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Abstract 23 

Bipolar disorder (BD) is a highly heritable mood disorder with complex genetic architecture and 24 

poorly understood etiology. We performed a whole blood transcriptome analysis in a BD case-25 

control sample (Nsubjects = 480) by RNA sequencing. While we observed widespread differential 26 

gene expression patterns between affected and unaffected individuals, these effects were largely 27 

linked to lithium treatment at the time of blood draw (FDR < 0.05, Ngenes = 976) rather than BD 28 

diagnosis itself (FDR < 0.05, Ngenes = 6). These lithium-associated genes were enriched for cell 29 

signaling and immune response functional annotations, among others, and were associated with 30 

neutrophil cell-type proportions, which were elevated in lithium users. Neither genes with altered 31 

expression in cases nor in lithium users were enriched for BD, schizophrenia, and depression 32 

genetic risk based on information from genome-wide association studies, nor was gene 33 

expression associated with polygenic risk scores for BD. Our findings suggest that BD is 34 

associated with minimal changes in whole blood gene expression independent of medication use 35 

but underline the importance of accounting for medication use and cell type heterogeneity in 36 

psychiatric transcriptomic studies. The results of our study add to mounting evidence of lithium’s 37 

cell signaling and immune-related mechanisms. 38 

 39 

Introduction 40 

Bipolar disorder (BD) is a chronic and recurrent psychiatric disorder affecting approximately 1% 41 

of the population worldwide and presenting a major public health burden1,2. It is characterized 42 

clinically by instability in mood resulting in manic and depressive episodes interspersed between 43 

neutral, euthymic states2. Risk for BD is highly genetic, with heritability estimates as high as 85%3 44 

and common genetic variation explaining up to a third4. Still, however, the pathophysiological 45 

characteristics of BD are not well understood. Investigating molecular phenotypes such as gene 46 

expression as intermediate measures between genetic variation and clinical variation is a viable 47 
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strategy for uncovering disease mechanisms. Many such studies have been carried out for BD, 48 

and in Table 1 we present a summary that reveals a lack of consistency between findings likely 49 

owing to clinical heterogeneity, differing study designs, and the low numbers of samples 50 

investigated (N ≤ 62 BD subjects)5-27. Moreover, there are many potential confounds that impact 51 

gene expression, including medication.  52 

 Therefore, to explore gene expression changes associated with BD, we generated RNA 53 

sequencing data from peripheral whole blood collected in a large, well-characterized case-control 54 

cohort from The Netherlands. We examined gene expression differences between groups both at 55 

the individual gene level and at the level of gene co-expression. Upon correction for technical and 56 

biological variables including the use of lithium, the most widely used prescription drug in our 57 

cohort, gene expression differences between subjects with BD and controls were minor. 58 

Differences in subjects being treated with lithium compared to those who are not, however, were 59 

widespread. These differences were partially but not entirely explained by differences in cell-type 60 

composition, driven by elevated neutrophil proportions in lithium users. The lithium-associated 61 

changes in gene expression were independent of psychiatric genetic risk, though. Our results 62 

suggest nominal BD-related gene expression effects in blood but numerous effects related to 63 

lithium treatment. This work highlights the importance of accounting for medication use in 64 

psychiatric transcriptomic studies and provides insight into lithium’s molecular mechanisms of 65 

action. 66 

 67 

Methods 68 

Sample preparation and RNA sequencing 69 

See Supplementary Methods for more information regarding sample ascertainment and 70 

assessment. Peripheral whole blood was drawn and processed for genotyping and RNA 71 

sequencing from 240 controls and 240 cases, of whom 227 (94.6%) had a diagnosis of bipolar I 72 
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disorder and 13 (5.4%) had a diagnosis of bipolar II disorder. Whole blood was collected in 73 

PaxGene Blood RNA tubes and total RNA extracted using the PAXgene isolation kit (Qiagen) 74 

according to manufacturer’s protocols. RNA integrity number (RIN) values were obtained using 75 

Agilent’s NRA 6000 Nano kit and 2100 Bioanalyzer. RNA concentrations were determined using 76 

the Quant-iT RiboGreen RNA Assay kit. The UCLA Neuroscience Genomics Core subsequently 77 

performed RNA sequencing and prepared sample libraries using the TruSeq Stranded RNA plus 78 

Ribo-Zero Gold library prep kit to remove ribosomal and globin RNA to enrich for messenger and 79 

noncoding RNAs. Concentration of the sequencing library was determined on a TapeStation and 80 

a pool of barcoded libraries were layered on eight lanes of the Illumina flow cell bridge amplified 81 

to raw clusters. An average of 24.9 million paired-end reads of 75 bases in length per sample 82 

were obtained on an Illumina HiSeq 2500. The raw sequence data were processed for quality 83 

control (QC) using FastQC, after which all samples were deemed suitable for downstream 84 

analysis. 85 

 86 

RNA sequencing alignment and gene expression quantification 87 

Reads were mapped to human reference genome hg19 using TopHat228 allowing for two 88 

mismatches yielding an average mapping rate of 96.0% per sample and an average concordant 89 

pair mapping rate of 89.8% per sample. Samples had an average of 33.9% duplicate reads. Picard 90 

Tools were used to obtain 18 different sequencing metrics such as number of reads, percent 91 

mapped reads, and number of coding bases, that were examined for QC and then processed for 92 

dimension reduction using principal component analysis (PCA; Supplementary Methods). The 93 

first three principal components, which explain 75.9%, 16.9%, and 6.4% of variance, respectively, 94 

were used as covariates in subsequent analyses. Known Ensembl gene levels were quantified 95 

using HTSeq in the union mode to obtain integral counts of reads that intersect the union of all 96 

transcripts of genes. PCA of gene expression quantification was used for data visualization and 97 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/497784doi: bioRxiv preprint 

https://doi.org/10.1101/497784
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

additional QC, after which four samples were removed for apparent mix-up (Supplementary 98 

