

1 **Whole blood transcriptome analysis in bipolar disorder reveals strong lithium effect**

2

3 **Authors**

4 Catharine E. Krebs^{1,2}, Anil P.S. Ori¹, Annabel Vreeker^{1,3}, Timothy Wu¹, Rita M. Cantor^{1,2}, Marco
5 P. Boks⁴, Rene S. Kahn⁵, Loes M. Olde Loohuis^{1#}, Roel A. Ophoff^{1,2#*}

6

7 **Affiliations**

8 ¹Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior,
9 University California Los Angeles, Los Angeles, CA, USA

10 ²Department of Human Genetics, University California Los Angeles, Los Angeles, CA, USA

11 ³Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands

12 ⁴Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht,
13 Utrecht, The Netherlands

14 ⁵Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA

15

16 [#]Shared senior authorship

17

18 *Correspondence to Roel A. Ophoff, Ph.D.

19 695 Charles E. Young Drive South

20 Los Angeles, CA 90095

21 (310) 794-9602

22 ophoff@ucla.edu

23 **Abstract**

24 Bipolar disorder (BD) is a highly heritable mood disorder with complex genetic architecture and
25 poorly understood etiology. We performed a whole blood transcriptome analysis in a BD case-
26 control sample ($N_{\text{subjects}} = 480$) by RNA sequencing. While we observed widespread differential
27 gene expression patterns between affected and unaffected individuals, these effects were largely
28 linked to lithium treatment at the time of blood draw (FDR < 0.05, $N_{\text{genes}} = 976$) rather than BD
29 diagnosis itself (FDR < 0.05, $N_{\text{genes}} = 6$). These lithium-associated genes were enriched for cell
30 signaling and immune response functional annotations, among others, and were associated with
31 neutrophil cell-type proportions, which were elevated in lithium users. Neither genes with altered
32 expression in cases nor in lithium users were enriched for BD, schizophrenia, and depression
33 genetic risk based on information from genome-wide association studies, nor was gene
34 expression associated with polygenic risk scores for BD. Our findings suggest that BD is
35 associated with minimal changes in whole blood gene expression independent of medication use
36 but underline the importance of accounting for medication use and cell type heterogeneity in
37 psychiatric transcriptomic studies. The results of our study add to mounting evidence of lithium's
38 cell signaling and immune-related mechanisms.

39

40 **Introduction**

41 Bipolar disorder (BD) is a chronic and recurrent psychiatric disorder affecting approximately 1%
42 of the population worldwide and presenting a major public health burden^{1,2}. It is characterized
43 clinically by instability in mood resulting in manic and depressive episodes interspersed between
44 neutral, euthymic states². Risk for BD is highly genetic, with heritability estimates as high as 85%³
45 and common genetic variation explaining up to a third⁴. Still, however, the pathophysiological
46 characteristics of BD are not well understood. Investigating molecular phenotypes such as gene
47 expression as intermediate measures between genetic variation and clinical variation is a viable

48 strategy for uncovering disease mechanisms. Many such studies have been carried out for BD,
49 and in Table 1 we present a summary that reveals a lack of consistency between findings likely
50 owing to clinical heterogeneity, differing study designs, and the low numbers of samples
51 investigated ($N \leq 62$ BD subjects)⁵⁻²⁷. Moreover, there are many potential confounds that impact
52 gene expression, including medication.

53 Therefore, to explore gene expression changes associated with BD, we generated RNA
54 sequencing data from peripheral whole blood collected in a large, well-characterized case-control
55 cohort from The Netherlands. We examined gene expression differences between groups both at
56 the individual gene level and at the level of gene co-expression. Upon correction for technical and
57 biological variables including the use of lithium, the most widely used prescription drug in our
58 cohort, gene expression differences between subjects with BD and controls were minor.
59 Differences in subjects being treated with lithium compared to those who are not, however, were
60 widespread. These differences were partially but not entirely explained by differences in cell-type
61 composition, driven by elevated neutrophil proportions in lithium users. The lithium-associated
62 changes in gene expression were independent of psychiatric genetic risk, though. Our results
63 suggest nominal BD-related gene expression effects in blood but numerous effects related to
64 lithium treatment. This work highlights the importance of accounting for medication use in
65 psychiatric transcriptomic studies and provides insight into lithium's molecular mechanisms of
66 action.

67

68 **Methods**

69 *Sample preparation and RNA sequencing*

70 See Supplementary Methods for more information regarding sample ascertainment and
71 assessment. Peripheral whole blood was drawn and processed for genotyping and RNA
72 sequencing from 240 controls and 240 cases, of whom 227 (94.6%) had a diagnosis of bipolar I

73 disorder and 13 (5.4%) had a diagnosis of bipolar II disorder. Whole blood was collected in
74 PaxGene Blood RNA tubes and total RNA extracted using the PAXgene isolation kit (Qiagen)
75 according to manufacturer's protocols. RNA integrity number (RIN) values were obtained using
76 Agilent's NRA 6000 Nano kit and 2100 Bioanalyzer. RNA concentrations were determined using
77 the Quant-iT RiboGreen RNA Assay kit. The UCLA Neuroscience Genomics Core subsequently
78 performed RNA sequencing and prepared sample libraries using the TruSeq Stranded RNA plus
79 Ribo-Zero Gold library prep kit to remove ribosomal and globin RNA to enrich for messenger and
80 noncoding RNAs. Concentration of the sequencing library was determined on a TapeStation and
81 a pool of barcoded libraries were layered on eight lanes of the Illumina flow cell bridge amplified
82 to raw clusters. An average of 24.9 million paired-end reads of 75 bases in length per sample
83 were obtained on an Illumina HiSeq 2500. The raw sequence data were processed for quality
84 control (QC) using FastQC, after which all samples were deemed suitable for downstream
85 analysis.

86

87 *RNA sequencing alignment and gene expression quantification*

88 Reads were mapped to human reference genome hg19 using TopHat2²⁸ allowing for two
89 mismatches yielding an average mapping rate of 96.0% per sample and an average concordant
90 pair mapping rate of 89.8% per sample. Samples had an average of 33.9% duplicate reads. Picard
91 Tools were used to obtain 18 different sequencing metrics such as number of reads, percent
92 mapped reads, and number of coding bases, that were examined for QC and then processed for
93 dimension reduction using principal component analysis (PCA; Supplementary Methods). The
94 first three principal components, which explain 75.9%, 16.9%, and 6.4% of variance, respectively,
95 were used as covariates in subsequent analyses. Known Ensembl gene levels were quantified
96 using HTSeq in the union mode to obtain integral counts of reads that intersect the union of all
97 transcripts of genes. PCA of gene expression quantification was used for data visualization and

98 additional QC, after which four samples were removed for apparent mix-up (Supplementary
99 Methods). Thirty-two additional samples were excluded due to missing demographic information.
100 Differential expression and co-expression analyses were therefore limited to a set of 444 subjects
101 (240 cases and 204 controls).

102

103 *Normalization, covariate correction, and differential expression analysis*

104 Gene expression counts from HTSeq were filtered for genes having > 10 counts in 90% of
105 samples, yielding 12,344 genes for subsequent analyses. Filtered counts were converted to log2-
106 counts-per-million (log-cpm) to account for differences between samples in sequencing depth and
107 to stabilize variances at high counts. Then, the mean-variance relationship was modelled with
108 precision weights at the individual observation level using limma voom²⁹. Briefly, voom non-
109 parametrically estimates the mean-variance trend of the logged read counts and uses this to
110 predict the variance of each log-cpm value. The predicted variance is then used as a weight,
111 which is incorporated into the linear model procedure during differential expression analysis.
112 These gene-wise weighted least-squares linear models are fitted to the normalized log-cpm
113 values, taking into account the voom precision weights and the final covariate model, generating
114 a coefficient for the effect of each variable on each gene's expression:

115

116 gene expression ~ covariates + trait of interest

117

118 Then, for each gene, the coefficient for the trait of interest is statistically tested for being
119 significantly different from zero. *P*-values from this test were corrected for multiple testing using
120 the Benjamini-Hochberg false discovery rate (FDR) estimation, and a gene was considered to be
121 differentially expressed if it had an FDR-corrected *P*-value < 0.05 . The final covariate model for
122 differentially expressed genes (DEGs) between BD cases and controls included the following

123 variables: age, sex, lithium use, tobacco use, assessment group, RIN, sequencing plate, and
124 sequencing metric PCs 1 through 3. The final covariate model for DEGs between subjects being
125 treated with lithium (i.e. lithium users) and non-lithium users included the following variables: BD
126 diagnosis, age, sex, tobacco use, assessment group, RIN, sequencing plate, and sequencing
127 metric PCs 1 through 3. Tobacco use was included because of its well-characterized effect on
128 whole blood gene expression³⁰. An overview of covariates can be found in Table S1. DEGs were
129 checked for overlap and concordance with other datasets (Supplementary Methods). Fold
130 changes (FC) reported are in \log_2 fold change units.

