a 100% identity.

124

125 3) Full-length COI barcode assembly

126 For each end, sequences were first clustered at a 98% similarity using VSEARCH
127 (v2.8.0) (Rognes *et al.* 2016). Subsequently, a consensus sequence was built from the
128 most abundant cluster (cluster 1) supported by ≥ 5 sequences. Sequences from the
129 second most abundant cluster were also retained to identify potential symbionts or
130 parasites if containing sequence numbers $> 1/10$ of that in cluster 1.

131 Full-length COI barcodes were assembled by connecting the consensus sequences
132 of the 5' and 3' ends with an overlap ≥ 80 bp and similarity $\geq 95\%$. Discrepancies were
133 determined based on the base frequency in sequences from both ends. The
134 assemblies with correct amino acid translation and a length of > 650 bp were output
135 as final results. If an assembly failed with the default options, users can run another
136 round with an additional parameter – checking for amino acid translation before
137 clustering (supplemental File 2).

138

139 4) Taxonomy identification in BOLD

140 The HIFI-SE pipeline provides an optional step (*Taxonomy*) to verify the taxonomic
141 information of assembled sequences. It can automatically submit assemblies to the
142 BOLD system and grab the taxonomic information from the returned searches.
143 Currently, it supports searching of the animal, fungi and plant databases and outputs
144 a user-defined number of BOLD items for each sequence.

145

146

147 **Example analysis**

148

149 Materials and methods

150

151 Specimens used in this study contained 30 corals, 64 insects and 2 blank controls
152 (Supplementary Table S2). Corals were sampled from the Great Barrier Reef using
153 hammer and chisel and kept in running seawater until processing. Insect samples
154 were randomly chosen from collections from the Laohegou Natural Reserve, Sichuan
155 Province, China. Coral tissue was removed from the skeleton using pressurized air
156 from a blow gun into a ziplock bag containing 10ml of calcium magnesium free artificial
157 seawater (CMFASW; NaCl 26.2 g, KCl 1 g, NaHCO₃, Milli-Q H₂O 1 L). Approximately
158 0.05 g of coral tissue pellet was used for DNA extraction using the PowerBiofilm DNA
159 Isolation Kit (QIAGEN Pty Ltd, Australia) following the manufacturers protocol. Insect
160 genomic DNA was extracted using the Glass Fiber Plate method (Ivanova, Deward
161 & Hebert 2006) following the manufacturer's protocol.

162

163 Before pooling for HTS sequencing, all the PCR products were sent to BGI-Shenzhen
164 for Sanger sequencing from both 5' and 3' ends on an ABI 3730XL platform. A total of
165 73 sequences were successfully assembled using Geneious (Kearse *et al.* 2012) and
166 served as a reference database to evaluate the accuracy and efficiency of the HIFI-
167 SE pipeline. The 21 failed samples (excluding 2 blanks) were referred to as "Barcode
168 failed" samples, and those failures can be attributed to the excessive non-targeted
169 short PCR co-amplifications of a length of ca. 400 bp (Fig. S1 and detailed in the
170 following Discussion part).

171

172 To evaluate the accuracy of HIFI-SE, barcodes obtained via HIFI-SE were aligned to

173 their Sanger references using MUSCLE (Edgar 2004) and then checked for similarities
174 between each. We subsequently aligned the demultiplexed reads to their
175 corresponding HIFI-SE assemblies using BWA (Version: 0.7.17-r1188) (Li & Durbin
176 2009) to examine read support for sites at which the HIFI-SE and Sanger generated
177 barcodes were different.

178

179 Results

180

181 A total of 12,745,067 SE400 reads were retained after quality control. Around 77.9%
182 (9,870,823) of reads were assigned to their corresponding samples as either 5' or 3'
183 end. The number of sequences of each sample varied markedly, ranging from 303 to
184 585,609, with Sanger “barcode failed” samples possessing lower but insignificant
185 number of reads (Fig. S1). A total of 86 barcode sequences including 63 insect
186 samples and 23 coral samples were achieved using our pipeline with 14 out of the 21
187 Sanger “barcode failed” samples being successfully recovered, leading to an overall
188 success rate of 91.5% (Fig. 3). There was also one sample that had a Sanger
189 reference missed in the HIFI-SE assemblies.

