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Abstract 22 

The identification of progenitor and stem like cells in epithelial tissues, as well as those 23 

that may serve as the cell of origin for epithelial cancers, is an outstanding challenge. 24 

Here we present a novel algorithm, called LandSCENT, which constructs a 25 

3-dimensional integrated landscape of cell-states, encompassing cell-potency and 26 

expression subtypes, to facilitate the identification of progenitor and stem-like cells. 27 

Application to thousands of single-cell RNA-Seq profiles from the normal mammary 28 

epithelium reveals a rare 5% subpopulation of highly potent single-cells. The integrated 29 

landscape naturally predicts that these cells define a bi-potent-like state, a result not 30 

obtainable via standard methods or without invoking prior assumptions. The 31 

bi-potent-like cells are overrepresented within the basal compartment but also overlap 32 

with an immature luminal phenotype. We characterize the transcriptome of these cells 33 

and show that is enriched for a mammary stem-cell module. We further identify YBX1, 34 

a regulator of breast cancer risk identified from GWAS, as the key transcription factor 35 

defining this candidate bi-potent cellular phenotype. We validate the putative bi-potency 36 

of YBX1-marked cells using independent FACS-sorted bulk expression data. In addition, 37 

YBX1 is overexpressed in basal breast cancer and correlates with clinical outcome. In 38 

summary, we here provide a novel computational framework which may serve to 39 

identify and prioritize candidate normal or cancer progenitor/stem-like single-cell 40 

phenotypes, for subsequent functional studies. 41 

 42 

Introduction 43 

Single-cell RNA-sequencing (scRNA-Seq) studies are revolutionizing our understanding of 44 

cellular development, helping us to elucidate the hierarchical organization of cell-types 45 

within complex tissues (Patel et al. 2014; Trapnell et al. 2014; Treutlein et al. 2014; Scialdone 46 

et al. 2016; Tirosh et al. 2016a; Tirosh et al. 2016b; Treutlein et al. 2016; Haber et al. 2017; 47 

Regev et al. 2017; Rozenblatt-Rosen et al. 2017; Hon et al. 2018; Laurenti and Gottgens 2018; 48 

Shepherd et al. 2018). In these studies, a common computational task is the clustering of 49 

single cells, which may reveal novel cell-types within these tissues (Haber et al. 2017; Han et 50 

al. 2018). Relations between known and novel cell-types can be subsequently derived using 51 

lineage-trajectory inference type algorithms (Trapnell et al. 2014) (Chen et al. 2016) (Marco 52 

et al. 2014) (Haghverdi et al. 2016) (Grun et al. 2016). However, assignment of single cells to 53 

cell-types often requires prior knowledge of specific markers, which may inevitably introduce 54 

bias (Stingl et al. 2006; Trapnell 2015; Yuan et al. 2017). In certain circumstances this bias 55 

can be substantial, specially if knowledge of suitable markers is not available or at best 56 

controversial (Costa et al. 2018; Grun 2018). Moreover, lineage-trajectory inference 57 

algorithms, including recent state-of-the-art ones such as Monocle-2 (Qiu et al. 2017), often 58 
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require specification of a “root” cell or node, in order to give the trajectories a “temporal” 59 

direction. In the absence of temporal data, the specification of this root node may rely on 60 

existing biological knowledge and therefore equally subject to bias. Another related and key 61 

problem is that cell-types are typically inferred as clusters of relatively high cell-density in a 62 

two dimensional reduced space, a procedure which does not necessarily allow for the 63 

identification of cellular states. For instance, how to identify novel progenitor or stem-like 64 

states within a cell-type may not be possible using two-dimensional clustering alone since 65 

potency/stemness may be defined by additional latent dimensions.  66 

To address these outstanding challenges, we here present LandSCENT, a novel computational 67 

framework that avoids the aforementioned biases, assigning each cell, not only to a specific 68 

cell-type, but also to a specific potency state (Teschendorff and Enver 2017). LandSCENT 69 

achieves this without the need for prior knowledge or assumptions. LandSCENT integrates 70 

the inferred cell-types and potency states into a multi-layered single-cell landscape, where 71 

cell-states are defined by clusters of single-cells within a potency state. This novel approach 72 

allows cells to be placed into specific cellular-states, thus allowing novel cellular phenotypes 73 

to be identified, for instance novel progenitor or stem-like states within complex epithelial 74 

tissues. 75 

We illustrate this strategy in the context of the breast epithelium, a tissue for which 76 

scRNA-Seq encompassing over 25,000 single epithelial cells from 4 women, has recently 77 

been generated using the 10X Genomics Chromium assay (Nguyen et al. 2018). We apply 78 

LandSCENT to this data to construct an integrated potency and cell-type landscape at the 79 

single-cell level. This landscape reveals a novel putative bi-potent progenitor like cell-state, 80 

characterized by overexpression of YBX1, a recently discovered regulator of breast cancer 81 

risk (Castro et al. 2016), a result which we would not have found had we used standard 82 

state-of-the-art clustering methods. We further validate the bi-potent/stem-like nature of the 83 

identified single-cells using orthogonal bulk expression data of mammosphere-derived 84 

mammary stem cells. Our data support the view that the identified bi-potent cells expressing 85 

