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ABSTRACT

Biotic homogenization is a commonly observed response following conversion of
native ecosystems to agriculture, but our mechanistic understanding of this process is
limited for microbial communities. In the case of rapid environmental changes, inference
of homogenization mechanisms may be confounded by the fact that only a minority of
taxa is active at any given point. RNA- and DNA-based community inference may help
to distinguish the active fraction of a community from inactive taxa. Using these two
community inference methods, we asked how soil prokaryotic communities respond to
land use change following transition from rainforest to agriculture in the Congo Basin.
Our results indicate that the magnitude of community homogenization is larger in the
RNA-inferred community than the DNA-inferred perspective. We show that as the soil
environment changes, the RNA-inferred community structure tracks environmental
variation and loses spatial structure. The DNA-inferred community loses its association
with environmental variability. Homogenization of the DNA-inferred community appears
to instead be driven by the range expansion of a minority of taxa shared between the
forest and conversion sites, which is also seen in the RNA-inferred community. Our
results suggest that complementing DNA-based surveys with RNA can provide unique

perspectives on community responses to environmental change.

IMPORTANCE
Two primary mechanisms by which community homogenization occurs are: 1)
the loss of environmental heterogeneity driving community convergence, and 2)

increased rates of biotic mixing, driven by exotic invasions or range expansions. Better
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47  identifying these mechanisms could help inform future mitigation strategies. Only a

48  minority of soil taxa tends to be active at any time, which makes identifying these

49  mechanisms difficult. To circumvent this problem, we measured prokaryotic community
50 structure in two ways: RNA-based inference (which should enrich for active taxa), and
51 DNA-based inference (which includes active and inactive taxa) along a gradient of land
52 use change. Our results suggest that changes to soil heterogeneity impact the RNA-

53  inferred community, while range expansions contribute to the homogenization of both
54  DNA- and RNA-inferred communities. Thus, RNA-based community inference may be a
55  more sensitive indicator of environmentally driven homogenization, and researchers

56 interested in microbial responses to rapid environmental change should consider this

57  method.

58

59 INTRODUCTION

60 One of the most rampant forms of environmental change today is land use change
61 following the conversion of tropical rainforests to agriculture (1-4). Both above- and

62  below-ground communities have been shown to experience species loss and community
63  change at unprecedented rates following land use change (5—7), and this is of concern
64  because tropical rainforests are some of the most diverse and productive ecosystems on
65  the planet. Predicting community responses to tropical land use change is a priority if we
66  are to better understand how human activities will impact species loss and global-scale
67  biogeochemical cycling (8, 9), but in order to gain such a level of predictability we must

68  better understand the mechanisms underlying community change.
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Biotic homogenization, i.e. the increase in community similarity through time or
space, is a major consequence of land use change (10, 11). This process can be driven by
two primary mechanisms: 1) the loss of environmental heterogeneity, which drives
subsequent community convergence (12, 13), and 2) increased rates of biotic mixing,
which can be driven by the breakdown of dispersal barriers, invasion of exotic taxa, or
the range expansion of existing taxa (11, 14). These mechanisms have both been
implicated in the homogenization of microbial communities following land use change
(6, 7, 15—18), but it remains unclear to what degree these mechanisms contribute to
homogenization.

Understanding mechanisms of biotic homogenization may be complicated by the
fact that only a minority of soil taxa tends to be active at any given point in time (19, 20).
One proposed method to distinguish active community members is to survey the
community using 16S rRNA (as opposed to the 16S rRNA gene) (21-24). This
methodology could provide new insights into microbial community homogenization. For
example, targeting active taxa could help us hone in on the portion of the community that
is interacting with the environment and thus who is likely to respond immediately to
environmental changes. Secondly, if land use change is driving increased rates of biotic
mixing, studying the active fraction could help us distinguish who is actually growing
and becoming established from those who are simply arriving. This distinction may be
especially important when considering that much of what we currently know about
microbial homogenization has been derived from DNA-based diversity studies (e.g. (6,
25, 27)) that do not distinguish active from inactive taxa. Some controversy, however,

surrounds the use of rRNA to infer microbial activity levels. For example, rRNA
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concentration and growth rate and/or activity are not consistently correlated across taxa,
and certain taxa can still contain ribosomes while dormant (see (28)). The use of 16S
rRNA: 16S rRNA gene ratios of taxa has also been shown to not correlate well with
activity levels inferred by other means (29, 30), and can be biased by extracellular
environmental DNA (31), taxon-specific dormancy strategies and sampling extent (32).
While the use of rRNA:rDNA ratios may be problematic, several studies have shown that
communities inferred using rRNA more closely correlate with environmental variability
(33), and respond more strongly to seasonal variation (34) and nutrient pulses (35) than
communities inferred using rDNA, which is consistent with the idea that the rRNA
content of a community is at least enriched with active members. Thus, RNA-based
community inference may provide unique foundational insights into the mechanisms
underlying community change, but to date few have sought to make this comparison.
Despite growing efforts to characterize microbial responses to land use change, a
number of fundamental gaps must be filled to bring our understanding to a more
generalizable level. For example, although there have been several studies comparing
established agricultural sites to pristine ecosystems, few have sought to include sites that
represent the intermediary stages of conversion (e.g. recently slash-and-burned areas). By
including more sites along the conversion continuum, we can increase the resolution by
which we understand this process. This could help to diagnose when the largest losses of
biodiversity occur, and pinpoint management practices that could be targeted for
improvement. Another important gap to fill lies in the geographic representation of
sampling efforts. By expanding sampling efforts geographically, we can start to

