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ABSTRACT

Methods for direct imputation of summary statistics, e.g. our group’s DISTMIX tool, were
shown to be practically as accurate as genotype imputation method, while incurring
orders of magnitude lower computational burden. Given that such imputation needs a
precise estimation of linkage disequilibrium (LD) for mixed ethnicity (cosmopolitan)
cohorts, there is a great need i) for much larger and diverse panels and ii) to estimate the
ethnic composition of the cohort, e.g. the weights for subpopulations in the diverse panel.
Unfortunately, DISTMIX and its main competitors are largely using a very small reference
panel of ~2,500 subject coming from the 1000 Genome (1KG) Project. DISTMIX

computed the ethnic weights of a cohort based on in-cohort allele frequency (AF)
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estimates. Unfortunately, due to privacy issues, most genome wide association studies
(GWAS) largely stopped providing cohort AFs. Thus, to accurately estimate the LD
needed for an exhaustive analysis of cosmopolitan cohorts, we propose DISTMIX2. When
compared to DISTMIX and its competitors, the proposed method adds a i) much larger
and diverse reference panel and ii) novel estimation for weights of ethnic mixture based
solely on Z-scores (when AFs not available). To build a larger and more diverse reference
panel, we use the publicly and privately available data to obtain a 33,000 (33K) panel
which includes ~11K Han Chinese. The proposed method of estimating ethnic weights
adequately controls the Type | error rates, especially when the subpopulations in the
study are well represented in the reference panel. However, using naive pre-estimated
weights incurs a much higher false positive rate. We apply DISTMIX2 to the GWAS
summary statistics from the Psychiatric Genetic Consortium (PGC). Our method which
uncover signals in numerous new regions, with most of these findings coming from the

rarer variants.

Author summary

By predicting summary statistics at unmeasured genetic variants, direct imputation is a
promising method for enhancing the resolution of genetic studies. However, for a better
prediction of statistics at unmeasured variants, there is a need to address two urgent
issues. First, there is a need for very large and diverse reference panels that greatly
improve on the mostly European ones having ~2,500 (2.5K) subjects. We address this
shortcoming by building a large and diverse reference panel (33K subjects, ~20K

Europeans and ~11K Asians). Second, there is a need to estimate the ethnic composition
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of the study cohort, even when they do not report in-cohort allele frequency for genetic
variants. We solve this issue by using a novel method that uses only Z-scores, which are
easily computed from reported summary statistics. Our method that implements the two
above solutions i) adequately controls the false positive rate and ii) provides much
improved resolution when compared to methods based on older reference panels.
Practical application to reported summary statistics from studies of psychiatric disorders
greatly increase the number of regions harboring signals. Most of these findings are

associated with rarer variants that could not be robustly assessed using smaller panels.

Introduction

Genotype imputation [1-4] methods are commonly used to increase the genomic
resolution for large-scale multi-ethnic meta-analyses [5-9] by predicting genotypes at
unmeasured markers based on cosmopolitan reference panels, e.g. 1000 Genomes
(1KG) [10]. However, genotypic imputation is computationally burdensome and require
access to subject level genetic data, which is harder and slower to get than summary

statistics.

To overcome these limitations researchers proposed summary statistics based
imputation methods, e.g. DIST [11] and ImpG [12]. These methods can directly impute
summary statistics (two-tailed Z-scores) for unmeasured SNPs from genome-wide
association studies (GWASS) or called variants from sequencing studies. The methods
were shown to i) substantially reduce the computational burden and ii) be practically as

accurate as commonly used genotype imputation methods. These methods were
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successfully applied in gene-level joint testing of functional variants (Lee et al., 2014) and
functional enrichment analyses (Pickrell, 2014). However, these first direct imputation

methods were only amenable for imputation in ethnically homogeneous cohorts.

