

1 REGULAR ARTICLE

2 **Chicory demonstrates substantial water
3 uptake from below 2 m depth, but still
4 did not escape topsoil drought**

5

6 Camilla Ruø Rasmussen (crr@plen.ku.dk, +45 35 32 08 71)^{1*}, Kristian Thorup-Kristensen¹ and
7 Dorte Bodin Dresbøll¹

8

9 ¹ Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark

10 * Corresponding author

11

12 **Key-words**

13 *Cichorium intybus* L.; Deep root growth; Deep water uptake; Drought resistance; Intercropping;
14 hydrological tracer

15

16 **Abstract**

17 *Aims* Deep-rooted agricultural crops can potentially utilize deep water pools and thus reduce
18 periods where growth is water limited. Chicory (*Cichorium intybus* L.) is known to be deep-rooted,
19 but the contribution of deep roots to water uptake under well-watered and drought conditions by
20 the deep root system has not been studied. The aim of this study was to investigate whether
21 chicory could reach 3 m depth within a growing season and demonstrate significant water uptake
22 from the deeper part of the root zone.

23 *Methods* We tested if chicory exposed to either topsoil drought or resource competition from the
24 shallow-rooted species ryegrass (*Lolium perenne* L.) and black medic (*Medicago lupulina* L.) would
25 increase deep water uptake in compensation for reduced topsoil water uptake. We grew chicory
26 in 4 m deep soil filled rhizotrons and found that the roots reached 3 m depth within a growing
27 season.

28 *Results* Water uptake from below 1.7 m depth in 2016 and 2.3 m depth in 2017 contributed
29 significantly to chicory water use. However, neither drought nor intercropping increased the deep
30 water uptake.

31 *Conclusion* Chicory benefits from being deep-rooted during drought events, yet deep water uptake
32 cannot compensate for the reduced topsoil water uptake during drought.

33

34 **Introduction**

35 Minimizing water limitation during growth of agricultural crops is crucial to unlocking full yield
36 potential. Crop yield losses vary according to the timing and severity of water limitations, but even
37 short-term drought can be a major cause of yield losses (Zipper et al. 2016). Deep-rooted crops
38 can potentially utilize otherwise inaccessible deep-water pools and thus reduce periods where
39 crop production is water limited. In areas where precipitation is sufficient to rewet the soil profile
40 during a wet season, shallow-rooted crops might still experience water limitation during the
41 growing season, as they do not have access to the water stored deeper in the profile.

42 The potential influence of deep roots on water uptake has been highlighted numerous times
43 (e.g. Canadell et al. 1996; Lynch and Wojciechowski 2015), still, information about the actual
44 contribution of deep roots to water uptake remains scarce. Maeght et al. (2013) suggest that this
45 is related to the absence of tools to measure deep root activity with sufficient throughput and
46 standardization at affordable costs, and to the widespread assumption that as deep roots only
47 represent a small fraction of the overall root system their contribution to root system function is
48 marginal. It has also been questioned whether deep root growth under field conditions is too
49 restricted by high soil strength, and unfavourable conditions such as e.g. hypoxia, acidity, and low
50 nutrient availability, to substantially benefit the crop (Lynch and Wojciechowski 2015; Gao et al.
51 2016).

52 While some soils definitely restrict deep root growth, others have shown to allow roots to
53 grow in the deeper soil layers (Sponchiado et al. 1989; Thorup-Kristensen and Rasmussen 2015). In
54 addition, even though the majority of the root biomass is found in the topsoil, deep roots can
55 contribute significantly to water supply in crops, as there is little connection between root biomass
56 and root activity (Mazzacavallo and Kulmatiski 2015). Gregory et al. (1978) found that in the field,
57 winter wheat had less than 5 % of its root biomass below 1 m depth, and as long as the water
58 supply was sufficient in the upper meter, the biomass reflected the water uptake well. However,
59 when the topsoil dried, the roots between 1 and 2 m depth supplied the plants with up to 20 % of
60 the total water use. In a study conducted in an Amazonian tropical forest, Nepstad et al. (1994)
61 found that they would have underestimated the evapotranspiration by 60 % in a dry year, had
62 they not considered roots below 2 m depth.

63 Indirectly deeper root growth in crops has also been associated with deep-water uptake, as
64 rooting depth has been shown to correlate positively with yield under drought in the field in e.g.
65 wheat (Lopes and Reynolds 2010), bean (Sponchiado et al. 1989; Ho et al. 2005), rice (Uga et al.
66 2013) and maize (Zhu et al. 2010). In addition, modeling studies indicate that selection for deeper
67 roots in grain crops could significantly improve deep-water acquisition and thereby yield in water
68 deficit seasons (Manschadi A et al. 2006; Lilley and Kirkegaard 2011). Common to most of these
69 studies is that deep root growth is considered to be in the range of 0.5 to 1.5 m depth. But several
70 agricultural crops have the capability to grow roots below 2 m depth or even deeper within a
71 season (Canadell et al. 1996; Ward et al. 2003; Thorup-Kristensen 2006; Rasmussen et al. 2015),

72 and thereby get access to an extra pool of water originating from wet season surplus precipitation
73 stored in the soil. For example, lucerne has shown to decrease the soil water content at 5 m depth
74 (Fillery and Poulter 2006).

75 Hydrological isotope tracer techniques have over the last two decades become an
76 increasingly popular tool to acquire information on temporal and spatial water use patterns in
77 plants (e.g. Bishop and Dambrine 1995; Peñuelas and Filella 2003; Beyer et al. 2016). Injection of
78 tracer into specific soil depths has proven to be a precise method to detect the relative water
79 uptake from the chosen depth (Kulmatiski et al. 2010; Kulmatiski and Beard 2013; Bachmann et al.
80 2015; Beyer et al. 2016). The hydrological tracer techniques utilize the fact that no isotopic
81 fractionation against isotope forms of hydrogen or oxygen occurs during soil water uptake by
82 roots (Wershaw et al. 1966; Dawson and Ehleringer 1991; Bariac et al. 1994; Mensforth and
83 Walker 1996).

84 The anthropocentric discussion of the importance of deep root growth in crop production is
85 put in perspective by the fact that some plant species have evolved the potential to grow deep
86 roots. Under what circumstances is that strategy beneficial? In this study, we hypothesize that
87 deep root growth can help plants escape topsoil drought. More specifically, we aimed at testing
88 the following hypotheses, using chicory (*Cichorium intybus L.*) as an example plant: 1) Chicory can
89 grow roots below 3 m depth within a growing season. 2) Chicory has a significant water uptake
90 from the deeper part of the root zone despite low root intensity. 3) When chicory is exposed to
91 either topsoil drought or resource competition from shallow-rooted species, deep water uptake
92 increases in compensation for the decreased topsoil water uptake.

