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Abstract  18 

Background. Current diagnostics are inadequate to meet the challenges presented by co-19 

infection with Mycobacterium tuberculosis (Mtb) and HIV, the leading cause of death for 20 

HIV-infected individuals. Improved characterisation of Mtb/HIV coinfection as a distinct 21 

disease state may lead to better identification and treatment of affected individuals. 22 

 23 

Methods. Four previously published TB and HIV co-infection related datasets were used to 24 

train and validate multinomial machine learning classifiers that simultaneously predict TB 25 
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and HIV status. Classifier predictive performance was measured using leave-one-out cross 26 

validation on the training set and blind predictive performance on multiple test sets using area 27 

under the ROC curve (AUC) as the performance metric. Linear modelling of signature gene 28 

expression was applied to systematically classify genes as TB-only, HIV-only or combined 29 

TB/HIV. 30 

 31 

Results.  The optimal signature discovered was a single 10-gene random forest multinomial 32 

signature that robustly discriminates active tuberculosis (TB) from other non-TB disease 33 

states with improved performance compared with previously published signatures (AUC: 34 

0.87), and specifically discriminates active TB/HIV co-infection from all other conditions 35 

(AUC: 0.88).  Signature genes exhibited a variety of transcriptional patterns including both 36 

TB-only and HIV-only response genes and genes with expression patterns driven by 37 

interactions between HIV and TB infection states, including the CD8+ T-cell receptor LAG3 38 

and the apoptosis-related gene CERKL.  39 

 40 

Conclusions. By explicitly including distinct disease states within the machine learning 41 

analysis framework, we developed a compact and highly diagnostic signature that 42 

simultaneously discriminates multiple disease states associated with Mtb/HIV co-infection. 43 

Examination of the expression patterns of signature genes suggests mechanisms underlying 44 

the unique inflammatory conditions associated with active TB in the presence of HIV.  In 45 

particular, we observed that disregulation of CD8+ effector T-cell and NK-cell associated 46 

genes may be an important feature of Mtb/HIV co-infection.  47 

 48 

Keywords: Tuberculosis; HIV; co-infection; machine learning; multinomial; interferon; 49 

microarray; blood transcription 50 

  51 
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Background  52 

Almost ¼ of the global population is infected with Mycobacterium tuberculosis (Mtb) [1] and 53 

over 1,600,000 people succumbed to active tuberculosis disease (TB) in 2016 alone[2]. TB 54 

ordinarily requires at least six months of antibiotic treatment in order to remove all traces of 55 

the infection, with drug resistant strains requiring two years of intensive treatment[3]. 56 

Individuals with HIV/AIDS are at particularly high risk of active TB, up to 30 times higher 57 

than for HIV- individuals prior to the start of antiretroviral therapy(ART)[4]. This relative 58 

risk declines after the initiation of ART, but still remains 2-3 times higher than the general 59 

population, and the biological mechanisms underlying this increased risk remain unclear. 60 

 61 

The current standard for diagnosis of active TB is microscopic or culture-based detection of 62 

M. tuberculosis bacteria in a patient-derived sputum sample. Sputum-based tests suffer from 63 

several major limitations, including the amount of time it takes to culture slow-growing TB, 64 

and the necessity of having sufficient TB bacteria in the sputum for detection. This is a further 65 

issue for children and TB cases in HIV+ patients[5] where low numbers of TB bacilli in the 66 

sputum may give a false-negative result. The Xpert MTB/RIF test[6] has enabled rapid TB 67 

diagnosis by detecting the presence of M.tb-specific DNA in sputum, but the sensitivity of 68 

this test is diminished in sputum culture-negative TB[7]. Sputum also represents a dangerous 69 

vector of infection for health-care workers analysing and handling sputum samples, due to the 70 

potential presence of live M. tb bacteria[8]. New TB diagnostic methods that do not 71 

necessitate the detection of large numbers of TB bacilli in sputum are therefore critically 72 

required to serve populations at high risk of TB. Blood-based signatures are an attractive 73 

alternative, as blood is a clinically accessible readout of the immunological state of the body. 74 

 75 

Whole blood gene expression signatures that are diagnostic for TB have been described in 76 

many previous studies[9–12], but these signatures are generally focused on a single binary 77 

comparison, e.g. latent TB vs active TB or active TB vs other diseases. In this study, we 78 
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develop multi-class multinomial signatures that explicitly model the TB and HIV state of each 79 

patient.  Our analysis integrates published data from several cohorts and evaluate a range of 80 

machine-learning approaches to generate a multinomial model that specifically discriminates 81 

