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22 Abstract

23 Theidentification of progenitor and stem like cellsin epithelial tissues, as well as those
24 that may serve as the cell of origin for epithelial cancers, is an outstanding challenge.
25 Here we present a novel algorithm, called LandSCENT, which constructs a
26 3-dimensional integrated landscape of cell-states, encompassing cell-potency and
27 expression subtypes, to facilitate the identification of progenitor and stem-like cells.
28  Application to thousands of single-cell RNA-Seq profiles from the normal mammary
29  epithelium reveals arare 5% subpopulation of highly potent single-cells. The integrated
30 landscape naturally predicts that these cells define a bi-potent-like state, a result not
31 obtainable via standard methods or without invoking prior assumptions. The
32 bi-potent-like célls are overrepresented within the basal compartment but also overlap
33 with an immature luminal phenotype. We characterize the transcriptome of these cells
34 and show that is enriched for a mammary stem-cell module. We further identify YBX1,
35 aregulator of breast cancer risk identified from GWAS, as the key transcription factor
36 defining this candidate bi-potent cellular phenotype. We validate the putative bi-potency
37  of YBX1-marked cells using independent FACS-sorted bulk expression data. I n addition,
38  YBX1 is overexpressed in basal breast cancer and correlates with clinical outcome. In
39 summary, we here provide a novel computational framework which may serve to
40 identify and prioritize candidate normal or cancer progenitor/stem-like single-cell
41  phenotypes, for subsequent functional studies.

42

43 Introduction

44  Single-cell RNA-sequencing (sScRNA-Seq) studies are revolutionizing our understanding of
45  cellular development, helping us to elucidate the hierarchical organization of cell-types
46 within complex tissues (Patel et al. 2014; Trapnell et al. 2014; Treutlein et a. 2014; Scialdone
47 et al. 2016; Tirosh et a. 2016a; Tirosh et al. 2016b; Treutlein et al. 2016; Haber et al. 2017;
48  Regev et a. 2017; Rozenblatt-Rosen et al. 2017; Hon et al. 2018; Laurenti and Gottgens 2018;
49  Shepherd et a. 2018). In these studies, a common computational task is the clustering of
50 single cells, which may reveal novel cell-types within these tissues (Haber et al. 2017; Han et
51  a. 2018). Relations between known and novel cell-types can be subsequently derived using
52 lineage-trajectory inference type algorithms (Trapnell et a. 2014) (Chen et a. 2016) (Marco
53 etal. 2014) (Haghverdi et al. 2016) (Grun et a. 2016). However, assignment of single cells to
54  cell-types often requires prior knowledge of specific markers, which may inevitably introduce
55 bias (Stingl et al. 2006; Trapnell 2015; Yuan et a. 2017). In certain circumstances this bias
56 can be substantial, specially if knowledge of suitable markers is not available or at best
57 controversial (Costa et a. 2018; Grun 2018). Moreover, lineage-tragectory inference
58  agorithms, including recent state-of-the-art ones such as Monocle-2 (Qiu et al. 2017), often
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59  require specification of a “root” cell or node, in order to give the trajectories a “temporal”
60 direction. In the absence of tempora data, the specification of this root node may rely on
61  existing biological knowledge and therefore equally subject to bias. Another related and key
62  problem isthat cell-types are typically inferred as clusters of relatively high cell-density in a
63 two dimensiona reduced space, a procedure which does not necessarily allow for the
64 identification of cellular states. For instance, how to identify novel progenitor or stem-like
65  states within a cell-type may not be possible using two-dimensional clustering alone since
66  potency/stemness may be defined by additional latent dimensions.

67  To address these outstanding challenges, we here present LandSCENT, a novel computational
68  framework that avoids the aforementioned biases, assigning each cell, not only to a specific
69  cell-type, but also to a specific potency state (Teschendorff and Enver 2017). LandSCENT
70  achieves this without the need for prior knowledge or assumptions. LandSCENT integrates
71 the inferred cell-types and potency states into a multi-layered single-cell landscape, where
72 cell-states are defined by clusters of single-cells within a potency state. This novel approach
73 dlows cells to be placed into specific cellular-states, thus allowing novel cellular phenotypes
74  to be identified, for instance novel progenitor or stem-like states within complex epithelial
75  tissues.

76  We illustrate this strategy in the context of the breast epithelium, a tissue for which
77 scRNA-Seq encompassing over 25,000 single epithelial cells from 4 women, has recently
78  been generated using the 10X Genomics Chromium assay (Nguyen et al. 2018). We apply
79  LandSCENT to this data to construct an integrated potency and cell-type landscape at the
80 single-cell level. This landscape reveals a novel putative bi-potent progenitor like cell-state,
81 characterized by overexpression of YBX1, a recently discovered regulator of breast cancer
82  risk (Castro et a. 2016), a result which we would not have found had we used standard
83  state-of-the-art clustering methods. We further validate the bi-potent/stem-like nature of the
84 identified single-cells using orthogonal bulk expression data of mammosphere-derived
85 mammary stem cells. Our data support the view that the identified bi-potent cells expressing
86 YBX1 may give rise to both basal and luminal progenitors, potentially marking the
87  cell-of-origin for basal breast cancer.

88

89 Results

90 Constructing an integrative landscape of cell-statesin breast epithelium

91  We posited that improved clustering of single-cells so as to revea novel biology, would be
92 possible by integrating cellular state information with the cells' expression profiles when
93  performing the clustering itself. One important feature of a cell that informs on cell-state isits
94  differentiation potency and in previous studies we proposed and validated an in-silico
95  measure of single-cell potency, based on the concept of single cell signaling entropy (SCENT)
96 (Banerji et al. 2013; Teschendorff and Enver 2017), which we have further shown is more
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97  robust than other proposed single-cell potency models (Grun et a. 2016; Guo et a. 2016; Shi

98 etal. 2018a). We stress that SCENT represents a marker-free systems-biology approach to the