To accommodate cosmopolitan cohorts, DIST method was extended [13] to Directly
Imputing summary Statistics for unmeasured SNPs from Mixed ethnicity cohorts
(DISTMIX). It i) predicted a study’s proportions (weights) of ethnicities from a multi-ethnic
reference panel based only on cohort allele frequencies (AFs) for (common) Single
Nucleotide Polymorphisms (SNPs) from the studied cohort or taking prespecified ethnic
weights, ii) computed ethnicity-weighted correlation matrix based on the
estimated/prespecified weights and genotypes of ethnicities from the reference panel
and, then, iii) using the weighted correlation matrix for accurate imputation.
Unfortunately, lately two issues occurred in practical applications of DISTMIX. First, due
to privacy concerns [14], cohort AFs are lately only rarely provided. Second, similar to its
competitors, the method relied on 1KG reference panel which was both small and
European centric, while many meta-analyses have non-trivial fractions of non-European
subjects [6, 15]. Since its publishing larger reference cohorts were sequenced and
published, e.g. Haplotype Reference Consortium (HRC) [16] and CONVERGE [5].
CONVERGE complements nicely HRC due to consisting of >11K Han Chines subjects.
Consequently, in DISTMIX2, we address the above shortcomings by including two critical
components. First, we provide a novel method to accurately estimate ethnic weights of
the cohort which uses only summary statistics, e.g. Z-scores. Second, we build a larger,

more diverse reference panel with 33K subjects, which combines the subjects from the
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publicly available part of HRC with CONVERGE. Subsequently, we apply the method to

Psychiatric Genetics Consortium (PGC) data and uncover many possible new signals.

Results

For lllumina 1M SNPs [17] that were masked, and then imputed (see Method evaluation
section), DISTMIX2 with our novel automatic ethnic weight detection (see Method
section), controls the false positive rates at or below nominal threshold, even at very low
type | error, e.g. 1076 (Text S1, Fig S1in Sl). R? between true values and estimated one
is practically above 0.92 for our five simulated mixed-cohort scenarios (Text S1, Figs S2-
S6 in Sl). Also, DISTMIX2 imputed statistics have very good mean squared error (RMS)
(Text S1, Figs S7-S11 in SI). For the above three measurements (size of the test, R? and
RMS) the setting of 250Kb for the length of the predicted window was the least precise,

while 500Kb and 1000Kb had practically identical precision.

For rare and very rare variants, the size of the test is up to 300-1000X higher than the
nominal one and even up to 5000-10000X for cohorts that have large fractions of
subpopulations that are underrepresented in the reference panel (e.g. Americans,
Africans etc.), especially for the setting Minor Allele Frequency (MAF), 0.05%<MAF<0.5%

and Information (Info), Info<0.2 (Text S1, Figures S12-S47 in Sl).

For the “nullified” data sets, e.g. those obtained from real data sets by substituting the
study Z-scores by their expected quantile under the null hypothesis (H,) (Method

evaluation section and Text S1, Figs S42-S48 in Sl), DISTMIX2 controls reasonably well
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the size of the test - up to 20X higher than the nominal rate (even for SNPs with low MAFs
and low Info). The minimum GWAS p-values for the nullified data sets that were imputed
ranged between 8.13+ 1077 and 1.11x 10711 . By fitting a normal distribution to
—log,,(minimum p-values), we estimate the mean to be 8.655 and the standard deviation
to be 1.172. Using as criterion the conservative three standard deviations above the
mean, we obtain from these realistic data a 12.17 upper bound for the —log;, (minimum
p-values). l.e. in DISTMIX2 practical applications [Psychiatric Genetics Consortium
(PGC) traits], a conservative threshold for significance is 10712, regardless of imputation
Info and SNP MAF. Consequently, in all applied analyses in this paper we add this very
stringent threshold for DISTMIX2 imputed summary statistics. [Using as criterion the even
more conservative five standard deviations above the mean (the very conservative

Chebyshev inequality for the upper bound of the p-value of exceeding this threshold=

~ = 0.04) , we obtain a 14.515 upper bound for the —log,, (minimum p-values), i.e. a

52

super-conservative significance threshold of 3 x 107> ]

For the practical applications to PGC traits (Table 1), we construct Manhattan plots for all
autosome chromosomes (1-22) and, individually, for chromosomes harboring novel
signals (defined as imputed SNPs with statistically significant p-values that are at least
250Kb away from the reported GWAS signal) (Fig. 1-2, Text S2, Fig. S49-S57 in Sl). For
all Manhattan plots we draw two dash lines denoting statistical significance signals. The
red line is the default genome-wide threshold of p =5« 1078, which is applicable to
signals from measured SNPs and common imputed SNPs with high Info values. The

purple line at p = 1072 is the threshold to be used for rare/very rare variants and/or
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variants with low information; it corresponds to the above mentioned upper bound for
nullified data. As an illustration, we present Schizophrenia Manhattan plot for all

chromosomes and only for chromosome 12 (Fig. 1 and Fig. 2).