distinguish common patterns from site-specific patterns. This is especially important
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when considering that much of what we know about microbial responses to tropical land
use change comes from studies in the Amazon Basin (6, 7, 15, 25, 36-42), and to a lesser
degree, the forests of Indonesia (16, 17, 26, 43) with far fewer studies in the forests of
Central and West Africa (27, 44, 45), and to our knowledge, none in the Congo Basin.
Thus, by focusing our efforts to study the conversion process with more resolution and a
wider geographic representation, we can work towards a more generalizable
understanding of microbial responses to tropical land use change.

Here we examine soil bacterial community change along a land use change
gradient in the Congo Basin, the world’s second largest rainforest (46). Our work
expands on past studies by performing paired RNA/DNA co-extraction from each sample
in order to ask whether the putatively active fraction of the community elicits a different
response to land use change than the total community. Our gradient includes a site that
had very recently been cut and burned, which allows us to use RNA/DNA in a system
that is experiencing rapid and intense change. We test the following hypotheses: 1) that
converted (burned and plantation) sites will exhibit decreased rates of spatial turnover of
both the RNA- and DNA-inferred prokaryotic communities, 2) that changes to the soil
chemical environment will play a stronger role in shaping the RNA-inferred community
than the DNA-inferred community, and 3) that biotic invasions or range expansions

contribute to community homogenization.

MATERIALS & METHODS

Sampling site
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Central Africa contains up to 1.8 million km? of contiguous tropical moist forest,
making it the second largest block of tropical moist forest in the world, after the Amazon
Basin (46). Central African rainforest is renowned for its exceptionally high levels of
biodiversity and endemism (47-49) and it is rapidly being deforested (50). The nation of
Gabon contains more than 10% of the contiguous tropical moist forest in Africa (46, 47),
and the majority of these forested areas are either currently leased as long-term logging
concessions or are at risk from agricultural conversion (47, 51, 52).

Our study was performed in southwestern Gabon near the Gamba Complex of
Protected Areas (47). Soils in this area are classified as Dystic Fluvisol (53). Agricultural
conversion in this region follows slash-and-burn practices that are typical of most tropical
regions whereby forests are selectively logged and the remaining vegetation is burned.
The following season, plantation crops (typically manioc or banana) are planted and
harvested for 1-3 years. Following the last harvest, plantations are abandoned and
secondary forest develops. We selected sites representative of this cycle including a
recently burned site, an active manioc and banana plantation (roughly 1.5 years old), and
an adjacent intact forest, which allows us to break down the conversion process into two
steps, providing more resolution. Sites are found at the following coordinates: burned site
(2°44'48" S, 10° 8' 54" E), plantation (2° 44' 58" S, 10° 8' 51" E), and adjacent forest (2°

44" 46" S, 10° 8' 52" E).

Sampling Design and Sample Collection
This study was designed specifically to understand differences between RNA- and

DNA-inferred communities within these sites, not to identify general effects of land use


https://doi.org/10.1101/496679
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/496679; this version posted December 17, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

160  change on Congo Basin ecosystems, which would be better-tested using replication at the
161 land type level (54). Limited access to sites and logistical challenges with sampling in
162  this area required that we extensively survey one site within each of three land types,

163  rather than performing higher levels of replication on fewer land types. This design is
164  appropriate for asking how these sites differ from one another, or how RNA- and DNA-
165  inferred community composition or diversity patterns differ from one another (55-57).
166  Regarding inferences about general microbial responses to land use change in the Congo
167  Basin, this study would be considered a case study (54), whereby our results may be

168  suggestive of broader patterns, but such patterns should be corroborated using a design
169  with land type replication.

170 Soil samples were taken at the end of the Gabonese dry season (September 24-27,
171  2013). We established plots within each of the aforementioned sites. Each plot consisted
172 of a nested sampling scheme (6) where a 100 m x 100 m quadrat was established, with 10
173 mx10m, 1 mx 1 m, 0.1 mx 0.1 m quadrats nested within each, giving high coverage of
174  arange of spatial scales (Fig. 1). Soil cores were taken to a depth of 15 cm (after removal
175  of leaf litter) from the corners of each quadrat (N=13 samples per site). For each point, 3
176  cores were taken, homogenized, and then subsampled. From the homogenized mixture, 3
177  ml (approximately 1 g) of soil was added to 9 ml Lifeguard solution (Mobio, California,
178  USA) in the field, then transported cold and stored at -80° C in order to stabilize

179  nucleotides for later extraction. Our spatially explicit design allows for the estimation of
180  spatial turnover (beta diversity)(58).

