

1 **Use of RNA and DNA to Identify Mechanisms of Microbial Community**

2 **Homogenization**

3

4 **Kyle M. Meyer,^a# Ian A. B. Petersen,^a Elie Tobi,^b Lisa Korte,^b Brendan J. M.**

5 **Bohannan^a**

6 ^aInstitute of Ecology and Evolution, University of Oregon, Eugene, OR, USA

7 ^bSmithsonian Conservation Biology Institute

8

9 Running Head: Mechanisms of Microbial Community Homogenization

10

11 # Address correspondence to Kyle M. Meyer, kmeyer@uoregon.edu.

12

13

14 KEYWORDS: BACTERIA, LAND USE CHANGE, RNA-DNA, HOMOGENIZATION,

15 TROPICS

16

17

18

19

20

21

22

23

24 **ABSTRACT**

25 Biotic homogenization is a commonly observed response following conversion of
26 native ecosystems to agriculture, but our mechanistic understanding of this process is
27 limited for microbial communities. In the case of rapid environmental changes, inference
28 of homogenization mechanisms may be confounded by the fact that only a minority of
29 taxa is active at any given point. RNA- and DNA-based community inference may help
30 to distinguish the active fraction of a community from inactive taxa. Using these two
31 community inference methods, we asked how soil prokaryotic communities respond to
32 land use change following transition from rainforest to agriculture in the Congo Basin.
33 Our results indicate that the magnitude of community homogenization is larger in the
34 RNA-inferred community than the DNA-inferred perspective. We show that as the soil
35 environment changes, the RNA-inferred community structure tracks environmental
36 variation and loses spatial structure. The DNA-inferred community loses its association
37 with environmental variability. Homogenization of the DNA-inferred community appears
38 to instead be driven by the range expansion of a minority of taxa shared between the
39 forest and conversion sites, which is also seen in the RNA-inferred community. Our
40 results suggest that complementing DNA-based surveys with RNA can provide unique
41 perspectives on community responses to environmental change.

42

43 **IMPORTANCE**

44 Two primary mechanisms by which community homogenization occurs are: 1)
45 the loss of environmental heterogeneity driving community convergence, and 2)
46 increased rates of biotic mixing, driven by exotic invasions or range expansions. Better

47 identifying these mechanisms could help inform future mitigation strategies. Only a
48 minority of soil taxa tends to be active at any time, which makes identifying these
49 mechanisms difficult. To circumvent this problem, we measured prokaryotic community
50 structure in two ways: RNA-based inference (which should enrich for active taxa), and
51 DNA-based inference (which includes active and inactive taxa) along a gradient of land
52 use change. Our results suggest that changes to soil heterogeneity impact the RNA-
53 inferred community, while range expansions contribute to the homogenization of both
54 DNA- and RNA-inferred communities. Thus, RNA-based community inference may be a
55 more sensitive indicator of environmentally driven homogenization, and researchers
56 interested in microbial responses to rapid environmental change should consider this
57 method.

58

59 INTRODUCTION

60 One of the most rampant forms of environmental change today is land use change
61 following the conversion of tropical rainforests to agriculture (1–4). Both above- and
62 below-ground communities have been shown to experience species loss and community
63 change at unprecedented rates following land use change (5–7), and this is of concern
64 because tropical rainforests are some of the most diverse and productive ecosystems on
65 the planet. Predicting community responses to tropical land use change is a priority if we
66 are to better understand how human activities will impact species loss and global-scale
67 biogeochemical cycling (8, 9), but in order to gain such a level of predictability we must
68 better understand the mechanisms underlying community change.

69 Biotic homogenization, *i.e.* the increase in community similarity through time or
70 space, is a major consequence of land use change (10, 11). This process can be driven by
71 two primary mechanisms: 1) the loss of environmental heterogeneity, which drives
72 subsequent community convergence (12, 13), and 2) increased rates of biotic mixing,
73 which can be driven by the breakdown of dispersal barriers, invasion of exotic taxa, or
74 the range expansion of existing taxa (11, 14). These mechanisms have both been
75 implicated in the homogenization of microbial communities following land use change
76 (6, 7, 15–18), but it remains unclear to what degree these mechanisms contribute to
77 homogenization.

78 Understanding mechanisms of biotic homogenization may be complicated by the
79 fact that only a minority of soil taxa tends to be active at any given point in time (19, 20).
80 One proposed method to distinguish active community members is to survey the
81 community using 16S rRNA (as opposed to the 16S rRNA gene) (21–24). This
82 methodology could provide new insights into microbial community homogenization. For
83 example, targeting active taxa could help us hone in on the portion of the community that
84 is interacting with the environment and thus who is likely to respond immediately to
85 environmental changes. Secondly, if land use change is driving increased rates of biotic
86 mixing, studying the active fraction could help us distinguish who is actually growing
87 and becoming established from those who are simply arriving. This distinction may be
88 especially important when considering that much of what we currently know about
89 microbial homogenization has been derived from DNA-based diversity studies (*e.g.* (6,
90 25, 27)) that do not distinguish active from inactive taxa. Some controversy, however,
91 surrounds the use of rRNA to infer microbial activity levels. For example, rRNA

92 concentration and growth rate and/or activity are not consistently correlated across taxa,
93 and certain taxa can still contain ribosomes while dormant (see (28)). The use of 16S
94 rRNA: 16S rRNA gene ratios of taxa has also been shown to not correlate well with
95 activity levels inferred by other means (29, 30), and can be biased by extracellular
96 environmental DNA (31), taxon-specific dormancy strategies and sampling extent (32).
97 While the use of rRNA:rDNA ratios may be problematic, several studies have shown that
98 communities inferred using rRNA more closely correlate with environmental variability
99 (33), and respond more strongly to seasonal variation (34) and nutrient pulses (35) than
100 communities inferred using rDNA, which is consistent with the idea that the rRNA
101 content of a community is at least enriched with active members. Thus, RNA-based
102 community inference may provide unique foundational insights into the mechanisms
103 underlying community change, but to date few have sought to make this comparison.

104 Despite growing efforts to characterize microbial responses to land use change, a
105 number of fundamental gaps must be filled to bring our understanding to a more
106 generalizable level. For example, although there have been several studies comparing
107 established agricultural sites to pristine ecosystems, few have sought to include sites that
108 represent the intermediary stages of conversion (*e.g.* recently slash-and-burned areas). By
109 including more sites along the conversion continuum, we can increase the resolution by
110 which we understand this process. This could help to diagnose when the largest losses of
111 biodiversity occur, and pinpoint management practices that could be targeted for
112 improvement. Another important gap to fill lies in the geographic representation of
113 sampling efforts. By expanding sampling efforts geographically, we can start to
114 distinguish common patterns from site-specific patterns. This is especially important

115 when considering that much of what we know about microbial responses to tropical land
116 use change comes from studies in the Amazon Basin (6, 7, 15, 25, 36–42), and to a lesser
117 degree, the forests of Indonesia (16, 17, 26, 43) with far fewer studies in the forests of
118 Central and West Africa (27, 44, 45), and to our knowledge, none in the Congo Basin.
119 Thus, by focusing our efforts to study the conversion process with more resolution and a
120 wider geographic representation, we can work towards a more generalizable
121 understanding of microbial responses to tropical land use change.

122 Here we examine soil bacterial community change along a land use change
123 gradient in the Congo Basin, the world's second largest rainforest (46). Our work
124 expands on past studies by performing paired RNA/DNA co-extraction from each sample
125 in order to ask whether the putatively active fraction of the community elicits a different
126 response to land use change than the total community. Our gradient includes a site that
127 had very recently been cut and burned, which allows us to use RNA/DNA in a system
128 that is experiencing rapid and intense change. We test the following hypotheses: 1) that
129 converted (burned and plantation) sites will exhibit decreased rates of spatial turnover of
130 both the RNA- and DNA-inferred prokaryotic communities, 2) that changes to the soil
131 chemical environment will play a stronger role in shaping the RNA-inferred community
132 than the DNA-inferred community, and 3) that biotic invasions or range expansions
133 contribute to community homogenization.

134

135 MATERIALS & METHODS

136 *Sampling site*

137 Central Africa contains up to 1.8 million km² of contiguous tropical moist forest,
138 making it the second largest block of tropical moist forest in the world, after the Amazon
139 Basin (46). Central African rainforest is renowned for its exceptionally high levels of
140 biodiversity and endemism (47–49) and it is rapidly being deforested (50). The nation of
141 Gabon contains more than 10% of the contiguous tropical moist forest in Africa (46, 47),
142 and the majority of these forested areas are either currently leased as long-term logging
143 concessions or are at risk from agricultural conversion (47, 51, 52).

144 Our study was performed in southwestern Gabon near the Gamba Complex of
145 Protected Areas (47). Soils in this area are classified as Dystic Fluvisol (53). Agricultural
146 conversion in this region follows slash-and-burn practices that are typical of most tropical
147 regions whereby forests are selectively logged and the remaining vegetation is burned.
148 The following season, plantation crops (typically manioc or banana) are planted and
149 harvested for 1–3 years. Following the last harvest, plantations are abandoned and
150 secondary forest develops. We selected sites representative of this cycle including a
151 recently burned site, an active manioc and banana plantation (roughly 1.5 years old), and
152 an adjacent intact forest, which allows us to break down the conversion process into two
153 steps, providing more resolution. Sites are found at the following coordinates: burned site
154 (2° 44' 48" S, 10° 8' 54" E), plantation (2° 44' 58" S, 10° 8' 51" E), and adjacent forest (2°
155 44' 46" S, 10° 8' 52" E).

