

1 **Multinomial modelling of TB/HIV co-infection yields a**
2 **robust predictive signature and generates hypotheses**
3 **about the HIV+TB+ disease state.**

4

5 **Fergal J Duffy¹, Ethan G. Thompson¹, Thomas J. Scriba², and Daniel E Zak^{1§}**

6

7 ¹Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute),
8 Seattle WA, USA

9 ²South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular
10 Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa

11 [§]Corresponding author

12

13 Email addresses:

14 FJD: fergal.duffy@cidresearch.org

15 EGT: ethan.thompson@cidresearch.org

16 TJS: thomas.scriba@uct.ac.za

17 DEZ: daniel.zak@cidresearch.org

18 **Abstract**

19 **Background.** Current diagnostics are inadequate to meet the challenges presented by co-
20 infection with *Mycobacterium tuberculosis* (Mtb) and HIV, the leading cause of death for
21 HIV-infected individuals. Improved characterisation of Mtb/HIV coinfection as a distinct
22 disease state may lead to better identification and treatment of affected individuals.

23

24 **Methods.** Four previously published TB and HIV co-infection related datasets were used to
25 train and validate multinomial machine learning classifiers that simultaneously predict TB

26 and HIV status. Classifier predictive performance was measured using leave-one-out cross
27 validation on the training set and blind predictive performance on multiple test sets using area
28 under the ROC curve (AUC) as the performance metric. Linear modelling of signature gene
29 expression was applied to systematically classify genes as TB-only, HIV-only or combined
30 TB/HIV.

31

32 **Results.** The optimal signature discovered was a single 10-gene random forest multinomial
33 signature that robustly discriminates active tuberculosis (TB) from other non-TB disease
34 states with improved performance compared with previously published signatures (AUC:
35 0.87), and specifically discriminates active TB/HIV co-infection from all other conditions
36 (AUC: 0.88). Signature genes exhibited a variety of transcriptional patterns including both
37 TB-only and HIV-only response genes and genes with expression patterns driven by
38 interactions between HIV and TB infection states, including the CD8+ T-cell receptor LAG3
39 and the apoptosis-related gene CERKL.

40

41 **Conclusions.** By explicitly including distinct disease states within the machine learning
42 analysis framework, we developed a compact and highly diagnostic signature that
43 simultaneously discriminates multiple disease states associated with Mtb/HIV co-infection.
44 Examination of the expression patterns of signature genes suggests mechanisms underlying
45 the unique inflammatory conditions associated with active TB in the presence of HIV. In
46 particular, we observed that disregulation of CD8+ effector T-cell and NK-cell associated
47 genes may be an important feature of Mtb/HIV co-infection.

48

49 **Keywords:** Tuberculosis; HIV; co-infection; machine learning; multinomial; interferon;
50 microarray; blood transcription

51

52 **Background**

53 Almost ¼ of the global population is infected with *Mycobacterium tuberculosis* (Mtb) [1] and
54 over 1,600,000 people succumbed to active tuberculosis disease (TB) in 2016 alone[2]. TB
55 ordinarily requires at least six months of antibiotic treatment in order to remove all traces of
56 the infection, with drug resistant strains requiring two years of intensive treatment[3].

57 Individuals with HIV/AIDS are at particularly high risk of active TB, up to 30 times higher
58 than for HIV- individuals prior to the start of antiretroviral therapy(ART)[4]. This relative
59 risk declines after the initiation of ART, but still remains 2-3 times higher than the general
60 population, and the biological mechanisms underlying this increased risk remain unclear.

61

62 The current standard for diagnosis of active TB is microscopic or culture-based detection of
63 *M. tuberculosis* bacteria in a patient-derived sputum sample. Sputum-based tests suffer from
64 several major limitations, including the amount of time it takes to culture slow-growing TB,
65 and the necessity of having sufficient TB bacteria in the sputum for detection. This is a further
66 issue for children and TB cases in HIV+ patients[5] where low numbers of TB bacilli in the
67 sputum may give a false-negative result. The Xpert MTB/RIF test[6] has enabled rapid TB
68 diagnosis by detecting the presence of *M.tb*-specific DNA in sputum, but the sensitivity of
69 this test is diminished in sputum culture-negative TB[7]. Sputum also represents a dangerous
70 vector of infection for health-care workers analysing and handling sputum samples, due to the
71 potential presence of live *M. tb* bacteria[8]. New TB diagnostic methods that do not
72 necessitate the detection of large numbers of TB bacilli in sputum are therefore critically
73 required to serve populations at high risk of TB. Blood-based signatures are an attractive
74 alternative, as blood is a clinically accessible readout of the immunological state of the body.

75

76 Whole blood gene expression signatures that are diagnostic for TB have been described in
77 many previous studies[9–12], but these signatures are generally focused on a single binary
78 comparison, e.g. latent TB vs active TB or active TB vs other diseases. In this study, we

79 develop multi-class multinomial signatures that explicitly model the TB and HIV state of each
80 patient. Our analysis integrates published data from several cohorts and evaluate a range of
81 machine-learning approaches to generate a multinomial model that specifically discriminates
82 TB from non-TB disease states while simultaneously discriminating HIV+ TB as a unique
83 disease state.

84 Figure 1 shows the analytical plan for this work.

85

86 **Methods**

87 All computational and statistical analyses were performed using the R language for statistical
88 computing[13].

89 **Microarray Normalisation, Probe Filtering and Data Preparation**

90 Microarray data from four TB/HIV cohorts were downloaded from GEO: GSE37250,

91 GSE39941, GSE19491, GSE42834. The precise sample compositions of each of these

92 datasets are provided in Table 1 (GSE37250) and Table 3 (GSE39941, GSE19491,

93 GSE42834).

94 Microarray datasets were downloaded in the form of GEO series matrix files, background
95 subtracted and quantile normalized. All reference and variable probe selection was performed
96 using the GSE37250 Malawi adult data. 20 reference probes were selected by eliminating any
97 probe with any expression value below the absolute value of the smallest expression value
98 observed in the dataset. References were then selected as the 20 remaining probes with the
99 smallest inter-quartile range (IQR) of expression in the dataset.

100 To pre-select probes likely to be discriminatory for TB, only probes with an IQR of above 1.5
101 (log2 normalised expression) were kept. This resulted in 554 candidate model-variable probes
102 to be used in the model. Additional File 1 lists the variable and reference probes used in this
103 work.

104 Before model training, each sample in every dataset was normalised by calculating the mean
105 expression level for the reference probes, and subtracting this mean reference level from each
106 model-variable probe. The GSE19491 dataset, which was measured using the Illumina 12v3
107 platform as opposed to the Illumina 12v4 platform used for the other datasets, was missing 4
108 of the 20 selected reference probes. The remaining 16 probes alone were therefore used to
109 normalise this dataset.

110

111 **Machine-Learning Model Training, Feature Shrinking and Model Selection**

112 Five distinct machine-learning algorithms were used to train predictive models on the adult

113 South African dataset, using the R caret[14]package. These were:

114 [1] Random Forest (RF) (R randomForest package[15]), is an algorithm based on training an
115 ensemble of decision trees using randomly split subsets of the training samples and training
116 variables, all of which then ‘vote’ to classify new samples.

