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 2 

ABSTRACT 24 

Biotic homogenization is a commonly observed response following conversion of 25 

native ecosystems to agriculture, but our mechanistic understanding of this process is 26 

limited for microbial communities. In the case of rapid environmental changes, inference 27 

of homogenization mechanisms may be confounded by the fact that only a minority of 28 

taxa is active at any given point. RNA- and DNA-based community inference may help 29 

to distinguish the active fraction of a community from inactive taxa. Using these two 30 

community inference methods, we asked how soil prokaryotic communities respond to 31 

land use change following transition from rainforest to agriculture in the Congo Basin. 32 

Our results indicate that the magnitude of community homogenization is larger in the 33 

RNA-inferred community than the DNA-inferred perspective. We show that as the soil 34 

environment changes, the RNA-inferred community structure tracks environmental 35 

variation and loses spatial structure. The DNA-inferred community loses its association 36 

with environmental variability. Homogenization of the DNA-inferred community appears 37 

to instead be driven by the range expansion of a minority of taxa shared between the 38 

forest and conversion sites, which is also seen in the RNA-inferred community. Our 39 

results suggest that complementing DNA-based surveys with RNA can provide unique 40 

perspectives on community responses to environmental change. 41 

 42 

IMPORTANCE 43 

Two primary mechanisms by which community homogenization occurs are: 1) 44 

the loss of environmental heterogeneity driving community convergence, and 2) 45 

increased rates of biotic mixing, driven by exotic invasions or range expansions. Better 46 
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identifying these mechanisms could help inform future mitigation strategies. Only a 47 

minority of soil taxa tends to be active at any time, which makes identifying these 48 

mechanisms difficult. To circumvent this problem, we measured prokaryotic community 49 

structure in two ways: RNA-based inference (which should enrich for active taxa), and 50 

DNA-based inference (which includes active and inactive taxa) along a gradient of land 51 

use change. Our results suggest that changes to soil heterogeneity impact the RNA-52 

inferred community, while range expansions contribute to the homogenization of both 53 

DNA- and RNA-inferred communities. Thus, RNA-based community inference may be a 54 

more sensitive indicator of environmentally driven homogenization, and researchers 55 

interested in microbial responses to rapid environmental change should consider this 56 

method.  57 

 58 

INTRODUCTION 59 

One of the most rampant forms of environmental change today is land use change 60 

following the conversion of tropical rainforests to agriculture (1–4). Both above- and 61 

below-ground communities have been shown to experience species loss and community 62 

change at unprecedented rates following land use change (5–7), and this is of concern 63 

because tropical rainforests are some of the most diverse and productive ecosystems on 64 

the planet. Predicting community responses to tropical land use change is a priority if we 65 

are to better understand how human activities will impact species loss and global-scale 66 

biogeochemical cycling (8, 9), but in order to gain such a level of predictability we must 67 

better understand the mechanisms underlying community change.   68 
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Biotic homogenization, i.e. the increase in community similarity through time or 69 

space, is a major consequence of land use change (10, 11). This process can be driven by 70 

two primary mechanisms: 1) the loss of environmental heterogeneity, which drives 71 

subsequent community convergence (12, 13), and 2) increased rates of biotic mixing, 72 

which can be driven by the breakdown of dispersal barriers, invasion of exotic taxa, or 73 

the range expansion of existing taxa (11, 14). These mechanisms have both been 74 

implicated in the homogenization of microbial communities following land use change 75 

(6, 7, 15–18), but it remains unclear to what degree these mechanisms contribute to 76 

homogenization.  77 

Understanding mechanisms of biotic homogenization may be complicated by the 78 

fact that only a minority of soil taxa tends to be active at any given point in time (19, 20). 79 

One proposed method to distinguish active community members is to survey the 80 

community using 16S rRNA (as opposed to the 16S rRNA gene) (21–24). This 81 

methodology could provide new insights into microbial community homogenization. For 82 

example, targeting active taxa could help us hone in on the portion of the community that 83 

is interacting with the environment and thus who is likely to respond immediately to 84 

environmental changes. Secondly, if land use change is driving increased rates of biotic 85 

mixing, studying the active fraction could help us distinguish who is actually growing 86 

and becoming established from those who are simply arriving. This distinction may be 87 

especially important when considering that much of what we currently know about 88 

microbial homogenization has been derived from DNA-based diversity studies (e.g. (6, 89 

25, 27)) that do not distinguish active from inactive taxa. Some controversy, however, 90 

surrounds the use of rRNA to infer microbial activity levels. For example, rRNA 91 
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concentration and growth rate and/or activity are not consistently correlated across taxa, 92 

and certain taxa can still contain ribosomes while dormant (see (28)). The use of 16S 93 

rRNA: 16S rRNA gene ratios of taxa has also been shown to not correlate well with 94 

activity levels inferred by other means (29, 30), and can be biased by extracellular 95 

environmental DNA (31), taxon-specific dormancy strategies and sampling extent (32). 96 

While the use of rRNA:rDNA ratios may be problematic, several studies have shown that 97 

communities inferred using rRNA more closely correlate with environmental variability 98 

(33), and respond more strongly to seasonal variation (34) and nutrient pulses (35) than 99 

communities inferred using rDNA, which is consistent with the idea that the rRNA 100 

content of a community is at least enriched with active members. Thus, RNA-based 101 

community inference may provide unique foundational insights into the mechanisms 102 

underlying community change, but to date few have sought to make this comparison. 103 