TB from non-TB disease states while simultaneously discriminating HIV+ TB as a unique 82 

disease state.  83 

Figure 1 shows the analytical plan for this work.  84 

  85 
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Methods 86 

All computational and statistical analyses were performed using the R language for statistical 87 

computing[13]. 88 

Microarray Normalisation, Probe Filtering and Data Preparation 89 

Microarray data from four TB/HIV cohorts were downloaded from GEO: GSE37250, 90 

GSE39941, GSE19491, GSE42834. The precise sample compositions of each of these 91 

datasets are provided in Table 1 (GSE37250) and Table 3 (GSE39941, GSE19491, 92 

GSE42834). 93 

Microarray datasets were downloaded in the form of GEO series matrix files, background 94 

subtracted and quantile normalized. All reference and variable probe selection was performed 95 

using the GSE37250 Malawi adult data. 20 reference probes were selected by eliminating any 96 

probe with any expression value below the absolute value of the smallest expression value 97 

observed in the dataset. References were then selected as the 20 remaining probes with the 98 

smallest inter-quartile range (IQR) of expression in the dataset.  99 

To pre-select probes likely to be discriminatory for TB, only probes with an IQR of above 1.5 100 

(log2 normalised expression) were kept. This resulted in 554 candidate model-variable probes 101 

to be used in the model. Additional File 1 lists the variable and reference probes used in this 102 

work. 103 

Before model training, each sample in every dataset was normalised by calculating the mean 104 

expression level for the reference probes, and subtracting this mean reference level from each 105 

model-variable probe. The GSE19491 dataset, which was measured using the Illumina 12v3 106 

platform as opposed to the Illumina 12v4 platform used for the other datasets, was missing 4 107 

of the 20 selected reference probes. The remaining 16 probes alone were therefore used to 108 

normalise this dataset. 109 

 110 
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Machine-Learning Model Training, Feature Shrinking and Model Selection 111 

Five distinct machine-learning algorithms were used to train predictive models on the adult 112 

South African dataset, using the R caret[14]package. These were:  113 

[1] Random Forest (RF) (R randomForest package[15]), is an algorithm based on training an 114 

ensemble of decision trees using randomly split subsets of the training samples and training 115 

variables, all of which then ‘vote’ to classify new samples. 116 

[2] Support Vector Machine (SVM) using RBF kernel (R kernlab[16] package). SVMs 117 

attempt to find the optimal linear hyperplane decision boundary separating the two classes in 118 

n-dimensional space, where n is the number of features the SVM is trained on. The RBF, or 119 

Radial Basis Function kernel projects this n-dimensional feature space into a higher 120 

dimension to allow the identification of a linear decision boundary in a higher dimensional 121 

space if one cannot be found in the input n-dimensional space. 122 

[3] Neural Networks (NN) (R nnet[17] package). NNs are comprised of a network of input 123 

nodes (1 per-feature), connected to output nodes (1 per possible outcome) via one or more 124 

‘hidden’ layers of nodes. Each node represents a logistic regression function, based on the 125 

input value, and the weight given to each input node (which in turn determines the output 126 

classification) is determined during training. 127 

[4] Elastic-net Logistic Regression (R glmnet[18] package), is a form of logistic regression 128 

with regularisation of the linear coefficients applied to control overfitting.  129 

[5] K-Nearest Neighbor (KNN) (R caret[14] package), classifies samples by determining the 130 

‘k’ most similar samples by Euclidian distance between sample genes and having them ‘vote’ 131 

on the classification.  132 

All of these algorithms can be trained to produce binary (exactly 2 distinct classes, such as TB 133 

vs LTB) or multinomial (more than 2 classes) classifier models. 134 

In this study, each algorithm was trained using normalised microarray data comprising all 554 135 

most-variable probes (selected as described above) on each of four subsets of samples of the 136 

adult training data. These subsets were 1) the entire dataset, including TB, latent TB (LTB) 137 
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and other disease (OD) samples including HIV+ and HIV- samples, 2) All TB and LTB 138 

samples including HIV+ and HIV- samples (i.e. OD excluded), 3) All HIV+ TB and LTB 139 

samples, (i.e. all HIV- and OD excluded), 4) All HIV- TB and LTB samples (i.e. all HIV+ 140 

and OD excluded). Models were trained to simultaneously predict both the TB and HIV status 141 

of each training sample, i.e. models trained on subset 1) explicitly classified samples as one of 142 