99  quantification of a cell’s potency, which has been demonstrated to be very robust, and which
100 isapplicable also to bulk samples (Banerji et a. 2013; Teschendorff and Enver 2017; Shi et al.
101  2018b). This is important because the alternative approach, i.e. to use expression of surface
102 markers, is unlikely to capture the full biological complexity underlying cellular potency,
103  while aso introducing potential bias. Thus, here we present LandSCENT, a novel extension
104  of SCENT that combines inference of cell potency with single-cell clustering to construct a
105 landscape of single-cell states. these single-cell states integrate the single-cell potency
106  estimates with the inferred cell-type clusters, providing a 3-dimensional landscape
107  representation (Fig.1l, Methods). Here we applied LandSCENT to a 10X Genomics
108  Chromium assay profiling thousands of single-cells in the breast epithelium (Nguyen et al.
109  2018), in order to define the landscape of cellular statesin this tissue (Fig.1).
110  First, we phenotypically characterized the single cells, by performing t-SNE (van der Maaten
111  2008) followed by density-based spatial clustering (Ester et al. 1996) on 3473 single
112 epithelial cells (after QC) from one individual and using a reduced subset of 4261 genes that
113 exhibited a significant average and variance in expression across all cells (M ethods). This
114  reveded three main single-cell clusters (Fig.2A), in line with previous observations (Nguyen
115 et a. 2018). One of these clusters expressed high levels of KRT14, a well-known basal
116  marker, which was not expressed in the other two main clusters (Fig.2B). Instead, the other
117  two clusters expressed KRT18, a well-known luminal marker. Consistent with the report of
118  Nguyen et al (Nguyen et a. 2018), the two luminal clusters were distinguished by expression
119  of lactotransferin (LTF) and luminal differentiation markers (GATA3/FOXAL), as well as
120  hormone receptors (ESRL/PGR) (Fig.2B), suggesting that the higher LTF-expressing cluster
121 represents a more immature (alveolar) luminal phenotype.

122 Next, we applied our Signaling Entropy Rate (SR) measure from SCENT to estimate the
123 differentiation potency of each single cell. To broadly categorize different levels of inferred
124  potency, we applied a Gaussian mixture model to the logit-transformed potency estimates of
125 the 3473 single cells, revealing the existence of three main potency states (Fig.2C-D,
126 Methods). We observed that the highest potency state represented a minority population,
127  with approximately only 5% of single-cells falling into this putative progenitor or stem-like
128  state (Fig.2D).

129

130  Validation of potency assignments

131 Although signaling entropy has been extensively validated as a cell-potency measure
132 (Teschendorff and Enver 2017; Shi et a. 2018a), we sought additional validation of the
133 gpecific potency assignments in the current dataset. It is well known that GATA3, FOXAL and
134 ESR1 are associated with a more differentiated luminal phenotype and therefore the

135  expectation would be that their expression levels should be higher in the luminal cells of
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136  lowest potency. We were able to confirm this with high statistical significance (Fig.3A). We
137  aso validated the potency assignments within the basal compartment. For instance, we
138  observed that expression of KRT5 and EGFR, two well-known basal differentiation markers,
139  decreased in the basal cells of higher potency (Fig.3B). We note that all these negative
140  correlations were apparent only when we restricted to cells where the genes were expressed.
141 If all cells were included, including technical and biological dropouts, we did not observe
142 these genes to exhibit the expected negative correlation: in fact, they showed an opposite
143 trend due to a larger number of dropouts among low potency cells (Sl fig.S1). To investigate
144  this further and to validate our method to call differential expression (DE), we used bulk
145  mRNA expression data from FACS sorted differentiated luminal and basal cells (Shehataet al.
146  2012) to define a gold-standard list of 5,773 differentially expressed genes between basal and
147  luminal cells. For each of these gold-standard genes, and using only cells expressing the
148  corresponding gene, we derived a t-statistic of differential expression between the single cell
149  basal and luminal clusters, which revealed that for the great mgority of gold-standard genes
150  with sufficient single-cell data, these exhibited the expected pattern of differential expression
151  (OR=8.31, Fisher=test P=2e-26, Sl fig.S2). Based on this, we conclude that performing DE
152 using only cells expressing the gene is a valid procedure, thus also validating our potency
153  assgnments.

154

155  Integrativelandscape reveals a putative bi-potent cell state

156  Having identified and validated the main single-cell clusters and potency states, we next
157  considered the distribution of potency states across these 3 clusters, as well as those cells not
158  assigned to any cluster (“peripheral cells’). Interestingly, cells in the high potency state were
159  found primarily within the basal compartment, but also mapped preferentially to the common
160  periphera area of the three main clusters, and were therefore aso relatively over represented
161  among peripheral cells (Fig.2C, Fig.4A). To assess this in more detail, we used LandSCENT
162  to create cell-density elevation maps of all cells, and separately aso for all highly potent cells,
163  within the two-dimensional t-SNE landscape, which confirmed that the maximum density of
164  the highly potent cells defined a peak within the basal cluster, but with a ridge connecting it
165  to another peak within the immature luminal (L1) cluster (Fig.4B), suggestive of a bi-potent
166  cell population. In line with this, we observed that among all cells categorized into the high
167  potency (PS3) state, those falling within this peak also exhibited the highest levels of
168  signaling entropy (Sl fig.S3). To exclude the possibility that these higher or bi-potent cells
169  may be doublets, we estimated doublet scores for all cells using a novel simulation approach
170  (Dahlin et al. 2018). In line with the expected doublet rate for 10X technology, this analysis
171  reveaed that approximately 2% of the assayed cells are potential doublets (SI fig.S4A). As
172 expected, most of these mapped to the peripheral area between the major luminal and basal
173 clusters, yet they clearly aso did not overlap with the most highly potent cells within the

174 basal and luminal clusters, confirming that our candidate bi-potent cells are generally not
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175  doublets (Sl fig.4B). Supporting this, we observed that the relation between signaling entropy
176  and doublet scores is a non-linear one, with many highly potent cells not necessarily having
177 high doublet scores (Sl fig.4C). Finally, we verified that similar results were obtained had we
178  used another method for estimating doublet scores (Sl fig.S5, M ethods).

179

180  Bipotent cellsare marked by YBX1 and ENO1 over expression

181  In order to characterize the highly potent cells we performed DE analysis between high and
182  low potent cells, irrespective of their epithelial subtype. The great majority of genes were
183  downregulated in the more potent cells, with only 72 exhibiting overexpression (Bonferroni
184  adjusted P<0.05, Fig.4C). Correspondingly, among the 1369 TFs, 582 exhibited differential
185  expression (Bonferroni adjusted P < 0.05) with only 3 TFs (ENO1, YBX1 and BTF3)
186  exhibiting higher expression in the more potent cells (Fig.4C-D). Remarkably, YBX1 and
187 ENOL1 are two transcription factors whose targets are highly enriched for breast cancer
188  GWAS eQTLs (Castro et al. 2016), thus implicating them in breast cancer risk. In addition,
189  SIRNA against YBX1 in a normal ER- cell-line (MCF10A) resulted in significantly reduced
190  cell-confluence and growth, even when compared to other breast cancer risk TFs (Castro et al.
191  2016).We confirmed that the associations of YBX1 and ENO1 expression with potency
192  remained after adjustment for cell-cycle phase (Sl fig.S6, M ethods), and that their expression
193  aso correlated with cell potency in the sScRNA-Seq data from the other 3 women (Sl fig.S7).
194

