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38 Abstract

39 Linkinginterindividual differencesin psychological phenotype to variations in brain structure
40 is an old dream for psychology and a crucia question for cognitive neurosciences. Y e,
41  replicability of the previously-reported “structural brain behavior” (SBB)-associations has
42  been questioned, recently. Here, we conducted an empirical investigation, assessing
43 replicability of SBB among heathy adults. For a wide range of psychological measures, the
44  replicability of associations with gray matter volume was assessed. Our results revealed that
45 among healthy individuals 1) finding an association between performance at standard
46  psychological tests and brain morphology is relatively unlikely 2) significant associations,
47  found using an exploratory approach, have overestimated effect sizes and 3) can hardly be
48 replicated in an independent sample. After considering factors such as sample size and
49  comparing our findings with more replicable SBB-associations in a clinical cohort and
50 replicable associations between brain structure and non-psychological phenotype, we discuss

51 the potential causes and consequences of these findings.
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62 Introduction:

63  The early observations of inter-individual variability in human psychological skills and traits
64  have triggered the search for defining their correlating brain characteristics. Studies using in-
65  vivo neuroimaging have provided compelling evidence of arelationship between human skills
66 and traits and brain morphometry that were further influenced by individuals years of
67  experience, as well aslevel of expertise. More subtle changes were also shown following new
68 learning/training (Draganski et al., 2004; Taubert et al., 2011), hence further demonstrating
69  dynamic relationships between behavioral performance and brain structural features. Such
70  observations quickly generated a conceptual basis for growing number of studies aming to
71  map subtle inter-individual differences in observed behavior such as personality traits (Nostro
72 et d., 2017), impulsivity traits (Matsuo et al., 2009) or political orientation (Kanai et a.,
73  2011); to normal variations in brain morphology (for review see (Genon et al., 2018; Kanai
74  and Rees, 2011)). Altogether, these studies created an empirical background supporting the
75  assumption that the morphometry of the brain in humans is related to the wide spectrum of
76  aspects observed in human behavior. Such reports on structural brain behavior (SBB)
77  associations may not only have important implications in psychological sciences and clinical
78  research (Ismaylovaet al., 2018; Kim et a., 2015; Luders et al., 2013, 2012; McEwen et al.,
79  2016), but also possibly hold an important key for our understanding of brain functions
80 (Genon et al., 2018) and thus concern many research fields including basic cognitive

81  neuroscience.

82  Yet, adong with the general replication crisis affecting psychological sciences (Button et al.,
83 2013; De Boeck and Jeon, 2018; Open Science Collaboration, 2015), replicability of the
84  previously reported SBB-associations were also questioned recently. In particular, Boekel et

85 a. (2015) in a purely confirmatory replication study, picked on few specific previously
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86  reported SBB-associations. Strikingly, for amost al the findings under scrutiny, they could

87  not find support for the original resultsin their replication attempt.

88 In another study we demonstrated lack of robustness of the pattern of correlations between
89  cognitive performance and measures of gray matter volume (GMV) in a-priori defined sub-
90 regions of the dorsal premotor cortex in two samples of healthy adults (Genon et a., 2017). In
91 particular we found a considerable number of SBB-associations that were counterintuitive in
92  their directions (i.e., higher performance related to lower gray matter volume). Furthermore,
93  subsampling revealed that for a given psychological score, negative correlations with GMV
94  were as likely as positive correlations. Although our study did not primarily aim to address
95 the scientific qualities of SBB, it revealed, in line with Boekel et al. (2015), that a replication
96 issue in SBB-associations could seriously be considered. However, ringing the warning bell
97 of a replication crisis would be premature since these previous studies have approached
98 replicability questions within very specific contexts and methods and using small sample
99 sizes(Muhlert and Ridgway, 2016).
100 In particular, Boekel et a. and Genon et al.’s studies were performed by focusing on a-priori
101  defined regions-of-interest (ROIs). However, several SBB studies are commonly performed
102  in groups of dozens of individuals, using an exploratory setting employing a mass-univariate
103 approach. Thus, the null findings of the two questioning studies could be related to the focus
104  and averaging of GMV within specific region-of-interests as suggested by (Kanai, 2016) and
105  discussed in (Genon et a., 2017).
106  In stark contrast with this argument, in whole-brain mass-univariate exploratory SBB studies,
107  the multitude of statistical tests that is performed (as the associations are tested for each voxel,
108  separately) likely yield many false positives. Directly addressing this limitation, several
109  strategies for multiple comparison correction have been proposed to control the rate of false

110 positives (Eklund et al., 2016). We could hence assume that the high number of multiple tests
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111  and general low power of neuroimaging studies combined with the flexible analysis choices
112 (Button et al., 2013; Poldrack et al., 2017; Turner et al., 2018) represent critical factors likely
113  tolead to the detection of spurious and not replicable associations.

114  Characterization of spatial consistency of findings across neuroimaging studies is often
115  performed with meta-analytic approaches, pooling studies investigating similar neuroimaging
116  markersin relation to a given behavioral function or condition. However, in the case of SBB,
117  the heterogeneity of the behavioral measures and the large proportion of apriori-ROI analyses
118 complicate the application of a meta-analytic approach. Illustrating these limitations, previous
119 meta-analyses have focused on specific brain regions and capitalized on a vast majority of
120 RO studies. For example, (Y uan and Raz, 2014) have focused on SBB within the frontal lobe
121  based on a sample made of approximately 80% of ROI studies. Given these limitations of
122 meta-analytic approaches for the SBB literature, an empirical evaluation of the replicability of
123 thefindings yielded by an exploratory approach is crucially needed to allow questioning the
124 replicability of exploratory SBB studies.

125  Thus in the current study, we empirically examined replicability rates of SBB-association
126  over a broad range of psychological scores, among heathy adults. In order to avoid the
127  criticisms raised regarding the low sample size in Boekel et al.’s study, we used an openly
128 available dataset of a large cohort of healthy participants and assessed replication rate of
129  SBB-associations using both an exploratory as well as a confirmatory approach. While in the
130  recent years multivariate methods are frequently recommended to explore the relationship
131  between brain and behavior (Cremers et al., 2017; Smith and Nichols, 2018), SBB-association
132  studies using these approaches remain in minority. The mass-univariate approach is still the
133 main workhorse tool in such studies, not only due to its historical precedence and its wide
134  integration in common neuroimaging tools, but also possibly owing to more straightforward
135 interpretability of the detected effects (Smith and Nichols, 2018). The current study, therefore,

136  focused on the assessment of replicability of SBB-associations using the latter approach.
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137  In particular, we first identified “significant” findings with an exploratory approach based on
138 mass-univariate analysis, searching for associations of GMV with psychometric variables
139  across the whole brain. Here a linear model was fit between inter-individual variability in the
140 psychological score and GMV at each voxel. Inference was then made at cluster level, using a
141  threshold-free cluster enhancement approach (Smith and Nichols, 2009). We then investigated
142  the reproducibility of these findings, across resampling, by conducting a similar whole-brain
143 voxel-wise exploratory anaysis within 100 randomly generated subsamples of individuals
144  (discovery samples). Each of these 100 discovery subsamples (of the same size) were
145  generated by randomly selecting apriori-defined number of individuals (e.g. 70% ) from the
146  origina cohort under study. In order to empirically investigate spatial consistency of
147  significant results from these 100 exploratory analyses, an aggregate map characterizing the
148  spatial overlap of the significant findings across all discovery samples was generated. This
149  map denotes the frequency of finding a significant association between the behavioral score
150 and gray matter volume, at each voxel, over 100 analyses and thus provides information about
151  replicability of “whole brain exploratory SBB-associations’ for each behavioral score.
152 Conceptualy, this map gives an estimate of the spatial consistency of the results that one
153  could expect after re-running 100 times the same SBB study across similar samples.