181

182  Extraction, PCR, and Sequencing
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Soil RNA and DNA were co-extracted from Lifeguard-preserved soil samples
using MoBio’s Powersoil RNA Isolation kit with the DNA Elution Accessory Kit
(MoBio, California, USA) following manufacturer’s instructions. Extractions were
quantified using Qubit (Life Technologies, USA). RNA was reverse transcribed to cDNA
using Superscript 11 first-strand reverse transcriptase and random hexamer primers (Life
Technologies, USA).

The V3 and V4 region of the 16S rRNA gene of the DNA and cDNA were PCR
amplified using the primers 319F and 806R (primarily targeting Bacteria, with limited
coverage of Archaea). Sequencing libraries were prepped using a two-step PCR with
dual-indexing approach (59, 60). In short, the first round of amplification consisted of 22
cycles with Phusion HiFi polymerase. Round 1 products were cleaned using Agencourt
AMPure XP (Beckman Coulter, California, USA) then amplified for an additional 6
cycles using Phusion HiFi to add the sequences required for cluster formation on the
Illumina flowcell. The final library was sent to the Dana-Farber Cancer Institute
Molecular Biology Core Facilities for 300 paired-end (PE) sequencing on the Illumina

MiSeq platform.

Soil chemical analysis

Soil chemical parameters were measured in each soil core (by A & L Western
Agricultural Lab, Modesto, CA, USA), including percent organic matter (loss on ignition
(61)), extractable phosphorus (Weak Bray (62) and sodium bicarbonate (63)), extractable
cations (K, Mg, Ca, Na, by ammonium acetate extraction (64)), nitrate-N, sulfate-S (65),

pH, buffer pH, cation exchange capacity (CEC, (66)), and percent cation saturation.
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206  Pearson’s correlation tests were performed on all pairs of chemical parameters to test for
207  autocorrelation and reduce the number of chemical variables used in our models. Pairs of
208  variables that were highly correlated (R* > 0.6, P < 0.05) were reduced to a single

209  variable. The final suite of chemical analyses used after paring down correlated variables
210  included percent organic matter, extractable phosphorus (Weak Bray), pH, extractable K,
211  CEC, nitrate-N, and S.

212

213 Bioinformatics and statistical analysis

214 Paired end reads were joined then demultiplexed in QIIME (67) before quality
215 filtering. Primers were removed using a custom script. UPARSE was used to quality filter
216  and truncate sequences (416bp, EE 0.5) (68). Sequences were retained only if they had an
217  identical duplicate in the database. Operational taxonomic units (OTUs) were clustered
218  de novo at 97% similarity using USEARCH (69). OTUs were checked for chimeras

219  using the gold database in USEARCH. We used a custom script to format the UCLUST
220  output for input into QIIME. To assign taxonomy, we used the repset from UPARSE in
221  QIIME using greengenes version 13 5 (RDP classifier algorithm). Finally, we averaged
222 100 rarefactions at a depth of 3790 counts per sample for each community inference

223  (RNA or DNA) and each land type (forest, burned, or plantation) to achieve

224  approximately equal sampling depth across comparisons, which excluded three samples
225  in the DNA-inferred communities (two in the forest and one in the plantation).

226 Statistical analyses were performed in the R platform (70). Canberra pairwise
227  community distances were calculated using the vegdist function in the package ‘vegan’

228  (71). Canberra was chosen because of its incorporation of abundance data, sensitivity to

10
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229  rare community members (72), and ability to detect ecological patterns even in instances
230  ofrelatively low sampling extent (73). Rates of community spatial turnover were

231  estimated by regressing pairwise community similarity (1- Canberra distance) against
232 pairwise geographic distance between samples (74). We used a similar regression

233 approach between community similarity and environmental similarity to estimate the
234  relationship between community turnover and environmental turnover. Pairwise soil
235  environmental similarity was calculated using 1- Gower dissimilarity (75, 76) using the
236  daisy function in the package ‘cluster’ in R (77). Gower dissimilarity was chosen because
237 it can incorporate and compare different classes or scales of data (78). Mantel tests were
238  wused to test for significant associations between geographic, community, and

239  environmental distance, and partial Mantel tests were used to estimate the relative

240  contribution of environmental distance and geographic distance on variation in

241  community dissimilarity in the ‘vegan’ package in R. Differences in average pairwise
242  similarity across land types were assessed using a one-way ANOVA after verifying

243  normal distribution of data. Post-hoc comparisons of group means were made using

244 Tukey’s HSD. Distance-decay slopes were compared using the function diffslope

245  (package ‘simba’) (79). This function employs a randomization approach across samples
246  from each dataset and compares the difference in slope to the original configuration of
247  samples. The p-values computed are the ratio between the number of cases where the
248  differences in slope exceed the difference in slope of the initial configuration and the
249  number of permutations (1000). We used the DESeq?2 function (80) in R to identify

250  differentially abundant taxa in one land type versus another. Low abundance samples

251  were excluded prior to performing DESeq2 analysis. This function uses a generalized

11
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linear model (family negative binomial) to estimate dispersion and log,-fold change in
relative abundance of individual taxa. Taxa were deemed differentially abundant if they
had a positive log,-fold change and P, < 0.05. Figures were either created using base R
or the ‘ggplot2’ package (81).