190

191 Compared to the Sanger reference sequences (72 sequences available), HIFI-SE
192 assemblies showed high-score matches for vast majority of the samples (98.61%,
193 71/72), including 46 samples that had a similarity of 100% and 25 of around 99%
194 (Supplementary Table S3). Only one sample that showed a high dissimilarity score to
195 its Sanger reference was demonstrated to be cross contamination from samples on
196 the same plate. Read alignment results showed that the sites on HIFI-SE assemblies
197 at which mismatches occurred were supported by high read coverage, confirming the
198 accurate recovery of HIFI-SE (Fig. S2). In addition, HIFI-SE also identified a total of
199 40 ambiguous sites in the Sanger reference to specific nucleotides and revealed the
200 heteroplasmy states in some samples (Fig. S2).

201

202

203 Discussion

204

205 Despite the importance of biodiversity in ecosystem functioning (Tilman, Isbell &

206 Cowles 2014), global biodiversity continues to be lost at an unprecedented rate due
207 to climate change and human activities (Kerr & Currie 1995). DNA barcoding (Hebert,
208 Cywinska & Ball 2003), has proven effective in accelerating the collection of
209 biodiversity inventories over large geographic and temporal scales which benefits both
210 researchers and also policy-makers focused on maintaining functioning ecosystems
211 (Molnar *et al.* 2008). However, it is reported that hundreds of thousands of dollars are
212 required to establish a DNA barcode reference database for a regular ecology study
213 (Cameron, Rubinoff & Will 2006), and ca. \$1 billion for sequencing to complete global
214 barcode registration (Marshall 2005). The burgeoning massive parallel sequencing
215 techniques drive the cost per nucleotide base down dramatically (Von Bubnoff 2008)
216 and inspired multifarious approaches to obtain barcode sequences via HTS platforms
217 (Liu *et al.* 2013; Liu *et al.* 2017; Hebert *et al.* 2018). The HIFI-SE pipeline which takes
218 advantage of HTS reads as long as 400 bp, provides an easy, simple and cost effective
219 (an average cost of \$1 USD per barcode) approach to generate barcode sequences
220 from a large number of samples. The 400 bp reads enable an overlap length of ca. 80
221 bp for most animal COI barcode sequences by sequencing both 5' and 3' ends, and
222 the plain data process step – assembly by overlapping, can simplify the barcode
223 assembly process by circumventing the *de Bruijn* graph algorithm which is time-
224 consuming and computationally intensive (Li *et al.* 2012) and can hardly avoid
225 erroneous pathing when deal with intricate scenarios.

226 Two taxonomic groups, corals and insects, were included to demonstrate the
227 effectiveness of this approach. The results showed that insects delivered higher
228 sample recovery ratios (63 out of 64 samples) compared to corals (23 out of 30
229 samples). The relatively lower efficiency of coral can be attributed to the biased
230 performance of primer set LCO1490 and HCO2198 in corals (Geller *et al.* 2013). It
231 shows the necessity to promote primer design to fit more various phylogenetic
232 lineages in spite of the high sensitivity of HTS methods. The primer's inadequacy for
233 coral was also reflected by excessive short co-amplicons (400~500bp) detected in 16
234 out of 21 Sanger "Barcode failed" samples (Fig. S1), which might be derived from
235 Nuclear Mitochondrial DNA Segment (Numt) and in turn affect the recovery success
236 of their barcode sequences via both the Sanger sequencing and HIFI-SE pipeline.
237 Besides, coral is well known for being difficult in DNA extraction and tends to degrade
238 quite rapidly for lots of species (Neigel, Domingo & Stake 2007). Thus, their DNA

239 quality may also contribute to the short co-amplicons. It also reveals the strength of
240 our approach in dealing with those samples that are difficult to work with using the
241 traditional method. In addition, we also noticed one assembly (E08 in Supplementary
242 Table S3) that showed low similarity to its corresponding Sanger reference was
243 actually cross contamination from another cell (C11 or H12 in Fig. 3). Since we mixed
244 PCR reagents and PCR products using an auto transfer station (Hamilton Microlab®
245 STAR) and sample E08 only contained a read number of 1,000, we believe this
246 contamination event could result from pipette failure on the auto transfer station during
247 sample transfer (occasionally happens), and a subsequent tag hopping from other
248 samples during library construction and sequencing.

