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ABSTRACT 

Methods for direct imputation of summary statistics, e.g. our group’s DISTMIX tool, were 

shown to be practically as accurate as genotype imputation method, while incurring 

orders of magnitude lower computational burden. Given that such imputation needs a 

precise estimation of linkage disequilibrium (LD) for mixed ethnicity (cosmopolitan) 

cohorts, there is a great need i) for much larger and diverse panels and ii) to estimate the 

ethnic composition of the cohort, e.g. the weights for subpopulations in the diverse panel. 

Unfortunately, DISTMIX and its main competitors are largely using a very small reference 

panel of ~2,500 subject coming from the 1000 Genome (1KG) Project. DISTMIX 

computed the ethnic weights of a cohort based on in-cohort allele frequency (AF) 
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estimates. Unfortunately, due to privacy issues, most genome wide association studies 

(GWAS) largely stopped providing cohort AFs. Thus, to accurately estimate the LD 

needed for an exhaustive analysis of cosmopolitan cohorts, we propose DISTMIX2. When 

compared to DISTMIX and its competitors, the proposed method adds a i) much larger 

and diverse reference panel and ii) novel estimation for weights of ethnic mixture based 

solely on Z-scores (when AFs not available). To build a larger and more diverse reference 

panel, we use the publicly and privately available data to obtain a 33,000 (33K) panel 

which includes ~11K Han Chinese. The proposed method of estimating ethnic weights 

adequately controls the Type I error rates, especially when the subpopulations in the 

study are well represented in the reference panel. However, using naive pre-estimated 

weights incurs a much higher false positive rate. We apply DISTMIX2 to the GWAS 

summary statistics from the Psychiatric Genetic Consortium (PGC). Our method which 

uncover signals in numerous new regions, with most of these findings coming from the 

rarer variants.   

 

Author summary 

By predicting summary statistics at unmeasured genetic variants, direct imputation is a 

promising method for enhancing the resolution of genetic studies. However, for a better 

prediction of statistics at unmeasured variants, there is a need to address two urgent 

issues. First, there is a need for very large and diverse reference panels that greatly 

improve on the mostly European ones having ~2,500 (2.5K) subjects. We address this 

shortcoming by building a large and diverse reference panel (33K subjects, ~20K 

Europeans and ~11K Asians). Second, there is a need to estimate the ethnic composition 
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of the study cohort, even when they do not report in-cohort allele frequency for genetic 

variants. We solve this issue by using a novel method that uses only Z-scores, which are 

easily computed from reported summary statistics. Our method that implements the two 

above solutions i) adequately controls the false positive rate and ii) provides much 

improved resolution when compared to methods based on older reference panels. 

Practical application to reported summary statistics from studies of psychiatric disorders 

greatly increase the number of regions harboring signals. Most of these findings are 

associated with rarer variants that could not be robustly assessed using smaller panels. 

 

Introduction  

Genotype imputation [1-4] methods are commonly used to increase the genomic 

resolution for large-scale multi-ethnic meta-analyses [5-9] by predicting genotypes at 

unmeasured markers based on cosmopolitan reference panels, e.g. 1000 Genomes 

(1KG) [10]. However, genotypic imputation is computationally burdensome and require 

access to subject level genetic data, which is harder and slower to get than summary 

statistics. 

 

To overcome these limitations researchers proposed summary statistics based 

imputation methods, e.g. DIST [11] and ImpG [12]. These methods can directly impute 

summary statistics (two-tailed Z-scores) for unmeasured SNPs from genome-wide 

association studies (GWASs) or called variants from sequencing studies. The methods 

were shown to i) substantially reduce the computational burden and ii) be practically as 

accurate as commonly used genotype imputation methods. These methods were 
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successfully applied in gene-level joint testing of functional variants (Lee et al., 2014) and 

functional enrichment analyses (Pickrell, 2014). However, these first direct imputation 

methods were only amenable for imputation in ethnically homogeneous cohorts.   

 

To accommodate cosmopolitan cohorts, DIST method was extended [13] to Directly 

Imputing summary Statistics for unmeasured SNPs from Mixed ethnicity cohorts 

(DISTMIX). It i) predicted a study’s proportions (weights) of ethnicities from a multi-ethnic 

reference panel based only on cohort allele frequencies (AFs) for (common) Single 

Nucleotide Polymorphisms (SNPs) from the studied cohort or taking prespecified ethnic 

weights, ii) computed ethnicity-weighted correlation matrix based on the 

estimated/prespecified weights and genotypes of ethnicities from the reference panel 

and, then, iii) using the weighted correlation matrix for accurate imputation.  