We developed several community analysis approaches to investigate whether
biotic invasion or range expansion contribute to biotic homogenization. Taxa found in a
conversion land type (i.e. the burned or plantation site), but not the forest, were
considered “newcomers”. We removed these taxa from the community matrix, equalized
sampling extent (using rarefaction), and then re-ran analyses of pairwise community
similarity levels and distance-decay (described above). The expectation was that if they
contribute to homogenization (increased community similarity), then their removal
should decrease pairwise community similarity levels. We took an analogous approach to
ask if range expansion of forest-associated taxa (referred to as “bloomer” taxa)
contributes to biotic homogenization. We identified taxa that were differentially abundant
in converted sites relative to the forest site (described above), then removed them from
the community matrix of the converted site and re-assessed community similarity levels
and distance-decay. The expectation, as above, was that if these taxa contribute to

homogenization, then their removal should render the communities less similar.

Data availability
DNA and cDNA sequence FASTA files, OTU tables, soil environmental data, as
well as the R script for analysis will be available for download from

10.6084/m9.figshare.5930434.
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RESULTS
Soil bacterial community structure differs by land use and community inference
method

We first asked whether bacterial community structure differed by land use or by
community inference method (i.e. RNA- or DNA-inference) by performing a
PERMANOVA on OTU-level community Canberra distance, with land type and
inference method as the dependent variables. Both variables were significant (land type
F,73=13.67, R =0.089, p < 0.001, community inference method F; 73 = 4.70, R* = 0.057,
p <0.001), indicating that bacterial communities differ in membership across sites, and
that RNA- and DNA-inferred communities differ in membership. These findings were
also consistent at higher taxonomic levels (Supp. Figs 1, 2, & 3). The most pronounced
differences at the phylum level were lower relative abundances of Acidobacteria in the
burned site compared to the forest and plantation sites (burned site (DNA): 6.86 +/-
0.78%, forest site (DNA): 11.07 +/- 1.73%, plantation site (DNA): 11.30 +/- 1.32%), and
higher relative abundances of Actinobacteria in the burned relative to forest and
plantation sites (burned site (DNA): 10.86 +/- 1.16 %, forest site (DNA): 7.69 +/- 1.40%,
plantation site (DNA): 8.73 +/- 1.33%), and this trend was consistent whether
communities were inferred via DNA or RNA (Supplemental Fig. 1). OTU-level richness

also differed by land type (F2.70 = 8.26, p < 0.001), but not community inference method

13
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(p=0.80), with the burned site being significantly lower in richness than the forest or

plantation sites (Tukey’s HSD p < 0.01, for both comparisons, Supp. Fig. 4).

Evidence of biotic homogenization following land use change

We asked whether soil prokaryotic communities in the sites undergoing
agricultural conversion were on average more similar to each other, relative to the
communities found in the forest. The RNA-inferred community showed a strong trend
towards homogenization across sites (F2219 = 23.33, p <0.001, Fig. 2A), with average
pairwise similarity progressively increasing over the chronosequence (1- Canberra
dissimilarity: forest mean: 0.289 +/- 0.008, burned mean: 0.327 +/- 0.004, plantation
mean: 0.340, +/- 0.004). The DNA-inferred community also differed in pairwise
similarity across sites (F2,154 = 4.54, p = 0.012, Fig. 2B), but this trend was less
pronounced, and similarity levels were only significantly higher in the burned site (1-
Canberra dissimilarity: forest mean: 0.268 +/- 0.011, burned mean: 0.301 +/- 0.006,
plantation mean: 0.288 +/- 0.006).

While levels of average pairwise community similarity tended to increase across
the chronosequence, the spatial signal of community similarity (i.e. spatial turnover)
tended to either weaken or disappear. Both the RNA-inferred and DNA-inferred
communities showed distance-decay relationships in the forest (Mantel rrxa = 0.846, p =
0.003, slope =-0.027; Mantel rpna= 0.697, p = 0.02, slope = -0.028, Fig. 3A,B) where
communities in close proximity tended to exhibit higher levels of similarity than

communities farther apart. The RNA-inferred community showed no significant distance-

14
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decay relationship in either the burned (Mantel r = 0.247, p = 0.127) or the plantation
(Mantel r = 0.431, p = 0.063) sites. The DNA-inferred community showed a weak
distance-decay relationship in the burned site with a three-fold decrease in slope from the
forest (Mantel r = 0.474, p = 0.048, slope = -0.009), and no significant distance-decay
relationship in the plantation (Mantel r = 0.232, p = 0.163). Thus, both windows into the
community indicated shifts towards spatial homogenization, but this trend was more

pronounced in the RNA-inferred fraction of the community.

