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Abstract

Difficulties with higher-order cognitive functions in youth are a potentially important
vulnerability factor for the emergence of problematic behaviors and arange of
psychopathologies. This study examined 2,013 9-10 year olds in the first data release
from the Adolescent Brain Cognitive Development 21-site consortium study in order to
identify resting state functional connectivity patterns that predict individual-differencesin
three domains of higher-order cognitive functions. General Ability, Speed/Flexibility,
and Learning/Memory. We found that connectivity patterns involving task control
networks and default mode network were prominently implicated in predicting individual
differences across participants across all three domains. In addition, for General Ability
scores specifically, we observed consistent cross-site generalizability, with statistically
significant predictionsin 14 out of 15 held-out sites. These findings demonstrate that
resting state connectivity can be leveraged to produce generalizable markers of
neurocognitive functioning. Additionally, they highlight the importance of task control-
default mode network inter-connections as a major locus of individual differencesin
cognitive functioning in early adolescence.


https://doi.org/10.1101/495267
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/495267; this version posted December 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Main

Adolescence is atime of major physical, cognitive, and psychosocial change. It isalso a
time of great vulnerability for the emergence of maladaptive behavioral patterns and
psychopathologies (1), which can cascade into poorer mental and physical health
throughout adulthood. A major task for clinical neuroscience isto identify pre-morbid
features that place the child at elevated risk for future adverse outcomes.

One mgjor risk factor for adolescent psychopathology is difficulty with higher-order
cognitive functions, which encompass a diverse set of abilities for reasoning and problem
solving, cognitive control and mental flexibility, and learning and recalling information
(2-5). Difficulties with higher-order cognitive functions have been associated with a
number of disorders, including both externalizing-spectrum disorders (e.g., substance use
disorders and attention-deficit/hyperactivity disorder) (6-8) aswell internalizing
disorders (e.g., depression and anxiety) (9—11). The generality of these associations has
led to the interesting suggestion that deficitsin some kinds of higher-order cognitive
functions (e.g., cognitive control) represent domain-general vulnerability factors for
psychopathology (12-14).

Concurrently, there is great interest in the neural underpinnings of higher-order cognitive
functions (15). Emerging models focus on interrel ationshi ps between networks involved
in active control of task processing (16, 17) and default mode network (DMN), involved
in spontaneous cognition (18). Task control networks include frontoparietal network
(FPN) and cingulo-opercular (CO) network, both involved in top-down control (19, 20),
aswell as dorsal attention network (DAN), involved in goal-directed attention (21).
DMN—active in task-free states and implicated in spontaneous thought, evaluation, and
memory (18, 22)—works in both cooperative and antagonistic ways with task control
networks (23-26). The salience network (SAL) and ventral attention network (VAN),
important for detection of unexpected events and ongoing monitoring (27), play key roles
in identifying when adaptive control is required (28, 29). Higher-order cognitive
functions are thought to rely on complex interplay between this set of networks, in which
task control networks (which we define to include FPN, CO, DAN, SAL, and VAN; see
38) supply task-relevant top-down regulatory signals that modulate spontaneous
processing unfolding in association cortices within DMN (16, 31).

Importantly, from early childhood to young adulthood, there is extensive development of
functional interconnections between task control networks and DMN (32—34), suggestive
of growing informational exchange and maturing top-down regulatory relationships.
These observations raise an intriguing question about whether altered connectivity
patterns among these networks during youth are predictive of differencesin higher-order
cognitive functioning.

The present study investigates this question leveraging the first data release from the
Adolescent Brain and Cognitive Development (ABCD) national consortium study, which
will comprehensively characterize a cohort of over 11,000 adolescents using behavioral,
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psychosocial, and neuroimaging measures over the course of 10 years. To accomplish
this goal, data are collected from 21 sites nationwide. The baseline assessment of the
study cohort has recently been completed, and utilized a number of behavioral tasks that
probe multiple aspects of higher-order cognitive functions (35). Previous work by
Thompson and colleagues on 4521 youth from the first release of baseline ABCD data
distinguished three maor higher-cognitive domains. General Ability, Speed/Fexibility,
and Learning/Memory (36).