131

132 *Co-expression network analysis*

133 To determine networks of genes with correlated expression, weighted gene co-expression
134 network analysis (WGCNA)³¹ was performed using the WGCNA package in R. To do this, first the
135 12,344 filtered and normalized genes were residualized adjusting for the following covariates:
136 age, sex, tobacco use, assessment group, RIN, sequencing plate, and sequencing metric PCs 1
137 through 3. Then, briefly, WGCNA defines a network of genes as nodes with edges between genes
138 based on pairwise correlations between genes, and separates the network into modules of gene
139 clusters with highly coordinated expression. The β parameter ($\beta = 7$) was chosen according to
140 the approximate scale-free topology criterion described by Langfelder and Horvath³¹. Then the
141 gene expression profiles of each module were summarized by calculating the module eigengene,
142 which is defined as the first principal component of the expression matrix of that module. Each
143 gene was then assigned a measure of module membership for each module.

144 To determine biologically significant modules, gene significance measures were assigned
145 to each gene for each of our traits of interest, including BD diagnosis and lithium use, by
146 calculating the absolute correlation between the trait and the expression profiles. Then a measure
147 of module-trait significance was calculated by correlating module membership values with gene

148 significance values. An association was considered significant if its P -value surpassed Bonferroni
149 correction for testing multiple modules ($P < \alpha = 0.05/N_{\text{modules}}$). Finally, intramodular connectivity
150 k_{IM} was calculated to determine the level of connectivity for the genes in modules significantly
151 associated with traits of interest.

152

153 *Functional annotation*

154 The Database for Annotation, Visualization, and Integrated Discovery (DAVID, v6.8)³² was used
155 for functional annotation of each gene list. We used three gene lists from the differential
156 expression analysis: the 976 lithium DEGs at $\text{FDR} < 0.05$, the 754 up-regulated lithium DEGs at
157 $\text{FDR} < 0.05$, and the 222 down-regulated lithium DEGs at $\text{FDR} < 0.05$. We also used gene lists
158 from the five co-expression network analysis modules that were significantly associated with BD:
159 M1 ($N_{\text{genes}} = 2,092$), M7 ($N_{\text{genes}} = 700$), M9 ($N_{\text{genes}} = 55$), M11 ($N_{\text{genes}} = 622$), and M26 ($N_{\text{genes}} =$
160 484). The full set of 12,344 filtered and normalized genes used as input for differential expression
161 and co-expression network analyses was used as background to determine overrepresentation
162 in each of the gene lists. The functional annotation clustering tool was applied using unique
163 Ensembl IDs and the following databases: SP_PIR_KEYWORDS, UP_SEQ_FEATURE,
164 GOTERM_BP_FAT, GOTERM_CC_FAT, GOTERM_MF_FAT, BIOCARTA, KEGG_PATHWAY,
165 INTERPRO, UCSC_TFBS. Cluster annotations were called significant if the enrichment was
166 greater than 1.0 and at least 1 gene list in the annotation cluster survived Bonferroni correction
167 ($P < 0.05$).

168

169 *Estimation of cell-type proportions*

170 To estimate cell-type composition in our sample we employed the CIBERSORT online software
171 (cibersort.stanford.edu)³³. Briefly, CIBERSORT uses reference gene expression signatures to
172 estimate the relative proportions of cell types in tissues with complex, heterogeneous cell

173 composition via linear support vector regression. The reference dataset we used to deconvolve
174 our mixture of whole blood cell types was the validated leukocyte gene signature matrix that is
175 provided with the CIBERSORT software, termed LM22³³. It contains 547 genes whose expression
176 discriminate between 22 different human hematopoietic cell phenotypes (Table S2), including
177 seven T-cell types, naive and memory B cells, plasma cells, natural killer cells, and myeloid
178 subsets.

179 To prepare our gene expression data for input to CIBERSORT, raw expression counts
180 from HTSeq were converted to transcripts per million (TPM). Using the resulting matrix of TPM
181 values for our 480 samples and the LM22 gene signature matrix as input, CIBERSORT was run
182 online with 100 permutations and with quantile normalization disabled as recommended for RNA-
183 seq data. The output matrix consisted of deconvolution results with relative fractions of cell types
184 normalized to 1 across all cell subsets for each sample. These estimated cell-type proportions
185 were then residualized using a linear regression model adjusting for the following covariates: sex,
186 age, tobacco use, sequencing plate, RIN, and sequencing metric PCs 1 through 3. Then,
187 residualized cell-type estimates were used to predict lithium use in a stepwise linear regression
188 using the stepAIC function in the MASS package in R. The estimated cell-type proportions were
189 also appended to the table of technical and biological covariates and then used to re-run the
190 differential expression analysis while accounting for cell-type heterogeneity in the sample.

191

192 *Enrichment of cell types in co-expression modules*

193 The enrichment of LM22 cell types in gene co-expression modules determined from WGCNA was
194 calculated in two ways. First, the hypergeometric overlap between modules and cell type
195 signature genes was calculated. The binary matrix of LM22 signature genes provided by Newman
196 et al.³³, where 1 denotes that a gene was significantly differentially expressed in that particular
197 cell type and 0 denotes that it was not, was used to extract lists of signature genes for each cell

198 type, or genes with a value of 1. These lists are partially overlapping, with 262 genes being unique
199 to a given list and 285 genes being shared between ≥ 2 lists (maximum 10 lists). Then, using the
200 GeneOverlap library in R, the hypergeometric overlap was calculated between each of these 22
201 cell type signature gene lists and each of the 27 module gene lists using the full set of 12,344
202 filtered and normalized genes as background.

203 Second, binary cell type signatures were used to predict module membership values in a
204 linear model. We reasoned that this method might be more powerful than a strict overlap due to
205 the fact that every gene has a module membership value for every module, regardless if it was
206 assigned to that module. The gene co-expression network output, which consists of module
207 membership values for each gene for each module, was limited to the set of LM22 signature
208 genes that were expressed in our sample ($N_{\text{genes}} = 331$). These values were then used as an
209 outcome in a linear model, with the binary matrix of LM22 signature genes as predictors. To avoid
210 multiple testing penalties, only five regressions were run on the five modules that were associated
211 with lithium: M1, M7, M9, M11, and M26.

212

213 *Integration of GWAS data with transcriptomic signatures*

214 Prior to gene-set analyses, heritability and genetic correlation of traits of interest were estimated
215 to confirm significant non-zero SNP-based heritability (Supplementary Methods). Analyses were
216 performed across three psychiatric genome-wide association study (GWAS) traits from publicly
217 available datasets (bipolar disorder, schizophrenia, and self-reported depression) and 2 sets of
218 DEGs (BD at FDR < 0.2 and lithium-use at FDR < 0.05). Differential expression log2 fold changes
219 and FDR-corrected P-values for each of the 12,344 genes expressed at > 10 counts in 90% of
220 samples were obtained from limma to integrate whole-blood gene expression signatures with
221 GWAS data using Multi-marker Analysis of GenoMic Annotation (MAGMA v1.06)³⁴.

222 GWAS summary statistics were obtained for the following three GWAS traits:

223 1) SCZ³⁵: 36,989 cases and 113,075 controls;
224 2) BD³⁶: 20,352 cases and 31,358 controls;
225 3) 23andMe self-reported depression³⁷: 75,607 cases and 231,747 controls;
226 The 1000 Genomes Project Phase 3 release European reference panel ($N = 503$) was used to
227 model LD in all analyses³⁸. Eight gene lists were used from two different DEG models along with
228 a positive and negative control:
229 1) Lithium-use DEGs at FDR < 0.05: $N = 897$ genes;
230 2) Up-regulated lithium-use DEGs at FDR < 0.05: $N = 680$ genes;
231 3) Down-regulated lithium-use DEGs at FDR < 0.05: $N = 217$ genes;
232 4) BD DEGs at FDR < 0.2: $N = 630$ genes;
233 5) Up-regulated BD DEGs at FDR < 0.2: $N = 389$ genes;
234 6) Down-regulated BD DEGs at FDR < 0.2: $N = 241$ genes;
235 7) Positive control gene-set: the top 100 most significant genes from a random
236 draw of $N = 1,000$ using the BD GWAS gene-level test statistics;
237 8) Negative control gene-set: a random draw of $N = 1,000$ genes using the BD
238 GWAS gene-level test-statistics.
239 MAGMA was used to run *gene property* analyses, which uses a multiple regression
240 framework to associate a continuous gene variable to GWAS gene level p-values. High quality
241 SNPs (INFO > 0.9) were mapped to genes using Ensembl gene IDs and NCBI build 37.3 gene
242 boundaries +/- 10kb extensions using the -- annotate flag. For each phenotype, we generated
243 gene-level p-values by computing the mean SNP association using the default gene model ('snp-
244 wise=mean'). We only included SNP with MAF > 5% and dropped synonymous or duplicate SNPs
245 after the first entry ('synonym-dup=drop-dup'). For each annotation, we then regressed gene-level
246 GWAS test statistics on the corresponding gene annotation variable using the '--gene-covar'
247 function while adjusting for gene size, SNP density, and LD-induced correlations ('--model

248 correct=all'), which is estimated from an ancestry-matched 1KG reference panel. In all analyses,
249 we included only genes for which we had both the gene variable and GWAS gene level test
250 statistic available. Two-sided p-values are reported.

251 Secondary gene-set analyses were run on a limited number of DEG gene sets and
252 additional, sleep-related GWAS traits (Supplementary Methods).