195  Upregulated bipotent single-cell signature correlates with mammary stemness

196  If the highly potent cells are bipotent, the expectation would be that they are transcriptionally
197  similar to previously characterized mammary stem cells. We performed rank-based GSEA
198  (Subramanian et a. 2005) on the 72 genes upregulated in the highly potent single cells to
199  further characterize the putative bipotent cells. This revealed strong enrichment for ribosomal
200 genes, but importantly also for genes upregulated in mammary stem-cells (SI fig.S8). In
201  particular, we observed arelatively strong enrichment (12 gene overlap, OR=39, BH-adjusted
202 Fisher-test P<le-10) with a previously characterized mammary stem-cell signature (Pece et al.
203  2010). Of note, among the 12 overlapping genes, 9 (RPS2, RPS7, RPS10, RPL8, RPS18,
204  RPS3, RPL10A) were ribosomal proteins or ubiquitin ribosomal fusion proteins (UBA2 &
205 FAU), consistent with recent findings that expression of ribosomal proteins is a universal
206 marker of stemness and potency (Athanasiadis et a. 2017; Teschendorff and Enver 2017).
207  Among the other 3 genes, we observed NACA, a protein that associates with the upregulated
208 transcription factor BTF3, and TXN (thioredoxin), a protein involved in the response to
209 intracellular nitric oxide.

210  To confirm the results of the GSEA, we obtained and normalized mRNA expression data
211 from mammosphere-derived FACS sorted pools of quiescent mammary stem-cells and
212 transit-amplifying progenitors (Pece et a. 2010) (M ethods). Validating the association with

213  stemness, the 12-genes exhibited increased expression in three separate pools of quiescent
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214  mammary stem-cells compared to their derived transit-amplifying progenitors (Fig.5A-B,
215  Wilcox test P=0.001, M ethods), a result which remained significant compared to randomly
216 selected genes (Fig.5C, Monte Carlo P=0.0001). Results remained significant had we used all
217 72 genes (63 genes had representation on the Affymetrix platform used in Pece et a (Pece et
218 a. 2010)) from the upregulated scRNA-Seq bipotent signature (S fig.S9). However,
219  interestingly, YBX1 and ENO1 were not upregulated in the quiescent mammary stem cells
220 compared to the transit-amplifying progenitor cells (SI fig.S9), suggesting that while
221  potency/stemness is marked by the expression level of ribosomal proteins, the progenitor
222 non-quiescent state is associated with higher expression of YBX1 and ENO1.

223

224

225 YBX1 expression correlates with luminal subtype and is increased in luminal
226  progenitors

227  The correlation of YBX1 expression with potency was particularly evident in the luminal
228  compartment (Fig.6A, Sl fig.S10), pointing towards YBX1 as playing not only a key role in
229  defining a basal progenitor phenotype, but also potentially as a luminal progenitor. We were
230 able to further validate this in two ways. First, its expression was also higher in the more
231 immature luminal alveolar-like phenotype, in line with the fact that these aveolar luminal
232 cells should be more enriched for progenitors (Fig.6B). Second, using bulk expression data
233 from FACS sorted lumina progenitor and differentiated luminal cells (Shehata et al. 2012),
234 we found YBX1 expression to be highest for the EpCAM+/CD49f+/ALDH+ population
235  (Fig.6C, Wilcox test P=0.003), which defines the most likely luminal progenitor phenotype,
236  or at least the one that gives rise to milk-producing alveolar cells (Shehata et al. 2012).

237  Of note, we obtained similar results if instead of YBX1 we used the earlier 17-gene or
238  72-gene signatures marking the bipotent cells. Indeed, the great majority of these genes were
239  observed to be overexpressed in the EpCAM+/CD49f+/ALDH+ population compared to all
240 other cell populations, a result which was highly significant as assessed using 100,000
241  Monte-Carlo randomizations (P<le-5, Sl fig.S11).

242

243  YBX1 expression marks basal breast cancer

244  Given that YBX1 exhibited highest expression in the more potent single-cells, and that these
245  were enriched within the basal compartment, it is natural to posit that YBX1 may mark the
246 cell of origin for basal breast cancer. If so, YBX1 expression should be highest in basal breast
247  cancer compared to other breast cancer subtypes. We were able to confirm this with high
248  datistical significance within the METABRIC study (Curtis et a. 2012), which profiled
249  amost 2000 primary breast cancers (Fig.6D). Similar results were obtained if instead of
250 YBX1 we used the complete 17-gene or 72-gene signatures marking the bipotent cells (S|
251 fig.S12). In terms of the integrative cluster (IC) subtypes, as defined by METABRIC, YBX1

252 expression was highest in IC-5 and 1C-10 (Fig.6E). These two integrative cluster subtypes
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253  exhibited the worst disease-specific 5-year survival rates among all |C subtypes (Curtis et al.
254  2012). In line with this, we observed that YBX1 expression also correlated with a poor clinical
255  outcome (HR=1.31, P=7e-9, Fig.6F). However, the association with outcome was mainly
256 driven by ER-status, since in an analysis stratified by ER-status we did not observe any
257  dignificant association (HR=1.11, P=0.12 in ER+; HR=0.96, P=0.64 in ER-).

258

259
260

261 Discussion

262  Here we have demonstrated “proof-of-concept” that our signaling entropy rate measure can
263  be used to identify rare subpopulations of highly-potent cells, which may represent novel
264  candidate progenitor or stem-like cells. Indeed, application to almost 4,000 single cells from
265  the mammary epithelium identified a rare (5%) subpopulation of relatively high potency,
266 which is likely to represent a mammary progenitor-like state. We extensively validated the
267  potency assignments of the single-cells, and consistent with the prevailing view that most
268  mammary progenitors are basal cells, the highly potent cells were over-represented within the
269  basal compartment. The ability to stratify single cells into different potency states allowed us
270  toinfer and compare the cell-density surface maps for all potency states, revealing that highly
271 potent cells exhibited a strikingly different landscape to those of lower potency, with the
272 region of maximum cellular density defining a distinctive bi-modal ridge between the basal
273 and aveolar luminal clusters, with the largest peak occurring within the basal compartment.
274  Thus, without the need for any prior assumptions, LandSCENT predicts that these highly
275  potent cells may represent a bi-potent subpopulation that gives rise not only to basal cells but
276  also to luminal progenitors. Supporting this view, we found that the main TF characterizing
277 these highly potent cells (YBX1) plays a key role in maintaining the self-renewal and
278  proliferative capacity of basal cells (Castro et al. 2016) and that it is also overexpressed in
279  FACS sorted luminal progenitor populations compared to luminal differentiated cells. In
280  addition, we found that among the top-ranked genes upregulated in these putative bipotent
281  cells, there was a clear and significant enrichment for genes that have been found to mark
282 quiescent mammary stem cells and stemness generadly (Athanasiadis et a. 2017;
283  Teschendorff and Enver 2017). We stress that these independent validations using orthogonal
284  expression data from bulk samples clearly shows that our results are not technical artefacts of
285  single-cell data.