The present work links neurocognitive scores for these domains with resting state brain
connectivity patterns. We first produced resting state connectomes for each subject, using
multiple methods to control for the effects of head motion, a potentially serious confound
in resting state studies (37). In a sample of 2,013 subjects who met quality control and
other inclusion criteria, we next applied a recently developed multivariate predictive
modeling method, brain basis set (BBS) (38, 39) (see Figure 1). This method takes
advantage of the fact that though functional connectomes are large and complex,
encompassing tens of thousands of connections, there is massive redundancy in the set of
connections that differ across people. This alows a small set of components—we used 75
in the present study—to capture most meaningful inter-individual variation in
connectomes (38, 39). We coupled BBS with leave-one-site-out cross-validation. That is,
wetrain aBBS predictive model in all of the sites except one, apply the trained model to
the held out site, and repeat this process with each site being held out. This allows usto
gauge the generalizability of our predictive models to new, unseen subjects.
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Figure 1: Main Steps of Brain Basis Set (BBS) Modeling. BBSisa multivariate
predictive modeling method. It utilizes dimensionality reduction with principal
components analysis (PCA) to construct a basis set for predicting phenotypes of interest.
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Resting state functional connectivity patterns are statistically significant predictors
of neurocognitive scoresfor all three neurocognitive domains.

We applied BBS to separately train predictive models for each of the three
neurocognitive component scores. We then assessed the correlations between actual
versus predicted neurocognitive scores, averaging across folds of the leave-one-site out
cross-validation procedure. Results for each neurocognitive domain were: General
Ability r = 0.31 (permutation p value < 0.0001, i.e., observed correlation was higher than
all 10,000 correlationsin the permutation distribution); Speed/Flexibility r = 0.06
(permutation p value = 0.02); Learning/Memory r = 0.15 (permutation p value < 0.0001,
i.e., observed correlation was higher than all 10,000 correlations in the permutation
distribution). Figure 2 displays consensus maps that highlight connections that were
weighted more heavily in the respective predictive models.

In asecondary analysis, we included a number of covariatesin these BBS models,
including age, gender, race/ethnicity, highest parental education, household marital
status, and household income. Correlations between actual versus predicted
neurocognitive scores, averaging across folds of the cross-validation, were: General
Ability r = 0.29 (permutation p value < 0.0001, i.e., observed correlation was higher than
all 10,000 correlationsin the permutation distribution); Speed/Flexibility r = 0.05
(permutation p value = 0.11); Learning/Memory r = 0.10 (permutation p value = 0.01).
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Figure 2: Consensus Maps of Connectionsthat are Predictive of Neurocognitive
Scores. Connectionsin task control networks and DMN are especially well represented
among the set of connections predictive of neurocognitive scores. SMH= Somatomotor -
hand, SVIF=Somatomotor-faces, CO=Cingul o-opercular, AUD=Auditory, DMN=
Default mode network, MR=Memory retrieval, VIS=Visual, FPN=Fronto-parietal,
SAL=Salience, SC=Subcortical, VAN=Ventral Attention, DAN=Dorsal Attention,
CER=Cerebellum.

Predictive modelsfor General Ability show evidence of substantial cross-site
generalizability

Figure 3 shows the per-site results of the BBS-based predictive models. For General
Ability, results were consistent across sites, with statistically significant correlations
between predicted and actual scores achieved in 14 out of 15 held-out sites (all p values <
0.05). An important open question in neuroimaging is whether predictive models based
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on resting state connectivity patternstrained in one dataset can effectively generalize to
unseen data, in particular when the unseen datais collected at a different site using a
different MRI scanner. Results observed with General Ability scores demonstrate that
successful generalization to data from unseen sites and scanners can indeed be achieved.
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Figure 3: Per-Site Results of Predictive Models. We built multivariate models for
predicting participants neurocognitive scores and tested these models with |eave-one-
site-out cross-validation across 15 sites. The General Ability neurocognitive score
exhibited particularly strong generalization across sites.

Connections within and between task control networksand DM N play a prominent
rolein prediction of neurocognitive scor es.

We use the term “task control-DMN intersection” to refer to: (i) connections within atask
control network; (ii) connections within DMN, and (iii) connectionsthat link atask
control network node with a DMN node. Such connections represent roughly 20% of the
total number of connections (6754 out of 34716 total) in the connectome. They represent,
however, amuch larger percentage of the suprathreshold connections in the consensus
maps (Figure 2, where a z=2 threshold is used), in particular 43%, 43%, and 49% for
General Ability, Speed/Flexibility, and Learning/Memory, respectively.