Table 1. Real dataset description.

Trait Trait Abbreviation Dataset Description
Schizophrenia SCz PGC2 SCZ [6]
Attention Deficit Hyperactivity Disorder ADHD PGC ADHD [18]
Autism AUT PGC AUT [19]
Bipolar BIP PGC BIP [20]
Eating Disorders EAT PGC EAT [21]
Major depression disorder MDD PGC MDD [22]

These applications of DISTMIX2 to PGC data sets suggests the existence of numerous
new signals, most associated with rare and very rare SNPs (see Table 2) (for all signals
see SE, Excel file). For instance in chromosome 12 for PGC schizophrenia (rs143374),
with MAF=0.0007, Info=0.245 and p-value=9.26 * 10~*% the magnitude of the p-value
suggest that this signal is likely not to be an artifact (above the more stringent threshold),
in chromosome 11 for ADHD (rs5681132) where the MAF=0.0004, the Info= 0.018 and p-
value=7.40 * 10716 (above the more stringent threshold), in chromosome 22 for AUT
(rs1380986), with MAF=0.0006, Info=0.498 and p-value=8.01 * 10~1% (above the more
stringent threshold), in chromosome 7 for BIP (rs76350051), with MAF= 0.0004
Info=0.04 and p-value=2.47 * 10737 (above the more stringent threshold), in chromosome
8 for EAT (rs78958069), with MAF=0.0002, Info=0.005 and p-value=4.17 x 1019 (above
the default threshold) and in chromosome 12 for MDD (rs567868887), with MAF=0.0009,

Info=0.28 and p-value=1.57 = 10~>> (above the more stringent threshold).
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When imputing in parallel SNPs regions of 40 Mbp, the analysis of each data set had a

running time of less than 5 days on a cluster node with 4x Intel Xeon 6 core 2.67 GHz.

Table 2. Best three signals for each PGC dataset. Bolded red entries correspond to the most stringent threshold of p < 3 *

1075, not bolded red to the second most conservative threshold 3 * 107*% < p < 10~'?2and not bolded blue 1072 < p < 5 =

1078,
Trait rs_id chr bp p-val Info MAF
ADHD rs568113293 11 54,899,533 7.40 « 10716 0.0189 0.00049
rs544637819 3 15,310,737 1.78 % 1071* 0.1543 0.00171
chr6:30450452 6 30,450,452 6.44 % 10713 0.0698 0.00151
AUT rs138098629 22 36,584,165 8.01x1071° 0.4980 0.00063
BIP rs76350051 7 64,164,245 2.42 % 10737 0.0417 0.00046
rs138549126 3 52,592,843 6.65 1016 0.073 0.00052
rs149257260 15 71,600,045 1.40 + 10715 0.4246 0.00017
EAT rs78958069 8 43,539,021 417 10710 0.005 0.0002
rs144485994 20 4,963,320 5.18 x107° 0.15 0.0001
MDD rs567868887 12 31,931,432 1.57 + 10758 0.2800 0.00098
rs112241719 11 111,514,969 8.14 % 10™%5 0.4900 0.00025
rs182264017 1 188,992,506 5.05 * 1074+ 0.2775 0.00035
scz rs559199817 3 17,267,731 1.30 10787 0.0213 0.00073
rs143337489 12 11,2089,686 9.26 + 1074¢ 0.2464 0.00019
rs193224736 16 8,593,132 3.79 10721 0.28476 0.00018
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Fig. 1 Manhattan plot for chromosomes 1-22 for SCZ. e denotes reported signals from the original GWAS and the remain symbols and colors denote
DISTMIX2 imputed signals. Among imputed signals blue denotes info<0.2, red denotes 0.2<info<0.4, cyan denotes 0.4<info<0.6, brown denotes

0.6<inf0<0.8, , 0 denotes MAF <0.05%, A denotes 0.05%<MAF<0.5%, V denotes 0.5%<MAF<1%, + denotes 1%<MAF<2%, ¢ denotes
2%<MAF<5%, x denotes 5%<MAF<10% and 3% denotes 10%<MAF<50%. The red line is the default genome-wide threshold of p = 5108, which is

applicable common SNPs with moderate to large Info values. The purple line at p = 10712 s the threshold to be used for rare and/or low Info variants.
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Method evaluation

To estimate the accuracy and false positive rates of DISTMIX2, for five different
cosmopolitan studies scenarios we simulated (under H,: no association between trait and
variants) 100 cosmopolitan cohorts of 10,000 subjects for autosomal SNPs in llumina 1M
panel [13] using 1KG haplotype patterns (Text S1, Table S1 in Sl). The subject
phenotypes were simulated independent of genotypes as a random Gaussian sample.
SNP phenotype-genotype association summary statistics were computed from a

correlation test.