Despite growing efforts to characterize microbial responses to land use change, a 104 

number of fundamental gaps must be filled to bring our understanding to a more 105 

generalizable level. For example, although there have been several studies comparing 106 

established agricultural sites to pristine ecosystems, few have sought to include sites that 107 

represent the intermediary stages of conversion (e.g. recently slash-and-burned areas). By 108 

including more sites along the conversion continuum, we can increase the resolution by 109 

which we understand this process. This could help to diagnose when the largest losses of 110 

biodiversity occur, and pinpoint management practices that could be targeted for 111 

improvement. Another important gap to fill lies in the geographic representation of 112 

sampling efforts.  By expanding sampling efforts geographically, we can start to 113 

distinguish common patterns from site-specific patterns. This is especially important 114 
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when considering that much of what we know about microbial responses to tropical land 115 

use change comes from studies in the Amazon Basin (6, 7, 15, 25, 36–42), and to a lesser 116 

degree, the forests of Indonesia (16, 17, 26, 43) with far fewer studies in the forests of 117 

Central and West Africa (27, 44, 45), and to our knowledge, none in the Congo Basin. 118 

Thus, by focusing our efforts to study the conversion process with more resolution and a 119 

wider geographic representation, we can work towards a more generalizable 120 

understanding of microbial responses to tropical land use change. 121 

Here we examine soil bacterial community change along a land use change 122 

gradient in the Congo Basin, the world’s second largest rainforest (46). Our work 123 

expands on past studies by performing paired RNA/DNA co-extraction from each sample 124 

in order to ask whether the putatively active fraction of the community elicits a different 125 

response to land use change than the total community. Our gradient includes a site that 126 

had very recently been cut and burned, which allows us to use RNA/DNA in a system 127 

that is experiencing rapid and intense change. We test the following hypotheses: 1) that 128 

converted (burned and plantation) sites will exhibit decreased rates of spatial turnover of 129 

both the RNA- and DNA-inferred prokaryotic communities, 2) that changes to the soil 130 

chemical environment will play a stronger role in shaping the RNA-inferred community 131 

than the DNA-inferred community, and 3) that biotic invasions or range expansions 132 

contribute to community homogenization.  133 

 134 

MATERIALS & METHODS 135 

Sampling site 136 
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Central Africa contains up to 1.8 million km
2
 of contiguous tropical moist forest, 137 

making it the second largest block of tropical moist forest in the world, after the Amazon 138 

Basin (46). Central African rainforest is renowned for its exceptionally high levels of 139 

biodiversity and endemism (47–49) and it is rapidly being deforested (50). The nation of 140 

Gabon contains more than 10% of the contiguous tropical moist forest in Africa (46, 47), 141 

and the majority of these forested areas are either currently leased as long-term logging 142 

concessions or are at risk from agricultural conversion (47, 51, 52).  143 

 Our study was performed in southwestern Gabon near the Gamba Complex of 144 

Protected Areas (47).  Soils in this area are classified as Dystic Fluvisol (53). Agricultural 145 

conversion in this region follows slash-and-burn practices that are typical of most tropical 146 

regions whereby forests are selectively logged and the remaining vegetation is burned. 147 

The following season, plantation crops (typically manioc or banana) are planted and 148 

harvested for 1-3 years. Following the last harvest, plantations are abandoned and 149 

secondary forest develops. We selected sites representative of this cycle including a 150 

recently burned site, an active manioc and banana plantation (roughly 1.5 years old), and 151 

an adjacent intact forest, which allows us to break down the conversion process into two 152 

steps, providing more resolution. Sites are found at the following coordinates: burned site 153 

(2° 44' 48" S, 10° 8' 54" E), plantation (2° 44' 58" S, 10° 8' 51" E), and adjacent forest (2° 154 

44' 46" S, 10° 8' 52" E).  155 

 156 

Sampling Design and Sample Collection 157 

This study was designed specifically to understand differences between RNA- and 158 

DNA-inferred communities within these sites, not to identify general effects of land use 159 
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change on Congo Basin ecosystems, which would be better-tested using replication at the 160 

land type level (54). Limited access to sites and logistical challenges with sampling in 161 

this area required that we extensively survey one site within each of three land types, 162 

rather than performing higher levels of replication on fewer land types. This design is 163 

appropriate for asking how these sites differ from one another, or how RNA- and DNA-164 

inferred community composition or diversity patterns differ from one another (55–57). 165 

Regarding inferences about general microbial responses to land use change in the Congo 166 

Basin, this study would be considered a case study (54), whereby our results may be 167 

suggestive of broader patterns, but such patterns should be corroborated using a design 168 

with land type replication.  169 

 Soil samples were taken at the end of the Gabonese dry season (September 24-27, 170 

2013). We established plots within each of the aforementioned sites. Each plot consisted 171 

of a nested sampling scheme (6) where a 100 m x 100 m
 
quadrat was established, with 10 172 

m x 10 m, 1 m x 1 m, 0.1 m x 0.1 m quadrats nested within each, giving high coverage of 173 

a range of spatial scales (Fig. 1). Soil cores were taken to a depth of 15 cm (after removal 174 

of leaf litter) from the corners of each quadrat (N=13 samples per site). For each point, 3 175 

cores were taken, homogenized, and then subsampled. From the homogenized mixture, 3 176 

ml (approximately 1 g) of soil was added to 9 ml Lifeguard solution (Mobio, California, 177 

