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Abstract 
Difficulties with higher-order cognitive functions in youth are a potentially important 
vulnerability factor for the emergence of problematic behaviors and a range of 
psychopathologies. This study examined 2,013 9-10 year olds in the first data release 
from the Adolescent Brain Cognitive Development 21-site consortium study in order to 
identify resting state functional connectivity patterns that predict individual-differences in 
three domains of higher-order cognitive functions: General Ability, Speed/Flexibility, 
and Learning/Memory. We found that connectivity patterns involving task control 
networks and default mode network were prominently implicated in predicting individual 
differences across participants across all three domains. In addition, for General Ability 
scores specifically, we observed consistent cross-site generalizability, with statistically 
significant predictions in 14 out of 15 held-out sites. These findings demonstrate that 
resting state connectivity can be leveraged to produce generalizable markers of 
neurocognitive functioning. Additionally, they highlight the importance of task control-
default mode network inter-connections as a major locus of individual differences in 
cognitive functioning in early adolescence. 
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Main 
 
Adolescence is a time of major physical, cognitive, and psychosocial change. It is also a 
time of great vulnerability for the emergence of maladaptive behavioral patterns and 
psychopathologies (1), which can cascade into poorer mental and physical health 
throughout adulthood. A major task for clinical neuroscience is to identify pre-morbid 
features that place the child at elevated risk for future adverse outcomes.  
 
One major risk factor for adolescent psychopathology is difficulty with higher-order 
cognitive functions, which encompass a diverse set of abilities for reasoning and problem 
solving, cognitive control and mental flexibility, and learning and recalling information 
(2–5). Difficulties with higher-order cognitive functions have been associated with a 
number of disorders, including both externalizing-spectrum disorders (e.g., substance use 
disorders and attention-deficit/hyperactivity disorder) (6–8) as well internalizing 
disorders (e.g., depression and anxiety) (9–11). The generality of these associations has 
led to the interesting suggestion that deficits in some kinds of higher-order cognitive 
functions (e.g., cognitive control) represent domain-general vulnerability factors for 
psychopathology (12–14). 
 
Concurrently, there is great interest in the neural underpinnings of higher-order cognitive 
functions (15). Emerging models focus on interrelationships between networks involved 
in active control of task processing (16, 17) and default mode network (DMN), involved 
in spontaneous cognition (18). Task control networks include frontoparietal network 
(FPN) and cingulo-opercular (CO) network, both involved in top-down control (19, 20), 
as well as dorsal attention network (DAN), involved in goal-directed attention (21). 
DMN—active in task-free states and implicated in spontaneous thought, evaluation, and 
memory (18, 22)—works in both cooperative and antagonistic ways with task control 
networks (23–26). The salience network (SAL) and ventral attention network (VAN), 
important for detection of unexpected events and ongoing monitoring (27), play key roles 
in identifying when adaptive control is required (28, 29). Higher-order cognitive 
functions are thought to rely on complex interplay between this set of networks, in which 
task control networks (which we define to include FPN, CO, DAN, SAL, and VAN; see 
38) supply task-relevant top-down regulatory signals that modulate spontaneous 
processing unfolding in association cortices within DMN (16, 31).  
 
Importantly, from early childhood to young adulthood, there is extensive development of 
functional interconnections between task control networks and DMN (32–34), suggestive 
of growing informational exchange and maturing top-down regulatory relationships. 
These observations raise an intriguing question about whether altered connectivity 
patterns among these networks during youth are predictive of differences in higher-order 
cognitive functioning. 
 
The present study investigates this question leveraging the first data release from the 
Adolescent Brain and Cognitive Development (ABCD) national consortium study, which 
will comprehensively characterize a cohort of over 11,000 adolescents using behavioral, 
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psychosocial, and neuroimaging measures over the course of 10 years. To accomplish 
this goal, data are collected from 21 sites nationwide. The baseline assessment of the 
study cohort has recently been completed, and utilized a number of behavioral tasks that 
probe multiple aspects of higher-order cognitive functions (35). Previous work by 
Thompson and colleagues on 4521 youth from the first release of baseline ABCD data 
distinguished three major higher-cognitive domains: General Ability, Speed/Flexibility, 
and Learning/Memory (36).  
 