253

254 **Results**

255 *Minimal changes in bipolar disorder gene expression*

256 To explore the transcriptomic signatures of BD, we first evaluated whether subjects with BD
257 harbored transcriptional differences on a per gene level compared with controls. Of the 12,344
258 genes tested, only six were differentially expressed in BD after correcting for multiple testing (FDR
259 < 0.05; Figure 1A). The differences in expression were very small, with absolute fold changes
260 ranging from 0.12 to 0.44. While the number of identified differentially expressed genes (DEGs)
261 was too small to perform functional enrichment analysis, we did find that three of the six genes
262 (COG4, DOCK3, and BBS9) were expressed in GTEx frontal cortex tissue (median TPM > 1) and
263 show relatively stable expression across brain cell types except for DOCK3, which is enriched in
264 neurons (fold change relative to other cell types = 6.82; Table S3). Four of the genes were present
265 in the Stanley Genomics brain gene expression database, and two of these were found to be
266 differentially expressed in BD individuals in at least one study, COG4 and DOCK3, although the
267 latter was altered in the opposite direction. COG4 was also reported as differentially expressed in
268 a schizophrenia mega-analysis of nine whole blood microarray datasets²¹. Using polygenic risk
269 scores (PRS) for BD as the differential expression trait of interest rather than the dichotomous
270 case-control phenotype did not yield any significant genes, even though PRS did significantly
271 differ between BD cases and controls ($t = -3.42$, $P = 6.88 \times 10^{-4}$; Figure S1; Supplementary
272 Methods).

273

274 *Widespread subtle gene expression changes in lithium users*

275 Following the same differential expression pipeline as above, we found 976 genes with small
276 differences in gene expression between lithium users and non-lithium users ($|FC|$ mean = 0.20,
277 max = 0.82, SD = 0.10; Figure 1B, Supplementary File 1). These genes were enriched for
278 biological terms related to calcium signaling and other signaling pathways, and immunity (Figure
279 1C). To distinguish between up- and down-regulated gene pathways, we stratified genes by their
280 direction of change in expression. The 754 up-regulated genes were annotated for many of the
281 same terms as the full set but with greater enrichment scores, indicating that the up-regulated
282 genes are driving the enrichment scores in the full set (Figure 1C). Of the 976 lithium-use DEGs,
283 804 were expressed in GTEx frontal cortex samples (TPM > 1), and 488, 553, 503, 478, 512, and
284 403 were expressed in neurons, fetal astrocytes, mature astrocytes, oligodendrocytes, microglia/
285 macrophages, and endothelia, respectively (FPKM > 1). However, none of these gene sets were
286 significantly enriched (hypergeometric $P > 0.05$).

287 To validate our results, the 976 lithium-use DEGs were tested for overlap with lists of
288 DEGs from similar studies found in the literature (Table S4). Although none of these studies has
289 the same design as ours, we did find a significant overlap between our 976 lithium-use DEGs and
290 the lists from two studies. In the first study¹⁸, DEGs were detected by comparing peripheral
291 monocyte gene expression in subjects before and after lithium monotherapy. Of the 35 DEGs
292 discovered, 18 were shared with the current study (hypergeometric odd ratio (OR) = 13.57, $P =$
293 4.66×10^{-12}), and all 18 were concordant in direction (Figure S2A). In the second study¹⁹, DEGs
294 were detected by comparing LCL gene expression before and after lithium treatment *in vitro*. Of
295 the 1,504 DEGs discovered, 134 were shared with our study (hypergeometric OR = 1.27, $P =$
296 9.23×10^{-3}), and 84.6% of these were concordant in direction (Figure S2B). There were two genes

297 shared between all three lists, *RFX2* and *SLC29A1*. We report genes in these overlapping lists
298 as high confidence lithium-associated genes (Supplementary File 1).

299

300 *Modules of co-expressed genes are associated with lithium use*

301 Next, in search of genes with differential co-expression in BD, we constructed a gene expression
302 network in the entire sample using WGCNA and assessed the detected modules for association
303 with BD. This network consisted of 27 modules ranging in size from 48 to 2,760 genes (mean
304 $N_{\text{genes}} = 441$, Supplementary File 2). By evaluating the correlation of module membership values
305 with gene significance for BD diagnosis, we quantified the association of each module with BD.
306 After Bonferroni multiple testing correction, five modules were significantly associated with lithium-
307 use, but no modules were associated with BD or any other clinical or technical variable (Table
308 S5). Of the five modules associated with lithium use, three shared significant overlap with lithium-
309 use DEGs (Table 2). M26 was most significantly associated with lithium ($P = 2.00 \times 10^{-4}$; Figure
310 S3A) but was not significantly enriched for lithium DEGs. M1 was also associated with lithium (P
311 $= 9.04 \times 10^{-4}$; Figure S3B) and had the most significant enrichment of DEGs (431 of 2,092 genes
312 in the module were DEGs; hypergeometric OR $= 4.62$, $P = 2.03 \times 10^{-97}$). Functional annotation
313 clustering of the genes in M1 showed an enrichment of terms related to cell signaling, immunity,
314 and glycophosphatidylinositol anchor.

315 Module preservation analysis was also performed to assess differences in network density
316 and connectivity between groups, but showed full preservation indicating that networks
317 constructed in separate groups maintain their underlying structure (Supplementary Methods and
318 Figure S4).

319

320 *Estimated neutrophil proportions are increased in lithium users*

321 We then sought to determine if variation in our sample could be explained by differences in blood
322 cell-type composition. To deconvolve cellular heterogeneity, we applied CIBERSORT³³ to our
323 gene expression quantifications using a reference panel of 22 blood cell-type signatures. The
324 resulting estimated cell-type proportions (Figure 2A) were then examined for their relationship
325 with lithium use in BD cases only. Each cell type was residualized for demographic and technical
326 variables then used to predict lithium use in a stepwise linear model. Neutrophils are the one cell
327 type that significantly predicted lithium use within the BD cases ($\beta = 0.63$, $P = 0.024$), with
328 elevated proportions in individuals being treated with lithium (Figure 2B). Indeed, 16 of 60
329 signature neutrophil genes were also lithium-use DEGs (hypergeometric OR = 4.64, $P = 4.45 \times$
330 10^{-6}).

331 The number of genes showing differential expression in subjects undergoing lithium
332 treatment decreased from 976 in the model without cell-type estimates to 233 in the model with
333 cell-type estimates (FDR < 0.05; Figure S5A, Supplementary File 1), of which 194 (83.2%) were
334 significant in the original model and concordant in direction of effect (Figure S5B). No functional
335 annotation cluster terms remained significant after correcting for multiple testing. The number of
336 genes differentially expressed between BD cases and controls decreased to zero after accounting
337 for estimated cell-type proportions.

338

339 *Lithium-associated co-expression module M1 is enriched for neutrophil gene expression
340 signatures*

341 We then sought to determine if the various lithium-associated modules of co-expressed genes
342 reflected biologic signatures of distinct populations of blood cell types. We did this in two ways.
343 First, a hypergeometric overlap between lithium-associated module gene lists and cell-type
344 signature gene lists revealed a significant overlap between module M1 with monocyte and
345 neutrophil signature genes and M9 with eosinophil and activated mast cell signature genes

346 (Figure 3A, left). Second, the expression of cell-type signature genes was used to predict module
347 membership values in a linear model for each of the five lithium-associated modules. Neutrophils,
348 monocytes, and eosinophils were again implicated (Figure 3A, right). In both of these analyses,
349 the most significant cell type-module relationship was M1 with neutrophil estimates
350 (hypergeometric $P = 5.68 \times 10^{-21}$, linear model $P < 2.20 \times 10^{-16}$). Indeed, neutrophil signature
351 genes had higher M1 membership values (Figure 3B).

352
353 *Genes with altered expression are not enriched for genes with common psychiatric risk alleles*
354 To evaluate if BD and lithium-use DEG sets were associated with a higher burden of psychiatric
355 risk alleles, we performed gene-set analyses using MAGMA³⁴. Analyses were performed across
356 three psychiatric GWAS traits: BD³⁶, SCZ³⁵, and self-reported depression³⁷. SCZ and depression
357 were used because of their high degree of overlap in SNP-based heritability with BD⁴ (Table S6).
358 The 23andMe self-reported depression GWAS was used instead of MDD GWAS because of the
359 large sample size and successful findings of this study. A lithium-response GWAS was not used
360 because the SNP-based heritability estimate for this trait is not different from zero (personal
361 communication with Thomas G. Schulze). Because the set of BD DEGs at FDR < 0.05 was too
362 small to test, we used a more lenient significance threshold of FDR < 0.2 for this analysis instead.
363 None of the comparisons demonstrated an association with genetic risk across the genes
364 identified in the current study (except for the positive control gene set), even after stratifying by
365 up- and down-regulated genes (Figure 4, Table S7). Because sleep disturbances are a hallmark
366 of BD³⁹, and due to the genetic correlation of sleep-related phenotypes with BD⁴⁰, we performed
367 a secondary gene-set analysis with genes implicated from chronotype, sleep duration,
368 oversleeping, and undersleeping GWAS, which failed to demonstrate association with genes
369 identified in the current study (Table S8).