Unfortunately, lately two issues occurred in practical applications of DISTMIX. First, due 

to privacy concerns [14], cohort AFs are lately only rarely provided. Second, similar to its 

competitors, the method relied on 1KG reference panel which was both small and 

European centric, while many meta-analyses have non-trivial fractions of non-European 

subjects [6, 15]. Since its publishing larger reference cohorts were sequenced and 

published, e.g. Haplotype Reference Consortium (HRC) [16] and CONVERGE [5]. 

CONVERGE complements nicely HRC due to consisting of >11K Han Chines subjects.  

Consequently, in DISTMIX2, we address the above shortcomings by including two critical 

components. First, we provide a novel method to accurately estimate ethnic weights of 

the cohort which uses only summary statistics, e.g. Z-scores. Second, we build a larger, 

more diverse reference panel with 33K subjects, which combines the subjects from the 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/496570doi: bioRxiv preprint 

https://doi.org/10.1101/496570
http://creativecommons.org/licenses/by-nc/4.0/


publicly available part of HRC with CONVERGE. Subsequently, we apply the method to 

Psychiatric Genetics Consortium (PGC) data and uncover many possible new signals.  

 

Results 

For Illumina 1M SNPs [17] that were masked, and then imputed (see Method evaluation 

section), DISTMIX2 with our novel automatic ethnic weight detection (see Method 

section), controls the false positive rates at or below nominal threshold, even at very low 

type I error, e.g. 10−6 (Text S1, Fig S1 in SI). 𝑅2  between true values and estimated one 

is practically above 0.92 for our five simulated mixed-cohort scenarios (Text S1, Figs S2-

S6 in SI). Also, DISTMIX2 imputed statistics have very good mean squared error (RMS) 

(Text S1, Figs S7-S11 in SI). For the above three measurements (size of the test, 𝑅2 and 

RMS) the setting of 250Kb for the length of the predicted window was the least precise, 

while 500Kb and 1000Kb had practically identical precision.  

 

For rare and very rare variants, the size of the test is up to 300-1000X higher than the 

nominal one and even up to 5000-10000X for cohorts that have large fractions of 

subpopulations that are underrepresented in the reference panel (e.g. Americans, 

Africans etc.), especially for the setting Minor Allele Frequency (MAF), 0.05%<MAF<0.5% 

and Information (Info), Info<0.2 (Text S1, Figures S12-S47 in SI).  

 

For the “nullified” data sets, e.g. those obtained from real data sets by substituting the 

study Z-scores by their expected quantile under the null hypothesis (𝐻0 )  (Method 

evaluation section and Text S1, Figs S42-S48 in SI), DISTMIX2  controls reasonably well 
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the size of the test - up to 20X higher than the nominal rate (even for SNPs with low MAFs 

and low Info).The minimum GWAS p-values for the nullified data sets that were imputed 

ranged between 8.13 ∗ 10−7  and 1.11 ∗ 10−11 . By fitting a normal distribution to 

−𝑙𝑜𝑔10(minimum p-values), we estimate the mean to be 8.655 and the standard deviation 

to be 1.172. Using as criterion the conservative three standard deviations above the 

mean, we obtain from these realistic data a 12.17 upper bound for the −𝑙𝑜𝑔10 (minimum 

p-values). I.e. in DISTMIX2 practical applications [Psychiatric Genetics Consortium 

(PGC) traits], a conservative threshold for significance is 10−12 , regardless of imputation 

Info and SNP MAF. Consequently, in all applied analyses in this paper we add this very 

stringent threshold for DISTMIX2 imputed summary statistics. [Using as criterion the even 

more conservative five standard deviations above the mean (the very conservative 

Chebyshev inequality for the upper bound of the p-value of exceeding this threshold=

1

52 = 0.04) , we obtain a 14.515 upper bound for the −𝑙𝑜𝑔10 (minimum p-values), i.e. a 

super-conservative significance threshold of 3 ∗ 10−15 .] 