USA) in the field, then transported cold and stored at -80° C in order to stabilize 178 

nucleotides for later extraction. Our spatially explicit design allows for the estimation of 179 

spatial turnover (beta diversity)(58).  180 

 181 

Extraction, PCR, and Sequencing 182 
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Soil RNA and DNA were co-extracted from Lifeguard-preserved soil samples 183 

using MoBio’s Powersoil RNA Isolation kit with the DNA Elution Accessory Kit 184 

(MoBio, California, USA) following manufacturer’s instructions. Extractions were 185 

quantified using Qubit (Life Technologies, USA). RNA was reverse transcribed to cDNA 186 

using Superscript III first-strand reverse transcriptase and random hexamer primers (Life 187 

Technologies, USA).  188 

The V3 and V4 region of the 16S rRNA gene of the DNA and cDNA were PCR 189 

amplified using the primers 319F and 806R (primarily targeting Bacteria, with limited 190 

coverage of Archaea). Sequencing libraries were prepped using a two-step PCR with 191 

dual-indexing approach (59, 60). In short, the first round of amplification consisted of 22 192 

cycles with Phusion HiFi polymerase. Round 1 products were cleaned using Agencourt 193 

AMPure XP (Beckman Coulter, California, USA) then amplified for an additional 6 194 

cycles using Phusion HiFi to add the sequences required for cluster formation on the 195 

Illumina flowcell. The final library was sent to the Dana-Farber Cancer Institute 196 

Molecular Biology Core Facilities for 300 paired-end (PE) sequencing on the Illumina 197 

MiSeq platform.  198 

 199 

Soil chemical analysis 200 

 Soil chemical parameters were measured in each soil core (by A & L Western 201 

Agricultural Lab, Modesto, CA, USA), including percent organic matter (loss on ignition 202 

(61)), extractable phosphorus (Weak Bray (62) and sodium bicarbonate (63)), extractable 203 

cations (K, Mg, Ca, Na, by ammonium acetate extraction (64)), nitrate-N, sulfate-S (65), 204 

pH, buffer pH, cation exchange capacity (CEC, (66)), and percent cation saturation. 205 
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Pearson’s correlation tests were performed on all pairs of chemical parameters to test for 206 

autocorrelation and reduce the number of chemical variables used in our models. Pairs of 207 

variables that were highly correlated (R
2
 > 0.6, P < 0.05) were reduced to a single 208 

variable. The final suite of chemical analyses used after paring down correlated variables 209 

included percent organic matter, extractable phosphorus (Weak Bray), pH, extractable K, 210 

CEC, nitrate-N, and S.   211 

 212 

Bioinformatics and statistical analysis 213 

Paired end reads were joined then demultiplexed in QIIME (67) before quality 214 

filtering. Primers were removed using a custom script. UPARSE was used to quality filter 215 

and truncate sequences (416bp, EE 0.5) (68). Sequences were retained only if they had an 216 

identical duplicate in the database. Operational taxonomic units (OTUs) were clustered 217 

de novo at 97% similarity using USEARCH (69).  OTUs were checked for chimeras 218 

using the gold database in USEARCH. We used a custom script to format the UCLUST 219 

output for input into QIIME. To assign taxonomy, we used the repset from UPARSE in 220 

QIIME using greengenes version 13_5 (RDP classifier algorithm). Finally, we averaged 221 

100 rarefactions at a depth of 3790 counts per sample for each community inference 222 

(RNA or DNA) and each land type (forest, burned, or plantation) to achieve 223 

approximately equal sampling depth across comparisons, which excluded three samples 224 

in the DNA-inferred communities (two in the forest and one in the plantation). 225 

Statistical analyses were performed in the R platform (70). Canberra pairwise 226 

community distances were calculated using the vegdist function in the package ‘vegan’ 227 

(71). Canberra was chosen because of its incorporation of abundance data, sensitivity to 228 
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rare community members (72), and ability to detect ecological patterns even in instances 229 

of relatively low sampling extent (73). Rates of community spatial turnover were 230 

estimated by regressing pairwise community similarity (1- Canberra distance) against 231 

pairwise geographic distance between samples (74). We used a similar regression 232 

approach between community similarity and environmental similarity to estimate the 233 

relationship between community turnover and environmental turnover. Pairwise soil 234 

environmental similarity was calculated using 1- Gower dissimilarity (75, 76) using the 235 

daisy function in the package ‘cluster’ in R (77). Gower dissimilarity was chosen because 236 

it can incorporate and compare different classes or scales of data (78).  Mantel tests were 237 

used to test for significant associations between geographic, community, and 238 

environmental distance, and partial Mantel tests were used to estimate the relative 239 

contribution of environmental distance and geographic distance on variation in 240 

community dissimilarity in the ‘vegan’ package in R. Differences in average pairwise 241 

similarity across land types were assessed using a one-way ANOVA after verifying 242 

normal distribution of data. Post-hoc comparisons of group means were made using 243 

Tukey’s HSD. Distance-decay slopes were compared using the function diffslope 244 