6 classes: TB:HIV+, TB:HIV-, LTB:HIV+, LTB:HIV-, OD:HIV+, or OD:HIV-; models 143 

trained on subset 2)  classified samples as one of 4 classes TB:HIV+, TB:HIV-, LTB:HIV+,  144 

or LTB:HIV-, and models trained on subsets 3) and 4) were binary models that classified 145 

samples as TB or LTB only, as HIV status was constant in these subsets.  146 

After models were trained on the initial 554 probes, the models were sequentially shrunk to 147 

obtain probe-reduced models that only comprised the most important 250, 50, 25, 15, or 10 148 

probes from the initial set. Probe importance rankings were calculated using the varImp 149 

function supplied by the caret package. This function implements algorithm-specific methods 150 

for evaluating how much each probe contributes to the classification performance of the 151 

model. In the case of random forests, the difference in out-of-bag error[19] with and without 152 

the inclusion of a single probe was used to rank the probes in order of importance. For 153 

Elastic-net logistic regression models, the probe variable coefficient was used to rank the 154 

probes. For Neural Networks, Garson’s algorithm[20] was used to calculate probe importance 155 

from network weights. For Random Forests, probe importance was measured as the 156 

difference in predictive performance comparing all trees that contain the probe with trees that 157 

lack that probe. For the remaining modelling approaches (SVM, KNN),  the univariate 158 

predictive power of the individual probe was used to rank importance in an algorithm-159 

independent way. 160 

For each algorithm-subset combination, the most important 250 out of the original 554 probes 161 

were selected, the model re-trained on this subset of probes, and this probe-reduced model 162 

used to predict the left-out sample. This procedure was then repeated to iteratively shrink each 163 

model to contain the 50, 25, 15 and 10 most important probes from the previous step. This 164 

entire process was carried out for each held-out sample in the cross validation so that the 165 
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sequential shrinking and prediction steps were performed independently for every held out 166 

sample.  167 

 168 

Training performance was assessed using leave-one-out cross validation (LOOCV). Initially, 169 

a single sample from the overall training set was held out, then a classifier model was trained 170 

on the remaining samples, and used to predict the status of the held-out sample. This 171 

procedure was repeated for every training sample, and model performance was then 172 

calculated using predictions on the held-out samples. Areas under the ROC curves (AUCs) 173 

for model discrimination of TB vs non-TB samples in the training subset were calculated for 174 

predictions on the held out samples, and this was used as the performance metric for initial 175 

model structure selection. For models that predicted more than 2 classes, TB predictions were 176 

calculated as the sum of TB-related prediction classes, e.g for 6 class models the overall TB 177 

prediction value was calculated as the TB:HIV+ prediction value plus the TB:HIV- prediction 178 

value. 179 

Only “small” models (i.e., those consisting of 10, 15 or 25 probes) were considered for 180 

application to the test sets. To choose the algorithm/class-complexity/training set between 181 

these 3 probe sizes, initially the 10-probe model was selected. If either the 15 or 25-probe 182 

model showed significantly better LOOCV performance on the training set, that model was 183 

used. Significance was evaluated by comparing ROC AUCs using the roc.test function from 184 

the pROC[21] R package with a threshold of p<0.05. 185 

 186 

Model Predictions on New Datasets. 187 

After models were selected by recursive LOOCV evaluation as described above, each 188 

selected model was retrained using the most-commonly selected features from the LOOCV 189 

and re-parameterised on the entire relevant training data subset. Predictions were made using 190 

the predict function from the caret package to calculate class probabilities, and prediction 191 

accuracies were assessed by calculating TB vs non-TB ROC curves using the R pROC 192 
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package. As described for the LOOCV procedure above, in the case ofmodels that predicted 193 

more than 2 classes, TB predictions were calculated as the sum of TB-related prediction 194 

classes, e.g for 6 class models the overall TB prediction value was calculated as the TB:HIV+ 195 

prediction value plus the TB:HIV- prediction value.Performance of the new signatures on the 196 

test sets was benchmarked against the performance of two previously-reported TB gene 197 

signatures: the three gene multi-cohort diagnostic signature developed by Sweeney et al[27], 198 

which we term the ‘threeGene’ signature; and our 16-gene correlate of TB risk [23], which 199 

we term the ‘ACS’ signature (referring to the Adolescent Cohort Study from which the 200 

signature was derived). For predictions using the threeGene signature, datasets were 201 

downloaded in raw non-normalised format from GEO before being quantile normalised and 202 

baseline corrected using the log-exponential method using the R limma package[22]. The 203 

threeGene score was then directly calculated as (GBP5 + DUSP3)/2 – KLF2. For the ACS 204 

model predictions, datasets were prepared and normalised and scored as described in[23]. 205 