 

For the practical applications to PGC traits (Table 1), we construct Manhattan plots for all 

autosome chromosomes (1-22) and, individually, for chromosomes harboring novel 

signals (defined as imputed SNPs with statistically significant p-values that are at least 

250Kb away from the reported GWAS signal) (Fig. 1-2, Text S2, Fig. S49-S57 in SI). For 

all Manhattan plots we draw two dash lines denoting statistical significance signals. The 

red line is the default genome-wide threshold of 𝑝 = 5 ∗ 10−8,  which is applicable to 

signals from measured SNPs and common imputed SNPs with high Info values. The 

purple line at 𝑝 = 10−12 is the threshold to be used for rare/very rare variants and/or 
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variants with low information; it corresponds to the above mentioned upper bound for 

nullified data.  As an illustration, we present Schizophrenia Manhattan plot for all 

chromosomes and only for chromosome 12 (Fig. 1 and Fig. 2). 

 

Table 1. Real dataset description. 

Trait Trait Abbreviation 

 

Dataset Description 

Schizophrenia SCZ PGC2 SCZ [6] 

Attention Deficit Hyperactivity Disorder ADHD PGC ADHD [18] 

Autism AUT PGC AUT [19] 

Bipolar BIP PGC BIP [20] 

Eating Disorders EAT PGC EAT [21] 

Major depression disorder MDD PGC MDD [22] 

 

These applications of DISTMIX2 to PGC data sets suggests the existence of numerous 

new signals, most associated with rare and very rare SNPs (see Table 2) (for all signals 

see SE, Excel file). For instance in chromosome 12 for PGC schizophrenia (rs143374), 

with MAF=0.0007, Info=0.245 and p-value=9.26 ∗ 10−46  the magnitude of the p-value 

suggest that this signal is likely not to be an artifact (above the more stringent threshold), 

in chromosome 11 for ADHD (rs5681132) where the MAF=0.0004, the Info= 0.018 and p-

value=7.40 ∗ 10−16  (above the more stringent threshold), in chromosome 22 for AUT 

(rs1380986), with MAF=0.0006, Info=0.498 and p-value=8.01 ∗ 10−15 (above the more 

stringent threshold), in chromosome 7 for BIP (rs76350051), with MAF= 0.0004 , 

Info=0.04 and p-value=2.47 ∗ 10−37 (above the more stringent threshold), in chromosome 

8 for EAT (rs78958069), with MAF=0.0002, Info=0.005 and p-value=4.17 ∗ 10−10 (above 

the default threshold) and in chromosome 12 for MDD (rs567868887), with MAF=0.0009, 

Info=0.28 and p-value=1.57 ∗ 10−55 (above the more stringent threshold).  
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When imputing in parallel SNPs regions of 40 Mbp, the analysis of each data set had a 

running time of less than 5 days on a cluster node with 4x Intel Xeon 6 core 2.67 GHz. 

 

Table 2. Best three signals for each PGC dataset. Bolded red entries correspond to the most stringent threshold of 𝒑 < 3 ∗

10−15, not bolded red to the second most conservative threshold 3 ∗ 10−15 < 𝒑 < 10−12 and not bolded blue 10−12 < 𝒑 < 𝟓 ∗

10−8. 