The accuracy of the procedure was assessed by masking 5% of the SNPs (Experiment
1, Table 3). Subsequently, the true values and the imputed values at these masked SNPs
were used to computed i) their correlation and ii) the mean squared error of the
imputation. We assess these measures at four different levels of MAF. To compare the
Type | error rate of our proposed method, DISTMIX2, we estimated the relative Type |
error (the empirical divided by the nominal Type | error rate) as a function of the nominal
Type | error rate, for the same four MAF levels for all the cohorts. Finally, for all the
combinations between MAFs and Info we performed DISTMIX2 analyses with three
different parameters for the length of the predicted window (the length of the predicted

window is also the minimum number of the measured SNPs).

Table 3. Experiment 1 parameter settings.

MAF levels Panel Window length
MAF<5% 1K 250Kb
5% <MAF< 10% 33K 500Kb

10%<MAF<20% 1000Kb
20%<MAF<50%
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To assess the reliability of DISTMIX2 results for rare and very rare variants, for the above
cohorts, we also estimate the size of the test for DISTMIX2 for very low MAFs (rare
variants), (Experiment 2, Table 4). The size of the test is assessing for 5 imputation Info

intervals and 6 MAF intervals.

Table 4. Experiment 2 variable parameter settings. Fixed parameters for this experiment: 33K panel and 500Kb window

length.
MAF levels Info levels
0.05% <MAF< 0.5% Info< 20%
0.5% <MAF< 1% 20%<Info<40%
1% <MAF<2% 40%<Info<60%
2% <MAF< 5% 60%<Info<80%
5% <MAF< 10% Info>80%
10% <MAF< 50%

However, given that 1) the simulated cohorts might not reflect real data and 2) these data
sets do not have the sample sizes needed to detect very rare SNPs (e.g. MAFs < 0.05%),
which is important for DISTMIX2 inference in practical applications, we used real data
sets to create so-called nullified data sets (Experiment 3, Table 5). These nullified data
are based on 20-real and mostly Caucasian GWAS SCZ, ADHD, AUT, MDD and sixteen
GWAS meta-analyses that are not yet publicly available. This approximation for null data
is obtained by substituting the expected quantile of the Gaussian distribution for the
(ordered) Z-score (see also S4 in SlI). We note that, while the quantile estimation adjusts
the noncentrality parameter (enrichment) of the statistics to zero, it does not change the
order of the statistics. One effect of this fact is that imputing statistics within/near the peak
signals in original GWASs might result in somewhat increased false positive rates and,

thus, the genome-wide false positive rates might appear to be moderately inflated. Thus,
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adjusting imputed statistics post-factum for the false positive increase observed in these

nullified data is likely to yield conservative inference.

Table 5. Experiment 3 variable parameter settings. Fixed parameters for this experiment: 33K panel and 500Kb window

length.
MAF levels Info levels
MAF< 0.05% Info< 20%
0.05% <MAF< 0.5% 20% <Info< 40%
0.5% <MAF< 1% 40% <Info< 60%
1% <MAF< 2% 60% <Info< 80%
2% <MAF< 5% Info> 80%
5% <MAF< 10%
10% <MAF< 50%

Practical Applications

We applied DISTMIX2 to some of the psychiatric summary datasets available for
download from Psychiatric Genetics Consortium (PGC- http://www.med.unc.edu/pgc/),
i.e. schizophrenia (SCZ), attention deficit hyperactive disorder (ADHD), autism (AUT),
eating disorder (EAT), bipolar (BIP) disorder and major depressive disorder (MDD) (see
Table 1 for references). Based on the results from simulations under the null hypothesis
(Experiment 1), for all these practical applications we used a) the larger 33K size panel
and b) a length of the predicted of 500Kb.To improve the imputation of the unmeasured
SNPs for SCZ, we denote as “measured SNPs” only those with very high information
(Info>0.997). For the ADHD, AUT, BIP and MDD data sets, because the imputation

information is not available, we accept as measured SNPs the set consisting of the
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intersection between SNPs in each GWAS and the above SCZ’s “measured” SNPs.
Where available (e.g. MDD) we also filtered out SNPs with effective sample sizes below
the maximum.