Methods). Thirty-two additional samples were excluded due to missing demographic information. 99 

Differential expression and co-expression analyses were therefore limited to a set of 444 subjects 100 

(240 cases and 204 controls). 101 

 102 

Normalization, covariate correction, and differential expression analysis 103 

Gene expression counts from HTSeq were filtered for genes having > 10 counts in 90% of 104 

samples, yielding 12,344 genes for subsequent analyses. Filtered counts were converted to log2-105 

counts-per-million (log-cpm) to account for differences between samples in sequencing depth and 106 

to stabilize variances at high counts. Then, the mean-variance relationship was modelled with 107 

precision weights at the individual observation level using limma voom29. Briefly, voom non-108 

parametrically estimates the mean-variance trend of the logged read counts and uses this to 109 

predict the variance of each log-cpm value. The predicted variance is then used as a weight, 110 

which is incorporated into the linear model procedure during differential expression analysis. 111 

These gene-wise weighted least-squares linear models are fitted to the normalized log-cpm 112 

values, taking into account the voom precision weights and the final covariate model, generating 113 

a coefficient for the effect of each variable on each gene’s expression: 114 

 115 

gene expression ~ covariates + trait of interest 116 

 117 

Then, for each gene, the coefficient for the trait of interest is statistically tested for being 118 

significantly different from zero. P-values from this test were corrected for multiple testing using 119 

the Benjamini-Hochberg false discovery rate (FDR) estimation, and a gene was considered to be 120 

differentially expressed if it had an FDR-corrected P-value < 0.05. The final covariate model for 121 

differentially expressed genes (DEGs) between BD cases and controls included the following 122 
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variables: age, sex, lithium use, tobacco use, assessment group, RIN, sequencing plate, and 123 

sequencing metric PCs 1 through 3. The final covariate model for DEGs between subjects being 124 

treated with lithium (i.e. lithium users) and non-lithium users included the following variables: BD 125 

diagnosis, age, sex, tobacco use, assessment group, RIN, sequencing plate, and sequencing 126 

metric PCs 1 through 3. Tobacco use was included because of its well-characterized effect on 127 

whole blood gene expression30. An overview of covariates can be found in Table S1. DEGs were 128 

checked for overlap and concordance with other datasets (Supplementary Methods). Fold 129 

changes (FC) reported are in log2 fold change units. 130 

 131 

Co-expression network analysis 132 

To determine networks of genes with correlated expression, weighted gene co-expression 133 

network analysis (WGCNA)31 was performed using the WGCNA package in R. To do this, first the 134 

12,344 filtered and normalized genes were residualized adjusting for the following covariates: 135 

age, sex, tobacco use, assessment group, RIN, sequencing plate, and sequencing metric PCs 1 136 

through 3. Then, briefly, WGCNA defines a network of genes as nodes with edges between genes 137 

based on pairwise correlations between genes, and separates the network into modules of gene 138 

clusters with highly coordinated expression. The 𝛽 parameter (β = 7) was chosen according to 139 

the approximate scale-free topology criterion described by Langfelder and Horvath31. Then the 140 

gene expression profiles of each module were summarized by calculating the module eigengene, 141 

which is defined as the first principal component of the expression matrix of that module. Each 142 

gene was then assigned a measure of module membership for each module.  143 

 To determine biologically significant modules, gene significance measures were assigned 144 

to each gene for each of our traits of interest, including BD diagnosis and lithium use, by 145 

calculating the absolute correlation between the trait and the expression profiles. Then a measure 146 

of module-trait significance was calculated by correlating module membership values with gene 147 
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significance values. An association was considered significant if its P-value surpassed Bonferroni 148 

correction for testing multiple modules (P < 𝛼 = 0.05/Nmodules). Finally, intramodular connectivity 149 

kIM was calculated to determine the level of connectivity for the genes in modules significantly 150 

associated with traits of interest.  151 

 152 

Functional annotation 153 

The Database for Annotation, Visualization, and Integrated Discovery (DAVID, v6.8)32 was used 154 

for functional annotation of each gene list. We used three gene lists from the differential 155 

expression analysis: the 976 lithium DEGs at FDR < 0.05, the 754 up-regulated lithium DEGs at 156 

FDR < 0.05, and the 222 down-regulated lithium DEGs at FDR < 0.05. We also used gene lists 157 

from the five co-expression network analysis modules that were significantly associated with BD: 158 

M1 (Ngenes = 2,092), M7 (Ngenes = 700), M9 (Ngenes = 55), M11 (Ngenes = 622), and M26 (Ngenes = 159 

484). The full set of 12,344 filtered and normalized genes used as input for differential expression 160 

and co-expression network analyses was used as background to determine overrepresentation 161 

in each of the gene lists. The functional annotation clustering tool was applied using unique 162 

Ensembl IDs and the following databases: SP_PIR_KEYWORDS, UP_SEQ_FEATURE, 163 

GOTERM_BP_FAT, GOTERM_CC_FAT, GOTERM_MF_FAT, BIOCARTA, KEGG_PATHWAY, 164 

INTERPRO, UCSC_TFBS. Cluster annotations were called significant if the enrichment was 165 

greater than 1.0 and at least 1 gene list in the annotation cluster survived Bonferroni correction 166 

(P < 0.05). 167 

 168 

Estimation of cell-type proportions 169 

To estimate cell-type composition in our sample we employed the CIBERSORT online software 170 