156

157 *Sampling Design and Sample Collection*

158 This study was designed specifically to understand differences between RNA- and
159 DNA-inferred communities within these sites, not to identify general effects of land use

160 change on Congo Basin ecosystems, which would be better-tested using replication at the
161 land type level (54). Limited access to sites and logistical challenges with sampling in
162 this area required that we extensively survey one site within each of three land types,
163 rather than performing higher levels of replication on fewer land types. This design is
164 appropriate for asking how these sites differ from one another, or how RNA- and DNA-
165 inferred community composition or diversity patterns differ from one another (55–57).
166 Regarding inferences about general microbial responses to land use change in the Congo
167 Basin, this study would be considered a case study (54), whereby our results may be
168 suggestive of broader patterns, but such patterns should be corroborated using a design
169 with land type replication.

170 Soil samples were taken at the end of the Gabonese dry season (September 24-27,
171 2013). We established plots within each of the aforementioned sites. Each plot consisted
172 of a nested sampling scheme (6) where a 100 m x 100 m quadrat was established, with 10
173 m x 10 m, 1 m x 1 m, 0.1 m x 0.1 m quadrats nested within each, giving high coverage of
174 a range of spatial scales (Fig. 1). Soil cores were taken to a depth of 15 cm (after removal
175 of leaf litter) from the corners of each quadrat (N=13 samples per site). For each point, 3
176 cores were taken, homogenized, and then subsampled. From the homogenized mixture, 3
177 ml (approximately 1 g) of soil was added to 9 ml Lifeguard solution (Mobio, California,
178 USA) in the field, then transported cold and stored at -80° C in order to stabilize
179 nucleotides for later extraction. Our spatially explicit design allows for the estimation of
180 spatial turnover (beta diversity)(58).

181

182 *Extraction, PCR, and Sequencing*

183 Soil RNA and DNA were co-extracted from Lifeguard-preserved soil samples
184 using MoBio's Powersoil RNA Isolation kit with the DNA Elution Accessory Kit
185 (MoBio, California, USA) following manufacturer's instructions. Extractions were
186 quantified using Qubit (Life Technologies, USA). RNA was reverse transcribed to cDNA
187 using Superscript III first-strand reverse transcriptase and random hexamer primers (Life
188 Technologies, USA).

189 The V3 and V4 region of the 16S rRNA gene of the DNA and cDNA were PCR
190 amplified using the primers 319F and 806R (primarily targeting Bacteria, with limited
191 coverage of Archaea). Sequencing libraries were prepped using a two-step PCR with
192 dual-indexing approach (59, 60). In short, the first round of amplification consisted of 22
193 cycles with Phusion HiFi polymerase. Round 1 products were cleaned using Agencourt
194 AMPure XP (Beckman Coulter, California, USA) then amplified for an additional 6
195 cycles using Phusion HiFi to add the sequences required for cluster formation on the
196 Illumina flowcell. The final library was sent to the Dana-Farber Cancer Institute
197 Molecular Biology Core Facilities for 300 paired-end (PE) sequencing on the Illumina
198 MiSeq platform.

199

200 *Soil chemical analysis*

201 Soil chemical parameters were measured in each soil core (by A & L Western
202 Agricultural Lab, Modesto, CA, USA), including percent organic matter (loss on ignition
203 (61)), extractable phosphorus (Weak Bray (62) and sodium bicarbonate (63)), extractable
204 cations (K, Mg, Ca, Na, by ammonium acetate extraction (64)), nitrate-N, sulfate-S (65),
205 pH, buffer pH, cation exchange capacity (CEC, (66)), and percent cation saturation.

206 Pearson's correlation tests were performed on all pairs of chemical parameters to test for
207 autocorrelation and reduce the number of chemical variables used in our models. Pairs of
208 variables that were highly correlated ($R^2 > 0.6$, $P < 0.05$) were reduced to a single
209 variable. The final suite of chemical analyses used after paring down correlated variables
210 included percent organic matter, extractable phosphorus (Weak Bray), pH, extractable K,
211 CEC, nitrate-N, and S.

212

213 *Bioinformatics and statistical analysis*

214 Paired end reads were joined then demultiplexed in QIIME (67) before quality
215 filtering. Primers were removed using a custom script. UPARSE was used to quality filter
216 and truncate sequences (416bp, EE 0.5) (68). Sequences were retained only if they had an
217 identical duplicate in the database. Operational taxonomic units (OTUs) were clustered
218 *de novo* at 97% similarity using USEARCH (69). OTUs were checked for chimeras
219 using the gold database in USEARCH. We used a custom script to format the UCLUST
220 output for input into QIIME. To assign taxonomy, we used the repset from UPARSE in
221 QIIME using greengenes version 13_5 (RDP classifier algorithm). Finally, we averaged
222 100 rarefactions at a depth of 3790 counts per sample for each community inference
223 (RNA or DNA) and each land type (forest, burned, or plantation) to achieve
224 approximately equal sampling depth across comparisons, which excluded three samples
225 in the DNA-inferred communities (two in the forest and one in the plantation).

226 Statistical analyses were performed in the R platform (70). Canberra pairwise
227 community distances were calculated using the vegdist function in the package 'vegan'
228 (71). Canberra was chosen because of its incorporation of abundance data, sensitivity to

229 rare community members (72), and ability to detect ecological patterns even in instances
230 of relatively low sampling extent (73). Rates of community spatial turnover were
231 estimated by regressing pairwise community similarity (1- Canberra distance) against
232 pairwise geographic distance between samples (74). We used a similar regression
233 approach between community similarity and environmental similarity to estimate the
234 relationship between community turnover and environmental turnover. Pairwise soil
235 environmental similarity was calculated using 1- Gower dissimilarity (75, 76) using the
236 daisy function in the package ‘cluster’ in R (77). Gower dissimilarity was chosen because
237 it can incorporate and compare different classes or scales of data (78). Mantel tests were
238 used to test for significant associations between geographic, community, and
239 environmental distance, and partial Mantel tests were used to estimate the relative
240 contribution of environmental distance and geographic distance on variation in
241 community dissimilarity in the ‘vegan’ package in R. Differences in average pairwise
242 similarity across land types were assessed using a one-way ANOVA after verifying
243 normal distribution of data. Post-hoc comparisons of group means were made using
244 Tukey’s HSD. Distance-decay slopes were compared using the function diffslope
245 (package ‘simba’) (79). This function employs a randomization approach across samples
246 from each dataset and compares the difference in slope to the original configuration of
247 samples. The p-values computed are the ratio between the number of cases where the
248 differences in slope exceed the difference in slope of the initial configuration and the
249 number of permutations (1000). We used the DESeq2 function (80) in R to identify
250 differentially abundant taxa in one land type versus another. Low abundance samples
251 were excluded prior to performing DESeq2 analysis. This function uses a generalized

252 linear model (family negative binomial) to estimate dispersion and \log_2 -fold change in
253 relative abundance of individual taxa. Taxa were deemed differentially abundant if they
254 had a positive \log_2 -fold change and $P_{adj} < 0.05$. Figures were either created using base R
255 or the ‘ggplot2’ package (81).

256 We developed several community analysis approaches to investigate whether
257 biotic invasion or range expansion contribute to biotic homogenization. Taxa found in a
258 conversion land type (*i.e.* the burned or plantation site), but not the forest, were
259 considered “newcomers”. We removed these taxa from the community matrix, equalized
260 sampling extent (using rarefaction), and then re-ran analyses of pairwise community
261 similarity levels and distance-decay (described above). The expectation was that if they
262 contribute to homogenization (increased community similarity), then their removal
263 should decrease pairwise community similarity levels. We took an analogous approach to
264 ask if range expansion of forest-associated taxa (referred to as “bloomer” taxa)
265 contributes to biotic homogenization. We identified taxa that were differentially abundant
266 in converted sites relative to the forest site (described above), then removed them from
267 the community matrix of the converted site and re-assessed community similarity levels
268 and distance-decay. The expectation, as above, was that if these taxa contribute to
269 homogenization, then their removal should render the communities less similar.

270

271 *Data availability*

272 DNA and cDNA sequence FASTA files, OTU tables, soil environmental data, as
273 well as the R script for analysis will be available for download from
274 10.6084/m9.figshare.5930434.