To further assess the importance of connections in the task control-DMN intersection, we
dropped all connections outside thisintersection and redid our BBS-based predictive
modeling. The correlations between actual versus predicted neurocognitive scores,
averaging across folds of the cross-validation, were: General Ability r = 0.26
(permutation p value < 0.0001, i.e., observed correlation was higher than all 10,000
correlations in the permutation distribution); Speed/Flexibility r = 0.07 (permutation p
value = 0.02); Learning/Memory r = 0.08 (permutation p value = 0.002). In addition, we
examined prediction of the three neurocognitive component scores when retaining pairs
of networks (Figure 4). This analysis too suggested disproportionate importance of the
task control-DMN intersection. In particular, DMN and task control networks emerged as
three of the top four most important networks for all three neurocognitive factors.
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These findings highlighting the importance of the task control-DMN intersection for
neurocognitive functioning can be interpreted in terms of recent theories of adaptive task
control (16, 40). These accounts propose that task control networks modulate activity in
distributed brain regions to facilitate cognitive control during complex tasks. In addition,
anumber of lines of evidence point to the DMN in particular as an important target of
these top-down adaptive control signals. Modulation of the DMN isrequired in cases
where task control networks must cooperate with DMN for coordinated processing, such
as during complex problem-solving and prospective decision-making (23-25). It isalso
required to avoid interference by DMN (26) during externally focused, cognitively
demanding tasks, with inadequate regulation of the DMN by task control networks
sometimes leading to impaired task performance (41, 42).
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Figure 4: Prediction of Neurocognitive Domainswith Two Networks: To assess the
importance of networks for the success of the BBS predictive models, we trained new BBS
models with just two networks (top row). We also cal culated the mean performance for
each network (bar graphsin bottom row). Values indicate correlations between actual
and predicted scores, averaged across folds of the cross-validation analysis. These
analyses revealed prominent roles for DMN and task control networks.
SMH=Somatomotor-hand, SMF=Somatomotor-faces, CO=Cingulo-opercular,
AUD=Auditory, DMN= Default mode network, MR=Memory retrieval, VIS=Visual,
FPN=Fronto-parietal, SAL=Salience, SC=Subcortical, VAN=Ventral Attention,
DAN=Dorsal Attention, CER=Cerebellum.

Connections predicting neur ocognitive scores prominently include hub-like
structureslinking task control networksand DM N.

The human brain exhibits a modular architecture in which most connections are within
network (43, 44). Given this configuration, connector hubs that link two networks are
critical for cross-network information flow (45, 46, 30). It has recently been argued that
connector hubs in task control networks are important for propagating top-down adaptive
control signalsto distributed processing regions including the default network (16, 30).
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Consigtent with thisidea, we noted hub-like structures that connect specific task control
nodes to widespread regions of DMN in the consensus maps (in Figure 2, these hubs are
seen as vertical “lines” in the DMN row). These hub-like structures appear especially
prominent in the Learning/Memory consensus map, and we display the hubs for this
consensus map in Figure 5.
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Figure5: Hub-like Structures Linking Task-Control Networks and DMN. We observed
hub-like structures in the consensus map for Learning/Memory in salience network
(SAL), ventral attention network (VAN), and dorsal attention network (DAN). Each hub-
like structure exhibited altered patterns of connectivity with nearly every node in default
mode node network (DMN).

Conclusions

In one of the largest neuroimaging investigations of youth to date, we demonstrate that
resting state connectivity patterns are predictive of three major domains of higher-order
cognitive functions: General Ability, Speed/Flexibility, and Learning/Memory. Our
strongest results were observed with General Ability scores, where connectivity-based
predictive models captured nearly 10% of the variance in scores and yielded Statistically
significant predictionsin 14 out of 15 held-out Sites. Thereis great interest in cognitive
and psychiatric neuroscience in moving towards biomarkers, i.e., objective quantitative
measures, of psychologically- or clinically- important constructs. Our results suggest that
resting state brain connectivity patterns could provide one avenue for eventually
producing effective, generalizable biomarkers of neurocognitive profilesin youth.

We also demonstrated that connections within and between task control networks and
DMN are especially important for individual-differences in youth neurocognitive
functioning across all three assessed domains. It is notable that connections involving
task control networks and DMN are among the most vigorously maturing during youth
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(47, 33, 32, 48, 34), with pronounced increases in intra-DMN connectivity from early
childhood to the mid-20"s (47, 34) and concurrent segregation of DMN from certain task
control networks (33, 34). Given these observations, a major strength of the ABCD
longitudinal design isthat these same children will be followed and scanned at regular
intervals through adolescence over the next 10 years. Thus, researchers accessing
subsequent waves of ABCD data will be well positioned to produce detailed maturational
trajectories of task control-DMN connections, a potentially critical locus of individual
differences in neurocognitive profilesin health and disease.