Discussion

DISTMIX2, is a software/method for “off-the-shelf” direct imputation of the unmeasured
SNP statistics in cosmopolitan cohorts. The main features of the updated version are 1)
a much larger (33K subjects) and more diverse (includes ~11K Han Chinese) reference
panel and 2) a novel procedure for estimating the ethnic composition of the cohort without
the need for AF information. Its application to PGC data sets provides numerous new

signal regions, most harboring rarer variants.

Due to our reassignment of subjects to subpopulations when constructing the 33K
reference panel, the naive assignment of the pre-estimated weights to only specific
subpopulations from the reference panel that are considered the closest ones to the
perceived cohort composition, can greatly increase of the type | error (false positives).
For that reason, when AF is not available, we recommend to the users to provide
continental cohort weights (i.e. European [EUR], East Asian [ASN], South Asian [SAS],
African [AFR] and America native [AMR]) and our software automatically will allocate
these meta-weights to the most likely within-continent subpopulations. However, when

AF is available there is no need to provide this additional information.

DISTMIX2 maintains the type | error reasonably accurately even for low MAFs and low

Info variants, especially for mostly European (East Asian) cohorts that are
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overrepresented in our reference panel. When MAF>5% (common variants), DISTMIX2
for all the levels of the information, appears to maintain the false positive rates to at most
an order of magnitude higher than the nominal ones. For imputed variants (especially
rarer or with lower Info) in study of Europeans, preliminary results from nullified data
suggest that a conservative threshold for significance can be set atp = 1071%; a very
conservative one is p = 3 * 10715, Simulation results suggest that, when a larger part of
study cohort consist of subpopulations underrepresented in our reference panel, it is
reasonable to lower the genome-wide significant threshold for p-value of imputed variants

by a factor of ~10,000.

The length of the prediction window (250Kb, 500Kb, 1000Kb) is an important design
parameter due to its implications to speed and precision. Simulations results suggest
that, while the accuracies for 500Kb and 1000Kb estimates are very close, the
computational burden increases ~2.5 times for the 1000kb window. For that reason, we

recommend that researchers use a 500Kb prediction window.

While mentioned only briefly in this manuscript, for practical application we use as
“‘measured” SNP in the input summary statistic file only the GWAS SNPs reported to have
close to perfect information and/or effective sample size. Our approach is rooted in
preserving the cardinal assumption, of our and all but one other imputation methods [23],
that the LD between SNP Z-scores is very well approximated by the LD of the same SNPs
in the reference panels. It is well known that when there are non-negligible missing rates

for the variant pair this assumption is not met [23]. While the LD of Z-scores can be
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estimated by making reasonably realistic assumptions about co-missingness patterns of
such SNP pairs, to avoid even the rarer circumstances in which these assumptions might
not be met, we decided to avoid such an approach. Consequently, we employed (and
recommend) the conservative approach of deeming as measured only SNPs with close

to perfect imputation information and/or effective sample sizes in the original GWAS.

In practical applications, the very low MAF and Info for some SNP can cause up to 4
orders of magnitude inflation in false positive rates. While signals for rarer SNPs can be
viewed as much “softer” signals than the ones associated with common and high Info
variants, the very low p-values for some of them suggest that most of these signals are
likely to be real. This suggestion is enhanced by the fact that, to avoid the pitfalls of
estimating covariances from just very few minor alleles we did not include in the
imputation panel SNPs that don not have at least i) 20 minor alleles in the Europeans or
East Asians or ii) 5 in all other continental groups. Nonetheless, we recognize that signals
for these SNPs should be treated with more skepticism than the more common/higher

Info variants and subjected to the most stringent wet-lab validations.

Method

Larger and more diverse reference panel

To facilitate imputation of rarer variants, the current version uses the 33,000 subjects
(833K) as reference panel. It consists of 20,281 Europeans, 10,800 East Asians, 522
South Asians, 817 Africans and 533 Native Americans (Text S3, Table S2 in Sl). The

reference panel includes the publicly available 22,691 subjects from Haplotype Reference
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Consortium (HRC) and 10,262 CONVERGE. For CONVERGE subjects, we used we
used Province to divide them into 4 population (CNE, CCE, CSE and CCS). HRC
subjects coming from the small Orkney (ORK) island provided the basis for an extra
European population, i.e. ORK. Subjects from 1KG in HRC sample, CONVERGE and
ORK along with their a) population label b) first 20 ancestry principal components were
used to train a quadratic discriminant model for predicting population label from principal
components. Subsequently, to have more homogeneous populations in the panel, all
available subjects were assigned(reassigned) population labels based on model
prediction. Consequently, a subject might be re-assigned to a different (but related)

population.