(package ‘simba’) (79). This function employs a randomization approach across samples 245 

from each dataset and compares the difference in slope to the original configuration of 246 

samples. The p-values computed are the ratio between the number of cases where the 247 

differences in slope exceed the difference in slope of the initial configuration and the 248 

number of permutations (1000). We used the DESeq2 function (80) in R to identify 249 

differentially abundant taxa in one land type versus another. Low abundance samples 250 

were excluded prior to performing DESeq2 analysis. This function uses a generalized 251 
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linear model (family negative binomial) to estimate dispersion and log2-fold change in 252 

relative abundance of individual taxa. Taxa were deemed differentially abundant if they 253 

had a positive log2-fold change and Padj < 0.05. Figures were either created using base R 254 

or the ‘ggplot2’ package (81).  255 

We developed several community analysis approaches to investigate whether 256 

biotic invasion or range expansion contribute to biotic homogenization. Taxa found in a 257 

conversion land type (i.e. the burned or plantation site), but not the forest, were 258 

considered “newcomers”. We removed these taxa from the community matrix, equalized 259 

sampling extent (using rarefaction), and then re-ran analyses of pairwise community 260 

similarity levels and distance-decay (described above). The expectation was that if they 261 

contribute to homogenization (increased community similarity), then their removal 262 

should decrease pairwise community similarity levels. We took an analogous approach to 263 

ask if range expansion of forest-associated taxa (referred to as “bloomer” taxa) 264 

contributes to biotic homogenization. We identified taxa that were differentially abundant 265 

in converted sites relative to the forest site (described above), then removed them from 266 

the community matrix of the converted site and re-assessed community similarity levels 267 

and distance-decay. The expectation, as above, was that if these taxa contribute to 268 

homogenization, then their removal should render the communities less similar.  269 

 270 

Data availability 271 

DNA and cDNA sequence FASTA files, OTU tables, soil environmental data, as 272 

well as the R script for analysis will be available for download from 273 

10.6084/m9.figshare.5930434. 274 
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 275 

 276 

 277 

 278 

RESULTS 279 

Soil bacterial community structure differs by land use and community inference 280 

method 281 

 We first asked whether bacterial community structure differed by land use or by 282 

community inference method (i.e. RNA- or DNA-inference) by performing a 283 

PERMANOVA on OTU-level community Canberra distance, with land type and 284 

inference method as the dependent variables.  Both variables were significant (land type 285 

F2,73 = 3.67, R
2
 = 0.089, p < 0.001, community inference method F1,73 = 4.70, R

2
 = 0.057, 286 

p < 0.001), indicating that bacterial communities differ in membership across sites, and 287 

that RNA- and DNA-inferred communities differ in membership. These findings were 288 

also consistent at higher taxonomic levels (Supp. Figs 1, 2, & 3). The most pronounced 289 

differences at the phylum level were lower relative abundances of Acidobacteria in the 290 

burned site compared to the forest and plantation sites (burned site (DNA): 6.86 +/- 291 

0.78%, forest site (DNA): 11.07 +/- 1.73%, plantation site (DNA): 11.30 +/- 1.32%), and 292 

higher relative abundances of Actinobacteria in the burned relative to forest and 293 

plantation sites (burned site (DNA): 10.86 +/- 1.16 %, forest site (DNA): 7.69 +/- 1.40%, 294 

plantation site (DNA): 8.73 +/- 1.33%), and this trend was consistent whether 295 

communities were inferred via DNA or RNA (Supplemental Fig. 1). OTU-level richness 296 

also differed by land type (F2,70 = 8.26, p < 0.001), but not community inference method 297 
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(p=0.80), with the burned site being significantly lower in richness than the forest or 298 

plantation sites (Tukey’s HSD p < 0.01, for both comparisons, Supp. Fig. 4). 299 

 300 

 301 

Evidence of biotic homogenization following land use change 302 

 We asked whether soil prokaryotic communities in the sites undergoing 303 

agricultural conversion were on average more similar to each other, relative to the 304 

communities found in the forest. The RNA-inferred community showed a strong trend 305 

towards homogenization across sites (F2,219 = 23.33, p < 0.001, Fig. 2A), with average 306 

pairwise similarity progressively increasing over the chronosequence (1- Canberra 307 

dissimilarity: forest mean: 0.289 +/- 0.008, burned mean: 0.327 +/- 0.004, plantation 308 

mean: 0.340, +/- 0.004). The DNA-inferred community also differed in pairwise 309 

similarity across sites (F2,184 = 4.54, p = 0.012, Fig. 2B), but this trend was less 310 

pronounced, and similarity levels were only significantly higher in the burned site (1- 311 

Canberra dissimilarity: forest mean: 0.268 +/- 0.011, burned mean: 0.301 +/- 0.006, 312 

plantation mean: 0.288 +/- 0.006).  313 

While levels of average pairwise community similarity tended to increase across 314 

the chronosequence, the spatial signal of community similarity (i.e. spatial turnover) 315 

tended to either weaken or disappear. Both the RNA-inferred and DNA-inferred 316 

communities showed distance-decay relationships in the forest (Mantel rRNA = 0.846, p = 317 

0.003, slope = -0.027; Mantel rDNA= 0.697, p = 0.02, slope =  -0.028, Fig. 3A,B) where 318 

communities in close proximity tended to exhibit higher levels of similarity than 319 

communities farther apart. The RNA-inferred community showed no significant distance-320 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/496679doi: bioRxiv preprint 

https://doi.org/10.1101/496679
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

decay relationship in either the burned (Mantel r = 0.247, p = 0.127) or the plantation 321 

(Mantel r = 0.431, p = 0.063) sites. The DNA-inferred community showed a weak 322 

distance-decay relationship in the burned site with a three-fold decrease in slope from the 323 

forest (Mantel r = 0.474, p = 0.048, slope = -0.009), and no significant distance-decay 324 

relationship in the plantation (Mantel r = 0.232, p = 0.163). Thus, both windows into the 325 

community indicated shifts towards spatial homogenization, but this trend was more 326 

pronounced in the RNA-inferred fraction of the community. 327 

 328 

Soil environment gains variation, but loses spatial structure following conversion  329 