The present work links neurocognitive scores for these domains with resting state brain 
connectivity patterns. We first produced resting state connectomes for each subject, using 
multiple methods to control for the effects of head motion, a potentially serious confound 
in resting state studies (37). In a sample of 2,013 subjects who met quality control and 
other inclusion criteria, we next applied a recently developed multivariate predictive 
modeling method, brain basis set (BBS) (38, 39) (see Figure 1). This method takes 
advantage of the fact that though functional connectomes are large and complex, 
encompassing tens of thousands of connections, there is massive redundancy in the set of 
connections that differ across people. This allows a small set of components—we used 75 
in the present study—to capture most meaningful inter-individual variation in 
connectomes (38, 39). We coupled BBS with leave-one-site-out cross-validation. That is, 
we train a BBS predictive model in all of the sites except one, apply the trained model to 
the held out site, and repeat this process with each site being held out. This allows us to 
gauge the generalizability of our predictive models to new, unseen subjects.  
 

 
Figure 1: Main Steps of Brain Basis Set (BBS) Modeling. BBS is a multivariate 
predictive modeling method. It utilizes dimensionality reduction with principal 
components analysis (PCA) to construct a basis set for predicting phenotypes of interest.  
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Resting state functional connectivity patterns are statistically significant predictors 
of neurocognitive scores for all three neurocognitive domains.  
We applied BBS to separately train predictive models for each of the three 
neurocognitive component scores. We then assessed the correlations between actual 
versus predicted neurocognitive scores, averaging across folds of the leave-one-site out 
cross-validation procedure. Results for each neurocognitive domain were:  General 
Ability r = 0.31 (permutation p value < 0.0001, i.e., observed correlation was higher than 
all 10,000 correlations in the permutation distribution); Speed/Flexibility r = 0.06 
(permutation p value = 0.02); Learning/Memory r = 0.15 (permutation p value < 0.0001, 
i.e., observed correlation was higher than all 10,000 correlations in the permutation 
distribution). Figure 2 displays consensus maps that highlight connections that were 
weighted more heavily in the respective predictive models.  
 
In a secondary analysis, we included a number of covariates in these BBS models, 
including age, gender, race/ethnicity, highest parental education, household marital 
status, and household income. Correlations between actual versus predicted 
neurocognitive scores, averaging across folds of the cross-validation, were:  General 
Ability r = 0.29 (permutation p value < 0.0001, i.e., observed correlation was higher than 
all 10,000 correlations in the permutation distribution); Speed/Flexibility r = 0.05 
(permutation p value = 0.11); Learning/Memory r = 0.10 (permutation p value = 0.01). 
 

 
 
Figure 2: Consensus Maps of Connections that are Predictive of Neurocognitive 
Scores. Connections in task control networks and DMN are especially well represented 
among the set of connections predictive of neurocognitive scores. SMH=Somatomotor-
hand, SMF=Somatomotor-faces, CO=Cingulo-opercular, AUD=Auditory, DMN= 
Default mode network, MR=Memory retrieval, VIS=Visual, FPN=Fronto-parietal, 
SAL=Salience, SC=Subcortical, VAN=Ventral Attention, DAN=Dorsal Attention, 
CER=Cerebellum. 
 
Predictive models for General Ability show evidence of substantial cross-site 
generalizability 
Figure 3 shows the per-site results of the BBS-based predictive models. For General 
Ability, results were consistent across sites, with statistically significant correlations 
between predicted and actual scores achieved in 14 out of 15 held-out sites (all p values < 
0.05). An important open question in neuroimaging is whether predictive models based 
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on resting state connectivity patterns trained in one dataset can effectively generalize to 
unseen data, in particular when the unseen data is collected at a different site using a 
different MRI scanner. Results observed with General Ability scores demonstrate that 
successful generalization to data from unseen sites and scanners can indeed be achieved. 
 

 
Figure 3: Per-Site Results of Predictive Models. We built multivariate models for 
predicting participants’ neurocognitive scores and tested these models with leave-one-
site-out cross-validation across 15 sites. The General Ability neurocognitive score 
exhibited particularly strong generalization across sites. 
 
 
Connections within and between task control networks and DMN play a prominent 
role in prediction of neurocognitive scores.  
We use the term “task control-DMN intersection” to refer to: (i) connections within a task 
control network; (ii) connections within DMN, and (iii) connections that link a task 
control network node with a DMN node. Such connections represent roughly 20% of the 
total number of connections (6754 out of 34716 total) in the connectome. They represent, 
however, a much larger percentage of the suprathreshold connections in the consensus 
maps (Figure 2, where a z=2 threshold is used), in particular 43%, 43%, and 49% for 
General Ability, Speed/Flexibility, and Learning/Memory, respectively. 
 