249

250 In summary, the HIFI-SE pipeline requires straightforward processing in both
251 sequencing preparation and data analysis, and holds great potential to on one hand
252 further reduce per unit cost of DNA barcoding while on the other increase the efficiency
253 and accuracy of obtained barcodes. This is achieved by increasing the throughput
254 capacity via increasing tag length to allow more index combinations, and pooling
255 amplicons using different primer sets. In addition, although we used the COI barcode
256 for demonstration, our pipeline is expected to fit other marker genes with a length of
257 600-750bp well (e.g. V1-V4, V3-V6, and V5-V9 of 16S rRNA gene). Therefore, this
258 new approach can produce standard full-length barcodes cost efficiently, allowing
259 initiatives targeted at DNA barcoding biomes more foreseeable and thereby improving
260 our understanding of the biodiversity of our global ecosystems or improving DNA
261 based biosecurity programs.

262

263

264 **Author contributions**

265 C.Y. and S.L.L. conceived the idea and designed the methodology; C.Y. and G.M.
266 developed the program; D.G.B and P.A.O. collected the coral samples and extracted
267 DNA. C.Y. and S.T. collected, analyzed the data and drafted the manuscript; J.X.,
268 S.H.L., A.C. and X.C. conducted the library construction and sequencing. S.L.L. revised
269 the manuscript and all authors approved for final publication.

270

271

272 Acknowledgements

273 We thank Dr. Ding Yang from China Agricultural University for contributing samples.
274 We would like to thank Guojie Zhang and Qiye Li for sample and SE400 sequencing
275 coordination. This research was supported by Shenzhen Municipal Government of
276 China (NO. JCYJ20170817150755701) and Shenzhen Peacock Plan (No.
277 KQTD20150330171505310). Authors have no conflict of interest to declare.

278

279

280 Data accessibility

281 The data reported in this study are available in the CNGB Nucleotide Sequence
282 Archive (CNSA: <https://db.cngb.org/cnsa>; accession number CNP0000195) and the
283 EMBL repository (PRJEB29212, ERP111495).

284

285

286 References

287

288 Bączkiewicz, A., Szczecińska, M., Sawicki, J., Stebel, A. & Buczkowska, K. (2017)
289 DNA barcoding, ecology and geography of the cryptic species of *Aneura*
290 *pinguis* and their relationships with *Aneura maxima* and *Aneura mirabilis*
291 (Metzgeriales, Marchantiophyta). *PLOS ONE*, **12**, e0188837.

292 Bohmann, K., Evans, A., Gilbert, M.T.P., Carvalho, G.R., Creer, S., Knapp, M., Douglas,
293 W.Y. & De Bruyn, M. (2014) Environmental DNA for wildlife biology and
294 biodiversity monitoring. *Trends in Ecology & Evolution*, **29**, 358-367.

295 Cameron, S., Rubinoff, D. & Will, K.J.S.B. (2006) Who will actually use DNA barcoding
296 and what will it cost? **55**, 844-847.

297 Coghlan, M.L., Haile, J., Houston, J., Murray, D.C., White, N.E., Moolhuijzen, P.,
298 Bellgard, M.I. & Bunce, M. (2012) Deep sequencing of plant and animal DNA
299 contained within traditional Chinese medicines reveals legality issues and
300 health safety concerns. *PLoS genetics*, **8**, e1002657.

301 Collins, R.A., Armstrong, K.F., Meier, R., Yi, Y., Brown, S.D., Cruickshank, R.H.,
302 Keeling, S. & Johnston, C. (2012) Barcoding and border biosecurity: identifying
303 cyprinid fishes in the aquarium trade. *PLOS ONE*, **7**, e28381.

304 Cruaud, P., Rasplus, J.Y., Rodriguez, L.J. & Cruaud, A. (2017) High-throughput

305 sequencing of multiple amplicons for barcoding and integrative taxonomy.
306 *Scientific Reports*, **7**, 41948.

307 Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and
308 high throughput. *Nucleic Acids Research*, **32**, 1792-1797.