370

371 **Discussion**

372 In our whole blood BD case-control gene expression study we observed widespread subtle
373 changes in gene expression in subjects undergoing lithium treatment but few transcriptomic
374 differences linked to disease status. These effects were partially driven by variation in leukocyte
375 cell type composition, and we find no evidence for a link with genetic risk for BD. Upon validation
376 of our findings with previous *in vivo* and *in vitro* lithium treatment gene expression studies, we
377 present a high-confidence list of genes that display altered expression associated with lithium
378 treatment.

379 One of the top differentially expressed genes associated with BD, COG4, encodes a part
380 of a multiprotein complex that is a key determinant of Golgi apparatus structure and capacity for
381 intracellular transport and glycoprotein modification⁴¹. COG4 mRNA is expressed widely across
382 body tissues including the brain⁴². It has been reported as having alternative splicing in subjects
383 with BD⁴³, and concordant with our results, was reported as down-regulated in three of the ten
384 Stanley Genomics BD brain datasets⁴⁴. Further work is needed to determine the role of COG4 in
385 BD, but perhaps neuronal hyperexcitability in BD¹⁶ destabilizes internal cellular processes
386 including Golgi function⁴⁵. There is currently no evidence for a genetic link between BD disease
387 susceptibility and COG4³⁶.

388 Lithium is the first-line treatment for BD, not only for the treatment of acute episodes but
389 also for maintenance and suicide prevention^{46,47}. However, only about 30% of BD patients fully
390 respond to lithium, it has several adverse side effects, and its mechanisms of action are not well
391 understood⁴⁸⁻⁵⁰. One probable reason for this lack of understanding is the magnitude of lithium's
392 physiological interactions⁵¹. In pharmacological terms, lithium is a small molecule (the third
393 smallest element in fact) without a defined target⁵⁰. This lack of specificity makes it difficult to
394 discern therapeutic mechanisms from off-target effects, which likely lead to many of lithium's
395 undesirable side effects and even its toxicity at doses that are too high. Lithium ions (Li⁺) have a

396 single positive charge and are hypothesized to mimic and disrupt the actions and targets of more
397 ubiquitous metal ions such as magnesium (Mg^{2+})⁵⁰. Theorized therapeutic mechanisms of lithium
398 include its inhibition of the protein GS3K β , and its effect on intracellular signaling cascades such
399 as those involving protein kinases and phosphatidylinositol^{52,53}. It is not clear how these
400 mechanisms relate to higher order properties thought to be involved in BD etiology like neuronal
401 function, chronobiology, and brain structure. Examining lithium mechanisms at high biological
402 resolution is therefore not only crucial for understanding the high rates of non-response and non-
403 adherence to prophylactic lithium treatment in BD patients but also for understanding BD etiology
404 itself.

405 The widespread but subtle gene expression changes observed in lithium users are in line
406 with lithium's broad scope of physiological effects⁵¹ and with the complex genetic architecture of
407 BD²⁰. These genes were enriched for functional annotations related to transmembrane, cell
408 signaling, protein kinase, and immunity. These pathways have been implicated in previous BD
409 transcriptome studies^{13,14,16,23,26} and are known targets of lithium^{48,54}. The elevated levels of
410 neutrophil proportions we observed is in line with lithium-induced neutrophilia, which has been
411 described since the medication's early use in psychiatry⁵⁴. Lithium is thought to induce
412 neutrophilia through a complex pathway involving GSK3 and immune-related transcription factors
413 and genes⁵⁵. Increased levels of neutrophils are typically associated with anti-inflammatory or
414 infection-fighting immune responses⁵⁶. Whether these immunity-related mechanisms play a role
415 in the mood stabilizing effects of lithium remains to be determined. Immune components of
416 psychiatric illness including BD⁵⁷ have long been recognized, but it remains unclear if they
417 represent a causal pathway, a property of the disease state, or a consequence of environmental
418 factors like body mass index or smoking. These results contribute to the understanding of the
419 genomics of lithium action, which may be essential for the future of personalized psychiatric
420 medicine for patients with BD. Future studies with larger sample sizes and independent replication

421 datasets will be needed to confirm our findings, and whether these genes and pathways play a
422 role in the mood-stabilizing mechanisms of lithium remains to be determined.

423 The lack of enrichment of genetic signal from common alleles associated with BD,
424 schizophrenia, or self-reported depression suggests that genes transcriptionally associated with
425 lithium treatment in peripheral blood most likely represent secondary effects of treatment that are
426 independent from disease susceptibility. The lack of genetic enrichment could also indicate that
427 our gene expression study is underpowered for this purpose, or that the transcriptomic
428 mechanisms of genetic risk for BD are not present in whole blood. In addition, the currently
429 available GWAS may still be underpowered thereby impacting our ability to detect a significant
430 enrichment. With the expected rapidly increasing sample sizes of these GWAS studies we will be
431 able to test this hypothesis more fully in the near future. We did explore the opportunity to examine
432 enrichment of genetic susceptibility of lithium response, but because this phenotype has a SNP-
433 based heritability not different from zero, this specific analysis is not meaningful. In this regard, it
434 is important to distinguish between lithium *use*, the phenotype we used in our study, and lithium
435 *response*. Self-reported answers to a lithium questionnaire by participants in our study show that
436 the majority of subjects being treated with lithium had a positive response to the treatment and
437 the majority of non-users have been treated with lithium in the past (Supplementary Methods).
438 We therefore consider that the lithium use phenotype partially captures lithium response, but
439 disentangling the complex interplay between these phenotypes is an avenue for further
440 exploration.

441 Lithium use, as a trait only present in BD subjects and therefore confounded with BD
442 diagnosis, serves as a confounder by indication and likely eliminated most of the observable BD
443 effects. Our results highlight the importance of correcting for cell type composition as well as
444 medication use in BD transcriptome studies. A lithium-naive study design is warranted to optimize
445 BD transcriptomic signal that is independent of lithium use. Nevertheless, investigating the BD

446 transcriptome in whole blood remains valuable for the following reasons. It is an accessible tissue,
447 it has the potential for biomarker discovery, and it can be used in longitudinal study designs, which
448 are appealing due to the episodic nature of BD. It may also be a choice tissue to observe the
449 suggested immune component of BD etiology. In addition, peripheral tissues such as blood
450 partially recapitulate gene expression signatures of the brain⁵⁸, and compared to post-mortem
451 tissues are less subject to poor quality due to rapid degradation upon death⁵⁹. However, studies
452 involving post-mortem tissue, *in vitro* neuronal cells, or animal models will still be needed to
453 determine the therapeutic effect of lithium on BD-associated brain-related function.

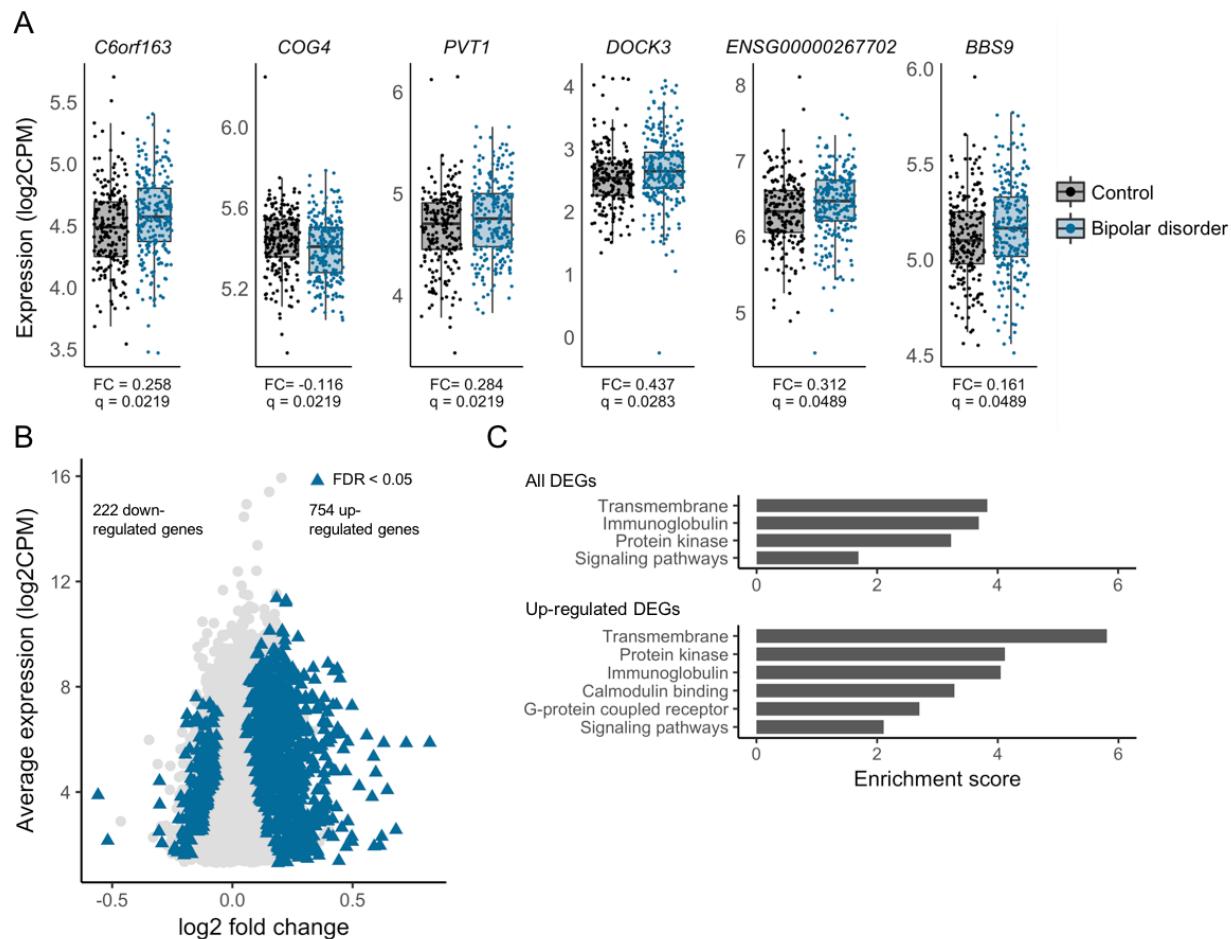
454 In summary, our findings suggest that there are minimal bipolar disorder-associated gene
455 expression changes in whole blood independent of medication use and underline the importance
456 of accounting for such confounders in psychiatric genomic studies. While limited in their ability to
457 uncover mechanisms associated with genetic risk, blood-based transcriptome analyses of BD
458 may still be informative with larger sample sizes and careful designs. Lastly, our findings provide
459 molecular insights into the potential therapeutic actions of lithium, including cell signaling and
460 immunity-related functions. Overall, this work contributes to the understanding of BD etiology and
461 the elusive mechanisms of its most common treatment, lithium.