To further assess the importance of connections in the task control-DMN intersection, we 
dropped all connections outside this intersection and redid our BBS-based predictive 
modeling. The correlations between actual versus predicted neurocognitive scores, 
averaging across folds of the cross-validation, were:  General Ability r = 0.26 
(permutation p value < 0.0001, i.e., observed correlation was higher than all 10,000 
correlations in the permutation distribution); Speed/Flexibility r =  0.07 (permutation p 
value = 0.02); Learning/Memory r =  0.08 (permutation p value = 0.002). In addition, we 
examined prediction of the three neurocognitive component scores when retaining pairs 
of networks (Figure 4). This analysis too suggested disproportionate importance of the 
task control-DMN intersection. In particular, DMN and task control networks emerged as 
three of the top four most important networks for all three neurocognitive factors.  
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These findings highlighting the importance of the task control-DMN intersection for 
neurocognitive functioning can be interpreted in terms of recent theories of adaptive task 
control (16, 40). These accounts propose that task control networks modulate activity in 
distributed brain regions to facilitate cognitive control during complex tasks. In addition, 
a number of lines of evidence point to the DMN in particular as an important target of 
these top-down adaptive control signals. Modulation of the DMN is required in cases 
where task control networks must cooperate with DMN for coordinated processing, such 
as during complex problem-solving and prospective decision-making (23–25). It is also 
required to avoid interference by DMN (26) during externally focused, cognitively 
demanding tasks, with inadequate regulation of the DMN by task control networks 
sometimes leading to impaired task performance (41, 42). 
 
 

 
Figure 4: Prediction of Neurocognitive Domains with Two Networks: To assess the 
importance of networks for the success of the BBS predictive models, we trained new BBS 
models with just two networks (top row). We also calculated the mean performance for 
each network (bar graphs in bottom row). Values indicate correlations between actual 
and predicted scores, averaged across folds of the cross-validation analysis. These 
analyses revealed prominent roles for DMN and task control networks. 
SMH=Somatomotor-hand, SMF=Somatomotor-faces, CO=Cingulo-opercular, 
AUD=Auditory, DMN= Default mode network, MR=Memory retrieval, VIS=Visual, 
FPN=Fronto-parietal, SAL=Salience, SC=Subcortical, VAN=Ventral Attention, 
DAN=Dorsal Attention, CER=Cerebellum. 
 
Connections predicting neurocognitive scores prominently include hub-like 
structures linking task control networks and DMN.   
The human brain exhibits a modular architecture in which most connections are within 
network (43, 44). Given this configuration, connector hubs that link two networks are 
critical for cross-network information flow (45, 46, 30). It has recently been argued that 
connector hubs in task control networks are important for propagating top-down adaptive 
control signals to distributed processing regions including the default network (16, 30).  
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Consistent with this idea, we noted hub-like structures that connect specific task control 
nodes to widespread regions of DMN in the consensus maps (in Figure 2, these hubs are 
seen as vertical “lines” in the DMN row). These hub-like structures appear especially 
prominent in the Learning/Memory consensus map, and we display the hubs for this 
consensus map in Figure 5.  
 

  
Figure 5: Hub-like Structures Linking Task-Control Networks and DMN. We observed 
hub-like structures in the consensus map for Learning/Memory in salience network 
(SAL), ventral attention network (VAN), and dorsal attention network (DAN). Each hub-
like structure exhibited altered patterns of connectivity with nearly every node in default 
mode node network (DMN). 
 
Conclusions 
In one of the largest neuroimaging investigations of youth to date, we demonstrate that 
resting state connectivity patterns are predictive of three major domains of higher-order 
cognitive functions: General Ability, Speed/Flexibility, and Learning/Memory. Our 
strongest results were observed with General Ability scores, where connectivity-based 
predictive models captured nearly 10% of the variance in scores and yielded statistically 
significant predictions in 14 out of 15 held-out sites. There is great interest in cognitive 
and psychiatric neuroscience in moving towards biomarkers, i.e., objective quantitative 
measures, of psychologically- or clinically- important constructs. Our results suggest that 
resting state brain connectivity patterns could provide one avenue for eventually 
producing effective, generalizable biomarkers of neurocognitive profiles in youth. 
  
We also demonstrated that connections within and between task control networks and 
DMN are especially important for individual-differences in youth neurocognitive 
functioning across all three assessed domains. It is notable that connections involving 
task control networks and DMN are among the most vigorously maturing during youth 
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(47, 33, 32, 48, 34), with pronounced increases in intra-DMN connectivity from early 
childhood to the mid-20’s (47, 34) and concurrent segregation of DMN from certain task 
control networks (33, 34). Given these observations, a major strength of the ABCD 
longitudinal design is that these same children will be followed and scanned at regular 
intervals through adolescence over the next 10 years. Thus, researchers accessing 
subsequent waves of ABCD data will be well positioned to produce detailed maturational 
trajectories of task control-DMN connections, a potentially critical locus of individual 
differences in neurocognitive profiles in health and disease. 
 