275

276

277

278

279 **RESULTS**

280 ***Soil bacterial community structure differs by land use and community inference***

281 ***method***

282 We first asked whether bacterial community structure differed by land use or by
283 community inference method (*i.e.* RNA- or DNA-inference) by performing a
284 PERMANOVA on OTU-level community Canberra distance, with land type and
285 inference method as the dependent variables. Both variables were significant (land type
286 $F_{2,73} = 3.67$, $R^2 = 0.089$, $p < 0.001$, community inference method $F_{1,73} = 4.70$, $R^2 = 0.057$,
287 $p < 0.001$), indicating that bacterial communities differ in membership across sites, and
288 that RNA- and DNA-inferred communities differ in membership. These findings were
289 also consistent at higher taxonomic levels (Supp. Figs 1, 2, & 3). The most pronounced
290 differences at the phylum level were lower relative abundances of Acidobacteria in the
291 burned site compared to the forest and plantation sites (burned site (DNA): 6.86 +/-
292 0.78%, forest site (DNA): 11.07 +/- 1.73%, plantation site (DNA): 11.30 +/- 1.32%), and
293 higher relative abundances of Actinobacteria in the burned relative to forest and
294 plantation sites (burned site (DNA): 10.86 +/- 1.16 %, forest site (DNA): 7.69 +/- 1.40%,
295 plantation site (DNA): 8.73 +/- 1.33%), and this trend was consistent whether
296 communities were inferred via DNA or RNA (Supplemental Fig. 1). OTU-level richness
297 also differed by land type ($F_{2,70} = 8.26$, $p < 0.001$), but not community inference method

298 (p=0.80), with the burned site being significantly lower in richness than the forest or
299 plantation sites (Tukey's HSD $p < 0.01$, for both comparisons, Supp. Fig. 4).

300

301

302 ***Evidence of biotic homogenization following land use change***

303 We asked whether soil prokaryotic communities in the sites undergoing
304 agricultural conversion were on average more similar to each other, relative to the
305 communities found in the forest. The RNA-inferred community showed a strong trend
306 towards homogenization across sites ($F_{2,219} = 23.33, p < 0.001$, Fig. 2A), with average
307 pairwise similarity progressively increasing over the chronosequence (1- Canberra
308 dissimilarity: forest mean: 0.289 +/- 0.008, burned mean: 0.327 +/- 0.004, plantation
309 mean: 0.340, +/- 0.004). The DNA-inferred community also differed in pairwise
310 similarity across sites ($F_{2,184} = 4.54, p = 0.012$, Fig. 2B), but this trend was less
311 pronounced, and similarity levels were only significantly higher in the burned site (1-
312 Canberra dissimilarity: forest mean: 0.268 +/- 0.011, burned mean: 0.301 +/- 0.006,
313 plantation mean: 0.288 +/- 0.006).

314 While levels of average pairwise community similarity tended to increase across
315 the chronosequence, the spatial signal of community similarity (*i.e.* spatial turnover)
316 tended to either weaken or disappear. Both the RNA-inferred and DNA-inferred
317 communities showed distance-decay relationships in the forest (Mantel $r_{RNA} = 0.846, p =$
318 0.003, slope = -0.027; Mantel $r_{DNA} = 0.697, p = 0.02$, slope = -0.028, Fig. 3A,B) where
319 communities in close proximity tended to exhibit higher levels of similarity than
320 communities farther apart. The RNA-inferred community showed no significant distance-

321 decay relationship in either the burned (Mantel $r = 0.247, p = 0.127$) or the plantation
322 (Mantel $r = 0.431, p = 0.063$) sites. The DNA-inferred community showed a weak
323 distance-decay relationship in the burned site with a three-fold decrease in slope from the
324 forest (Mantel $r = 0.474, p = 0.048$, slope = -0.009), and no significant distance-decay
325 relationship in the plantation (Mantel $r = 0.232, p = 0.163$). Thus, both windows into the
326 community indicated shifts towards spatial homogenization, but this trend was more
327 pronounced in the RNA-inferred fraction of the community.

328

329 ***Soil environment gains variation, but loses spatial structure following conversion***

330 Soil chemical profiles exhibited a number of changes across land types including
331 increases in pH and phosphorus and decreases in percent organic matter throughout the
332 chronosequence, and elevated cation exchange capacity and levels of nitrate-N, sulfur,
333 and potassium in the burned site (Supplementary Table 1). When we consider the
334 differentiation of soil chemical profiles within land types, we see that levels of average
335 environmental pairwise similarity (1-Gower distance) decrease from the forest to the
336 burned and plantation sites ($F_{2,231} = 4.22, p = 0.016$, Supplementary Fig. 5), indicating
337 that soils within a land type are more dissimilar from one another. Similar to the spatial
338 structure of the communities, the spatial structure of environmental variation also
339 changes across the chronosequence. Forest soils show a significant environmental
340 distance-decay relationship (Mantel $r = 0.729, p = 0.01$, slope = -0.052), where samples
341 closer in proximity tend to be more similar in environmental conditions. This relationship
342 was not significant in the burned site (Mantel $r = 0.338, p = 0.068$), and was
343 comparatively weaker in the plantation relative to the forest (Mantel $r = 0.465, p = 0.01$)

344 and showed a shallower distance-decay slope (slope = -0.027, difference in slope = -
345 0.025, $p = 0.001$). Thus burning and planting seem to introduce environmental
346 heterogeneity, but this heterogeneity tends to show little to no spatial structure.

347

348 ***Environmental heterogeneity continues to influence RNA-inferred (and not DNA-
349 inferred) community turnover, despite loss of spatial structure***

350 We asked whether the loss of spatial structure of the soil chemical environment
351 could be contributing to the loss of spatial turnover in the microbial community. To do
352 so, we regressed pairwise community similarity (1-Canberra distance) against pairwise
353 environmental similarity (1-Gower distance) for both the RNA- and DNA-inferred
354 communities. In the forest site, both RNA- and DNA-inferred community similarity
355 levels were positively correlated with environmental similarity (Fig. 4A, B), even after
356 accounting for differences due to geographic distance (Table 1), suggesting samples with
357 similar environmental (chemical) conditions tended to harbor similar communities. When
358 we look at the burned and plantation sites, however, this relationship persists for the
359 RNA-inferred community, but disappears for the DNA-inferred community (Table 1),
360 suggesting that the spatial homogenization of the DNA-inferred community may be
361 driven by other mechanisms besides soil chemical homogenization. Thus as
362 environmental heterogeneity loses its spatial structure, the RNA-inferred community
363 similarity levels continue to vary with this heterogeneity and lose spatial structure, while
364 the DNA-inferred community becomes decoupled from levels of environmental variation.

365

366 ***Biotic invasions do not contribute to homogenization***

367 We next tested the hypothesis that the introduction of “newcomer” taxa (*i.e.* those
368 that were not previously present) was driving community homogenization. 390 of the
369 1545 DNA-inferred community members in the burned site (25.2% of OTUs,
370 representing on average 1.8 +/- 1.1% of the community) were not detected in the forest
371 site. 570 of the 1804 DNA-inferred community members in the plantation site (31.7% of
372 OTUs, representing on average 1.8 +/- 0.8% of the community) were not detected in the
373 forest site. These taxa were not particularly geographically widespread (average
374 occurrence frequency_{Burn newcomers} = 0.23 +/- 0.010, frequency_{Plantation newcomers} = 0.25 +/-
375 0.010). Moreover, only 53.6% of the newcomer taxa in the burned site DNA-inferred
376 community were detected in the RNA fraction of that site, and 63.5% of the newcomer
377 taxa in the plantation site DNA-inferred community were detected in the RNA fraction of
378 that site, suggesting that not all newcomers may become established. We tested whether
379 the newcomer taxa were driving higher estimates of community similarity by removing
380 them from the community matrix, equalizing sampling extent across samples (using
381 rarefaction), then re-calculating community similarity (1-Canberra distance). Our
382 expectation was that the removal of newcomers from the community matrix would render
383 communities more dissimilar (*i.e.* less homogenized). This was not the case. Removal of
384 the newcomer taxa from the burned site community matrices actually increased
385 community similarity of the DNA-inferred community (0.322 +/- 0.006 vs 0.301 +/-
386 0.006). Removal of newcomers also did not render a significant spatial signal for the
387 DNA-inferred communities (Mantel_{no newcomers} r = 0.407, p = 0.074). This was also the
388 case for the plantation where the removal of the newcomer taxa increased community
389 similarity for the DNA-inferred communities (0.322 +/- 0.006 vs 0.288 +/- 0.006), and

390 left no spatial signal (Mantel_{no newcomers} $r = 0.220, p = 0.159$). Thus we have no evidence
391 to suggest that the homogenization of the DNA-inferred community is driven by the
392 arrival of newcomer taxa.

393 We found similar results when we performed these same analyses on the RNA-
394 inferred communities. Newcomer taxa comprised a similarly small proportion of the
395 communities in the burned (2.2 +/- 1.8%) and plantation sites (2.1 +/- 0.79%). These taxa
396 were also not particularly widespread, with average occurrence frequencies in the burned
397 site of 0.26 +/- 0.16 and 0.25 +/- 0.01 in the plantation site. Similar to the DNA-inferred
398 community, the removal of newcomer taxa from the RNA-inferred community rendered
399 higher levels of average pairwise similarity in the burned site community (0.347 +/-
400 0.004) and the plantation site community (0.372 +/- 0.004), suggesting that their
401 abundances are not likely increasing levels of community similarity. Lastly, the removal
402 of newcomers from the RNA-inferred community did not render significant relationships
403 with geographic distance (Burned site: Mantel_{no newcomers} $r = 0.231, p = 0.151$, Plantation
404 site: Mantel_{no newcomers} $r = 0.452, p = 0.07$), indicating that they likely do not play a role in
405 community spatial homogenization. Hence we have no evidence to support the
406 hypothesis that increased levels of biotic homogenization are being driven by the arrival
407 of newcomer taxa, and in fact, it appears that the newcomers may actually contribute
408 variation to the communities.