YBX1 may give rise to both basal and luminal progenitors, potentially marking the 86 

cell-of-origin for basal breast cancer.  87 

 88 

Results 89 

Constructing an integrative landscape of cell-states in breast epithelium 90 

We posited that improved clustering of single-cells so as to reveal novel biology, would be 91 

possible by integrating cellular state information with the cells’ expression profiles when 92 

performing the clustering itself. One important feature of a cell that informs on cell-state is its 93 

differentiation potency and in previous studies we proposed and validated an in-silico 94 

measure of single-cell potency, based on the concept of single cell signaling entropy (SCENT) 95 

(Banerji et al. 2013; Teschendorff and Enver 2017), which we have further shown is more 96 
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robust than other proposed single-cell potency models (Grun et al. 2016; Guo et al. 2016; Shi 97 

et al. 2018a). We stress that SCENT represents a marker-free systems-biology approach to the 98 

quantification of a cell’s potency, which has been demonstrated to be very robust, and which 99 

is applicable also to bulk samples (Banerji et al. 2013; Teschendorff and Enver 2017; Shi et al. 100 

2018b). This is important because the alternative approach, i.e. to use expression of surface 101 

markers, is unlikely to capture the full biological complexity underlying cellular potency, 102 

while also introducing potential bias. Thus, here we present LandSCENT, a novel extension 103 

of SCENT that combines inference of cell potency with single-cell clustering to construct a 104 

landscape of single-cell states: these single-cell states integrate the single-cell potency 105 

estimates with the inferred cell-type clusters, providing a 3-dimensional landscape 106 

representation (Fig.1, Methods). Here we applied LandSCENT to a 10X Genomics 107 

Chromium assay profiling thousands of single-cells in the breast epithelium (Nguyen et al. 108 

2018), in order to define the landscape of cellular states in this tissue (Fig.1).  109 

First, we phenotypically characterized the single cells, by performing t-SNE (van der Maaten 110 

2008) followed by density-based spatial clustering (Ester et al. 1996) on 3473 single 111 

epithelial cells (after QC) from one individual and using a reduced subset of 4261 genes that 112 

exhibited a significant average and variance in expression across all cells (Methods). This 113 

revealed three main single-cell clusters (Fig.2A), in line with previous observations (Nguyen 114 

et al. 2018). One of these clusters expressed high levels of KRT14, a well-known basal 115 

marker, which was not expressed in the other two main clusters (Fig.2B). Instead, the other 116 

two clusters expressed KRT18, a well-known luminal marker. Consistent with the report of 117 

Nguyen et al (Nguyen et al. 2018), the two luminal clusters were distinguished by expression 118 

of lactotransferin (LTF) and luminal differentiation markers (GATA3/FOXA1), as well as 119 

hormone receptors (ESR1/PGR) (Fig.2B), suggesting that the higher LTF-expressing cluster 120 

represents a more immature (alveolar) luminal phenotype. 121 

Next, we applied our Signaling Entropy Rate (SR) measure from SCENT to estimate the 122 

differentiation potency of each single cell. To broadly categorize different levels of inferred 123 

potency, we applied a Gaussian mixture model to the logit-transformed potency estimates of 124 

the 3473 single cells, revealing the existence of three main potency states (Fig.2C-D, 125 

Methods). We observed that the highest potency state represented a minority population, 126 

with approximately only 5% of single-cells falling into this putative progenitor or stem-like 127 

state (Fig.2D).  128 

 129 

Validation of potency assignments  130 

Although signaling entropy has been extensively validated as a cell-potency measure 131 

(Teschendorff and Enver 2017; Shi et al. 2018a), we sought additional validation of the 132 

specific potency assignments in the current dataset. It is well known that GATA3, FOXA1 and 133 

ESR1 are associated with a more differentiated luminal phenotype and therefore the 134 

expectation would be that their expression levels should be higher in the luminal cells of 135 
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lowest potency. We were able to confirm this with high statistical significance (Fig.3A). We 136 

also validated the potency assignments within the basal compartment. For instance, we 137 

observed that expression of KRT5 and EGFR, two well-known basal differentiation markers, 138 

decreased in the basal cells of higher potency (Fig.3B). We note that all these negative 139 

correlations were apparent only when we restricted to cells where the genes were expressed. 140 

If all cells were included, including technical and biological dropouts, we did not observe 141 

these genes to exhibit the expected negative correlation: in fact, they showed an opposite 142 

trend due to a larger number of dropouts among low potency cells (SI fig.S1). To investigate 143 

this further and to validate our method to call differential expression (DE), we used bulk 144 

mRNA expression data from FACS sorted differentiated luminal and basal cells (Shehata et al. 145 

2012) to define a gold-standard list of 5,773 differentially expressed genes between basal and 146 

luminal cells. For each of these gold-standard genes, and using only cells expressing the 147 

corresponding gene, we derived a t-statistic of differential expression between the single cell 148 

basal and luminal clusters, which revealed that for the great majority of gold-standard genes 149 

with sufficient single-cell data, these exhibited the expected pattern of differential expression 150 

(OR=8.31, Fisher=test P=2e-26, SI fig.S2). Based on this, we conclude that performing DE 151 

using only cells expressing the gene is a valid procedure, thus also validating our potency 152 

assignments. 153 

 154 

Integrative landscape reveals a putative bi-potent cell state 155 

Having identified and validated the main single-cell clusters and potency states, we next 156 

considered the distribution of potency states across these 3 clusters, as well as those cells not 157 

assigned to any cluster (“peripheral cells”). Interestingly, cells in the high potency state were 158 

found primarily within the basal compartment, but also mapped preferentially to the common 159 

peripheral area of the three main clusters, and were therefore also relatively over represented 160 

among peripheral cells (Fig.2C, Fig.4A). To assess this in more detail, we used LandSCENT 161 

to create cell-density elevation maps of all cells, and separately also for all highly potent cells, 162 

within the two-dimensional t-SNE landscape, which confirmed that the maximum density of 163 

the highly potent cells defined a peak within the basal cluster, but with a ridge connecting it 164 

to another peak within the immature luminal (L1) cluster (Fig.4B), suggestive of a bi-potent 165 

cell population. In line with this, we observed that among all cells categorized into the high 166 

potency (PS3) state, those falling within this peak also exhibited the highest levels of 167 

signaling entropy (SI fig.S3). To exclude the possibility that these higher or bi-potent cells 168 

may be doublets, we estimated doublet scores for all cells using a novel simulation approach 169 