286  Thesignificance of YBX1 extends to the cancer-risk context. First, there is already substantial
287  evidence demonstrating that YBX1 transforms mammary epithelial cells, via binding to the
288  BMI1 promoter and chromatin remodeling, leading to basal breast cancer (Davies et a. 2014).

8
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289  In line with this, YBX1 is also more highly expressed in basal breast cancer compared to all
290  other breast cancer subtypes, consistent with it marking cells that give rise to basal breast
291  cancer. Second, YBX1 expression also marks luminal progenitor cells, and a subset of basal
292  breast cancers, notably BRCAL1 mutant ones, are thought to arise from a mis-programmed
293 luminal progenitor (Lim et al. 2009; Shehata et a. 2012). Indeed, the single-cell landscape
294  inferred with LandSCENT underscores the similarity of the highly potent cells within the
295  basa compartment with those in the immature luminal cluster, strongly suggesting that the
296 cell of origin for basal breast cancer may well be a bi-potent like cell that shares an
297  expression profile similar to that of lumina progenitors, including notably YBX1. Third,
298  YBX1 has been shown to interact with ESR1, and via FGFR2 signaling may contribute to
299  tamoxifen resistance (Campbell et al. 2018). Fourth, it has been observed that genes within
300 the YBX1 regulon are strongly enriched for GWAS breast cancer eQTLs (Castro et al. 2016).
301  Thisisahighly significant observation, given the growing evidence that molecular alterations
302  (both inherited and somatic) affecting the adult stem/progenitor cells within the tissue is a
303 main risk factor for epithelial cancer development (Tomasetti and Vogelstein 2015b;
304 Tomasetti and Vogelstein 2015a; Yang et al. 2016; Zhu et a. 2016; Tomasetti et al. 2017).
305 Thus, we speculate that it is the genetic and epigenetic alterations that accumulate within the
306  bi-potent progenitor cell pool identified here, which may confer the risk of breast cancer,
307  especialy basal breast cancer.

308 In future, it will be important to conduct more comprehensive and deeper sequencing of
309  single cells in the mammary epithelium in order to construct accurate expression profiles for
310 the bi-potent cell pool identified here. In this regard, we point out that we were here severely
311 limited by the relatively low coverage of the 10X Chromium data (an average of only
312 ~60,000 reads per cell), which did not alow us to fully determine the differential expression
313 landscape of the bi-potent cells. The identification of YBX1 (and ENO1) is a promising start,
314  but we anticipate that other regulators will also play a key role in defining these bi-potent
315  cells. We envisage that the computational framework presented here will play an important
316 role as a means of identifying and characterizing the bi-potent cells in the larger and deeper
317 scCRNA-Seq studies to be performed in the near future. Importantly, LandSCENT will be
318  equally applicable to future large-scale SCRNA-Seq studies performed on cancer tissue which
319 am to identify putative cancer-stem-cells (Tirosh et al. 2016a; Tirosh et a. 2016b;
320  Teschendorff and Enver 2017).

321 In summary, we have presented a novel 3-dimensional clustering algorithm for sScRNA-Seq
322 data, which uses an unbiased and assumption-free approach to estimate cell potency, and
323 which is used to perform single-cell clustering within each potency state. Application of this
324 simple yet powerful approach to scRNA-Seq data from the mammary epithelium naturally
325  predicts a bipotent cluster, which as shown here is characterized by regulators that have been
326 shown to modulate breast cancer risk. This study therefore provides a link between the

327  progenitor and stem like cell population that controls homeostasis within a complex epithelial
9
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328  tissue and regulatory factors implicated in cancer risk of that same tissue. Our algorithm and
329 findings may serve as ageneral paradigm for analogous studies in other tissue types.
330

331 Methods

332
333  Single cell data and preprocessing
334  The scRNA-Seq data analysed in this work derives from the study of Nguyen et a (Nguyen
335 et a. 2018), who used the 10X Genomics Chromium platform to sequence a total of 24,646
336  cells from reduction mammoplastic specimens from 4 separate nulliparous women (Ind4-7),
337 a an average read-depth of 60,000 reads per cell. Mapped read count data from the 4
338 individuals was downloaded from GEO (GSE113197), and further normalized as follows: for
339  each cell we counted the number of expressed genes (“coverage per cell”), and for each gene
340 we aso counted the number of times it was expressed across al single cells (“coverage per
341 gen€’). For each cell, we also computed the total read count mapping to mitochondrial genes,
342  which revealed low cell coverage for those cells having a high proportion of mitochondrial
343  generead counts. Based on this, we selected al cells expressing at least 1000 genes and with
344  the proportion of mitochondrial read counts less than 0.05, leaving a total of 23,369 cells.
345  Mitochondrial genes were removed and the total read count per cell ¢ recomputed (TRC,).
346 Denoting the maximum of TRC.; by maxC, and the read count matrix by RCM, the latter was
347 normalized with the following transformation: LSCy=l0g2( RCMg*maxC/TRC; + 1.1).
348  Finaly, we only use Entrez gene ID annotated genes, which resulted in a log-normalized
349  single cells matrix of dimension 22049 genes and 23369 cells (3473 for Ind-4, 6811 for Ind-5,
350 5807 for Ind-6 and 7278 for Ind-7).
351
352  TheLandscape Single-Cell Entropy and Cell-Type (LandSCENT) algorithm
353 LandSCENT is a direct extension of the SCENT algorithm. There are three steps to the
354 LandSCENT algorithm: (1) Inference of potency states. estimation of the differentiation
355  potency of single cells via computation of the signaling entropy rate (SR) and subsequent
356 inference of the potency state distribution across the single cell population. (2) Inference of
357  cell-types. we perform t-SNE (van der Maaten 2008) followed by density-based spatial
358  clustering (dbscan) (Ester et al. 1996) on a suitably dimensionally reduced LSC matrix. (3)
359  Construction of an integrated landscape defined over potency-states and cell-types using
360  cell-density surface maps to reveal cellular-states. We note that step-1 is the exact same
361  procedure as used in our original SCENT algorithm (Teschendorff and Enver 2017).
362
363  Step-1 Inference of potency states: We estimate differentiation potency of each single cell by
364 computing the signaling entropy using the same prescription as used in our previous
365 publications (Banerji et al. 2013; Teschendorff et al. 2014). Briefly, the normalized
10
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366  genome-wide gene expression profile of a sample (this can be a single cell or a bulk sample)
367 is used to assign weights to the edges of a highly curated protein-protein interaction (PPI)
368  network. The construction of the PPl network itself is described in detail elsewhere (Banerji
369 et al. 2013), and is obtained by integrating various interaction databases which form part of
370  Pathway Commons (www.pathwaycommons.org) (Cerami et a. 2011). The weighting of the
371 network viathe transcriptomic profile of the cell provides the biological context. The weight
372 of an edge between protein i and protein j, denoted by w; , is assumed to be proportiona to
373 the normalized expression levels of the coding genes in the cell, i.e. we assume that wi; ~ X %; .
374  We interpret these weights (if normalized) as interaction probabilities. The above
375  construction of the weights is based on the assumption that in a sample with high expression
376 of i and j, that the two proteins are more likely to interact than in a sample with low
377  expression of i and/or j. Viewing the edges generally as signaling interactions, we can thus
378  define arandom walk on the network, assuming we normalize the weights so that the sum of
379  outgoing weights of a given node i is 1. This results in a stochastic matrix, P, over the
380  network, with entries