409

410 ***Range expansion of forest-associated taxa drive loss of community variation***

411 Because soil bacterial communities in the forest tended to show high taxonomic
412 overlap with the burned and plantation sites, we asked whether homogenization might

413 rather be driven by changes to the relative abundance of certain taxa. We used DESeq2 –
414 a generalized linear model with a negative binomial distribution- to identify “bloomer”
415 taxa (*i.e.* those whose relative abundance significantly increased by land type). This
416 approach identified 127 taxa that were differentially enriched in the DNA-inferred
417 communities of the burned site relative to the forest (comprising on average 23.85 +/-
418 9.5% of the DNA-inferred burned site community, and 6.43 +/- 2.6% of the DNA-
419 inferred forest site community), and 192 taxa that were enriched in the plantation relative
420 to the forest (comprising on average 26.89 +/- 10.3% of the DNA-inferred plantation site
421 community, and 5.45 +/- 2.2% of the DNA-inferred forest site community). We removed
422 these bloomer taxa from the community matrices, equalized sampling extent across
423 samples (as described above), and re-calculated pairwise similarity levels within land
424 types. The removal of these taxa from the burned site DNA-inferred community matrix
425 rendered the communities less similar ($0.268 +/- 0.005$ vs $0.301 +/- 0.006$, $F_{2,196} = 6.95$, p
426 = 0.001) and indistinguishable from the forest levels of similarity ($0.268 +/- 0.011$,
427 Tukey’s HSD $p_{adj} = 0.999$), indicating that their relative abundances are indeed
428 contributing to the increased pairwise similarity of these communities. This was also the
429 case in the plantation, where the removal of the bloomer taxa from the DNA-inferred
430 community matrix also rendered the communities less similar ($0.253 +/- 0.005$ vs 0.288
431 +/- 0.006, $F_{2,184} = 6.15$, $p = 0.003$) and indistinguishable from the forest levels of
432 similarity ($0.268 +/- 0.011$, Tukey’s HSD $p_{adj} = 0.300$), further supporting the idea that
433 these taxa are driving the increase in levels of pairwise similarity in impacted sites.
434 Beyond decreasing levels of community variation, the bloomer taxa also collectively
435 showed a wider spatial distribution in the sites in which they were more abundant (Burn:

436 freq_{burn bloomers in for} = 0.597 +/- 0.034, freq_{burn bloomers in burn} = 0.845 +/- 0.020; Plantation:
437 freq_{plantation bloomers in for} = 0.484 +/- 0.027, freq_{plantation bloomers in plantation} = 0.830 +/- 0.014).
438 When we test whether these taxa are driving the changes to spatial turnover, however, we
439 do not detect a significant spatial signal for the burned (Mantel r = 0.345, p = 0.08) or
440 plantation (Mantel r = 0.185, p = 0.194) sites, indicating that the weakening or loss of
441 community spatial structure may be driven by additional factors.

442 The same suite of analyses yielded similar findings for the RNA-inferred
443 communities. Bloomer taxa in the RNA-inferred community comprised on average 35.6
444 +/- 14.2% of the burned site RNA-inferred community (6.92 +/- 4.0% of the forest site
445 community), and 37.54 +/- 10.6% of the plantation site RNA-inferred community (9.96
446 +/- 4.1% of the forest site community). As described above, we tested whether the
447 bloomer taxa were contributing to the increased levels of pairwise similarity of the
448 burned and plantation site. Similar to the DNA-inferred findings, the removal of bloomer
449 taxa from the burned site RNA-inferred community matrix rendered the communities less
450 similar (0.306 +/- 0.004 vs 0.327 +/- 0.003, $F_{2,219} = 12.95, p < 0.001$) and
451 indistinguishable from the forest levels of similarity (0.290 +/- 0.008, Tukey's HSD $p_{adj} =$
452 0.124), indicating that their relative abundances contribute to the increased pairwise
453 similarity of these communities. This was also the case in the plantation, where the
454 removal of the bloomer taxa from the RNA-inferred community matrix rendered the
455 communities less similar (0.311 +/- 0.004 vs 0.340 +/- 0.004, $F_{2,219} = 22.96, p < 0.001$),
456 but in this case similarity levels were still distinguishable from the forest levels of
457 similarity (0.290 +/- 0.008, Tukey's HSD $p_{adj} = 0.029$). The RNA-inferred bloomer taxa
458 also collectively showed a wider spatial distribution in the sites in which they were more

459 abundant (Burn: freq_{burn bloomers in for} = 0.566 +/- 0.04, freq_{burn bloomers in burn} = 0.860 +/-
460 0.022; Plantation: freq_{plantation bloomers in for} = 0.506 +/- 0.03, freq_{plantation bloomers in plantation} =
461 0.854 +/- 0.015), but when we test whether these taxa are driving the changes to spatial
462 turnover we do not detect a significant spatial signal for the burned (Mantel r = 0.006, p =
463 0.474) or plantation (Mantel r = 0.413, p = 0.082) sites following their removal. Thus, the
464 identification of bloomer taxa in the DNA- and RNA-inferred communities has helped to
465 identify the fraction of the community that is contributing to higher levels of community
466 pairwise similarity.

467

468 DISCUSSION

469 Conversion of tropical rainforest to agriculture is one of the leading drivers of
470 biodiversity loss and biotic homogenization worldwide (1–4). Gaining a better
471 understanding of the mechanisms driving biotic homogenization is a priority if we are to
472 predict or mitigate changes to communities or their ecosystem functions (8, 9). We used a
473 spatially explicit design across a chronosequence of land use change in the Congo Basin
474 to investigate mechanisms of community homogenization. We used two windows into the
475 structure of soil prokaryotic communities: 1) 16S rRNA (RNA) community inference –
476 which should enrich for the active fraction of the community, and 2) 16S rRNA gene
477 (DNA) community inference – which includes both active and inactive members, as well
478 as “relic” DNA from dead cells (82, 83). Our results fit into a broader context of other
479 studies that emphasize the importance of using RNA alongside DNA to investigate the
480 impacts of environmental change on microbial communities (34, 35).

481 Ecosystems can develop spatially autocorrelated environmental conditions (*i.e.* a
482 distance-decay in environmental similarity) through a combination of localized physical
483 forces or community processes (84). Slash-and-burn conversion in our system appears to
484 disrupt this spatial structure, while introducing variation. This form of conversion is a
485 relatively uniform type of disturbance, in that all the aboveground vegetation gets
486 removed and burned across the landscape, which likely drives the loss of spatial structure
487 of the soil environment. The intensity of fire across a landscape, however, is often patchy,
488 depending on certain local factors such as, *e.g.*, the amount of biomass, or levels of
489 moisture. Thus this form of disturbance could introduce environmental variation that
490 shows little coherent spatial structure. This insight is important when we consider the
491 relationship between community structure and the environment.

492 Communities can be homogenized by two main mechanisms: 1) the
493 homogenization of the environment driving convergence of communities (12, 13), or 2)
494 increased biotic mixing, driven by the breakdown of dispersal barriers and/or the range
495 expansion of previously present taxa (6, 10, 14, 15, 85, 86). If community
496 homogenization is driven by environmental homogenization, community turnover should
497 continue to track environmental turnover, even when spatial structure is lost. We see this
498 in our data when we infer community structure using RNA, but not DNA, suggesting that
499 environmental spatial homogenization is likely a strong driver of the spatial
500 homogenization of the RNA-inferred community. The decoupling of responses in the
501 RNA- and DNA-inferred communities could represent differing levels of contribution
502 from homogenization mechanisms. Our results suggest that taxa that are enriched in the
503 burned or plantation sites relative to the forest are contributing to the loss of community

504 variation (*i.e.* average pairwise dissimilarity) in those sites. Those taxa also collectively
505 show wider spatial distributions (*i.e.* higher occurrence frequencies) in the disturbed sites
506 relative to the forest. These findings are consistent with the idea of a range expansion,
507 and the fact that we saw this trend in both the RNA- and DNA-inferred communities
508 suggests that identifying this type of homogenization mechanism may not require RNA-
509 based community inference. A similar pattern has been observed in Amazonian sites that
510 have undergone conversion to cattle pasture, where prokaryotic taxa shared across forest
511 and agricultural sites tended to be more widespread in the agricultural sites (6), and
512 fungal communities in agricultural sites tended to be enriched in generalist taxa that were
513 more widespread (15). Thus by distinguishing communities using RNA and DNA, we see
514 that only part of the community seems to be responding to the environmental changes
515 associated with conversion, while communities inferred via both methods appear be
516 shaped by biotic factors such as the breakdown of dispersal barriers and/or the range
517 expansion of certain taxa.