Methods 
 
1. Sample and Data 
The ABCD study is a multisite longitudinal study established to investigate how 
individual, family, and broader socio-cultural factors shape brain development and health 
outcomes. The study has recruited 11,875 children between 9-10 years of age from 21 
sites across the United States for longitudinal assessment. At each assessment wave, 
children undergo assessments of neurocognition, physical health, and mental health, and 
also participate in structural and functional neuroimaging. Detailed description of 
recruitment procedures (49), assessments (50), and imaging protocols (51) are available 
elsewhere. The ABCD data repository grows and changes over time. The ABCD data 
used in this report came from NDA Study 576, DOI 10.15154/1412097, which can be 
found at https://ndar.nih.gov/study.html?id=576. 
 
2. Data Acquisition, fMRI Preprocessing, and Connectome Generation 
Imaging protocols were harmonized across sites and scanners. high spatial (2.4 mm 
isotropic) and temporal resolution (TR=800 ms) resting state fMRI was acquired in four 
separate runs (5min per run, 20 minutes total). For the current analysis, minimally 
preprocessed resting-state fMRI data from the curated ABCD annual release 1.1 were 
used, and full details are described in (52). This data reflects the application of the 
following steps: i) gradient-nonlinearity distortions and inhomogeneity correction for 
structural data; and ii) gradient-nonlinearity distortion correction, rigid realignment to 
adjust for motion, and field map correction for functional data. The data were 
subsequently further preprocessed by our group using SPM12. Anatomical (T1 weighted) 
images were co-registered to functional data. T1 weighted images were then registered 
linearly and nonlinearly to MNI space using the CAT12 Toolbox and DARTEL. This 
warp field was applied to the functional data to bring all subjects into template space and 
smoothed with a 6mm FWHM Gaussian kernel. Removal of artifacts arising from head 
motion was performed on the smoothed functional time series using ICA-AROMA (53).  
 
The smoothed images then went through a number of resting state processing steps, 
including motion artifact removal steps comparable to the type B (i.e., recommended) 
stream of Siegel et al. (54). These steps include linear detrending, CompCor to extract 
and regress out the top 5 principal components of white matter and CSF (55), bandpass 
filtering from 0.1-0.01Hz, and motion scrubbing of frames that exceed a framewise 
displacement of 0.5mm.  
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We calculated spatially-averaged time series for each of 264 4.24mm radius ROIs from 
the parcellation of Power et al. (56). We then calculated Pearson’s correlation coefficients 
between each ROI. These were then were transformed using Fisher’s r to z-
transformation. 
 
3. Constructing Neurocognitive Component Scores 
Component scores for three neurocognitive domains were derived through procedures 
described in detail in Thompson et al. (36), and presented here in brief. Thompson et al. 
conducted an exploratory analysis of ABCD neurocognitive assessments using Bayesian 
Probabilistic Principal Components Analysis (BPPCA; 80). This analysis used random 
effects for site and family to account for correlation among subjects in component scores 
and in residuals caused by the nested structure of the data. The model was implemented 
using the Bayesian inference engine stan (58) using the R package rstan to interface with 
R Version 3.4.291. This yielded a three component solution: (a) General Ability 
component (variance explained = 21.2%, [20.1%, 22.5%]) with strongest loadings for the 
NIH Toolbox Picture Vocabulary, Toolbox Oral Reading, and Little Man spatial 
reasoning tasks; (b) Speed/Flexibility component (20.5% [19.5%, 21.5%]) with strongest 
loadings from the NIH Toolbox Pattern Comparison Processing Speed task, NIH Toolbox 
Dimensional Change Card Sort, and the NIH Toolbox Flanker; and (c) Learning/Memory 
component (17.9% [16.9%, 19.1%]) with strongest loadings from the NIH Toolbox 
Picture Sequence Memory task and the Rey Auditory Verbal Learning Task (RAVLT) 
total number correct. In addition, the NIH Toolbox List Sort Working Memory task was 
represented on both the General Ability component and the Learning/Memory 
component. See Table S1 for details on factor loadings. We refer to these components as 
“neurocognitive components” throughout to distinguish them from the functional 
connectivity components that are used in the BBS predictive modeling approach 
(described below).  
 