309 Geller, J., Meyer, C., Parker, M. & Hawk, H.J.M.e.r. (2013) Redesign of PCR primers
310 for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and
311 application in all - taxa biotic surveys. **13**, 851-861.

312 Hebert, P.D., Braukmann, T.W., Prosser, S.W., Ratnasingham, S., Ivanova, N.V.,
313 Janzen, D.H., Hallwachs, W., Naik, S., Sones, J.E. & Zakharov, E.V. (2018) A
314 Sequel to Sanger: amplicon sequencing that scales. *BMC Genomics*, **19**, 219.

315 Hebert, P.D., Cywinska, A. & Ball, S.L. (2003) Biological identifications through DNA
316 barcodes. *Proceedings of the Royal Society of London B: Biological Sciences*,
317 **270**, 313-321.

318 Ivanova, N.V., Dewaard, J.R. & Hebert, P.D. (2006) An inexpensive, automation -
319 friendly protocol for recovering high - quality DNA. *Molecular ecology notes*, **6**,
320 998-1002.

321 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton,
322 S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. &
323 Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop
324 software platform for the organization and analysis of sequence data.
325 *Bioinformatics*, **28**, 1647-1649.

326 Kerr, J.T. & Currie, D.J.J.C.B. (1995) Effects of human activity on global extinction risk.
327 **9**, 1528-1538.

328 Krehenwinkel, H., Kennedy, S., Pekár, S., Gillespie, R.G.J.M.i.E. & Evolution (2017) A
329 cost - efficient and simple protocol to enrich prey DNA from extractions of
330 predatory arthropods for large - scale gut content analysis by Illumina
331 sequencing. **8**, 126-134.

332 Krishnamurthy, P.K., Francis, R.A.J.B. & conservation (2012) A critical review on the
333 utility of DNA barcoding in biodiversity conservation. **21**, 1901-1919.

334 Li, H. & Durbin, R. (2009) Fast and accurate short read alignment with Burrows-
335 Wheeler transform. *Bioinformatics*, **25**, 1754-1760.

336 Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan, J., Li, N., Hu, X. & Liu,
337 B.J.B.i.f.g. (2012) Comparison of the two major classes of assembly algorithms:

338 overlap–layout–consensus and de-bruijn-graph. **11**, 25-37.

339 Liu, S., Li, Y., Lu, J., Su, X., Tang, M., Zhang, R., Zhou, L., Zhou, C., Yang, Q. & Ji, Y.

340 (2013) SOAPBarcode: revealing arthropod biodiversity through assembly of

341 Illumina shotgun sequences of PCR amplicons. *Methods in Ecology and*

342 *Evolution*, **4**, 1142-1150.

343 Liu, S., Yang, C., Zhou, C. & Zhou, X. (2017) Filling reference gaps via assembling

344 DNA barcodes using high-throughput sequencing—moving toward barcoding

345 the world. *GigaScience*, **6**, 1-8.

346 Marshall, E.J.S. (2005) Will DNA bar codes breathe life into classification? Biologists

347 hope that a simple tag on all forms of life, and even a hand-held reader, will

348 make classification a 21st century science. **307**, 1037-1038.

349 Meier, R., Wong, W., Srivathsan, A. & Foo, M. (2016) \$1 DNA barcodes for

350 reconstructing complex phenomes and finding rare species in specimen - rich

351 samples. *Cladistics*, **32**, 100-110.

352 Molnar, J.L., Gamboa, R.L., Revenga, C., Spalding, M.D.J.F.i.E. & Environment, t.

353 (2008) Assessing the global threat of invasive species to marine biodiversity. **6**,

354 485-492.

355 Neigel, J., Domingo, A. & Stake, J. (2007) DNA barcoding as a tool for coral reef

356 conservation. *Coral Reefs*, **26**, 487.

357 O. Folmer, M.B., W. Hoeh, R. Lutz, R. Vrijenhoek (1994) DNA primers for amplification

358 of mitochondrial cytochrome c oxidase subunit I from diverse metazoan

359 invertebrates. *Mol Mar Biol Biotechnol*, **3**, 294-299.

360 Ratnasingham, S. & Hebert, P.D. (2007) BOLD: The Barcode of Life Data System

361 (<http://www.barcodinglife.org>). *Molecular ecology notes*, **7**, 355-364.