117 [2] Support Vector Machine (SVM) using RBF kernel (R kernlab[16] package). SVMs
118 attempt to find the optimal linear hyperplane decision boundary separating the two classes in
119 n-dimensional space, where n is the number of features the SVM is trained on. The RBF, or
120 Radial Basis Function kernel projects this n-dimensional feature space into a higher
121 dimension to allow the identification of a linear decision boundary in a higher dimensional
122 space if one cannot be found in the input n-dimensional space.

123 [3] Neural Networks (NN) (R nnet[17] package). NNs are comprised of a network of input
124 nodes (1 per-feature), connected to output nodes (1 per possible outcome) via one or more
125 ‘hidden’ layers of nodes. Each node represents a logistic regression function, based on the
126 input value, and the weight given to each input node (which in turn determines the output
127 classification) is determined during training.

128 [4] Elastic-net Logistic Regression (R glmnet[18] package), is a form of logistic regression
129 with regularisation of the linear coefficients applied to control overfitting.

130 [5] K-Nearest Neighbor (KNN) (R caret[14] package), classifies samples by determining the
131 ‘k’ most similar samples by Euclidian distance between sample genes and having them ‘vote’
132 on the classification.

133 All of these algorithms can be trained to produce binary (exactly 2 distinct classes, such as TB
134 vs LTB) or multinomial (more than 2 classes) classifier models.

135 In this study, each algorithm was trained using normalised microarray data comprising all 554
136 most-variable probes (selected as described above) on each of four subsets of samples of the
137 adult training data. These subsets were 1) the entire dataset, including TB, latent TB (LTB)

138 and other disease (OD) samples including HIV+ and HIV- samples, 2) All TB and LTB
139 samples including HIV+ and HIV- samples (i.e. OD excluded), 3) All HIV+ TB and LTB
140 samples, (i.e. all HIV- and OD excluded), 4) All HIV- TB and LTB samples (i.e. all HIV+
141 and OD excluded). Models were trained to simultaneously predict both the TB and HIV status
142 of each training sample, i.e. models trained on subset 1) explicitly classified samples as one of
143 6 classes: TB:HIV+, TB:HIV-, LTB:HIV+, LTB:HIV-, OD:HIV+, or OD:HIV-; models
144 trained on subset 2) classified samples as one of 4 classes TB:HIV+, TB:HIV-, LTB:HIV+,
145 or LTB:HIV-, and models trained on subsets 3) and 4) were binary models that classified
146 samples as TB or LTB only, as HIV status was constant in these subsets.
147 After models were trained on the initial 554 probes, the models were sequentially shrunk to
148 obtain probe-reduced models that only comprised the most important 250, 50, 25, 15, or 10
149 probes from the initial set. Probe importance rankings were calculated using the *varImp*
150 function supplied by the caret package. This function implements algorithm-specific methods
151 for evaluating how much each probe contributes to the classification performance of the
152 model. In the case of random forests, the difference in out-of-bag error[19] with and without
153 the inclusion of a single probe was used to rank the probes in order of importance. For
154 Elastic-net logistic regression models, the probe variable coefficient was used to rank the
155 probes. For Neural Networks, Garson's algorithm[20] was used to calculate probe importance
156 from network weights. For Random Forests, probe importance was measured as the
157 difference in predictive performance comparing all trees that contain the probe with trees that
158 lack that probe. For the remaining modelling approaches (SVM, KNN), the univariate
159 predictive power of the individual probe was used to rank importance in an algorithm-
160 independent way.
161 For each algorithm-subset combination, the most important 250 out of the original 554 probes
162 were selected, the model re-trained on this subset of probes, and this probe-reduced model
163 used to predict the left-out sample. This procedure was then repeated to iteratively shrink each
164 model to contain the 50, 25, 15 and 10 most important probes from the previous step. This
165 entire process was carried out for each held-out sample in the cross validation so that the

166 sequential shrinking and prediction steps were performed independently for every held out
167 sample.

168

169 Training performance was assessed using leave-one-out cross validation (LOOCV). Initially,
170 a single sample from the overall training set was held out, then a classifier model was trained
171 on the remaining samples, and used to predict the status of the held-out sample. This
172 procedure was repeated for every training sample, and model performance was then
173 calculated using predictions on the held-out samples. Areas under the ROC curves (AUCs)
174 for model discrimination of TB vs non-TB samples in the training subset were calculated for
175 predictions on the held out samples, and this was used as the performance metric for initial
176 model structure selection. For models that predicted more than 2 classes, TB predictions were
177 calculated as the sum of TB-related prediction classes, e.g for 6 class models the overall TB
178 prediction value was calculated as the TB:HIV+ prediction value plus the TB:HIV- prediction
179 value.

180 Only “small” models (i.e., those consisting of 10, 15 or 25 probes) were considered for
181 application to the test sets. To choose the algorithm/class-complexity/training set between
182 these 3 probe sizes, initially the 10-probe model was selected. If either the 15 or 25-probe
183 model showed significantly better LOOCV performance on the training set, that model was
184 used. Significance was evaluated by comparing ROC AUCs using the *roc.test* function from
185 the pROC[21] R package with a threshold of $p < 0.05$.

186

187 **Model Predictions on New Datasets.**

188 After models were selected by recursive LOOCV evaluation as described above, each
189 selected model was retrained using the most-commonly selected features from the LOOCV
190 and re-parameterised on the entire relevant training data subset. Predictions were made using
191 the *predict* function from the caret package to calculate class probabilities, and prediction
192 accuracies were assessed by calculating TB vs non-TB ROC curves using the R pROC

193 package. As described for the LOOCV procedure above, in the case of models that predicted
194 more than 2 classes, TB predictions were calculated as the sum of TB-related prediction
195 classes, e.g for 6 class models the overall TB prediction value was calculated as the TB:HIV+
196 prediction value plus the TB:HIV- prediction value. Performance of the new signatures on the
197 test sets was benchmarked against the performance of two previously-reported TB gene
198 signatures: the three gene multi-cohort diagnostic signature developed by Sweeney et al[27],
199 which we term the ‘threeGene’ signature; and our 16-gene correlate of TB risk [23], which
200 we term the ‘ACS’ signature (referring to the Adolescent Cohort Study from which the
201 signature was derived). For predictions using the threeGene signature, datasets were
202 downloaded in raw non-normalised format from GEO before being quantile normalised and
203 baseline corrected using the log-exponential method using the R limma package[22]. The
204 threeGene score was then directly calculated as $(GBP5 + DUSP3)/2 - KLF2$. For the ACS
205 model predictions, datasets were prepared and normalised and scored as described in[23].