4. Inclusion/Exclusion 
There were 4521 subjects in the ABCD Release 1.1 dataset. Of these, 3575 subjects had 
usable T1w images and one or more resting state runs that passed ABCD quality 
checking standards (fsqc_qc = 1). Next, 3544 passed preprocessing and were 
subsequently visually checked for registration and normalization quality, where 197 were 
excluded for poor quality. Motion was assessed based on number of frames censored, 
with a framewise displacement threshold of 0.5mm, and only subjects with two or more 
runs with at least 4 minutes of good data were included (n=2757). To remove unwanted 
sources of dependence in the dataset, only one sibling was randomly chosen to be 
retained for any family with more than 1 sibling (n=2494). Finally, in order to implement 
leave-one-site-out cross validation, sites with fewer than 75 subjects that passed these 
quality checks were dropped, leaving 2206 subjects across 15 sites to enter the PCA step 
of BBS predictive modeling. Thompson et al. (36) excluded 428 children due to 
incomplete neurocognitive data, and our prediction analyses was correspondingly 
restricted to only those subjects that had the three neurocognitive factors from their 
analysis. This left 2013 subjects across the 15 sites for the prediction step of BBS, and the 
demographic characteristics of this sample are shown in Table S2. For the analysis 
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including more covariates (described in section 6) 1858 subjects were included due to 
additional missing data in the covariates. 
 
5. Brain Basis Set Modeling (BBS) 
BBS is a validated multivariate predictive method that uses dimensionality reduction to 
produce a basis set of components to make phenotypic predictions (see Figure 1 for an 
overview) (34, 38). For the dimensionality reduction step, we submitted an n subjects x p 
connections matrix from a training dataset for principal components analysis using the 
pca function in MATLAB, yielding n-1 components ordered by descending eigenvalues 
(note that that p > n). We select the top 75 components for our basis set based on our 
previous work showing that somewhere between 50 to 100 components yields optimal 
prediction of a broad array of behavioral phenotypes (38, 39), with inclusion of additional 
components typically reducing performance due to overfitting. 
 
Next, in the training dataset, we calculate the expression scores for each of the 75 
components for each subject by projecting each subject’s connectivity matrix onto each 
principal component. We then fit a linear regression model with these expression scores 
as predictors and the phenotype of interest as the outcome, saving B, the 75 x 1 vector of 
fitted coefficients, for later use. In a test dataset, we again calculate the expression scores 
for each of the 75 components for each subject. Our predicted phenotype for each test 
subject is the dot product of B learned from the training dataset with the vector of 
component expression scores for that subject.  
 
6. Leave-One-Site-Out Cross Validation 
To assess of the performance of BBS-based prediction models, we used leave-one-site-
out cross-validation, which was performed separately for each of the three neurocognitive 
component scores. In each fold of the cross-validation, data from one of the 15 sites 
served as the held-out test dataset and data from the other 14 sites served as the training 
dataset. Additionally, at each fold of the cross-validation, we did the following: 1) PCA 
was performed on the training dataset yielding a 75-component basis set; 2) a BBS model 
was trained to predict the relevant neurocognitive factor as the outcome variable. These 
BBS models included covariates for head motion (mean FD and mean FD squared), and 
in applying these trained BBS models to the held-out test dataset, the level of these 
covariates was set at zero. In a secondary analysis, we used a more extensive set of 
covariates in these BBS predictive models, including age, gender, race/ethnicity, highest 
parental education, household marital status, and household income. 
 
7. Permutation Testing 
Cross-validation, as opposed to validation in a completely independent dataset, is 
associated with elevated variance of estimates (59). Thus we assessed the significance of 
all cross-validation-based correlations with non-parametric permutation tests (60).  
  
The distribution under chance of correlations between BBS-based predictions of 
neurocognitive scores and observed neurocognitive scores was generated by randomly 
permuting the 2013 subjects’ neurocognitive scores 10,000 times. At each iteration, we 
performed the leave-one-site out cross validation procedure described above (which 
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includes refitting BBS models at each fold of the cross-validation). We then recalculated 
the average correlation across folds between predicted versus actual neurocognitive 
scores. The average correlation across folds that was actually observed was located in this 
null distribution in terms of rank, and statistical significance was set as this rank value 
divided by 10,000.  
  