93 Chicory is commonly grown in pasture mixtures for animal fodder or as a cash crop to
94 produce inulin (Meijer et al. 1993). It is known to be able to reach at least 2.5 m depth (Thorup-
95 Kristensen and Rasmussen 2015) and to be drought resistant (Monti et al. 2005; Skinner 2008;
96 Vandoorne et al. 2012a). To test the hypotheses we grew chicory as a sole crop and in an
97 intercropping with the two shallow-rooted species ryegrass (*Lolium perenne L.*) and black medic
98 (*Medicago lupulina L.*) in 4 m deep rhizotrons. We allowed extensive root development before
99 imposing a drought, as our focus was on the potential of deep roots to acquire water and not on
100 deep root growth during drought.

101

102 **Materials and Methods**

103 *Experimental facility*

104 We conducted the experiment in a semi-field facility at University of Copenhagen, Taastrup
105 (55°40'08.5"N 12°18'19.4"E), Denmark and repeated it for the two consecutive seasons, 2016 and
106 2017. We grew the crops in 4 m deep rhizotrons placed outside on a concrete foundation. The
107 rhizotrons where 1.2 x 0.6 m rectangular columns constructed of steel frames. A waterproof
108 plywood plate divided the rhizotrons lengthwise into an east- and a west-facing chamber with a
109 surface area of 1.2 x 0.3 m. The rhizotrons stood on a north-south axis, narrow side facing towards
110 one another (Fig. 1). On the east- and the west facing fronts of the rhizotrons, 20 transparent
111 acrylic glass panels allowed inspection of root growth at the soil-rhizotron interface on the entire
112 surface. Each panel was 1.2 m wide and could be removed to allow direct access to the soil
113 column. Every third panel was 0.175 m tall, and the rest were 0.21 m tall. We used the narrow
114 panels for placement of equipment and soil sampling. The tall panels were used only for root
115 observations. To avoid disturbance of root growth, we never removed these panels during the
116 experiment. All sides of the rhizotrons where covered in white plates of foamed PVC of 10 mm
117 thickness to avoid light exposure of soil and roots. On the fronts, the foamed PVC plates were also
118 divided into 20 panels. These were fixed in metal rails, allowing them to be slid off whenever we
119 had to observe the roots. A wick in the bottom of the rhizotrons allowed water to drain out.

120 We used field soil as a growth medium. The bottom 3.75 m of the rhizotrons was filled with
121 subsoil taken from below the plough layer at Store Havelse, Denmark (Table 1). We filled the
122 upper 0.25 m with a topsoil mix of sandy loam and fine sandy soil, half of each, both from the
123 University's experimental farm in Taastrup, Denmark. To reach a soil bulk density comparable to
124 field conditions we filled the soil into the rhizotrons stepwise at portions of approximately 0.15 m
125 depth and used a steel piston to compact each portion by dropping it several times on the soil. We
126 filled the rhizotrons in August 2015 and did not replace the soil during the two years. At the time
127 of the experiment, average subsoil bulk density was 1.6 g m⁻³, which is close to field conditions for
128 this soil type.

129 We constructed rainout shelters to control water supply in the drought stress treatment. In
130 2016, we covered the soil with a transparent tarpaulin that had a hole for each plant stem. The
131 tarpaulins were stretched out and fixed with a small inclination to let the water run off. It turned

132 out that this design failed to keep out water during intense precipitation events, which happened
133 twice during the season. Thus in 2017, we designed barrel roof rainout shelters instead, using the
134 same clear tarpaulin and placed them on all rhizotrons. The rain-out shelters were open in the
135 ends and on the sides to allow air circulation but were wider than the rhizotrons to minimize that
136 water reached the chambers during precipitation under windy conditions.

137 We installed a drip irrigation pipe (UniRam™ HCNL) with a separate tap in each chamber.
138 The pipe supplied 5 l hour⁻¹, equivalent to 14 mm hour⁻¹ according to the surface area of the
139 growth chambers.

140

141 *Experimental design*

142 We had two treatments in 2016 and four in 2017. In both years we grew chicory (*C. intybus L.*,
143 2016: cv Spadona from Hunsballe frø. 2017: cv Chicoree Zoom F1 from Kiepenkerl) in monoculture
144 under well-watered (WW) and drought stress (DS) conditions. In 2017, we also grew chicory
145 intercropped with either ryegrass (*L. perenne L.*) or black medic (*M. lupulina L.*), both in a WW
146 treatment. For chicory, we chose to work with a hybrid vegetable type cultivar in the second year
147 to reduce the variation among plants in size and development speed seen in the forage type used
148 the first year. In 2016, we transplanted four chicory plants into each chamber. In 2017, we
149 increased the number to six in order to reduce within-chamber variation. For the two
150 intercropping treatments in 2017, we transplanted five plants of ryegrass or black medic in
151 between the six chicory plants.

152 For the 2016 season, chicory plants were sown in May 2015 in small pots in the greenhouse
153 and were transplanted into the rhizotrons 30 September. Despite our attempt to compact the soil
154 inside the rhizotron chamber, precipitation made the soil settle around 10 % during the first
155 winter. Therefore, 29 February 2016, we carefully dug up the chicory plants, removed the topsoil,
156 filled in subsoil before filling topsoil back in and replanting the chicory plants. A few chicory plants
157 did not survive the replanting and in March we replaced them with spare plants sown at the same
158 time as the original ones and grown in smaller pots next to the rhizotrons. In 2017, we sowed
159 chicory in pots in the greenhouse 11 April and transplanted them to the rhizotron chambers 3 May
160 (Table 2). Chicory is perennial, it produces a rosette of leaves the first year and the second year it
161 grows stems and flowers.

162 We grew all treatments in three randomized replicates. The soil inside the six chambers not
163 used for the experiment in 2016 but included in 2017 had also sunken during the 2015/2016
164 winter and the same procedure was used to top up soil in these chambers before transplanting
165 the chicory plants.

166 In 2016, we fertilized all chambers with NPK 5-1-4 fertilizer equivalent to 100 kg N ha⁻¹, half 1
167 April and the other half 21 June. In 2017, we fertilized all chambers 3 May and 1 June following the
168 same procedure. Two chambers were accidentally over irrigated mid-June 2017 and we re-
169 fertilized them 16 June.