206 **Linear modelling of disease state**

207 Linear regression models were fit to signature genes in order to assess the contribution of TB
208 and HIV status to gene expression. Expression of each gene was fit to a linear regression
209 model (R *lm* function) of the form:

210 $Expr = a * TB_{status} + b * HIV_{status} + c * TB_{status}:HIV_{status}$

211 TB and HIV status were encoded as binary variables with 1 meaning active TB/HIV+ and 0
212 meaning latent TB/HIV-. Non-TB other disease samples were excluded from this analysis.
213 The p-value of the model coefficients a, b and c were calculated using the R *summary.lm*
214 function, and a false discovery rate correction applied.

215

216 **Gene set enrichment analysis**

217 Gene set enrichment analysis was performed using the R tmod[24] package, using the blood
218 transcriptional gene sets previously described by Li et al[25] and Chaussabel et al[26]. P-

219 values were calculated using the hypergeometric test as implemented in the tmodHGtest
220 function, using all included microarray gene symbols as the background.

221 **Results**

222 **Development, cross-validation and selection of multinomial machine learning
223 models for predicting TB and HIV.**

224 We used data from a previously-published cohort [9] of 537 adults from Malawi and South
225 Africa, comprised of samples from individuals diagnosed with active tuberculosis (TB), latent
226 tuberculosis (LTB) or other non-TB diseases with clinical symptoms consistent with TB
227 (OD). Roughly half of these individuals were also HIV+ (Table 1). These transcriptional
228 profiles were used to develop and test multinomial machine learning approaches to
229 specifically identify each symptomatic subset.

230 Machine learning models were trained on the South African adult dataset described in Table
231 1, with the Malawian adults used as an independent test set. In order to focus on the strongest
232 signal probes, an initial down-selection step was performed where only probes with a log2
233 normalised expression interquartile range of at least 1.5 in the South African set were
234 considered for model training (554 probes).

235 Models were trained to classify all or relevant subsets of the data into 2 (binary classifier), 4
236 (multinomial), or 6 (multinomial) classes, using a diverse panel of machine-learning
237 algorithms. Two-class models were trained to classify a sample as either active or latent TB.
238 Two different two class models were trained for each algorithm, one on HIV- TB and LTB
239 samples only, and another on HIV+ TB and LTB samples only. Four-class models were
240 trained to classify a sample as active or latent TB and as HIV+ or HIV- simultaneously, using
241 all TB and LTB samples, both HIV+ and HIV-. Six-class models were trained to classify a
242 sample as active TB, latent TB or other disease, and as HIV+ or HIV-, and were trained on
243 the entire dataset, including TB, LTB and OD, both HIV+ and HIV-. Machine learning

244 algorithms used were Random Forests, Neural Networks, Support Vector Machines, Elastic-
245 Net Logistic Regression, and k-Nearest Neighbours.
246 Initially, each model was trained using all 554 pre-selected probes. Starting from this initial
247 model, the most important model probes were selected and the models recursively shrunk to
248 use smaller numbers of probes (see Methods). Leave-one-out cross validation (LOOCV)
249 performance on the training set was evaluated by measuring area under the ROC curve
250 (AUC). Figure 2 shows the results of the LOOCV and recursive shrinking for each algorithm
251 (Figure 1). LOOCV AUCs are uniformly strong, almost all above 0.8. LOOCV performance of
252 multinomial 4- and 6- class models is similar to that of the binary classification models.
253 An ideal model shows high predictive performance based on a small number of interpretable
254 genes. A set of small models for further analysis were chosen by initially selecting the
255 smallest (10 probe) model for each algorithm and classification complexity, and only
256 selecting a larger model if it showed significantly stronger LOOCV performance. As
257 performance, illustrated in
258 Figure 1 (a) and (b), was largely uniform across model sizes, the 10 probe models were
259 universally selected. Table 2 lists the training cross-validation performance of each of these
260 models, in terms of their area under the ROC curve. From Table 2, in three of the four
261 complexity cases for the South Africa training set, Random Forest was the highest-performing
262 algorithm, thus Random Forest models were selected for all further analyses.

264 **A six-class multinomial model outperforms previously published signatures for
265 identifying active TB in several independent test sets**

266 The Malawian adults were used as an independent test set for the selected models.
267 Figure 3 (A) shows ROC curves representing the predictive ability of South Africa-derived
268 models to specifically identify HIV- and HIV+ active TB samples vs latent TB and other
269 diseases. These models were accompanied by two previously-reported TB signatures: our 16-
270 gene correlate of TB risk [23], termed here as the ‘ACS’ signature, and the three-gene multi-

271 cohort diagnostic signature developed by Sweeney et al[27], termed here as the ‘threeGene’
272 signature. The multinomial six-class Random Forest model outperformed all other models
273 (AUC: 0.88, sensitivity 80%, specificity 82%), although performance of the threeGene model
274 was very similar (AUC: 0.87 vs AUC 0.88).
275 To more thoroughly validate the six-class multinomial model, classification performance was
276 evaluated using three additional previously-published whole-blood microarray datasets[10–
277 12]. To reduce technical sources of variability as much as possible, test sets were selected that
278 used the same Illumina HumanHT-12 microarray platform as was used for the Kaforou
279 cohort. These additional test sets comprised a broad range of samples, including adult and
280 childhood TB; TB vs other inflammatory, bacterial and pulmonary diseases; and samples
281 taken from a range of geographical locations (Table 3). The two-class HIV- model was also
282 included as a comparator for the six-class multinomial model.

283

284 Figure 3 (B) shows the ROC curves for the 10-gene six-class model, the 10-gene binary
285 model and the two previously-described external signatures. Again, the six-class 10-gene
286 signature was the overall top performer (AUC 0.88, sensitivity 80%, specificity 82%). This is
287 significantly better predictive performance than the top external model, the threeGene
288 signature ($p=0.006$ by a single tailed DeLong[28] test). Thus, multinomial modelling of TB
289 disease states significantly improved the accuracy of discrimination of TB vs. non-TB samples.

290 **The 10-gene multinomial signature identifies HIV+TB as a distinct disease state**

291 To further evaluate the performance of the 10-gene six-class signature, particularly the
292 potential of this signature to perform multi-class discrimination, we tested whether it can
293 specifically identify HIV+ TB samples from all other samples in the Malawi test set (Figure 4 (A)). The signature accurately discriminated HIV+ TB from HIV- TB samples
295 (AUC: 0.88) and HIV+ TB samples from all other samples (HIV+ TB, HIV-/+ latent TB,
296 HIV-/+ other diseases, AUC: 0.86). This result suggests that HIV+ TB may exist as a distinct
297 transcriptional state. Box- and dot-plots of normalised expression for the 10 genes in the

298 multinomial signature for active and latent TB individuals in the combined South-African and
299 Malawian cohorts, stratified by TB and HIV status reveal a diverse pattern of transcriptional
300 responses (

301 Figure 4 (B)).

302 Using HIV- latent TB samples as a baseline, 8 of the 10 signature genes are either
303 downregulated in both active TB and HIV+ patients, or upregulated in both active TB and
304 HIV+ patients. Two exceptions are LAG3 and CERKL. To more quantitatively determine the
305 transcriptional patterns of these genes, linear models with gene expression as a function of TB
306 and HIV status were fit, including a TB:HIV interaction term. Genes with significant
307 (FDR<0.01) TB or HIV model coefficients were identified as TB- or HIV- independent
308 disease signature genes, and genes with both TB and HIV significant coefficients were
309 identified as overlapping signature genes (