(cibersort.stanford.edu)33. Briefly, CIBERSORT uses reference gene expression signatures to 171 

estimate the relative proportions of cell types in tissues with complex, heterogeneous cell 172 
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composition via linear support vector regression. The reference dataset we used to deconvolve 173 

our mixture of whole blood cell types was the validated leukocyte gene signature matrix that is 174 

provided with the CIBERSORT software, termed LM2233. It contains 547 genes whose expression 175 

discriminate between 22 different human hematopoietic cell phenotypes (Table S2), including 176 

seven T-cell types, naive and memory B cells, plasma cells, natural killer cells, and myeloid 177 

subsets. 178 

 To prepare our gene expression data for input to CIBERSORT, raw expression counts 179 

from HTSeq were converted to transcripts per million (TPM). Using the resulting matrix of TPM 180 

values for our 480 samples and the LM22 gene signature matrix as input, CIBERSORT was run 181 

online with 100 permutations and with quantile normalization disabled as recommended for RNA-182 

seq data. The output matrix consisted of deconvolution results with relative fractions of cell types 183 

normalized to 1 across all cell subsets for each sample. These estimated cell-type proportions 184 

were then residualized using a linear regression model adjusting for the following covariates: sex, 185 

age, tobacco use, sequencing plate, RIN, and sequencing metric PCs 1 through 3. Then, 186 

residualized cell-type estimates were used to predict lithium use in a stepwise linear regression 187 

using the stepAIC function in the MASS package in R. The estimated cell-type proportions were 188 

also appended to the table of technical and biological covariates and then used to re-run the 189 

differential expression analysis while accounting for cell-type heterogeneity in the sample. 190 

 191 

Enrichment of cell types in co-expression modules 192 

The enrichment of LM22 cell types in gene co-expression modules determined from WGCNA was 193 

calculated in two ways. First, the hypergeometric overlap between modules and cell type 194 

signature genes was calculated. The binary matrix of LM22 signature genes provided by Newman 195 

et al.33, where 1 denotes that a gene was significantly differentially expressed in that particular 196 

cell type and 0 denotes that it was not, was used to extract lists of signature genes for each cell 197 
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type, or genes with a value of 1. These lists are partially overlapping, with 262 genes being unique 198 

to a given list and 285 genes being shared between ≥ 2 lists (maximum 10 lists). Then, using the 199 

GeneOverlap library in R, the hypergeometric overlap was calculated between each of these 22 200 

cell type signature gene lists and each of the 27 module gene lists using the full set of 12,344 201 

filtered and normalized genes as background.  202 

Second, binary cell type signatures were used to predict module membership values in a 203 

linear model. We reasoned that this method might be more powerful than a strict overlap due to 204 

the fact that every gene has a module membership value for every module, regardless if it was 205 

assigned to that module. The gene co-expression network output, which consists of module 206 

membership values for each gene for each module, was limited to the set of LM22 signature 207 

genes that were expressed in our sample (Ngenes = 331). These values were then used as an 208 

outcome in a linear model, with the binary matrix of LM22 signature genes as predictors. To avoid 209 

multiple testing penalties, only five regressions were run on the five modules that were associated 210 

with lithium: M1, M7, M9, M11, and M26. 211 

 212 

Integration of GWAS data with transcriptomic signatures 213 

Prior to gene-set analyses, heritability and genetic correlation of traits of interest were estimated 214 

to confirm significant non-zero SNP-based heritability (Supplementary Methods). Analyses were 215 

performed across three psychiatric genome-wide association study (GWAS) traits from publicly 216 

available datasets (bipolar disorder, schizophrenia, and self-reported depression) and 2 sets of 217 

DEGs (BD at FDR < 0.2 and lithium-use at FDR < 0.05). Differential expression log2 fold changes 218 

and FDR-corrected P-values for each of the 12,344 genes expressed at > 10 counts in 90% of 219 

samples were obtained from limma to integrate whole-blood gene expression signatures with 220 

GWAS data using Multi-marker Analysis of GenoMic Annotation (MAGMA v1.06)34.  221 

GWAS summary statistics were obtained for the following three GWAS traits: 222 
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1) SCZ35: 36,989 cases and 113,075 controls; 223 

2) BD36: 20,352 cases and 31,358 controls; 224 

3) 23andMe self-reported depression37: 75,607 cases and 231,747 controls; 225 

The 1000 Genomes Project Phase 3 release European reference panel (N = 503) was used to 226 

model LD in all analyses38. Eight gene lists were used from two different DEG models along with 227 

a positive and negative control:  228 

1) Lithium-use DEGs at FDR < 0.05: N = 897 genes; 229 

2) Up-regulated lithium-use DEGs at FDR < 0.05: N = 680 genes; 230 

3) Down-regulated lithium-use DEGs at FDR < 0.05: N = 217 genes; 231 

4) BD DEGs at FDR < 0.2: N = 630 genes; 232 

5) Up-regulated BD DEGs at FDR < 0.2: N = 389 genes; 233 

6) Down-regulated BD DEGs at FDR < 0.2: N = 241 genes; 234 

7) Positive control gene-set: the top 100 most significant genes from a random 235 

draw of N = 1,000 using the BD GWAS gene-level test statistics; 236 

8) Negative control gene-set: a random draw of N = 1,000 genes using the BD 237 

GWAS gene-level test-statistics. 238 

MAGMA was used to run gene property analyses, which uses a multiple regression 239 

framework to associate a continuous gene variable to GWAS gene level p-values. High quality 240 

SNPs (INFO > 0.9) were mapped to genes using Ensembl gene IDs and NCBI build 37.3 gene 241 

boundaries +/- 10kb extensions using the -- annotate flag. For each phenotype, we generated 242 

gene-level p-values by computing the mean SNP association using the default gene model (‘snp-243 

wise=mean’). We only included SNP with MAF > 5% and dropped synonymous or duplicate SNPs 244 

after the first entry (‘synonym-dup=drop-dup’). For each annotation, we then regressed gene-level 245 