Trait rs_id chr bp p-val Info MAF 

ADHD rs568113293 11 54,899,533 𝟕. 𝟒𝟎 ∗ 𝟏𝟎−𝟏𝟔  𝟎. 𝟎𝟏𝟖𝟗 𝟎. 𝟎𝟎𝟎𝟒𝟗 

 rs544637819 3 15,310,737 1.78 ∗ 10−14 0.1543 0.00171 

 chr6:30450452 6 30,450,452 6.44 ∗ 10−13 0.0698 0.00151 

AUT rs138098629 22 36,584,165 8.01 ∗ 10−15 0.4980 0.00063 

BIP rs76350051 7 64,164,245 𝟐. 𝟒𝟐 ∗ 𝟏𝟎−𝟑𝟕 𝟎. 𝟎𝟒𝟏𝟕 𝟎. 𝟎𝟎𝟎𝟒𝟔 

 rs138549126 3 52,592,843 𝟔. 𝟔𝟓 ∗ 𝟏𝟎−𝟏𝟔 𝟎. 𝟎𝟕𝟑 𝟎. 𝟎𝟎𝟎𝟓𝟐 

 rs149257260  15 71,600,045 𝟏. 𝟒𝟎 ∗ 𝟏𝟎−𝟏𝟓 𝟎. 𝟒𝟐𝟒𝟔 𝟎. 𝟎𝟎𝟎𝟏𝟕 

EAT rs78958069 8 43,539,021 4.17 ∗ 10−10 0.005 0.0002 

 rs144485994 20 4,963,320 5.18 ∗ 10−9 0.15 0.0001 

MDD rs567868887 12 31,931,432 𝟏. 𝟓𝟕 ∗ 𝟏𝟎−𝟓𝟓 𝟎. 𝟐𝟖𝟎𝟎 𝟎. 𝟎𝟎𝟎𝟗𝟖 

 rs112241719 11 111,514,969 𝟖. 𝟏𝟒 ∗ 𝟏𝟎−𝟒𝟓 𝟎. 𝟒𝟗𝟎𝟎 𝟎. 𝟎𝟎𝟎𝟐𝟓 

 rs182264017 1 188,992,506 𝟓. 𝟎𝟓 ∗ 𝟏𝟎−𝟒𝟒 𝟎. 𝟐𝟕𝟕𝟓 𝟎. 𝟎𝟎𝟎𝟑𝟓 

SCZ rs559199817 3 17,267,731 𝟏. 𝟑𝟎 ∗ 𝟏𝟎−𝟖𝟕 𝟎. 𝟎𝟐𝟏𝟑 𝟎. 𝟎𝟎𝟎𝟕𝟑 

 rs143337489 12 11,2089,686 𝟗. 𝟐𝟔 ∗ 𝟏𝟎−𝟒𝟔 𝟎. 𝟐𝟒𝟔𝟒 𝟎. 𝟎𝟎𝟎𝟏𝟗 

 rs193224736 16 8,593,132 𝟑. 𝟕𝟗 ∗ 𝟏𝟎−𝟐𝟏 𝟎. 𝟐𝟖𝟒𝟕𝟔 𝟎. 𝟎𝟎𝟎𝟏𝟖 
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Fig. 1 Manhattan plot for chromosomes 1-22 for SCZ. ● denotes reported signals from the original GWAS and the remain symbols and colors denote 

DISTMIX2 imputed signals. Among imputed signals blue denotes info<0.2, red denotes 0.2<info<0.4, cyan denotes 0.4<info<0.6, brown denotes 

0.6<info<0.8, orange denotes info>0.8, □ denotes MAF <0.05%, △ denotes 0.05%<MAF<0.5%, ▽denotes 0.5%<MAF<1%, + denotes 1%<MAF<2%, ◊ denotes 

2%<MAF<5%, 𝒙 denotes 5%<MAF<10% and ❊ denotes 10%<MAF<50%. The red line is the default genome-wide threshold of 𝒑 = 𝟓 ∗ 𝟏𝟎−𝟖,  which is 

applicable common SNPs with moderate to large Info values. The purple line at 𝒑 = 𝟏𝟎−𝟏𝟐 is the threshold to be used for rare and/or low Info variants. 
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Fig 2. Manhattan plot for chromosome 12 for SCZ (see Fig 1. for background).
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Method evaluation  

To estimate the accuracy and false positive rates of DISTMIX2, for five different 

cosmopolitan studies scenarios we simulated (under 𝐻0: no association between trait and 

variants) 100 cosmopolitan cohorts of 10,000 subjects for autosomal SNPs in Ilumina 1M 

panel [13] using 1KG haplotype patterns (Text S1, Table S1 in SI). The subject 

phenotypes were simulated independent of genotypes as a random Gaussian sample. 

SNP phenotype-genotype association summary statistics were computed from a 

correlation test.  

 

The accuracy of the procedure was assessed by masking 5% of the SNPs (Experiment 

1, Table 3). Subsequently, the true values and the imputed values at these masked SNPs 

were used to computed i) their correlation and ii) the mean squared error of the 

imputation. We assess these measures at four different levels of MAF. To compare the 

Type I error rate of our proposed method, DISTMIX2, we estimated the relative Type I 

error (the empirical divided by the nominal Type I error rate) as a function of the nominal 

Type I error rate, for the same four MAF levels for all the cohorts. Finally, for all the 

combinations between MAFs and Info we performed DISTMIX2 analyses with three 

different parameters for the length of the predicted window (the length of the predicted 

window is also the minimum number of the measured SNPs). 

Table 3. Experiment 1 parameter settings. 

MAF levels Panel Window length 

MAF<5% 1K 250Kb 

5% <MAF< 10% 33K 500Kb 

10%<MAF<20%  1000Kb 

20%<MAF<50%   
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To assess the reliability of DISTMIX2 results for rare and very rare variants, for the above 

cohorts, we also estimate the size of the test for DISTMIX2 for very low MAFs (rare 

variants), (Experiment 2, Table 4). The size of the test is assessing for 5 imputation Info 

intervals and 6 MAF intervals.  

Table 4. Experiment 2 variable parameter settings. Fixed parameters for this experiment: 33K panel and 500Kb window 

length. 