310 Figure 4 (C)). Three of the ten genes in the signature were independent disease signature
311 genes, with CD160 being the sole HIV-specific gene and CD36 and ZDHHC19 as the only
312 TB-specific genes. The largest group of signature genes exhibits a unidirectional additive
313 expression pattern, either downregulated in both TB and HIV (CD40LG, ID3) or upregulated
314 in both TB and HIV (GBP6, C1QB). Interestingly, the CD8+ immune checkpoint gene LAG3
315 is upregulated in HIV+ individuals but downregulated in active TB. Two genes exhibit a
316 significant interaction term: FCGR1B and CERKL. This interaction suggests crosstalk
317 between the TB and HIV transcriptional response. In the case of FCGR1B, transcription
318 reaches a saturated level in HIV- active TB that is not exceeded in HIV+ active TB. As
319 FCGR1B is a cell surface receptor specific to macrophages, monocytes and neutrophils [EBI
320 Expression Atlas, www.ebi.ac.uk/gxa], this saturation point may correspond with a maximum
321 surface density of receptor or a maximal blood concentration for these cell types. CERKL, a
322 negative regulator of apoptosis caused by oxidative stress[29], shows a more complex
323 regulatory pattern where HIV- active TB is upregulated compared to all other states.

324

325 **Biological pathways associated with divergent TB/HIV expression patterns**

326 **reveal HIV+ TB as a distinct disease state.**

327 Analysis of the genes comprising the 10-gene six-class signature identified LAG3 and
328 CERKL as exhibiting distinct expression patterns. As the signature genes reflect a minimal
329 set of genes necessary to classify disease states, we hypothesised that there may be other
330 genes closely correlated with LAG3 and CERKL that could shed light on the biological
331 processes driving the opposing regulation they exhibit.

332 The expression of LAG3 was correlated very tightly (Spearman $p > 0.8$, $p < 1e-32$), with a set
333 of eight genes similarly downregulated in active TB and upregulated in HIV (Table S2,
334 Figure 5). Mapping these genes to blood transcriptional genes sets[25,26] revealed significant
335 enrichment for cytotoxic T-cell and NK-cell pathways (Table S3), suggesting that
336 dysregulation of immune effector cells is a distinguishing characteristic of HIV+ active TB
337 when compared to HIV- TB, or HIV+ latent TB.

338 In contrast, CERKL does not show similarly strong correlations (Spearman $p > 0.8$) with any
339 individual gene. At a more permissive correlation threshold ($p > 0.6$), CERKL is correlated
340 with 9 genes (Table S4), but this set of genes does not show significant enrichment for any
341 gene set. Genes most strongly correlated with CERKL are the ribosomal-RNA processing
342 gene HEATR1 and the ubiquitin ligase TRIM13.

343 **Discussion**

344 In a clinical setting, a major challenge faced regarding TB diagnosis is to discriminate active
345 TB from other diseases presenting with similar symptoms. The ROC curves shown in
346 Figure 3 shows that the 10 gene six-class signature identified in this work significantly
347 improves on existing signatures for identifying active TB in a wide variety of contexts, i.e.
348 active TB vs healthy samples, active TB vs latent TB and active TB vs other diseases, with or
349 without the presence of HIV co-infection. A major advantage of the meta-analytical approach
350 taken here is the testing of each signature on a combination of cohorts at once. While ROC

351 analysis can reveal the optimal classification performance on a single cohort, it is still
352 necessary to choose an operating point or threshold to transform a continuous score into a
353 dichotomous classifier. It is possible for a predictive signature to show a high sensitivity and
354 specificity on many individual cohorts separately, but fail to recreate this performance when
355 samples from all cohorts are combined. This is due to the signature score potentially having a
356 differing optimal classification threshold on each cohort and will not be revealed by separate
357 ROC analysis of each cohort. By combining cohorts, signatures with a stable “global”
358 operating score are revealed. Thus, it can be seen in
359 Figure 3 (B) that the across every cohort, the ten-gene six-class signature predicts with a
360 sensitivity of 80% and specificity of 78%.

361
362 Explicit modelling of each cohort disease group has allowed us to hone in on transcriptional
363 processes that specifically distinguish HIV+ active TB from HIV- active TB. Characterisation
364 of a specific transcriptional state for HIV+ TB would improve understanding of how HIV
365 increases TB risk, as well as illuminating on essential elements of an effective host response
366 to TB missing from HIV+ TB patients. This analysis identified the CD8+ inhibitory
367 checkpoint receptor LAG3. Linear modelling reveals significant upregulation of LAG3 in
368 HIV infection, but also significant downregulated of LAG3 in active TB compared with latent
369 TB (Figure 4 (B)). Upregulation of LAG3 is known to suppress T-cell activity in chronic HIV
370 infection[30], and these exhausted T-cells show impaired production of the cytokines such as
371 IL-2, IFN γ , and TNF, associated with an effective host response to TB[31]. LAG3 expression
372 is also closely correlated with genes including the CD8A receptor; the CD8+ T-cell secreted
373 chemokine CCL5/RANTES; the NK-cell granule gene NKG7, the CD8+ differentiation
374 transcription factor EOMES, and the lysosomal membrane protein MCOLN2. All of these
375 genes are involved in CD8+ or NK-cell effector activities. Thus, further investigation of a key
376 signature gene has revealed that both innate (NK cell) and adaptive (CD8+ T-cell) effector

378 function appears to be suppressed in HIV+ active TB relative to HIV- active TB, suggesting
379 at least one mechanism for increased TB risk in HIV+ individuals.
380 Interestingly, another CD8+ T-cell inhibitory checkpoint receptor, CD160, was also selected
381 as a signature gene. CD160 shows a similar pattern of expression to LAG3: upregulated in
382 HIV+ patients, but downregulated in active TB. However, this downregulation in active TB is
383 much less pronounced than for LAG3, and the TB coefficient was not found to be significant
384 in linear modelling (FDR=0.08).
385 Overexpression of CERKL has been shown to protect cells from apoptosis while under
386 oxidative stress [29]. The expression pattern of CERKL, which shows lower expression in
387 HIV+ active TB compared to both HIV- active TB and HIV+ latent TB indicates that
388 HIV/Mtb co-infected patients may have impaired protection against cellular death due to
389 oxidative stress. This expression pattern hints at a complex balance of apoptotic signalling in
390 HIV/TB co-infection that does simply mirror the interferon-driven inflammatory response.