Linear modelling of disease state 206 

Linear regression models were fit to signature genes in order to assess the contribution of TB 207 

and HIV status to gene expression. Expression of each gene was fit to a linear regression 208 

model (R lm function) of the form: 209 

 𝐸𝑥𝑝𝑟 = 𝑎 ∗ 𝑇𝐵௦௧௔௧௨௦ + 𝑏 ∗ 𝐻𝐼𝑉௦௧௔௧௨௦ + 𝑐 ∗ 𝑇𝐵௦௧௔௧௨௦: 𝐻𝐼𝑉௦௧௔௧௨௦ 210 

TB and HIV status were encoded as binary variables with 1 meaning active TB/HIV+ and 0 211 

meaning latent TB/HIV-. Non-TB other disease samples were excluded from this analysis. 212 

The p-value of the model coefficients a, b and c were calculated using the R summary.lm 213 

function, and a false discovery rate correction applied.  214 

 215 

Gene set enrichment analysis 216 

Gene set enrichment analysis was performed using the R tmod[24] package, using the blood 217 

transcriptional gene sets previously described by Li et al[25] and Chaussabel et al[26]. P-218 
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values were calculated using the hypergeometric test as implemented in the tmodHGtest 219 

function, using all included microarray gene symbols as the background. 220 

Results  221 

Development, cross-validation and selection of multinomial machine learning 222 

models for predicting TB and HIV. 223 

We used data from a previously-published cohort [9] of 537 adults from Malawi and South 224 

Africa, comprised of samples from individuals diagnosed with active tuberculosis (TB), latent 225 

tuberculosis (LTB) or other non-TB diseases with clinical symptoms consistent with TB 226 

(OD). Roughly half of these individuals were also HIV+ (Table 1). These transcriptional 227 

profiles were used to develop and test multinomial machine learning approaches to 228 

specifically identify each symptomatic subset. 229 

Machine learning models were trained on the South African adult dataset described in Table 230 

1, with the Malawian adults used as an independent test set. In order to focus on the strongest 231 

signal probes, an initial down-selection step was performed where only probes with a log2 232 

normalised expression interquartile range of at least 1.5 in the South African set were 233 

considered for model training (554 probes). 234 

Models were trained to classify all or relevant subsets of the data into 2 (binary classifier), 4 235 

(multinomial), or 6 (multinomial) classes, using a diverse panel of machine-learning 236 

algorithms. Two-class models were trained to classify a sample as either active or latent TB. 237 

Two different two class models were trained for each algorithm, one on HIV- TB and LTB 238 

samples only, and another on HIV+ TB and LTB samples only. Four-class models were 239 

trained to classify a sample as active or latent TB and as HIV+ or HIV- simultaneously, using 240 

all TB and LTB samples, both HIV+ and HIV-. Six-class models were trained to classify a 241 

sample as active TB, latent TB or other disease, and as HIV+ or HIV-, and were trained on 242 

the entire dataset, including TB, LTB and OD, both HIV+ and HIV-. Machine learning 243 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/497842doi: bioRxiv preprint 

https://doi.org/10.1101/497842
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 11 - 

algorithms used were Random Forests, Neural Networks, Support Vector Machines, Elastic-244 

Net Logistic Regression, and k-Nearest Neighbours.  245 

Initially, each model was trained using all 554 pre-selected probes. Starting from this initial 246 

model, the most important model probes were selected and the models recursively shrunk to 247 

use smaller numbers of probes (see Methods). Leave-one-out cross validation (LOOCV) 248 

performance on the training set was evaluated by measuring area under the ROC curve 249 

(AUC). Figure 2 shows the results of the LOOCV and recursive shrinking for each algorithm 250 

( 251 

Figure 1). LOOCV AUCs are uniformly strong, almost all above 0.8. LOOCV performance of 252 

multinomial 4- and 6- class models is similar to that of the binary classification models. 253 

An ideal model shows high predictive performance based on a small number of interpretable 254 

genes. A set of small models for further analysis were chosen by initially selecting the 255 

smallest (10 probe) model for each algorithm and classification complexity, and only 256 

selecting a larger model if it showed significantly stronger LOOCV performance. As 257 

performance, illustrated in  258 

Figure 1 (a) and (b), was largely uniform across model sizes, the 10 probe models were 259 

universally selected. Table 2 lists the training cross-validation performance of each of these 260 

models, in terms of their area under the ROC curve. From Table 2, in three of the four 261 

complexity cases for the South Africa training set, Random Forest was the highest-performing 262 

algorithm, thus Random Forest models were selected for all further analyses. 263 

A six-class multinomial model outperforms previously published signatures for 264 

identifying active TB in several independent test sets 265 

The Malawian adults were used as an independent test set for the selected models.  266 