M ethods

1. Sample and Data

The ABCD study is amultisite longitudinal study established to investigate how
individual, family, and broader socio-cultural factors shape brain development and health
outcomes. The study has recruited 11,875 children between 9-10 years of age from 21
sites across the United States for longitudinal assessment. At each assessment wave,
children undergo assessments of neurocognition, physical health, and mental health, and
also participate in structural and functional neuroimaging. Detailed description of
recruitment procedures (49), assessments (50), and imaging protocols (51) are available
elsewhere. The ABCD data repository grows and changes over time. The ABCD data
used in this report came from NDA Study 576, DOI 10.15154/1412097, which can be
found at https://ndar.nih.gov/study.html?2d=576.

2. Data Acquisition, fMRI Preprocessing, and Connectome Gener ation

Imaging protocols were harmonized across sites and scanners. high spatial (2.4 mm
isotropic) and temporal resolution (TR=800 ms) resting state fMRI was acquired in four
separate runs (5min per run, 20 minutes total). For the current analysis, minimally
preprocessed resting-state fMRI data from the curated ABCD annual release 1.1 were
used, and full details are described in (52). This data reflects the application of the
following steps: i) gradient-nonlinearity distortions and inhomogeneity correction for
structural data; and ii) gradient-nonlinearity distortion correction, rigid realignment to
adjust for motion, and field map correction for functional data. The data were
subsequently further preprocessed by our group using SPM12. Anatomical (T1 weighted)
images were co-registered to functional data. T1 weighted images were then registered
linearly and nonlinearly to MNI space using the CAT12 Toolbox and DARTEL. This
warp field was applied to the functional datato bring all subjects into template space and
smoothed with a 6mm FWHM Gaussian kernel. Removal of artifacts arising from head
motion was performed on the smoothed functional time series using ICA-AROMA (53).

The smoothed images then went through a number of resting state processing steps,
including motion artifact removal steps comparable to thetype B (i.e., recommended)
stream of Siegel et al. (54). These stepsinclude linear detrending, CompCor to extract
and regress out the top 5 principal components of white matter and CSF (55), bandpass
filtering from 0.1-0.01Hz, and motion scrubbing of frames that exceed a framewise
displacement of 0.5mm.
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We calculated spatially-averaged time series for each of 264 4.24mm radius ROIs from
the parcellation of Power et al. (56). We then calculated Pearson’s correlation coefficients
between each ROI. These were then were transformed using Fisher'sr to z-
transformation.

3. Constructing Neur ocognitive Component Scor es

Component scores for three neurocognitive domains were derived through procedures
described in detail in Thompson et al. (36), and presented here in brief. Thompson et al.
conducted an exploratory analysis of ABCD neurocognitive assessments using Bayesian
Probabilistic Principal Components Analysis (BPPCA; 80). This analysis used random
effects for site and family to account for correlation among subjects in component scores
and in residuals caused by the nested structure of the data. The model was implemented
using the Bayesian inference engine stan (58) using the R package rstan to interface with
R Version 3.4.291. Thisyielded a three component solution: (a) General Ability
component (variance explained = 21.2%, [20.1%, 22.5%)]) with strongest loadings for the
NIH Toolbox Picture Vocabulary, Toolbox Oral Reading, and Little Man spatial
reasoning tasks; (b) Speed/Flexibility component (20.5% [19.5%, 21.5%]) with strongest
loadings from the NIH Toolbox Pattern Comparison Processing Speed task, NIH Toolbox
Dimensional Change Card Sort, and the NIH Toolbox Flanker; and (c) Learning/Memory
component (17.9% [16.9%, 19.1%]) with strongest loadings from the NIH Toolbox
Picture Sequence Memory task and the Rey Auditory Verbal Learning Task (RAVLT)
total number correct. In addition, the NIH Toolbox List Sort Working Memory task was
represented on both the General Ability component and the Learning/Memory
component. See Table S1 for details on factor loadings. We refer to these components as
“neurocognitive components’ throughout to distinguish them from the functional
connectivity components that are used in the BBS predictive modeling approach
(described below).

4. Inclusion/Exclusion

There were 4521 subjectsin the ABCD Release 1.1 dataset. Of these, 3575 subjects had
usable T1w images and one or more resting state runs that passed ABCD quality
checking standards (fsqc_qc = 1). Next, 3544 passed preprocessing and were
subsequently visually checked for registration and normalization quality, where 197 were
excluded for poor quality. Motion was assessed based on number of frames censored,
with aframewise displacement threshold of 0.5mm, and only subjects with two or more
runswith at least 4 minutes of good data were included (n=2757). To remove unwanted
sources of dependence in the dataset, only one sibling was randomly chosen to be
retained for any family with more than 1 sibling (n=2494). Finally, in order to implement
leave-one-site-out cross validation, sites with fewer than 75 subjects that passed these
guality checks were dropped, leaving 2206 subjects across 15 sites to enter the PCA step
of BBS predictive modeling. Thompson et al. (36) excluded 428 children dueto
incomplete neurocognitive data, and our prediction analyses was correspondingly
restricted to only those subjects that had the three neurocognitive factors from their
analysis. Thisleft 2013 subjects across the 15 sites for the prediction step of BBS, and the
demographic characteristics of this sample are shown in Table S2. For the analysis
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including more covariates (described in section 6) 1858 subjects were included due to
additional missing data in the covariates.

