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Whole blood transcriptome analysis in bipolar disorder reveals strong lithium effect
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Abstract

Bipolar disorder (BD) is a highly heritable mood disorder with complex genetic architecture and
poorly understood etiology. We performed a whole blood transcriptome analysis in a BD case-
control sample (Nsusjects = 480) by RNA sequencing. While we observed widespread differential
gene expression patterns between affected and unaffected individuals, these effects were largely
linked to lithium treatment at the time of blood draw (FDR < 0.05, Ngenes = 976) rather than BD
diagnosis itself (FDR < 0.05, Ngenes = 6). These lithium-associated genes were enriched for cell
signaling and immune response functional annotations, among others, and were associated with
neutrophil cell-type proportions, which were elevated in lithium users. Neither genes with altered
expression in cases nor in lithium users were enriched for BD, schizophrenia, and depression
genetic risk based on information from genome-wide association studies, nor was gene
expression associated with polygenic risk scores for BD. Our findings suggest that BD is
associated with minimal changes in whole blood gene expression independent of medication use
but underline the importance of accounting for medication use and cell type heterogeneity in
psychiatric transcriptomic studies. The results of our study add to mounting evidence of lithium’s

cell signaling and immune-related mechanisms.

Introduction

Bipolar disorder (BD) is a chronic and recurrent psychiatric disorder affecting approximately 1%
of the population worldwide and presenting a major public health burden'?. It is characterized
clinically by instability in mood resulting in manic and depressive episodes interspersed between
neutral, euthymic states?. Risk for BD is highly genetic, with heritability estimates as high as 85%3
and common genetic variation explaining up to a third*. Still, however, the pathophysiological
characteristics of BD are not well understood. Investigating molecular phenotypes such as gene

expression as intermediate measures between genetic variation and clinical variation is a viable
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strategy for uncovering disease mechanisms. Many such studies have been carried out for BD,
and in Table 1 we present a summary that reveals a lack of consistency between findings likely
owing to clinical heterogeneity, differing study designs, and the low numbers of samples
investigated (N < 62 BD subjects)®>?’. Moreover, there are many potential confounds that impact
gene expression, including medication.

Therefore, to explore gene expression changes associated with BD, we generated RNA
sequencing data from peripheral whole blood collected in a large, well-characterized case-control
cohort from The Netherlands. We examined gene expression differences between groups both at
the individual gene level and at the level of gene co-expression. Upon correction for technical and
biological variables including the use of lithium, the most widely used prescription drug in our
cohort, gene expression differences between subjects with BD and controls were minor.
Differences in subjects being treated with lithium compared to those who are not, however, were
widespread. These differences were patrtially but not entirely explained by differences in cell-type
composition, driven by elevated neutrophil proportions in lithium users. The lithium-associated
changes in gene expression were independent of psychiatric genetic risk, though. Our results
suggest nominal BD-related gene expression effects in blood but numerous effects related to
lithium treatment. This work highlights the importance of accounting for medication use in
psychiatric transcriptomic studies and provides insight into lithium’s molecular mechanisms of

action.

Methods

Sample preparation and RNA sequencing

See Supplementary Methods for more information regarding sample ascertainment and
assessment. Peripheral whole blood was drawn and processed for genotyping and RNA

sequencing from 240 controls and 240 cases, of whom 227 (94.6%) had a diagnosis of bipolar |
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disorder and 13 (5.4%) had a diagnosis of bipolar Il disorder. Whole blood was collected in
PaxGene Blood RNA tubes and total RNA extracted using the PAXgene isolation kit (Qiagen)
according to manufacturer’s protocols. RNA integrity number (RIN) values were obtained using
Agilent's NRA 6000 Nano kit and 2100 Bioanalyzer. RNA concentrations were determined using
the Quant-iT RiboGreen RNA Assay kit. The UCLA Neuroscience Genomics Core subsequently
performed RNA sequencing and prepared sample libraries using the TruSeq Stranded RNA plus
Ribo-Zero Gold library prep kit to remove ribosomal and globin RNA to enrich for messenger and
noncoding RNAs. Concentration of the sequencing library was determined on a TapeStation and
a pool of barcoded libraries were layered on eight lanes of the Illumina flow cell bridge amplified
to raw clusters. An average of 24.9 million paired-end reads of 75 bases in length per sample
were obtained on an lllumina HiSeq 2500. The raw sequence data were processed for quality
control (QC) using FastQC, after which all samples were deemed suitable for downstream

analysis.

RNA sequencing alignment and gene expression quantification

Reads were mapped to human reference genome hgl9 using TopHat2?® allowing for two
mismatches yielding an average mapping rate of 96.0% per sample and an average concordant
pair mapping rate of 89.8% per sample. Samples had an average of 33.9% duplicate reads. Picard
Tools were used to obtain 18 different sequencing metrics such as number of reads, percent
mapped reads, and number of coding bases, that were examined for QC and then processed for
dimension reduction using principal component analysis (PCA; Supplementary Methods). The
first three principal components, which explain 75.9%, 16.9%, and 6.4% of variance, respectively,
were used as covariates in subsequent analyses. Known Ensembl gene levels were quantified
using HTSeq in the union mode to obtain integral counts of reads that intersect the union of all