362 Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. (2016) VSEARCH: a versatile

363 open source tool for metagenomics. *Peerj*, **4**, e2584.

364 Shokralla, S., Porter, T.M., Gibson, J.F., Dobosz, R., Janzen, D.H., Hallwachs, W.,

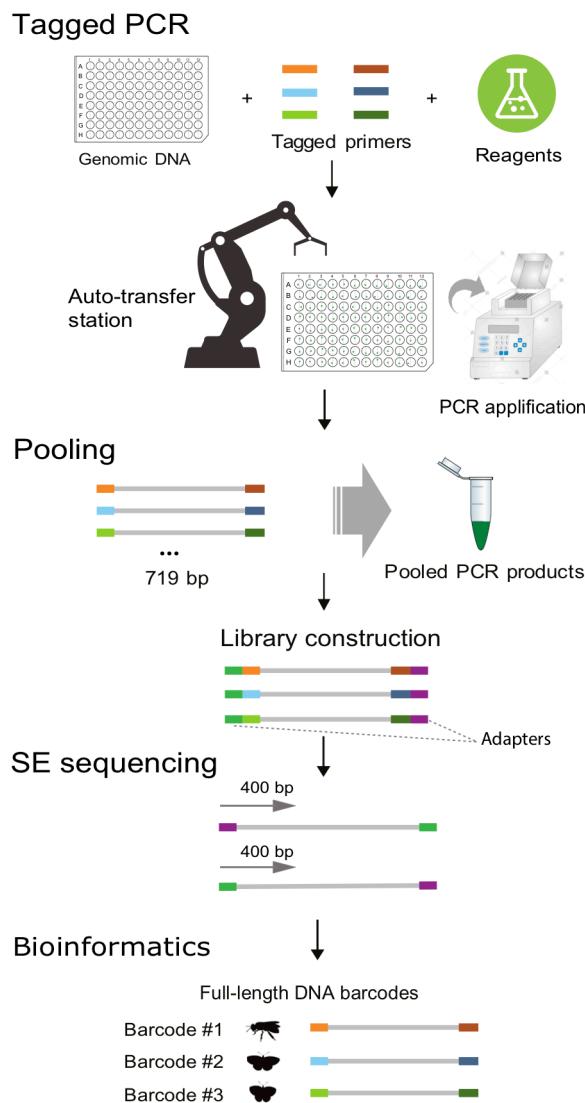
365 Golding, G.B. & Hajibabaei, M.J.S.r. (2015) Massively parallel multiplex DNA

366 sequencing for specimen identification using an Illumina MiSeq platform. **5**,

367 9687.

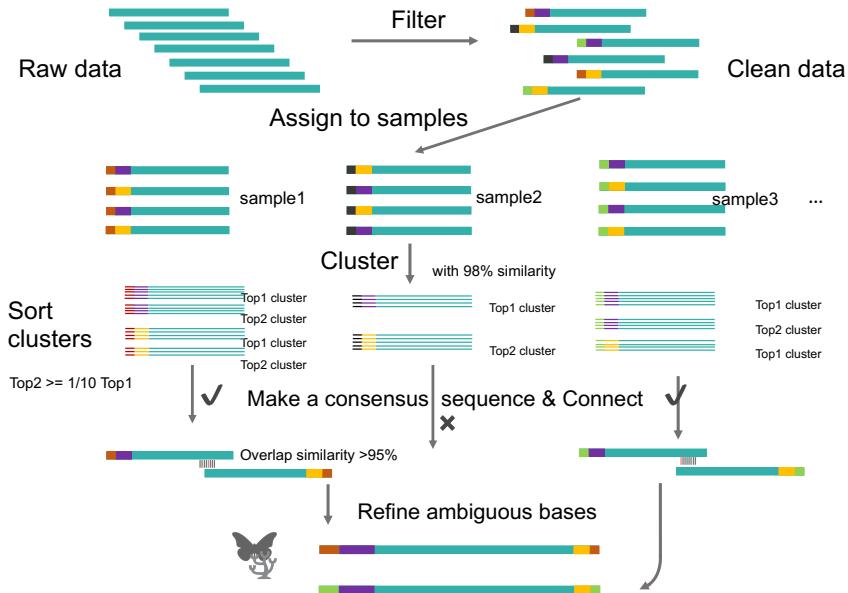
368 Symondson, W.O. (2002) Molecular identification of prey in predator diets. *Mol Ecol*,

369 **11**, 627-641.