170 In 2016, we pruned the plants at 0.5 m height, several times between 24 May and 12 July to
171 postpone flowering and induce leaf and root growth.

172 We started drying out the DS treatments 26 June in 2016 and 13 July in 2017, where we
173 stopped irrigation and mounted the rainout shelters. In 2016, we kept irrigating the WW
174 treatments whenever precipitation was considered insufficient to meet plant needs. In 2017,
175 where the rainout shelters excluded precipitation in all chambers we kept irrigating all treatments
176 apart from the DS to ensure sufficient water supply. However, we chose to supply the same
177 amount of water in all the irrigated chambers, which led to different levels of soil water content.

178

179 *Biomass and ¹³C*

180 We harvested aboveground biomass 28 July in 2016 and 11 September in 2017. We dried the
181 biomass at 80°C for 48 hours. The biomass was analysed for ¹³C/¹²C ratio on an elemental analyser
182 interfaced to a continuous flow isotope ratio mass spectrometer (IRMS) at the University of
183 California Stable Isotope Facility (Davis, California, USA). Isotope values are expressed in delta
184 notation (δ) in per mill [%] following the definition of Coplen (2011):

$$\delta = \frac{R_{sample}}{R_{standard}} - 1 \#(1)$$

185

186 where R_{sample} is the ratio of the less abundant to the more abundant isotope (¹³C/¹²C) in the
187 sample and $R_{standard}$ the ratio in a standard solution. For $\delta^{13}\text{C}$ the international standard Vienna
188 PeeDee Belemnite ($R_{standard} = 11180.2 \times 10^{-6}$) was used. Analytical precision (σ) was 0.2‰.

189 The ¹³C/¹²C ratio in plants is directly related to the average stomatal conductance during
190 growth, as discrimination between ¹²CO₂ and ¹³CO₂ during photosynthesis is greatest when

191 stomatal conductance is high. When stomates are partially or completely closed, a greater part of
192 the CO₂ inside the leaf is absorbed resulting in less fractionation and thereby higher $\delta^{13}\text{C}$ values of
193 the plant tissue (Farquhar and Richards 1984; Farquhar et al. 1989).

194

195 *Root measurements*

196 We documented the development in root growth by taking photos of the soil-rhizotron interface
197 through the transparent acrylic glass panels. For this purpose, we designed a “photo box” that
198 could be slid on the metal rails in place of the foamed PVC panels, and thereby excluded the
199 sunlight from the photographed area. We placed a light source consisting of two bands of LED's
200 emitting light at 6000 K in the photo box. We used a compact camera (Olympus Tough TG 860).
201 For each 1.2 m wide panel we took four photos to cover the full width of the panel. We
202 photographed the roots 21 June and 18 July 2016 and 6 July, 16 August and 12 September 2017,
203 corresponding to the time of drought initiation in the DS treatment, ²H tracer injection (see below)
204 and for 2017, harvest. In 2017, harvest was postponed until 20 days after the ²H tracer-
205 experiment, due to other tests running in the facility.

206 We recorded the roots using the line intersects method (Newman 1966) modified to grid
207 lines (Marsh 1971; Tennant 1975) to calculate root intensity, which is the number of root
208 intersections m⁻¹ grid line in each panel (Thorup-Kristensen 2001). To make the counting process
209 more effective we adjusted the grid size to the number of roots, i.e. we used coarser grids when
210 more roots were present and finer grids for images with only a few roots. This is possible because
211 root intensity is independent of the length of gridline. We used four grid sizes: 10, 20, 40 and 80
212 mm. To minimize the variance of sampled data we used grid sizes that resulted in at least 50
213 intersections per panel (Ytting 2015).

214

215 *Soil water content*

216 We installed time-domain reflectometry sensors (TDR-315/TDR-315L, Acclima Inc., Meridian,
217 Idaho) at two depths to measure volumetric water content (VWC) in the soil. In 2016, the sensors
218 were installed at 0.5 and 1.7 m depth. In 2017, the sensors were installed at 0.5 and 2.3 m depth.
219 Soil water content was recorded every 5 min in 2016 and every 10 min in 2017 on a datalogger
220 (CR6, Campbell Scientific Inc, Logan, Utah). Discrepancies in measured VWC among the sensors at

221 field capacity (FC) let us conclude that the sensors were precise but not particularly accurate,
222 meaning that the change over time in VWC was reliable but not the measured actual VWC. We
223 have therefore estimated a sensor reading for each sensor at FC and reported changes in VWC
224 from FC. We estimated FC as the mean VWC over a 48-hour interval. In 2017, the measurement
225 was made in the autumn after excess water from a heavy rainfall had drained away. In the
226 autumn, there is little evaporation and no plant transpiration to decrease VWC below FC, making
227 it an optimal time to estimate FC. We did not have data from autumn 2016, so instead, we
228 estimated FC in early spring.

229

230 *Water uptake*

231 We estimated water uptake from the VWC readings. We assume that water movement in the soil
232 is negligible when VWC is below FC. Hence, the decrease in VWC can be interpreted as plant water
233 uptake. Water uptake is therefore estimated as the mean decrease in VWC over a given time
234 interval. We attempted to use intervals corresponding to the time of the ^2H tracer studies. In
235 2016, the interval was a few days and in 2017, the time interval did not cover the first
236 two days of the tracer study.

237 For the period from onset of drought to harvest 2017, we tested whether the daily water
238 uptake at 2.3 m depth was affected by daily mean VWC at 0.5 m depth across all treatments. For
239 this period, the VWC at 2.3 m depth was close to FC in all treatments and therefore unlikely to
240 affect the water uptake. As transpiration demand is high at this time of the year and plants are
241 large, we assumed that topsoil water limitations would limit total water uptake unless it is
242 balanced by an increased water uptake lower in the profile. We excluded days in which the
243 chambers were irrigated and one day after irrigation events to exclude periods with large soil
244 water movement.

245

246 ^2H tracer

247 We used ^2H labeled water injected into 2.3 m depth to trace water uptake from this depth. We
248 mixed 90 % $^2\text{H}_2\text{O}$ tracer with tap water 1:1, to achieve an enrichment of $\delta 5,665,651 \text{‰}$ and
249 injected 100 ml per chamber. We removed one of the acrylic panels in each chamber temporarily
250 to allow tracer injection and distributed it over 100 injection points in the soil. The injections were

251 made at two horizontal rows of each 10 equally distributed holes 5 cm above and below 2.3 m
252 depth respectively. In each of these 20 holes, we injected 5 ml tracer distributed between five
253 points: 5, 10, 15, 20 and 25 cm from the horizontal soil surface. Tracer injection was made 19 July
254 2016 and 15 August 2017.