transcripts of genes. PCA of gene expression quantification was used for data visualization and
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98 additional QC, after which four samples were removed for apparent mix-up (Supplementary
99  Methods). Thirty-two additional samples were excluded due to missing demographic information.
100 Differential expression and co-expression analyses were therefore limited to a set of 444 subjects
101 (240 cases and 204 controls).
102
103  Normalization, covariate correction, and differential expression analysis
104  Gene expression counts from HTSeq were filtered for genes having > 10 counts in 90% of
105 samples, yielding 12,344 genes for subsequent analyses. Filtered counts were converted to log2-
106  counts-per-million (log-cpm) to account for differences between samples in sequencing depth and
107  to stabilize variances at high counts. Then, the mean-variance relationship was modelled with
108 precision weights at the individual observation level using limma voom?°. Briefly, voom non-
109 parametrically estimates the mean-variance trend of the logged read counts and uses this to
110 predict the variance of each log-cpm value. The predicted variance is then used as a weight,
111 which is incorporated into the linear model procedure during differential expression analysis.
112  These gene-wise weighted least-squares linear models are fitted to the normalized log-cpm
113  values, taking into account the voom precision weights and the final covariate model, generating
114  a coefficient for the effect of each variable on each gene’s expression:
115
116 gene expression ~ covariates + trait of interest
117
118 Then, for each gene, the coefficient for the trait of interest is statistically tested for being
119  significantly different from zero. P-values from this test were corrected for multiple testing using
120 the Benjamini-Hochberg false discovery rate (FDR) estimation, and a gene was considered to be
121 differentially expressed if it had an FDR-corrected P-value < 0.05. The final covariate model for

122  differentially expressed genes (DEGS) between BD cases and controls included the following


https://doi.org/10.1101/497784
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/497784; this version posted December 17, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

123 variables: age, sex, lithium use, tobacco use, assessment group, RIN, sequencing plate, and
124  sequencing metric PCs 1 through 3. The final covariate model for DEGs between subjects being
125 treated with lithium (i.e. lithium users) and non-lithium users included the following variables: BD
126  diagnosis, age, sex, tobacco use, assessment group, RIN, sequencing plate, and sequencing
127  metric PCs 1 through 3. Tobacco use was included because of its well-characterized effect on
128  whole blood gene expression®°. An overview of covariates can be found in Table S1. DEGs were
129 checked for overlap and concordance with other datasets (Supplementary Methods). Fold
130 changes (FC) reported are in log fold change units.

131

132  Co-expression network analysis

133 To determine networks of genes with correlated expression, weighted gene co-expression
134  network analysis (WGCNA)3! was performed using the WGCNA package in R. To do this, first the
135 12,344 filtered and normalized genes were residualized adjusting for the following covariates:
136 age, sex, tobacco use, assessment group, RIN, sequencing plate, and sequencing metric PCs 1
137  through 3. Then, briefly, WGCNA defines a network of genes as nodes with edges between genes
138 based on pairwise correlations between genes, and separates the network into modules of gene
139  clusters with highly coordinated expression. The g parameter (B = 7) was chosen according to
140 the approximate scale-free topology criterion described by Langfelder and Horvath®. Then the
141 gene expression profiles of each module were summarized by calculating the module eigengene,
142  which is defined as the first principal component of the expression matrix of that module. Each
143  gene was then assigned a measure of module membership for each module.

144 To determine biologically significant modules, gene significance measures were assigned
145 to each gene for each of our traits of interest, including BD diagnosis and lithium use, by
146  calculating the absolute correlation between the trait and the expression profiles. Then a measure

147  of module-trait significance was calculated by correlating module membership values with gene
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148  significance values. An association was considered significant if its P-value surpassed Bonferroni
149  correction for testing multiple modules (P < @ = 0.05/Nmodutes). Finally, intramodular connectivity
150 ki was calculated to determine the level of connectivity for the genes in modules significantly
151  associated with traits of interest.

152

153  Functional annotation

154  The Database for Annotation, Visualization, and Integrated Discovery (DAVID, v6.8)% was used
155 for functional annotation of each gene list. We used three gene lists from the differential
156  expression analysis: the 976 lithium DEGs at FDR < 0.05, the 754 up-regulated lithium DEGs at
157 FDR < 0.05, and the 222 down-regulated lithium DEGs at FDR < 0.05. We also used gene lists
158 from the five co-expression network analysis modules that were significantly associated with BD:
159 M1 (Ngenes = 2,092), M7 (Ngenes = 700), M9 (Ngenes = 55), M11 (Ngenes = 622), and M26 (Ngenes =
160  484). The full set of 12,344 filtered and normalized genes used as input for differential expression
161  and co-expression network analyses was used as background to determine overrepresentation
162 in each of the gene lists. The functional annotation clustering tool was applied using unique
163 Ensembl IDs and the following databases: SP_PIR_KEYWORDS, UP_SEQ FEATURE,
164 GOTERM_BP_FAT, GOTERM_CC_FAT, GOTERM_MF_FAT, BIOCARTA, KEGG_PATHWAY,
165 INTERPRO, UCSC_TFBS. Cluster annotations were called significant if the enrichment was
166 greater than 1.0 and at least 1 gene list in the annotation cluster survived Bonferroni correction
167 (P <0.05).

168

169  Estimation of cell-type proportions

170  To estimate cell-type composition in our sample we employed the CIBERSORT online software

171  (cibersort.stanford.edu)3. Briefly, CIBERSORT uses reference gene expression signatures to

172 estimate the relative proportions of cell types in tissues with complex, heterogeneous cell


http://cibersort.stanford.edu/
https://doi.org/10.1101/497784
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/497784; this version posted December 17, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

173 composition via linear support vector regression. The reference dataset we used to deconvolve
174  our mixture of whole blood cell types was the validated leukocyte gene signature matrix that is
175  provided with the CIBERSORT software, termed LM2223, It contains 547 genes whose expression
176 discriminate between 22 different human hematopoietic cell phenotypes (Table S2), including
177 seven T-cell types, naive and memory B cells, plasma cells, natural killer cells, and myeloid
178  subsets.