391 **Conclusions**

392 We have identified a broadly applicable active TB-specific 10-gene multinomial signature by
393 validating candidate signatures with successively harder problems: training a diverse panel of
394 candidate models on an adult test set; making blind predictions an independent adult test set
395 from a different geographical cohort, albeit from the same study; making blind predictions on
396 the combination of the adult test set with three additional independent cohorts; and finally
397 testing for discrimination of HIV+ TB from HIV- TB.
398 While the signature shown here does not reach the diagnostic sensitivity required to be a
399 practical alternative to sputum culture for clinical use (>98% sensitivity for culture positive
400 TB)[3], it represents an incremental performance improvement over previously described
401 signatures. All of the blood-based signatures evaluated in this work (the ten-gene six-class
402 signature, the threeGene signature and the ACS signature) show similar performance on the
403 test datasets examined here, performance which falls below that observed with traditional
404 sputum culture. While whole blood gene expression signatures do not appear likely to

405 approach the performance of liquid culture, it is possible that whole blood signatures can be
406 developed to improve diagnosis of TB cases who cannot produce sputum or who have
407 paucibacillary disease, including HIV+ TB cases. Unfortunately, the lack of a “gold-standard”
408 method of diagnosing TB when sputum culture cannot be obtained makes it extremely
409 difficult to accurately evaluate blood transcriptional signatures in this context.
410 A possible practical application of this test is as a high-specificity “triage test” that can rule
411 out patients unlikely to have TB, and identify persons who should receive a full sputum
412 culture, thus reducing the necessity of working with difficult-to-acquire and potentially
413 infectious sputum samples. At an operating point of 95% sensitivity, the ten-gene random
414 forest shows a specificity of 47%. In a situation such as a medical clinic in a TB-endemic
415 area, assuming 50% of patients presenting with symptoms consistent with TB have active TB,
416 treating signature positive patients immediately would almost halve the amount of sputum
417 culture necessary.

418 **List of Abbreviations**

419 Mtb: Mycobacterium Tuberculosis; AUC: Area under the receiver-operator curve; ROC:
420 receiver operator curve; LOOCV: Leave-one-out cross-validation. OD: other diseases; TB:
421 active tuberculosis; LTB: latent tuberculosis; ACS: Adolescent Cohort Study; RF: random
422 forest; SVM: support vector machine; NN: neural net; KNN k-nearest neighbours.

423 **Declarations**

424 **Ethics approval and consent to participate.**

425 Not applicable

426 **Consent for publication:**

427 All authors have read and contributed to this manuscript, and approve of its publication

428 **Availability of data and material:**

429 All microarray datasets used in this study are available on GEO

430 **Competing interests**

431 The authors declare that they have no competing interests

432 **Funding**

433 This work was supported by the Strategic Health Innovation Partnerships (SHIP) Unit of the
434 South African Medical Research Council, with funds received from the South African
435 Department of Science and Technology. FJD was supported by the NCDIR, National
436 Institutes of Health grant [U54 GM103511].

437 **Authors' contributions**

438 FJD, EGT, TJS and DEZ designed the analyses, assisted the interpretation of results, and
439 revised the manuscript. FJD carried out the analysis and drafted the manuscript.

440 **References**

- 441 1. Houben RMGJ, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-
442 estimation Using Mathematical Modelling. *PLoS Med.* 2016;13:1–13.
- 443 2. World Health Organization. Tuberculosis Fact Sheet No 104 [Internet]. 2016.
444 Available from: <http://www.who.int/mediacentre/factsheets/fs104/en/#>
- 445 3. Gardiner JL, Karp CL. Transformative tools for tackling tuberculosis. *J. Exp. Med.*
446 [Internet]. 2015;212:1759–69. Available from:
447 <http://www.jem.org/cgi/doi/10.1084/jem.20151468>
- 448 4. Lawn SD, Wood R, De Cock KM, Kranzer K, Lewis JJ, Churchyard GJ. Antiretrovirals
449 and isoniazid preventive therapy in the prevention of HIV-associated tuberculosis in
450 settings with limited health-care resources. *Lancet Infect. Dis.* [Internet]. Elsevier Ltd;
451 2010;10:489–98. Available from: [http://dx.doi.org/10.1016/S1473-3099\(10\)70078-5](http://dx.doi.org/10.1016/S1473-3099(10)70078-5)
- 452 5. Elliott a. M, Namaambo K, Allen BW, Luo N, Hayes RJ, Pobee JOM, et al. Negative
453 sputum smear results in HIV-positive patients with pulmonary tuberculosis in Lusaka,
454 Zambia. *Tuber. Lung Dis.* 1993;74:191–4.
- 455 6. Boehme CC, Nicol MP, Nabeta P, Michael JS, Gotuzzo E, Tahirli R, et al. Feasibility,
456 diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test
457 for diagnosis of tuberculosis and multidrug resistance: A multicentre implementation
458 study. *Lancet* [Internet]. Elsevier Ltd; 2011;377:1495–505. Available from:
459 [http://dx.doi.org/10.1016/S0140-6736\(11\)60438-8](http://dx.doi.org/10.1016/S0140-6736(11)60438-8)
- 460 7. Lawn SD, Mwaba P, Bates M, Piatek A, Alexander H, Marais BJ, et al. Advances in

461 tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-
462 care test. *Lancet Infect. Dis.* [Internet]. Elsevier Ltd; 2013;13:349–61. Available from:
463 <http://linkinghub.elsevier.com/retrieve/pii/S1473309913700082>
464 8. Jensen P a, Lambert L a, Iademarco MF, Ridzon R. Guidelines for preventing the
465 transmission of *Mycobacterium tuberculosis* in health-care settings, 2005. *MMWR.*
466 *Recomm. Rep.* 2005.
467 9. Kaforou M, Wright VJ, Oni T, French N, Anderson ST, Bangani N, et al. Detection of
468 Tuberculosis in HIV-Infected and -Uninfected African Adults Using Whole Blood RNA
469 Expression Signatures: A Case-Control Study. *PLoS Med.* [Internet]. 2013;10. Available
470 from: <http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001538>
471 10. Anderson ST, Kaforou M, Brent AJ, Wright VJ, Banwell CM, Chagaluka G, et al.
472 Diagnosis of childhood tuberculosis and host RNA expression in Africa. *N. Engl. J.*
473 *Med.* [Internet]. 2014;370:1712–23. Available from:
474 <http://www.ncbi.nlm.nih.gov/pubmed/24785206>
475 11. Berry MPR, Graham CM, McNab FW, Xu Z, Bloch S a a, Oni T, et al. An interferon-
476 inducible neutrophil-driven blood transcriptional signature in human tuberculosis.
477 *Nature* [Internet]. Nature Publishing Group; 2010;466:973–7. Available from:
478 <http://dx.doi.org/10.1038/nature09247>
479 12. Bloom CI, Graham CM, Berry MPR, Rozakeas F, Redford PS, Wang Y, et al.
480 Transcriptional Blood Signatures Distinguish Pulmonary Tuberculosis, Pulmonary
481 Sarcoidosis, Pneumonias and Lung Cancers. *PLoS One.* 2013;8.
482 13. R Core Team. R: A Language and Environment for Statistical Computing [Internet].
483 Vienna, Austria: R Foundation for Statistical Computing; 2015. Available from:
484 <https://www.r-project.org/>
485 14. Kuhn M. Building Predictive Models in R Using the caret Package. *J. Stat. Softw.*
486 [Internet]. 2008;28:1–26. Available from: <http://www.jstatsoft.org/v28/i05/>
487 15. Liaw A, Wiener M. Classification and Regression by randomForest. *R news*
488 [Internet]. 2002;2:18–22. Available from: <http://cran.r-project.org/doc/Rnews/>
489 16. Karatzoglou A, Smola A, Hornik K, Zeileis A. kernlab – An S4 Package for Kernel
490 Methods in R. *J. Stat. Softw.* [Internet]. 2004;11:1–20. Available from:
491 <http://www.jstatsoft.org/v11/i09/paper>
492 17. Venables WN, Ripley BD. Modern Applied Statistics with S. Issues of Accuracy and
493 Scale [Internet]. 2002;868. Available from:
494 http://scholar.google.com/scholar?q=related:29252RNVomwJ:scholar.google.com/&hl=en&num=100&as_sdt=0,5%5Cnpapers2://publication/uuid/E2522B53-755A-48D4-925F-A02094784F2C