154  Additionaly, for each of the 100 exploratory analyses, we assessed the replicability of SBB-
155  associations using a confirmatory approach (i.e. ROI-based approach). For each of the 100
156 discovery samples, we generated a demographically-matched test pair sample from the
157  remaining participants of the main cohort. Average GMV within regions showing significant
158 SBB-association in the initial exploratory analysis, i.e. ROIs, are calculated among the
159  demographically-matched independent sample and their association with the same
160 psychological score was compared between the discovery and matched-replication sub-

161  samples (see Methods for more details).
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162  Confirmatory replication is commonly used in the literature (Boekel et al., 2015; Genon et al.,
163  2017; Open Science Collaboration, 2015), nevertheless, there is no single standard defined for
164  evaluating the replication success. Therefore, here, we assessed the replication rate of SBB,
165 for three different definitions of successful replication in the confirmatory anayses. 1-
166  Successful replication of the direction of association, only; 2- Detection of significant (p <
167  0.05) association in the same direction as the exploratory results; While the first definition is
168  arguably too lenient and may result in many very small correlation coefficients defined as
169  successful replication, it is frequently used as a qualitative measure of replication and may be
170 used to characterize the possible inconsistency of the direction of associaions (that was
171  observed in our previous study (Genon et al., 2017)). In addition it could be used as a
172 complement for the possible limitation of the second definition, namely the possibility of
173  declaring many replications that fell just short of the bright-line of p< 0.05 as failed
174  replication. 3- lastly, in line with previous studies and the reproducibility literature, we
175  included the Bayes Factors (BF) to quantify evidence that the replication sample provided in
176  favor of existence or absence of association in the same direction than in the discovery
177  subsample (Boekel et al., 2015). In other words, when compared to standard p-value
178  methodology, here hypothesis testing using BF enables quantification of the evidence in favor
179  of the null hypothesis, i.e. evidence for the absence of a correlation; see Methods for more
180 details.

181  If the replication issue of SBB associations can be objectively evidenced, this naturally opens
182  the questions of the accounting factors. Here, we considered proximal explanatory factors, in
183  particular at the measurements and analysis level, but aso in relation to the object level, that
184 s, in relation to the nature itself of variations in brain structure and psychometric scores in
185  healthy individuals. One main proximal factor that is almost systematically blamed is small
186 sample size. In line with replication studies in other fields (e.g. (Cremers, Wager, & Y arkoni,

187  2017; Turner, Paul, Miller, & Barbey, 2018)), we thus here investigated the influence of
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188 sample size and replication power on the reproducibility of SBB-associations. More
189  specifically for every phenotypic score under study we repeated both whole brain exploratory
190 and ROI-based confirmatory replication analyses using three sample sizes (see Methods for
191  more details) to assess how sample size influences replication rate of SBB. Furthermore, for
192  the successfully replicated effects, we also investigated existence of a positive relationship
193  between the effect size of exploratory and confirmatory analyses.

194  Findly, in order to promote discussion on the underlying reality which is aimed to be
195  captured by SBB in the framework of the psychology of individual differences, we included
196 as benchmarks non-psychological phenotypical measures, i.e. age and body-mass-index
197 (BMI), and extended our analysis to a clinical sample, where SBB-associations are expected
198 to enjoy higher biological validity. For this purpose, a subsample of patients drawn from
199 Alzheimer's Disease Neuroimaging Initiative (ADNI) database were selected, in which
200 replicability of structural associations of immediate-recall score from Rey auditory verbal
201  learning task (RAVLT) (Schmidt, 1996) was assessed (see Methods). Due to availability of
202  the same score within the healthy cohort, this later analysis is used as a “conceptua”

203  benchmark.
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204 Results:

205 A total of 10800 exploratory whole brain SBB associations (each with 1000 permutations)
206  were tested to empirically identify the replicability of the associations of 36 psychological
207  scores with GMV over 100 splits in independent matched subsamples, at three pre-defined
208 sample sizes, within the healthy cohort; see Supplementary Table 1, for total number of
209 participants with available score for each of the psychological scores.

210  Altogether, in contrast to GMV-associations with age and BMI, significant SBB-associations
211 were highly unlikely. For the majority of the tested psychological variables no significant
212 association with GMV were found in more than 90% of the whole brain analyses.

213  SBB-associations among the healthy population:

214 Replicability of “ whole brain exploratory SBB-associations” :

215 Age and BMI structural associations: V oxel-wise associations of age and BMI with GMV, as
216  suggested by previous studies (Fjell et a., 2014; Kharabian Masouleh et al., 2016; Salat et al.,
217 2004; Willette and Kapogiannis, 2014), were widespread and strong.

218  Despite using more stringent thresholds, compared to the threshold used for the psychological
219  scores (see Methods), for aimost all subsamples, we found highly consistent widespread
220 negative associations of GMV with age. See figure 1A for aggregate maps of spatial overlap
221  of exploratory findings and density plots, summarizing distribution of “frequency of
222 significant findings’ within each map.

223 When decreasing the sample size of the discovery cohort, the spatial overlap of significant
224  findings over 100 splits decreased. More specificaly, for the discovery sample of 326
225  subjects, more than half of the significant voxels were consistently found as being significant
226  in beyond 90% of the whole-brain exploratory analyses (i.e. high level of spatial consistency
227  of significant findings). As the size of the subsamples decreased, the shape of the distribution
228  aso changed, and the median of the density plots fell around 50% and even 10% for samples

229  consigting of 232 and 138 individuals, respectively.
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230 Similar results, though with much lower percent of consistently overlapping voxels, were
231 seen for negative associations of BMI with GMV. The density plots and the spatial maps of
232 Figure 1B show that for the larger samples (consisting of 326 and 232 subjects) few voxels
233 were consistently found in “al” (100%) subsamples as having significant negative
234  association with BMI. For the smaller samples (with 138 participants) the maximum
235  replicable association was found in 93% of the splits and 4 out of 100 exploratory analyses
236 did not result in any significant clusters (Table 1). Additionally, as Figure 2B shows, the
237  majority of significant voxels had a replicability bellow 50%.

238  These results highlight the influence of sample size on the replicability (frequency of overlap)
239  of whole-brain significant associations, even for age and BMI, for which we expected more
240  stable associations with morphological properties of the brain.

241  Structura associations of the psychological scores. In contrast, for most of the psychological
242 scores, only few of the 100 discovery subsamples yielded significant clusters. Table 1 and
243 supplementary Table 2 show the number of splits for which the exploratory whole-brain SBB-
244  analysisresulted in at least one significant positively or negatively associated cluster for each
245  score. These results revea that finding significant SBB-associations using the exploratory
246  approach in healthy individuals is highly unlikely for most of the psychological variables.
247  Furthermore, the significant findings were spatially very diverse, that is, spatially overlapping
248  findings were very rare.

249  We here retained for further analyses the three psychological scores for which the discovery
250 samples most frequently resulted in at least one significantly associated cluster. These three
251  scores were the Perceptual reasoning score of WASI (Wechsler, 1999), the number of correct
252 responses in word-context test and the interference time in the color-word interference task.
253  For example, for the discovery samples of 326 adults, in 83 out of 100 randomly generated
254  discovery samples, at least one cluster (not necessarily overlapping) showed a significant

255  positive association between perceptual reasoning and GMV (Table 1)). Of note, these more

10
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256  frequently found associations were in the direction linking better task performance with
257  higher GMV.

258  Yet again, in line with our observations for BMI associations, the probability of finding at
259 least one significant cluster tend to decrease in smaller discovery samples (see Table 1).
260 Likewise, as the discovery sample size decreased, the maximum rate of spatial overlap, as
261  denoted by the height of the density plots, decreased (see Figure 1C-F). The width of these
262  plots show that the majority (> 50%) of the significant voxels spatially overlapped only in less
263  than 10% of the discovery samples. In the same line, the variability depicted by the spatial
264  maps highlight that many voxels are found as significant only in one out of 100 analyses.

265  These results highlight that finding a significant association between normal variations on
266  behavioral scores and voxel-wise measures of GMV among healthy individuals is highly
267 unlikely, for most of the tested domains. Furthermore, they underscore the extent of spatial
268  inconsistency and the poor replicability of the significant SBB-associations from exploratory
269 analyses.