Finally, our reference panel contains twenty-six million SNPs. To have reasonably
accurate SNP LD estimators, we eliminate the rarest SNPs which did not have at least i)
20 alleles in European or East Asian superpopulations or ii) 5 in African, South Asian and

America native superpopulations.

Converge haplotypes

DNA sequencing. DNA was extracted from saliva samples using the Oragene protocol.
A barcoded library was constructed for each sample. Sequencing reads obtained from
lllumina Hiseq machines were aligned to Genome Reference Consortium Human Build
37 patch release 5 (GRCh37.p5) with Stampy (v1.0.17) [24] [21] [21] [21] [21] [1] [5][2]
using default parameters, after filtering out reads containing adaptor sequencing or

consisting of more than 50% poor quality (base quality <= 5) bases. Samtools (v0.1.18)
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[25] was used to index the alignments in BAM format [25] and Picardtools (v1.62) was
used to mark PCR duplicates for downstream filtering. The Genome Analysis Toolkit’s
(GATK, version 2.6). Base quality score recalibration (BQSR) was then applied to the
mapped sequencing reads using BaseRecalibrator in Genome Analysis Toolkit (GATK,
basic version 2.6) [26] with the known insertion and deletion (INDEL) variations in 1000
Genomes Projects Phase 1 [27] and known single nucleotide polymorphisms (SNPs) from
dbSNP (v137, excluding all sites added after v129) excluded from the empirical error rate
calculation. GATKIite (v2.2.15) was then used to output sequencing reads with the
recalibrated base quality scores while removing reads without the “proper pair” flag bit set
by Stampy (1-5% of reads per sample) using the --read_filter ProperPair option (if the
“‘proper pair” flag bit is set for a pair of reads, it means both reads in the mate-pair are
correctly oriented, and their separation is within 5 standard deviations from the mean

insert size between mate-pairs).

Variant calling, imputation, and phasing

Variant discovery and genotyping (for both SNPs and INDELSs) at all polymorphic SNPs
in 1000G Phasel East Asian (ASN) reference panel[28] was performed simultaneously
using post-BQSR sequencing reads from all samples using the GATK’s UnifiedGenotyper
(version 2.7-2-g6bda569). Variant quality score recalibration (VQSR) was then performed
with GATK’s VariantRecalibrator (v2.7-4-g6f46d11) in SNP variant calls using the SNPs
in 1000 Genomes Phase 1 ASN Panel [27] as the known, truth and training sets. A
sensitivity threshold of 90% to SNPs in the 1000G Phasel ASN panel was applied for

SNP selection for imputation after optimizing for Transition to Transversion (TiTv) ratios
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in SNPs called. Genotype likelihoods (GLs) were calculated at selected sites using a
sample-specific binomial mixture model implemented in SNPtools (version 1.0), and
imputation was performed at those sites without a reference panel using BEAGLE
(version 3.3.2) [29]. The second round of imputation was performed with BEAGLE on the
same GLs, but only at biallelic SNPs polymorphic in the 1000G Phase 1 ASN panel using
the 1000G Phase 1 ASN haplotypes as a reference panel. The genotypes derived from
Beagle imputation were phased using Shapeit (version 2, revision 790) [30]. Genetic
maps were obtained from the Impute2 [31] website. Chromosomes 13 - 22 and X were
phased using 12 threads and default parameters. Chromosomes 1-12 were phased using
12 threads in four chunks that overlap by 1MB. The phased chunks were ligated together
using ligateHAPLOTYPES, available from the Shapeit website. A final set of allele
dosages and genotype probabilities was generated from these two datasets by replacing
the results in the former with those in the latter at all sites imputed in the latter. We then
applied a conservative set of inclusion threshold for SNPs for genome-wide association
study (GWAS): a) p-value for violation HWE > 106, b) Info score > 0.9, c¢) MAF in
CONVERGE > 0.5% to arrive at the final set of 6,242,619 SNPs. Details can be found in

[15].