497 18. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear
498 Models via Coordinate Descent. *J. Stat. Softw.* [Internet]. 2010;33:1–22. Available from:
499 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/>&tool=pmcentrez
500 &rendertype=abstract

501 19. Díaz-Uriarte R, Alvarez de Andrés S. Gene selection and classification of microarray
502 data using random forest. *BMC Bioinformatics* [Internet]. 2006;7:3. Available from:
503 <http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-7-3>

504 20. Garson DG. Interpreting neural-network connection weights. *Artif. Intell. Expert.*
505 1991;6:46–51.

506 21. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an
507 open-source package for R and S+ to analyze and compare ROC curves. *BMC*
508 *Bioinformatics* [Internet]. 2011;12:77. Available from:
509 <http://www.biomedcentral.com/1471-2105/12/77>

510 22. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers
511 differential expression analyses for RNA-sequencing and microarray studies. *Nucleic*
512 *Acids Res.* 2015;43:e47.

513 23. Zak DE, Penn-Nicholson A, Scriba TJ, Thompson E, Suliman S, Amon LM, et al. A
514 blood RNA signature for tuberculosis disease risk: a prospective cohort study. *Lancet*
515 [Internet]. Elsevier Ltd; 2016;6736:1–11. Available from:
516 <http://linkinghub.elsevier.com/retrieve/pii/S0140673615013161>

517 24. Weiner J. tmod: Feature Set Enrichment Analysis for Metabolomics and
518 Transcriptomics [Internet]. 2016. Available from: <https://cran.r-project.org/package=tmod>

520 25. Li S, Rouphael N, Duraisingham S, Romero-Steiner S, Presnell S, Davis C, et al.
521 Molecular signatures of antibody responses derived from a systems biology study of
522 five human vaccines. *Nat. Immunol.* [Internet]. 2014;15:195–204. Available from:
523 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946932/>&tool=pmcentrez
524 &rendertype=abstract

525 26. Chaussabel D, Quinn C, Shen J, Patel P, Glaser C, Baldwin N, et al. A Modular
526 Analysis Framework for Blood Genomics Studies: Application to Systemic Lupus
527 Erythematosus. *Immunity*. 2008;29:150–64.

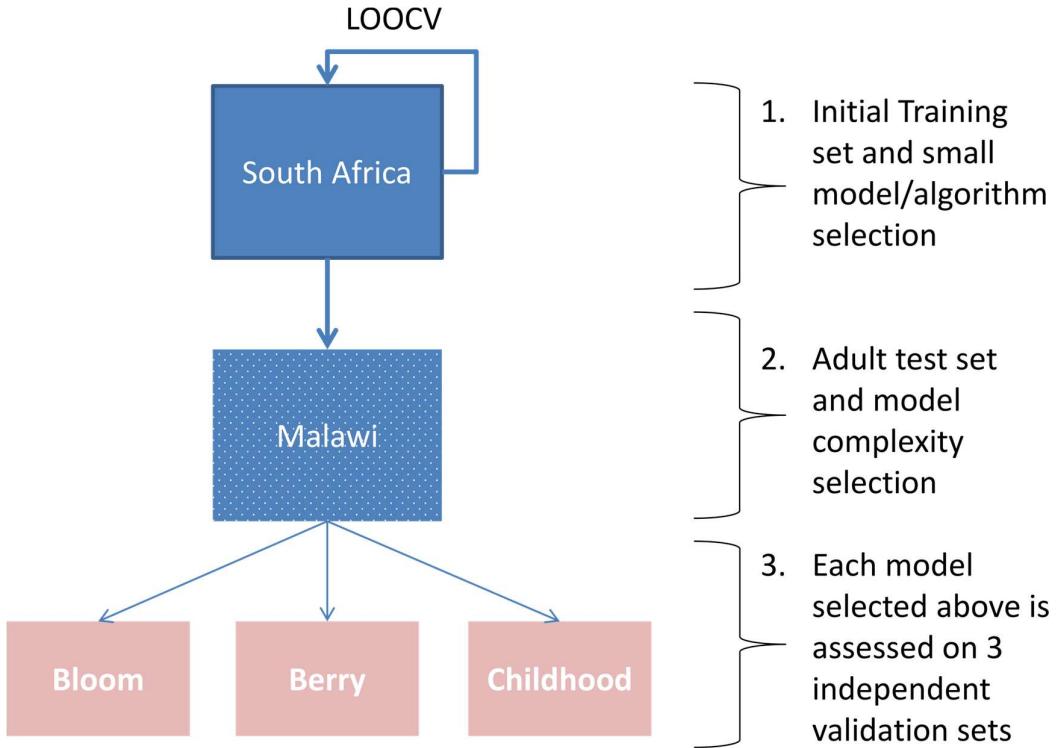
528 27. Sweeney TE, Braviak L, Tato CM, Khatri P. Genome-wide expression for diagnosis
529 of pulmonary tuberculosis: a multicohort analysis. *Lancet Respir. Med.* [Internet].
530 Elsevier Ltd; 2016;2600:1–12. Available from:
531 <http://linkinghub.elsevier.com/retrieve/pii/S2213260016000485>

532 28. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or

533 more correlated receiver operating characteristic curves: a nonparametric approach.
534 Biometrics. 1988;44:837–45.
535 29. Tuson M, Garanto A, González-Duarte R, Marfany G. Overexpression of CERKL, a
536 gene responsible for retinitis pigmentosa in humans, protects cells from apoptosis
537 induced by oxidative stress. Mol. Vis. [Internet]. 2009;15:168–80. Available from:
538 <http://www.ncbi.nlm.nih.gov/pubmed/19158957>
539 30. Tian X, Zhang A, Qiu C, Wang W, Yang Y, Qiu C, et al. The upregulation of LAG-3
540 on T cells defines a subpopulation with functional exhaustion and correlates with
541 disease progression in HIV-infected subjects. J. Immunol. [Internet]. 2015;194:3873–82.
542 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/25780040>
543 31. Jayaraman P, Jacques MK, Zhu C, Steblenko KM, Stowell BL, Madi A, et al. TIM3
544 Mediates T Cell Exhaustion during Mycobacterium tuberculosis Infection. PLoS Pathog.
545 [Internet]. 2016;12:e1005490. Available from:
546 <http://www.ncbi.nlm.nih.gov/pubmed/26967901>
547 32. Sweeney TE, Shidham A, Wong HR, Khatri P. A comprehensive time-course–based
548 multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic
549 gene set. Sci. Transl. Med. [Internet]. 2015;7:287ra71-287ra71. Available from:
550 <http://stm.sciencemag.org/content/7/287/287ra71.abstract>