179 To prepare our gene expression data for input to CIBERSORT, raw expression counts
180 from HTSeq were converted to transcripts per million (TPM). Using the resulting matrix of TPM
181 values for our 480 samples and the LM22 gene signature matrix as input, CIBERSORT was run
182  online with 100 permutations and with quantile normalization disabled as recommended for RNA-
183  seq data. The output matrix consisted of deconvolution results with relative fractions of cell types
184 normalized to 1 across all cell subsets for each sample. These estimated cell-type proportions
185 were then residualized using a linear regression model adjusting for the following covariates: sex,
186 age, tobacco use, sequencing plate, RIN, and sequencing metric PCs 1 through 3. Then,
187 residualized cell-type estimates were used to predict lithium use in a stepwise linear regression
188 using the stepAlC function in the MASS package in R. The estimated cell-type proportions were
189 also appended to the table of technical and biological covariates and then used to re-run the
190 differential expression analysis while accounting for cell-type heterogeneity in the sample.

191

192  Enrichment of cell types in co-expression modules

193  The enrichment of LM22 cell types in gene co-expression modules determined from WGCNA was
194  calculated in two ways. First, the hypergeometric overlap between modules and cell type
195  signature genes was calculated. The binary matrix of LM22 signature genes provided by Newman
196 et al.*3, where 1 denotes that a gene was significantly differentially expressed in that particular

197 cell type and 0 denotes that it was not, was used to extract lists of signature genes for each cell
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198 type, or genes with a value of 1. These lists are partially overlapping, with 262 genes being unique
199 to agiven list and 285 genes being shared between > 2 lists (maximum 10 lists). Then, using the
200 GeneOverlap library in R, the hypergeometric overlap was calculated between each of these 22
201 cell type signature gene lists and each of the 27 module gene lists using the full set of 12,344
202 filtered and normalized genes as background.

203 Second, binary cell type signatures were used to predict module membership values in a
204 linear model. We reasoned that this method might be more powerful than a strict overlap due to
205 the fact that every gene has a module membership value for every module, regardless if it was
206  assigned to that module. The gene co-expression network output, which consists of module
207  membership values for each gene for each module, was limited to the set of LM22 signature
208 genes that were expressed in our sample (Ngenes = 331). These values were then used as an
209 outcome in alinear model, with the binary matrix of LM22 sighature genes as predictors. To avoid
210 multiple testing penalties, only five regressions were run on the five modules that were associated
211  with lithium: M1, M7, M9, M11, and M26.

212

213 Integration of GWAS data with transcriptomic signatures

214  Prior to gene-set analyses, heritability and genetic correlation of traits of interest were estimated
215 to confirm significant non-zero SNP-based heritability (Supplementary Methods). Analyses were
216  performed across three psychiatric genome-wide association study (GWAS) traits from publicly
217 available datasets (bipolar disorder, schizophrenia, and self-reported depression) and 2 sets of
218 DEGs (BD at FDR < 0.2 and lithium-use at FDR < 0.05). Differential expression log2 fold changes
219 and FDR-corrected P-values for each of the 12,344 genes expressed at > 10 counts in 90% of
220 samples were obtained from limma to integrate whole-blood gene expression signatures with
221  GWAS data using Multi-marker Analysis of GenoMic Annotation (MAGMA v1.06)3.

222 GWAS summary statistics were obtained for the following three GWAS traits:
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1) SCZ*: 36,989 cases and 113,075 controls;

2) BD?%*: 20,352 cases and 31,358 controls;

3) 23andMe self-reported depression®’: 75,607 cases and 231,747 controls;

The 1000 Genomes Project Phase 3 release European reference panel (N = 503) was used to

model LD in all analyses®. Eight gene lists were used from two different DEG models along with

a positive and negative control:

1)
2)
3)
4)
5)
6)

7

8)

Lithium-use DEGs at FDR < 0.05: N = 897 genes;

Up-regulated lithium-use DEGs at FDR < 0.05: N = 680 genes;
Down-regulated lithium-use DEGs at FDR < 0.05: N = 217 genes;

BD DEGs at FDR < 0.2: N = 630 genes;

Up-regulated BD DEGs at FDR < 0.2: N = 389 genes;

Down-regulated BD DEGs at FDR < 0.2: N = 241 genes;

Positive control gene-set: the top 100 most significant genes from a random
draw of N = 1,000 using the BD GWAS gene-level test statistics;

Negative control gene-set: a random draw of N = 1,000 genes using the BD

GWAS gene-level test-statistics.

MAGMA was used to run gene property analyses, which uses a multiple regression

framework to associate a continuous gene variable to GWAS gene level p-values. High quality

SNPs (INFO > 0.9) were mapped to genes using Ensembl gene IDs and NCBI build 37.3 gene

boundaries +/- 10kb extensions using the -- annotate flag. For each phenotype, we generated

gene-level p-values by computing the mean SNP association using the default gene model (‘snp-

wise=mean’). We only included SNP with MAF > 5% and dropped synonymous or duplicate SNPs

after the first entry (‘synonym-dup=drop-dup’). For each annotation, we then regressed gene-level

GWAS test statistics on the corresponding gene annotation variable using the ‘--gene-covar’

function while adjusting for gene size, SNP density, and LD-induced correlations (‘--model

10
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248  correct=all’), which is estimated from an ancestry-matched 1KG reference panel. In all analyses,
249  we included only genes for which we had both the gene variable and GWAS gene level test
250  statistic available. Two-sided p-values are reported.