(Dahlin et al. 2018). In line with the expected doublet rate for 10X technology, this analysis 170 

revealed that approximately 2% of the assayed cells are potential doublets (SI fig.S4A). As 171 

expected, most of these mapped to the peripheral area between the major luminal and basal 172 

clusters, yet they clearly also did not overlap with the most highly potent cells within the 173 

basal and luminal clusters, confirming that our candidate bi-potent cells are generally not 174 
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doublets (SI fig.4B). Supporting this, we observed that the relation between signaling entropy 175 

and doublet scores is a non-linear one, with many highly potent cells not necessarily having 176 

high doublet scores (SI fig.4C). Finally, we verified that similar results were obtained had we 177 

used another method for estimating doublet scores (SI fig.S5, Methods). 178 

 179 

Bipotent cells are marked by YBX1 and ENO1 overexpression 180 

In order to characterize the highly potent cells we performed DE analysis between high and 181 

low potent cells, irrespective of their epithelial subtype. The great majority of genes were 182 

downregulated in the more potent cells, with only 72 exhibiting overexpression (Bonferroni 183 

adjusted P<0.05, Fig.4C). Correspondingly, among the 1369 TFs, 582 exhibited differential 184 

expression (Bonferroni adjusted P < 0.05) with only 3 TFs (ENO1, YBX1 and BTF3) 185 

exhibiting higher expression in the more potent cells (Fig.4C-D). Remarkably, YBX1 and 186 

ENO1 are two transcription factors whose targets are highly enriched for breast cancer 187 

GWAS eQTLs (Castro et al. 2016), thus implicating them in breast cancer risk. In addition, 188 

siRNA against YBX1 in a normal ER- cell-line (MCF10A) resulted in significantly reduced 189 

cell-confluence and growth, even when compared to other breast cancer risk TFs (Castro et al. 190 

2016).We confirmed that the associations of YBX1 and ENO1 expression with potency 191 

remained after adjustment for cell-cycle phase (SI fig.S6, Methods), and that their expression 192 

also correlated with cell potency in the scRNA-Seq data from the other 3 women (SI fig.S7).  193 

 194 

Upregulated bipotent single-cell signature correlates with mammary stemness 195 

If the highly potent cells are bipotent, the expectation would be that they are transcriptionally 196 

similar to previously characterized mammary stem cells. We performed rank-based GSEA 197 

(Subramanian et al. 2005) on the 72 genes upregulated in the highly potent single cells to 198 

further characterize the putative bipotent cells. This revealed strong enrichment for ribosomal 199 

genes, but importantly also for genes upregulated in mammary stem-cells (SI fig.S8). In 200 

particular, we observed a relatively strong enrichment (12 gene overlap, OR=39, BH-adjusted 201 

Fisher-test P<1e-10) with a previously characterized mammary stem-cell signature (Pece et al. 202 

2010). Of note, among the 12 overlapping genes, 9 (RPS2, RPS7, RPS10, RPL8, RPS18, 203 

RPS3, RPL10A) were ribosomal proteins or ubiquitin ribosomal fusion proteins (UBA2 & 204 

FAU), consistent with recent findings that expression of ribosomal proteins is a universal 205 

marker of stemness and potency (Athanasiadis et al. 2017; Teschendorff and Enver 2017). 206 

Among the other 3 genes, we observed NACA, a protein that associates with the upregulated 207 

transcription factor BTF3, and TXN (thioredoxin), a protein involved in the response to 208 

intracellular nitric oxide.  209 

To confirm the results of the GSEA, we obtained and normalized mRNA expression data 210 

from mammosphere-derived FACS sorted pools of quiescent mammary stem-cells and 211 

transit-amplifying progenitors (Pece et al. 2010) (Methods). Validating the association with 212 

stemness, the 12-genes exhibited increased expression in three separate pools of quiescent 213 
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mammary stem-cells compared to their derived transit-amplifying progenitors (Fig.5A-B, 214 

Wilcox test P=0.001, Methods), a result which remained significant compared to randomly 215 

selected genes (Fig.5C, Monte Carlo P=0.0001). Results remained significant had we used all 216 