255 We captured the tracer signal by collecting transpiration water using plastic bags. For studies
256 using tracers, collecting transpiration water is considered valid, as the tracers increase the
257 enrichment level several orders of magnitudes, which make the fractionation negligible (Thorburn
258 and Mensforth 1993; Beyer et al. 2016). We sampled the transpiration water one day before
259 tracer injection as a control and one, two, three, four and six days after in 2016, and three and six
260 days after in 2017. We fixed a plastic bag over each plant with an elastic cord that minimized air
261 exchange with the surroundings. Transpiration water condensed on the inside of the plastic bag,
262 which was folded inwards under the elastic cord to create a gutter for the water drops. Plastic
263 bags were mounted on the plants two hours before noon and removed at noon.

264 We removed the plastic bags one by one, shook them to unite the drops, and transferred
265 each sample to a closed plastic beaker. Later we filtered the samples through filter paper to
266 remove soil and debris contamination and transferred the samples to glass vials.

267 We collected water from all plants and in most cases mixed the individual plant samples
268 before analysis, taking equal amounts of water from each sample. Day 2 in 2016 and day 6 in
269 2017, we analysed the samples from each plant separately to get data on within chamber
270 variation. For the control samples in 2017, we only collected water from two plants of each
271 species per chamber. Single plant sample sizes varied from almost nothing to up to around 60 ml
272 in 2016 and 30 ml in 2017. The amount did not only reflect differences in transpiration rate, as it
273 was impossible to avoid spill when removing the plastic bags, and therefore we choose to use
274 equal amounts of water from each plant. For the control samples where variation was small, this is
275 of minor importance. The relatively large sample sizes for most samples limited the concerns of
276 fractionation due to evaporation during filtering and sample transfer.

277 The samples were analysed for ^2H at Centre for Isotope Research, University of Groningen,
278 The Netherlands on a continuous flow isotope ratio mass spectrometer (IRMS, Isoprime 10)
279 combined with a chromium reduction system (Europa PyrOH, Gehre et al. 1996). Isotope values are
280 expressed in delta notation (δ) as given in equation 1. R_{sample} is the $^2\text{H}/^1\text{H}$ ratio in the sample and

281 $R_{standard}$ for $\delta^2\text{H}$ is Vienna standard mean ocean water ($R_{standard} \approx 1/6412$). Analytical
282 precision (σ) was 0.7 ‰.

283 In order to identify whether tracer was present in a sample, we adapted the criteria
284 proposed by Kulmatiski (2010). If a sample had a $\delta^2\text{H}$ -value at least two standard deviations
285 higher than the control samples, tracer was assumed to be present.

286

287 *Statistics*

288 Data analyses were conducted in R version 3.4.4 (R Core team 2018). The effect of treatment on
289 aboveground biomass of chicory, black medic and ryegrass was tested in a mixed effects one-way
290 ANOVA. Separate harvest of single plants allowed the inclusion of chamber as random effect to
291 account for the fact that the two intercropped species are not independent.

292 The effect of soil depth and treatment on root intensity was tested in a mixed effects two-
293 way ANOVA. We included chamber as random effect to account for the fact that the different
294 depths are not independent. To meet assumptions of normality, depths where at least one of the
295 treatments had no roots in any of the replicates, were excluded from the model. Separate
296 analyses were made for each date.

297 The effect of soil depth and treatment on water uptake during a given time interval was
298 tested in a mixed effect three-way ANCOVA with time as covariate. In 2016, we excluded the
299 sensors from one replicate of the DS treatment because water reached it during a cloudburst. In
300 2017, we excluded two of the sensors at 0.5 m depth from the analysis, one in a chicory and
301 ryegrass intercropping treatment and one in a chicory and black medic intercropping treatment.
302 The first due to noise in the readings and the second due to readings showing a pattern in VWC
303 that did not resemble the pattern of any of the other sensors.

304 The effect of treatment and time on ^2H concentration in transpiration water was tested in a
305 mixed effect two-way ANOVA. We log-transformed the response variable to meet the assumptions
306 of homoscedasticity.

307 The effect of treatment on $\delta^{13}\text{C}$ was tested in a one-way ANOVA. For 2017, the model is a
308 mixed effects model because samples for each plant were analysed separately.

309 In all cases, separate analyses were made for each year. All models used met the
310 assumptions of normality and homoscedasticity. Differences were considered significant at P

311 <0.05. Tukey test P-values for pairwise comparisons were adjusted for multiplicity, by single step
312 correction to control the family-wise error rate, using the multcomp package (Hothorn et al.
313 2008). For root intensity, we decided to control the family-wise error rate for each root depth. For
314 the ^2H concentration, we only made pairwise comparisons for the last date.

315

316 **Results**

317 Plants grew well both years, and as hypothesized, roots were observed below 3 m depth by the
318 end of the growing season. Both the uptake of ^2H tracer and sensor readings showed that chicory
319 acquired water from 2.3 m depth. However, our results do not suggest that compensation takes
320 place, i.e. deep water uptake was not increased to balance the decreased topsoil water uptake
321 during drought.

322

323 *Biomass*

324 Plant development differed between the two experimental years. In 2016, the chicory plants were
325 in their second growth year and went into the generative stage right from the start of the growing
326 season. They started flowering in late May. In 2017, the chicory plants were in their first year of
327 growth and stayed in the vegetative state. Aboveground biomass of chicory did not differ
328 significantly between the two treatments in 2016 and was 6.52 and 6.85 t ha^{-1} in the WW and DS
329 treatment, respectively. In 2017, chicory biomass was 4.65 and 3.64 ton ha^{-1} in the WW and DS
330 treatment respectively and 2.80 and 2.21 t ha^{-1} when intercropped with either black medic or
331 ryegrass. Biomass of black medic and ryegrass was 5.89 and 7.68 ton ha^{-1} respectively. Both
332 intercropping treatments significantly reduced chicory biomass compared to the WW treatment.
333 Ryegrass produced significantly more biomass than black medic (Fig. 2).

334

335 *Root growth*

336 Root growth showed a similar pattern across the four treatments; however intercropping
337 decreased total root intensity down to around 2 m depth (only significant in few depths), except
338 for 0.11 m depth, where the chicory and ryegrass intercropping treatment had a significantly
339 higher root intensity than the other treatments. Roots of intercropped species could not be
340 distinguished and the reported root intensities are thus the sum of two species in the

341 intercropping treatments. The month-long summer drought did not influence root intensity in any
342 depths.