Soil environment gains variation, but loses spatial structure following conversion

Soil chemical profiles exhibited a number of changes across land types including
increases in pH and phosphorus and decreases in percent organic matter throughout the
chronosequence, and elevated cation exchange capacity and levels of nitrate-N, sulfur,
and potassium in the burned site (Supplementary Table 1). When we consider the
differentiation of soil chemical profiles within land types, we see that levels of average
environmental pairwise similarity (1-Gower distance) decrease from the forest to the
burned and plantation sites (F2231 = 4.22, p = 0.016, Supplementary Fig. 5), indicating
that soils within a land type are more dissimilar from one another. Similar to the spatial
structure of the communities, the spatial structure of environmental variation also
changes across the chronosequence. Forest soils show a significant environmental
distance-decay relationship (Mantel r = 0.729, p = 0.01, slope = -0.052), where samples
closer in proximity tend to be more similar in environmental conditions. This relationship
was not significant in the burned site (Mantel r = 0.338, p = 0.068), and was

comparatively weaker in the plantation relative to the forest (Mantel r = 0.465, p = 0.01)
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and showed a shallower distance-decay slope (slope = -0.027, difference in slope = -
0.025, p = 0.001). Thus burning and planting seem to introduce environmental

heterogeneity, but this heterogeneity tends to show little to no spatial structure.

Environmental heterogeneity continues to influence RNA-inferred (and not DNA-
inferred) community turnover, despite loss of spatial structure

We asked whether the loss of spatial structure of the soil chemical environment
could be contributing to the loss of spatial turnover in the microbial community. To do
s0, we regressed pairwise community similarity (1-Canberra distance) against pairwise
environmental similarity (1-Gower distance) for both the RNA- and DNA-inferred
communities. In the forest site, both RNA- and DNA-inferred community similarity
levels were positively correlated with environmental similarity (Fig. 4A, B), even after
accounting for differences due to geographic distance (Table 1), suggesting samples with
similar environmental (chemical) conditions tended to harbor similar communities. When
we look at the burned and plantation sites, however, this relationship persists for the
RNA-inferred community, but disappears for the DNA-inferred community (Table 1),
suggesting that the spatial homogenization of the DNA-inferred community may be
driven by other mechanisms besides soil chemical homogenization. Thus as
environmental heterogeneity loses its spatial structure, the RNA-inferred community
similarity levels continue to vary with this heterogeneity and lose spatial structure, while

the DNA-inferred community becomes decoupled from levels of environmental variation.

Biotic invasions do not contribute to homogenization

16
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We next tested the hypothesis that the introduction of “newcomer” taxa (i.e. those
that were not previously present) was driving community homogenization. 390 of the
1545 DNA-inferred community members in the burned site (25.2% of OTUs,
representing on average 1.8 +/- 1.1% of the community) were not detected in the forest
site. 570 of the 1804 DNA-inferred community members in the plantation site (31.7% of
OTUs, representing on average 1.8 +/- 0.8% of the community) were not detected in the
forest site. These taxa were not particularly geographically widespread (average
occurrence frequencygum newcomers— 0.23 +/- 0.010, frequencypiantation newcomers— 0.25 +/-
0.010). Moreover, only 53.6% of the newcomer taxa in the burned site DNA-inferred
community were detected in the RNA fraction of that site, and 63.5% of the newcomer
taxa in the plantation site DNA-inferred community were detected in the RNA fraction of
that site, suggesting that not all newcomers may become established. We tested whether
the newcomer taxa were driving higher estimates of community similarity by removing
them from the community matrix, equalizing sampling extent across samples (using
rarefaction), then re-calculating community similarity (1-Canberra distance). Our
expectation was that the removal of newcomers from the community matrix would render
communities more dissimilar (i.e. less homogenized). This was not the case. Removal of
the newcomer taxa from the burned site community matrices actually increased
community similarity of the DNA-inferred community (0.322 +/- 0.006 vs 0.301 +/-
0.006). Removal of newcomers also did not render a significant spatial signal for the
DNA-inferred communities (Mantelyo newcomers T = 0.407, p = 0.074). This was also the
case for the plantation where the removal of the newcomer taxa increased community

similarity for the DNA-inferred communities (0.322 +/- 0.006 vs 0.288 +/- 0.006), and
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390 left no spatial signal (Mantel ;o newcomers T = 0.220, p = 0.159). Thus we have no evidence
391  to suggest that the homogenization of the DNA-inferred community is driven by the

392  arrival of newcomer taxa.