518 The use of 16S rRNA as a proxy for activity has been the subject of recent
519 controversy. Of particular concern are two main issues: the assignment of false positives
520 (*i.e.* dormant taxa misidentified as active (28)), and the inaccurate assessment of activity
521 levels (*e.g.* driven by comparing ratios of the relative abundance of taxa in the RNA- vs
522 DNA-inferred communities (29–32)). The ribosomal content of a community, however,
523 should be at least enriched with the taxa that are active and/or growing, and there are a
524 number of studies that support the notion that rRNA-inference represents activity. For
525 example, if the active fraction of a community is more likely to be interacting with the
526 environment than the dormant fraction (which is likely avoiding the current

527 environmental conditions), then we would expect a stronger correspondence between
528 environmental conditions and community turnover in a community that is enriched in
529 active taxa (19). Indeed this has been shown both along a marine environmental gradient
530 (33) and a grassland soil system experiencing re-wetting following drought (34). It has
531 also been shown that N-addition to forest soil elicits a stronger response in communities
532 inferred from 16S rRNA than rDNA (35). Our results contribute to this narrative by
533 showing that RNA-inferred community turnover persistently tracks environmental
534 turnover, while this association is lost when inferring only with DNA. We also see that
535 the RNA-inferred community shows a more pronounced loss of community variation and
536 spatial structure than the DNA-inferred community. Thus while rRNA inference may
537 have certain limitations, our results, alongside others, suggest that this method should be
538 enriching for active taxa, and this can have important implications for both qualitative
539 and quantitative conclusions, especially in systems with strong environmental gradients.

540 Tropical ecosystems are characterized by immense heterogeneity, and this could
541 make the task of detecting general responses to land use change difficult. Two important
542 steps towards gaining a better understanding of common microbial responses to tropical
543 land use change include 1) expanding the breadth (*i.e.* the geographic representation) of
544 regions sampled, and 2) increasing the resolution of our study systems (*e.g.* by including
545 more sites along the conversion continuum). Our study allows us to ask whether
546 commonalities exist between our findings and those reported from other tropical
547 ecosystems undergoing land use change. The changes we see to the spatial structuring of
548 communities (*i.e.* a diminished distance-decay relationship) are consistent with responses
549 reported from the Amazon Basin (6, 25). While our study was not replicated at the land

550 type level-restricting our level of inference regarding how representative our findings are
551 of other Congo Basin areas- our results at least suggest that a diminished rate of
552 community distance-decay may be common across tropical areas facing a similar threat.
553 The method of conversion may be driving this similarity in microbial community
554 response. The predominant method for converting tropical rainforests to agriculture is the
555 use of slash-and-burn techniques (87). By including a recently slash-and-burned site in
556 our design, we have gained a rare glimpse into the impacts directly following the initial
557 step in agricultural conversion. Already at this stage we see that the loss of community
558 spatial structure (*i.e.* distance-decay) has occurred. What this suggests is that, at least
559 initially, spatial homogenization can be driven by the act of conversion, rather than other
560 management practices such as planting or crop choice. Thus by targeting a region that has
561 otherwise not been sampled, and increasing the resolution by which we survey the
562 conversion process, we have gained new insights that may help to elucidate common
563 community responses to tropical land use change.

564 Considering the rate and magnitude by which tropical rainforests are being
565 converted to agriculture (4), gaining a mechanistic understanding of community
566 responses to environmental change is imperative (9). Future efforts could investigate
567 whether the functional potential (*i.e.* gene content) or trait distributions of a community
568 are similarly impacted by land use change (37, 88), or whether ecosystem functions (*e.g.*
569 those involved in nutrient cycling or greenhouse gas emissions) are impacted by
570 community homogenization. Our work highlights the importance of distinguishing
571 between metabolic states of microbial community members, if we are to better
572 understand community responses to environmental change. Lastly, our work

573 demonstrates that trends in our system are consistent with those reported from
574 geographically disparate areas (*e.g.* the Amazon Basin), suggesting that despite large
575 differences between these areas, land use change may drive predictable community
576 changes.

577

578 ACKNOWLEDGEMENTS

579 We thank the Government of Gabon, Centre National de la Recherche
580 Scientifique et Technologique for permission (Permit N°
581 866/MENESTFPRSCJS/CENAREST/CG/CAB) to conduct this study. We also thank P.
582 Voua Otomo and A. Litona Boubeya for their help in collecting samples. The
583 Smithsonian Conservation Biology Institute, the Gabon-Oregon Transnational
584 Center on Environment and Development, and Shell Gabon provided financial and
585 logistical support.

586

587

588 REFERENCES

- 589 1. Dirzo R, Raven PH. 2003. Global State of Biodiversity and Loss. *Annu Rev
590 Environ Resour* 28:137–167.
- 591 2. Houghton RA. 1994. The worldwide extent of land-use change. *Bioscience*
592 44:305–313.
- 593 3. Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS,
594 Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik
595 CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK. 2005. Global

596 consequences of land use. *Science* (80-) 309:570–4.

597 4. Laurance WF, Sayer J, Cassman KG. 2014. Agricultural expansion and its impacts
598 on tropical nature. *Trends Ecol Evol* 29:107–116.

599 5. Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL,
600 Gonzalez A, Duffy JE, Gamfeldt L, O'Connor MI. 2012. A global synthesis
601 reveals biodiversity loss as a major driver of ecosystem change. *Nature* 486:105–8.

602 6. Rodrigues JLM, Pellizari VH, Mueller R, Baek K, Jesus EDC, Paula FS, Mirza B,
603 Hamaoui GS, Tsai SM, Feigl B, Tiedje JM, Bohannan BJM, Nüsslein K. 2013.
604 Conversion of the Amazon rainforest to agriculture results in biotic
605 homogenization of soil bacterial communities. *Proc Natl Acad Sci U S A* 110:988–
606 93.

607 7. Mueller RC, Paula FS, Mirza BS, Rodrigues JL, Nüsslein K, Bohannan BJ. 2014.
608 Links between plant and fungal communities across a deforestation
609 chronosequence in the Amazon rainforest. *ISME J* 8:1548–50.

610 8. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani
611 A, Mace GM, Tilman D, Wardle DA. 2012. Biodiversity loss and its impact on
612 humanity. *Nature* 486:59–67.

613 9. Bell T, Tylianakis JM. 2016. Microbes in the Anthropocene: spillover of
614 agriculturally selected bacteria and their impact on natural ecosystems. *Proc R Soc
615* 283:1–9.

616 10. McKinney ML, Lockwood JL. 1999. Biotic homogenization : a few winners
617 replacing many losers in the next mass extinction. *Trends Ecol Evol* 14:450–453.

618 11. Olden JD, Rooney TP. 2006. On defining and quantifying biotic homogenization.

619 Glob Ecol Biogeogr 15:113–120.

620 12. Lepš J. 1991. Convergence or Divergence : What Should We Expect from
621 Vegetation Succession? Oikos 62:261–264.

622 13. Christensen NL, Peet RK. 1984. Convergence During Secondary Forest
623 Succession. J Ecol 72:25–36.

624 14. Olden JD, Poff NL. 2003. Toward a mechanistic understanding and prediction of
625 biotic homogenization. Am Nat 162:442–460.

626 15. Mueller RC, Rodrigues JL, Nüsslein K, Bohannan BJ. 2016. Land use change in
627 the Amazon rainforest favors generalist fungi. Funct Ecol.

628 16. McGuire KL, D'Angelo H, Brearley FQ, Gedalovich SM, Babar N, Yang N,
629 Gillikin CM, Gradoville MR, Bateman C, Turner BL, Mansor P, Leff JW, Fierer
630 N. 2015. Responses of Soil Fungi to Logging and Oil Palm Agriculture in
631 Southeast Asian Tropical Forests. Microb Ecol 69:733–747.

632 17. Tripathi BM, Edwards DP, Mendes LW, Kim M, Dong K, Kim H, Adams JM.
633 2016. The impact of tropical forest logging and oil palm agriculture on the soil
634 microbiome. Mol Ecol 25:2244–2257.

635 18. Gossner MM, Lewinsohn TM, Kahl T, Grassein F, Boch S, Prati D, Birkhofer K,
636 Renner SC, Sikorski J, Wubet T, Arndt H, Baumgartner V, Blaser S, Blüthgen N,
637 Börschig C, Buscot F, Diekötter T, Jorge LR, Jung K, Keyel AC, Klein A-M,
638 Klemmer S, Krauss J, Lange M, Müller J, Overmann J, Pašalić E, Penone C,
639 Perović DJ, Purschke O, Schall P, Socher SA, Sonnemann I, Tschapka M,
640 Tscharntke T, Türke M, Venter PC, Weiner CN, Werner M, Wolters V, Wurst S,
641 Westphal C, Fischer M, Weisser WW, Allan E. 2016. Land-use intensification

642 causes multitrophic homogenization of grassland communities. *Nature* 540:266–
643 269.

644 19. Lennon JT, Jones SE. 2011. Microbial seed banks: the ecological and evolutionary
645 implications of dormancy. *Nat Rev Microbiol* 9:119–30.

646 20. Blagodatskaya E, Kuzyakov Y. 2013. Active microorganisms in soil : Critical
647 review of estimation criteria and approaches. *Soil Biol Biochem* 67:192–211.