270 emeeeee Tablel ---------

271 e figurel---------

272 Confirmatory ROI-based SBB-replicability:

273  Age and BMI effects: Irrespective of the size of the test subsamples and definition used to
274 identify “successful” replication (see Methods), for al ROIs negative age-GMV associations
275  were “successfully” replicated in the matched test samples. Unlike the perfect replication of
276  age-associations, replication rate of BMI effects depended highly on the test sample size and
277  the criteria used to characterize “successful” replication. Over all three tested sample sizes, in
278  more than 90% of the a-priori defined ROIs, BMI associations were found to be in the same
279  “direction” in the discovery and test samples (i.e. replicated based on “sign” criteria). The
280 examination of replicated findings based on “statistical significance” revealed replicated

281  effectsin more than 57% of ROIs. This rate of ROIl-based replicability increased from ~57%

11
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282 to 75%, as the test sample size increased from 140 to 328 individuas (see figure 2).
283  Furthermore, as the dark blue segments in the outer layers of figure 2 indicates, Bayesian
284  hypothesis testing revealed moderate-to-strong evidence for H1 in more than 30% of the
285 ROls.

286 e figure2 ---------

287  Psychological variables: Figure 2 also illustrates the replicability rates of structural
288  associations of the top three psychological measures from the whole brain anayses (the
289  perceptual reasoning score of WASI, the number of correct responses in word-context test and
290 theinterferencetime in the color-word interference task).

291  Degspite the structural associations of perceptual reasoning score being in the same direction
292  (positive SBB-association), for the majority of the ROIs (>85%), less than 31% of all ROIs
293  showed replicated effects based on “statistical significance’ criterion. Finally, less than 4% of
294  the ROIswereidentified as “successfully replicated” based on the Bayes factors. (Figure 2).
295  For the three tested samples sizes, associations of the word-context task were in the same
296 direction (positive SBB-association) in the discovery and test pairs in ~75% of ROIs.
297  Nevertheless, again, the rate of statistically “significantly” -replicated ROIs ranged between 17
298  to 26%. Furthermore, even less than 8% of all ROIs showed replicated effects based on the
299  Bayes factors (moderate-to-strong evidence for H1) (Figure 2).

300 Finaly, negative correlations between interference time of the color-word interference task
301 and average GMV were depicted in ~70 % of the ROIs, but significant-replication was found
302 in only 11% to 17% of all ROIs, for the three test sample sizes. Along the same line,
303  replication based on the Bayes factors was below 5% (Figure 2E).

304 In general, these results show the span of replicability of structural associations from highly
305 replicable age-effects to very poorly replicable psychological associations. They also
306 highlight the influence of the sample size, as well as the criteria that is used to define

307  successful replication on the rate of replicability of SBB-effects in independent samples.

12


https://doi.org/10.1101/496729
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/496729; this version posted March 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

308 Effect size in the discovery sample and its link with effect size of the test sample and actual
309 replication:

310 Figure 3 plots discovery versus replication effect size (i.e. correlation coefficient) for each
311 ROI and for three test sample sizes. Focusing on by-“sign” replicated ROIs (blue), for the
312  three psychological scores (perceptual reasoning, word-context and CWI) revealed that the
313  discovery samples resulted in overall larger effects (magnitude) compared to the test samples.
314  Indeed, the marginal distributions are centered around smaller correlation coefficients in the
315 y-dimension (test sample) compared to the x-axis (discovery samples). Furthermore, for these
316  by-“sign” replicated ROIs, there was no positive relationship between the effect sizes of the
317  behavioral associations in the discovery and test samples (blue lines in each subplot).

318 For BMI and age, however, the effect sizes of the discovery and test pairs were generally
319 positively correlated, suggesting that the ROIs with greater negative structural association
320 with BMI (or age) in the discovery sample, also tended to show stronger negative associations
321 within the matched test sample.

322  Toinvestigate if the replication power, estimated using the correlation coefficient within the
323  discovery samples, was linked to a higher probability of actual replication in the test samples,
324 the ROIs were grouped into replicated and not-replicated, based on the “statistical
325 significance” criterion. While the estimations of statistical power were generaly higher
326  among the replicated compared to not-replicated ROIs for BMI associations (p-value of the
327  Mann-Whitney U tests < 10™), for structural associations of the psychological scores, this was
328 not the case. Strikingly, for the structural associations of perceptual reasoning, over all sample
329  sizes, the significantly replicated ROIs tended to have lower estimated power compared to the
330  ROIs that actually were not-replicated (p-value of the Mann-Whitney U tests < 10™). These
331 unexpected findings highlight the unreliable aspect of effect size estimations of SBB-

332  associations within the discovery samples among healthy individuals. They also demonstrate

13
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333 that these inflated effect sizes result in flawed and thus uninformative estimated statistical
334  power.

3% e figure3 ---------

336

337  Structural associations of total immediate recall score in ADNI cohort:

338 Replicability of “ whole brain exploratory associations” :

339  Within the sample of patients from ADNI-cohort, 84 out of the 100 whole-brain exploratory
340 analysesresulted in at least one significant cluster showing a positive association between the
341 immediate-recall score and GMV. In the healthy population, however, the same score resulted
342 in asignificant cluster in only less than 10% of exploratory analyses, for any of the three
343  discovery sample sizes (supplementary Table 2 and supplementary Figure 1).

344  Ascould be seen in the spatial maps of Figure 4, significant associations in the ADNI cohort
345  were found across several brain regions including the bilateral lateral and medial temporal
346 lobe, the lateral occipital cortex, the precuneus, the superior parietal lobule, the orbitofrontal
347  cortex and the thalamus. Although most of the significant voxels were found by less than 10%
348 of the splits, some voxels in the bilateral hippocampus were found to be significantly
349  associated with the recall score in more than 70% of the subsamples (peak of spatial overlap;
350 seeFigure4A, B).

351  Confirmatory ROI-based SBB-replicability:

352  Figure 4D shows the rates of “successful replication” of associations between the immediate-
353  recall score and GMV within each ROI in the independent, matched-samples. As the most
354  inner layer shows, in more than 94% of ROIs, GMV correlated positively with the recall score
355 in the test subsamples, corroborating the “sign” of the association in the paired-discovery
356  samples. These correlations were significant in 72% of all ROIls. Furthermore, in more than
357 50% of al ROIs the correlations in the test sample supported, a least moderately, the link
358  between higher GMV and higher recall score (using the Bayes factors).
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359  Association between discovery and replication effect size:

360 The marginal histograms in Figure 4C suggest that overall the correations in the discovery
361 samples are dlightly stronger than the correlations in the paired replication samples. When
362 looking a the ROIs that were successfully replicated (by-sign), there was a positive
363  association between the discovery and replication effect size (spearman’s rho = 0.38, p-value
364 <101Y.

365 Finaly, the median replication power was higher among “significantly replicated” ROIs,
366  compared to not replicated (defined using “statistical significance criterion”) ROIs (p-value of
367 the mann-whiteney U test < 10°). These results showed the superior, yet not perfect,
368  replicability of SBB-associations within the clinical population (see supplementary Figure 2
369  for structural associations of immediate recall within healthy cohort). The observed somewhat
370  robustness of the findingsin ADNI suggest that, when the population under study shows clear
371 variations in both brain structural markers and psychological measurements, such as the
372 patient group in ADNI cohort, the associations between brain structure and psychological
373  performance could be relatively reliably characterized. Nevertheless, again, the occurrence of
374 not-replicated results highlight the importance of confirmatory analyses for a robust
375  characterization of brain-behavior associations.

376

377 e figure4 ---------

378
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379 Discussion:

380 Our empirical investigation of the replicability of SBB in hedthy adults showed that
381 significant associations between psychological phenotype and GMV are not frequent when
382  probing a range of psychometric variables with an exploratory approach. Where significant
383  associations were found, these associ ations showed a poor replicability.

384  In the following, we first discussed implications of the very low rate of significant findings
385 reveded by the exploratory approach. We then discussed the possible causes of the observed
386 gpatia variability of SBB-associations. Those pattern of findings are then compared with the
387 pattern observed in the clinical cohort. Finally, in line with the replication literature in
388  psychological sciences and neurosciences (Button et al., 2013; Poldrack et al., 2017; Turner et
389 al., 2018), we devoted our last section to sample size and power issues in SBB studies in

390 healthy adults and proposed some recommendations.