Since the BBS models fit at each iteration of the permutation test included covariates 
(mean FD and mean FD squared for the main model; additional covariates in the 
secondary model), the procedure of Freedman and Lane was followed (61). In brief, a 
BBS model was first estimated with nuisance covariates alone, residuals were formed and 
were permuted. The covariate effects were then added to the permuted residuals, creating 
an approximate realization of data under the null hypothesis, and the statistical test of 
interest was calculated on this data (see FSL Randomise 
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/Theory for a neuroimaging 
implementation).  
 
8. Consensus Component Maps for Visualization 
We used BBS with 75 whole-connectome components to make predictions about 
neurocognitive component scores. To help convey overall patterns across the entire BBS 
predictive model, we constructed “consensus” component maps. We first fit a BBS model 
to the entire dataset consisting of all participants across the 15 included sites. We then 
multiplied each component map with its associated beta from this fitted BBS model. 
Next, we summed across all 75 components yielding a single map, and z scored the 
entries at z=2. The resulting map indicates the extent to which each connection is 
positively (red) or negatively (blue) related to the covariate of interest. 
 
 
Acknowledgments 
Data used in the preparation of this article were obtained from the Adolescent Brain 
Cognitive Development (ABCD) Study (https://abcdstudy.org), held in the NIMH Data 
Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 
10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD 
Study is supported by the National Institutes of Health and additional federal partners 
under award numbers U01DA041022, U01DA041028, U01DA041048, U01DA041089, 
U01DA041106, U01DA041117, U01DA041120, U01DA041134, U01DA041148, 
U01DA041156, U01DA041174, U24DA041123, U24DA041147, U01DA041093, and 
U01DA041025. A full list of supporters is available at https://abcdstudy.org/federal-
partners.html. A listing of participating sites and a complete listing of the study 
investigators can be found at https://abcdstudy.org/Consortium_Members.pdf. ABCD 
consortium investigators designed and implemented the study and/or provided data but 
did not necessarily participate in analysis or writing of this report. This manuscript 
reflects the views of the authors and may not reflect the opinions or views of the NIH or 
ABCD consortium investigators.  
 
This work was supported by the following grants from the United States National 
Institutes of Health, the National Institute on Drug Abuse, and the National Institute on 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/495267doi: bioRxiv preprint 

https://doi.org/10.1101/495267
http://creativecommons.org/licenses/by-nc/4.0/


Alcohol Abuse and Alcoholism: R01MH107741 (CS), U01DA041106 (CS, LH, MH), 
1U24DA041123-01 (WT), U01DA041120 (ML), T32 AA007477 (AW). In addition, CS 
was supported by a grant from the Dana Foundation David Mahoney Neuroimaging 
Program. This research was supported in part through computational resources and 
services provided by Advanced Research Computing at the University of Michigan, Ann 
Arbor. 
 
Author Contributions 
Conceptualization: CS, MA, SR; Methodology: CS, MA, SR; Formal Analysis: CS, MA, 
ML, SR, WT; Data Curation: MA, SR; Writing – Original Draft: CS; Writing – 
Reviewing and Editing; AW, CS, LH, MA, MH, ML, SR, WT; Visualization: MA, SR; 
Supervision: CS, MH; Funding Acquisition: CS, MH. 
 
References 
 
1.  Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge 

during adolescence? Nat Rev Neurosci 9(12):947–957. 

2.  Frith C, Dolan R (1996) The role of the prefrontal cortex in higher cognitive 
functions. Cogn Brain Res 5(1–2):175–181. 

3.  Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168. 

4.  Casey BJ, Tottenham N, Fossella J (2002) Clinical, imaging, lesion, and genetic 
approaches toward a model of cognitive control. Dev Psychobiol 40(3):237–254. 

5.  Banich MT (2009) Executive function: The search for an integrated account. Curr 
Dir Psychol Sci 18(2):89–94. 

6.  Barkley RA (1997) Behavioral inhibition, sustained attention, and executive 
functions: constructing a unifying theory of ADHD. Psychol Bull 121(1):65. 

7.  Pennington BF, Ozonoff S (1996) Executive functions and developmental 
psychopathology. J Child Psychol Psychiatry 37(1):51–87. 

8.  Ogilvie JM, Stewart AL, Chan RC, Shum DH (2011) Neuropsychological measures 
of executive function and antisocial behavior: A meta�analysis. Criminology 
49(4):1063–1107. 

9.  Fossati P, Ergis AM, Allilaire JF (2002) Executive functioning in unipolar 
depression: a review. L’encéphale 28(2):97–107. 

10.  Banich MT, et al. (2009) Cognitive control mechanisms, emotion and memory: a 
neural perspective with implications for psychopathology. Neurosci Biobehav Rev 
33(5):613–630. 