648 21. Jones SE, Lennon JT. 2010. Dormancy contributes to the maintenance of microbial
649 diversity. *Proc Natl Acad Sci U S A* 107:5881–6.

650 22. Baldrian P, Kolařík M, Stursová M, Kopecký J, Valášková V, Větrovský T,
651 Zifčáková L, Snajdr J, Rídl J, Vlček C, Voříšková J. 2012. Active and total
652 microbial communities in forest soil are largely different and highly stratified
653 during decomposition. *ISME J* 6:248–58.

654 23. Kamke J, Taylor MW, Schmitt S. 2010. Activity profiles for marine sponge-
655 associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons. *ISME*
656 *J* 4:498–508.

657 24. Romanowicz KJ, Freedman ZB, Upchurch RA, Argiroff WA, Zak DR. 2016.
658 Active microorganisms in forest soils differ from the total community yet are
659 shaped by the same environmental factors: the influence of pH and soil moisture.
660 *FEMS Microbiol Ecol* 92:1–9.

661 25. Navarrete AA, Venturini AM, Meyer KM, Klein AM, Tiedje JM, Bohannan BJ,
662 Nüsslein K, Tsai SM, Rodrigues JL. 2015. Differential response of Acidobacteria
663 subgroups to forest-to-pasture conversion and their biogeographic patterns in the
664 western Brazilian Amazon. *Front Microbiol* 6:1–10.

665 26. Wood SA, Gilbert JA, Leff JW, Fierer N, Angelo HD, Bateman C, Gedalovich
666 SM, Gillikin CM, Gradoville MR, Mansor P, Massmann A, Yang N, Turner BL,
667 Brearley FQ, McGuire KL. 2017. Consequences of tropical forest conversion to oil
668 palm on soil bacterial community and network structure. *Soil Biol Biochem*
669 112:258–268.

670 27. Wood SA, Bradford MA, Gilbert JA, McGuire KL, Palm CA, Tully KL, Zhou J,
671 Naeem S. 2015. Agricultural intensification and the functional capacity of soil
672 microbes on smallholder African farms. *J Appl Ecol* 52:744–752.

673 28. Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. 2013. Evaluating rRNA as an
674 indicator of microbial activity in environmental communities: limitations and uses.
675 *ISME J* 7:2061–8.

676 29. Papp K, Hungate BA, Schwartz E. 2018. Microbial rRNA Synthesis and Growth
677 Compared through Quantitative Stable Isotope Probing with H₂¹⁸O. *Appl Environ
678 Microbiol* 84:1–11.

679 30. Papp K, Mau RL, Hayer M, Koch BJ, Hungate BA, Schwartz E. 2018.
680 Quantitative stable isotope probing with H₂¹⁸O reveals that most bacterial taxa in
681 soil synthesize new ribosomal RNA. *ISME J* 18–20.

682 31. Dlott G, Maul JE, Buyer J, Yarwood S. 2015. Microbial rRNA:rRNA gene ratios
683 may be unexpectedly low due to extracellular DNA preservation in soils. *J
684 Microbiol Methods* 115:112–120.

685 32. Steven B, Hesse C, Soghigian J, Gallegos-Graves LV. 2017. Simulated rRNA /
686 DNA Ratios Show Potential To Misclassify Active Populations as Dormant. *Appl
687 Environ Microbiol* 83:1–11.

688 33. Zhang Y, Zhao Z, Dai M, Jiao N, Herndl GJ. 2014. Drivers shaping the diversity
689 and biogeography of total and active bacterial communities in the South China
690 Sea. *Mol Ecol* 23:2260–74.

691 34. Barnard RL, Osborne CA, Firestone MK. 2013. Responses of soil bacterial and
692 fungal communities to extreme desiccation and rewetting. *ISME J* 7:2229–41.

693 35. Freedman ZB, Romanowicz KJ, Upchurch RA, Zak DR. 2015. Differential
694 responses of total and active soil microbial communities to long-term experimental
695 N deposition. *Soil Biol Biochem* 90:275–282.

696 36. Paula FS, Rodrigues JLM, Zhou J, Wu L, Mueller RC, Mirza BS, Bohannan BJM,
697 Nüsslein K, Deng Y, Tiedje JM, Pellizari VH. 2014. Land use change alters
698 functional gene diversity, composition and abundance in Amazon forest soil
699 microbial communities. *Mol Ecol* 23:2988–99.

700 37. Meyer KM, Klein AM, Rodrigues JLM, Nüsslein K, Tringe S, Mirza B, Tiedje
701 JM, Bohannan BJM. 2017. Conversion of Amazon rainforest to agriculture alters
702 community traits of methane-cycling organisms. *Mol Ecol* 26:1547–1556.

703 38. Navarrete AA, Tsai SM, Mendes LW, Faust K, de Hollander M, Cassman NA, van
704 Veen JA, Kuramae EE. 2015. Soil microbiome responses to the short-term effects
705 of Amazonian deforestation. *Mol Ecol* 24:2433–2448.

706 39. Hamaoui GS, Rodrigues JLM, Bohannan BJM, Tiedje JM, Nüsslein K. 2016.
707 Land-use change drives abundance and community structure alterations of
708 thaumarchaeal ammonia oxidizers in tropical rainforest soils in Rondonia, Brazil.
709 *Appl Soil Ecol* 107:48–56.

710 40. Mirza BS, Potisap C, Nüsslein K, Bohannan BJM, Rodrigues JLM. 2014.

711 Response of free-living nitrogen-fixing microorganisms to land use change in the
712 Amazon rainforest. *Appl Environ Microbiol* 80:281–288.

713 41. Cenciani K, Lambais MR, Cerri CC, Carvalho L, Azevedo B De, Feigl BJ. 2009.
714 Bacteria diversity and microbial biomass in the forest, pasture and fallow soils in
715 the Southwestern Amazon Basin. *R Bras Ci Solo* 33:907–916.

716 42. de Carvalho TS, da C Jesus E, Barlow J, Gardner TA, Carvalho Soares I, Tiedje
717 JM, de Souza Moreira F. 2016. Land use intensification in the humid tropics
718 increased both alpha and beta diversity of soil bacteria. *Ecology* 10:2760–2771.

719 43. Lee-Cruz L, Edwards DP, Tripathi BM, Adams JM. 2013. Impact of Logging and
720 Forest Conversion to Oil Palm Plantations on Soil Bacterial Communities in
721 Borneo. *Appl Environ Microbiol* 79:7290–7297.

722 44. Sul WJ, Asuming-bremppong S, Wang Q, Tourlousse DM, Penton CR, Deng Y,
723 Rodrigues JLM, Adiku SGK, Jones JW, Zhou J, Cole JR, Tiedje JM. 2013.
724 Tropical agricultural land management influences on soil microbial communities
725 through its effect on soil organic carbon. *Soil Biol Biochem* 65:33–38.

726 45. Alele PO, Sheil D, Surget-Groba Y, Lingling S, Cannon CH. 2014. How does
727 conversion of natural tropical rainforest ecosystems affect soil bacterial and fungal
728 communities in the nile river watershed of Uganda? *PLoS One* 9:e104818.

729 46. Wilkie DS, Laporte N. 2001. Forest area and deforestation in Central Africa:
730 Current knowledge and future directions, p. 119–139. *In* African Rain Forest
731 Ecology and Conservation. Yale University Press, New Haven and London.

732 47. Lee ME, Alonso A, Dallmeier F, Campbell P, Pauwels OSG. 2006. The Gamba
733 Complex of Protected Areas : An Illustration of Gabon's Biodiversity. *Bull Biol*

734 Soc Washingt 229–242.

735 48. Butler RA, Laurance WF. 2008. New strategies for conserving tropical forests.

736 Trends Ecol Evol 23:469–72.

737 49. White LJT. 2001. The African Rain Forest: Climate and vegetation, p. 3–29. *In*

738 African Rain Forest Ecology and Conservation. Yale University Press, New Haven

739 and London.

740 50. Naughton-Treves L, Weber W. 2001. Human dimensions of the African rain

741 forest, p. 30–49. *In* Weber, W, White, LJT, Vedder, A, Naughton-Treves, L (eds.),

742 African Rain Forest Ecology and Conservation. Yale University Press, New Haven

743 and London.

744 51. Laurance WF, Alonso A, Lee M, Campbell P. 2006. Challenges for forest

745 conservation in Gabon, Central Africa. Futures 38:454–470.

746 52. Collomb J-G, Mikissa J-B, Minnemeyer S, Mundunga S, Nzao HN, Madouma J,

747 Mapaga J de D, Mikolo C, Rabenkogo N, Akagah S, Bayani-Ngoye E, Moufama

748 A. 2000. A first look at logging in Gabon. Washington, DC.

749 53. Jones A, Breuning-Madsen H, Brossard M, Dampha A, Deckers J, Dewitte O,

750 Gallali T, Hallett S, Jones R, Kilasara M, La Roux P, Micheli E, Montanarella L,

751 Spaagaren O, Thiumbiano L, van Ranst E, Yemefack M, Zougmore R. 2013. Soil

752 atlas of Africa. The European Commission.