GWAS test statistics on the corresponding gene annotation variable using the ‘--gene-covar’ 246 

function while adjusting for gene size, SNP density, and LD-induced correlations (‘--model 247 
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correct=all’), which is estimated from an ancestry-matched 1KG reference panel. In all analyses, 248 

we included only genes for which we had both the gene variable and GWAS gene level test 249 

statistic available. Two-sided p-values are reported. 250 

Secondary gene-set analyses were run on a limited number of DEG gene sets and 251 

additional, sleep-related GWAS traits (Supplementary Methods). 252 

 253 

Results 254 

Minimal changes in bipolar disorder gene expression 255 

To explore the transcriptomic signatures of BD, we first evaluated whether subjects with BD 256 

harbored transcriptional differences on a per gene level compared with controls. Of the 12,344 257 

genes tested, only six were differentially expressed in BD after correcting for multiple testing (FDR 258 

< 0.05; Figure 1A). The differences in expression were very small, with absolute fold changes 259 

ranging from 0.12 to 0.44. While the number of identified differentially expressed genes (DEGs) 260 

was too small to perform functional enrichment analysis, we did find that three of the six genes 261 

(COG4, DOCK3, and BBS9) were expressed in GTEx frontal cortex tissue (median TPM > 1) and 262 

show relatively stable expression across brain cell types except for DOCK3, which is enriched in 263 

neurons (fold change relative to other cell types = 6.82; Table S3). Four of the genes were present 264 

in the Stanley Genomics brain gene expression database, and two of these were found to be 265 

differentially expressed in BD individuals in at least one study, COG4 and DOCK3, although the 266 

latter was altered in the opposite direction. COG4 was also reported as differentially expressed in 267 

a schizophrenia mega-analysis of nine whole blood microarray datasets21. Using polygenic risk 268 

scores (PRS) for BD as the differential expression trait of interest rather than the dichotomous 269 

case-control phenotype did not yield any significant genes, even though PRS did significantly 270 

differ between BD cases and controls (t = -3.42, P = 6.88 x 10-4; Figure S1; Supplementary 271 

Methods). 272 
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 273 

Widespread subtle gene expression changes in lithium users  274 

Following the same differential expression pipeline as above, we found 976 genes with small 275 

differences in gene expression between lithium users and non-lithium users (|FC| mean = 0.20, 276 

max = 0.82, SD = 0.10; Figure 1B, Supplementary File 1). These genes were enriched for 277 

biological terms related to calcium signaling and other signaling pathways, and immunity (Figure 278 

1C). To distinguish between up- and down-regulated gene pathways, we stratified genes by their 279 

direction of change in expression. The 754 up-regulated genes were annotated for many of the 280 

same terms as the full set but with greater enrichment scores, indicating that the up-regulated 281 

genes are driving the enrichment scores in the full set (Figure 1C). Of the 976 lithium-use DEGs, 282 

804 were expressed in GTEx frontal cortex samples (TPM > 1), and 488, 553, 503, 478, 512, and 283 

403 were expressed in neurons, fetal astrocytes, mature astrocytes, oligodendrocytes, microglia/ 284 

macrophages, and endothelia, respectively (FPKM > 1). However, none of these gene sets were 285 

significantly enriched (hypergeometric P > 0.05). 286 

 To validate our results, the 976 lithium-use DEGs were tested for overlap with lists of 287 

DEGs from similar studies found in the literature (Table S4). Although none of these studies has 288 

the same design as ours, we did find a significant overlap between our 976 lithium-use DEGs and 289 

the lists from two studies. In the first study18, DEGs were detected by comparing peripheral 290 

monocyte gene expression in subjects before and after lithium monotherapy. Of the 35 DEGs 291 

discovered, 18 were shared with the current study (hypergeometric odd ratio (OR) = 13.57, P = 292 

4.66 x 10-12), and all 18 were concordant in direction (Figure S2A). In the second study19, DEGs 293 

were detected by comparing LCL gene expression before and after lithium treatment in vitro. Of 294 

the 1,504 DEGs discovered, 134 were shared with our study (hypergeometric OR = 1.27, P = 295 

9.23 x 10-3), and 84.6% of these were concordant in direction (Figure S2B). There were two genes 296 
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shared between all three lists, RFX2 and SLC29A1. We report genes in these overlapping lists 297 

as high confidence lithium-associated genes (Supplementary File 1). 298 

 299 

Modules of co-expressed genes are associated with lithium use 300 

Next, in search of genes with differential co-expression in BD, we constructed a gene expression 301 

network in the entire sample using WGCNA and assessed the detected modules for association 302 

with BD. This network consisted of 27 modules ranging in size from 48 to 2,760 genes (mean 303 

Ngenes = 441, Supplementary File 2). By evaluating the correlation of module membership values 304 

with gene significance for BD diagnosis, we quantified the association of each module with BD. 305 

After Bonferroni multiple testing correction, five modules were significantly associated with lithium-306 

use, but no modules were associated with BD or any other clinical or technical variable (Table 307 

S5). Of the five modules associated with lithium use, three shared significant overlap with lithium-308 

use DEGs (Table 2). M26 was most significantly associated with lithium (P = 2.00 x 10-4; Figure 309 

S3A) but was not significantly enriched for lithium DEGs. M1 was also associated with lithium (P 310 

= 9.04 x 10-4; Figure S3B) and had the most significant enrichment of DEGs (431 of 2,092 genes 311 

in the module were DEGs; hypergeometric OR = 4.62, P = 2.03 x 10-97). Functional annotation 312 

clustering of the genes in M1 showed an enrichment of terms related to cell signaling, immunity, 313 

and glycophosphatidylonositol anchor. 314 

Module preservation analysis was also performed to assess differences in network density 315 

and connectivity between groups, but showed full preservation indicating that networks 316 

constructed in separate groups maintain their underlying structure (Supplementary Methods and 317 