Figure 3 (A) shows ROC curves representing the predictive ability of South Africa-derived 267 

models to specifically identity HIV- and HIV+ active TB samples vs latent TB and other 268 

diseases. These models were accompanied by two previously-reportedTB signatures: our 16-269 

gene correlate of TB risk [23], termed here as the ‘ACS’ signature, and the three-gene multi-270 
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cohort diagnostic signature developed by Sweeney et al[27], termed here as the ‘threeGene’ 271 

signature. The multinomial six-class Random Forest model outperformed all other models 272 

(AUC: 0.88, sensitivity 80%, specificity 82%), although performance of the threeGene model 273 

was very similar (AUC: 0.87 vs AUC 0.88). 274 

To more thoroughly validate the six-class multinomial model, classification performance was 275 

evaluated using three additional previously-published whole-blood microarray datasets[10–276 

12]. To reduce technical sources of variability as much as possible, test sets were selected that 277 

used the same Illumina HumanHT-12 microarray platform as was used for the Kaforou 278 

cohort. These additional test sets comprised a broad range of samples, including adult and 279 

childhood TB; TB vs other inflammatory, bacterial and pulmonary diseases; and samples 280 

taken from a range of geographical locations (Table 3). The two-class HIV- model was also 281 

included as a comparator for the six-class multinomial model.  282 

 283 

Figure 3 (B) shows the ROC curves for the 10-gene six-class model, the 10-gene binary 284 

model and the two previously-described external signatures. Again, the six-class 10-gene 285 

signature was the overall top performer (AUC 0.88, sensitivity 80%, specificity 82%). This is 286 

significantly better predictive performance than the top external model, the threeGene 287 

signature (p=0.006 by a single tailed DeLong[28] test). Thus, multinomial modelling of TB 288 

disease states significantly improved the accuracy of discrimation of TB vs. non-TB samples. 289 

The 10-gene multinomial signature identifies HIV+TB as a distinct disease state 290 

To further evaluate the performance of the 10-gene six-class signature, particularly the 291 

potential of this signature to perform multi-class discrimination, we tested whether it can 292 

specifically identify HIV+ TB samples from all other samples in the Malawi test set ( 293 

Figure 4 (A)). The signature accurately discriminated HIV+ TB from HIV- TB samples 294 

(AUC: 0.88) and HIV+ TB samples from all other samples (HIV+ TB, HIV-/+ latent TB, 295 

HIV-/+ other diseases, AUC: 0.86). This result suggests that HIV+ TB may exist as a distinct 296 

transcriptional state. Box- and dot-plots of normalised expression for the 10 genes in the 297 
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multinomial signature for active and latent TB individuals in the combined South-African and 298 

Malawian cohorts, stratified by TB and HIV status reveal a diverse pattern of transcriptional 299 

responses ( 300 

Figure 4 (B)).  301 

Using HIV- latent TB samples as a baseline, 8 of the 10 signature genes are either 302 

downregulated in both active TB and HIV+ patients, or upregulated in both active TB and 303 

HIV+ patients. Two exceptions are LAG3 and CERKL. To more quantitatively determine the 304 

transcriptional patterns of these genes, linear models with gene expression as a function of TB 305 

and HIV status were fit, including a TB:HIV interaction term. Genes with significant 306 

(FDR<0.01) TB or HIV model coefficients were identified as TB- or HIV- independent 307 

disease signature genes, and genes with both TB and HIV significant coefficients were 308 

identified as overlapping signature genes ( 309 

Figure 4 (C)). Three of the ten genes in the signature were independent disease signature 310 

genes, with CD160 being the sole HIV-specific gene and CD36 and ZDHHC19 as the only 311 

TB-specific genes. The largest group of signature genes exhibits a unidirectional additive 312 

expression pattern, either downregulated in both TB and HIV (CD40LG, ID3) or upregulated 313 

in both TB and HIV (GBP6, C1QB). Interestingly, the CD8+ immune checkpoint gene LAG3 314 

is upregulated in HIV+ individuals but downregulated in active TB. Two genes exhibit a 315 

significant interaction term: FCGR1B and CERKL. This interaction suggests crosstalk 316 

between the TB and HIV transcriptional response. In the case of FCGR1B, transcription 317 

reaches a saturated level in HIV- active TB that is not exceeded in HIV+ active TB. As 318 