MAF levels Info levels 

0.05% <MAF< 0.5% Info< 20% 

0.5% <MAF< 1% 20%<Info<40% 

1% <MAF<2% 40%<Info<60% 

2% <MAF< 5% 60%<Info<80% 

5% <MAF< 10% Info>80% 

10% <MAF< 50%  

 

However, given that 1) the simulated cohorts might not reflect real data and 2) these data 

sets do not have the sample sizes needed to detect very rare SNPs (e.g. MAFs <  0.05%), 

which is important for DISTMIX2 inference in practical applications, we used real data 

sets to create  so-called nullified data sets (Experiment 3, Table 5). These nullified data 

are based on 20-real and mostly Caucasian GWAS SCZ, ADHD, AUT, MDD and sixteen 

GWAS meta-analyses that are not yet publicly available. This approximation for null data 

is obtained by substituting the expected quantile of the Gaussian distribution for the 

(ordered) Z-score (see also S4 in SI). We note that, while the quantile estimation adjusts 

the noncentrality parameter (enrichment) of the statistics to zero, it does not change the 

order of the statistics. One effect of this fact is that imputing statistics within/near the peak 

signals in original GWASs might result in somewhat increased false positive rates and, 

thus, the genome-wide false positive rates might appear to be moderately inflated. Thus, 
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adjusting imputed statistics post-factum for the false positive increase observed in these 

nullified data is likely to yield conservative inference. 

Table 5. Experiment 3 variable parameter settings. Fixed parameters for this experiment: 33K panel and 500Kb window 

length. 

. 

MAF levels Info levels 

MAF< 0.05% Info< 20% 

0.05% <MAF< 0.5% 20% <Info< 40% 

0.5% <MAF< 1% 40% <Info< 60% 

1% <MAF< 2% 60% <Info< 80% 

2% <MAF< 5% Info> 80% 

5% <MAF< 10%  

10% <MAF< 50%  

 

 

Practical Applications 

We applied DISTMIX2 to some of the psychiatric summary datasets available for 

download from Psychiatric Genetics Consortium (PGC- http://www.med.unc.edu/pgc/), 

i.e. schizophrenia (SCZ), attention deficit hyperactive disorder (ADHD), autism (AUT), 

eating disorder (EAT), bipolar (BIP) disorder and major depressive disorder (MDD) (see 

Table 1 for references). Based on the results from simulations under the null hypothesis 

(Experiment 1), for all these practical applications we used a) the larger 33K size panel 

and b) a length of the predicted of 500Kb.To improve the imputation of the unmeasured 

SNPs for SCZ, we denote as “measured SNPs” only those with very high information 

(Info>0.997). For the ADHD, AUT, BIP and MDD data sets, because the imputation 

information is not available, we accept as measured SNPs the set consisting of the 
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intersection between SNPs in each GWAS and the above SCZ’s “measured” SNPs. 

Where available (e.g. MDD) we also filtered out SNPs with effective sample sizes below 

the maximum.  

Discussion 

DISTMIX2, is a software/method for “off-the-shelf” direct imputation of the unmeasured 

SNP statistics in cosmopolitan cohorts. The main features of the updated version are 1) 

a much larger (33K subjects) and more diverse (includes ~11K Han Chinese) reference 

panel and 2) a novel procedure for estimating the ethnic composition of the cohort without 

the need for AF information. Its application to PGC data sets provides numerous new 

signal regions, most harboring rarer variants.  

 

Due to our reassignment of subjects to subpopulations when constructing the 33K 

reference panel, the naive assignment of the pre-estimated weights to only specific 

subpopulations from the reference panel that are considered the closest ones to the 

perceived cohort composition, can greatly increase of the type I error (false positives). 

For that reason, when AF is not available, we recommend to the users to provide 

continental cohort weights (i.e. European [EUR], East Asian [ASN], South Asian [SAS], 

African [AFR] and America native [AMR]) and our software automatically will allocate 

these meta-weights to the most likely within-continent subpopulations. However, when 

AF is available there is no need to provide this additional information.   

 

DISTMIX2 maintains the type I error reasonably accurately even for low MAFs and low 

Info variants, especially for mostly European (East Asian) cohorts that are 
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overrepresented in our reference panel. When MAF>5% (common variants), DISTMIX2 

for all the levels of the information, appears to maintain the false positive rates to at most 

an order of magnitude higher than the nominal ones. For imputed variants (especially 

rarer or with lower Info) in study of Europeans, preliminary results from nullified data 

suggest that a conservative threshold for significance can be set at 𝑝 = 10−12; a very 

conservative one is 𝑝 = 3 ∗ 10−15. Simulation results suggest that, when a larger part of 

study cohort consist of subpopulations underrepresented in our reference panel, it is 

reasonable to lower the genome-wide significant threshold for p-value of imputed variants 

by a factor of ~10,000.  