393 We found similar results when we performed these same analyses on the RNA-
394  inferred communities. Newcomer taxa comprised a similarly small proportion of the

395  communities in the burned (2.2 +/- 1.8%) and plantation sites (2.1 +/- 0.79%). These taxa
396  were also not particularly widespread, with average occurrence frequencies in the burned
397  site 0f 0.26 +/- 0.16 and 0.25 +/- 0.01 in the plantation site. Similar to the DNA-inferred
398  community, the removal of newcomer taxa from the RNA-inferred community rendered
399  higher levels of average pairwise similarity in the burned site community (0.347 +/-

400  0.004) and the plantation site community (0.372 +/- 0.004), suggesting that their

401  abundances are not likely increasing levels of community similarity. Lastly, the removal
402  of newcomers from the RNA-inferred community did not render significant relationships
403  with geographic distance (Burned site: Mantel o newcomers T = 0.231, p = 0.151, Plantation
404  site: Mantel o newcomers T = 0.452, p = 0.07), indicating that they likely do not play a role in
405 community spatial homogenization. Hence we have no evidence to support the

406  hypothesis that increased levels of biotic homogenization are being driven by the arrival
407  of newcomer taxa, and in fact, it appears that the newcomers may actually contribute
408  variation to the communities.

409

410  Range expansion of forest-associated taxa drive loss of community variation

411 Because soil bacterial communities in the forest tended to show high taxonomic

412  overlap with the burned and plantation sites, we asked whether homogenization might
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rather be driven by changes to the relative abundance of certain taxa. We used DESeq2 —
a generalized linear model with a negative binomial distribution- to identify “bloomer”
taxa (i.e. those whose relative abundance significantly increased by land type). This
approach identified 127 taxa that were differentially enriched in the DNA-inferred
communities of the burned site relative to the forest (comprising on average 23.85 +/-
9.5% of the DNA-inferred burned site community, and 6.43 +/- 2.6% of the DNA-
inferred forest site community), and 192 taxa that were enriched in the plantation relative
to the forest (comprising on average 26.89 +/- 10.3% of the DNA-inferred plantation site
community, and 5.45 +/- 2.2% of the DNA-inferred forest site community). We removed
these bloomer taxa from the community matrices, equalized sampling extent across
samples (as described above), and re-calculated pairwise similarity levels within land
types. The removal of these taxa from the burned site DNA-inferred community matrix
rendered the communities less similar (0.268 +/- 0.005 vs 0.301 +/- 0.006, F», 196 = 6.95, p
=0.001) and indistinguishable from the forest levels of similarity (0.268 +/- 0.011,
Tukey’s HSD p,q; = 0.999), indicating that their relative abundances are indeed
contributing to the increased pairwise similarity of these communities. This was also the
case in the plantation, where the removal of the bloomer taxa from the DNA-inferred
community matrix also rendered the communities less similar (0.253 +/- 0.005 vs 0.288
+/- 0.006, F5 134 = 6.15, p = 0.003) and indistinguishable from the forest levels of
similarity (0.268 +/- 0.011, Tukey’s HSD p,q; = 0.300), further supporting the idea that
these taxa are driving the increase in levels of pairwise similarity in impacted sites.
Beyond decreasing levels of community variation, the bloomer taxa also collectively

showed a wider spatial distribution in the sites in which they were more abundant (Burn:
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freqburn bloomers in for = 0.597 +/- 0.034, freqbum bloomers in burn = 0.845 +/- 0.020; Plantation:
freqplantation bloomers in for = 0.484 +/- 0.027, freqplantation bloomers in plantation = 0.830 +/- 0.014).
When we test whether these taxa are driving the changes to spatial turnover, however, we
do not detect a significant spatial signal for the burned (Mantel r = 0.345, p = 0.08) or
plantation (Mantel r = 0.185, p = 0.194) sites, indicating that the weakening or loss of
community spatial structure may be driven by additional factors.

The same suite of analyses yielded similar findings for the RNA-inferred
communities. Bloomer taxa in the RNA-inferred community comprised on average 35.6
+/- 14.2% of the burned site RNA-inferred community (6.92 +/- 4.0% of the forest site
community), and 37.54 +/- 10.6% of the plantation site RNA-inferred community (9.96
+/- 4.1% of the forest site community). As described above, we tested whether the
bloomer taxa were contributing to the increased levels of pairwise similarity of the
burned and plantation site. Similar to the DNA-inferred findings, the removal of bloomer
taxa from the burned site RNA-inferred community matrix rendered the communities less
similar (0.306 +/- 0.004 vs 0.327 +/- 0.003, F2219 = 12.95, p <0.001) and
indistinguishable from the forest levels of similarity (0.290 +/- 0.008, Tukey’s HSD p.q4j =
0.124), indicating that their relative abundances contribute to the increased pairwise
similarity of these communities. This was also the case in the plantation, where the
removal of the bloomer taxa from the RNA-inferred community matrix rendered the
communities less similar (0.311+/- 0.004 vs 0.340 +/- 0.004, F> 19 =22.96, p < 0.001),
but in this case similarity levels were still distinguishable from the forest levels of
similarity (0.290 +/- 0.008, Tukey’s HSD p,4j = 0.029). The RNA-inferred bloomer taxa