462 Tables

First author	Year	Tissue	Diagnosis	Condition tested	N samples	Platform	DEG cutoff	N DEGs	Pathways/ terms enriched in DEGs
Elashoff ⁵	2007	*Multiple brain regions	BD & HC	BD vs. HC	†284, 331	Microarray	meta P < 0.001	375	Energy metabolism, protein turnover, MHC antigen response, RNA processing, intracellular transport activity, stress response, and metallothionein
Matigian ⁶	2007	LCLs	BD & MZ	BD vs MZ	3, 3	Microarray	FC > 1.3	82	Programmed cell death, protein metabolism, regulation of transcription, and Wnt signaling
Choi ⁷	2011	PFC	BD & HC	BD vs. HC	40, 43	Microarray	FC > 1.3 & FDR < 0.05	367	-
Akula ⁸	2014	Dorsolateral PFC	BD & HC	BD vs. HC	11, 11	Sequencing	FDR < 0.05	5	‡Transmembrane receptor protein phosphatase activity, regulation of transmission of nerve impulse, GTPase binding, regulation of cyclic nucleotide metabolic processes, and cell part morphogenesis
Beech ⁹	2014	Whole blood	BD	LR vs. LNR	9, 19	Microarray	FDR < 0.1	62	-
				EU vs. HC	11, 10	Microarray	FDR < 0.05	262	-
Witt ¹²	2014	Whole blood	BD & HC	MA vs. HC	11, 10	Microarray	FDR < 0.05	216	Human diseases, metabolism, ribosome
				EU vs. MA	11, 11	Microarray	FDR < 0.05	22	-
Xiao ¹³	2014	BA9	BD & HC	BD vs. HC	7, 6	Sequencing	FC > 1.5	2,085	Morphogenesis, nervous system development, synaptic transmission, axon guidance, regulation of action potential, ion homeostasis, etc.
		BA24	BD & HC	BD vs. HC	7, 6	Sequencing	FC > 1.5	1,643	Synaptic transmission, signaling, cellular homeostasis, morphogenesis, nervous system development, ion transport, etc.
Cruceanu ¹⁴	2015	Anterior cingulate cortex	BD & HC	BD vs. HC	13, 13	Sequencing	FDR ≤ 0.05	10	G-protein coupled receptor pathways
Madison ¹⁵	2015	Fibroblasts	BD ped	AF vs. UAF	#6, 6	Sequencing	FC > 1.5 & P < 0.05	1	-
		iPSCs	BD ped	AF vs. UAF	#6, 6	Sequencing	FC > 1.5 & P < 0.05	0	-
		NPCs	BD ped	AF vs. UAF	#6, 6	Sequencing	FC > 1.5 & P < 0.05	18	‡Key neuronal processes
Mertens ¹⁶	2015	Neurons	BD & HC	BD vs. HC	6, 4	Sequencing	FDR ≤ 0.1	45	Calcium ion signaling, neuroactive ligand-receptor interaction, PKA/PKC signaling, and action potential firing
Zhao ¹⁷	2015	Cingulate cortex	BD & HC	BD vs. HC	25, 26	Sequencing	FDR ≤ 0.1	153	GnRH signaling, taste transduction, vascular smooth muscle contraction, gap junction, Huntington's disease, chemokine signaling pathway, RNA polymerase, Phosphatidylinositol signaling system, apoptosis, etc.
Anand ¹⁸	2016	Peripheral lymphocytes	BD	T vs. UT	22, 22	Microarray	FDR < 0.05	35	Interferon signaling, glucocorticoid, VDR/RXR, EGF and aldosterone receptor signaling, and PI3 kinase signaling
Breen ¹⁹	2016	LCLs	BD	LR-T vs. LNR-T	8, 8	Sequencing	P < 0.05	244	DNA repair, protein deacetylation, cellular response to stress, nucleoplasm
			BD & HC	T vs. UT	23, 23	Sequencing	FDR < 0.05	2,803	-
Pacifico ²³	2016	Dorsal striatum	BD & HC	BD vs. HC	18, 17	Sequencing	FDR < 0.05	14	Immune response, inflammation, and oxidative phosphorylation
Peterson ²⁴	2016	LCLs	BD ped	AF vs. UAF	193, 593	Microarray	FDR < 0.05	0	-
Fries ²⁵	2017	LCLs	BD	T vs. UT	62, 62	Microarray	FDR < 0.05	236	Cell death
Kittel-Schneider ²⁶	2017	Fibroblasts	BD & HC	BD vs. HC	10, 11	Microarray	P < 0.05E-4	296	Cell signaling, wound healing, cell adhesion, etc.
		LCLs	BD & HC	BD vs. HC	10, 11	Microarray	P < 0.05E-5	58	Leukocyte activation, apoptosis, immune response, etc.
Vizlin-Hodzic ²⁷	2017	iPSCs	BD	BD vs. HC	6, 4	Sequencing	FDR < 0.05	3	TREM1
		NSCs	BD	BD vs. HC	6, 4	Sequencing	FDR < 0.05	42	Inflammation, GABA receptor signaling, dopamine receptor signaling, and TREM1
Mostafavi ¹⁰	2014	Whole blood	MDD & HC	MDD vs. HC	463, 459	Sequencing	P < 3.6E-6	0	§Interferon alpha/beta signaling
van Eijk ¹¹	2014	Whole blood	SCZ & HC	SCZ vs. HC	106, 96	Microarray	FDR < 0.05	525	-
Zhao ¹⁷	2015	Cingulate cortex	SCZ & HC	SCZ vs. HC	31, 26	Sequencing	FDR ≤ 0.1	105	Circadian rhythm, prostate cancer, Natural killer cell mediated cytotoxicity, signaling pathways, etc.
Fromer ²⁰	2016	Dorsolateral PFC	SCZ & HC	SCZ vs. HC	258, 279	Sequencing	FDR ≤ 0.05	693	-
Hess ²¹	2016	Whole blood	SCZ & HC	SCZ vs. HC	300, 278	Microarray	mega FDR < 0.1	2,238	Innate immune and inflammatory signaling, cellular stress response, response to androgens, glycolytic metabolism, cell survival and growth, DNA repair, mitochondrial function, etc.