370 Tang, M., Hardman, C.J., Ji, Y., Meng, G., Liu, S., Tan, M., Yang, S., Moss, E.D., Wang,

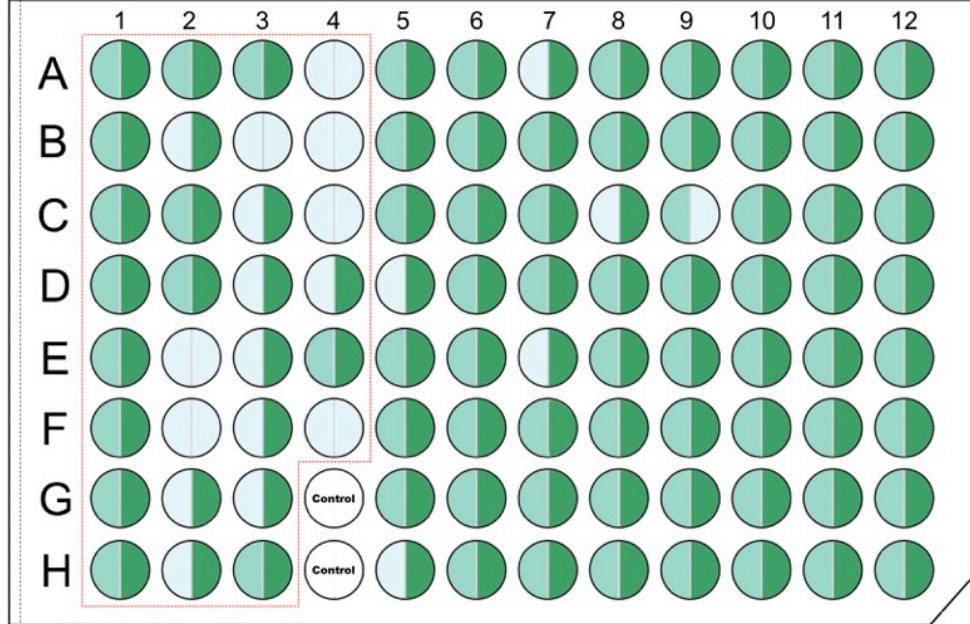
371 J. & Yang, C. (2015) High - throughput monitoring of wild bee diversity and
372 abundance via mitogenomics. *Methods in Ecology and Evolution*, **6**, 1034-1043.
373 Thomsen, P.F. & Willerslev, E. (2015) Environmental DNA – An emerging tool in
374 conservation for monitoring past and present biodiversity. *Biological
375 Conservation*, **183**, 4-18.
376 Tilman, D., Isbell, F. & Cowles, J.M. (2014) Biodiversity and ecosystem functioning.
377 *Annual review of ecology, evolution, and systematics*, **45**, 471-493.
378 Valentini, A., Pompanon, F. & Taberlet, P. (2009) DNA barcoding for ecologists. *Trends
379 Ecol Evol*, **24**, 110-117.
380 Von Bubnoff, A.J.C. (2008) Next-generation sequencing: the race is on. **132**, 721-723.
381 Yoccoz, N.G. (2012) The future of environmental DNA in ecology. *Molecular Ecology*,
382 **21**, 2031-2038.
383
384
385