391 Infrequent significant SBB associations in healthy individuals: Importance of reporting null
392  findings

393 According to the scientific literature, associations between psychological phenotype
394  (cognitive performance and psychological trait) and local brain structure are not uncommon
395 (Kanai and Rees, 2011). However, in our exploratory analyses, when looking at a range of
396 psychological variables, significant associations with GMV were very rare. It is worth noting
397 that here by having a-priori fixed analysis design and inference routines, we aimed to avoid
398  “fishing” for significant findings (Gelman and Loken, 2014). Flexible designs and flexible
399 analyses routines (Simmons et a., 2011) as well as p-hacking (John et a., 2012) are
400 considered as inappropriate but frequent research practices (Poldrack et al., 2017). Based on
401 our findings of infrequent significant SBB-associations, we could assume that flexible
402  analyses routines, p-hacking and most importantly publication bias (Dwan et al., 2013) have

403  contributed to the high number of significant SBB-reports in the literature.
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404 When considering potentia impacts of biased SBB-reports on our confidence of
405 psychological measures, as well as our conception and apprehension of brain-behavior
406  relationships and psychological interindividual differences, we would strongly argue for null
407  findings reports. Such reports would contribute to a more accurate and balanced apprehension
408 of associations between differences in psychological phenotype and brain morphometric
409 features, but it would also help to progressively disentangle factors that mediate or modulate

410  the relationship between brain structure and behavioral outcomes.

411  Poor spatial overlap of SBB across resampling: possible causes and recommendations

412  In addition to the low likelihood of finding “any” significant SBB-association using the
413  exploratory approach, clusters that do survive the significance thresholding did not often
414  overlap in different subsamples. Furthermore, the probability of spatia overlap further
415  dropped as the number of participants in the subsamples decreased (Figure 1). Putting this
416  finding in light of the literature brings two main hypotheses.

417  First, from the conceptual level, we could hypothesize that the pattern of correlation between
418 a psychological measure is by nature spatialy diffuse at the brain level. Psychological
419 measures aim to conceptually articulate behavioral functions and processes, thus, in most
420  cases, they have not been developed to identify specific localized brain functions. Following
421  this philosophical segregation between psychological sciences and neurosciences, it is now
422  widely acknowledged that there is no one-to-one mapping between behavioral functions and
423 brain regions (Anderson, 2015; Genon et a., 2018; Pessoa, 2014). Instead, mapping a
424  psychological concept to brain features usually result in a diffuse brain spatial pattern with
425  small effect sizes (Bressler, 1995; Poldrack, 2010; Tononi et a., 1998). From this axiom, we
426  can expect that several studies conducted in small samples (specifically after rigorous
427  corrections for multiple comparisons) are likely to each capture a partial and minor aspect of
428  thewhole true association pattern, resulting in a poor replication rate for each individual study

429  (i.e hightypell error).
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430 Alternatively, a more parsimonious hypothesis is a methodological one questioning the truth
431  or vaidity of the found significant associations hence considering them as spurious (i.e. type |
432  error). Psychological and MRI measurements are both relatively indirect estimations of
433  respectively, behavioral features and brain structural features and thus are susceptible to
434 noise. Correlations in small samples in the presence of noise for both type of variables is
435 likely to produce spurious significant results (Loken and Gelman, 2017) by fitting a
436  correlation or regression between random noise in both variables.

437  Thus, the pattern of poor spatial consistency of SBB findings could result either from factors
438 at the object of study level, i.e. the relationship between brain and behavior, or, from factors
439  at the measurement and analysis level. While the latter hypothesis is more parsimonious, one
440  argument for the former hypothesis comes from the relatively substantial replications by-sign
441  observed in our confirmatory analyses, of three top behavioral scores (see figure 2). If the
442  significant SBB findings would be purely driven by noise in the data, we would expect them
443  to show purely random signs across resampling, which was not the case (but aso see
444  Supplementary figure S2 for example of scores with lower replicability and higher
445  inconsistent associations across resampling). Therefore, it is actually likely that both
446  hypotheses hold true and that the spatial variability of significant SBB findings result from
447  both, factors at the analyses levels and factors at the object level, potentialy interacting
448  together.

449 It isworth noting that smilar complexity and uncertainty have been described for task-based
450  functional associations studies (Cremers et al., 2017; Turner et a., 2018). In particular,
451 Cremers et al. (2017) using smulated and empirica data demonstrated that task-based
452  functional activations have a generaly weak and diffuse pattern. Therefore, these authors
453  concluded that most whole-brain analyses in small samples, specifically when combined with
454  stringent correction for multiple comparison, to control the false positive rates, would most

455  likely frequently overlook global meaningful effects and depict results with poor replicability
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456  (type Il error). Relatedly, in the present study, higher spatial extent and lower consistency of
457  significant findings in smaller samples in Figure 1, also suggest higher number of spurious
458  associations (type | error) in smaller samples (due to winners curse (Button et al., 2013;
459  Forstmeier and Schielzeth, 2011)) than in larger samples.

460 These factors, added to the complexity of human behavior, renders the objective of capturing
461  covariations with psychometric variables in brain structure locally particularly challenging.
462  For that reason, in exploratory studies whose aim is to identify brain structural features
463  correlating with a specific (set of) psychological variable(s), a multivariate approach could be
464  advised (Habeck and Stern, 2010; Mclntosh and Misi¢, 2013). As mentioned earlier, like all
465  methods, multivariate analyses have their own limitations: in particular, the ensuing difficulty
466  of interpretability of the revealed pattern. While some authors argue either for one or the other
467  approach, the use of these approaches are far from being mutually exclusive (Moeller and
468  Habeck, 2006). Combining both approaches in small datasets indeed revealed that the results
469  of the univariate approach reflect the “tip of the iceberg” of the behavior’'s brain correlates,
470 whose spatial extent are more comprehensively captured with the multivariate analysis, but
471  interpretability isfacilitated by the use of univariate analyses; e.g. (Genon et a., 2016, 2014).
472 Thus, to partially address the previously described concerns of small and spatially diffuse
473  effects at the brain level in exploratory whole-brain-behavior study, we here recommend for
474  the future studies to combine a univariate and a multivariate approach. Although it does not
475  provide any protection against the influence of noise that may affect both approaches, this
476  solution may help to reduce the fal se negatives.

477  Confirmatory replication of exploratory SBB findings. importance of out of sample
478  replication

479 ROl-based analysis further highlighted that significant associations, which have been
480  discovered when starting with a psychological measure and searching within the whole brain

481  for asignificant association (i.e. “evidenced in an exploratory study”), show poor replicability
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482  (using significance and Bayes factor criteria, but also using a similar sign criterion for most
483  psychometric scores; For example, see Supplementary Figures S1 and S2.) in a confirmatory
484  ROl-based study (in line with what was previously shown by Boekel et al. (2015)). These
485  findings thus call for a general acknowledgment of the uncertainty and fragility of exploratory
486  findings and the need for out of sample confirmatory replications to provide evidence about
487  therobustness of the reported effects (loannidis, 2018; Tukey, 1980).

488  Further factors influencing replicability of SBB-findings: power of replication and object of
489  study

490 Another clear finding of our study is the overestimation of the effect size in the exploratory
491 approach (Kriegeskorte et a., 2010), specifically in smaller samples (see margind
492  distributions of the x- and y-axis in Figure 3). For the majority of the psychological scores, in
493  the ROI-based approach, we failed to find a clear association between effect size in the
494  discovery and replication samples. Instead, we observed a rather high estimated statistical
495  power for replication (due to an inflated effect size estimation (loannidis, 2008)), despite very
496 low actual rate of replicated effects in the independent samples. These findings are
497  particularly important when considering the current research context, in which power analyses
498  are encouraged to justify the allocation of financial and human investment in specific future
499  researches. Prospective studies with power analyses are frequently proposed, where power is
500 computed based on the findings from previous exploratory analysesin asmall sample (Albers
501 and Lakens, 2018a). An inflated effect size estimation from the exploratory study resultsin an
502 unreliable high power, which in turn lead to confidence in prospective studies to find relevant
503 findings and hence in the allocation and possibly waste of (frequently public) resources
504  (Albers and Lakens, 2018b; Poldrack et al., 2017). Nevertheless, this provocative conclusion
505 does not imply that SBB studies should be banished to hell. Our conclusion here mainly
506  concerns the study of association between variations at standard psychological measures and

507 variations in measures of gray matter in “small” samples of healthy individuals. Our results
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508 further show that different types of SBB exploratory studies should not be epistemologically
509 all put in the same pot.