also collectively showed a wider spatial distribution in the sites in which they were more
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abundant (Burn: freqpurm bloomers in for = 0.566 +/- 0.04, freqbum bloomers in burn = 0.860 +/-
0.022; Plantation: freqplantation bloomers in for = 0.506 +/- 0.03, freqplantation bloomers in plantation =
0.854 +/- 0.015), but when we test whether these taxa are driving the changes to spatial
turnover we do not detect a significant spatial signal for the burned (Mantel r = 0.006, p =
0.474) or plantation (Mantel r = 0.413, p = 0.082) sites following their removal. Thus, the
identification of bloomer taxa in the DNA- and RNA-inferred communities has helped to
identify the fraction of the community that is contributing to higher levels of community

pairwise similarity.

DISCUSSION

Conversion of tropical rainforest to agriculture is one of the leading drivers of
biodiversity loss and biotic homogenization worldwide (1-4). Gaining a better
understanding of the mechanisms driving biotic homogenization is a priority if we are to
predict or mitigate changes to communities or their ecosystem functions (8, 9). We used a
spatially explicit design across a chronosequence of land use change in the Congo Basin
to investigate mechanisms of community homogenization. We used two windows into the
structure of soil prokaryotic communities: 1) 16S rRNA (RNA) community inference —
which should enrich for the active fraction of the community, and 2) 16S rRNA gene
(DNA) community inference — which includes both active and inactive members, as well
as “relic” DNA from dead cells (82, 83). Our results fit into a broader context of other
studies that emphasize the importance of using RNA alongside DNA to investigate the

impacts of environmental change on microbial communities (34, 35).
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481 Ecosystems can develop spatially autocorrelated environmental conditions (i.e. a
482  distance-decay in environmental similarity) through a combination of localized physical
483  forces or community processes (84). Slash-and-burn conversion in our system appears to
484  disrupt this spatial structure, while introducing variation. This form of conversion is a
485  relatively uniform type of disturbance, in that all the aboveground vegetation gets

486 removed and burned across the landscape, which likely drives the loss of spatial structure
487  of the soil environment. The intensity of fire across a landscape, however, is often patchy,
488  depending on certain local factors such as, e.g., the amount of biomass, or levels of

489  moisture. Thus this form of disturbance could introduce environmental variation that
490  shows little coherent spatial structure. This insight is important when we consider the
491  relationship between community structure and the environment.

492 Communities can be homogenized by two main mechanisms: 1) the

493  homogenization of the environment driving convergence of communities (12, 13), or 2)
494  increased biotic mixing, driven by the breakdown of dispersal barriers and/or the range
495  expansion of previously present taxa (6, 10, 14, 15, 85, 86). If community

496  homogenization is driven by environmental homogenization, community turnover should
497  continue to track environmental turnover, even when spatial structure is lost. We see this
498  in our data when we infer community structure using RNA, but not DNA, suggesting that
499  environmental spatial homogenization is likely a strong driver of the spatial

500 homogenization of the RNA-inferred community. The decoupling of responses in the
501 RNA- and DNA-inferred communities could represent differing levels of contribution
502  from homogenization mechanisms. Our results suggest that taxa that are enriched in the

503  burned or plantation sites relative to the forest are contributing to the loss of community
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variation (i.e. average pairwise dissimilarity) in those sites. Those taxa also collectively
show wider spatial distributions (i.e. higher occurrence frequencies) in the disturbed sites
relative to the forest. These findings are consistent with the idea of a range expansion,
and the fact that we saw this trend in both the RNA- and DNA-inferred communities
suggests that identifying this type of homogenization mechanism may not require RNA-
based community inference. A similar pattern has been observed in Amazonian sites that
have undergone conversion to cattle pasture, where prokaryotic taxa shared across forest
and agricultural sites tended to be more widespread in the agricultural sites (6), and
fungal communities in agricultural sites tended to be enriched in generalist taxa that were
more widespread (15). Thus by distinguishing communities using RNA and DNA, we see
that only part of the community seems to be responding to the environmental changes
associated with conversion, while communities inferred via both methods appear be
shaped by biotic factors such as the breakdown of dispersal barriers and/or the range
expansion of certain taxa.