72 genes (63 genes had representation on the Affymetrix platform used in Pece et al (Pece et 217 

al. 2010)) from the upregulated scRNA-Seq bipotent signature (SI fig.S9). However, 218 

interestingly, YBX1 and ENO1 were not upregulated in the quiescent mammary stem cells 219 

compared to the transit-amplifying progenitor cells (SI fig.S9), suggesting that while 220 

potency/stemness is marked by the expression level of ribosomal proteins, the progenitor 221 

non-quiescent state is associated with higher expression of YBX1 and ENO1. 222 

 223 

 224 

YBX1 expression correlates with luminal subtype and is increased in luminal 225 

progenitors 226 

The correlation of YBX1 expression with potency was particularly evident in the luminal 227 

compartment (Fig.6A, SI fig.S10), pointing towards YBX1 as playing not only a key role in 228 

defining a basal progenitor phenotype, but also potentially as a luminal progenitor. We were 229 

able to further validate this in two ways. First, its expression was also higher in the more 230 

immature luminal alveolar-like phenotype, in line with the fact that these alveolar luminal 231 

cells should be more enriched for progenitors (Fig.6B). Second, using bulk expression data 232 

from FACS sorted luminal progenitor and differentiated luminal cells (Shehata et al. 2012), 233 

we found YBX1 expression to be highest for the EpCAM+/CD49f+/ALDH+ population 234 

(Fig.6C, Wilcox test P=0.003), which defines the most likely luminal progenitor phenotype, 235 

or at least the one that gives rise to milk-producing alveolar cells (Shehata et al. 2012).  236 

Of note, we obtained similar results if instead of YBX1 we used the earlier 17-gene or 237 

72-gene signatures marking the bipotent cells. Indeed, the great majority of these genes were 238 

observed to be overexpressed in the EpCAM+/CD49f+/ALDH+ population compared to all 239 

other cell populations, a result which was highly significant as assessed using 100,000 240 

Monte-Carlo randomizations (P<1e-5, SI fig.S11). 241 

 242 

YBX1 expression marks basal breast cancer 243 

Given that YBX1 exhibited highest expression in the more potent single-cells, and that these 244 

were enriched within the basal compartment, it is natural to posit that YBX1 may mark the 245 

cell of origin for basal breast cancer. If so, YBX1 expression should be highest in basal breast 246 

cancer compared to other breast cancer subtypes. We were able to confirm this with high 247 

statistical significance within the METABRIC study (Curtis et al. 2012), which profiled 248 

almost 2000 primary breast cancers (Fig.6D). Similar results were obtained if instead of 249 

YBX1 we used the complete 17-gene or 72-gene signatures marking the bipotent cells (SI 250 

fig.S12). In terms of the integrative cluster (IC) subtypes, as defined by METABRIC, YBX1 251 

expression was highest in IC-5 and IC-10 (Fig.6E). These two integrative cluster subtypes 252 
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exhibited the worst disease-specific 5-year survival rates among all IC subtypes (Curtis et al. 253 

2012). In line with this, we observed that YBX1 expression also correlated with a poor clinical 254 

outcome (HR=1.31, P=7e-9, Fig.6F). However, the association with outcome was mainly 255 

driven by ER-status, since in an analysis stratified by ER-status we did not observe any 256 

significant association (HR=1.11, P=0.12 in ER+; HR=0.96, P=0.64 in ER-).  257 

 258 

 259 

 260 

Discussion 261 

Here we have demonstrated “proof-of-concept” that our signaling entropy rate measure can 262 

be used to identify rare subpopulations of highly-potent cells, which may represent novel 263 

candidate progenitor or stem-like cells. Indeed, application to almost 4,000 single cells from 264 

the mammary epithelium identified a rare (5%) subpopulation of relatively high potency, 265 

which is likely to represent a mammary progenitor-like state. We extensively validated the 266 

potency assignments of the single-cells, and consistent with the prevailing view that most 267 

mammary progenitors are basal cells, the highly potent cells were over-represented within the 268 

basal compartment. The ability to stratify single cells into different potency states allowed us 269 

to infer and compare the cell-density surface maps for all potency states, revealing that highly 270 

potent cells exhibited a strikingly different landscape to those of lower potency, with the 271 

region of maximum cellular density defining a distinctive bi-modal ridge between the basal 272 

and alveolar luminal clusters, with the largest peak occurring within the basal compartment. 273 

Thus, without the need for any prior assumptions, LandSCENT predicts that these highly 274 

potent cells may represent a bi-potent subpopulation that gives rise not only to basal cells but 275 

also to luminal progenitors. Supporting this view, we found that the main TF characterizing 276 

these highly potent cells (YBX1) plays a key role in maintaining the self-renewal and 277 

proliferative capacity of basal cells (Castro et al. 2016) and that it is also overexpressed in 278 

FACS sorted luminal progenitor populations compared to luminal differentiated cells. In 279 

addition, we found that among the top-ranked genes upregulated in these putative bipotent 280 

cells, there was a clear and significant enrichment for genes that have been found to mark 281 

quiescent mammary stem cells and stemness generally (Athanasiadis et al. 2017; 282 

Teschendorff and Enver 2017). We stress that these independent validations using orthogonal 283 

expression data from bulk samples clearly shows that our results are not technical artefacts of 284 

single-cell data. 285 

The significance of YBX1 extends to the cancer-risk context. First, there is already substantial 286 

evidence demonstrating that YBX1 transforms mammary epithelial cells, via binding to the 287 

BMI1 promoter and chromatin remodeling, leading to basal breast cancer (Davies et al. 2014). 288 
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In line with this, YBX1 is also more highly expressed in basal breast cancer compared to all 289 

other breast cancer subtypes, consistent with it marking cells that give rise to basal breast 290 

cancer. Second, YBX1 expression also marks luminal progenitor cells, and a subset of basal 291 

breast cancers, notably BRCA1 mutant ones, are thought to arise from a mis-programmed 292 

luminal progenitor (Lim et al. 2009; Shehata et al. 2012). Indeed, the single-cell landscape 293 

inferred with LandSCENT underscores the similarity of the highly potent cells within the 294 

basal compartment with those in the immature luminal cluster, strongly suggesting that the 295 

cell of origin for basal breast cancer may well be a bi-potent like cell that shares an 296 

expression profile similar to that of luminal progenitors, including notably YBX1. Third, 297 