11.  Barrett PM, Healy LJ (2003) An examination of the cognitive processes involved in 
childhood obsessive–compulsive disorder. Behav Res Ther 41(3):285–299. 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/495267doi: bioRxiv preprint 

https://doi.org/10.1101/495267
http://creativecommons.org/licenses/by-nc/4.0/


12.  Goodkind M, et al. (2015) Identification of a common neurobiological substrate for 
mental illness. JAMA Psychiatry 72(4):305–315. 

13.  McTeague LM, et al. (2017) Identification of common neural circuit disruptions in 
cognitive control across psychiatric disorders. Am J Psychiatry 174(7):676–685. 

14.  McTeague LM, Goodkind MS, Etkin A (2016) Transdiagnostic impairment of 
cognitive control in mental illness. J Psychiatr Res 83:37–46. 

15.  Mill RD, Ito T, Cole MW (2017) From connectome to cognition: the search for 
mechanism in human functional brain networks. NeuroImage 160:124–139. 

16.  Cole MW, et al. (2013) Multi-task connectivity reveals flexible hubs for adaptive 
task control. Nat Neurosci 16(9):1348–1355. 

17.  Cole MW, Schneider W (2007) The cognitive control network: Integrated cortical 
regions with dissociable functions. NeuroImage 37(1):343–360. 

18.  Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The Brain’s Default 
Network. Ann N Y Acad Sci 1124(1):1–38. 

19.  Dosenbach NUF, Fair DA, Cohen AL, Schlaggar BL, Petersen SE (2008) A dual-
networks architecture of top-down control. Trends Cogn Sci 12(3):99–105. 

20.  Dosenbach NUF, et al. (2007) Distinct brain networks for adaptive and stable task 
control in humans. Proc Natl Acad Sci U S A 104(26):11073–11078. 

21.  Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven 
attention in the brain. Nat Rev Neurosci 3:201–15. 

22.  Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL (2010) 
Functional-anatomic fractionation of the brain’s default network. Neuron 
65(4):550–562. 

23.  Spreng RN, Stevens WD, Chamberlain JP, Gilmore AW, Schacter DL (2010) 
Default network activity, coupled with the frontoparietal control network, supports 
goal-directed cognition. NeuroImage 53(1):303–317. 

24.  Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL (2012) Intrinsic 
Architecture Underlying the Relations among the Default, Dorsal Attention, and 
Frontoparietal Control Networks of the Human Brain. J Cogn Neurosci 25(1):74–
86. 

25.  Gerlach KD, Spreng RN, Gilmore AW, Schacter DL (2011) Solving future 
problems: Default network and executive activity associated with goal-directed 
mental simulations. NeuroImage 55(4):1816–1824. 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/495267doi: bioRxiv preprint 

https://doi.org/10.1101/495267
http://creativecommons.org/licenses/by-nc/4.0/


26.  Sonuga-Barke EJS, Castellanos FX (2007) Spontaneous attentional fluctuations in 
impaired states and pathological conditions: A neurobiological hypothesis. Neurosci 
Biobehav Rev 31:977–986. 

27.  Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. 
Nat Rev Neurosci 16(1):55. 

28.  Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular 
cortex in switching between central-executive and default-mode networks. Proc 
Natl Acad Sci U A 105:12569–74. 

29.  Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network 
model of insula function. Brain Struct Funct 214(5–6):655–667. 

30.  Gratton C, Sun H, Petersen SE (2018) Control networks and hubs. 
Psychophysiology 55(3):e13032. 

31.  Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple 
network model. Trends Cogn Sci 15(10):483–506. 

32.  Anderson JS, Ferguson MA, Lopez-Larson M, Yurgelun-Todd D (2011) 
Connectivity gradients between the default mode and attention control networks. 
Brain Connect 1(2):147–157. 

33.  Fair DA, et al. (2007) Development of distinct control networks through segregation 
and integration. Proc Natl Acad Sci U S A 104(33):13507–13512. 

34.  Kessler D, Angstadt M, Sripada C (2016) Brain Network Growth Charting and the 
Identification of Attention Impairment in Youth. JAMA Psychiatry 73(5):481–489. 

35.  Luciana M, et al. (2018) Adolescent neurocognitive development and impacts of 
substance use: overview of the adolescent brain cognitive development (ABCD) 
baseline neurocognition battery. Dev Cogn Neurosci. 

36.  Thompson W, et al. (in press) The Structure of Cognition in 9 and 10 year-old 
Children and Associations with Problem Behaviors: Findings from the ABCD 
Study’s Baseline Neurocognitive Battery. Dev Cogn Neurosci. 