FCGR1B is a cell surface receptor specific to macrophages, monocytes and neutrophils [EBI 319 

Expression Atlas, www.ebi.ac.uk/gxa], this saturation point may correspond with a maximum 320 

surface density of receptor or a maximal blood concentration for these cell types. CERKL, a 321 

negative regulator of apoptosis caused by oxidative stress[29], shows a more complex 322 

regulatory pattern where HIV- active TB is upregulated compared to all other states.  323 

 324 
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Biological pathways associated with divergent TB/HIV expression patterns 325 

reveal HIV+ TB as a distinct disease state. 326 

 Analysis of the genes comprising the 10-gene six-class signature identified LAG3 and 327 

CERKL as exhibiting distinct expression patterns.  As the signature genes reflect a minimal 328 

set of genes necessary to classify disease states, we hypothesised that there may be other 329 

genes closely correlated with LAG3 and CERKL that could shed light on the biological 330 

processes driving the opposing regulation they exhibit. 331 

 The expression of LAG3 was correlated very tightly (Spearman ρ > 0.8, p< 1e-32), with a set 332 

of eight genes similarly downregulated in active TB and upregulated in HIV (Table S2,  333 

Figure 5). Mapping these genes to blood transcriptional genes sets[25,26] revealed significant 334 

enrichment for cytotoxic T-cell and NK-cell pathways (Table S3), suggesting that 335 

dysregulation of immune effector cells is a distinguishing characteristic of HIV+ active TB 336 

when compared to HIV- TB, or HIV+ latent TB. 337 

In contrast, CERKL does not show similarly strong correlations (Spearman ρ>0.8) with any 338 

individual gene. At a more permissive correlation threshold (ρ>0.6), CERKL is correlated 339 

with 9 genes  (Table S4), but this set of genes does not show significant enrichment for any 340 

gene set. Genes most strongly correlated with CERKL are the ribosomal-RNA processing 341 

gene HEATR1 and the ubiquitin ligase TRIM13. 342 

Discussion  343 

In a clinical setting, a major challenge faced regarding TB diagnosis is to discriminate active 344 

TB from other diseases presenting with similar symptoms. The ROC curves shown in  345 

Figure 3 shows that the 10 gene six-class signature identified in this work significantly 346 

improves on existing signatures for identifying active TB in a wide variety of contexts, i.e. 347 

active TB vs healthy samples, active TB vs latent TB and active TB vs other diseases, with or 348 

without the presence of HIV co-infection. A major advantage of the meta-analytical approach 349 

taken here is the testing of each signature on a combination of cohorts at once. While ROC 350 
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analysis can reveal the optimal classification performance on a single cohort, it is still 351 

necessary to choose an operating point or threshold to transform a continuous score into a 352 

dichotomous classifier. It is possible for a predictive signature to show a high sensitivity and 353 

specificity on many individual cohorts separately, but fail to recreate this performance when 354 

samples from all cohorts are combined. This is due to the signature score potentially having a 355 

differing optimal classification threshold on each cohort and will not be revealed by separate 356 

ROC analysis of each cohort. By combining cohorts, signatures with a stable “global” 357 

operating score are revealed. Thus, it can be seen in  358 

Figure 3 (B) that the across every cohort, the ten-gene six-class signature predicts with a 359 

sensitivity of 80% and specificity of 78%. 360 

 361 

Explicit modelling of each cohort disease group has allowed us to hone in on transcriptional 362 

processes that specifically distinguish HIV+ active TB from HIV- active TB. Characterisation 363 

of a specific transcriptional state for HIV+ TB would improve understanding of how HIV 364 

increases TB risk, as well as illuminating on essential elements of an effective host response 365 

to TB missing from HIV+ TB patients. This analysis identified the CD8+ inhibitory 366 

checkpoint receptor LAG3. Linear modelling reveals significant upregulation of LAG3 in 367 

HIV infection, but also significant downregulated of LAG3 in active TB compared with latent 368 

TB ( 369 

Figure 4 (B)). Upregulation of LAG3 is known to suppress T-cell activity in chronic HIV 370 

infection[30], and these exhausted T-cells show impaired production of  the cytokines such as 371 