251 Secondary gene-set analyses were run on a limited number of DEG gene sets and
252  additional, sleep-related GWAS traits (Supplementary Methods).

253

254  Results

255  Minimal changes in bipolar disorder gene expression

256 To explore the transcriptomic signatures of BD, we first evaluated whether subjects with BD
257  harbored transcriptional differences on a per gene level compared with controls. Of the 12,344
258  genes tested, only six were differentially expressed in BD after correcting for multiple testing (FDR
259 < 0.05; Figure 1A). The differences in expression were very small, with absolute fold changes
260 ranging from 0.12 to 0.44. While the number of identified differentially expressed genes (DEGS)
261  was too small to perform functional enrichment analysis, we did find that three of the six genes
262 (COG4, DOCK3, and BBS9) were expressed in GTEXx frontal cortex tissue (median TPM > 1) and
263  show relatively stable expression across brain cell types except for DOCKS3, which is enriched in
264  neurons (fold change relative to other cell types = 6.82; Table S3). Four of the genes were present
265 in the Stanley Genomics brain gene expression database, and two of these were found to be
266  differentially expressed in BD individuals in at least one study, COG4 and DOCK3, although the
267 latter was altered in the opposite direction. COG4 was also reported as differentially expressed in
268 a schizophrenia mega-analysis of nine whole blood microarray datasets?!. Using polygenic risk
269 scores (PRS) for BD as the differential expression trait of interest rather than the dichotomous
270 case-control phenotype did not yield any significant genes, even though PRS did significantly
271  differ between BD cases and controls (t = -3.42, P = 6.88 x 10* Figure S1; Supplementary

272  Methods).

11
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273

274  Widespread subtle gene expression changes in lithium users

275 Following the same differential expression pipeline as above, we found 976 genes with small
276  differences in gene expression between lithium users and non-lithium users ([FC| mean = 0.20,
277 max = 0.82, SD = 0.10; Figure 1B, Supplementary File 1). These genes were enriched for
278  biological terms related to calcium signaling and other signaling pathways, and immunity (Figure
279  1C). To distinguish between up- and down-regulated gene pathways, we stratified genes by their
280 direction of change in expression. The 754 up-regulated genes were annotated for many of the
281 same terms as the full set but with greater enrichment scores, indicating that the up-regulated
282  genes are driving the enrichment scores in the full set (Figure 1C). Of the 976 lithium-use DEGS,
283 804 were expressed in GTEXx frontal cortex samples (TPM > 1), and 488, 553, 503, 478, 512, and
284 403 were expressed in neurons, fetal astrocytes, mature astrocytes, oligodendrocytes, microglia/
285 macrophages, and endothelia, respectively (FPKM > 1). However, none of these gene sets were
286  significantly enriched (hypergeometric P > 0.05).

287 To validate our results, the 976 lithium-use DEGs were tested for overlap with lists of
288 DEGs from similar studies found in the literature (Table S4). Although none of these studies has
289  the same design as ours, we did find a significant overlap between our 976 lithium-use DEGs and
290 the lists from two studies. In the first study'®, DEGs were detected by comparing peripheral
291 monocyte gene expression in subjects before and after lithium monotherapy. Of the 35 DEGs
292  discovered, 18 were shared with the current study (hypergeometric odd ratio (OR) = 13.57, P =
293  4.66 x 10'?), and all 18 were concordant in direction (Figure S2A). In the second study'®, DEGs
294  were detected by comparing LCL gene expression before and after lithium treatment in vitro. Of
295 the 1,504 DEGs discovered, 134 were shared with our study (hypergeometric OR = 1.27, P =

296 9.23x10%), and 84.6% of these were concordant in direction (Figure S2B). There were two genes

12
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297 shared between all three lists, RFX2 and SLC29A1. We report genes in these overlapping lists
298  as high confidence lithium-associated genes (Supplementary File 1).

299

300 Modules of co-expressed genes are associated with lithium use

301 Next, in search of genes with differential co-expression in BD, we constructed a gene expression
302  network in the entire sample using WGCNA and assessed the detected modules for association
303  with BD. This network consisted of 27 modules ranging in size from 48 to 2,760 genes (mean
304  Ngenes = 441, Supplementary File 2). By evaluating the correlation of module membership values
305  with gene significance for BD diagnosis, we quantified the association of each module with BD.
306  After Bonferroni multiple testing correction, five modules were significantly associated with lithium-
307  use, but no modules were associated with BD or any other clinical or technical variable (Table
308 Sb5). Of the five modules associated with lithium use, three shared significant overlap with lithium-
309 use DEGs (Table 2). M26 was most significantly associated with lithium (P = 2.00 x 10*; Figure
310  S3A) but was not significantly enriched for lithium DEGs. M1 was also associated with lithium (P
311 =9.04 x 10* Figure S3B) and had the most significant enrichment of DEGs (431 of 2,092 genes
312 in the module were DEGs; hypergeometric OR = 4.62, P = 2.03 x 10’). Functional annotation
313  clustering of the genes in M1 showed an enrichment of terms related to cell signaling, immunity,
314  and glycophosphatidylonositol anchor.

315 Module preservation analysis was also performed to assess differences in network density
316 and connectivity between groups, but showed full preservation indicating that networks
317 constructed in separate groups maintain their underlying structure (Supplementary Methods and
318  Figure S4).