510 In support for this argument, in ADNI sample, despite the additional confounding effect of
511 different scanners and/or scanning parameters due to the multi-site nature of the cohort,
512  associations between immediate-recall score and GMV were relatively stable. Compared to
513 associations of the same measure of verbal learning performance within the healthy
514  population (see supplementary Figure 1), these results highlight the superior reliability of
515 SBB-associations that are defined in a clinical context. These findings have important
516  conceptual implications. From an epistemological and conceptual point of view, our
517  comparative investigation suggests that the object of study matters in the replicability of SBB.
518  Searching for correlation between variations in cognitive performance and GMV in healthy
519  adults, on one hand, and in neurodegenerative patients, on the other hand, appear as two
520 different objects of study, with different replicability rates. While several SBB results in
521  healthy population are likely to be spurious (see supplementary Table 2), it seemsthat SBB in
522  clinical population are more likely to capture true relationships.

523  Thus, maybe the conceptual objective itself should be questioned: should we expect the
524  association between normal psychological phenotype, in particular cognitive performance, in
525  healthy population to be substantialy driven by local brain macrostructure morphology?
526  Brain structure can certainly not be questioned as the primary substrates of behavior and
527 more than a century of lesion studies recalls this primary principle to our attention (Broca,
528  1865; Scoville and Milner, 1957), but this does not imply that “normal” variations at standard
529  psychological tests can be related to variations in markers of local brain macrostructure. Our
530 results suggest that reliable answer to this important question requires substantially big
531  samples (bigger than those used here) and independent replications.

532  Further recommendation: Large sample sizes are important both for exploratory as well as

533  replication analyses
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534  The sample size and related power issues hold a central position in the current discussions of
535 thereplication crisis in behaviora sciences, as well as in neuroimaging studies (Button et al.,
536  2013; loannidis, 2005; Lilienfeld, 2017; Munafo et al., 2017; Open Science Collaboration,
537  2015). Higher power is defined as increased probability of finding effects that are genuinely
538 true. Furthermore, high power experiments have higher positive predictive values (PPV) of
539 the clamed effects (i.e. probability that the claimed effect reflects a true effect). They also
540 result in less exaggerated effects sizes when a true effect is discovered (Button et al., 2013).
541  Assuch, in the discovery sample, by increasing the sample size, the correlation coefficients
542  get closer to their real value and their PPV increases. However, in the current study, as the
543  number of participants in the main sample is limited, the size of the discovery and their
544  matched replication samples are dependent on each other. Therefore, for each behavioral
545 measure, larger discovery samples have smaller replication counterparts. These smaller
546  replication samples have in turn lower power to find the true effects and have lower PPV.
547  However, in splits with larger replication samples, as the discovery sample gets smaller, apart
548 from the lower PPV, the estimated correlation coefficients are possibly more exaggerated
549 (e.g. duetowinner’'scurse) (Cremerset al., 2017) and thus the power of the replication would
550 beover-estimated. Thisis alimitation which complicates the interpretation of the relationship
551  between the calculated replication power and the actual rate of replicability of associations in
552  the present study. We hoped that the use of a large cohort of healthy individuals as our main
553  cohort would result in large enough discovery and test cohorts and thus minimize the impact
554  of above-mentioned limitation. However, large discrepancies between the rate of “significant”
555  within-split replicability and the a-priori estimated replication power, as we observed in the
556  ROI-based confirmatory analyses, confirms an exaggerated power estimation in most of our
557 analyses and thus highlights the insufficiency of the size of the discovery and replication

558  samples.
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559  Thus overal, these findings suggest that samples consisting of ~200-300 participants have in
560 redity still low power to identify reliable SBB-associations among heathy participants.
561 However, the sample size of SBB studies is usually substantially smaller. Figure 5 depicts the
562  distribution of sample sizes (log-scale) of published studies examining GMV in human
563 participants with the standard voxel-based morphometry approach across previous years
564 (BrainMap data (Vanasse et al., 2018)). SBB studies in healthy adults aso fall under this
565 general trend. Based on our current work, we would argue that the probability of finding
566  spurious or inconclusive results and exaggerated effect size estimations in these studies is thus
567  quite high (Albers and Lakens, 2018b; Schonbrodt and Perugini, 2013; Y arkoni, 2009).

568 In addition, to underscore the importance of the sample size, our analyses and results further
569  show that the size of the replication sample also matters when examining the replicability of a
570 previous SBB findings. This is an obvious factor that has been frequently neglected in the
571 discussions about replication crisis. Yet, while many replication studies straightforwardly
572  blame the sample size of the original studies, it isimportant to keep in mind that a replication
573  failure might also come from a too small sample size of the replication study (Muhlert and
574  Ridgway, 2016).

575 e figur €5 ---------

576  Limitations:

577  When interpreting our results, it should be noted that, in order to keep large sample sizes for
578 the exploratory replication analyses, the discovery subsamples were not necessarily designed
579 to beindependent from each other. Considering this limitation, the poor spatial consistency of
580 the whole brain exploratory associations that we observed for almost all the behavioral scores
581 is hence even more alarming. As discussed earlier, another indirect limitation of the limited
582 size of the selected cohort is the dependence between the size of the discovery and their
583  matched replication sub-samples. This limitation prevents us to state strong conclusions about

584  the relationship between the calculated replication power and the actual rate of replicability.
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585  Overall, these acknowledged limitations raise the need for even larger sample sizes for such
586 investigations. Recent advancements through data collection from much larger number of
587 participants, such as UK-biobank (Miller et a., 2016) are promising opportunities for
588  overcoming these limitationsin future replication studies.

589  Moreover, the generalizability of our results are partly limited to our methodological choices
590 such asthe computation of volumetric markers of brain structure (as opposed to surface-based
591 markers), the size of the smoothing kernel, and the use of a priori-defined ROIls in the
592 replication sample. Future studies should therefore investigate to which extend our
593 replicability rates are reproduced with different data preprocessing pipelines and anayses

594  approaches.
595  Summary and conclusions

596  Overall, our work and review of the recent and concomitant replication literature in related
597 fields demonstrate that several improvements could be recommended to get more accurate
598 insight on the relationship between psychological phenotype and brain structure and to
599 progressively answer open questions. Importantly, our recommendations and suggestions
600  concern different levels of SBB researches: the dataset level, the analyses level, as well as at
601  the post-publication and replication level.

602 At the dataset level, our study pointed out the need for big data samples to identify robust
603  associations between psychological variables and brain structure, with sample size of at least
604  severa hundreds of participants. It should be acknowledged that this conclusion is easier to
605  achieve than to implement in research practice. Nevertheless, large scale cohort datasets from
606  healthy adult populations, such as eNKI used in the current study, human connectome project
607 (HCP) (Van Essen et al., 2013) and UK-biobank (Miller et a., 2016) are now openly
608 available, hence facilitating endeavor in that direction.

609 At the analysis level, we recommend the combined use of multivariate analyses, for
610 comprehensive assessment of the spatial extent of associations and, univariate analyses, to
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611 facilitate interpretability, when studying brain structural correlates of psychological measures.
612  Furthermore, we emphasis on the importance of independent confirmatory replications to
613  provide evidence about the robustness of the effects.

614  Finaly, at the post-analysis level, we concluded from our observations that publication of null
615  findings should be more encouraged. In addition to directly shaping a more objective picture
616  of SBB-associations, these null-reports could contribute to new quantitative approaches. In
617  particular, meta-analyses of published literature (Vanasse et al., 2018) would clearly benefit
618  from such unbiased reports of null findings.