37.  Power JD, et al. (2014) Methods to detect, characterize, and remove motion artifact 
in resting state fMRI. NeuroImage 84:320–341. 

38.  Sripada C, et al. (2018) Fundamental Differences: A Basis Set for Characterizing 
Inter-Individual Variation in Resting State Connectomes. bioRxiv:326082. 

39.  Sripada C, Angstadt M, Rutherford S (2018) Towards a “Treadmill Test” for 
Cognition: Reliable Prediction of Intelligence From Whole-Brain Task Activation 
Patterns. bioRxiv. doi:10.1101/412056. 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/495267doi: bioRxiv preprint 

https://doi.org/10.1101/495267
http://creativecommons.org/licenses/by-nc/4.0/


40.  Cocchi L, Zalesky A, Fornito A, Mattingley JB (2013) Dynamic cooperation and 
competition between brain systems during cognitive control. Trends Cogn Sci 
17(10):493–501. 

41.  Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006) The neural bases 
of momentary lapses in attention. Nat Neurosci 9:971–8. 

42.  Fassbender C, et al. (2009) A lack of default network suppression is linked to 
increased distractibility in ADHD. Brain Res 1273(0):114–128. 

43.  Sporns O (2011) The human connectome: a complex network. Ann N Y Acad Sci 
1224(1):109–125. 

44.  Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development 
and function of complex brain networks. Trends Cogn Sci 8(9):418–425. 

45.  Gratton C, Nomura EM, Pérez F, D’Esposito M (2012) Focal brain lesions to 
critical locations cause widespread disruption of the modular organization of the 
brain. J Cogn Neurosci 24(6):1275–1285. 

46.  Gordon EM, et al. (2018) Three distinct sets of connector hubs integrate human 
brain function. Cell Rep 24(7):1687-1695. e4. 

47.  Fair DA, et al. (2008) The maturing architecture of the brain’s default network. Proc 
Natl Acad Sci 105(10):4028–4032. 

48.  Sripada C, Kessler D, Angstadt M (2014) Lag in maturation of the brain’s intrinsic 
functional architecture in attention-deficit/hyperactivity disorder. Proc Natl Acad 
Sci 111(39):14259–14264. 

49.  Garavan H, et al. (2018) Recruiting the ABCD sample: design considerations and 
procedures. Dev Cogn Neurosci 32:16–22. 

50.  Barch DM, et al. (2017) Demographic, physical and mental health assessments in 
the adolescent brain and cognitive development study: Rationale and description. 
Dev Cogn Neurosci. 

51.  Casey BJ, et al. (2018) The adolescent brain cognitive development (ABCD) study: 
imaging acquisition across 21 sites. Dev Cogn Neurosci. 

52.  Hagler DJ, et al. (2018) Image processing and analysis methods for the Adolescent 
Brain Cognitive Development Study. bioRxiv:457739. 

53.  Pruim RH, et al. (2015) ICA-AROMA: A robust ICA-based strategy for removing 
motion artifacts from fMRI data. Neuroimage 112:267–277. 

54.  Siegel JS, et al. (2017) Data Quality Influences Observed Links Between Functional 
Connectivity and Behavior. Cereb Cortex N Y N 1991 27(9):4492–4502. 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/495267doi: bioRxiv preprint 

https://doi.org/10.1101/495267
http://creativecommons.org/licenses/by-nc/4.0/


55.  Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction 
method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37(1):90–
101. 

56.  Power JD, et al. (2011) Functional network organization of the human brain. Neuron 
72(4):665–678. 

57.  Tipping ME, Bishop CM (1999) Probabilistic principal component analysis. J R Stat 
Soc Ser B Stat Methodol 61(3):611–622. 

58.  Carpenter B, et al. (2017) Stan: A probabilistic programming language. J Stat Softw 
76(1). 

59.  Golland P, Fischl B (2003) Permutation tests for classification: towards statistical 
significance in image-based studies. Biennial International Conference on 
Information Processing in Medical Imaging (Springer), pp 330–341. 

60.  Good P (2000) Permutation Tests: A Practical Guide to Resampling Methods for 
Testing Hypotheses (Springer). 2nd Ed. 

61.  Freedman D, Lane D (1983) A Nonstochastic Interpretation of Reported 
Significance Levels. J Bus Econ Stat 1(4):292–298. 

 
 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/495267doi: bioRxiv preprint 

https://doi.org/10.1101/495267
http://creativecommons.org/licenses/by-nc/4.0/