319

320 Estimated neutrophil proportions are increased in lithium users

13
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321  We then sought to determine if variation in our sample could be explained by differences in blood
322  cell-type composition. To deconvolve cellular heterogeneity, we applied CIBERSORT®? to our
323 gene expression quantifications using a reference panel of 22 blood cell-type signatures. The
324  resulting estimated cell-type proportions (Figure 2A) were then examined for their relationship
325  with lithium use in BD cases only. Each cell type was residualized for demographic and technical
326  variables then used to predict lithium use in a stepwise linear model. Neutrophils are the one cell
327 type that significantly predicted lithium use within the BD cases (8 = 0.63, P = 0.024), with
328 elevated proportions in individuals being treated with lithium (Figure 2B). Indeed, 16 of 60
329  signature neutrophil genes were also lithium-use DEGs (hypergeometric OR = 4.64, P = 4.45 x
330 10%).

331 The number of genes showing differential expression in subjects undergoing lithium
332 treatment decreased from 976 in the model without cell-type estimates to 233 in the model with
333  cell-type estimates (FDR < 0.05; Figure S5A, Supplementary File 1), of which 194 (83.2%) were
334  significant in the original model and concordant in direction of effect (Figure S5B). No functional
335 annotation cluster terms remained significant after correcting for multiple testing. The number of
336  genes differentially expressed between BD cases and controls decreased to zero after accounting
337  for estimated cell-type proportions.

338

339 Lithium-associated co-expression module M1 is enriched for neutrophil gene expression

340  signatures

341  We then sought to determine if the various lithium-associated modules of co-expressed genes
342  reflected biologic signatures of distinct populations of blood cell types. We did this in two ways.
343  First, a hypergeometric overlap between lithium-associated module gene lists and cell-type
344  signature gene lists revealed a significant overlap between module M1 with monocyte and

345  neutrophil signature genes and M9 with eosinophil and activated mast cell signature genes
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346  (Figure 3A, left). Second, the expression of cell-type sighature genes was used to predict module
347  membership values in a linear model for each of the five lithium-associated modules. Neutrophils,
348 monocytes, and eosinophils were again implicated (Figure 3A, right). In both of these analyses,
349 the most significant cell type-module relationship was M1 with neutrophil estimates
350 (hypergeometric P = 5.68 x 102, linear model P < 2.20 x 10°). Indeed, neutrophil signature
351 genes had higher M1 membership values (Figure 3B).

352

353  Genes with altered expression are not enriched for genes with common psychiatric risk alleles
354  To evaluate if BD and lithium-use DEG sets were associated with a higher burden of psychiatric
355 risk alleles, we performed gene-set analyses using MAGMA?34. Analyses were performed across
356 three psychiatric GWAS traits: BD*¢, SCZ%®, and self-reported depression®’. SCZ and depression
357  were used because of their high degree of overlap in SNP-based heritability with BD* (Table S6).
358 The 23andMe self-reported depression GWAS was used instead of MDD GWAS because of the
359 large sample size and successful findings of this study. A lithium-response GWAS was not used
360 because the SNP-based heritability estimate for this trait is not different from zero (personal
361 communication with Thomas G. Schulze). Because the set of BD DEGs at FDR < 0.05 was too
362 small to test, we used a more lenient significance threshold of FDR < 0.2 for this analysis instead.
363 None of the comparisons demonstrated an association with genetic risk across the genes
364 identified in the current study (except for the positive control gene set), even after stratifying by
365 up- and down-regulated genes (Figure 4, Table S7). Because sleep disturbances are a hallmark
366 of BD*, and due to the genetic correlation of sleep-related phenotypes with BD*°, we performed
367 a secondary gene-set analysis with genes implicated from chronotype, sleep duration,
368  oversleeping, and undersleeping GWAS, which failed to demonstrate association with genes
369 identified in the current study (Table S8).

370
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371 Discussion

372 In our whole blood BD case-control gene expression study we observed widespread subtle
373 changes in gene expression in subjects undergoing lithium treatment but few transcriptomic
374  differences linked to disease status. These effects were partially driven by variation in leukocyte
375  cell type composition, and we find no evidence for a link with genetic risk for BD. Upon validation
376  of our findings with previous in vivo and in vitro lithium treatment gene expression studies, we
377  present a high-confidence list of genes that display altered expression associated with lithium
378  treatment.

379 One of the top differentially expressed genes associated with BD, COG4, encodes a part
380 of a multiprotein complex that is a key determinant of Golgi apparatus structure and capacity for
381 intracellular transport and glycoprotein modification*!. COG4 mRNA is expressed widely across
382  body tissues including the brain“?. It has been reported as having alternative splicing in subjects
383  with BD*3, and concordant with our results, was reported as down-regulated in three of the ten
384  Stanley Genomics BD brain datasets**. Further work is needed to determine the role of COG4 in
385 BD, but perhaps neuronal hyperexcitability in BD!® destabilizes internal cellular processes
386 including Golgi function®®. There is currently no evidence for a genetic link between BD disease
387  susceptibility and COG43¢,

388 Lithium is the first-line treatment for BD, not only for the treatment of acute episodes but
389 also for maintenance and suicide prevention*®#’. However, only about 30% of BD patients fully
390 respond to lithium, it has several adverse side effects, and its mechanisms of action are not well
391  understood*®°, One probable reason for this lack of understanding is the magnitude of lithium’s
392 physiological interactions®!. In pharmacological terms, lithium is a small molecule (the third
393 smallest element in fact) without a defined target®. This lack of specificity makes it difficult to
394  discern therapeutic mechanisms from off-target effects, which likely lead to many of lithium’s