551

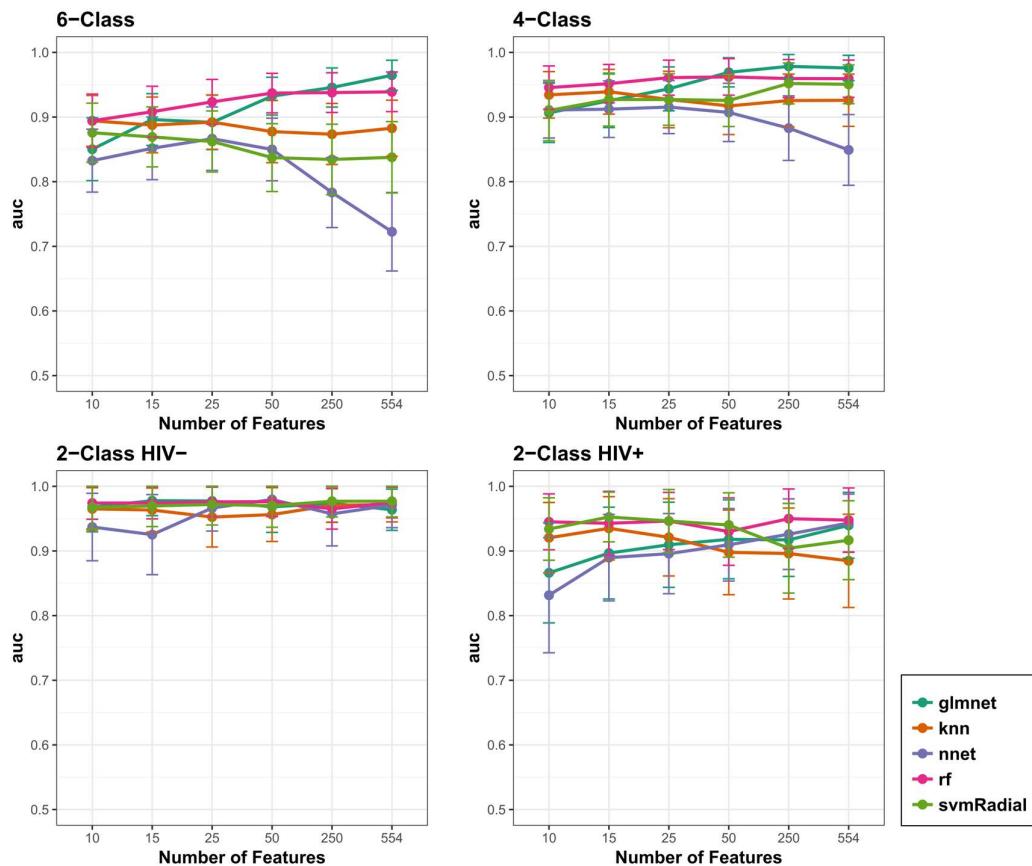
552 **Figures**



553

554 **Figure 1: Analytical Plan.**

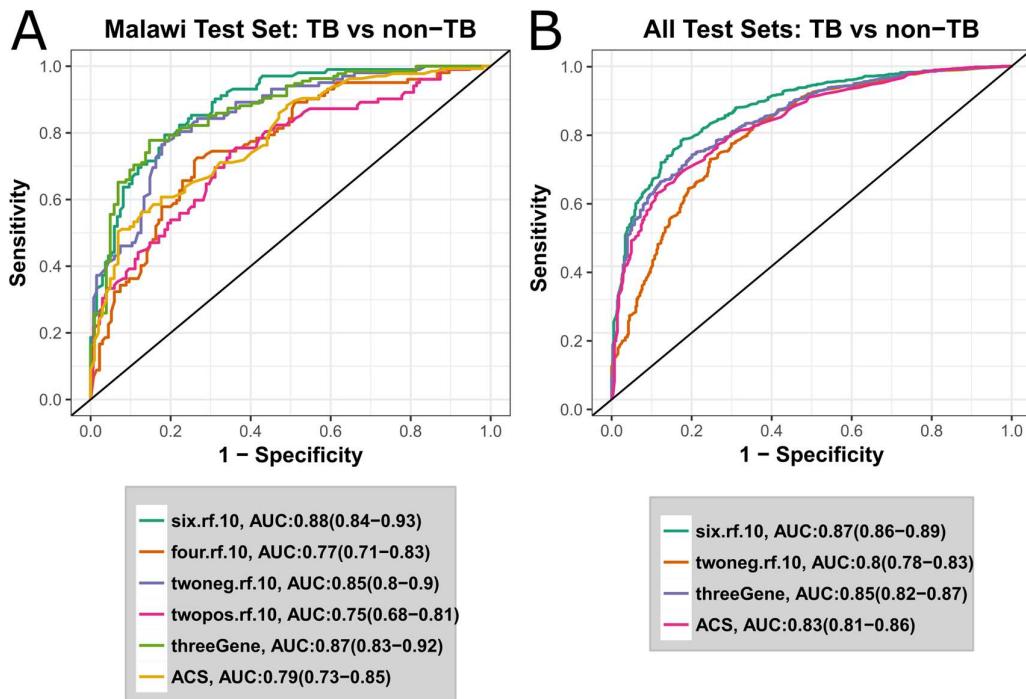
555 Outlines the model training, selection and prediction steps for the overall analysis