619  Sharing raw data would undoubtedly improve the problem of low statistical power, but if not
620 possible, sharing the unthresholded satistical maps (e.g. through platforms such as
621  Neurovault (Gorgolewski et al., 2015)) could aso be a significant scientific contribution. In
622  addition to directly contribute to our understanding of brain-behavior relationship, such
623  efforts would open up new possibilities for estimating the correct size and extent of effects by
624  integrating unthresholded statistical maps in the estimation of the effects sizes throughout the
625  brain. Thus, we could hope that sharing initiatives will also contribute indirectly to more valid
626  and insightful SBB studies in the remote future and hence to a better allocation of resources.
627

628
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629 Methods:

630 Participants:

631 Hedthy adults’ data were selected from the enhanced NKI (eNKI) Rockland cohort (Nooner
632 et al., 2012). Data collection received ethics approval through both the Nathan Klein Institute
633  and Montclair State University. Written informed consent was obtained from all participants.
634  We focused only on participants for which good quality T1-weighted scans was available
635  aong with timewise-corresponding psychological data. Exclusion criteria consisted of alcohol
636  or substance dependence or abuse (current or past), psychiatric illnesses (eg. Schizophrenia)
637 and current depression (mgor or bipolar). Furthermore, we excluded participants with
638 missing information on important confounders (age, gender, education) or bad quality of
639  structural scans after pre-processing, resulting in a total sample of 466 healthy participants
640 (age: 48+ 19, 153 male).

641 Replicability of SBB-associations within the clinical sample was investigated using a
642  subsample drawn from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database,
643  which was launched in 2003 as a public—private partnership and led by Principal Investigator
644  Michael W. Weiner. The primary goal of ADNI has been to test whether serial magnetic
645  resonance imaging (MRI), positron emission tomography (PET), other biological markers,
646  and clinical and neuropsychological assessment can be combined to measure the progression
647  of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). For up-to-date
648  information, see www.adni-info.org.

649 We used the baseline measurements from 371 patients (age : 71 £ 7, 200 male ; 47 with
650  significant memory complaint, 177 early MCI, 85 late MCIl and 62 AD patients (defined
651  based on ADNI diagnostic criteria, see http://adni.loni.usc.edu/wp-content/themes/freshnews-
652  dev-v2/documents/clinical/ADNI-2_Protocol.pdf), in whom anatomical brain scans had been
653  acquired in a 3Teslascanner (from 39 different sites).

654
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655  Phenotypical measurements:

656  Non-psychological measurements:

657  Age and body mass index (BMI) are highly reliably assessed and their association with brain
658  morphology has been frequently examined in previous studies on healthy adults (Fjell et al.,
659  2014; Kharabian Masouleh et a., 2016; Salat et al., 2004; Willette and Kapogiannis, 2014).
660  Accordingly, they served here as the initial benchmarks among which SBB framework was
661 tested in healthy individuals. In order to avoid large clusters that simultaneously cover several
662  cortical and subcortical regions, we focused on local peaks of associations by increasing the
663  voxel-level t-threshold of the statistical maps. The modified voxel-level t-threshold was set to
664 8 and 3, for defining age- and BMI-associated clusters, respectively. These arbitrary
665  thresholds were chosen such that the very large clusters would divide into smaller ones, while
666  still retaining the general spatial pattern of the significant regions.

667  Psychological measurements:

668 The psychological measurements consisted in standard psychometrics and
669  neuropsychological tests. The testing included: the attention network task (ANT) probing
670  attention sub-functions (Fan et al., 2002), the Delis-Kaplan testing battery assessing different
671  aspects of executive functions (Delis et al., 2001) (including trail-making test, color-word
672 interference task, verbal fluency, 20 questions, proverbs and word-context task) , the Rey
673 auditory verbal learning task (RAVLT) (Schmidt, 1996) assessing verba memory
674  performance, as well as the WASI-II intelligence test (Wechsler, 1999). Psychological
675  phenotyping also included anxiety (state and trait) (Spielberger et al., 1970) and personality
676  questionnaires (McCrae and Costa, 2004) in the eNKI cohort. For each test, we used several
677 commonly derived sub-scores to assess the replicability of their structura associations. For
678  each psychological measure, participants whose performance deviated more than 3 standard
679  deviation (SD) from mean of the whole sample were considered as outliers and thus were

680  excluded from further analysis (See supplementary Table 1).
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681 The list-learning task is a common measure of verba learning performance and has been
682  implemented using the same standard tool (RAVLT) in both the eNKI and the ADNI cohort.
683  Previous studies have shown that the immediate-recall score (sum of recalled items over the
684  first 5trials) could be reliably predicted from whole brain MRIsin AD patients (Moradi et al.,
685  2017). Since this score is a standard measure commonly used in healthy and clinical dataset
686 and itsrelationsto brain structurein clinical data has been previously suggested, in the current
687  work we performed SBB with this score in the ADNI cohort as a “conceptual benchmark”.
688  MRI acquisition and preprocessing:

689 The imaging data of the eNKI cohort were all acquired using a single scanner (Siemens
690 Magnetom TrioTim, 3.0 T). T1-weighted images were obtained using a MPRAGE sequence
691 (TR =1900 ms; TE = 2.52 ms; voxel size =1 mm isotropic).

692  ADNI, on the other hand, is a multisite dataset. Here we selected a subset of this data, which
693  has been acquired in a 3.0 T scanner (baseline measurements from ADNI2 and ADNI GO
694  cohort) from 39 different sites; see http://adni.loni.usc.edu/methods/documents/ for more
695  information.

696 Both datasets were preprocessed using the CAT12 toolbox (Gaser and Dahnke, 2016).
697  Briefly, each participant’s T1-weighted scan was corrected for bias-field inhomogeneities,
698 then segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF)
699  (Ashburner and Friston, 2005). The segmentation process was further extended for accounting
700 for partia volume effects (Tohka et a., 2004) by applying adaptive maximum a posteriori
701  estimations (Rajapakse et al., 1997). The gray matter segments were then spatially normalized
702 into standard (MNI) space using Dartel algorithm (Ashburner, 2007) and further modulated.
703  The modulation was performed by scaling the normalized gray matter segments for the non-
704  linear transformations (only) applied at the normalization step. While this procedure ignores
705 the volume changes due to affine transformation, it allows preserving information about

706 individua differencesin local gray matter volume. In other words, it re-introduces individual
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707  differences in local gray matter volume removed in the process of inter-subject registration
708 and normalization. Finally modulated gray matter images were smoothed with an isotropic
709 gaussian kernel of 8 mm (full-width-half-maximum).

710

711  Statigtical analysis:

712  SBB-associations are commonly derived in an exploratory setting using a mass-univariate
713 approach, in which alinear model is used to fit interindividual variability in the psychological
714  scoreto GMV at each voxel. Inference is then usually made at cluster level, in which groups
715  of adjacent voxels that support the link between GMV and the tested score are clustered
716  together.

717  Replicability of thus-defined associations could be assessed by conducting a similar whole-
718  brain voxel-wise exploratory analysis in another sample of individuals and comparing the
719 spatia location of the significant findings that survive multiple comparison correction,
720  between the two samples. Alternatively, replicability could be assessed, using a confirmatory
721  approach, in which only regions showing significant SBB-association in the initial
722 exploratory analysis, i.e. regions of interest (ROIS), are considered for testing the existence of
723  the association between brain structure and the same psychological score in an independent
724  sample. The latter procedure commonly focuses on a summary measure of GMV within each
725 ROI and tests for existence of the SBB-association in the direction suggested by the initial
726  exploratory analysis. Thus this approach circumvents the need for multiple comparison
727  correction and therefore increases the power of replication.

728 Here we assessed replicability of associations between each behavioral measure and gray
729  mater structure, using both approaches: the whole brain replication approach and the ROI
730  replication approach, which are explained in details in the following sections.