343 In 2016, roots had reached 2 m depth at the time of drought initiation, which was 3.5
344 months after transplanting. A month later, at the time of tracer injection the rooting depth of
345 chicory had increased below 3 m depth (Fig. 3a and b). In 2017, roots were observed almost to the
346 bottom of the rhizotrons already at drought initiation, 2 months after transplanting. However,
347 only a few roots were present below 2 m depth. At the time of tracer injection, which was again
348 3.5 months after transplanting root intensity had started to increase down to 2.5 m depth, and at
349 harvest, 4.5 months after transplanting this was the case down to around 3 m depth (Fig. 3c, d,
350 and e).

351

352 *Soil moisture and water uptake*

353 During the drought, 135 and 97 mm of water were excluded from the DS treatment in 2016 and
354 2017, respectively compared to the other treatments. In 2016, the soil dried out gradually at both
355 0.5 and 1.7 m depth in the DS treatment and in the WW treatment between the precipitation and
356 irrigation events. As a result, the soil was drier in the DS than in the WW treatment at both depths
357 recorded at the time of the tracer- experiment (Fig. 4a and b).

358 Although chicory WW and the two intercropping treatments in 2017 received the same
359 amount of water, less water reached the sensors at 0.5 m in the chicory and black medic
360 intercropping than in the WW and the chicory and ryegrass intercropping. This indicates that the
361 soil above the sensors was drier and therefore could withhold more water compared to the two
362 other irrigated treatments. At the time of the tracer-experiment, soil water content under the
363 chicory and black medic intercropping was similar to the DS treatment, which was lower in
364 comparison to two other treatments (Fig. 4c and d).

365 During the tracer-experiment, chicory plants in the WW treatment acquired 3.7 and 2.3 mm
366 water m^{-1} soil column day^{-1} from 0.5 m in 2016 and 2017, respectively. The uptake from 0.5 m
367 depth was reduced by more than 50 % in the DS treatment compared to the WW treatment in
368 both years. In the WW treatment, chicory took up 1.9 mm water m^{-1} soil column day^{-1} from 1.7 m
369 depth in 2016, whereas the uptake was 0.44 mm water m^{-1} soil column day^{-1} from 2.3 m depth in
370 2017. In 2016, drought significantly reduced water uptake of chicory from 1.7 m depth, whereas

371 no effect of drought was observed at 2.3 m depth in 2017. Common for both years was that the
372 amount of water taken up from 0.5 m depth in the DS treatment was equal to the uptake from 1.7
373 and 2.3 m depth in 2016 and 2017 respectively. Both intercropping treatments significantly
374 reduced water uptake at 0.5 m depth compared to the WW treatment, but no effect was seen at
375 2.3 m depth (Fig. 5).

376 We did not find any effect of mean daily soil VWC at 0.5 m depth on water uptake at 2.3 m
377 depth, giving no indication of compensatory deep water uptake (Data not shown).

378

379 ^2H enrichment

380 Chicory took up ^2H tracer from 2.3 m depth in both years (Fig. 6a). Two days after tracer
381 application in 2016, 21 out of 23 chicory plants demonstrated isotope ratios that were two
382 standard deviations or more above controls. Six days after tracer application in 2017, it was 30 out
383 of 64 chicory plants that showed the enrichment. No ryegrass or black medic plants indicated
384 tracer uptake (Fig. 6b).

385 In 2016, the ^2H concentration in chicory plants in the DS treatment tended to be higher
386 compared with the WW treatment, but the difference was not significant. In 2017, no differences
387 were seen in tracer concentration among chicory plants across the treatments. Black medic and
388 ryegrass plants revealed significantly lower ^2H enrichment in comparison to intercropped chicory.

389

390 $\delta^{13}\text{C}$ enrichment

391 In 2016, there was no effect of drought on the ^{13}C concentration of the chicory biomass (Fig. 7).
392 Similarly, there was neither an effect of drought nor intercropping with ryegrass in 2017. However,
393 intercropping with black medic increased the ^{13}C concentration in chicory indicating that chicory
394 was more drought stressed in this treatment than in any of the other treatments.

395

396 Discussion

397

398 Deep root growth

399 In accordance with our hypothesis, chicory demonstrated its capability to grow roots below 3 m
400 depth and did so within 4.5 months. However, root intensity decreased markedly below 2 m in

401 2016 and below 2.5 m depth in 2017. The root intensity below 2 m depth at drought initiation, 2.5
402 m depth at tracer injection and 3.5 m depth at harvest in 2017 was very low and could be a result
403 of roots from the 2016 crop still visible on the rhizotron surface. Studies covering a longer growing
404 season have found extensive root growth in chicory down to 2.5 m, where equipment limitations
405 prevented observations deeper down (Thorup-Kristensen 2006; Thorup-Kristensen and Rasmussen
406 2015). In the field, higher soil bulk density (Stirzaker et al. 1996; Gao et al. 2016) and other factors
407 might restrict deep root growth, which is less likely in our semi-field facility with repacked soil.
408 However, we did use field soil with a soil bulk density comparable to field soils.

409 Both intercropping treatments decreased total root intensity especially from 0.5 to 2 m
410 depth. This has to be seen in the light of a total aboveground biomass that was twice as high as in
411 the WW sole crop treatment. Observing that chicory biomass, on the other hand, was reduced to
412 almost half when intercropped, suggests that both black medic and ryegrass had much lower root
413 intensity below 0.3 m depth than sole cropped chicory and that the interspecific competition
414 reduced both above- and belowground growth of chicory. Black medic and ryegrass are both
415 shallow rooted and are unlikely to reach below 1 m depth (Kristensen and Thorup-Kristensen
416 2004; Thorup-Kristensen and Rasmussen 2015), thus the deep roots observed in the intercropping
417 treatments are assumed to be chicory roots.

418

419 *Deep water uptake*

420 The sensors documented water uptake in all treatments from 1.7 m depth in 2016 and 2.3 m
421 depth in 2017. In fact, the sensors showed that in 2016, chicory water uptake at 1.7 m depth was
422 c. 30 % of its water uptake at 0.5 m depth when well-watered. In 2017, chicory water uptake at 2.3
423 m depth was c. 10 % of its uptake at 0.5 m depth when well-watered. In absolute terms, water
424 uptake from 1.7 m depth in 2016 was in the range of $1.5 \text{ mm m}^{-1} \text{ soil column day}^{-1}$ and from 2.3 m
425 depth in 2017, it was $0.5 \text{ mm m}^{-1} \text{ soil column day}^{-1}$. Due to the small-sized plot placed at a windy
426 position at 4 m height, evapotranspiration must have been substantially higher than the potential
427 evapotranspiration measured nearby of 3.3 and 2.1 mm day^{-1} for the same periods in 2016 and
428 2017 respectively. Even though we did not estimate the total evapotranspiration, it is clear that
429 the water uptake from the deeper part of the root zone substantially contributed to the total plant
430 water balance.