556

557 **Figure 2: Training Cross Validation Results on Adult TB Samples**

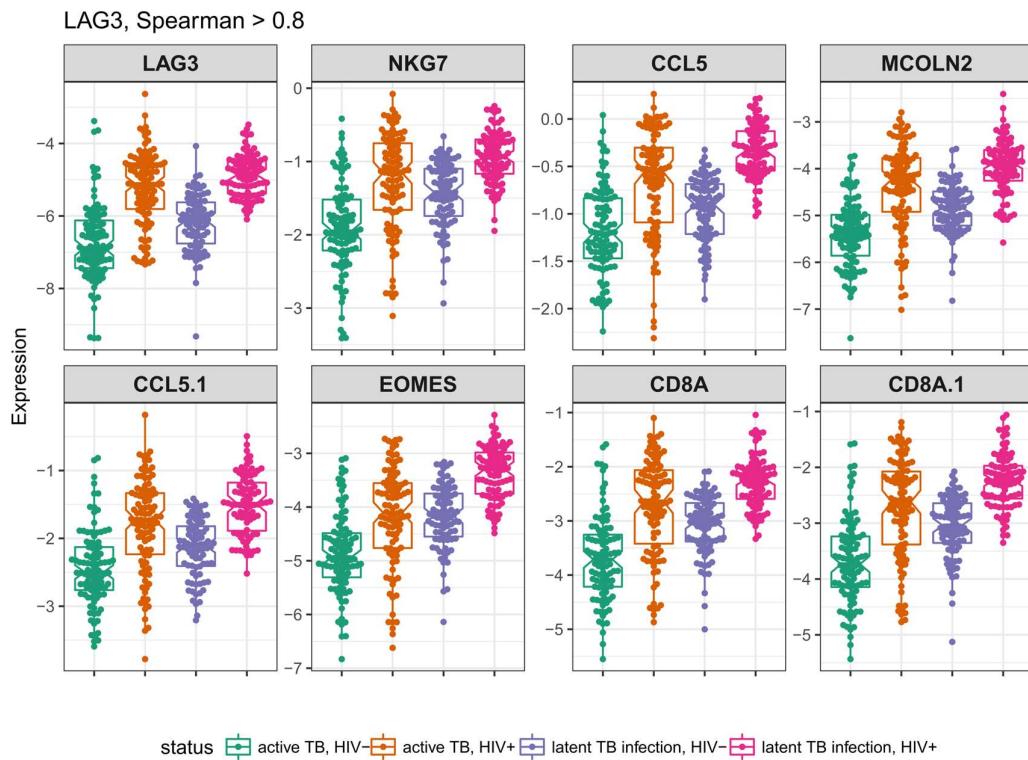
558 Leave-one-out cross validation results for models trained on South Africa adult data. Each
559 panel plots the area under the ROC curve for five machine learning algorithms (glmnet:
560 Elastic-Net logistic regression, knn: k-Nearest Neighbours, nnet: Neural Network, rf: Random
561 Forest, svmRadial, Support Vector Machine with Radial Basis Function kernel) starting with
562 models trained using all 554 probes, and iteratively shrunk to models trained on 10 probes
563 only. Models were trained to classify the data into 6 (TB:HIV+, TB:HIV-, LTB:HIV+,
564 LTB:HIV-, OD:HIV+, OD:HIV-), 4 (TB:HIV+, TB:HIV-, LTB:HIV+, LTB:HIV-) and 2
565 (TB, LTB) classes. Two types of 2-class models were trained: using all HIV+ or all HIV-
566 samples. Error bars show bootstrap-estimated 95% confidence intervals around the AUC.



567

568 **Figure 3: A six-class multinomial model optimally predicts 4 independent test**
569 **sets.**

570 ROC curves for active TB vs non-TB classification of independent test sets. Legends shows
571 the AUC for each model, with the 95% confidence intervals in parentheses. Models
572 developed in this study are named in the form <number-of-classes>.<algorithm>.<number-of-
573 probes>. E.g. six.rf.10 is the 10 probe random forest model trained to predict 6 classes.
574 twoneg and twopos refer to 2-class models trained on HIV- or HIV+ samples respectively.
575 threeGene refers to the signature described by Khatri et al[32], and ACS refers to the
576 signature described by Zak et al[23]. A ROC curves for classification of the Malawi test
577 samples from the Kaforou cohort. **B** ROC curves for Malawi test set plus the three further
578 independent test sets described in Table 3



579

580 **Figure 4: The six-class multinomial model identifies HIV+ TB as a distinct state**

581 **A** ROC curves for the 10-gene six-class multinomial model discriminating HIV+ active TB
582 samples from HIV- active TB samples, and HIV+ active TB samples from HIV- active TB
583 and HIV+/- LTB and HIV+/- OD samples in the Malawi test set. **B** Dot- and boxplots of
584 expression levels of six-class multinomial model genes in the entire Kaforou dataset. **C** Six-
585 class multinomial genes classified by their TB/HIV behaviour as determined by fitting linear
586 models to gene expression as a function of disease state. TB upregulated genes are indicated
587 in orange and downregulated genes shown in blue

588

589 **Figure 5: LAG3-correlated genes**

590 Dot and boxplots for each microarray primer, named as the corresponding gene, strongly
591 correlated with LAG3 (spearman correlation $p>0.8$) for latent and active TB samples from the
592 Kaforou dataset.

593 **Tables**

	Active TB		Latent TB		Other Diseases		TOTAL
	HIV+	HIV-	HIV+	HIV-	HIV+	HIV-	
Malawi	51	51	36	35	30	34	237
South Africa	47	46	48	48	62	49	300

594 **Table 1: Adult Training and Test Set**

595

South Africa	Predict	Number of Classes to	Elastic-Net	k-Nearest Neighbours	Neural Network	Random Forest	Support Vector Machine
		Logistic	Nearest Neighbours	Neural Network	Random Forest	Support Vector Machine	
		Regression					
	Four	0.91(0.86-0.95)	0.93(0.89-0.97)	0.91(0.87-0.95)	0.96(0.93-0.99)	0.91(0.86-0.96)	
	Six	0.82(0.76-0.87)	0.89(0.85-0.93)	0.85(0.80-0.90)	0.92(0.88-0.95)	0.88(0.83-0.92)	
	Two (HIV-)	0.98(0.94-1.0)	0.96(0.93-1.0)	0.97(0.93-1.0)	0.97(0.95-1.0)	0.97(0.94-1.0)	
	Two (HIV+)	0.85(0.77-0.93)	0.91(0.86-0.97)	0.84(0.76-0.93)	0.95(0.90-1.0)	0.94(0.89-0.99)	

596 **Table 2: Top LOOCV Model Structures**

597 Shows the area under the ROC curve (AUC) for the best small model at each combination of
 598 machine-learning algorithm choice and number of predicted classes for models trained on
 599 South Africa adult data. 95% confidence intervals of the AUC are shown in parentheses.

600

GEO ID	Description	Number of Samples	Reference
GSE39941	Whole blood microarray expression analysis of TB vs LTB and Other	122 TB (HIV-, 27 are culture-TB)	Anderson et al, 2014[10]
	Diseases with potential HIV co-infection in Children from Kenya, Malawi and South Africa	68 TB (HIV+, 17 are culture- TB)	
		68 LTB (HIV-)	
		140 OD (HIV-)	
		93 OD (HIV+)	
GSE42834	Whole blood microarray expression analysis of TB vs Sarcoidosis,	35 TB	Bloom et al, 2013[12]
	Pneumonia and Lung Cancer and Healthy Controls in Adults from the UK	61 Sarcoidosis	
		121 Healthy	
		16 Lung Cancer	
		6 Pneumonia	

GSE19491	Whole blood microarray expression analysis of TB vs LTB, Healthy controls and other bacterial and inflammatory diseases	54 TB 69 LTB 105 Healthy 110 Lupus 40 Staph 31 Still's 12 Strep	Berry et al, 2010[11]

601 **Table 3: Further Validation Datasets**

602