Figure S4).  318 

 319 

Estimated neutrophil proportions are increased in lithium users 320 
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We then sought to determine if variation in our sample could be explained by differences in blood 321 

cell-type composition. To deconvolve cellular heterogeneity, we applied CIBERSORT33 to our 322 

gene expression quantifications using a reference panel of 22 blood cell-type signatures. The 323 

resulting estimated cell-type proportions (Figure 2A) were then examined for their relationship 324 

with lithium use in BD cases only. Each cell type was residualized for demographic and technical 325 

variables then used to predict lithium use in a stepwise linear model. Neutrophils are the one cell 326 

type that significantly predicted lithium use within the BD cases (𝛽 = 0.63, P = 0.024), with 327 

elevated proportions in individuals being treated with lithium (Figure 2B). Indeed, 16 of 60 328 

signature neutrophil genes were also lithium-use DEGs (hypergeometric OR = 4.64, P = 4.45 x 329 

10-6). 330 

 The number of genes showing differential expression in subjects undergoing lithium 331 

treatment decreased from 976 in the model without cell-type estimates to 233 in the model with 332 

cell-type estimates (FDR < 0.05; Figure S5A, Supplementary File 1), of which 194 (83.2%) were 333 

significant in the original model and concordant in direction of effect (Figure S5B). No functional 334 

annotation cluster terms remained significant after correcting for multiple testing. The number of 335 

genes differentially expressed between BD cases and controls decreased to zero after accounting 336 

for estimated cell-type proportions. 337 

 338 

Lithium-associated co-expression module M1 is enriched for neutrophil gene expression 339 

signatures 340 

We then sought to determine if the various lithium-associated modules of co-expressed genes 341 

reflected biologic signatures of distinct populations of blood cell types. We did this in two ways. 342 

First, a hypergeometric overlap between lithium-associated module gene lists and cell-type 343 

signature gene lists revealed a significant overlap between module M1 with monocyte and 344 

neutrophil signature genes and M9 with eosinophil and activated mast cell signature genes 345 
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(Figure 3A, left). Second, the expression of cell-type signature genes was used to predict module 346 

membership values in a linear model for each of the five lithium-associated modules. Neutrophils, 347 

monocytes, and eosinophils were again implicated (Figure 3A, right). In both of these analyses, 348 

the most significant cell type-module relationship was M1 with neutrophil estimates 349 

(hypergeometric P = 5.68 x 10-21, linear model P < 2.20 x 10-16). Indeed, neutrophil signature 350 

genes had higher M1 membership values (Figure 3B). 351 

 352 

Genes with altered expression are not enriched for genes with common psychiatric risk alleles 353 

To evaluate if BD and lithium-use DEG sets were associated with a higher burden of psychiatric 354 

risk alleles, we performed gene-set analyses using MAGMA34. Analyses were performed across 355 

three psychiatric GWAS traits: BD36, SCZ35, and self-reported depression37. SCZ and depression 356 

were used because of their high degree of overlap in SNP-based heritability with BD4 (Table S6). 357 

The 23andMe self-reported depression GWAS was used instead of MDD GWAS because of the 358 

large sample size and successful findings of this study. A lithium-response GWAS was not used 359 

because the SNP-based heritability estimate for this trait is not different from zero (personal 360 

communication with Thomas G. Schulze). Because the set of BD DEGs at FDR < 0.05 was too 361 

small to test, we used a more lenient significance threshold of FDR < 0.2 for this analysis instead. 362 

None of the comparisons demonstrated an association with genetic risk across the genes 363 

identified in the current study (except for the positive control gene set), even after stratifying by 364 

up- and down-regulated genes (Figure 4, Table S7). Because sleep disturbances are a hallmark 365 

of BD39, and due to the genetic correlation of sleep-related phenotypes with BD40, we performed 366 

a secondary gene-set analysis with genes implicated from chronotype, sleep duration, 367 

oversleeping, and undersleeping GWAS, which failed to demonstrate association with genes 368 

identified in the current study (Table S8). 369 

 370 
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Discussion 371 

In our whole blood BD case-control gene expression study we observed widespread subtle 372 

changes in gene expression in subjects undergoing lithium treatment but few transcriptomic 373 

differences linked to disease status. These effects were partially driven by variation in leukocyte 374 

cell type composition, and we find no evidence for a link with genetic risk for BD. Upon validation 375 

of our findings with previous in vivo and in vitro lithium treatment gene expression studies, we 376 

present a high-confidence list of genes that display altered expression associated with lithium 377 

treatment.  378 

One of the top differentially expressed genes associated with BD, COG4, encodes a part 379 

of a multiprotein complex that is a key determinant of Golgi apparatus structure and capacity for 380 

intracellular transport and glycoprotein modification41. COG4 mRNA is expressed widely across 381 

body tissues including the brain42. It has been reported as having alternative splicing in subjects 382 

with BD43, and concordant with our results, was reported as down-regulated in three of the ten 383 

Stanley Genomics BD brain datasets44. Further work is needed to determine the role of COG4 in 384 