 

The length of the prediction window (250Kb, 500Kb, 1000Kb) is an important design 

parameter due to its implications to speed and precision.  Simulations results suggest 

that, while the accuracies for 500Kb and 1000Kb estimates are very close, the 

computational burden increases ~2.5 times for the 1000kb window. For that reason, we 

recommend that researchers use a 500Kb prediction window. 

 

While mentioned only briefly in this manuscript, for practical application we use as 

“measured” SNP in the input summary statistic file only the GWAS SNPs reported to have 

close to perfect information and/or effective sample size. Our approach is rooted in 

preserving the cardinal assumption, of our and all but one other imputation methods [23], 

that the LD between SNP Z-scores is very well approximated by the LD of the same SNPs 

in the reference panels. It is well known that when there are non-negligible missing rates 

for the variant pair this assumption is not met [23]. While the LD of Z-scores can be 
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estimated by making reasonably realistic assumptions about co-missingness patterns of 

such SNP pairs, to avoid even the rarer circumstances in which these assumptions might 

not be met, we decided to avoid such an approach. Consequently, we employed (and 

recommend) the conservative approach of deeming as measured only SNPs with close 

to perfect imputation information and/or effective sample sizes in the original GWAS. 

 

In practical applications, the very low MAF and Info for some SNP can cause up to 4 

orders of magnitude inflation in false positive rates. While signals for rarer SNPs can be 

viewed as much “softer” signals than the ones associated with common and high Info 

variants, the very low p-values for some of them suggest that most of these signals are 

likely to be real. This suggestion is enhanced by the fact that, to avoid the pitfalls of 

estimating covariances from just very few minor alleles we did not include in the 

imputation panel SNPs that don not have at least i) 20 minor alleles in the Europeans or 

East Asians or ii) 5 in all other continental groups. Nonetheless, we recognize that signals 

for these SNPs should be treated with more skepticism than the more common/higher 

Info variants and subjected to the most stringent wet-lab validations. 

 

Method   

Larger and more diverse reference panel  

To facilitate imputation of rarer variants, the current version uses the 33,000 subjects 

(33K) as reference panel. It consists of 20,281 Europeans, 10,800  East Asians, 522 

South Asians, 817 Africans and 533 Native Americans (Text S3, Table S2 in SI). The 

reference panel includes the publicly available 22,691 subjects from Haplotype Reference 
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Consortium (HRC) and 10,262 CONVERGE. For CONVERGE subjects, we used we 

used Province to divide them into 4 population (CNE, CCE, CSE and CCS).  HRC 

subjects coming from the small Orkney (ORK) island provided the basis for an extra 

European population, i.e. ORK. Subjects from 1KG in HRC sample, CONVERGE and 

ORK along with their a) population label b) first 20 ancestry principal components were 

used to train a quadratic discriminant model for predicting population label from principal 

components. Subsequently, to have more homogeneous populations in the panel, all 

available subjects were assigned(reassigned) population labels based on model 

prediction. Consequently, a subject might be re-assigned to a different (but related) 

population. 

 

Finally, our reference panel contains twenty-six million SNPs. To have reasonably 

accurate SNP LD estimators, we eliminate the rarest SNPs which did not have at least i) 

20 alleles in European or East Asian superpopulations or ii) 5 in African, South Asian and 

America native superpopulations.   

 

Converge haplotypes 

DNA sequencing. DNA was extracted from saliva samples using the Oragene protocol. 

A barcoded library was constructed for each sample. Sequencing reads obtained from 

Illumina Hiseq machines were aligned to Genome Reference Consortium Human Build 

37 patch release 5 (GRCh37.p5) with Stampy (v1.0.17) [24] [21] [21] [21] [21] [1] [5][2] 

using default parameters, after filtering out reads containing adaptor sequencing or 

consisting of more than 50% poor quality (base quality <= 5) bases. Samtools (v0.1.18)  
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[25] was used to index the alignments in BAM format [25] and Picardtools (v1.62) was 

used to mark PCR duplicates for downstream filtering. The Genome Analysis Toolkit’s 