YBX1 has been shown to interact with ESR1, and via FGFR2 signaling may contribute to 298 

tamoxifen resistance (Campbell et al. 2018). Fourth, it has been observed that genes within 299 

the YBX1 regulon are strongly enriched for GWAS breast cancer eQTLs (Castro et al. 2016). 300 

This is a highly significant observation, given the growing evidence that molecular alterations 301 

(both inherited and somatic) affecting the adult stem/progenitor cells within the tissue is a 302 

main risk factor for epithelial cancer development (Tomasetti and Vogelstein 2015b; 303 

Tomasetti and Vogelstein 2015a; Yang et al. 2016; Zhu et al. 2016; Tomasetti et al. 2017). 304 

Thus, we speculate that it is the genetic and epigenetic alterations that accumulate within the 305 

bi-potent progenitor cell pool identified here, which may confer the risk of breast cancer, 306 

especially basal breast cancer. 307 

In future, it will be important to conduct more comprehensive and deeper sequencing of 308 

single cells in the mammary epithelium in order to construct accurate expression profiles for 309 

the bi-potent cell pool identified here. In this regard, we point out that we were here severely 310 

limited by the relatively low coverage of the 10X Chromium data (an average of only 311 

~60,000 reads per cell), which did not allow us to fully determine the differential expression 312 

landscape of the bi-potent cells. The identification of YBX1 (and ENO1) is a promising start, 313 

but we anticipate that other regulators will also play a key role in defining these bi-potent 314 

cells. We envisage that the computational framework presented here will play an important 315 

role as a means of identifying and characterizing the bi-potent cells in the larger and deeper 316 

scRNA-Seq studies to be performed in the near future. Importantly, LandSCENT will be 317 

equally applicable to future large-scale scRNA-Seq studies performed on cancer tissue which 318 

aim to identify putative cancer-stem-cells (Tirosh et al. 2016a; Tirosh et al. 2016b; 319 

Teschendorff and Enver 2017). 320 

In summary, we have presented a novel 3-dimensional clustering algorithm for scRNA-Seq 321 

data, which uses an unbiased and assumption-free approach to estimate cell potency, and 322 

which is used to perform single-cell clustering within each potency state. Application of this 323 

simple yet powerful approach to scRNA-Seq data from the mammary epithelium naturally 324 

predicts a bipotent cluster, which as shown here is characterized by regulators that have been 325 

shown to modulate breast cancer risk. This study therefore provides a link between the 326 

progenitor and stem like cell population that controls homeostasis within a complex epithelial 327 
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tissue and regulatory factors implicated in cancer risk of that same tissue. Our algorithm and 328 

findings may serve as a general paradigm for analogous studies in other tissue types. 329 

 330 

Methods  331 

 332 

Single cell data and preprocessing 333 

The scRNA-Seq data analysed in this work derives from the study of Nguyen et al (Nguyen 334 

et al. 2018), who used the 10X Genomics Chromium platform to sequence a total of 24,646 335 

cells from reduction mammoplastic specimens from 4 separate nulliparous women (Ind4-7), 336 

at an average read-depth of 60,000 reads per cell. Mapped read count data from the 4 337 

individuals was downloaded from GEO (GSE113197), and further normalized as follows: for 338 

each cell we counted the number of expressed genes (“coverage per cell”), and for each gene 339 

we also counted the number of times it was expressed across all single cells (“coverage per 340 

gene”). For each cell, we also computed the total read count mapping to mitochondrial genes, 341 

which revealed low cell coverage for those cells having a high proportion of mitochondrial 342 

gene read counts. Based on this, we selected all cells expressing at least 1000 genes and with 343 

the proportion of mitochondrial read counts less than 0.05, leaving a total of 23,369 cells. 344 

Mitochondrial genes were removed and the total read count per cell c recomputed (TRCc). 345 

Denoting the maximum of TRCc by maxC, and the read count matrix by RCM, the latter was 346 

normalized with the following transformation: LSCgc=log2( RCMgc*maxC/TRCc + 1.1). 347 

Finally, we only use Entrez gene ID annotated genes, which resulted in a log-normalized 348 

single cells matrix of dimension 22049 genes and 23369 cells (3473 for Ind-4, 6811 for Ind-5, 349 

5807 for Ind-6 and 7278 for Ind-7). 350 

 351 

The Landscape Single-Cell Entropy and Cell-Type (LandSCENT) algorithm 352 

LandSCENT is a direct extension of the SCENT algorithm. There are three steps to the 353 

LandSCENT algorithm: (1) Inference of potency states: estimation of the differentiation 354 

potency of single cells via computation of the signaling entropy rate (SR) and subsequent 355 

inference of the potency state distribution across the single cell population. (2) Inference of 356 

cell-types: we perform t-SNE (van der Maaten 2008) followed by density-based spatial 357 

clustering (dbscan) (Ester et al. 1996) on a suitably dimensionally reduced LSC matrix. (3) 358 

Construction of an integrated landscape defined over potency-states and cell-types using 359 

cell-density surface maps to reveal cellular-states. We note that step-1 is the exact same 360 

procedure as used in our original SCENT algorithm (Teschendorff and Enver 2017). 361 