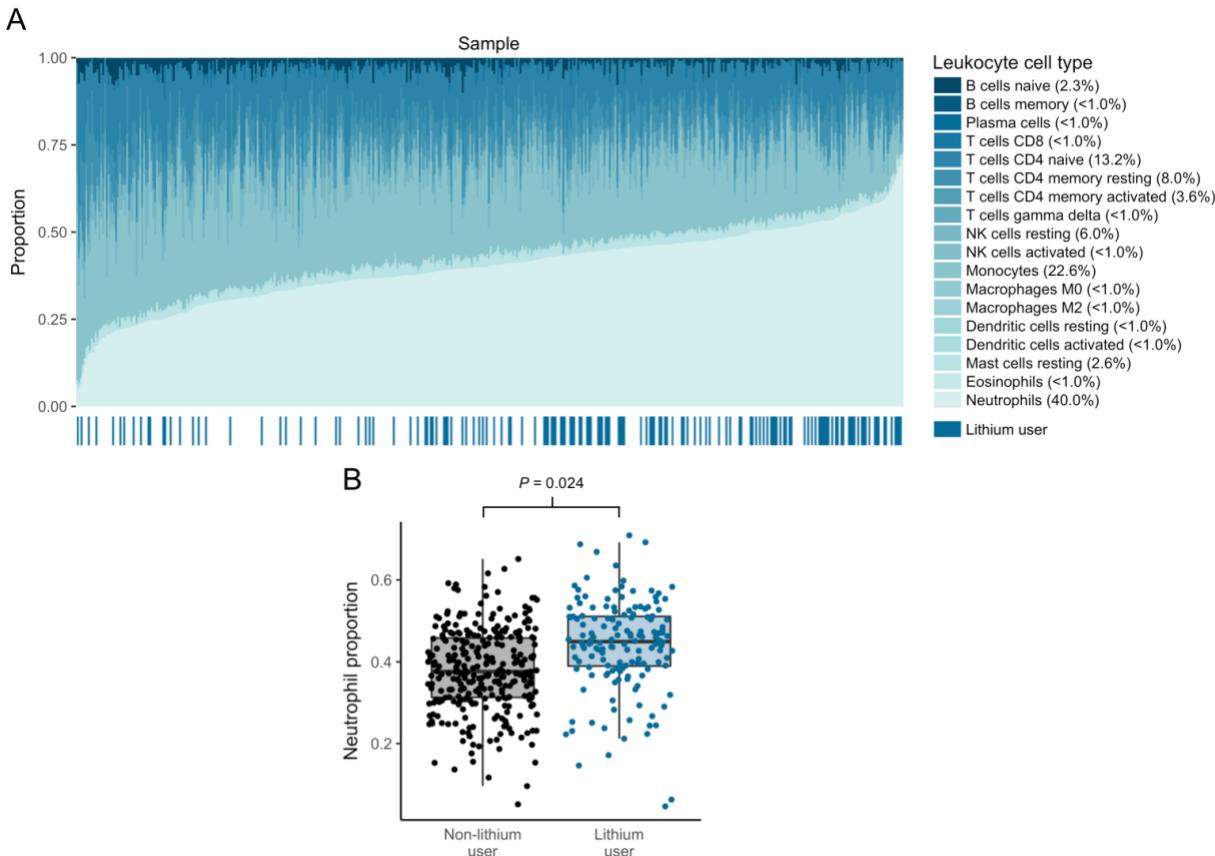
Jansen²² 2016 Whole blood MDD & HC C-MDD vs. HC 882, 331 Microarray FDR < 0.1 129 Interleukin 6 signaling pathway, natural killer cell mediated cytotoxicity, apoptosis, immune response

463

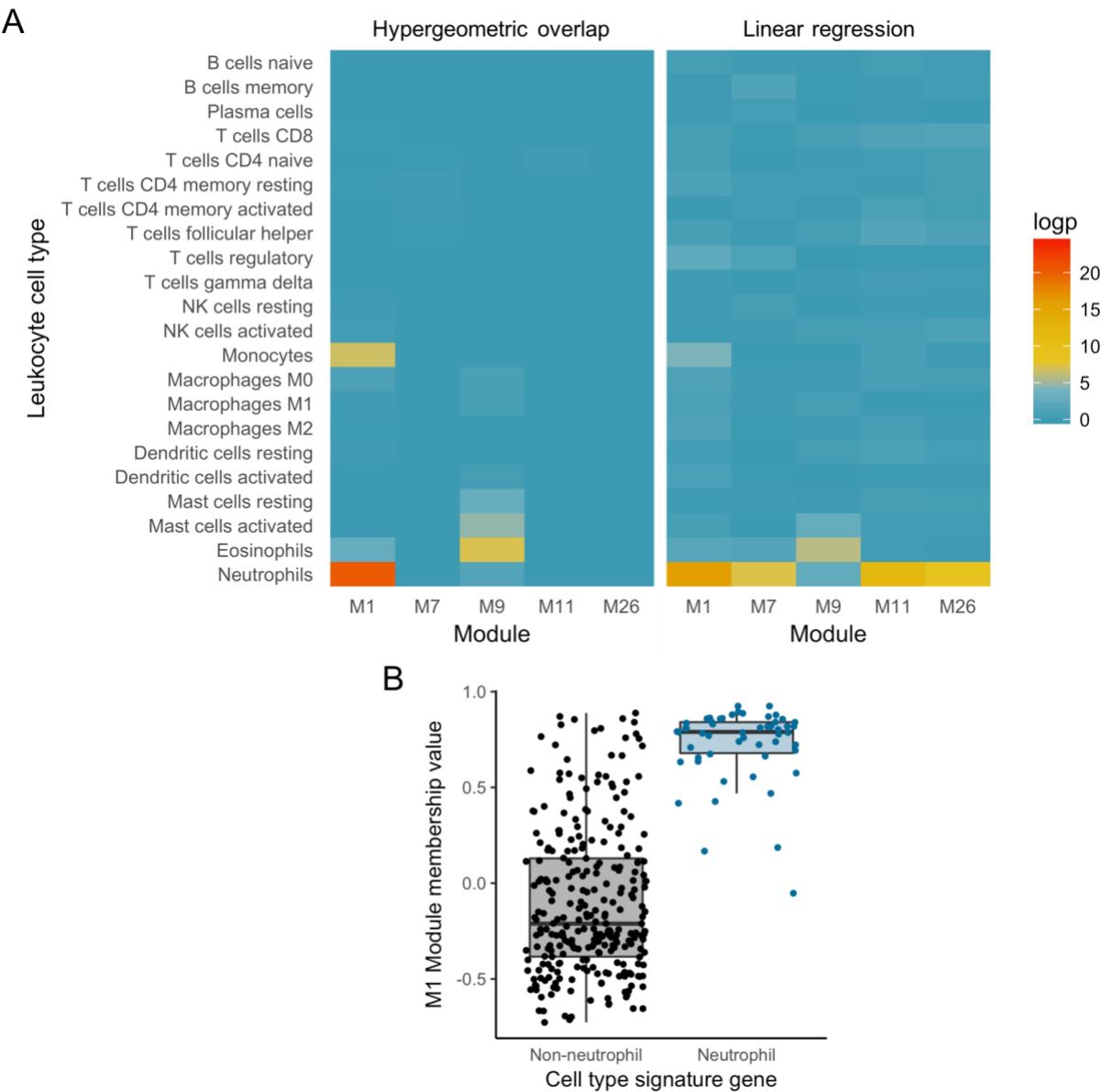

464 **Table 1.** Review of previous BD and lithium studies with differential expression analyses. Select
 465 schizophrenia and major depressive disorder studies were included (at the bottom of the table)
 466 as examples of what larger BD and lithium studies might look like. *Multiple brain regions including
 467 frontal BA46, BA10, BA6, BA8, BA9, and cerebellum. †165 BD individuals (samples partially
 468 overlapping). ‡Enrichment analysis was performed on genes with nominal p-values ($P < 0.05$).
 469 §Enrichment analysis was performed on genes with small p-values (sets of top N genes, $N = [30,$
 470 $60, 100, 150, 300, 500]$). # $N = 2$ samples with 3 replicates each. Abbreviations: AF, affected; BD,
 471 bipolar disorder; BD ped, BD pedigree; C-MDD, current major depressive disorder; DEGs,
 472 differentially expressed genes; EU, euthymic; FC, fold change; FDR, false discovery rate; HC,
 473 healthy control; iPSCs, induced pluripotent stem cells; LCLs, lymphoblastoid cell lines; LNR,
 474 lithium non-responder; LNR-T, lithium non-responder treated with lithium; LR, lithium-responder;
 475 LR-T, lithium responder treated with lithium; MA, manic; MDD, major depressive disorder; MZ,
 476 unaffected monozygotic twin; NPCs, neural progenitor cells; NSCs, neural stem cells; PFC,
 477 prefrontal cortex; SCZ, schizophrenia; T, treated with lithium; UAF, unaffected; UT, untreated with
 478 lithium.
 479

Module	N genes	Functional annotation cluster term(s)	Correlation with lithium use		Overlap with DEGs	
			r	P	N genes	P
M1	2,092	Transmembrane, GPI anchor, immunoglobulin	0.156	9.40E-04	431	2.03E-97
M7	700	Helicase activity, ATP binding, metabolism, DNA replication, endoplasmic reticulum, proteasome, protein biosynthesis	-0.165	4.50E-04	22	1.00
M9	55	G-protein coupled receptor	0.153	1.15E-03	17	6.15E-07
M11	622	-	0.17	3.12E-04	102	4.93E-13
M26	484	Nucleic acid binding, splicing	-0.175	2.00E-04	17	1.00