Automatic detection of cohort composition
Our group has previously described, in DISTMIX paper [13], a method to estimate the
ethnic composition when the cohort allele frequencies (AF) are available. However, lately

some consortia do not provide such measure; they often provide only the Caucasians AF.
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Consequently, there is a great need for a method to estimate the ethnic composition of

the cohort even when no AFs are provided.

Below is the theoretical outline of such method. Suppose that the cohort genotype is a
mixture of genotypes coming out from the k ethnic groups from the reference panel. The

G;; denotes the genotype for the i-th subject at the j-th SNP which belongs to the [-th

group, let p](.l) be the frequency of the reference allele frequency for this SNP in the [-th

l
Gij—Z p} )

20?1

variable with zero mean and unit variance. Near Hy, SNP Z-score statics Z;'s have the

group. Let G';; = be the normalized genotype, i.e. the transformation to a

approximately the same correlation structure as the genotypes used to construct it, G,;’s,
and, thus, the same correlation structure as its transformation, G',;'s. However, given
that both G',;'s and Z;'s have unit variance, it follows that the two have the same
covariance (i.e. not only the same correlation) structure. Therefore, for any s > 1

E(Z;j Zj+s) = E(G',j G', j15), which, due independence of genotypes in different ethnic
groups becomes:

E(Zj Zjys) = Xl w® E[G,*j(l) GI*(j+s)(l)] =Y aw® COT(GI*j(D'G,*(j+s)(D) (1),

where w(® is the expected fraction of subjects from the entire cohort that belong to the I-

th group.

While Cor(G’*j(l),G’*(j+s)(l)) is unknown, it can be easily approximated using their

reference panel counterparts. Thus, the weights, w®, can be simply estimated by simply
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regressing the product of product of reasonably close SNP Z-scores, Z'; Z';,s, on
correlations between normalized genotypes at the same SNP pairs for all subpopulations
in the reference panel. To increase bias power, we chosen the parameter s, such as to
maximize the variance of the within panel ethnic group correlations while keeping j + s-
th SNP no more than 50Kb away from j —th SNP. Because some GWAS might have
numerous large signals, e.g. latest height meta-analysis [6, 32], a more accurate
estimation of the weights is very likely to be obtained by substituting expected gaussian

quantiles for Z; (see Nonparametric robust estimation of weights subsection).

Due to the strong LD among SNPs, the estimation of the correlation using all SNPs in a
genome might lead to a poor regression estimate in (1). To avoid this, we sequentially
split GWAS SNPs into 1000 non-overlapping SNP sets, e.g. first set consists of the 1st,
1001st, 2001st, etc. map ordered SNPs in the study. The large distances between SNPs
in the same set make them quasi-independent which, thus, improves the accuracy of the
estimated correlation. W = (w®) is subsequently estimated as the average of the
weights obtained from the 1000 SNP sets. Finally, we set to zero the negatives weights
and normalize the remaining weights to sum to 1 [33]. This method should be even more
useful when we already know the approximate continental (EUR, ASN, SAS, AFR and
AMR) weights (as estimated from study information) but it is not always clear how these
proportions should be allocated among continental subpopulations. This further
apportioning of continental weights is likely to be extremely important when the GWAS
cohorts contain many admixed populations, e.g. African Americans and American native

populations. Consequently, when continental proportions are provided by the users, we
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use our automatic detection to distribute these weights to the most likely subpopulations
in the reference panel. To eliminate unforeseen artifacts, we strongly recommend to the

users to provide continental proportions when AFs are not available.

Nonparametric robust estimation of weights
To estimate robust weights and to avoid false positives we apply a two-step, robust

algorithm to the Z-scores of the SNPs. First, let Z, = (z,,, 25,, -, Z5,,), Where o indicates
the permutation of indices of Z-scores, Z, for the m SNPs, that orders these statistics in
increasing order. Second, z; = cb‘l(ﬁ), where @1 is the inverse normal cumulative

distribution function. Subsequently, these transformed risk scores are used for computing

ethnic weights.

Software and data availability

DISTMIX2 IS freely available for academic use at

https://github.com/Chatzinakos/DISTMIX2. The DISTMIX2 executable requires only the

GWAS summary statistics from the user. The reference panel also available at the same

repo.

Supporting information

Sl. Text and Figures.
(PDF)

SE. Table with the significant signals for the real applications.
(EXCEL)
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