BD, but perhaps neuronal hyperexcitability in BD16 destabilizes internal cellular processes 385 

including Golgi function45. There is currently no evidence for a genetic link between BD disease 386 

susceptibility and COG436. 387 

 Lithium is the first-line treatment for BD, not only for the treatment of acute episodes but 388 

also for maintenance and suicide prevention46,47. However, only about 30% of BD patients fully 389 

respond to lithium, it has several adverse side effects, and its mechanisms of action are not well 390 

understood48-50. One probable reason for this lack of understanding is the magnitude of lithium’s 391 

physiological interactions51. In pharmacological terms, lithium is a small molecule (the third 392 

smallest element in fact) without a defined target50. This lack of specificity makes it difficult to 393 

discern therapeutic mechanisms from off-target effects, which likely lead to many of lithium’s 394 

undesirable side effects and even its toxicity at doses that are too high. Lithium ions (Li+) have a 395 
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single positive charge and are hypothesized to mimic and disrupt the actions and targets of more 396 

ubiquitous metal ions such as magnesium (Mg2+)50. Theorized therapeutic mechanisms of lithium 397 

include its inhibition of the protein GS3Kβ, and its effect on intracellular signaling cascades such 398 

as those involving protein kinases and phosphatidylinositol52,53. It is not clear how these 399 

mechanisms relate to higher order properties thought to be involved in BD etiology like neuronal 400 

function, chronobiology, and brain structure. Examining lithium mechanisms at high biological 401 

resolution is therefore not only crucial for understanding the high rates of non-response and non-402 

adherence to prophylactic lithium treatment in BD patients but also for understanding BD etiology 403 

itself. 404 

The widespread but subtle gene expression changes observed in lithium users are in line 405 

with lithium’s broad scope of physiological effects51 and with the complex genetic architecture of 406 

BD20. These genes were enriched for functional annotations related to transmembrane, cell 407 

signaling, protein kinase, and immunity. These pathways have been implicated in previous BD 408 

transcriptome studies13,14,16,23,26 and are known targets of lithium48,54. The elevated levels of 409 

neutrophil proportions we observed is in line with lithium-induced neutrophilia, which has been 410 

described since the medication’s early use in psychiatry54. Lithium is thought to induce 411 

neutrophilia through a complex pathway involving GSK3 and immune-related transcription factors 412 

and genes55. Increased levels of neutrophils are typically associated with anti-inflammatory or 413 

infection-fighting immune responses56. Whether these immunity-related mechanisms play a role 414 

in the mood stabilizing effects of lithium remains to be determined. Immune components of 415 

psychiatric illness including BD57 have long been recognized, but it remains unclear if they 416 

represent a causal pathway, a property of the disease state, or a consequence of environmental 417 

factors like body mass index or smoking. These results contribute to the understanding of the 418 

genomics of lithium action, which may be essential for the future of personalized psychiatric 419 

medicine for patients with BD. Future studies with larger sample sizes and independent replication 420 
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datasets will be needed to confirm our findings, and whether these genes and pathways play a 421 

role in the mood-stabilizing mechanisms of lithium remains to be determined. 422 

The lack of enrichment of genetic signal from common alleles associated with BD, 423 

schizophrenia, or self-reported depression suggests that genes transcriptionally associated with 424 

lithium treatment in peripheral blood most likely represent secondary effects of treatment that are 425 

independent from disease susceptibility. The lack of genetic enrichment could also indicate that 426 

our gene expression study is underpowered for this purpose, or that the transcriptomic 427 

mechanisms of genetic risk for BD are not present in whole blood. In addition, the currently 428 

available GWAS may still be underpowered thereby impacting our ability to detect a significant 429 

enrichment. With the expected rapidly increasing sample sizes of these GWAS studies we will be 430 

able to test this hypothesis more fully in the near future. We did explore the opportunity to examine 431 

enrichment of genetic susceptibility of lithium response, but because this phenotype has a SNP-432 

based heritability not different from zero, this specific analysis is not meaningful. In this regard, it 433 

is important to distinguish between lithium use, the phenotype we used in our study, and lithium 434 

response. Self-reported answers to a lithium questionnaire by participants in our study show that 435 

the majority of subjects being treated with lithium had a positive response to the treatment and 436 

the majority of non-users have been treated with lithium in the past (Supplementary Methods). 437 

We therefore consider that the lithium use phenotype partially captures lithium response, but 438 

disentangling the complex interplay between these phenotypes is an avenue for further 439 

exploration.  440 

Lithium use, as a trait only present in BD subjects and therefore confounded with BD 441 

diagnosis, serves as a confounder by indication and likely eliminated most of the observable BD 442 

effects. Our results highlight the importance of correcting for cell type composition as well as 443 

medication use in BD transcriptome studies. A lithium-naive study design is warranted  to optimize 444 

BD transcriptomic signal that is independent of lithium use. Nevertheless, investigating the BD 445 
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transcriptome in whole blood remains valuable for the following reasons. It is an accessible tissue, 446 

it has the potential for biomarker discovery, and it can be used in longitudinal study designs, which 447 

are appealing due to the episodic nature of BD. It may also be a choice tissue to observe the 448 

suggested immune component of BD etiology. In addition, peripheral tissues such as blood 449 

partially recapitulate gene expression signatures of the brain58, and compared to post-mortem 450 

tissues are less subject to poor quality due to rapid degradation upon death59. However, studies 451 

involving post-mortem tissue, in vitro neuronal cells, or animal models will still be needed to 452 

determine the therapeutic effect of lithium on BD-associated brain-related function.  453 

In summary, our findings suggest that there are minimal bipolar disorder-associated gene 454 

expression changes in whole blood independent of medication use and underline the importance 455 

of accounting for such confounders in psychiatric genomic studies. While limited in their ability to 456 

uncover mechanisms associated with genetic risk, blood-based transcriptome analyses of BD 457 

may still be informative with larger sample sizes and careful designs. Lastly, our findings provide 458 

molecular insights into the potential therapeutic actions of lithium, including cell signaling and 459 

immunity-related functions. Overall, this work contributes to the understanding of BD etiology and 460 

the elusive mechanisms of its most common treatment, lithium.  461 
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Tables 462 

First author Year Tissue Diagnosis Condition tested N samples Platform DEG cutoff N DEGs Pathways/ terms enriched in DEGs 

Elashoff5 2007 
*Multiple 
brain 
regions 

BD & HC BD vs. HC †284, 331 Microarray meta P < 0.001 375 

Energy metabolism, protein turnover, MHC 
antigen response, RNA processing, intracellular 
transport activity, stress response, and 
metallothionein 