395 undesirable side effects and even its toxicity at doses that are too high. Lithium ions (Li*) have a
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396 single positive charge and are hypothesized to mimic and disrupt the actions and targets of more
397  ubiquitous metal ions such as magnesium (Mg?*)*. Theorized therapeutic mechanisms of lithium
398 include its inhibition of the protein GS3K[3, and its effect on intracellular signaling cascades such
399 as those involving protein kinases and phosphatidylinositol®>°3, It is not clear how these
400 mechanisms relate to higher order properties thought to be involved in BD etiology like neuronal
401  function, chronobiology, and brain structure. Examining lithium mechanisms at high biological
402  resolution is therefore not only crucial for understanding the high rates of non-response and non-
403 adherence to prophylactic lithium treatment in BD patients but also for understanding BD etiology
404  itself.

405 The widespread but subtle gene expression changes observed in lithium users are in line
406  with lithium’s broad scope of physiological effects®! and with the complex genetic architecture of
407 BD?°, These genes were enriched for functional annotations related to transmembrane, cell
408 signaling, protein kinase, and immunity. These pathways have been implicated in previous BD
409 transcriptome studies!®!4162326 and are known targets of lithium*, The elevated levels of
410 neutrophil proportions we observed is in line with lithium-induced neutrophilia, which has been
411 described since the medication’s early use in psychiatry®®. Lithium is thought to induce
412  neutrophilia through a complex pathway involving GSK3 and immune-related transcription factors
413 and genes®. Increased levels of neutrophils are typically associated with anti-inflammatory or
414  infection-fighting immune responses®®. Whether these immunity-related mechanisms play a role
415 in the mood stabilizing effects of lithium remains to be determined. Immune components of
416  psychiatric iliness including BD®" have long been recognized, but it remains unclear if they
417  represent a causal pathway, a property of the disease state, or a consequence of environmental
418 factors like body mass index or smoking. These results contribute to the understanding of the
419 genomics of lithium action, which may be essential for the future of personalized psychiatric

420 medicine for patients with BD. Future studies with larger sample sizes and independent replication
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421  datasets will be needed to confirm our findings, and whether these genes and pathways play a
422  role in the mood-stabilizing mechanisms of lithium remains to be determined.

423 The lack of enrichment of genetic signal from common alleles associated with BD,
424  schizophrenia, or self-reported depression suggests that genes transcriptionally associated with
425 lithium treatment in peripheral blood most likely represent secondary effects of treatment that are
426  independent from disease susceptibility. The lack of genetic enrichment could also indicate that
427 our gene expression study is underpowered for this purpose, or that the transcriptomic
428 mechanisms of genetic risk for BD are not present in whole blood. In addition, the currently
429 available GWAS may still be underpowered thereby impacting our ability to detect a significant
430 enrichment. With the expected rapidly increasing sample sizes of these GWAS studies we will be
431  ableto test this hypothesis more fully in the near future. We did explore the opportunity to examine
432  enrichment of genetic susceptibility of lithium response, but because this phenotype has a SNP-
433  based heritability not different from zero, this specific analysis is not meaningful. In this regard, it
434 s important to distinguish between lithium use, the phenotype we used in our study, and lithium
435 response. Self-reported answers to a lithium questionnaire by participants in our study show that
436  the majority of subjects being treated with lithium had a positive response to the treatment and
437  the majority of non-users have been treated with lithium in the past (Supplementary Methods).
438 We therefore consider that the lithium use phenotype partially captures lithium response, but
439 disentangling the complex interplay between these phenotypes is an avenue for further
440  exploration.

441 Lithium use, as a trait only present in BD subjects and therefore confounded with BD
442  diagnosis, serves as a confounder by indication and likely eliminated most of the observable BD
443  effects. Our results highlight the importance of correcting for cell type composition as well as
444  medication use in BD transcriptome studies. A lithium-naive study design is warranted to optimize

445  BD transcriptomic signal that is independent of lithium use. Nevertheless, investigating the BD
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446  transcriptome in whole blood remains valuable for the following reasons. It is an accessible tissue,
447 it has the potential for biomarker discovery, and it can be used in longitudinal study designs, which
448  are appealing due to the episodic nature of BD. It may also be a choice tissue to observe the
449  suggested immune component of BD etiology. In addition, peripheral tissues such as blood
450 partially recapitulate gene expression signatures of the brain®8, and compared to post-mortem
451 tissues are less subject to poor quality due to rapid degradation upon death®®. However, studies
452  involving post-mortem tissue, in vitro neuronal cells, or animal models will still be needed to
453  determine the therapeutic effect of lithium on BD-associated brain-related function.