Soil chemical profiles exhibited a number of changes across land types including 330 

increases in pH and phosphorus and decreases in percent organic matter throughout the 331 

chronosequence, and elevated cation exchange capacity and levels of nitrate-N, sulfur, 332 

and potassium in the burned site (Supplementary Table 1). When we consider the 333 

differentiation of soil chemical profiles within land types, we see that levels of average 334 

environmental pairwise similarity (1-Gower distance) decrease from the forest to the 335 

burned and plantation sites (F2,231 = 4.22, p = 0.016, Supplementary Fig. 5), indicating 336 

that soils within a land type are more dissimilar from one another. Similar to the spatial 337 

structure of the communities, the spatial structure of environmental variation also 338 

changes across the chronosequence. Forest soils show a significant environmental 339 

distance-decay relationship (Mantel r = 0.729, p = 0.01, slope = -0.052), where samples 340 

closer in proximity tend to be more similar in environmental conditions. This relationship 341 

was not significant in the burned site (Mantel r = 0.338, p = 0.068), and was 342 

comparatively weaker in the plantation relative to the forest (Mantel r = 0.465, p = 0.01) 343 
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and showed a shallower distance-decay slope (slope = -0.027, difference in slope = -344 

0.025, p = 0.001). Thus burning and planting seem to introduce environmental 345 

heterogeneity, but this heterogeneity tends to show little to no spatial structure.  346 

 347 

Environmental heterogeneity continues to influence RNA-inferred (and not DNA-348 

inferred) community turnover, despite loss of spatial structure 349 

 We asked whether the loss of spatial structure of the soil chemical environment 350 

could be contributing to the loss of spatial turnover in the microbial community. To do 351 

so, we regressed pairwise community similarity (1-Canberra distance) against pairwise 352 

environmental similarity (1-Gower distance) for both the RNA- and DNA-inferred 353 

communities. In the forest site, both RNA- and DNA-inferred community similarity 354 

levels were positively correlated with environmental similarity (Fig. 4A, B), even after 355 

accounting for differences due to geographic distance (Table 1), suggesting samples with 356 

similar environmental (chemical) conditions tended to harbor similar communities. When 357 

we look at the burned and plantation sites, however, this relationship persists for the 358 

RNA-inferred community, but disappears for the DNA-inferred community (Table 1), 359 

suggesting that the spatial homogenization of the DNA-inferred community may be 360 

driven by other mechanisms besides soil chemical homogenization. Thus as 361 

environmental heterogeneity loses its spatial structure, the RNA-inferred community 362 

similarity levels continue to vary with this heterogeneity and lose spatial structure, while 363 

the DNA-inferred community becomes decoupled from levels of environmental variation. 364 

 365 

Biotic invasions do not contribute to homogenization 366 
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We next tested the hypothesis that the introduction of “newcomer” taxa (i.e. those 367 

that were not previously present) was driving community homogenization. 390 of the 368 

1545 DNA-inferred community members in the burned site (25.2% of OTUs, 369 

representing on average 1.8 +/- 1.1% of the community) were not detected in the forest 370 

site. 570 of the 1804 DNA-inferred community members in the plantation site (31.7% of 371 

OTUs, representing on average 1.8 +/- 0.8% of the community) were not detected in the 372 

forest site. These taxa were not particularly geographically widespread (average 373 

occurrence frequencyBurn newcomers= 0.23 +/- 0.010, frequencyPlantation newcomers= 0.25 +/- 374 

0.010). Moreover, only 53.6% of the newcomer taxa in the burned site DNA-inferred 375 

community were detected in the RNA fraction of that site, and 63.5% of the newcomer 376 

taxa in the plantation site DNA-inferred community were detected in the RNA fraction of 377 

that site, suggesting that not all newcomers may become established. We tested whether 378 

the newcomer taxa were driving higher estimates of community similarity by removing 379 

them from the community matrix, equalizing sampling extent across samples (using 380 

rarefaction), then re-calculating community similarity (1-Canberra distance). Our 381 

expectation was that the removal of newcomers from the community matrix would render 382 

communities more dissimilar (i.e. less homogenized). This was not the case. Removal of 383 

the newcomer taxa from the burned site community matrices actually increased 384 

community similarity of the DNA-inferred community (0.322 +/- 0.006 vs 0.301 +/- 385 

0.006). Removal of newcomers also did not render a significant spatial signal for the 386 

DNA-inferred communities (Mantelno newcomers r = 0.407, p = 0.074). This was also the 387 

case for the plantation where the removal of the newcomer taxa increased community 388 

similarity for the DNA-inferred communities (0.322 +/- 0.006 vs 0.288 +/- 0.006), and 389 
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left no spatial signal (Mantel no newcomers r = 0.220, p = 0.159). Thus we have no evidence 390 

to suggest that the homogenization of the DNA-inferred community is driven by the 391 

arrival of newcomer taxa. 392 

We found similar results when we performed these same analyses on the RNA-393 

inferred communities. Newcomer taxa comprised a similarly small proportion of the 394 

communities in the burned (2.2 +/- 1.8%) and plantation sites (2.1 +/- 0.79%). These taxa 395 

were also not particularly widespread, with average occurrence frequencies in the burned 396 

site of 0.26 +/- 0.16 and 0.25 +/- 0.01 in the plantation site. Similar to the DNA-inferred 397 

community, the removal of newcomer taxa from the RNA-inferred community rendered 398 

higher levels of average pairwise similarity in the burned site community (0.347 +/- 399 