431 The ^2H tracer uptake by chicory from 2.3 m depth both years support the sensor-based
432 water uptake calculations. Furthermore, the tracer study confirmed that neither black medic nor
433 ryegrass had roots deep enough to acquire water from 2.3 m depth. This is a clear example of
434 resource complementarity in root competition in intercropping (Tilman et al. 2001; Postma and
435 Lynch 2012).

436

437 *Response to water stress and intercropping*

438 Water uptake from 0.5 m depth was significantly reduced in the DS treatment compared to the
439 WW treatment indicating that the soil water potential was low enough to limit plant water uptake
440 in the DS treatment. Contrary to our expectations, we did not find a higher water uptake neither
441 at 1.7 m depth in 2016 nor at 2.3 m depth in 2017 when plants were water limited in the topsoil.
442 As biomass was not significantly reduced, whereas water uptake was reduced by 59 and 74 %, the
443 reduction in water uptake cannot be explained by a reduced water need.

444 Although not significant, the ^2H tracer study indicated a higher ^2H concentration in the
445 transpiration water in the DS compared to the WW treatment in 2016. This suggests a higher
446 relative water uptake from 1.7 m depth. A higher relative uptake from a certain depth can logically
447 be explained by an increase in water uptake from the given depth, a decrease in water uptake
448 somewhere else in the soil profile or a combination of both. As the water uptake based on the
449 sensor calculations show a significantly lower water uptake from 0.5 m depth in the DS than in the
450 WW treatment in 2016, it is likely that what we observed was the effect of decreased uptake in
451 the topsoil.

452 We only observed a significant increase in ^{13}C concentration in chicory when intercropped
453 with black medic. Samples were taken from the total biomass, and not from plant parts developed
454 during the drought, which might explain why the treatment effects were only captured in the
455 chicory and black medic intercropping, where black medic appeared to have induced drought
456 stress in chicory even before the onset of the drought stress we induced.

457 Intercropping reduced total root intensity at 0.5 m depth by over 40 %. Still, water uptake
458 from this depth was only slightly decreased indicating that the lower root intensity did not restrict
459 water uptake in well-watered conditions. Root density in upper soil layers of well-established
460 crops does not correlate well with water uptake (Anblin and Tennant 1987; Katayama et al. 2000),

461 which can be explained by the high mobility of water in the soil, making a dense root system
462 superfluous. Following the logic behind Walter's two-layer hypothesis (Walter 1939, 1971; Walker
463 and Noy-Meir 1982), intercropping would lead to a vertical niche partitioning resulting in
464 increased water uptake by the deep-rooted chicory when intercropped with a shallow-rooted
465 species. However, we did not observe an increase in deep water uptake.

466

467 *Absence of a deep water compensation effect*

468 We suggest three possible explanations for why we did not observe the hypothesized increase in
469 deep water uptake during drought or intercropping.

470 *1) The hydraulic resistance is too high to increase deep water uptake.* Theoretically, the
471 ability of root systems to extract water from deep roots depends not only on root system depth
472 but also on root system hydraulics (Javaux et al. 2013). Root hydraulic conductivity limits the
473 potential water uptake, and differs among species, but also among different roots in a root system
474 (Ahmed et al. 2018; Meunier et al. 2018). The ability of a root system to compensate, i.e. extract
475 water where it is easily available, for instance from deeper soil depths, is, therefore, a function of
476 (1) the xylem conductance between the roots in the extraction zone and the root crown and (2)
477 the radial root conductance in the wet zone. Compensation has been observed in chicory below
478 0.6 m depth, but this was in a study allowing root growth down to only 1.5 m depth (Vandoorne et
479 al. 2012a). In our experiment, the xylem conductance might simply have been too low in the
480 deeper part of the root zone to allow compensation, possibly because the deep soil
481 measurements were made in a zone with a low density of young roots (McCully 1995; Meunier et
482 al. 2018). However, chicory had 31 % fewer roots in the chicory and black medic intercropping
483 than in the WW treatment at 2.3 m, with no reduction in water uptake, not supporting such a
484 relationship between root density and water uptake.

485 *2) Insufficient water supply in the topsoil induces root-to-shoot signalling causing stomatal
486 closure, despite sufficient water supply in deeper soil layers.* Signals by phytohormones like Abscisic
487 acid (ABA), produced when parts of the root system are under low water potential, might reduce
488 plant transpiration and consequently root water uptake also from deeper depths by triggering
489 stomatal closure (Zhang and Davies 1990a, b; Tardieu et al. 1992; Dodd et al. 2008). Split-root
490 experiments, where one side of the root system is under low water potential, have found reduced

491 stomata conductance, despite sufficient water supply (Blackman and Davies 1985; Zhang and
492 Davies 1990b). However, experiments with vertical heterogeneity in soil water content yield
493 ambiguous results (Puértolas et al. 2015; Saradadevi et al. 2016). The hormonal signalling during
494 topsoil drying has not been tested for chicory. But chicory does show an isohydric behaviour,
495 decreasing stomatal conductance and maintaining leaf water potential during moderate drought
496 stress (Vandoorne et al. 2012b).

497 *3) Deep water uptake compensation might have occurred, but was not captured in this*
498 *experimental set-up.* Water uptake compensation could have happened between or below the
499 depths covered by the sensors. In 2016, VWC was not only lower at 0.5 m depth in the DS
500 treatment compared to the WW treatment but also in 1.7 m depth, which could have impaired the
501 water uptake from this depth, too. Water uptake could also have been confounded with water
502 redistribution in the soil column, leading to an underestimation of water uptake in depths where
503 water is moving to, and an overestimation in depths where water is moving from.

504 In summary, chicory can grow roots down to 3 m depth within 4.5 months and benefit from
505 a significant water uptake from below 2 m depth both during well-watered and drought
506 conditions. Our study highlights the benefit of deep root growth for crop water uptake, but
507 questions whether further compensation in deep water uptake takes place when water is limited
508 in the topsoil. A compensation might however, be pronounced for other crop species or for crops
509 which have had more time to establish a deep root system.