753 54. Hurlbert SH. 1984. Pseudoreplication and the design of ecological field

754 experiments. Ecol Monogr 54:187–211.

755 55. Oksanen L. 2001. Logic of experiments in ecology: is pseudoreplication a

756 pseudoissue? Oikos 94:27–38.

757 56. Colegrave N, Ruxton GD. 2018. Using Biological Insight and Pragmatism When
758 Thinking about Pseudoreplication. *Trends Ecol Evol* 33:28–35.

759 57. Schank JC, Koehnle TJ. 2009. Pseudoreplication is a pseudoproblem. *J Comp*
760 *Psychol* 123:421–33.

761 58. Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders
762 NJ, Cornell H V, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC,
763 Swenson NG. 2011. Navigating the multiple meanings of β diversity: a roadmap
764 for the practicing ecologist. *Ecol Lett* 14:19–28.

765 59. Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J. 2014.
766 An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing
767 on the Illumina MiSeq platform. *Microbiome* 2:1–7.

768 60. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013.
769 Development of a dual-index sequencing strategy and curation pipeline for
770 analyzing amplicon sequence data on the MiSeq Illumina sequencing platform.
771 *Appl Environ Microbiol* 79:5112–20.

772 61. Dean WE. 1974. Determination of carbonate and organic matter in calcareous
773 sediments and sedimentary rocks by loss on ignition: comparison with other
774 methods. *J Sediment Res* 44:242–248.

775 62. Kamprath EJ, Watson ME. 1980. Conventional soil and tissue tests for assessing
776 the phosphorus status of soils. *role phosphorus Agric* 433–469.

777 63. Olsen SR. 1954. Estimation of available phosphorus in soils by extraction with
778 sodium bicarbonate. *United States Dep Agric Circ*.

779 64. Simard RR. 1993. Ammonium Acetate-Extractable Elements, p. 39–42. *In* Carter,

780 MR (ed.), Soil sampling and methods of analysis. Lewis Publishers.

781 65. Fox RL, Olson RA, Rhoades HF. 1964. Evaluating the sulfur status of soils by
782 plant and soil tests. *Soil Sci Soc Am J* 28:243–246.

783 66. Chapman HD. 1965. Cation-exchange capacity, p. 891–901. *In* Methods of soil
784 analysis. American Society of Agronomy, Soil Science Society of America.

785 67. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK,
786 Fierer N, Gonzalez Peña A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST,
787 Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung
788 M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko
789 T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high- throughput
790 community sequencing data Intensity normalization improves color calling in
791 SOLiD sequencing. *Nat Methods* 7:335–336.

792 68. Edgar RC. 2013. UPARSE : highly accurate OTU sequences from microbial
793 amplicon reads. *Nature* 10:996–1000.

794 69. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST.
795 *Bioinformatics* 26:2460–1.

796 70. R Core Team. 2018. R: A language and environment for statistical computing. R
797 Foundation for statistical computing, Vienna, Austria.

798 71. Oksanen J, Blanchet FG, Roeland K, Legendre P, Minchin P, O’Hara RB,
799 Simpson G, Solymos P, Stevens MHH, Wagner H. 2015. vegan: Community
800 ecology package.

801 72. Jost L, Chao A, Chazdon RL. 2011. Compositional similarity and Beta diversity, p.
802 66–84. *In* Magurran, AE, McGill, B (eds.), *Biological Diversity: frontiers in*

803 measurement and assessment. Oxford University Press, Oxford.

804 73. Kuczynski J, Liu Z, Lozupone C, McDonald D, Fierer N, Knight R. 2010.

805 Microbial community resemblance methods differ in their ability to detect

806 biologically relevant patterns. *Nat Methods* 7:813–821.

807 74. Nekola JC, White PS. 1999. The distance decay of similarity in biogeography and

808 ecology. *J Biogeogr* 26:867–878.

809 75. Gower JC. 1971. A general coefficient of similarity and some of its properties.

810 *Biometrics* 27:857–871.

811 76. Gower JC, Legendre P. 1986. Metric and Euclidean Properties of Dissimilatory

812 Coefficients. *J Classif* 3:5–48.

813 77. Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. 2016. *cluster*: Cluster

814 analysis basics and extensions. R package version 2.0.4.

815 78. Legendre P, Legendre L. 1998. Ecological resemblance, p. 247–302. *In* Numerical

816 Ecology.

817 79. Jurasinski G, Retzer V. 2012. *simba*: A collection of functions for similarity

818 analysis of vegetation data. R package version 0.3-5.

819 80. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and

820 dispersion for RNA-seq data with DESeq2. *Genome Biol* 15:550.

821 81. Wickham H. 2009. *ggplot2*: elegant graphics for data analysis. Springer Science &

822 Business Media.

823 82. Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. 2016. Relic

824 DNA is abundant in soil and obscures estimates of soil microbial diversity. *Nat*

825 *Microbiol* 2:1–6.

826 83. Lennon JT, Placella SA, Muscarella ME. 2017. Relic DNA contributes minimally
827 to estimates of microbial diversity. *bioRxiv* 0–28.

828 84. Legendre P. 1993. Spatial autocorrelation: trouble or new paradigm? *Ecology*
829 74:1659–1673.

830 85. Vellend M, Verheyen K, Flinn KM, Jacquemyn H, Kolb A, Calster HVAN,
831 Peterken G, Graae BJ, Bellemare J, Honnay O, Brunet J, Wulf M, Gerhardt F,
832 Hermy M. 2007. Homogenization of forest plant communities and weakening of
833 species – environment relationships via agricultural land use. *J Ecol* 95:565–573.

834 86. Dormann CF, Schweiger O, Augenstein I, Bailey D, Billeter R, Blust G De,
835 Defilippi R, Frenzel M, Hendrickx F, Herzog F, Klotz S, Liira J, Maelfait J,
836 Schmidt T, Speelmans M, Wingerden WKRE Van, Zobel M. 2007. Effects of
837 landscape structure and land-use intensity on similarity of plant and animal
838 communities. *Glob Ecol Biogeogr* 16:774–787.

839 87. Laurance WF. 2015. Emerging threats to tropical forests. *Ann Missouri Bot Gard*
840 100:159–169.

841 88. Louca S, Parfrey LW, Doeblei M. 2016. Decoupling function and taxonomy in the
842 global ocean microbiome. *Science* (80-) 353:1272–1277.

843

844

845

846

847

848

849

850

851

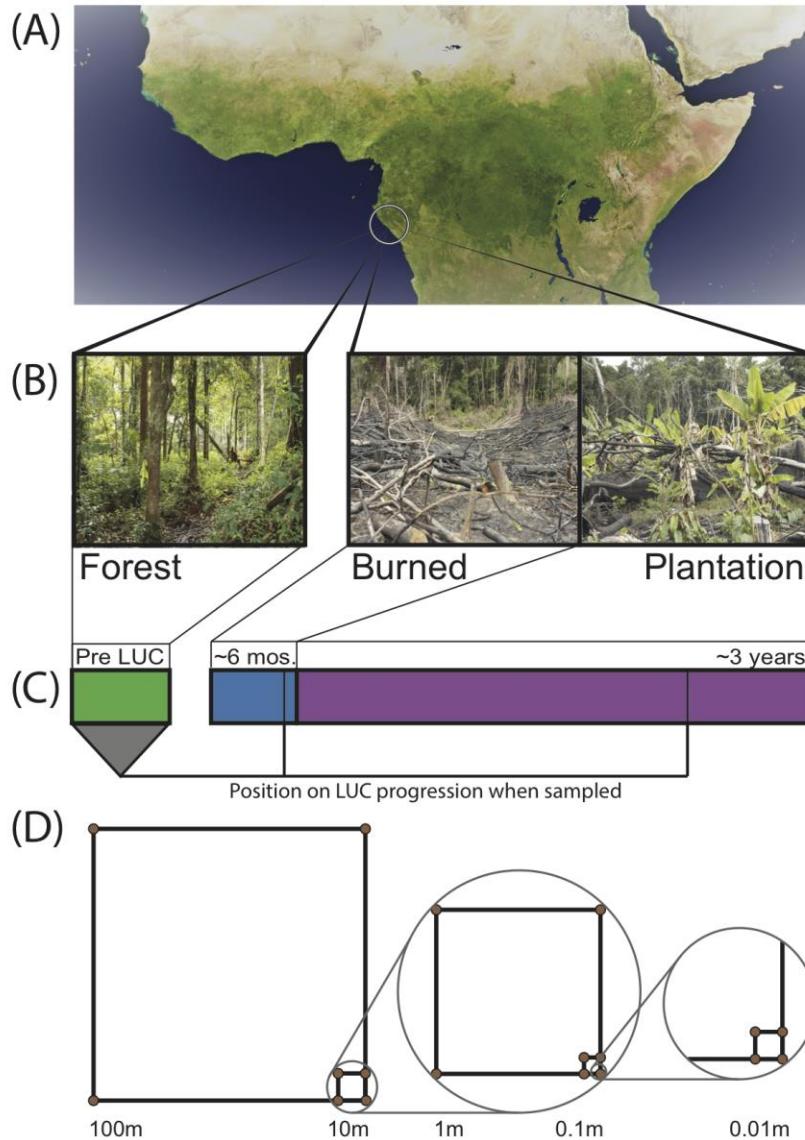
852

853 FIGURE LEGENDS

854 **Table 1:** The influence of environmental similarity and geographic distance on RNA-
855 inferred and DNA-inferred prokaryotic communities. Partial mantel test summary
856 statistics showing 1) the effect of environmental similarity after removing the effect of
857 geographic distance (Env. Simil.), and 2) the effect of geographic distance after removing
858 the effect of environmental similarity (Geog. Dist.). *P* values estimated from 1000
859 permutations.