IL-2, IFNγ, and TNF, associated with an effective host response to TB[31]. LAG3 expression 372 

is also closely correlated with genes including the CD8A receptor; the CD8+ T-cell secreted 373 

chemokine CCL5/RANTES; the NK-cell granule gene NKG7, the CD8+ differentiation 374 

transcription factor EOMES, and the lysosomal membrane protein MCOLN2. All of these 375 

genes are involved in CD8+ or NK-cell effector activities. Thus, further investigation of a key 376 

signature gene has revealed that both innate (NK cell) and adaptive (CD8+ T-cell) effector 377 
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function appears to be suppressed in HIV+ active TB relative to HIV- active TB, suggesting 378 

at least one mechanism for increased TB risk in HIV+ individuals.  379 

Interestingly, another CD8+ T-cell inhibitory checkpoint receptor, CD160, was also selected 380 

as a signature gene. CD160 shows a similar pattern of expression to LAG3: upregulated in 381 

HIV+ patients, but downregulated in active TB. However, this downregulation in active TB is 382 

much less pronounced than for LAG3, and the TB coefficient was not found to be significant 383 

in linear modelling (FDR=0.08). 384 

Overexpression of CERKL has been shown to protect cells from apoptosis while under 385 

oxidative stress [29]. The expression pattern of CERKL, which shows lower expression in 386 

HIV+ active TB compared to both HIV- active TB and HIV+ latent TB indicates that 387 

HIV/Mtb co-infected patients may have impaired protection against cellular death due to 388 

oxidative stress. This expression pattern hints at a complex balance of apoptotic signalling in 389 

HIV/TB co-infection that does simply mirror the interferon-driven inflammatory response. 390 

Conclusions  391 

We have identified a broadly applicable active TB-specific 10-gene multinomial signature by 392 

validating candidate signatures with successively harder problems: training a diverse panel of 393 

candidate models on an adult test set; making blind predictions an independent adult test set 394 

from a different geographical cohort, albeit from the same study; making blind predictions on 395 

the combination of the adult test set with three additional independent cohorts; and finally 396 

testing for discrimination of HIV+ TB from HIV- TB. 397 

While the signature shown here does not reach the diagnostic sensitivity required to be a 398 

practical alternative to sputum culture for clinical use (>98% sensitivity for culture positive 399 

TB)[3], it represents an incremental performance improvement over previously described 400 

signatures. All of the blood-based signatures evaluated in this work (the ten-gene six-class 401 

signature, the threeGene signature and the ACS signature) show similar performance on the 402 

test datasets examined here, performance which falls below that observed with traditional 403 

sputum culture. While whole blood gene expression signatures do not appear likely to 404 
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approach the performance of liquid culture, it is possible that whole blood signatures can be 405 

developed to improve diagnosis of TB cases who cannot produce sputum or who have 406 

paucibacillary disease, including HIV+ TB cases. Unfortunately, the lack of a “gold-standard” 407 

method of diagnosing TB when sputum culture cannot be obtained makes it extremely 408 

difficult to accurately evaluate blood transcriptional signatures in this context. 409 

A possible practical application of this test is as a high-specificity “triage test” that can rule 410 

out patients unlikely to have TB, and identify persons who should receive a full sputum 411 

culture, thus reducing the necessity of working with difficult-to-acquire and potentially 412 

infectious sputum samples. At an operating point of 95% sensitivity, the ten-gene random 413 

forest shows a specificity of 47%. In a situation such as a medical clinic in a TB-endemic 414 

area, assuming 50% of patients presenting with symptoms consistent with TB have active TB, 415 

treating signature positive patients immediately would almost half the amount of sputum 416 

culture necessary. 417 
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 553 

Figure 1: Analytical Plan. 554 

Outlines the model training, selection and prediction steps for the overall analysis 555 
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 556 

Figure 2: Training Cross Validation Results on Adult TB Samples 557 

Leave-one-out cross validation results for models trained on South Africa adult data. Each 558 

panel plots the area under the ROC curve for five machine learning algorithms (glmnet: 559 

Elastic-Net logistic regression, knn: k-Nearest Neighbours, nnet: Neural Network, rf: Random 560 

Forest, svmRadial, Support Vactor Machine with Radial Basis Function kernel) starting with 561 

models trained using all 554 probes, and iteratively shrunk to models trained on 10 probes 562 

only. Models were trained to classify the data into 6 (TB:HIV+, TB:HIV-, LTB:HIV+, 563 

LTB:HIV-, OD:HIV+, OD:HIV-), 4 (TB:HIV+, TB:HIV-, LTB:HIV+, LTB:HIV-) and 2 564 

(TB, LTB) classes. Two types of 2-class models were trained: using all HIV+ or all HIV- 565 

samples. Error bars show bootstrap-estimated 95% confidence intervals around the AUC. 566 
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 567 