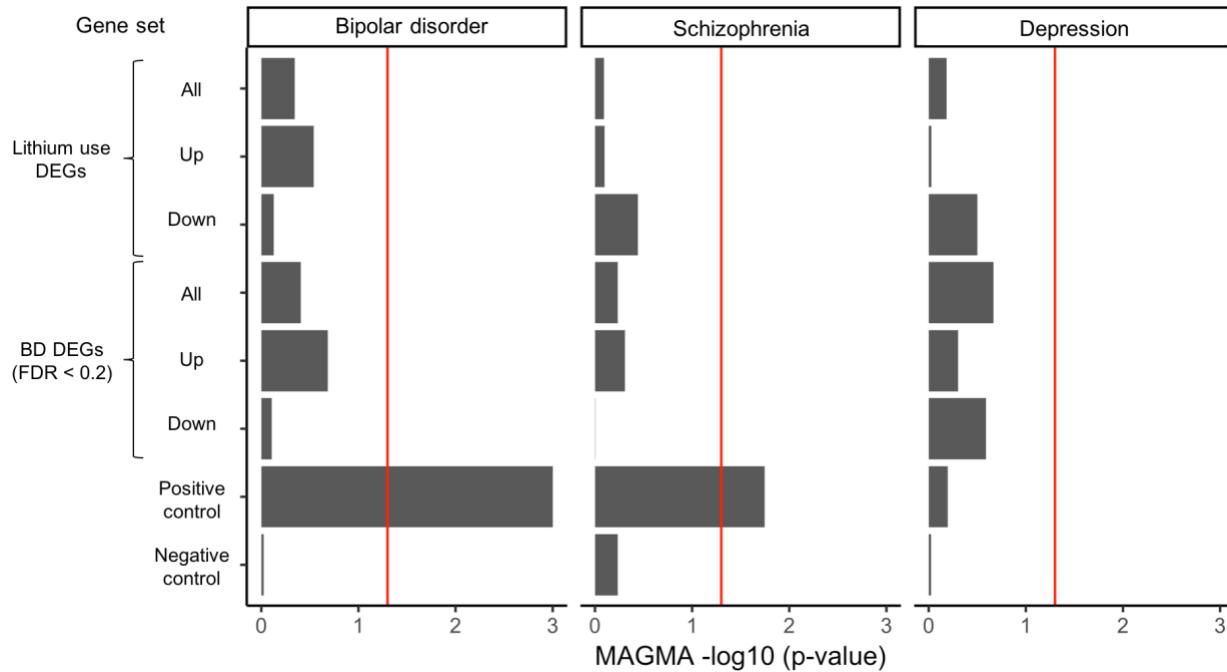
480


481 **Table 2.** Co-expression module association with lithium use. Functional annotation cluster
 482 enrichment determined using DAVID³². Correlation with lithium use calculated by correlating gene
 483 module membership values with gene significance values for lithium use. Overlap was calculated
 484 by testing for hypergeometric overlap between the list of lithium-use DEGs and the list of genes
 485 within each module. Abbreviations: DEGs, differentially expressed genes; GPI,
 486 glycophosphaditylinositol.

487 **Figures**


488

489 **Figure 1.** Differentially expressed genes. (A) Six BD DEGs. FC, log 2 fold change; q, FDR-
490 adjusted $P < 0.05$. (B) 976 genes differentially expressed between lithium users and non-lithium
491 users (shown as blue triangles, FDR-adjusted $P < 0.05$; all other genes tested shown as light gray
492 circles). (C) DAVID³² functional annotation cluster enrichment of all 976 DEGs (upper) and 754
493 up-regulated DEGs (lower). Enrichment scores increase when the gene list is limited to up-
494 regulated genes only. Clusters were considered significant if the enrichment score > 1 and at
495 least one term in the cluster survived Bonferroni correction for multiple testing.
496


497

498 **Figure 2.** Estimated neutrophil composition association with lithium use. (A) Leukocyte cell-type
499 proportions per sample as estimated from gene expression, sorted by neutrophil proportions.
500 Mean proportion across samples shown in parentheses. Lithium users, shown in the bar on the
501 bottom, cluster on the right where neutrophil proportions are higher. (B) Lithium users have higher
502 estimated neutrophil proportions ($\beta = 0.63$, $P = 0.024$).

503

504 **Figure 3.** Lithium-associated co-expression module M1 enrichment for neutrophil gene
505 expression signatures. (A) Lithium-associated module enrichment for leukocyte cell types. Left,
506 Hypergeometric overlap between leukocyte cell type signature genes and genes in each module.
507 Right, Linear regression of leukocyte cell type signature genes to predict module membership
508 values. (B) Neutrophil signature genes have higher module membership values for M1 than other
509 leukocyte signature genes ($\beta = 0.60$, $P < 2.20 \times 10^{-16}$).

510

511 **Figure 4.** Gene-set enrichment of DEG sets with genes in psychiatric trait-associated loci (PGC
512 BD GWAS³⁶, PGC schizophrenia GWAS³⁵, and 23andMe self-reported depression GWAS³⁷)
513 using MAGMA³⁴. DEG sets stratified by up- and down-regulated genes. The BD DEG set was
514 extended to include genes with FDR-corrected $P < 0.2$. The positive control gene-set consisted
515 of the top 100 most significant genes from a random draw of $N = 1,000$ using the BD GWAS gene-
516 level test statistics. The positive control gene-set association with BD was highly significant ($P =$
517 1.28×10^{-27}) but the $-\log_{10} P$ -value was limited to 3 in the plot. The negative control gene-set
518 consisted of a random draw of $N = 1,000$ genes using the BD GWAS gene-level test-statistics.
519 The red line represents the significance threshold of $-\log_{10}(0.05)$. All P-values and effect sizes are
520 reported in Table S7.

521 **Data Availability**

522 Gene expression data will be made available upon publication.

523

524 **Acknowledgements**

525 We thank the study subjects for their willingness to provide specimens and clinical data. We thank
526 GWAS research participants and researchers involved in making summary statistics available,
527 including 23andMe research participants and employees, for making this work possible. We thank
528 Drs. Francis McMahon and Thomas Schulze for correspondence regarding lithium-response
529 GWAS. This work was supported by National Institute of Health grants R01MH090553 (RAO),
530 R01MH114152 (RAO), 25602-NARSAD Distinguished Investigator Award (RAO), K99MH116115
531 (LMOL), and T32HG002536 (CEK).

532

533 **References**

534

- 535 1. Weissman, M.M. *et al.* Cross-national epidemiology of major depression and bipolar
536 disorder. *JAMA* **276**, 293-9 (1996).
- 537 2. Eaton, W.W. *et al.* The burden of mental disorders. *Epidemiol Rev* **30**, 1-14 (2008).
- 538 3. McGuffin, P. *et al.* The heritability of bipolar affective disorder and the genetic
539 relationship to unipolar depression. *Arch Gen Psychiatry* **60**, 497-502 (2003).
- 540 4. Cross-Disorder Group of the Psychiatric Genomics, C. *et al.* Genetic relationship
541 between five psychiatric disorders estimated from genome-wide SNPs. *Nat Genet* **45**,
542 984-94 (2013).
- 543 5. Elashoff, M. *et al.* Meta-analysis of 12 genomic studies in bipolar disorder. *J Mol
544 Neurosci* **31**, 221-43 (2007).
- 545 6. Matigian, N. *et al.* Expression profiling in monozygotic twins discordant for bipolar
546 disorder reveals dysregulation of the WNT signalling pathway. *Mol Psychiatry* **12**, 815-25
547 (2007).
- 548 7. Choi, K.H. *et al.* Gene expression and genetic variation data implicate PCLO in bipolar
549 disorder. *Biol Psychiatry* **69**, 353-9 (2011).
- 550 8. Akula, N. *et al.* RNA-sequencing of the brain transcriptome implicates dysregulation of
551 neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder. *Mol
552 Psychiatry* **19**, 1179-85 (2014).
- 553 9. Beech, R.D. *et al.* Gene-expression differences in peripheral blood between lithium
554 responders and non-responders in the Lithium Treatment-Moderate dose Use Study
555 (LiTMUS). *Pharmacogenomics J* **14**, 182-91 (2014).

556 10. Mostafavi, S. *et al.* Type I interferon signaling genes in recurrent major depression:
557 increased expression detected by whole-blood RNA sequencing. *Mol Psychiatry* **19**,
558 1267-74 (2014).

559 11. van Eijk, K.R. *et al.* Identification of schizophrenia-associated loci by combining DNA
560 methylation and gene expression data from whole blood. *Eur J Hum Genet* **23**, 1106-10
561 (2015).

562 12. Witt, S.H. *et al.* Investigation of manic and euthymic episodes identifies state- and trait-
563 specific gene expression and STAB1 as a new candidate gene for bipolar disorder.
564 *Transl Psychiatry* **4**, e426 (2014).

565 13. Xiao, Y. *et al.* The DNA methylome and transcriptome of different brain regions in
566 schizophrenia and bipolar disorder. *PLoS One* **9**, e95875 (2014).

567 14. Cruceanu, C. *et al.* Transcriptome sequencing of the anterior cingulate in bipolar
568 disorder: dysregulation of G protein-coupled receptors. *Am J Psychiatry* **172**, 1131-40
569 (2015).

570 15. Madison, J.M. *et al.* Characterization of bipolar disorder patient-specific induced
571 pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression
572 abnormalities. *Mol Psychiatry* **20**, 703-17 (2015).

573 16. Mertens, J. *et al.* Differential responses to lithium in hyperexcitable neurons from
574 patients with bipolar disorder. *Nature* **527**, 95-9 (2015).

575 17. Zhao, Z. *et al.* Transcriptome sequencing and genome-wide association analyses reveal
576 lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar
577 disorder. *Mol Psychiatry* **20**, 563-572 (2015).

578 18. Anand, A. *et al.* Effects of Lithium Monotherapy for Bipolar Disorder on Gene Expression
579 in Peripheral Lymphocytes. *Mol Neuropsychiatry* **2**, 115-123 (2016).

580 19. Breen, M.S. *et al.* Lithium-responsive genes and gene networks in bipolar disorder
581 patient-derived lymphoblastoid cell lines. *Pharmacogenomics J* **16**, 446-53 (2016).