Matigian6 2007 LCLs BD & MZ BD vs MZ 3, 3 Microarray FC > 1.3 82 
Programmed cell death, protein metabolism, 
regulation of transcription, and Wnt signaling 

Choi7 2011 PFC BD & HC BD vs. HC 40, 43 Microarray FC > 1.3 & FDR < 0.05 367 - 

Akula8 2014 
Dorsolateral 
PFC 

BD & HC BD vs. HC 11, 11 Sequencing FDR < 0.05 5 

‡Transmembrane receptor protein phosphatase 
activity, regulation of transmission of nerve impule, 
GTPase binding, regulation of cyclic nucleotide 
metabolic processes, and cell part morphogenesis 

Beech9 2014 Whole blood BD LR vs. LNR 9, 19 Microarray FDR < 0.1 62 - 

Witt12 2014 Whole blood BD & HC 

EU vs. HC 11, 10 Microarray FDR < 0.05 262 - 

MA vs. HC 11, 10 Microarray FDR < 0.05 216 Human diseases, metabolism, ribosome 

EU vs. MA 11, 11 Microarray FDR < 0.05 22 - 

Xiao13 2014 

BA9 BD & HC BD vs. HC 7, 6 Sequencing FC > 1.5 2,085 
Morphogenesis, nervous system development, 
synaptic transmission, axon guidance, regulation 
of action potential, ion homeostasis, etc. 

BA24 BD & HC BD vs. HC 7, 6 Sequencing FC > 1.5 1,643 
Synaptic transmission, signaling, cellular 
homeostasis, morphogenesis, nervous system 
development, ion transport, etc. 

Cruceanu14 2015 
Anterior 
cingulate 
cortex 

BD & HC BD vs. HC 13, 13 Sequencing FDR ≤ 0.05 10 G-protein coupled receptor pathways 

Madison15 2015 

Fibroblasts BD ped AF vs. UAF #6, 6 Sequencing FC > 1.5 & P < 0.05 1 - 

iPSCs BD ped AF vs. UAF #6, 6 Sequencing FC > 1.5 & P < 0.05 0 - 

NPCs BD ped AF vs. UAF #6, 6 Sequencing FC > 1.5 & P < 0.05 18 ‡Key neuronal processes 

Mertens16 2015 Neurons BD & HC BD vs. HC 6, 4 Sequencing FDR ≤ 0.1 45 
Calcium ion signaling, neuroactive ligand-receptor 
interaction, PKA/PKC signaling, and action 
potential firing 

Zhao17 2015 
Cingulate 
cortex 

BD & HC BD vs. HC 25, 26 Sequencing FDR ≤ 0.1 153 

GnRH signaling, taste transduction, vascular 
smooth muscle contraction, gap junction, 
Huntington's disease, chemokine signaling 
pathway, RNA polymerase, Phosphatidylinositol 
signaling system, apoptosis, etc. 

Anand18 2016 
Peripheral 
lymphocytes 

BD T vs. UT 22, 22 Microarray FDR < 0.05 35 
Interferon signaling, glucocorticoid, VDR/RXR, 
EGF and aldosterone receptor signaling, and PI3 
kinase signaling 

Breen19 2016 LCLs 
BD LR-T vs. LNR-T 8, 8 Sequencing P < 0.05 244 

DNA repair, protein deacetylation, cellular 
response to stress, nucleoplasm 

BD & HC T vs. UT 23, 23 Sequencing FDR < 0.05 2,803 - 

Pacifico23 2016 
Dorsal 
striatum 

BD & HC BD vs. HC 18, 17 Sequencing FDR < 0.05 14 
Immune response, inflammation, and oxidative 
phosphorylation 

Peterson24 2016 LCLs BD ped AF vs. UAF 193, 593 Microarray FDR < 0.05 0 - 

Fries25 2017 LCLs BD T vs. UT 62, 62 Microarray FDR < 0.05 236 Cell death 

Kittel-
Schneider26 

2017 

LCLs BD & HC T vs. UT 21, 21 Microarray P < 0.05E-5 459 
Apoptosis, protein transport, cell cycle, RNA 
processing, etc. 

Fibroblasts BD & HC BD vs. HC 10, 11 Microarray P < 0.05E-4 296 Cell signaling, wound healing, cell adhesion, etc. 

LCLs BD & HC BD vs. HC 10, 11 Microarray P < 0.05E-5 58 
Leukocyte activation, apoptosis, immune 
response, etc. 

Vizlin-
Hodzic27 

2017 

iPSCs BD BD vs. HC 6, 4 Sequencing FDR < 0.05 3 TREM1 

NSCs BD BD vs. HC 6, 4 Sequencing FDR < 0.05 42 
Inflammation, GABA receptor signaling, dopamine 
receptor signaling, and TREM1 

Mostafavi10 2014 Whole blood MDD & HC MDD vs. HC 463, 459 Sequencing P < 3.6E-6 0 §Interferon alpha/beta signaling 

van Eijk11 2014 Whole blood SCZ & HC SCZ vs. HC 106, 96 Microarray FDR < 0.05 525 - 

Zhao17 2015 
Cingulate 
cortex 

SCZ & HC SCZ vs. HC 31, 26 Sequencing FDR ≤ 0.1 105 
Circadian rhythm, prostate cancer, Natural killer 
cell mediated cytotoxicity, signaling pathways, etc. 