0.004) and the plantation site community (0.372 +/- 0.004), suggesting that their 400 

abundances are not likely increasing levels of community similarity. Lastly, the removal 401 

of newcomers from the RNA-inferred community did not render significant relationships 402 

with geographic distance (Burned site: Mantel no newcomers r = 0.231, p = 0.151, Plantation 403 

site: Mantel no newcomers r = 0.452, p = 0.07), indicating that they likely do not play a role in 404 

community spatial homogenization. Hence we have no evidence to support the 405 

hypothesis that increased levels of biotic homogenization are being driven by the arrival 406 

of newcomer taxa, and in fact, it appears that the newcomers may actually contribute 407 

variation to the communities. 408 

 409 

Range expansion of forest-associated taxa drive loss of community variation   410 

 Because soil bacterial communities in the forest tended to show high taxonomic 411 

overlap with the burned and plantation sites, we asked whether homogenization might 412 
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rather be driven by changes to the relative abundance of certain taxa. We used DESeq2 –413 

a generalized linear model with a negative binomial distribution- to identify “bloomer” 414 

taxa (i.e. those whose relative abundance significantly increased by land type). This 415 

approach identified 127 taxa that were differentially enriched in the DNA-inferred 416 

communities of the burned site relative to the forest (comprising on average 23.85 +/- 417 

9.5% of the DNA-inferred burned site community, and 6.43 +/- 2.6% of the DNA-418 

inferred forest site community), and 192 taxa that were enriched in the plantation relative 419 

to the forest (comprising on average 26.89 +/- 10.3% of the DNA-inferred plantation site 420 

community, and 5.45 +/- 2.2% of the DNA-inferred forest site community). We removed 421 

these bloomer taxa from the community matrices, equalized sampling extent across 422 

samples (as described above), and re-calculated pairwise similarity levels within land 423 

types. The removal of these taxa from the burned site DNA-inferred community matrix 424 

rendered the communities less similar (0.268 +/- 0.005 vs 0.301 +/- 0.006, F2,196 = 6.95, p 425 

= 0.001) and indistinguishable from the forest levels of similarity (0.268 +/- 0.011, 426 

Tukey’s HSD padj = 0.999), indicating that their relative abundances are indeed 427 

contributing to the increased pairwise similarity of these communities. This was also the 428 

case in the plantation, where the removal of the bloomer taxa from the DNA-inferred 429 

community matrix also rendered the communities less similar (0.253 +/- 0.005 vs 0.288 430 

+/- 0.006, F2,184 = 6.15, p = 0.003) and indistinguishable from the forest levels of 431 

similarity (0.268 +/- 0.011, Tukey’s HSD padj = 0.300), further supporting the idea that 432 

these taxa are driving the increase in levels of pairwise similarity in impacted sites. 433 

Beyond decreasing levels of community variation, the bloomer taxa also collectively 434 

showed a wider spatial distribution in the sites in which they were more abundant (Burn: 435 
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freqburn bloomers in for = 0.597 +/- 0.034,  freqburn bloomers in burn = 0.845 +/- 0.020; Plantation: 436 

freqplantation bloomers in for = 0.484 +/- 0.027,  freqplantation bloomers in plantation = 0.830 +/- 0.014). 437 

When we test whether these taxa are driving the changes to spatial turnover, however, we 438 

do not detect a significant spatial signal for the burned (Mantel r = 0.345, p = 0.08) or 439 

plantation (Mantel r = 0.185, p = 0.194) sites, indicating that the weakening or loss of 440 

community spatial structure may be driven by additional factors.  441 

 The same suite of analyses yielded similar findings for the RNA-inferred 442 

communities. Bloomer taxa in the RNA-inferred community comprised on average 35.6 443 

+/- 14.2% of the burned site RNA-inferred community (6.92 +/- 4.0% of the forest site 444 

community), and 37.54 +/- 10.6% of the plantation site RNA-inferred community (9.96 445 

+/- 4.1% of the forest site community). As described above, we tested whether the 446 

bloomer taxa were contributing to the increased levels of pairwise similarity of the 447 

burned and plantation site. Similar to the DNA-inferred findings, the removal of bloomer 448 

taxa from the burned site RNA-inferred community matrix rendered the communities less 449 

similar (0.306 +/- 0.004 vs 0.327 +/- 0.003, F2,219 = 12.95, p < 0.001) and 450 

indistinguishable from the forest levels of similarity (0.290 +/- 0.008, Tukey’s HSD padj = 451 

0.124), indicating that their relative abundances contribute to the increased pairwise 452 

similarity of these communities. This was also the case in the plantation, where the 453 

removal of the bloomer taxa from the RNA-inferred community matrix rendered the 454 

communities less similar (0.311+/- 0.004 vs 0.340 +/- 0.004, F2,219 = 22.96, p < 0.001), 455 

but in this case similarity levels were still distinguishable from the forest levels of 456 

similarity (0.290 +/- 0.008, Tukey’s HSD padj = 0.029). The RNA-inferred bloomer taxa 457 

also collectively showed a wider spatial distribution in the sites in which they were more 458 
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abundant (Burn: freqburn bloomers in for = 0.566 +/- 0.04,  freqburn bloomers in burn = 0.860 +/- 459 