510

511 **Acknowledgments**

512 We thank statisticians Signe Marie Jensen and Helle Sørensen for advice regarding the statistical
513 data analyses, technician Jason Allen Teem for his contribution to the experimental work, student
514 helper Sunniva Melhus for counting roots and Engineer's assistant Sebastian Nielsen for building
515 the photo box and for constructive discussions on the design of it. All are affiliated with University
516 of Copenhagen. We thank Villum Foundation (DeepFrontier project, grant number VKR023338) for
517 financial support for this study.

518

519 **References**

520 Ahmed MA, Zarebanadkouki M, Meunier F, et al (2018) Root type matters: measurement of
521 water uptake by seminal, crown, and lateral roots in maize. *J Exp Bot* 69:1199–1206. doi:
522 10.1093/jxb/erx439

523 Anblin A, Tennant D (1987) Root length density and water uptake in cereals and grain
524 legumes: how well are they correlated? *Aust J Agric Res* 38:513–527

525 Bachmann D, Gockele A, Ravenek JM, et al (2015) No evidence of complementary water use
526 along a plant species richness gradient in temperate experimental grasslands. *PLoS One* 10:1–14.
527 doi: 10.1371/journal.pone.0116367

528 Bariac T, Gonzalez-Dunia J, Tardieu F, et al (1994) Spatial variation of the isotopic
529 composition of water (^{18}O , ^{2}H) in organs of aerophytic plants: 1. Assessment under laboratory
530 conditions. *Chem Geol Isot Geosci Sect* 115:307–315. doi: 10.1016/0009-2541(94)90194-5

531 Beyer M, Koeniger P, Gaj M, et al (2016) A Deuterium-based labeling technique for the
532 investigation of rooting depths, water uptake dynamics and unsaturated zone water transport in
533 semiarid environments. *J Hydrol* 533:627–643. doi: 10.1016/j.jhydrol.2015.12.037

534 Bishop K, Dambrine E (1995) Localization of tree water uptake in Scots pine and Norway
535 spruce with hydrological tracers. *Can J For Res* 25:286–297

536 Blackman PG, Davies WJ (1985) Root to shoot communication in maize plants of the effects
537 of soil drying. *J Exp Bot* 36:39–48. doi: 10.1093/jxb/36.1.39

538 Canadell J, Jackson RB, Ehleringer JR, et al (1996) Maximum rooting depth of vegetation
539 types at the global scale. *Oecologia* 108:583–595

540 Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio
541 and gas-ratio measurement results. *Rapid Commun Mass Spectrom* 25:2538–2560. doi:
542 10.1002/rcm.5129

543 Dawson TE, Ehleringer JR (1991) Streamside trees that do not use stream water. *Nature*
544 350:335–337. doi: 10.1038/350335a0

545 Dodd IC, Egea G, Davies WJ (2008) Abscisic acid signalling when soil moisture is
546 heterogeneous: decreased photoperiod sap flow from drying roots limits abscisic acid export to
547 the shoots. *Plant Cell Environ* 31:1263–1274. doi: 10.1111/j.1365-3040.2008.01831.x

548 Farquhar G, Richards R (1984) Isotopic composition of plant carbon correlates with water-
549 use efficiency of wheat genotypes. *Aust J Plant Physiol* 11:539–552. doi: 10.1071/PP9840539

550 Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon Isotope Discrimination and
551 Photosynthesis. *Annu Rev Plant Physiol Plant Mol Biol* 40:503–537. doi:
552 10.1146/annurev.pp.40.060189.002443

553 Fillery IRP, Poulter RE (2006) Use of long-season annual legumes and herbaceous perennials
554 in pastures to manage deep drainage in acidic sandy soils in Western Australia. *Aust J Agric Res*
555 57:297–308. doi: 10.1071/AR04278

556 Gao W, Hodgkinson L, Jin K, et al (2016) Deep roots and soil structure. *Plant Cell Environ*
557 39:1662–1668. doi: 10.1111/pce.12684

558 Gehre M, Hoefling R, Kowski P, Strauch G (1996) Sample preparation device for quantitative
559 hydrogen isotope analysis using chromium metal. *Ann Chem* 68:4414–4417

560 Gregory PJ, McGowan M, Biscoe P V. (1978) Water relations of winter wheat: 2. Soil water
561 relations. *J Agric Sci* 91:103–116. doi: 10.1017/S0021859600056665

562 Ho MD, Rosas JC, Brown KM, Lynch JP (2005) Root architectural tradeoffs for water and
563 phosphorus acquisition. *Funct Plant Biol* 32:737–748. doi: 10.1071/FP05043

564 Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models.
565 *Biometrical J* 50:346–363. doi: 10.1002/bimj.200810425

566 Javaux M, Couvreur V, Vanderborght J, Vereecken H (2013) Root water uptake: From three-
567 dimensional biophysical processes to macroscopic modeling approaches. *Vadose Zo J* 12:1–16. doi:
568 10.2136/vzj2013.02.0042

569 Katayama K, Ito O, Adu-Gyamfi J, Rao T (2000) Analysis of relationship between root length
570 density and water uptake by roots of five crops using minirhizotron in the semi-arid tropics. *Japan*
571 *Agric Res Q* 34:81–86

572 Kristensen HL, Thorup-Kristensen K (2004) Root growth and nitrate uptake of three different
573 catch crops in deep soil layers. *Soil Sci Soc Am J* 68:529–537

574 Kulmatiski A, Beard KH (2013) Root niche partitioning among grasses, saplings, and trees
575 measured using a tracer technique. *Oecologia* 171:25–37. doi: 10.1007/s00442-012-2390-0

576 Kulmatiski A, Beard KH, Verweij RJT, February EC (2010) A depth-controlled tracer technique
577 measures vertical, horizontal and temporal patterns of water use by trees and grasses in a
578 subtropical savanna. *New Phytol* 188:199–209. doi: 10.1111/j.1469-8137.2010.03338.x

579 Lilley JM, Kirkegaard JA (2011) Benefits of increased soil exploration by wheat roots. *F Crop*
580 *Res* 122:118–130. doi: 10.1016/j.fcr.2011.03.010

581 Lopes MS, Reynolds MP (2010) Partitioning of assimilates to deeper roots is associated with
582 cooler canopies and increased yield under drought in wheat. *Funct Plant Biol* 37:147–156. doi:
583 10.1071/FP09121

584 Lynch JP, Wojciechowski T (2015) Opportunities and challenges in the subsoil: pathways to
585 deeper rooted crops. *J Exp Bot* 66:2199–2210. doi: 10.1093/jxb/eru508