__ N K
Py = Yreniy X (Ax);
381  where N(i) denotes the neighbors of protein i, and where A is the adjacency matrix of the PP
382 network (A;j=1if i and j are connected, O otherwise, and with A;=0). The signaling entropy is
383  then defined as the entropy rate (denoted ') over the weighted network, i.e.

n
Sr(¥) =— ) m Z pijlogp;;

i=1  jeN(D)
384  where r is the invariant measure, satisfying 7P=x and the normalization constraint z'1=1.
385 The invariant measure, aso known as steady-state probability, represents the relative
386  probability of finding the random walker at a given node in the network (under steady state
387 conditionsi.e. long after the walk is initiated). Nodes with high values thus represent nodes
388 that are particularly influential in distributing signaling flux in the network. In the
389  steady-state we can assume detailed balance (conservation of signaling flux, i.e. m;p;; =
390  m;pj; ), and it can be shown (Teschendorff et al. 2014) that m; = x; (Ax)/(X'AX). Given a
391 fixed adjacency matrix A (i.e. fixing the topology), it can also be shown (Teschendorff et al.
392 2014) that the maximum possible S among all compatible stochastic matrices P, is the one

393 with P = %v‘l ® A ® v where ® denotes product of matrix entries and where v is the

394  dominant eigenvector of A, i.e. Av=Av with 4 the largest eigenvalue of A. We denote this
395 maximum entropy rate by maxSr, and define the normalized entropy rate (with range of
396 vauesbetweenOand 1) as

Sr(x)

maxSr

397  Since SRis bounded between 0 and 1, we next transform the SR value of each single cell into
11
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398 their logit-scale value, i.e. y(SR)=logx(SR/(1-SR)). Subsequently, we fit a mixture of
399  Gaussians to the y(SR) values of the whole cell population, and use the Bayesian Information
400  Criterion (BIC) (as implemented in the mclust R-package) (Yeung et al. 2001) to estimate the
401  optima number K of potency states, as well as the state-membership probabilities of each
402 individua cell. Thus, for each single cell, this results in its assignment to a specific potency
403  state.

404

405  Step-2 Inference of cell-types: Cell-types are inferred as significant clusters using
406  cell-density in the two-dimensional t-SNE space as the main criterion. Preliminary
407 dimensional reduction is achieved by first selecting genes with a mean average expression
408 larger than 1, and also a standard deviation larger than 1. These thresholds were chosen after
409  ingpection of the mean-variance plot, and in the case of Ind-4 this resulted in 4261 highly
410 variable and expressed genes. To map the high dimensional nature of the data matrix to a
411  two-dimensiona subspace we used t-SNE with an initial dimension of 30, a perplexity
412  parameter of 30, 1000 maximum iterations and epoch parameter set to 100. We then used the
413 dbscan algorithm (density-based spatia clustering) with eps=5 and minPts=15 to identify
414  dgnificant clusters. Thus, after steps-1 and 2, each cell is assigned to a unique potency state
415  and co-expression cluster (cell-type).

416  Step-3 Inference and construction of an integrated landscape of cell-states: Finally, we
417  construct cell-density surface maps for all single cells within each of the inferred potency
418  dates. In these surface maps, the elevation is directly proportional to cell-density. By
419  comparing the resulting landscapes for each potency state, this may reveal novel cellular
420  states, defined by both potency and expression subtype.

421

422

423  Estimation of cell-cycle and TPSC pluripotency scores

424  To identify single cells in either the G1-S or G2-M phases of the cell-cycle we followed the
425  procedure described in (Tirosh et al. 2016a). Briefly, genes whose expression is reflective of
426 G1-S or G2-M phase were obtained from (Whitfield et al. 2002; Macosko et al. 2015). A
427  given normalized scRNA-Seq data matrix for a given individual is then z-score normalized
428  for all genes present in these signatures. Finally, a cycling score for each phase and each cell
429 is obtained as the average z-scores over all genes present in each signature. When adjusting
430 differential expression analyses for cell-cycle phase, we included the G1-S and G2-M scores
431  ascovariatesin the linear models.

432

433  Bulk expression datasets

434  In this study we used three mRNA expression datasets from bulk samples. One dataset

12
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435  consists of 38 FACS sorted bulk samples (Illumina expression beadarrays), as profiled by
436 Shehata et a (Shehata et al. 2012). Of the 38 samples, 10 were categorized as luminal
437  non-clonogenic (L), i.e. terminally differentiated cells, with the rest (n=28) making up a
438 relatively differentiated (EpCAM+/CD49f+/ALDH-, n=17) and undifferentiated
439  (EpCAM+/CDA49f+/ALDH+, n=11) Iluminal progenitor (LP) populations. The two
440  undifferentiated LP populations were further distinguished by expression or not of ERBB3.
441 mRNA expression data was generated using Illumina Beadarrays and we used the normalized
442  data, asdescribed in (Shehata et al. 2012).

443  The second dataset is the METABRIC study, which profiled ailmost 2000 primary breast
444  cancers using Illumina expression beadarrays (Curtis et al. 2012). We used the assignment of
445  tumors to PAMS50 intrinsic and integrative cluster (IC) subtypes as given by the METABRIC
446  study. We used the normalized data, as provided by the METABRIC consortium.

447 A third Affymetrix mRNA expression dataset derives from Pece et al (Pece et al. 2010). This
448  set consists of 3 separate pools of FACS sorted cell populations. Each pool contains a
449  quiescent putative mammary stem cell population, as well as a population of derived progeny,
450 consisting of transit-amplifying progenitor cells, thus a total of 6 bulk samples. We
451 normalized the HGU133 plus2 data using the affy BioC package, specificaly, the rma
452  function. Only probes mapping to an Entrez gene ID were used, data was quantile normalized
453  using limma, and probes mapping to the same gene were averaged, resulting in a normalized
454  datamatrix over 20186 genes and 6 samples.