Fromer20 2016 
Dorsolateral 
PFC 

SCZ & HC SCZ vs. HC 258, 279 Sequencing FDR ≤ 0.05 693 - 

Hess21 2016 Whole blood SCZ & HC SCZ vs. HC 300, 278 Microarray mega FDR < 0.1 2,238 

Innate immune and inflammatory signaling, 
cellular stress response, response to androgens, 
glycotic metabolism, cell survival and growth, DNA 
repair, mitochondrial function, etc. 
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Jansen22 2016 Whole blood MDD & HC C-MDD vs. HC 882, 331 Microarray FDR < 0.1 129 
Interleukin 6 signaling pathway, natural killer cell 
mediated cytotoxicity, apoptosis, immune 
response 

 463 
Table 1. Review of previous BD and lithium studies with differential expression analyses. Select 464 
schizophrenia and major depressive disorder studies were included (at the bottom of the table) 465 
as examples of what larger BD and lithium studies might look like. *Multiple brain regions including 466 
frontal BA46, BA10, BA6, BA8, BA9, and cerebellum. †165 BD individuals (samples partially 467 
overlapping). ‡Enrichment analysis was performed on genes with nominal p-values (P < 0.05). 468 
§Enrichment analysis was performed on genes with small p-values (sets of top N genes, N = [30, 469 
60, 100, 150, 300, 500]). #N = 2 samples with 3 replicates each. Abbreviations: AF, affected; BD, 470 
bipolar disorder; BD ped, BD pedigree; C-MDD, current major depressive disorder; DEGs, 471 
differentially expressed genes; EU, euthymic; FC, fold change; FDR, false discovery rate; HC, 472 
healthy control; iPSCs, induced pluripotent stem cells; LCLs, lymphoblastoid cell lines; LNR, 473 
lithium non-responder; LNR-T, lithium non-responder treated with lithium; LR, lithium-responder; 474 
LR-T, lithium responder treated with lithium; MA, manic; MDD, major depressive disorder; MZ, 475 
unaffected monozygotic twin; NPCs, neural progenitor cells; NSCs, neural stem cells; PFC, 476 
prefrontal cortex; SCZ, schizophrenia; T, treated with lithium; UAF, unaffected; UT, untreated with 477 
lithium. 478 
 479 

    Correlation with 
lithium use 

 Overlap with DEGs 

Module N genes Functional annotation cluster term(s)  r P  N genes P 

M1 2,092 Transmembrane, GPI anchor, immunoglobulin   0.156 9.40E-04   431 2.03E-97 

M7 700 
Helicase activity, ATP binding, metabolism, DNA 
replication, endoplasmic reticulum, proteasome, protein 
biosynthesis 

 -0.165 4.50E-04  22 1.00 

M9 55 G-protein coupled receptor   0.153 1.15E-03   17 6.15E-07 

M11 622 -  0.17 3.12E-04  102 4.93E-13 

M26 484 Nucleic acid binding, splicing   -0.175 2.00E-04   17 1.00 

 480 
Table 2. Co-expression module association with lithium use. Functional annotation cluster 481 
enrichment determined using DAVID32. Correlation with lithium use calculated by correlating gene 482 
module membership values with gene significance values for lithium use. Overlap was calculated 483 
by testing for hypergeometric overlap between the list of lithium-use DEGs and the list of genes 484 
within each module. Abbreviations: DEGs, differentially expressed genes; GPI, 485 
glycophosphaditylinositol.   486 
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Figures 487 

 488 

Figure 1. Differentially expressed genes. (A) Six BD DEGs. FC, log 2 fold change; q, FDR-489 
adjusted P < 0.05. (B) 976 genes differentially expressed between lithium users and non-lithium 490 
users (shown as blue triangles, FDR-adjusted P < 0.05; all other genes tested shown as light gray 491 
circles). (C) DAVID32 functional annotation cluster enrichment of all 976 DEGs (upper) and 754 492 
up-regulated DEGs (lower). Enrichment scores increase when the gene list is limited to up-493 
regulated genes only. Clusters were considered significant if the enrichment score > 1 and at 494 
least one term in the cluster survived Bonferroni correction for multiple testing. 495 
 496 
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 497 

Figure 2. Estimated neutrophil composition association with lithium use. (A) Leukocyte cell-type 498 
proportions per sample as estimated from gene expression, sorted by neutrophil proportions. 499 
Mean proportion across samples shown in parentheses. Lithium users, shown in the bar on the 500 
bottom, cluster on the right where neutrophil proportions are higher. (B) Lithium users have higher 501 
estimated neutrophil proportions (𝛽 = 0.63, P = 0.024). 502 
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 503 

Figure 3. Lithium-associated co-expression module M1 enrichment for neutrophil gene 504 
expression signatures. (A) Lithium-associated module enrichment for leukocyte cell types. Left, 505 
Hypergeometric overlap between leukocyte cell type signature genes and genes in each module. 506 
Right, Linear regression of leukocyte cell type signature genes to predict module membership 507 
values. (B) Neutrophil signature genes have higher module membership values for M1 than other 508 
leukocyte signature genes (𝛽 = 0.60, P < 2.20 x 10-16). 509 
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 510 

Figure 4. Gene-set enrichment of DEG sets with genes in psychiatric trait-associated loci (PGC 511 
BD GWAS36, PGC schizophrenia GWAS35, and 23andMe self-reported depression GWAS37) 512 
using MAGMA34. DEG sets stratified by up- and down-regulated genes. The BD DEG set was 513 
extended to include genes with FDR-corrected P < 0.2. The positive control gene-set consisted 514 
of the top 100 most significant genes from a random draw of N = 1,000 using the BD GWAS gene-515 
level test statistics. The positive control gene-set association with BD was highly significant (P = 516 
1.28 x 10-27) but the -log10 P-value was limited to 3 in the plot. The negative control gene-set 517 
consisted of a random draw of N = 1,000 genes using the BD GWAS gene-level test-statistics. 518 
The red line represents the significance threshold of -log10(0.05). All P-values and effect sizes are 519 
reported in Table S7.  520 
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Data Availability 521 

Gene expression data will be made available upon publication. 522 
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