582 20. Fromer, M. *et al.* Gene expression elucidates functional impact of polygenic risk for
583 schizophrenia. *Nat Neurosci* **19**, 1442-1453 (2016).

584 21. Hess, J.L. *et al.* Transcriptome-wide mega-analyses reveal joint dysregulation of
585 immunologic genes and transcription regulators in brain and blood in schizophrenia.
586 *Schizophr Res* **176**, 114-124 (2016).

587 22. Jansen, R. *et al.* Gene expression in major depressive disorder. *Mol Psychiatry* **21**, 444
588 (2016).

589 23. Pacifico, R. & Davis, R.L. Transcriptome sequencing implicates dorsal striatum-specific
590 gene network, immune response and energy metabolism pathways in bipolar disorder.
591 *Mol Psychiatry* **22**, 441-449 (2017).

592 24. Peterson, C.B. *et al.* Characterization of Expression Quantitative Trait Loci in Pedigrees
593 from Colombia and Costa Rica Ascertained for Bipolar Disorder. *PLoS Genet* **12**,
594 e1006046 (2016).

595 25. Fries, G.R. *et al.* Distinct lithium-induced gene expression effects in lymphoblastoid cell
596 lines from patients with bipolar disorder. *Eur Neuropsychopharmacol* **27**, 1110-1119
597 (2017).

598 26. Kittel-Schneider, S. *et al.* Lithium-induced gene expression alterations in two peripheral
599 cell models of bipolar disorder. *World J Biol Psychiatry*, 1-14 (2017).

600 27. Vizlin-Hodzic, D. *et al.* Early onset of inflammation during ontogeny of bipolar disorder:
601 the NLRP2 inflammasome gene distinctly differentiates between patients and healthy
602 controls in the transition between iPS cell and neural stem cell stages. *Transl Psychiatry*
603 **7**, e1010 (2017).

604 28. Kim, D. *et al.* TopHat2: accurate alignment of transcriptomes in the presence of
605 insertions, deletions and gene fusions. *Genome Biol* **14**, R36 (2013).

606 29. Law, C.W., Chen, Y., Shi, W. & Smyth, G.K. voom: Precision weights unlock linear
607 model analysis tools for RNA-seq read counts. *Genome Biol* **15**, R29 (2014).

608 30. Huan, T. *et al.* A whole-blood transcriptome meta-analysis identifies gene expression
609 signatures of cigarette smoking. *Hum Mol Genet* **25**, 4611-4623 (2016).

610 31. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network
611 analysis. *BMC Bioinformatics* **9**, 559 (2008).

612 32. Huang da, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of
613 large gene lists using DAVID bioinformatics resources. *Nat Protoc* **4**, 44-57 (2009).

614 33. Newman, A.M. *et al.* Robust enumeration of cell subsets from tissue expression profiles.
615 *Nat Methods* **12**, 453-7 (2015).

616 34. de Leeuw, C.A., Mooij, J.M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set
617 analysis of GWAS data. *PLoS Comput Biol* **11**, e1004219 (2015).

618 35. Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from
619 108 schizophrenia-associated genetic loci. *Nature* **511**, 421-7 (2014).

620 36. Stahl, W. *et al.* Genomewide association study identifies 30 loci associated with bipolar
621 disorder. *bioRxiv* (2017).

622 37. Hyde, C.L. *et al.* Identification of 15 genetic loci associated with risk of major depression
623 in individuals of European descent. *Nat Genet* **48**, 1031-6 (2016).

624 38. Genomes Project, C. *et al.* A global reference for human genetic variation. *Nature* **526**,
625 68-74 (2015).

626 39. Harvey, A.G. Sleep and circadian rhythms in bipolar disorder: seeking synchrony,
627 harmony, and regulation. *Am J Psychiatry* **165**, 820-9 (2008).

628 40. Jones, S.E. *et al.* Genome-Wide Association Analyses in 128,266 Individuals Identifies
629 New Morningness and Sleep Duration Loci. *PLoS Genet* **12**, e1006125 (2016).

630 41. Smith, R.D. & Lupashin, V.V. Role of the conserved oligomeric Golgi (COG) complex in
631 protein glycosylation. *Carbohydr Res* **343**, 2024-31 (2008).

632 42. Fagerberg, L. *et al.* Analysis of the human tissue-specific expression by genome-wide
633 integration of transcriptomics and antibody-based proteomics. *Mol Cell Proteomics* **13**,
634 397-406 (2014).

635 43. Glatt, S.J. *et al.* Alternatively Spliced Genes as Biomarkers for Schizophrenia, Bipolar
636 Disorder and Psychosis: A Blood-Based Spliceome-Profiling Exploratory Study. *Curr
637 Pharmacogenomics Person Med* **7**, 164-188 (2009).

638 44. Higgs, B.W., Elashoff, M., Richman, S. & Barci, B. An online database for brain disease
639 research. *BMC Genomics* **7**, 70 (2006).

640 45. Thayer, D.A., Jan, Y.N. & Jan, L.Y. Increased neuronal activity fragments the Golgi
641 complex. *Proc Natl Acad Sci U S A* **110**, 1482-7 (2013).

642 46. Cipriani, A., Hawton, K., Stockton, S. & Geddes, J.R. Lithium in the prevention of suicide
643 in mood disorders: updated systematic review and meta-analysis. *BMJ* **346**, f3646
644 (2013).

645 47. Malhi, G.S., Gessler, D. & Outhred, T. The use of lithium for the treatment of bipolar
646 disorder: Recommendations from clinical practice guidelines. *J Affect Disord* **217**, 266-
647 280 (2017).

648 48. Alda, M. Lithium in the treatment of bipolar disorder: pharmacology and
649 pharmacogenetics. *Mol Psychiatry* **20**, 661-70 (2015).

650 49. Gitlin, M. Lithium side effects and toxicity: prevalence and management strategies. *Int J
651 Bipolar Disord* **4**, 27 (2016).

652 50. Pickard, B.S. Genomics of Lithium Action and Response. *Neurotherapeutics* **14**, 582-
653 587 (2017).

654 51. Roux, M. & Dosseto, A. From direct to indirect lithium targets: a comprehensive review
655 of omics data. *Metallomics* **9**, 1326-1351 (2017).

656 52. Brown, K.M. & Tracy, D.K. Lithium: the pharmacodynamic actions of the amazing ion.
657 *Ther Adv Psychopharmacol* **3**, 163-76 (2013).

658 53. Luykx, J.J. et al. The involvement of GSK3beta in bipolar disorder: integrating evidence
659 from multiple types of genetic studies. *Eur Neuropsychopharmacol* **20**, 357-68 (2010).

660 54. Maddu, N. & Raghavendra, P.B. Review of lithium effects on immune cells.
661 *Immunopharmacol Immunotoxicol* **37**, 111-25 (2015).

662 55. Kast, R.E. How lithium treatment generates neutrophilia by enhancing phosphorylation
663 of GSK-3, increasing HIF-1 levels and how this path is important during engraftment.
664 *Bone Marrow Transplant* **41**, 23-6 (2008).

665 56. Rosales, C., Demaurex, N., Lowell, C.A. & Uribe-Querol, E. Neutrophils: Their Role in
666 Innate and Adaptive Immunity. *J Immunol Res* **2016**, 1469780 (2016).

667 57. Rosenblat, J.D. & McIntyre, R.S. Bipolar Disorder and Immune Dysfunction:
668 Epidemiological Findings, Proposed Pathophysiology and Clinical Implications. *Brain Sci*
669 **7**(2017).

670 58. Cai, C. et al. Is human blood a good surrogate for brain tissue in transcriptional studies?
671 *BMC Genomics* **11**, 589 (2010).

672 59. Popova, T., Mennerich, D., Weith, A. & Quast, K. Effect of RNA quality on transcript
673 intensity levels in microarray analysis of human post-mortem brain tissues. *BMC
674 Genomics* **9**, 91 (2008).

675 60. Abramovic, L. et al. The association of antipsychotic medication and lithium with brain
676 measures in patients with bipolar disorder. *Eur Neuropsychopharmacol* **26**, 1741-1751
677 (2016).

678 61. Abramovic, L. et al. White matter disruptions in patients with bipolar disorder. *Eur
679 Neuropsychopharmacol* **28**, 743-751 (2018).

680 62. Luykx, J.J. et al. Genome-wide association study of monoamine metabolite levels in
681 human cerebrospinal fluid. *Mol Psychiatry* **19**, 228-34 (2014).

682 63. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
683 for RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).

684 64. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based
685 linkage analyses. *Am J Hum Genet* **81**, 559-75 (2007).

686 65. Das, S. et al. Next-generation genotype imputation service and methods. *Nat Genet* **48**,
687 1284-1287 (2016).

688 66. Loh, P.R. et al. Reference-based phasing using the Haplotype Reference Consortium
689 panel. *Nat Genet* **48**, 1443-1448 (2016).

690 67. Zhang, Y. et al. Purification and Characterization of Progenitor and Mature Human
691 Astrocytes Reveals Transcriptional and Functional Differences with Mouse. *Neuron* **89**,
692 37-53 (2016).

693 68. Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from
694 polygenicity in genome-wide association studies. *Nat Genet* **47**, 291-5 (2015).

695 69. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and
696 traits. *Nat Genet* **47**, 1236-41 (2015).

697