The use of 16S rRNA as a proxy for activity has been the subject of recent
controversy. Of particular concern are two main issues: the assignment of false positives
(i.e. dormant taxa misidentified as active (28)), and the inaccurate assessment of activity
levels (e.g. driven by comparing ratios of the relative abundance of taxa in the RNA- vs
DNA-inferred communities (29-32)). The ribosomal content of a community, however,
should be at least enriched with the taxa that are active and/or growing, and there are a
number of studies that support the notion that rRNA-inference represents activity. For
example, if the active fraction of a community is more likely to be interacting with the

environment than the dormant fraction (which is likely avoiding the current
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environmental conditions), then we would expect a stronger correspondence between
environmental conditions and community turnover in a community that is enriched in
active taxa (19). Indeed this has been shown both along a marine environmental gradient
(33) and a grassland soil system experiencing re-wetting following drought (34). It has
also been shown that N-addition to forest soil elicits a stronger response in communities
inferred from 16S rRNA than rDNA (35). Our results contribute to this narrative by
showing that RNA-inferred community turnover persistently tracks environmental
turnover, while this association is lost when inferring only with DNA. We also see that
the RNA-inferred community shows a more pronounced loss of community variation and
spatial structure than the DNA-inferred community. Thus while rRNA inference may
have certain limitations, our results, alongside others, suggest that this method should be
enriching for active taxa, and this can have important implications for both qualitative
and quantitative conclusions, especially in systems with strong environmental gradients.
Tropical ecosystems are characterized by immense heterogeneity, and this could
make the task of detecting general responses to land use change difficult. Two important
steps towards gaining a better understanding of common microbial responses to tropical
land use change include 1) expanding the breadth (i.e. the geographic representation) of
regions sampled, and 2) increasing the resolution of our study systems (e.g. by including
more sites along the conversion continuum). Our study allows us to ask whether
commonalities exist between our findings and those reported from other tropical
ecosystems undergoing land use change. The changes we see to the spatial structuring of
communities (i.e. a diminished distance-decay relationship) are consistent with responses

reported from the Amazon Basin (6, 25). While our study was not replicated at the land
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type level-restricting our level of inference regarding how representative our findings are
of other Congo Basin areas- our results at least suggest that a diminished rate of
community distance-decay may be common across tropical areas facing a similar threat.
The method of conversion may be driving this similarity in microbial community
response. The predominant method for converting tropical rainforests to agriculture is the
use of slash-and-burn techniques (87). By including a recently slash-and-burned site in
our design, we have gained a rare glimpse into the impacts directly following the initial
step in agricultural conversion. Already at this stage we see that the loss of community
spatial structure (i.e. distance-decay) has occurred. What this suggests is that, at least
initially, spatial homogenization can be driven by the act of conversion, rather than other
management practices such as planting or crop choice. Thus by targeting a region that has
otherwise not been sampled, and increasing the resolution by which we survey the
conversion process, we have gained new insights that may help to elucidate common
community responses to tropical land use change.

Considering the rate and magnitude by which tropical rainforests are being
converted to agriculture (4), gaining a mechanistic understanding of community
responses to environmental change is imperative (9). Future efforts could investigate
whether the functional potential (i.e. gene content) or trait distributions of a community
are similarly impacted by land use change (37, 88), or whether ecosystem functions (e.g.
those involved in nutrient cycling or greenhouse gas emissions) are impacted by
community homogenization. Our work highlights the importance of distinguishing
between metabolic states of microbial community members, if we are to better

understand community responses to environmental change. Lastly, our work
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demonstrates that trends in our system are consistent with those reported from
geographically disparate areas (e.g. the Amazon Basin), suggesting that despite large
differences between these areas, land use change may drive predictable community

changes.
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FIGURE LEGENDS

Table 1: The influence of environmental similarity and geographic distance on RNA-
inferred and DNA-inferred prokaryotic communities. Partial mantel test summary
statistics showing 1) the effect of environmental similarity after removing the effect of
geographic distance (Env. Simil.), and 2) the effect of geographic distance after removing

the effect of environmental similarity (Geog. Dist.). P values estimated from 1000

permutations.
Geog.
Env. Simil. Dist.
r P r P

Forest RNA 0.56 0.022 0.409 0.088
Burned RNA 0.491 0.008 0.05 0.392
Plantation RNA 0.57 0.001 0.082 0.284
Forest DNA 0.536 0.026 0.168 0.208
Burned DNA 0.237 0.174 0.338 0.07
Plantation DNA 0.17 0.194 0.124 0.267
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Figure 1: Sampling design across Gabonese chronosequence of land use change. A)
Satellite image of the Congo Basin with location of sampling sites circled. B) Images of
field sites from which samples were taken. C) Timeline of land use change. Bar width is
proportional to the amount of time a site typically spends in each stage. Lines indicate
when samples were collected. D) Spatially explicit nested sampling scheme used in each

land type. Samples were taken at the corners of each square.
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(A)  RNA-inferred communities
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(B) DNA-inferred communities

L oy
e

*t s sse

Community similarity
-

010 015 020 025 030 035 040 045

-z 0 2 4 -2 0 2 a -2 0 2 a

log Distance (m)

881

882  Fig. 3: Change (or loss) of distance-decay of community similarity for A) RNA-inferred
883  communities, and B) DNA-inferred communities. Trend lines were drawn only for

884  significant (Mantel p < 0.05) associations.
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Fig. 4: The relationship between community similarity and environmental similarity (1 —

Gower dissimilarity) for A) RNA-inferred communities, and B) DNA-inferred

communities. Trend lines were only drawn for significant (Mantel p < 0.05) associations.
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