454 In summary, our findings suggest that there are minimal bipolar disorder-associated gene
455  expression changes in whole blood independent of medication use and underline the importance
456  of accounting for such confounders in psychiatric genomic studies. While limited in their ability to
457  uncover mechanisms associated with genetic risk, blood-based transcriptome analyses of BD
458  may still be informative with larger sample sizes and careful designs. Lastly, our findings provide
459  molecular insights into the potential therapeutic actions of lithium, including cell signaling and
460  immunity-related functions. Overall, this work contributes to the understanding of BD etiology and

461  the elusive mechanisms of its most common treatment, lithium.
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462 Tables
First author  Year  Tissue Diagnosis _ Condition tested N samples _Platform DEG cutoff N DEGs Pathways/ terms enriched in DEGs
. Energy metabolism, protein turnover, MHC
Mgt antigen response, RNA processing, intracellular
5 f t 0 s f
Elashoff 2007 ?erazgns BD & HC BD vs. HC 284,331  Microarray meta P < 0.001 375 transport activity, stress response, and
9 metallothionein
Y " Programmed cell death, protein metabolism,
Matigian 2007 LCLs BD & MZ BD vs MZ 3,3 Microarray FC>1.3 82 regulation of transcription, and Wnt signaling
Choi” 2011 PFC BD & HC BD vs. HC 40, 43 Microarray FC > 1.3 & FDR<0.05 367 -
*Transmembrane receptor protein phosphatase
5 Dorsolateral . activity, regulation of transmission of nerve impule,
Akula 2014 PFC BD & HC BDvs. HC 1,11 Sequencing FDR <0.05 5 GTPase binding, regulation of cyclic nucleotide
metabolic processes, and cell part morphogenesis
Beech® 2014  Whole blood BD LR vs. LNR 9,19 Microarray FDR < 0.1 62 =
EU vs. HC 11, 10 Microarray FDR < 0.05 262 -
Witt*? 2014  Whole blood BD & HC MA vs. HC 11, 10 Microarray FDR < 0.05 216 Human diseases, metabolism, ribosome
EU vs. MA 11,11 Microarray FDR < 0.05 22 -
Morphogenesis, nervous system development,
BA9 BD & HC BD vs. HC 7,6 Sequencing FC > 1.5 2,085 synaptic transmission, axon guidance, regulation
of action potential, ion homeostasis, etc.
Xiao*® 2014
Synaptic transmission, signaling, cellular
BA24 BD & HC BD vs. HC 7,6 Sequencing FC > 1.5 1,643 homeostasis, morphogenesis, nervous system
development, ion transport, etc.
Anterior
Cruceanu'* 2015 cingulate BD & HC BD vs. HC 13,13 Sequencing FDR <0.05 10 G-protein coupled receptor pathways
cortex
Fibroblasts  BD ped AF vs. UAF 6, 6 Sequencing FC>1.5& P <0.05 1 -
Madison®®* 2015 iPSCs BD ped AF vs. UAF 6, 6 Sequencing FC>1.5& P <0.05 0 -
NPCs BD ped AF vs. UAF “6, 6 Sequencing FC >1.5& P <0.05 18 *Key neuronal processes

Calcium ion signaling, neuroactive ligand-receptor
Mertens'® 2015 Neurons BD & HC BD vs. HC 6,4 Sequencing FDR<0.1 45 interaction, PKA/PKC signaling, and action
potential firing

GnRH signaling, taste transduction, vascular
smooth muscle contraction, gap junction,

Zhao’ 2015 Cingulate  5h g e BD s HC 25, 26 Sequencing FDR < 0.1 153 Huntington's disease, chemokine signaling
cortex S
pathway, RNA polymerase, Phosphatidylinositol
signaling system, apoptosis, etc.
Peripheral Interferon signaling, glucocorticoid, VDR/RXR,
Anand*® 2016 P BD Tvs. UT 22,22 Microarray FDR < 0.05 35 EGF and aldosterone receptor signaling, and PI3
lymphocytes - - -
kinase signaling
. DNA repair, protein deacetylation, cellular
Breent® 6 LGS BD LR-Tvs. LNR-T 8,8 Sequencing P < 0.05 244 response to stress, nucleoplasm
BD & HC Tvs. UT 23,23 Sequencing FDR < 0.05 2,803 =
Pacifico® 2016 Dorsal BD&HC  BDvs. HC 18, 17 Sequencing FDR < 0.05 14 Immune response, inflammation, and oxidative
striatum phosphorylation
Peterson® 2016 LCLs BD ped AF vs. UAF 193, 593 Microarray FDR < 0.05 0 -
Fries? 2017 LCLs BD Tvs. UT 62, 62 Microarray ~ FDR < 0.05 236 Cell death
LCLs BD&HC  Tus UT 21,21 Microarray P < 0.05E-5 p DRSS, PR (e, CEl R, RNA
processing, etc.
ggaer!n-eiderze 2017 Fibroblasts BD & HC BD vs. HC 10, 11 Microarray P < 0.05E-4 296 Cell signaling, wound healing, cell adhesion, etc.
LCLs BD&HC  BDvs. HC 10,11 Microarray P < 0.05E-5 58 Leierets EEAVETER, CRTeETs, Mimuie
response, etc.
Vizl iPSCs BD BD vs. HC 6, 4 Sequencing FDR < 0.05 3 TREM1
1zlin-
Hodzic?” 2017 . Inflammation, GABA receptor signaling, dopamine
NSCs BD BD vs. HC 6,4 Sequencing FDR < 0.05 42 receptor signaling, and TREML
Mostafavi'® 2014 Whole blood MDD & HC MDD vs. HC 463, 459 Sequencing P < 3.6E-6 0 SInterferon alpha/beta signaling
van Eijk'* 2014 Wholeblood SCZ&HC SCZvs. HC 106, 96 Microarray ~ FDR < 0.05 525 -

17 Cingulate . Circadian rhythm, prostate cancer, Natural killer
Aiee 2o cortex SZale Szt e i, & SegpenEi FERSW1 T3 cell mediated cytotoxicity, signaling pathways, etc.
Fromer® 2016 Ef:’go'atera' SCZ&HC SCZvs. HC 258,279  Sequencing FDR < 0.05 693 -