731

732 Replicability of whole brain exploratory SBB-associations:
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733

734  Whole-brain GLM analyses: 100 random subsamples (of same size) were drawn from the
735 main cohort (eNKI or ADNI). Hereafter, each of these subsamples is called a “discovery
736  sampl€’. In each of these samples, SBB-associations were identified using the voxel-wise
737  exploratory approach after controlling for confounders. This was done by using the general
738  linear model (GLM) as implemented in the “randomise” tool
739  (https://fsl.fmrib.ox.ac.uk/fdl/fslwiki/Randomise), with 1000 permutations. Age, sex and
740  education were modeled as confounders in the eNKI data. As the ADNI dataset is a multi-site
741  study, we further added site and disease category as dummy-coded confounders to GLMs for
742  the analyses in that dataset. Inference was then made using threshold-free cluster
743  enhancement (TFCE) (Smith and Nichols, 2009), which unlike other cluster-based
744  thresholding approaches does not require an arbitrary a-priori cluster forming threshold.
745  Significance was set at P < 0.05 (extent threshold of 100 voxels).

746  Spatia consistency maps and density plots: To quantify the spatial overlap of significant SBB
747  associations over 100 subsamples, spatial consistency maps were generated. To do so, the
748  binarized maps of al clusters that showed significant association in the same direction
749  between each psychological score and GMV were generated (i.e. voxels belonging to a
750  significant cluster get the value “1” and all other voxels were labeled “0”) and added over al
751 100 subsamples. These aggregate maps denote the frequency of finding a significant
752  association between the behavioral score and GMV, at each voxel. Accordingly, a voxel with
753 value of 10 in the aggregate map has been found to be significantly associated with the
754  phenotypical score in 10 out of 100 subsamples. Density plots were also generated to
755  represent the distribution of values within each such map, i.e. the distribution of “frequency of
756  significant finding”. Hence, the spatial voxel-wise “significance overlap maps’ as well as
757  density plots of the distribution of values within each map give indications of the replicability

758  of “whole brain exploratory SBB-associations” for each psychological score.
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759

760  Replicability of SBB-associations using confirmatory ROI-based approach:

761 ROl-based confirmatory analyses. The replicability of the SBB associations was also
762  evaluated with the ROIl-based confirmatory approach. For each of the 100 discovery
763  subsamples, an age- and sex-matched “test sample” was generated from the remaining
764  participants of the main cohort. In the clinical cohort the discovery and test pairs were
765 additionally matched for “site’. In this analysis, for each psychological variable, the
766  significant clusters from the above-mentioned exploratory approach from every “discovery
767  sample’ were used as a-priori ROIs. Average GMV over all voxels within the ROI was then
768 caculated for each participant in the respective “discovery” and “test” pair subsamples.
769  Within each subsample, association between the average GMV and the psychological variable
770 was assessed using ranked-partial correlation, controlling for confounding factors. The
771  correlation coefficient was then compared between each discovery and test pair, providing
772 means to assess “ROIl-based SBB replicability” rates for each psychological score.
773 Accordingly, each ROI was examined only once, to identify if associations between average
774  GMV in this ROl and the psychological score from the discovery subsample could be
775  confirmed in the paired test sample. Replicability rates were quantified according to different
776  indexes (see below) over al ROIs from 100 discovery samples, yielding a percentage of
777  “successfully replicated” ROIs based on each index.

778  Indexes of replicability:

779  Sign: First, we used alenient definition of replication, in which we compared only the sign of
780 correlation coefficients of associations within each ROl between the discovery and the
781  matched-test sample. Accordingly, any effect that was in the same direction in both samples
782  (evenif very closeto zero) was defined as a“successful” replication.

783  Statistical Significance: Another straightforward method for evaluating replication simply

784  defines statistically significant effects (e.g. p-value < 0.05) that are in the same direction as
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785  the original effects (from the discovery sample) as “successful” replication. This criteria is
786  consistent with what is commonly used in the psychological sciences to decide whether a
787  replication attempt “worked” (Open Science Collaboration, 2015). Yet, a key weakness of
788  this approach is that it treats the threshold (p < 0.05) as a bright-line criterion between
789  replication success and failure. Furthermore, it does not quantify the decisiveness of the
790 evidence that the data provides for and against the presence of the correlation (Boekel et al.,
791  2015; Wagenmakers et al., 2015). However, such an estimation can be provided by using the
792  “Bayesfactors’.

793  Bayes Factor: To compare the evidence that the “test subsample” provided for or against the
794  presence of an association (H1 and HO, respectively), we additionally quantified SBB-
795 replication within each ROI, using Bayes factors (Jeffreys, 1961). Smilar to Boekel et al.
796  (2015), here we used the adjusted (one-sided) Jeffry’ s test (Jeffreys, 1961) based on a uniform
797 prior distribution for the correlation coefficient. As we intended to confirm the SBB-
798  associations defined in the discovery subsamples, the aternative hypothesis (H1) in this study
799  was considered one-sided (in line with Boekel et al. (2015)). We used implementation of the
800 Bayes Factors for correlations from the R function avalable at
801  http://www.josineverhagen.com/?page_id=76.

802 To facilitate the interpretation, Bayes factors (BF) were summarized into four categories as
803 illustrated in the bar legend of Figure 2. A BFy, lower than 1/3 shows that the data is three
804  times or more likely to have happened under H1 than HO. Accordingly, this value defines the
805  “successful” replication.

806 Investigation on factors influencing replicability of SBB-associations among healthy
807 individuals:

808 Sample size: In order to study the influence of sample size on the replicability of SBB-
809 associations, for each psychological measure, the healthy sample (eNKI) was divided into

810  discovery and test pairs at three different ratios: 70% discovery and 30% test, 50% discovery
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811  and 50% test and finally 30% discovery and 70% test. As mentioned earlier, in each case, the
812  discovery and test counterparts were randomly generated 100 times in order to quantify the
813  replication rates. For example, to assess the replicability of brain structural associations of
814  age, in the case of “70% discovery and 30% test”, the entire NKI sample (n = 466) was
815 divided into a discovery group of n = 326 participants and an age- and sex-matched test pair
816  sample of n = 138 and this split procedure was repeated 100 times. Similarly, for generating
817 equa-sized discovery and test subsamples, 100 randomly generated age and sex matched
818  gsplit-half samples were generated from the main NKI cohort.

819  Due to the multi-site structure of the ADNI cohort, when generating unequal sized discovery
820 and test samples, we did not achieve agood simultaneous matching of age, sex and site, while
821  trying to maintain samples sizes in each subgroup reasonably large. Thus, in this cohort, we
822  did not directly study the influence of the sample size and the replicability rates were only
823  quantified for equal sized discovery and test samples (187 participants matched for age, sex
824  and site between discovery and test pairs).

825  Effect size: Furthermore, to study the influence of the effect size on the replication rates, we
826  focused on the effect sizes within each a-priori ROI in the discovery samples. Here we tested
827  thefollowing two assumptions:

828 1) ROIs with larger effect sizes in the discovery sample result in larger effect sizesin the test
829  samplepairs (i.e. positive association between effect size in the discovery and test samples).
830 2) ROIs with larger effect sizes in the discovery sample are more likely to result in a
831  “significant” replication in the independent sample.

832  To test the first assumption, in the “ROIl-based SBB-replicability” the association between
833  effect size in the discovery and test pairs were calculated for each psychological measure.
834 These associations were calculated separately for the replicated (defined using “sign”
835 criterion) and not-replicated ROIs. We expected to find a positive association between

836  discovery and confirmatory effect sizes, for the “successfully replicated effects’.
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837 To test the second assumption, for each ROI, we calculated its replication statistical power
838 and compared it between replicated and not-replicated ROIs (here replication was defined
839 using “Statistical Significance” criterion). The statistical power of atest is the probability that
840 it will correctly reject the null hypothesis when the null is false. In a bias-free case, the power
841 of thereplication is a function of the replication sample size, real size of the effect and the
842  nominal type | error rate (o). In this study, the replication power was estimated based on the
843  size of the effects as they were defined in the discovery sample and a significant threshold of
844  0.05 (one-sided) and was calculated using “pwr” library in R (https://www.r-project.org).