386 **Supporting Information**

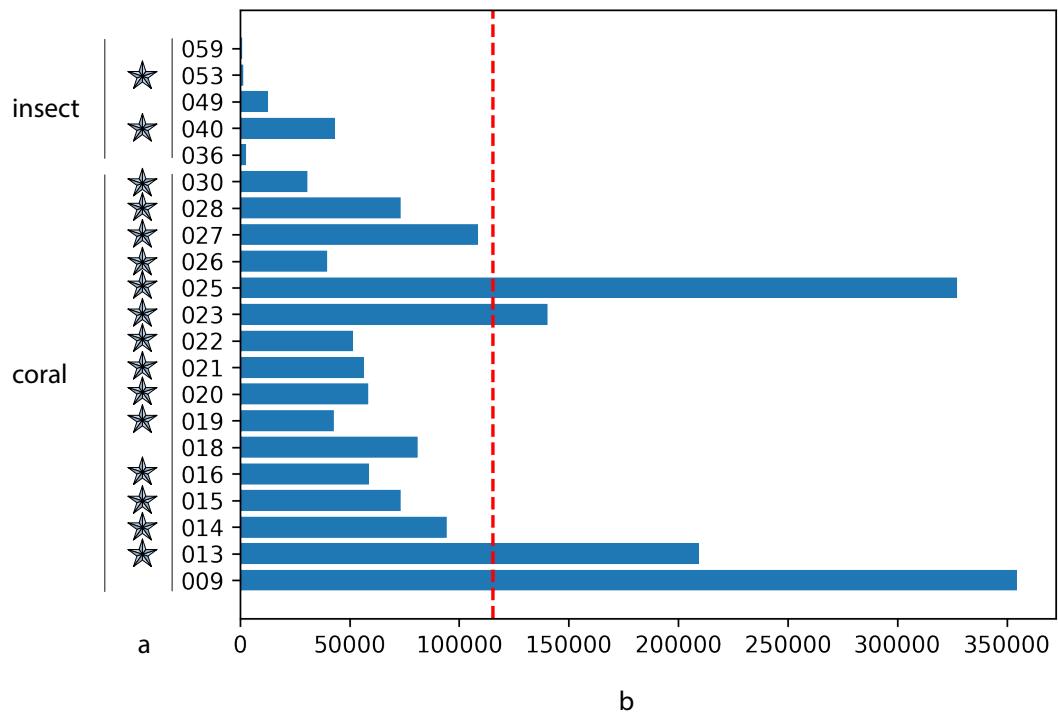

387
388 **Fig. 1:** Schematic illustration of the HIFI-SE barcode pipeline.
389 **Fig. 2:** HIFI-SE barcode assembly pipeline.
390 **Fig. 3:** Results of Sanger sequencing (left semicircle) and HIFI-SE barcode
391 assemblies (right semicircle) arranged in a 96-well plate.
392 Supplementary Table S1. Sequence of the tagged primers
393 Supplementary Table S2. Sample Information
394 Supplementary Table S3. Accuracy results of HIFI-SE barcodes compared with
395 Sanger
396 Supplementary Data 1. Results of HIFI-SE400 Barcodes
397 Supplementary Data 2. Results of Sanger barcodes.
398 Supplementary File 1. Library construction protocol of BGISEQ-500 SE400 module.
399 Supplementary File 2. The manual of HIFI-SE package.
400 Fig. S1. Read counts of the Sanger barcode failed samples. Stars indicate samples
401 of which short amplicon(s) was detected in the HIFI assemblies. Short amplicons are
402 those clusters of abundance >10 and of length < 600bp. The bar plot demonstrates
403 the number of assigned reads for the barcode failed samples. The red dashed line

404 shows the average value of all the successful samples and no significant difference
405 was detected between the two groups (P value of 0.232, Student's t-Test)
406 Fig. S2. Discrepancies between Sanger sequences and HIFI-SE barcodes. Entropy
407 weight was calculated based on the strength of read depth by aligning the SE400
408 reads onto the assembled HIFI-SE barcodes, showing differences between
409 ambiguous Sanger base-calling and specific nucleotide identified in HIFI-SE barcodes
410 (A) and potential heteroplasmy (B). In addition, several N bases were present of
411 insertion in Sanger sequence (C), also two N bases in HIFI sequences (D)
412