Innate immune and inflammatory signaling,
Hess2 2016 Whole blood SCZ & HC SCZvs. HC 300,278  Microarray mega FDR < 0.1 paay  CUED SIEES EHIOISE, EEITIE (o ks

glycotic metabolism, cell survival and growth, DNA
repair, mitochondrial function, etc.
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Interleukin 6 signaling pathway, natural killer cell
Jansen?? 2016  Whole blood MDD & HC C-MDD vs. HC 882, 331 Microarray FDR<0.1 129 mediated cytotoxicity, apoptosis, immune
response

Table 1. Review of previous BD and lithium studies with differential expression analyses. Select
schizophrenia and major depressive disorder studies were included (at the bottom of the table)
as examples of what larger BD and lithium studies might look like. *Multiple brain regions including
frontal BA46, BA10, BA6, BA8, BA9, and cerebellum. 7165 BD individuals (samples partially
overlapping). *Enrichment analysis was performed on genes with nominal p-values (P < 0.05).
SEnrichment analysis was performed on genes with small p-values (sets of top N genes, N = [30,
60, 100, 150, 300, 500]). #N = 2 samples with 3 replicates each. Abbreviations: AF, affected; BD,
bipolar disorder; BD ped, BD pedigree; C-MDD, current major depressive disorder; DEGs,
differentially expressed genes; EU, euthymic; FC, fold change; FDR, false discovery rate; HC,
healthy control; iPSCs, induced pluripotent stem cells; LCLs, lymphoblastoid cell lines; LNR,
lithium non-responder; LNR-T, lithium non-responder treated with lithium; LR, lithium-responder;
LR-T, lithium responder treated with lithium; MA, manic; MDD, major depressive disorder; MZ,
unaffected monozygotic twin; NPCs, neural progenitor cells; NSCs, neural stem cells; PFC,
prefrontal cortex; SCZ, schizophrenia; T, treated with lithium; UAF, unaffected; UT, untreated with

lithium.
Co_rre_latlon with Overlap with DEGs
lithium use
Module N genes Functional annotation cluster term(s) r P N genes P
M1 2,092 Transmembrane, GPI anchor, immunoglobulin 0.156  9.40E-04 431 2.03E-97

Helicase activity, ATP binding, metabolism, DNA
M7 700 replication, endoplasmic reticulum, proteasome, protein -0.165 4.50E-04 22 1.00
biosynthesis

M9 55 G-protein coupled receptor 0.153 1.15E-03 17 6.15E-07
M11 622 - 0.17 3.12E-04 102 4.93E-13
M26 484 Nucleic acid binding, splicing -0.175 2.00E-04 17 1.00

Table 2. Co-expression module association with lithium use. Functional annotation cluster
enrichment determined using DAVID?2. Correlation with lithium use calculated by correlating gene
module membership values with gene significance values for lithium use. Overlap was calculated
by testing for hypergeometric overlap between the list of lithium-use DEGs and the list of genes
within each module. Abbreviations: DEGs, differentially expressed genes; GPI,
glycophosphaditylinositol.
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489  Figure 1. Differentially expressed genes. (A) Six BD DEGs. FC, log 2 fold change; g, FDR-
490 adjusted P < 0.05. (B) 976 genes differentially expressed between lithium users and non-lithium
491  users (shown as blue triangles, FDR-adjusted P < 0.05; all other genes tested shown as light gray
492  circles). (C) DAVID*? functional annotation cluster enrichment of all 976 DEGs (upper) and 754
493  up-regulated DEGs (lower). Enrichment scores increase when the gene list is limited to up-
494  regulated genes only. Clusters were considered significant if the enrichment score > 1 and at

495 least one term in the cluster survived Bonferroni correction for multiple testing.
496
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498  Figure 2. Estimated neutrophil composition association with lithium use. (A) Leukocyte cell-type
499  proportions per sample as estimated from gene expression, sorted by neutrophil proportions.
500 Mean proportion across samples shown in parentheses. Lithium users, shown in the bar on the
501  bottom, cluster on the right where neutrophil proportions are higher. (B) Lithium users have higher
502 estimated neutrophil proportions (8 = 0.63, P = 0.024).
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504  Figure 3. Lithium-associated co-expression module M1 enrichment for neutrophil gene
505 expression signatures. (A) Lithium-associated module enrichment for leukocyte cell types. Left,
506 Hypergeometric overlap between leukocyte cell type signature genes and genes in each module.
507 Right, Linear regression of leukocyte cell type signature genes to predict module membership
508 values. (B) Neutrophil signature genes have higher module membership values for M1 than other
509 leukocyte signature genes (f = 0.60, P < 2.20 x 10%6).
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Figure 4. Gene-set enrichment of DEG sets with genes in psychiatric trait-associated loci (PGC
BD GWAS?*, PGC schizophrenia GWAS®, and 23andMe self-reported depression GWAS?®")
using MAGMA?3*, DEG sets stratified by up- and down-regulated genes. The BD DEG set was
extended to include genes with FDR-corrected P < 0.2. The positive control gene-set consisted
of the top 100 most significant genes from a random draw of N = 1,000 using the BD GWAS gene-
level test statistics. The positive control gene-set association with BD was highly significant (P =
1.28 x 10°%") but the -logio P-value was limited to 3 in the plot. The negative control gene-set
consisted of a random draw of N = 1,000 genes using the BD GWAS gene-level test-statistics.
The red line represents the significance threshold of -10g10(0.05). All P-values and effect sizes are
reported in Table S7.
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