455

456  Differential Expression Analysis

457  When performing differential expression anaysis on single-cell data, for each gene we
458  aways redtrict to those cells where the gene is expressed. That is, we remove all dropouts and
459 don't impute data. When correlating to potency, we used a linear model between the
460 normalized expression profile and the potency estimates, optionally adjusting for the two
461  cell-cycle scores computed earlier. In the case of the Illumina beadarray datasets, we used the
462  normalized data from the respective publications (Curtis et al. 2012; Shehata et al. 2012) and
463 caled DE using the empirica Bayes limma framework (Smyth 2004). We aways use
464  Bonferroni-adjusted thresholds to call statistical significance unless there are too few hits, in
465  which case we relax the threshold using FDR<0.05 instead.

466

467

468  Doublet score analysis

469  We used two different simulation-based methods to derive doublet scores for each cell and to
470  identify those more likely to be doublets. One approach used the simulation method of Dahlin
471 et a (Dahlin et a. 2018) to obtain doublet scores for al single cells that passed QC and for
472  each individual separately. Specifically, we used the doubletCells function (using

473  approximate=TRUE option) from the scran R-package (version 1.10.1) (Lun et a. 2016). In
13
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the second approach we used the Python package Scrublet (Wolock et al. 2018) (doi:
https://doi.org/10.1101/357368). Within Scrublet, the scrub_doublets function, which is
responsible for computing doublet scores and predicting doublets within a dataset, was run
using default parameters.

Code Availability: SCENT is freely avalable as an R-package from github:
https://github.com/aet21/SCENT

Data Access. Data analyzed in this manuscript is already publicly available from the
following GEO (www.ncbi.nlm.nih.gov/geo/) accession numbers: GSE113197, GSE35399,
GSE18931 or from the EGA (www.ebi.ac.uk/egal) accession number EGA S00000000083.

Acknowledgements

The authors would like to thank Devon Lawson for useful discussions and Carlos Caldas for
provison of METABRIC data. This work was supported by NSFC (National Science
Foundation of China) grants, grant numbers 31571359 and 31401120 and by a Royal Society
Newton Advanced Fellowship (NAF project number: 522438, NAF award number: 164914).

Disclosure Declar ation The authors declare that they have no competing interests.

References

Athanasiadis El, Botthof JG, Andres H, Ferreira L, Lio P, Cvejic A. 2017. Single-cell RNA-sequencing uncovers
transcriptional states and fate decisions in haematopoiesis. Nature communications 8: 2045.

Banerji CR, Miranda-Saavedra D, Severini S, Widschwendter M, Enver T, Zhou JX, Teschendorff AE. 2013.
Cellular network entropy as the energy potential in Waddington's differentiation landscape. Scientific
reports 3: 3039.

Campbell TM, Castro MAA, de Oliveira KG, Ponder BAJ, Meyer KB. 2018. ERalpha Binding by Transcription
Factors NFIB and YBX1 Enables FGFR2 Signaling to Modulate Estrogen Responsiveness in Breast Cancer.
Cancer research 78: 410-421.

Castro MA, de Santiago |, Campbell TM, Vaughn C, Hickey TE, Ross E, Tilley WD, Markowetz F, Ponder BA,
Meyer KB. 2016. Regulators of genetic risk of breast cancer identified by integrative network analysis.
Nature genetics 48: 12-21.

Cerami EG, Gross BE, Demir E, Rodchenkov |, Babur O, Anwar N, Schultz N, Bader GD, Sander C. 2011. Pathway
Commons, a web resource for biological pathway data. Nucleic acids research 39: D685-690.

Chen 1, Schlitzer A, Chakarov S, Ginhoux F, Poidinger M. 2016. Mpath maps multi-branching single-cell

14


https://doi.org/10.1101/496471
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/496471; this version posted December 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

510 trajectories revealing progenitor cell progression during development. Nature communications 7:
511 11988.

512 Costa F, Grun D, Backofen R. 2018. GraphDDP: a graph-embedding approach to detect differentiation pathways
513 in single-cell-data using prior class knowledge. Nature communications 9: 3685.

514 Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y et al.
515 2012. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.
516 Nature doi:10.1038/hature10983.

517 Dahlin JS, Hamey FK, Pijuan-Sala B, Shepherd M, Lau WWY, Nestorowa S, Weinreb C, Wolock S, Hannah R,
518 Diamanti E et al. 2018. A single-cell hematopoietic landscape resolves 8 lineage trajectories and
519 defects in Kit mutant mice. Blood 131: el-el1l.

520 Davies AH, Reipas KM, Pambid MR, Berns R, Stratford AL, Fotovati A, Firmino N, Astanehe A, Hu K, Maxwell C et
521 al. 2014. YB-1 transforms human mammary epithelial cells through chromatin remodeling leading to
522 the development of basal-like breast cancer. Stem Cells 32: 1437-1450.

523 Ester M, Kriegel HP, Sander J, Xu X. 1996. A Density-Based Algorithm for Discovering Clusters in Large Spatial
524 Databases with Noise. In 2nd International Conference on Knowledge Discovery and Data Mining
525 (KDD-96). Institute for Computer Science, University of Munich.

526 Grun D. 2018. Revealing routes of cellular differentiation by single-cell RNA-seq. Curr Opin Syst Biol 11: 9-17.
527 Grun D, Muraro MJ, Boisset JC, Wiebrands K, Lyubimova A, Dharmadhikari G, van den Born M, van Es J, Jansen

528 E, Clevers H et al. 2016. De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.
529 Cell stem cell 19: 266-277.

530 Guo M, Bao EL, Wagner M, Whitsett JA, Xu Y. 2016. SLICE: determining cell differentiation and lineage based on
531 single cell entropy. Nucleic acids research doi:10.1093/nar/gkw1278.

532 Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y et al.
533 2017. A single-cell survey of the small intestinal epithelium. Nature 551: 333-339.

534 Haghverdi L, Buttner M, Wolf FA, Buettner F, Theis FJ. 2016. Diffusion pseudotime robustly reconstructs lineage
535 branching. Nature methods 13: 845-848.

536 Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F et al. 2018. Mapping the Mouse
537 Cell Atlas by Microwell-Seq. Cell 173: 1307.

538 Hon CC, Shin JW, Carninci P, Stubbington MJT. 2018. The Human Cell Atlas: Technical approaches and challenges.
539 Briefings in functional genomics 17: 283-294.

540 Laurenti E, Gottgens B. 2018. From haematopoietic stem cells to complex differentiation landscapes. Nature
541 553:418-426.

542 Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A et al. 2009.
543 Aberrant luminal progenitors as the candidate target population for basal tumor development in
544 BRCA1 mutation carriers. Nature medicine 15: 907-913.

545 Lun AT, McCarthy DJ, Marioni JC. 2016. A step-by-step workflow for low-level analysis of single-cell RNA-seq
546 data with Bioconductor. FI000Res 5:2122.