  362 

Step-1 Inference of potency states: We estimate differentiation potency of each single cell by 363 

computing the signaling entropy using the same prescription as used in our previous 364 

publications (Banerji et al. 2013; Teschendorff et al. 2014). Briefly, the normalized 365 
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genome-wide gene expression profile of a sample (this can be a single cell or a bulk sample) 366 

is used to assign weights to the edges of a highly curated protein-protein interaction (PPI) 367 

network. The construction of the PPI network itself is described in detail elsewhere (Banerji 368 

et al. 2013), and is obtained by integrating various interaction databases which form part of 369 

Pathway Commons (www.pathwaycommons.org) (Cerami et al. 2011). The weighting of the 370 

network via the transcriptomic profile of the cell provides the biological context. The weight 371 

of an edge between protein i and protein j, denoted by wij , is assumed to be proportional to 372 

the normalized expression levels of the coding genes in the cell, i.e. we assume that wij ~ xi xj . 373 

We interpret these weights (if normalized) as interaction probabilities. The above 374 

construction of the weights is based on the assumption that in a sample with high expression 375 

of i and j, that the two proteins are more likely to interact than in a sample with low 376 

expression of i and/or j. Viewing the edges generally as signaling interactions, we can thus 377 

define a random walk on the network, assuming we normalize the weights so that the sum of 378 

outgoing weights of a given node i is 1. This results in a stochastic matrix, P, over the 379 

network, with entries  380 

��� � ��
∑ ��������

� ��
����� 

where N(i) denotes the neighbors of protein i, and where A is the adjacency matrix of the PPI 381 

network (Aij=1 if i and j are connected, 0 otherwise, and with Aii=0). The signaling entropy is 382 

then defined as the entropy rate (denoted Sr) over the weighted network, i.e.  383 

�	��
� � � � 
� � ��� log ���
������

�

�	


 

where π is the invariant measure, satisfying πP=π and the normalization constraint πT1=1. 384 

The invariant measure, also known as steady-state probability, represents the relative 385 

probability of finding the random walker at a given node in the network (under steady state 386 

conditions i.e. long after the walk is initiated). Nodes with high values thus represent nodes 387 

that are particularly influential in distributing signaling flux in the network. In the 388 

steady-state we can assume detailed balance (conservation of signaling flux, i.e. 
���� �389 


����  ), and it can be shown (Teschendorff et al. 2014) that 
� � �������/(xTAx). Given a 390 

fixed adjacency matrix A (i.e. fixing the topology), it can also be shown (Teschendorff et al. 391 

2014) that the maximum possible Sr among all compatible stochastic matrices P, is the one 392 

with � � �

�
��
 � � � � where � denotes product of matrix entries and where v is the 393 

dominant eigenvector of A, i.e. Av=λv with λ the largest eigenvalue of A. We denote this 394 

maximum entropy rate by maxSr, and define the normalized entropy rate (with range of 395 

values between 0 and 1) as  396 

����
� � �	��
�
����	 

Since SR is bounded between 0 and 1, we next transform the SR value of each single cell into 397 
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their logit-scale value, i.e. y(SR)=log2(SR/(1-SR)). Subsequently, we fit a mixture of 398 

Gaussians to the y(SR) values of the whole cell population, and use the Bayesian Information 399 

Criterion (BIC) (as implemented in the mclust R-package) (Yeung et al. 2001) to estimate the 400 

optimal number K of potency states, as well as the state-membership probabilities of each 401 

individual cell. Thus, for each single cell, this results in its assignment to a specific potency 402 

state.  403 

 404 

Step-2 Inference of cell-types: Cell-types are inferred as significant clusters using 405 

cell-density in the two-dimensional t-SNE space as the main criterion. Preliminary 406 

dimensional reduction is achieved by first selecting genes with a mean average expression 407 

larger than 1, and also a standard deviation larger than 1. These thresholds were chosen after 408 

inspection of the mean-variance plot, and in the case of Ind-4 this resulted in 4261 highly 409 

variable and expressed genes. To map the high dimensional nature of the data matrix to a 410 

two-dimensional subspace we used t-SNE with an initial dimension of 30, a perplexity 411 

parameter of 30, 1000 maximum iterations and epoch parameter set to 100. We then used the 412 

dbscan algorithm (density-based spatial clustering) with eps=5 and minPts=15 to identify 413 

significant clusters. Thus, after steps-1 and 2, each cell is assigned to a unique potency state 414 

and co-expression cluster (cell-type).  415 

Step-3 Inference and construction of an integrated landscape of cell-states: Finally, we 416 

construct cell-density surface maps for all single cells within each of the inferred potency 417 

states. In these surface maps, the elevation is directly proportional to cell-density. By 418 

comparing the resulting landscapes for each potency state, this may reveal novel cellular 419 

states, defined by both potency and expression subtype. 420 

 421 

  422 

Estimation of cell-cycle and TPSC pluripotency scores 423 

To identify single cells in either the G1-S or G2-M phases of the cell-cycle we followed the 424 

procedure described in (Tirosh et al. 2016a). Briefly, genes whose expression is reflective of 425 

G1-S or G2-M phase were obtained from (Whitfield et al. 2002; Macosko et al. 2015). A 426 

given normalized scRNA-Seq data matrix for a given individual is then z-score normalized 427 

for all genes present in these signatures. Finally, a cycling score for each phase and each cell 428 

is obtained as the average z-scores over all genes present in each signature. When adjusting 429 

differential expression analyses for cell-cycle phase, we included the G1-S and G2-M scores 430 

as covariates in the linear models. 431 

 432 

Bulk expression datasets 433 

In this study we used three mRNA expression datasets from bulk samples. One dataset 434 
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consists of 38 FACS sorted bulk samples (Illumina expression beadarrays), as profiled by 435 