845  These analyses were performed for each discovery-test split size, separately (i.e. 70%-30%,
846  50%-50% and 30%-70% discovery-test sample sizes, respectively).

847
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Figurelegends:

Figure 1. Replicability of exploratory results within healthy cohort. Frequency of spatial
overlap (density plots and aggregate maps) of significant findings from exploratory analysis
over 100 random subsamples are depicted for few behavioral score. For each score, columns
show the results of three different discovery sample sizes (i.e. when discovery cohorts are
generated from 70%, 50% or 30% of the main sample, from left to right respectively (x-axis)).
The density plots show the distribution of values within their corresponding aggregate map.
The y-axis depicts the frequency of spatial overlap (in %) and the density plots show the
distribution of values within their corresponding aggregate maps. In addition to age and BMI
(A,B), which are used as benchmarks, the top three behavioral scores with the highest
frequency of overlapping findings are depicted (C-E). Within each density plot, the box-plot
shows the quartiles and extent of the distribution and the white dot depicts the median of
percentage of overlap. On the spatial maps, lighter colors denote higher number of samples
with a significant association at the respective voxel. BMI : body mass index; CWI : color-

word interference; n = number of participants within the discovery samples.

Figure 2. ROI-based confirmatory replication results within healthy cohort. Donut plots
summerising ROI-based replication rates (% of ROI) using three different critera for three
different sample sizes among heathy participants. The most inner layers depict replication
using “sign” only (blue: replicated, orange: not replciated). The middle layers define
replication based on similar “sign” as well as “statistical significance” (i.e. p < 0.05) (blue:
replicated, orange: not replciate). The most outer layers define replication using “bayes
factor” (blue: “moderate-to-string evidece for H1, light blue: anecdotal evidence for H1; light

orange: anecdotal evidence for HO, orange: “ moderate-to-string evidece for HO );

Figure 3. Discovery versus replication effects sizes. Scatter plots of correlation
coefficients in the discovery versus replication sample for all ROIs from 100 splits within

healthy cohort; each point denotes one ROI, which is color-coded based on its replication
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status (by-“sign”). The size of each point is proportional to its estimated statistical power of

replication. Regresion lines are drawn for the replicated and unreplicated ROIs, separately.

Figure 4. Replicability of positive association between immediate-recall and GMV
within ADNI cohort. A, B: Replicability of exploratory results: Frequency of spatial
overlaps (density plot and aggregate maps) over 100 random subsamples. Within the density
plot, the box-plot shows the quartiles and extent of the distribution and the white dot depicts
the median of percentage of overlap. C, D: ROI-based confirmatory replication results. C:
Original versus replication effects sizes (correlation coefficient) for all ROIs from 100 splits;
points are color-coded based on their replciation status (by-“sign”) and size of each point is
proportional to the estimated statistical power of replication. Regresion lines are drawn for the
replicated and unreplicated ROIs, separately. D: Donut plots summerising ROI-based
replicability rates using three different critera. The most inner layer depicts replicability using
“sign” only (blue: replicated, orange: not replciated). The middle layer, defines replication
based on similar “sign” as well as “statistical significance” (i.e. p < 0.05) (blue: replicated,
orange: not replciate). The most outer layer reflects replicability using bayes factor ” (blue:
“moderate-to-string evidece for H1, light blue: anecdotal evidence for H1; light orange:
anecdotal evidence for HO, orange: “moderate-to-string evidece for HO ); Discovery and
replication samples have equal size (n = 184) and are matched for age, sex and site.

Figure 5. box-plots showing distribution of sample sizes (log-scale) of VBM studies by their
publication year (data from the BrainMap database; see (Vanasse et al., 2018)). Each box
shows the quantiles (25% and 75%) of the distribution and the gray horizontal line within

each box, depicts the median of the distribution.
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Table 1. Summary of exploratory findings. For each discovery sample size, the number of clustersin which gray matter volume is positively or negatively associated with the
tested phenotypic or psychological score is reported. The number of splits (out of 100) in which the clusters were detected are noted in parentheses (i.e. % of splits with at least

one significant clugter [in the respective direction])

n_discovery = 70% n_total

n_discovery = 50% n_total

n_discovery = 30% n_total

'9SUa|| [euoneulslul ' AN-ON-AG-00®

Healthy cohort # positively # negatively # positively # negatively # positively # negatively
associated clusters | associated clusters | associated clusters | associated clusters | associated clusters | associated clusters

(split%o) (split%) (split%) (split%o) (split%) (split%)

Age (years) 77 (54%) 154 (100%) 5 (4%) 522 (100%) 1 (1%) 1781 (100%)

n-total = 466

BMI (kg/m?

n-tota(l S/ 466)3 0 1741 (100%) 0 2276 (100%) 0 1937 (96%)

Perceptual 1Q (sum of t-

scores) 499 (83%) 0 256 (58%) 0 145 (33%) 0

n-total = 466

Word-context (# of

consecutively correct) 337 (80%) 0 159 (47%) 0 80 (21%) 0

n-total = 262

CWI (interference) (sec) 0 0 0 o 0

n-total = 449 0 163 (53%) 1(1%) 122 (39%) 6 (1%) 60 (26%)

Clinical cohort - n_discovery = 50% n_total -

RAVLT (#total

immediate recall)

309 (84%) 0

Abbreviations: BMI : body mass index; 1Q : intelligence quotient, CWI: color-word interference task; RAVLT : Rey auditory verbal learning task;
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Supplementary material:
Supplementary File 1: Including Table S1, Table S2;
Supplementary Tables legends:

Table S1. Distribution of the raw phenotypical and psychological scores in the whole sample.

Table S2. Summary of the exploratory findings. For each discovery sample size, the number
of clusters in which gray matter volume is positively or negatively associated with the tested
psychological score is reported. Number of splits (out of 100) in which the clusters were
detected are noted in parentheses.

Supplementary Figures (Figure S1, Figure S2) legends:

Figure S1. Summary of replication of positive associations between immediate-recall
and GMV within healthy cohort. A: Frequency of spatial overlap (density plots and
aggregate maps) of significant findings from exploratory anaysis over 100 random
subsamples. Columns show results of three different discovery sample sizes (i.e. when
discovery cohorts are generated from 70%, 50% or 30% of the main sample, from left to right
respectively (x-axis)). The density plots show distribution of values within their
corresponding aggregate map. The y-axis depicts frequency of spatial overlap (in %) and the
density plots show distribution of values within their corresponding aggregate map. On the
spatial maps, warmer colors denote higher number of samples with a significant association at
the respective voxel. B: ROI-based confirmatory replication results: Top row : Donut plots
summerising ROI-based replicability rates (% of ROI) using three different critera for three
different sample sizes. The most inner layers depict replicability using “sign” only (blue:
replicated, orange: not replciated). The middle layers define replication based on similar
“sign” as well as “statistical significance” (i.e. p < 0.05) (blue: replicated, orange: not
replciate). The most outer layers reflects replicability using bayes factor ” (blue: “moderate-
to-string evidece for H1, light blue: anecdotal evidence for H1; light orange: anecdotal

evidence for HO, orange: “moderate-to-string evidece for HO ); Bottom row: Scatter plots of
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effect sizes (correlation coefficient) in the discovery versus replication sample for all ROIs
from 100 splits within healthy cohort; Points are color-coded based on their replciation status
(by-“sign”) and size of each point is proportional to the estimated statistical power of
replication. Regresion lines are drawn for the replciated and unreplicated ROIs, separately.

Figure S2. ROI-based confirmatory replication results for five personality subscores
within healthy cohort. Donut plots summerising ROI-based replication rates (% of ROI)
using three different critera for three different sample sizes among heathy participants. The
most inner layers depict replication using “sign” only (blue: replicated, orange: not
replciated). The middle layers define replication based on similar “sign” as well as “statistical
significance” (i.e. p < 0.05) (blue: replicated, orange: not replciate). The most outer layers
define replication using “bayes factor” (blue: “moderate-to-string evidece for H1, light blue:
anecdotal evidence for H1; light orange: anecdotal evidence for HO, orange: “moderate-to-

string evidece for HO );
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