547 Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM

548 et al. 2015. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter
549 Droplets. Cell 161: 1202-1214.

550 Marco E, Karp RL, Guo G, Robson P, Hart AH, Trippa L, Yuan GC. 2014. Bifurcation analysis of single-cell gene
551 expression data reveals epigenetic landscape. Proceedings of the National Academy of Sciences of the
552 United States of America 111: E5643-5650.

553 Nguyen QH, Pervolarakis N, Blake K, Ma D, Davis RT, James N, Phung AT, Willey E, Kumar R, Jabart E et al. 2018.

15


https://doi.org/10.1101/496471
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/496471; this version posted December 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

554 Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity. Nature
555 communications 9: 2028.

556 Patel AP, Tirosh |, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza
557 RL et al. 2014. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.
558 Science 344: 1396-1401.

559 Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP.
560 2010. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell
561 content. Cell 140: 62-73.

562 Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C. 2017. Reversed graph embedding resolves
563 complex single-cell trajectories. Nature methods 14: 979-982.

564 Regev A, Teichmann SA, Lander ES, Amit |, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P,
565 Clatworthy M et al. 2017. The Human Cell Atlas. eLife 6.

566 Rozenblatt-Rosen O, Stubbington MIT, Regev A, Teichmann SA. 2017. The Human Cell Atlas: from vision to
567 reality. Nature 550: 451-453.

568 Scialdone A, Tanaka Y, Jawaid W, Moignard V, Wilson NK, Macaulay IC, Marioni JC, Gottgens B. 2016. Resolving
569 early mesoderm diversification through single-cell expression profiling. Nature 535: 289-293.

570 Shehata M, Teschendorff A, Sharp G, Novcic N, Russell A, Avril S, Prater M, Eirew P, Caldas C, Watson CJ et al.
571 2012. Phenotypic and functional characterization of the luminal cell hierarchy of the mammary gland.
572 Breast cancer research : BCR 14: R134.

573 Shepherd MS, Li J, Wilson NK, Oedekoven CA, Li J, Belmonte M, Fink J, Prick JCM, Pask DC, Hamilton TL et al.
574 2018. Single-cell approaches identify the molecular network driving malignant hematopoietic stem
575 cell self-renewal. Blood 132: 791-803.

576 Shi J, Teschendorff AE, Chen L, Li T. 2018a. Quantifying Waddington’s epigenetic landscape: a comparison of
577 single-cell potency measures. Briefings in bioinformatics In Press.

578 Shi J, Teschendorff AE, Chen W, Chen L, Li T. 2018b. Quantifying Waddington's epigenetic landscape: a
579 comparison of single-cell potency measures. Briefings in bioinformatics doi:10.1093/bib/bby093.

580 Smyth GK. 2004. Linear models and empirical bayes methods for assessing differential expression in microarray
581 experiments. Statistical applications in genetics and molecular biology 3: Article3.

582 Stingl J, Eirew P, Ricketson |, Shackleton M, Vaillant F, Choi D, Li HI, Eaves Cl. 2006. Purification and unique
583 properties of mammary epithelial stem cells. Nature 439: 993-997.

584 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR,
585 Lander ES et al. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting
586 genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United
587 States of America 102: 15545-15550.

588 Teschendorff AE, Enver T. 2017. Single-cell entropy for accurate estimation of differentiation potency from a
589 cell's transcriptome. Nature communications 8: 15599.

590 Teschendorff AE, Sollich P, Kuehn R. 2014. Signalling entropy: A novel network-theoretical framework for

591 systems analysis and interpretation of functional omic data. Methods 67: 282-293.

592 Tirosh |, Izar B, Prakadan SM, Wadsworth MH, 2nd, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy
593 G et al. 2016a. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq.
594 Science 352: 189-196.

595 Tirosh |, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, Fisher JM, Rodman C, Mount C, Filbin MG et
596 al. 2016b. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma.
597 Nature 539: 309-313.

16


https://doi.org/10.1101/496471
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/496471; this version posted December 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

598 Tomasetti C, Li L, Vogelstein B. 2017. Stem cell divisions, somatic mutations, cancer etiology, and cancer
599 prevention. Science 355: 1330-1334.

600 Tomasetti C, Vogelstein B. 2015a. Cancer etiology. Variation in cancer risk among tissues can be explained by
601 the number of stem cell divisions. Science 347: 78-81.

602 Tomasetti C, Vogelstein B. 2015b. Cancer risk: role of environment-response. Science 347: 729-731.

603 Trapnell C. 2015. Defining cell types and states with single-cell genomics. Genome research 25: 1491-1498.

604 Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. 2014.

605 The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single
606 cells. Nature biotechnology 32: 381-386.

607 Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, Desai TJ, Krasnow MA, Quake SR. 2014.
608 Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509:
609 371-375.

610 Treutlein B, Lee QY, Camp JG, Mall M, Koh W, Shariati SA, Sim S, Neff NF, Skotheim JM, Wernig M et al. 2016.
611 Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 534:
612 391-395.

613 van der Maaten L. 2008. Visualizing Data using t-SNE. Journal of machine learning research : JMLR 9:
614 2579-2605.
615 Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown

616 PO et al. 2002. Identification of genes periodically expressed in the human cell cycle and their
617 expression in tumors. Molecular biology of the cell 13: 1977-2000.

618 Wolock SL, Lopez R, Klein AM. 2018. Scrublet: computational identification of cell doublets in single-cell
619 transcriptomic data. bioRxiv doi:https://doi.org/10.1101/357368.

620 Yang Z, Wong A, Kuh D, Paul DS, Rakyan VK, Leslie RD, Zheng SC, Widschwendter M, Beck S, Teschendorff AE.
621 2016. Correlation of an epigenetic mitotic clock with cancer risk. Genome biology 17: 205.

622 Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL. 2001. Model-based clustering and data transformations for

623 gene expression data. Bioinformatics 17:977-987.

624 Yuan GC, Cai L, Elowitz M, Enver T, Fan G, Guo G, Irizarry R, Kharchenko P, Kim J, Orkin S et al. 2017. Challenges
625 and emerging directions in single-cell analysis. Genome biology 18: 84.

626 Zhu L, Finkelstein D, Gao C, Shi L, Wang Y, Lopez-Terrada D, Wang K, Utley S, Pounds S, Neale G et al. 2016.
627 Multi-organ Mapping of Cancer Risk. Ce/l 166: 1132-1146 e1137.