5. Brain Basis Set Moddling (BBS)

BBSisavalidated multivariate predictive method that uses dimensionality reduction to
produce a basis set of components to make phenotypic predictions (see Figure 1 for an
overview) (34, 38). For the dimensionality reduction step, we submitted an n subjectsx p
connections matrix from atraining dataset for principal components analysis using the
pca functionin MATLAB, yielding n-1 components ordered by descending eigenvalues
(note that that p > n). We select the top 75 components for our basis set based on our
previous work showing that somewhere between 50 to 100 components yields optimal
prediction of abroad array of behavioral phenotypes (38, 39), with inclusion of additional
components typically reducing performance due to overfitting.

Next, in the training dataset, we cal cul ate the expression scores for each of the 75
components for each subject by projecting each subject’ s connectivity matrix onto each
principal component. We then fit alinear regression model with these expression scores
as predictors and the phenotype of interest as the outcome, saving B, the 75 x 1 vector of
fitted coefficients, for later use. In atest dataset, we again calculate the expression scores
for each of the 75 components for each subject. Our predicted phenotype for each test
subject isthe dot product of B learned from the training dataset with the vector of
component expression scores for that subject.

6. L eave-One-Site-Out Cross Validation

To assess of the performance of BBS-based prediction models, we used |eave-one-site-
out cross-validation, which was performed separately for each of the three neurocognitive
component scores. In each fold of the cross-validation, data from one of the 15 sites
served as the held-out test dataset and data from the other 14 sites served asthetraining
dataset. Additionally, at each fold of the cross-validation, we did the following: 1) PCA
was performed on the training dataset yielding a 75-component basis set; 2) aBBS model
was trained to predict the relevant neurocognitive factor as the outcome variable. These
BBS models included covariates for head motion (mean FD and mean FD squared), and
in applying these trained BBS models to the held-out test dataset, the level of these
covariates was set at zero. In a secondary analysis, we used a more extensive set of
covariatesin these BBS predictive models, including age, gender, race/ethnicity, highest
parental education, household marital status, and household income.

7. Per mutation Testing

Cross-validation, as opposed to validation in a completely independent dataset, is
associated with elevated variance of estimates (59). Thus we assessed the significance of
all cross-validation-based correlations with non-parametric permutation tests (60).

The distribution under chance of correlations between BB S-based predictions of
neurocognitive scores and observed neurocognitive scores was generated by randomly
permuting the 2013 subjects neurocognitive scores 10,000 times. At each iteration, we
performed the leave-one-site out cross validation procedure described above (which
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includes refitting BBS models at each fold of the cross-validation). We then recal culated
the average correlation across folds between predicted versus actual neurocognitive
scores. The average correlation across folds that was actually observed was located in this
null distribution in terms of rank, and statistical significance was set asthisrank value
divided by 10,000.

Sincethe BBS modelsfit at each iteration of the permutation test included covariates
(mean FD and mean FD sguared for the main model; additional covariatesin the
secondary model), the procedure of Freedman and Lane was followed (61). In brief, a
BBS mode was first estimated with nuisance covariates alone, residuals were formed and
were permuted. The covariate effects were then added to the permuted residuals, creating
an approximate realization of data under the null hypothesis, and the statistical test of
interest was calculated on this data (see FSL Randomise
http://fdl.fmrib.ox.ac.uk/fd/fslwiki/Randomise/Theory for a neuroimaging
implementation).

8. Consensus Component Mapsfor Visualization

We used BBS with 75 whole-connectome components to make predictions about
neurocognitive component scores. To help convey overall patterns across the entire BBS
predictive model, we constructed “consensus’ component maps. Wefirst fit aBBS model
to the entire dataset consisting of all participants across the 15 included sites. We then
multiplied each component map with its associated beta from this fitted BBS model.
Next, we summed across all 75 components yielding a single map, and z scored the
entries at z=2. The resulting map indicates the extent to which each connection is
positively (red) or negatively (blue) related to the covariate of interest.
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