(GATK, version 2.6). Base quality score recalibration (BQSR) was then applied to the 

mapped sequencing reads using BaseRecalibrator in Genome Analysis Toolkit (GATK, 

basic version 2.6) [26] with the known insertion and deletion (INDEL) variations in 1000 

Genomes Projects Phase 1 [27] and known single nucleotide polymorphisms (SNPs) from 

dbSNP (v137, excluding all sites added after v129) excluded from the empirical error rate 

calculation. GATKlite (v2.2.15)  was then used to output sequencing reads with the 

recalibrated base quality scores while removing reads without the “proper pair” flag bit set 

by Stampy (1-5% of reads per sample) using the --read_filter ProperPair option (if the 

“proper pair” flag bit is set for a pair of reads, it means both reads in the mate-pair are 

correctly oriented, and their separation is within 5 standard deviations from the mean 

insert size between mate-pairs). 

 

Variant calling, imputation, and phasing  

Variant discovery and genotyping (for both SNPs and INDELs) at all polymorphic SNPs 

in 1000G Phase1 East Asian (ASN) reference panel[28] was performed simultaneously 

using post-BQSR sequencing reads from all samples using the GATK’s UnifiedGenotyper 

(version 2.7-2-g6bda569). Variant quality score recalibration (VQSR) was then performed 

with GATK’s VariantRecalibrator (v2.7-4-g6f46d11) in SNP variant calls using the SNPs 

in 1000 Genomes Phase 1 ASN Panel [27] as the known, truth and training sets. A 

sensitivity threshold of 90% to SNPs in the 1000G Phase1 ASN panel was applied for 

SNP selection for imputation after optimizing for Transition to Transversion (TiTv) ratios 
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in SNPs called. Genotype likelihoods (GLs) were calculated at selected sites using a 

sample-specific binomial mixture model implemented in SNPtools (version 1.0), and 

imputation was performed at those sites without a reference panel using BEAGLE 

(version 3.3.2) [29]. The second round of imputation was performed with BEAGLE on the 

same GLs, but only at biallelic SNPs polymorphic in the 1000G Phase 1 ASN panel using 

the 1000G Phase 1 ASN haplotypes as a reference panel. The genotypes derived from 

Beagle imputation were phased using Shapeit (version 2, revision 790) [30]. Genetic 

maps were obtained from the Impute2 [31] website. Chromosomes 13 - 22 and X were 

phased using 12 threads and default parameters. Chromosomes 1-12 were phased using 

12 threads in four chunks that overlap by 1MB. The phased chunks were ligated together 

using ligateHAPLOTYPES, available from the Shapeit website. A final set of allele 

dosages and genotype probabilities was generated from these two datasets by replacing 

the results in the former with those in the latter at all sites imputed in the latter. We then 

applied a conservative set of inclusion threshold for SNPs for genome-wide association 

study (GWAS): a) p-value for violation HWE > 10-6, b) Info score > 0.9, c) MAF in 

CONVERGE > 0.5% to arrive at the final set of 6,242,619 SNPs. Details can be found in 

[15]. 

 

Automatic detection of cohort composition 

Our group has previously described, in DISTMIX paper [13], a method to estimate the 

ethnic composition when the cohort allele frequencies (AF) are available. However, lately 

some consortia do not provide such measure; they often provide only the Caucasians AF. 
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Consequently, there is a great need for a method to estimate the ethnic composition of 

the cohort even when no AFs are provided.  

 

Below is the theoretical outline of such method. Suppose that the cohort genotype is a 

mixture of genotypes coming out from the 𝑘 ethnic groups from the reference panel. The 

𝐺𝑖𝑗 denotes the genotype for the 𝑖-th subject at the 𝑗-th SNP which belongs to the 𝑙-th 

group, let  𝑝𝑗
(𝑙)

 be the frequency of the reference allele frequency for this SNP in the 𝑙-th 

group. Let 𝐺′𝑖𝑗 =
𝐺𝑖𝑗−2 𝑝𝑗

(𝑙)

√2𝑝
𝑗
(𝑙)

 (1−𝑝
𝑗
(𝑙)

)

  be the normalized genotype, i.e. the transformation to a 

variable with zero mean and unit variance.  Near 𝐻0, SNP Z-score statics  𝑍𝑗′s have the 

approximately the same correlation structure as the genotypes used to construct it, 𝐺∗𝑗 ’s, 

and, thus, the same correlation structure as its transformation, 𝐺′∗𝑗′s.  However, given 

that both 𝐺′∗𝑗′𝑠  and 𝑍𝑗′𝑠  have unit variance, it follows that the two have the same 

covariance (i.e. not only the same correlation) structure.  Therefore, for any 𝑠 ≥ 1 