628

629

630

631 FigurelLegends

632
633  Figure-1: Flowchart of the LandSCENT algorithm to construct an integr ative landscape
634 of cell-states from scRNA-Seq data. A) Left: Signaling entropy (SR) is applied to the
635 SCRNA-Seq profile of each individual cell to estimate its differentiation potency and to infer
636  potency states. Clustering of single-cells is performed with t-SNE followed by density based
637  spatia clustering to identify clusters of high cell-density, which we call cell-types. Right:
638  Surface cell-density map representation in t-SNE space for all single cells, showing the main
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639  cdll-types, with the smoothed SR (potency) values projected at the bottom. B) An example of
640 an integrated layered landscape of cellular states, where surface cell-density maps are shown
641  for cells in each inferred potency state (low, medium and high potency), defining cell-states
642  within or between major cell-types. The integrated landscape can reveal cell-states not
643  discernable viastandard two dimensional clustering (shown at the bottom of each landscape).
644

645 Figure-2: Inferring cell-types and potency states in breast epithelium. A) t-SNE
646  clustering diagram for single-cells derived from one individua (Ind-4). Single-clusters were
647 inferred with dbscan and are labeled with different colors. Of note, single-cells that mapped
648 to the periphery of clusters and therefore were not assigned to any cluster have been
649  suppressed. B) As A), but now with the single cells labeled by expression levels of KRT14 (a
650 basa marker), KRT18 (a luminal marker), LTF (lactotransferin) and mean expression of
651 GATA3, FOXA1, ESR1 and PGR, as indicated. Different quantiles of expression levels of
652 each marker are indicated by color with brown indicating high expression and grey low
653  expression. C) As A), but now displaying all single cells (i.e. including those mapping to the
654  periphery of clusters) and with single-cells labeled by the inferred potency state (see D)). D)
655  Left panel: Gaussian mixture model fit to the logit transformed SR values (x-axis) from 3473
656  single cells infers 3 potency states. The density distributions for al cells (black line) and
657  those for the inferred mixture components (different shades of blue) are shown. The Bayesian
658  Information Criterion (BIC) was used to select the optimal number of potency states, which
659 in this case was found to be 3 (PS1, PS2, PS3). Right pand: Percentage barplot indicating
660 thefraction of single-cells assigned to each of the three potency states.

661

662  Figure-3: Validation of potency assignments. A) Boxplots of normalized log-expression
663  (y-axis) for known markers of luminal differentiated cells (GATA3, FOXAL) and hormone
664  receptor (ESR1) against inferred potency state (x-axis) for all single cells assigned to the two
665 main luminal clusters (L1 & L2) and further restricting to cells where these genes are
666  expressed. Numbers of single-cells assigned to each potency state is given. P-value is from a
667  (two-tailed) linear regression. B) As A), but for known basal differentiation markers (KRT16,
668 KRT5, EGFR) and restricting to cells that were assigned to the basal cluster.

669

670

671  Figure-4: Integrated landscape reveals bi-potent state characterized by YBX1 and
672 ENOL1 expression. A) Percentage barplots displaying the relative distribution of breast
673  epithelia subtypes (as inferred from the clustering using t-SNE + DBSCAN) among inferred
674  potency states (Low, Medium, High). Single cells have been divided up into whether they
675  clustered into the basal compartment (B), into the luminal-1 cluster (L1), the luminal-2
676  cluster (L2), al other clusters (Other) or whether they were not assigned into any cluster,

677  defining peripheral cells (Periph). P-value is from a Kruskal-Wallis test to assess if the
18


https://doi.org/10.1101/496471
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/496471; this version posted December 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

678 distribution of subtypes differs significantly within the high potency state. B) Surface
679  cell-density map of all single cells (magenta colored surfaces) with the corresponding surface
680  cell-density map of highly potent (PS3) cells superimposed (blueish colored surfaces). The x
681 and y-coordinates label the t-SNE1 and t-SNE2 axes. The height of the surfaces (z) is a
682 measure of cell-density in the x-y plane and is further indicated by different color tones. The
683  z-axis is therefore not a measure of cell potency. C) Volcano plot of differential expression
684  associated with potency, with x-axis labeling the t-statistic and y-axis labeling the statistical

685  dignificance. Horizontal bar denotes the Bonferroni threshold, and red points indicate
686 transcription factors (TFs). D) Boxplots of normalized log-expression (y-axis) for YBX1 and
687 ENOL against inferred potency state (x-axis) for al single cells where these genes were
688  expressed. Numbers of single-cells assigned to each potency state is given. P-value is from a
689  two-tailed linear regression. All single-cell cells derive from one individual (Ind-4).

690

691  Figure-5: Bipotent single-cell expression signature is enriched for mammary stem cell

692 genes. A) Normalized relative expression heatmaps for 12 represented genes from the
693  17-genes upregulated in the putative bipotent single-cells and which overlap with a mammary
694 stem-cell signature, in 3 separate pools of FACS sorted quiescent mammary stem-cells (P)

695 and their derived proliferative non-stem like progeny (N). B) Average expression difference
696 between the P and N cells, averaged over the 3 separate pools. P-value is from a one-tailed
697  Wilcoxon rank sum test. C) Monte-Carlo randomization analysis, where in each of 100,000
698 random selections of 17 genes, the average difference over the 3 pools is computed (green
699  curve) and compared to the observed average difference (red, panel-B). Monte-Carlo P-value
700 isgiven.

701

702

703 Figure-6: YBX1 expression characterizesluminal progenitorsand basal breast cancer. A)
704  Boxplots of normalized log-expression (y-axis) for YBX1 against inferred potency state
705  (x-axis) for al single cells assigned to luminal L1 and L2 clusters and where YBX1 is
706 expressed. Numbers of single-cells in each group is given. P-value is from alinear regression.

707  B) Boxplots of normalized log-expression (y-axis) for YBX1 against luminal cluster, using
708  only single cells where YBX1 is expressed. Numbers of single-cells in each group is given.

709  P-value is from a one-tailed Wilcox test. C) Boxplots of Illumina normalized |og-expression
710 (y-axis) for YBX1 against lumina subtype as defined by FACS-sorting (x-axis):

711 L=differentiated non-clonogenic |umina, LP(ALDH-)=ALDH- Iuminal progenitor,

712 LP(ALDH+)=ALDH+ lumina progenitor. LP(ERBB3-)=ERBB3- and ALDH- luminal

713 progenitor. P-value is from a one tailed Wilcox-test comparing LP(ALDH+) to all others. D)

714 Boxplots of normalized Illumina log-expression (y-axis) for YBX1 against PAMS50 intrinsic
715  subtype in the full METABRIC cohort. P-value is from a Kruskal-Wallis test. E) As D), but

716  for the integrative cluster (IC) subtypes (available in discovery set only). F) Kaplan Meier
19
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717  overdl survival curves for YBX1 expression, stratified by quantiles of YBX1 expression, and
718  censored at 5 years after diagnosis. Hazard Ratio (HR), 95% CI and P-value are from a Cox
719  proportional hazards regression.

720

20
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