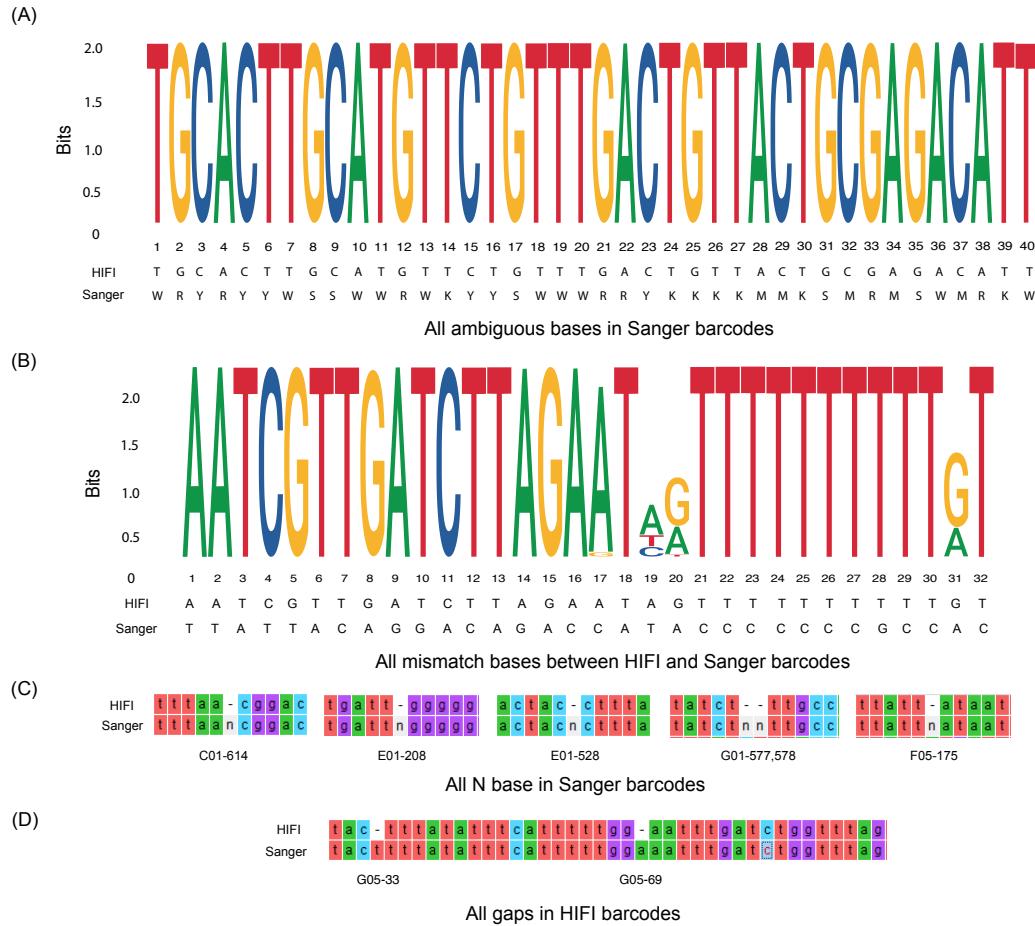
413
414


Fig. 1: Schematic illustration of the HIFI-SE barcode pipeline.

415


416 **Fig. 2:** HIFI-SE barcode assembly pipeline. The colored bars from left to right represent tags, primers
417 (purple for 5' end and orange for 3' end) and barcode sequences, respectively.

418



419

420 **Fig. 3: Results of Sanger sequencing (left semicircle) and HIFI-SE barcode assemblies (right**
421 **semicircle) arranged in a 96-well plate.** Gray represents failure; light and dark green represent
422 success of Sanger and HIFI-SE respectively. Coral samples are arranged in wells from A01 to F04
423 (framed by the red tetragon). Insects are arranged in wells from A05 to H12.

Fig. S1. Read counts of the Sanger barcode failed samples. Stars indicate samples of which short amplicon(s) was detected in the HIFI assemblies. Short amplicons are those clusters of abundance >10 and of length < 600bp. The bar plot demonstrates the number of assigned reads for the barcode failed samples. The red dashed line shows the average value of all the successful samples and no significant difference was detected between the two groups (P value of 0.232, Student's t-Test).

Fig. S2. Discrepancies between Sanger sequences and HIFI-SE barcodes. Entropy weight was calculated based on the strength of read depth by aligning the SE400 reads onto the assembled HIFI-SE barcodes, showing differences between ambiguous Sanger base-calling and specific nucleotide identified in HIFI-SE barcodes (A) and potential heteroplasmy (B). In addition, several N bases were present of insertion in Sanger sequence (C), also two N bases in HIFI sequences (D).