Shehata et al (Shehata et al. 2012). Of the 38 samples, 10 were categorized as luminal 436 

non-clonogenic (L), i.e. terminally differentiated cells, with the rest (n=28) making up a 437 

relatively differentiated (EpCAM+/CD49f+/ALDH-, n=17) and undifferentiated 438 

(EpCAM+/CD49f+/ALDH+, n=11) luminal progenitor (LP) populations. The two 439 

undifferentiated LP populations were further distinguished by expression or not of ERBB3. 440 

mRNA expression data was generated using Illumina Beadarrays and we used the normalized 441 

data, as described in (Shehata et al. 2012). 442 

The second dataset is the METABRIC study, which profiled almost 2000 primary breast 443 

cancers using Illumina expression beadarrays (Curtis et al. 2012). We used the assignment of 444 

tumors to PAM50 intrinsic and integrative cluster (IC) subtypes as given by the METABRIC 445 

study. We used the normalized data, as provided by the METABRIC consortium. 446 

A third Affymetrix mRNA expression dataset derives from Pece et al (Pece et al. 2010). This 447 

set consists of 3 separate pools of FACS sorted cell populations. Each pool contains a 448 

quiescent putative mammary stem cell population, as well as a population of derived progeny, 449 

consisting of transit-amplifying progenitor cells, thus a total of 6 bulk samples. We 450 

normalized the HGU133 plus2 data using the affy BioC package, specifically, the rma 451 

function. Only probes mapping to an Entrez gene ID were used, data was quantile normalized 452 

using limma, and probes mapping to the same gene were averaged, resulting in a normalized 453 

data matrix over 20186 genes and 6 samples. 454 

 455 

Differential Expression Analysis 456 

When performing differential expression analysis on single-cell data, for each gene we 457 

always restrict to those cells where the gene is expressed. That is, we remove all dropouts and 458 

don’t impute data. When correlating to potency, we used a linear model between the 459 

normalized expression profile and the potency estimates, optionally adjusting for the two 460 

cell-cycle scores computed earlier. In the case of the Illumina beadarray datasets, we used the 461 

normalized data from the respective publications (Curtis et al. 2012; Shehata et al. 2012) and 462 

called DE using the empirical Bayes limma framework (Smyth 2004). We always use 463 

Bonferroni-adjusted thresholds to call statistical significance unless there are too few hits, in 464 

which case we relax the threshold using FDR<0.05 instead. 465 

 466 

 467 

Doublet score analysis 468 

We used two different simulation-based methods to derive doublet scores for each cell and to 469 

identify those more likely to be doublets. One approach used the simulation method of Dahlin 470 

et al (Dahlin et al. 2018) to obtain doublet scores for all single cells that passed QC and for 471 

each individual separately. Specifically, we used the doubletCells function (using 472 

approximate=TRUE option) from the scran R-package (version 1.10.1) (Lun et al. 2016). In 473 
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the second approach we used the Python package Scrublet (Wolock et al. 2018) (doi: 474 

https://doi.org/10.1101/357368). Within Scrublet, the scrub_doublets function, which is 475 

responsible for computing doublet scores and predicting doublets within a dataset, was run 476 

using default parameters. 477 

 478 

Code Availability: SCENT is freely available as an R-package from github: 479 

https://github.com/aet21/SCENT 480 

 481 

Data Access: Data analyzed in this manuscript is already publicly available from the 482 

following GEO (www.ncbi.nlm.nih.gov/geo/) accession numbers: GSE113197, GSE35399, 483 

GSE18931 or from the EGA (www.ebi.ac.uk/ega/) accession number EGAS00000000083. 484 

 485 
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 630 

Figure Legends 631 

 632 

Figure-1: Flowchart of the LandSCENT algorithm to construct an integrative landscape 633 

of cell-states from scRNA-Seq data. A) Left: Signaling entropy (SR) is applied to the 634 

scRNA-Seq profile of each individual cell to estimate its differentiation potency and to infer 635 

potency states. Clustering of single-cells is performed with t-SNE followed by density based 636 

spatial clustering to identify clusters of high cell-density, which we call cell-types. Right: 637 

Surface cell-density map representation in t-SNE space for all single cells, showing the main 638 
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cell-types, with the smoothed SR (potency) values projected at the bottom. B) An example of 639 

an integrated layered landscape of cellular states, where surface cell-density maps are shown 640 

for cells in each inferred potency state (low, medium and high potency), defining cell-states 641 

within or between major cell-types. The integrated landscape can reveal cell-states not 642 

discernable via standard two dimensional clustering (shown at the bottom of each landscape). 643 

 644 

Figure-2: Inferring cell-types and potency states in breast epithelium. A) t-SNE 645 

clustering diagram for single-cells derived from one individual (Ind-4). Single-clusters were 646 

inferred with dbscan and are labeled with different colors. Of note, single-cells that mapped 647 

to the periphery of clusters and therefore were not assigned to any cluster have been 648 

suppressed. B) As A), but now with the single cells labeled by expression levels of KRT14 (a 649 

basal marker), KRT18 (a luminal marker), LTF (lactotransferin) and mean expression of 650 

GATA3, FOXA1, ESR1 and PGR, as indicated. Different quantiles of expression levels of 651 

each marker are indicated by color with brown indicating high expression and grey low 652 

expression. C) As A), but now displaying all single cells (i.e. including those mapping to the 653 

periphery of clusters) and with single-cells labeled by the inferred potency state (see D)). D) 654 