0.022; Plantation: freqplantation bloomers in for = 0.506 +/- 0.03,  freqplantation bloomers in plantation = 460 

0.854 +/- 0.015), but when we test whether these taxa are driving the changes to spatial 461 

turnover we do not detect a significant spatial signal for the burned (Mantel r = 0.006, p = 462 

0.474) or plantation (Mantel r = 0.413, p = 0.082) sites following their removal. Thus, the 463 

identification of bloomer taxa in the DNA- and RNA-inferred communities has helped to 464 

identify the fraction of the community that is contributing to higher levels of community 465 

pairwise similarity. 466 

 467 

DISCUSSION 468 

 Conversion of tropical rainforest to agriculture is one of the leading drivers of 469 

biodiversity loss and biotic homogenization worldwide (1–4). Gaining a better 470 

understanding of the mechanisms driving biotic homogenization is a priority if we are to 471 

predict or mitigate changes to communities or their ecosystem functions (8, 9). We used a 472 

spatially explicit design across a chronosequence of land use change in the Congo Basin 473 

to investigate mechanisms of community homogenization. We used two windows into the 474 

structure of soil prokaryotic communities: 1) 16S rRNA (RNA) community inference – 475 

which should enrich for the active fraction of the community, and 2) 16S rRNA gene 476 

(DNA) community inference – which includes both active and inactive members, as well 477 

as “relic” DNA from dead cells (82, 83). Our results fit into a broader context of other 478 

studies that emphasize the importance of using RNA alongside DNA to investigate the 479 

impacts of environmental change on microbial communities (34, 35).  480 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/496679doi: bioRxiv preprint 

https://doi.org/10.1101/496679
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

Ecosystems can develop spatially autocorrelated environmental conditions (i.e. a 481 

distance-decay in environmental similarity) through a combination of localized physical 482 

forces or community processes (84). Slash-and-burn conversion in our system appears to 483 

disrupt this spatial structure, while introducing variation. This form of conversion is a 484 

relatively uniform type of disturbance, in that all the aboveground vegetation gets 485 

removed and burned across the landscape, which likely drives the loss of spatial structure 486 

of the soil environment. The intensity of fire across a landscape, however, is often patchy, 487 

depending on certain local factors such as, e.g., the amount of biomass, or levels of 488 

moisture. Thus this form of disturbance could introduce environmental variation that 489 

shows little coherent spatial structure. This insight is important when we consider the 490 

relationship between community structure and the environment.  491 

Communities can be homogenized by two main mechanisms: 1) the 492 

homogenization of the environment driving convergence of communities (12, 13), or 2) 493 

increased biotic mixing, driven by the breakdown of dispersal barriers and/or the range 494 

expansion of previously present taxa (6, 10, 14, 15, 85, 86). If community 495 

homogenization is driven by environmental homogenization, community turnover should 496 

continue to track environmental turnover, even when spatial structure is lost. We see this 497 

in our data when we infer community structure using RNA, but not DNA, suggesting that 498 

environmental spatial homogenization is likely a strong driver of the spatial 499 

homogenization of the RNA-inferred community. The decoupling of responses in the 500 

RNA- and DNA-inferred communities could represent differing levels of contribution 501 

from homogenization mechanisms. Our results suggest that taxa that are enriched in the 502 

burned or plantation sites relative to the forest are contributing to the loss of community 503 
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variation (i.e. average pairwise dissimilarity) in those sites. Those taxa also collectively 504 

show wider spatial distributions (i.e. higher occurrence frequencies) in the disturbed sites 505 

relative to the forest. These findings are consistent with the idea of a range expansion, 506 

and the fact that we saw this trend in both the RNA- and DNA-inferred communities 507 

suggests that identifying this type of homogenization mechanism may not require RNA-508 

based community inference. A similar pattern has been observed in Amazonian sites that 509 

have undergone conversion to cattle pasture, where prokaryotic taxa shared across forest 510 

and agricultural sites tended to be more widespread in the agricultural sites (6), and 511 

fungal communities in agricultural sites tended to be enriched in generalist taxa that were 512 

more widespread (15). Thus by distinguishing communities using RNA and DNA, we see 513 

that only part of the community seems to be responding to the environmental changes 514 

associated with conversion, while communities inferred via both methods appear be 515 

shaped by biotic factors such as the breakdown of dispersal barriers and/or the range 516 

expansion of certain taxa. 517 

The use of 16S rRNA as a proxy for activity has been the subject of recent 518 

controversy. Of particular concern are two main issues: the assignment of false positives 519 

(i.e. dormant taxa misidentified as active (28)), and the inaccurate assessment of activity 520 

levels (e.g. driven by comparing ratios of the relative abundance of taxa in the RNA- vs 521 

DNA-inferred communities (29–32)). The ribosomal content of a community, however, 522 

should be at least enriched with the taxa that are active and/or growing, and there are a 523 

number of studies that support the notion that rRNA-inference represents activity.  For 524 

example, if the active fraction of a community is more likely to be interacting with the 525 

environment than the dormant fraction (which is likely avoiding the current 526 
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environmental conditions), then we would expect a stronger correspondence between 527 

environmental conditions and community turnover in a community that is enriched in 528 

active taxa (19). Indeed this has been shown both along a marine environmental gradient 529 