 𝐸(𝑍𝑗  
𝑍𝑗+𝑠) = 𝐸(𝐺′∗𝑗  

𝐺′∗ 𝑗+𝑠), which, due independence of genotypes in different ethnic 

groups becomes: 

𝐸(𝑍𝑗  𝑍𝑗+𝑠) = ∑ 𝑤(𝑙) 𝑘
𝑙=1 𝐸[𝐺′

∗𝑗
(𝑙)

 𝐺′
∗(𝑗+𝑠)

(𝑙)
] = ∑ 𝑤(𝑙) 𝑘

𝑙=1 𝐶𝑜𝑟(𝐺′
∗𝑗

(𝑙)
, 𝐺′

∗(𝑗+𝑠)
(𝑙)

)  (1),  

where 𝑤(𝑙) is the expected fraction of subjects from the entire cohort that belong to the 𝑙-

th group.  

 

While 𝐶𝑜𝑟(𝐺′
∗𝑗

(𝑙)
, 𝐺′

∗(𝑗+𝑠)
(𝑙)

)  is unknown, it can be easily approximated using their 

reference panel counterparts.  Thus, the weights, 𝑤(𝑙), can be simply estimated by simply 
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regressing the product of product of reasonably close SNP 𝑍 -scores, 𝑍′𝑗  𝑍′𝑗+𝑠 , on 

correlations between normalized genotypes at the same SNP pairs for all subpopulations 

in the reference panel. To increase bias power, we chosen the parameter 𝑠, such as to 

maximize the variance of the within panel ethnic group correlations while keeping 𝑗 + 𝑠-

th SNP no more than 50Kb away from 𝑗 −th SNP. Because some GWAS might have 

numerous large signals, e.g. latest height meta-analysis [6, 32], a more accurate 

estimation of the weights is very likely to be obtained by substituting expected gaussian 

quantiles for 𝑍𝑗
′ (see Nonparametric robust estimation of weights subsection). 

 

Due to the strong LD among SNPs, the estimation of the correlation using all SNPs in a 

genome might lead to a poor regression estimate in (1). To avoid this, we sequentially 

split GWAS SNPs into 1000 non-overlapping SNP sets, e.g. first set consists of the 1st, 

1001st, 2001st, etc. map ordered SNPs in the study. The large distances between SNPs 

in the same set make them quasi-independent which, thus, improves the accuracy of the 

estimated correlation. 𝑊 = (𝑤(𝑙) )  is subsequently estimated as the average of the 

weights obtained from the 1000 SNP sets. Finally, we set to zero the negatives weights 

and normalize the remaining weights to sum to 1 [33].  This method should be even more 

useful when we already know the approximate continental (EUR, ASN, SAS, AFR and 

AMR) weights (as estimated from study information) but it is not always clear how these 

proportions should be allocated among continental subpopulations. This further 

apportioning of continental weights is likely to be extremely important when the GWAS 

cohorts contain many admixed populations, e.g. African Americans and American native 

populations. Consequently, when continental proportions are provided by the users, we 
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use our automatic detection to distribute these weights to the most likely subpopulations 

in the reference panel. To eliminate unforeseen artifacts, we strongly recommend to the 

users to provide continental proportions when AFs are not available. 

 

Nonparametric robust estimation of weights 

To estimate robust weights and to avoid false positives we apply a two-step, robust 

algorithm to the 𝑍-scores of the SNPs. First, let 𝑍𝜎 = (𝑧𝜎1
, 𝑧𝜎2

, … , 𝑧𝜎𝑚
), where 𝜎 indicates 

the permutation of indices of Z-scores, 𝑍, for the 𝑚 SNPs, that orders these statistics in 

increasing order. Second,  𝑧𝑖
′ = 𝛷−1(

𝜎𝜄

𝑚+1
), where 𝛷−1 is the inverse normal cumulative 

distribution function. Subsequently, these transformed risk scores are used for computing 

ethnic weights. 

  

 

Software and data availability 

DISTMIX2 is freely available for academic use at 

https://github.com/Chatzinakos/DISTMIX2. The DISTMIX2 executable requires only the 

GWAS summary statistics from the user. The reference panel also available at the same 

repo. 

 

Supporting information 

SI. Text and Figures.   
(PDF)  

SE. Table with the significant signals for the real applications. 
(EXCEL) 
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