Left panel: Gaussian mixture model fit to the logit transformed SR values (x-axis) from 3473 655 

single cells infers 3 potency states. The density distributions for all cells (black line) and 656 

those for the inferred mixture components (different shades of blue) are shown. The Bayesian 657 

Information Criterion (BIC) was used to select the optimal number of potency states, which 658 

in this case was found to be 3 (PS1, PS2, PS3). Right panel: Percentage barplot indicating 659 

the fraction of single-cells assigned to each of the three potency states. 660 

 661 

Figure-3: Validation of potency assignments. A) Boxplots of normalized log-expression 662 

(y-axis) for known markers of luminal differentiated cells (GATA3, FOXA1) and hormone 663 

receptor (ESR1) against inferred potency state (x-axis) for all single cells assigned to the two 664 

main luminal clusters (L1 & L2) and further restricting to cells where these genes are 665 

expressed. Numbers of single-cells assigned to each potency state is given. P-value is from a 666 

(two-tailed) linear regression. B) As A), but for known basal differentiation markers (KRT16, 667 

KRT5, EGFR) and restricting to cells that were assigned to the basal cluster. 668 

 669 

 670 

Figure-4: Integrated landscape reveals bi-potent state characterized by YBX1 and 671 

ENO1 expression. A) Percentage barplots displaying the relative distribution of breast 672 

epithelial subtypes (as inferred from the clustering using t-SNE + DBSCAN) among inferred 673 

potency states (Low, Medium, High). Single cells have been divided up into whether they 674 

clustered into the basal compartment (B), into the luminal-1 cluster (L1), the luminal-2 675 

cluster (L2), all other clusters (Other) or whether they were not assigned into any cluster, 676 

defining peripheral cells (Periph). P-value is from a Kruskal-Wallis test to assess if the 677 
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distribution of subtypes differs significantly within the high potency state. B) Surface 678 

cell-density map of all single cells (magenta colored surfaces) with the corresponding surface 679 

cell-density map of highly potent (PS3) cells superimposed (blueish colored surfaces). The x 680 

and y-coordinates label the t-SNE1 and t-SNE2 axes. The height of the surfaces (z) is a 681 

measure of cell-density in the x-y plane and is further indicated by different color tones. The 682 

z-axis is therefore not a measure of cell potency. C) Volcano plot of differential expression 683 

associated with potency, with x-axis labeling the t-statistic and y-axis labeling the statistical 684 

significance. Horizontal bar denotes the Bonferroni threshold, and red points indicate 685 

transcription factors (TFs). D) Boxplots of normalized log-expression (y-axis) for YBX1 and 686 

ENO1 against inferred potency state (x-axis) for all single cells where these genes were 687 

expressed. Numbers of single-cells assigned to each potency state is given. P-value is from a 688 

two-tailed linear regression. All single-cell cells derive from one individual (Ind-4).  689 

 690 

Figure-5: Bipotent single-cell expression signature is enriched for mammary stem cell 691 

genes. A) Normalized relative expression heatmaps for 12 represented genes from the 692 

17-genes upregulated in the putative bipotent single-cells and which overlap with a mammary 693 

stem-cell signature, in 3 separate pools of FACS sorted quiescent mammary stem-cells (P) 694 

and their derived proliferative non-stem like progeny (N). B) Average expression difference 695 

between the P and N cells, averaged over the 3 separate pools. P-value is from a one-tailed 696 

Wilcoxon rank sum test. C) Monte-Carlo randomization analysis, where in each of 100,000 697 

random selections of 17 genes, the average difference over the 3 pools is computed (green 698 

curve) and compared to the observed average difference (red, panel-B). Monte-Carlo P-value 699 

is given. 700 

 701 

 702 

Figure-6: YBX1 expression characterizes luminal progenitors and basal breast cancer. A) 703 

Boxplots of normalized log-expression (y-axis) for YBX1 against inferred potency state 704 

(x-axis) for all single cells assigned to luminal L1 and L2 clusters and where YBX1 is 705 

expressed. Numbers of single-cells in each group is given. P-value is from a linear regression. 706 

B) Boxplots of normalized log-expression (y-axis) for YBX1 against luminal cluster, using 707 

only single cells where YBX1 is expressed. Numbers of single-cells in each group is given. 708 

P-value is from a one-tailed Wilcox test. C) Boxplots of Illumina normalized log-expression 709 

(y-axis) for YBX1 against luminal subtype as defined by FACS-sorting (x-axis): 710 

L=differentiated non-clonogenic luminal, LP(ALDH-)=ALDH- luminal progenitor, 711 

LP(ALDH+)=ALDH+ luminal progenitor. LP(ERBB3-)=ERBB3- and ALDH- luminal 712 

progenitor. P-value is from a one tailed Wilcox-test comparing LP(ALDH+) to all others. D) 713 

Boxplots of normalized Illumina log-expression (y-axis) for YBX1 against PAM50 intrinsic 714 

subtype in the full METABRIC cohort. P-value is from a Kruskal-Wallis test. E) As D), but 715 

for the integrative cluster (IC) subtypes (available in discovery set only). F) Kaplan Meier 716 
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overall survival curves for YBX1 expression, stratified by quantiles of YBX1 expression, and 717 

censored at 5 years after diagnosis. Hazard Ratio (HR), 95% CI and P-value are from a Cox 718 

proportional hazards regression. 719 

 720 
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