	Env. Simil.		Geog. Dist.	
	r	P	r	P
Forest RNA	0.56	0.022	0.409	0.088
Burned RNA	0.491	0.008	0.05	0.392
Plantation RNA	0.57	0.001	0.082	0.284
Forest DNA	0.536	0.026	0.168	0.208
Burned DNA	0.237	0.174	0.338	0.07
Plantation DNA	0.17	0.194	0.124	0.267

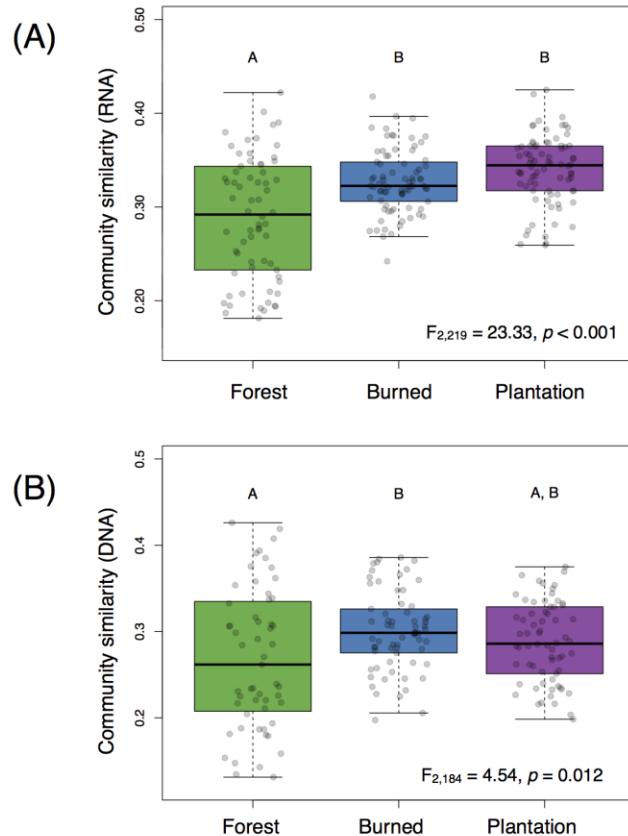
860



861

862 **Figure 1:** Sampling design across Gabonese chronosequence of land use change. A)
863 Satellite image of the Congo Basin with location of sampling sites circled. B) Images of
864 field sites from which samples were taken. C) Timeline of land use change. Bar width is
865 proportional to the amount of time a site typically spends in each stage. Lines indicate
866 when samples were collected. D) Spatially explicit nested sampling scheme used in each
867 land type. Samples were taken at the corners of each square.

868



869

870 **Fig. 2:** Average pairwise similarity (1 – Canberra distance) of A) the RNA-inferred
871 community, and B) the DNA-inferred community, across the forest, burned, and
872 plantation sites. F and p statistics based on one-way ANOVA. Different letters
873 correspond to significantly different group means as determined by Tukey's HSD $p <$
874 0.05.

875

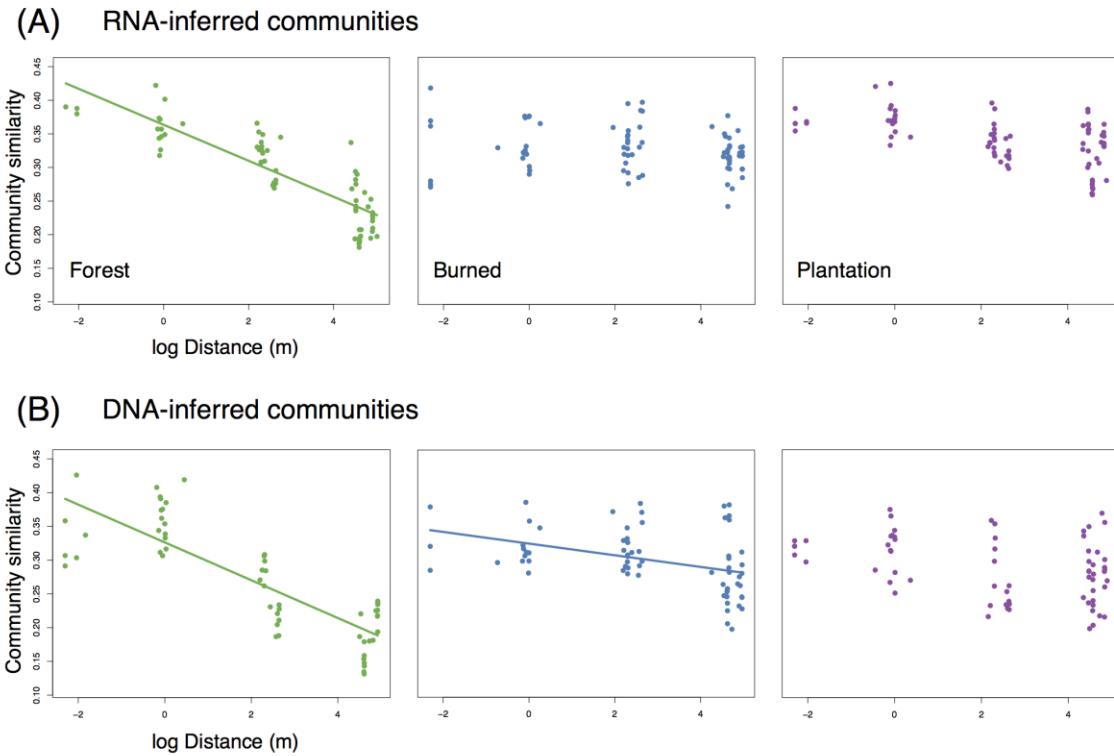
876

877

878

879

880



881

882 **Fig. 3:** Change (or loss) of distance-decay of community similarity for A) RNA-inferred
883 communities, and B) DNA-inferred communities. Trend lines were drawn only for
884 significant (Mantel $p < 0.05$) associations.

885

886

887

888

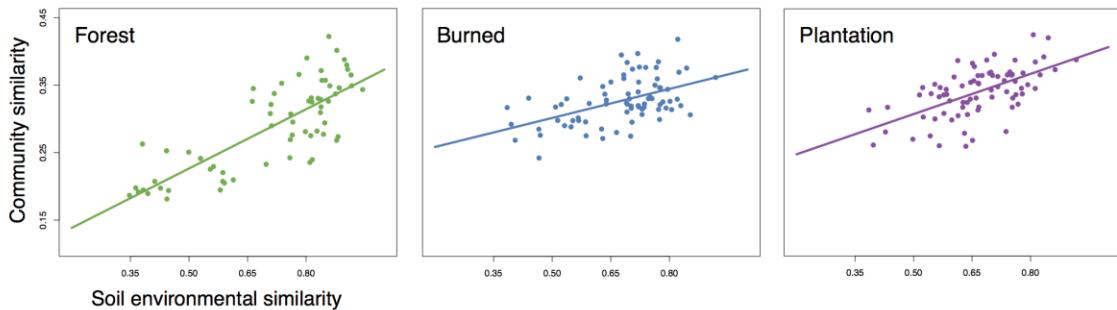
889

890

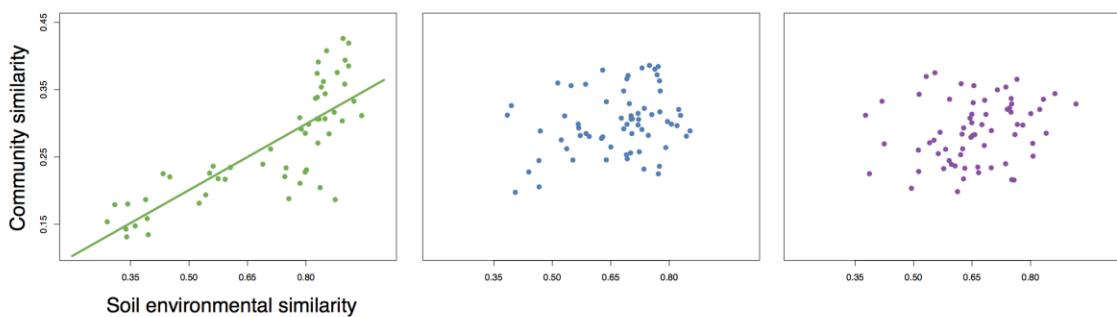
891

892

(A) RNA-inferred communities



(B) DNA-inferred communities



893

894 **Fig. 4:** The relationship between community similarity and environmental similarity (1 –

895 Gower dissimilarity) for A) RNA-inferred communities, and B) DNA-inferred

896 communities. Trend lines were only drawn for significant (Mantel $p < 0.05$) associations.