Figure 3: A six-class multinomial model optimally predicts 4 independent test 568 

sets. 569 

ROC curves for active TB vs non-TB classification of independent test sets. Legends shows 570 

the AUC for each model, with the 95% confidence intervals in parentheses. Models 571 

developed in this study are named in the form <number-of-classes>.<algorithm>.<number-of-572 

probes>. E.g. six.rf.10 is the 10 probe random forest model trained to predict 6 classes. 573 

twoneg and twopos refer to 2-class models trained on HIV- or HIV+ samples respectively. 574 

threeGene refers to the signature described by Khatri et al[32], and ACS refers to the 575 

signature described by Zak et al[23]. A ROC curves for classification of the Malawi test 576 

samples from the Kaforou cohort. B ROC curves for Malawi test set plus the three further 577 

independent test sets described in Table 3 578 
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 579 

Figure 4: The six-class multinomial model identifies HIV+ TB as a distinct state 580 

A ROC curves for the 10-gene six-class multinomial model discriminating HIV+ active TB 581 

samples from HIV- active TB samples, and HIV+ active TB samples from HIV- active TB 582 

and HIV+/- LTB and HIV+/- OD samples in the Malawi test set. B Dot- and boxplots of 583 

expression levels of six-class multinomial model genes in the entire Kaforou dataset. C Six-584 

class multinomial genes classified by their TB/HIV behaviour as determined by fitting linear 585 

models to gene expression as a function of disease state. TB upregulated genes are indicated 586 

in orange and downregulated genes shown in blue 587 

 588 

Figure 5: LAG3-correlated genes 589 

Dot and boxplots for each microarray primer, named as the corresponding gene, strongly 590 

correlated with LAG3 (spearman correlation ρ>0.8) for latent and active TB samples from the 591 

Kaforou dataset.  592 
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Tables 593 

 
Active TB Latent TB Other Diseases TOTAL 

 
HIV+ HIV- HIV+ HIV- HIV+ HIV- 

Malawi 
51 51 36 35 30 34 237 

South Africa 
47 46 48 48 62 49 300 

Table 1: Adult Training and Test Set 594 

  595 
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Number of 

Classes to 

Predict 

Elastic-Net 

Logistic 

Regression 

k-Nearest 

Neighbours 

Neural 

Network 

Random 

Forest 

Support 

Vector 

Machine 
S

ou
th

 A
fr

ic
a 

Four 0.91(0.86-0.95) 0.93(0.89-0.97) 0.91(0.87-0.95) 0.96(0.93-0.99) 0.91(0.86-0.96) 

Six 0.82(0.76-0.87) 0.89(0.85-0.93) 0.85(0.80-0.90) 0.92(0.88-0.95) 0.88(0.83-0.92) 

Two (HIV-) 0.98(0.94-1.0) 0.96(0.93-1.0) 0.97(0.93-1.0) 0.97(0.95-1.0) 0.97(0.94-1.0) 

Two (HIV+) 0.85(0.77-0.93) 0.91(0.86-0.97) 0.84(0.76-0.93) 0.95(0.90-1.0) 0.94(0.89-0.99) 

Table 2: Top LOOCV Model Structures 596 

Shows the area under the ROC curve (AUC) for the best small model at each combination of 597 

machine-learning algorithm choice and number of predicted classes for models trained on 598 

South Africa adult data. 95% confidence intervals of the AUC are shown in parentheses. 599 

 600 

GEO ID Description Number of Samples Reference 

GSE39941 

Whole blood microarray expression 

analysis of TB vs LTB and Other 

Diseases with potential HIV co-

infection in Children from Kenya, 

Malawi and South Africa 

122 TB (HIV-, 27 are culture- 

TB) 

68 TB (HIV+, 17 are culture- TB) 

68 LTB (HIV-) 

140 OD (HIV-) 

93 OD (HIV+) 

Anderson et 

al, 2014[10] 

GSE42834 

Whole blood microarray expression 

analysis of TB vs Sarcoidosis, 

Pneumonia and Lung Cancer and 

Healthy Controls in Adults from the 

UK 

35 TB 

61 Sarcoidosis 

121 Healthy 

16 Lung Cancer 

6 Pneumonia 

Bloom et al, 

2013[12] 
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GSE19491 

Whole blood microarray expression 

analysis of TB vs LTB, Healthy 

controls and other bacterial and 

inflammatory diseases 

(Streptococcus, Staphylococcus, 

Still's Disease, Lupus) in patients 

from the UK and South Africa 

54 TB 

69 LTB 

105 Healthy 

110 Lupus 

40 Staph 

31 Still's 

12 Strep 

Berry et al, 

2010[11] 

Table 3: Further Validation Datasets 601 
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