(33) and a grassland soil system experiencing re-wetting following drought (34). It has 530 

also been shown that N-addition to forest soil elicits a stronger response in communities 531 

inferred from 16S rRNA than rDNA (35). Our results contribute to this narrative by 532 

showing that RNA-inferred community turnover persistently tracks environmental 533 

turnover, while this association is lost when inferring only with DNA. We also see that 534 

the RNA-inferred community shows a more pronounced loss of community variation and 535 

spatial structure than the DNA-inferred community. Thus while rRNA inference may 536 

have certain limitations, our results, alongside others, suggest that this method should be 537 

enriching for active taxa, and this can have important implications for both qualitative 538 

and quantitative conclusions, especially in systems with strong environmental gradients. 539 

Tropical ecosystems are characterized by immense heterogeneity, and this could 540 

make the task of detecting general responses to land use change difficult. Two important 541 

steps towards gaining a better understanding of common microbial responses to tropical 542 

land use change include 1) expanding the breadth (i.e. the geographic representation) of 543 

regions sampled, and 2) increasing the resolution of our study systems (e.g. by including 544 

more sites along the conversion continuum). Our study allows us to ask whether 545 

commonalities exist between our findings and those reported from other tropical 546 

ecosystems undergoing land use change. The changes we see to the spatial structuring of 547 

communities (i.e. a diminished distance-decay relationship) are consistent with responses 548 

reported from the Amazon Basin (6, 25). While our study was not replicated at the land 549 
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type level-restricting our level of inference regarding how representative our findings are 550 

of other Congo Basin areas- our results at least suggest that a diminished rate of 551 

community distance-decay may be common across tropical areas facing a similar threat. 552 

The method of conversion may be driving this similarity in microbial community 553 

response. The predominant method for converting tropical rainforests to agriculture is the 554 

use of slash-and-burn techniques (87). By including a recently slash-and-burned site in 555 

our design, we have gained a rare glimpse into the impacts directly following the initial 556 

step in agricultural conversion. Already at this stage we see that the loss of community 557 

spatial structure (i.e. distance-decay) has occurred. What this suggests is that, at least 558 

initially, spatial homogenization can be driven by the act of conversion, rather than other 559 

management practices such as planting or crop choice. Thus by targeting a region that has 560 

otherwise not been sampled, and increasing the resolution by which we survey the 561 

conversion process, we have gained new insights that may help to elucidate common 562 

community responses to tropical land use change.   563 

Considering the rate and magnitude by which tropical rainforests are being 564 

converted to agriculture (4), gaining a mechanistic understanding of community 565 

responses to environmental change is imperative (9). Future efforts could investigate 566 

whether the functional potential (i.e. gene content) or trait distributions of a community 567 

are similarly impacted by land use change (37, 88), or whether ecosystem functions (e.g. 568 

those involved in nutrient cycling or greenhouse gas emissions) are impacted by 569 

community homogenization. Our work highlights the importance of distinguishing 570 

between metabolic states of microbial community members, if we are to better 571 

understand community responses to environmental change. Lastly, our work 572 
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demonstrates that trends in our system are consistent with those reported from 573 

geographically disparate areas (e.g. the Amazon Basin), suggesting that despite large 574 

differences between these areas, land use change may drive predictable community 575 

changes.  576 
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 851 

 852 

FIGURE LEGENDS 853 

Table 1: The influence of environmental similarity and geographic distance on RNA-854 

inferred and DNA-inferred prokaryotic communities. Partial mantel test summary 855 

statistics showing 1) the effect of environmental similarity after removing the effect of 856 

geographic distance (Env. Simil.), and 2) the effect of geographic distance after removing 857 

the effect of environmental similarity (Geog. Dist.). P values estimated from 1000 858 

permutations. 859 

 
Env. Simil.  

 

Geog. 
Dist.  

 

 
r P r P 

Forest RNA 0.56 0.022 0.409 0.088 
Burned RNA 0.491 0.008 0.05 0.392 

Plantation RNA 0.57 0.001 0.082 0.284 

     Forest DNA 0.536 0.026 0.168 0.208 
Burned DNA 0.237 0.174 0.338 0.07 

Plantation DNA 0.17 0.194 0.124 0.267 
 860 
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 861 

Figure 1: Sampling design across Gabonese chronosequence of land use change. A) 862 

Satellite image of the Congo Basin with location of sampling sites circled. B) Images of 863 

field sites from which samples were taken. C) Timeline of land use change. Bar width is 864 

proportional to the amount of time a site typically spends in each stage. Lines indicate 865 

when samples were collected. D) Spatially explicit nested sampling scheme used in each 866 

land type. Samples were taken at the corners of each square.  867 

 868 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/496679doi: bioRxiv preprint 

https://doi.org/10.1101/496679
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

 869 

Fig. 2: Average pairwise similarity (1 – Canberra distance) of A) the RNA-inferred 870 

community, and B) the DNA-inferred community, across the forest, burned, and 871 

plantation sites. F and p statistics based on one-way ANOVA. Different letters 872 

correspond to significantly different group means as determined by Tukey’s HSD p < 873 

0.05.  874 
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 881 

Fig. 3: Change (or loss) of distance-decay of community similarity for A) RNA-inferred 882 

communities, and B) DNA-inferred communities. Trend lines were drawn only for 883 

significant (Mantel p < 0.05) associations.  884 
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 893 

Fig. 4: The relationship between community similarity and environmental similarity (1 – 894 

Gower dissimilarity) for A) RNA-inferred communities, and B) DNA-inferred 895 

communities. Trend lines were only drawn for significant (Mantel p < 0.05) associations.  896 
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