586 Maeght JL, Rewald B, Pierret A (2013) How to study deep roots - and why it matters. *Front*
587 *Plant Sci* 4:1–14. doi: 10.3389/fpls.2013.00299

588 Manschadi A AM, Christopher JB, DeVoil PA, Hammer C GL (2006) The role of root
589 architectural traits in adaptation of wheat to water-limited environments. *Funct Plant Biol* 33:823–
590 837. doi: 10.1071/FP06055

591 Marsh BA (1971) Measurement of length in random arrangements of lines. *J Appl Ecol*
592 8:265–267

593 Mazzacavallo MG, Kulmatiski A (2015) Modelling water uptake provides a new perspective
594 on grass and tree coexistence. *PLoS One* 10:1–16. doi: 10.1371/journal.pone.0144300

595 McCully M (1995) How do real roots work? Some new views of root structure. *Plant Physiol*
596 109:1–6

597 Meijer WJM, Mathijssen EWJM, Borm GEL (1993) Crop characteristics and inulin production
598 of jerusalem artichoke and chicory. In: Fuchs A (ed) *Inulin and Inulin-containing Crops*, 1. Elsevier
599 Science, pp 29–38

600 Mensforth LJ, Walker GR (1996) Root dynamics of *Melaleuca halmaturorum* in response to
601 fluctuating saline groundwater. *Plant Soil* 184:75–84

602 Meunier F, Zarebanadkouki M, Ahmed MA, et al (2018) Hydraulic conductivity of soil-grown
603 lupine and maize unbranched roots and maize root-shoot junctions. *J Plant Physiol* 227:31–44. doi:
604 10.1016/J.JPLPH.2017.12.019

605 Monti A, Amaducci MT, Pritoni G, Venturi G (2005) Growth, fructan yield, and quality of
606 chicory (*Cichorium intybus* L.) as related to photosynthetic capacity, harvest time, and water
607 regime. *J Exp Bot* 56:1389–1395. doi: 10.1093/jxb/eri140

608 Nepstad DC, De Carvalho CR, Davidson EA, et al (1994) The role of deep roots in the
609 hydrological and carbon cycles of Amazonian forests and pastures. *Nature* 372:666–669

610 Newman EI (1966) A method of estimating total length of root in a sample. *J Appl Ecol*
611 3:139–145. doi: 10.2307/2401670

612 Peñuelas J, Filella I (2003) Deuterium labelling of roots provides evidence of deep water
613 access and hydraulic lift by *Pinus nigra* in a Mediterranean forest of NE Spain. *Environ Exp Bot*
614 49:201–208. doi: 10.1016/S0098-8472(02)00070-9

615 Postma JA, Lynch JP (2012) Complementarity in root architecture for nutrient uptake in
616 ancient maize/bean and maize/bean/squash polycultures. *Ann Bot* 110:521–534. doi:
617 10.1093/aob/mcs082

618 Puértolas J, Conesa MR, Ballester C, Dodd IC (2015) Local root abscisic acid (ABA)
619 accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA
620 signalling under heterogeneous soil drying. *J Exp Bot* 66:2325–2334. doi: 10.1093/jxb/eru501

621 R Core team (2018) A Language and Environment for Statistical Computing

622 Rasmussen CR, Thorup-Kristensen K, Dresbøll DB (2018) Chicory demonstrates substantial
623 water uptake from below 2 m, but still did not escape topsoil drought. *bioRxiv*. doi:
624 10.1101/494906

625 Rasmussen IS, Dresbøll DB, Thorup-Kristensen K (2015) Winter wheat cultivars and nitrogen
626 (N) fertilization-effects on root growth, N uptake efficiency and N use efficiency. *Eur J Agron*
627 68:38–49. doi: 10.1016/j.eja.2015.04.003

628 Saradadevi R, Bramley H, Palta JA, et al (2016) Root biomass in the upper layer of the soil
629 profile is related to the stomatal response of wheat as the soil dries. *Funct Plant Biol* 43:62–74.
630 doi: 10.1071/FP15216

631 Skinner RH (2008) Yield, root growth, and soil water content in drought-stressed pasture
632 mixtures containing chicory. *Crop Sci* 48:380–388. doi: 10.2135/cropsci2007.04.0201

633 Sponchiado BN, White JW, Castillo JA, Jones PG (1989) Root growth of four common bean
634 cultivars in relation to drought tolerance in environments with contrasting soil types. *Exp Agric*
635 25:249–257. doi: 10.1017/S0014479700016756

636 Stirzaker RJ, Passioura JB, Wilms Y (1996) Soil structure and plant growth: Impact of bulk
637 density and biopores. *Plant Soil* 185:151–162. doi: 10.1007/BF02257571

638 Tardieu F, Zhang J, Katerji N, et al (1992) Xylem ABA controls the stomatal conductance of
639 field-grown maize subjected to soil compaction or soil drying. *Plant, Cell Environ* 15:193–197. doi:
640 10.1111/j.1365-3040.1992.tb01473.x

641 Tenant D (1975) Test of a modified line intersect method of estimating root length. *J Ecol*
642 63:995–1001. doi: 10.2307/2258617

643 Thorburn PJ, Mensforth LJ (1993) Sampling water from alfalfa (*Medicago sativa*) for analysis
644 of stable isotopes of water. *Commun Soil Sci Plant Anal* 24:549–557. doi:
645 10.1080/00103629309368821

646 Thorup-Kristensen K (2006) Effect of deep and shallow root systems on the dynamics of soil
647 inorganic N during 3-year crop rotations. *Plant Soil* 288:233–248. doi: 10.1007/s11104-006-9110-7

648 Thorup-Kristensen K (2001) Are differences in root growth of nitrogen catch crops important
649 for their ability to reduce soil nitrate-N content, and how can this be measured? *Plant Soil*
650 230:185–195

651 Thorup-Kristensen K, Rasmussen CRR (2015) Identifying new deep-rooted plant species
652 suitable as undersown nitrogen catch crops. *J Soil Water Conserv* 70:399–409. doi:
653 10.2489/jswc.70.6.399

654 Tilman D, Reich PB, Knops J, et al (2001) Diversity and productivity in a long-term grassland
655 experiment. *Science* (80-) 294:843–845. doi: 10.1126/science.1060391

656 Uga Y, Sugimoto K, Ogawa S, et al (2013) Control of root system architecture by DEEPER
657 ROOTING 1 increases rice yield under drought conditions. *Nat Genet* 45:1097–1102. doi:
658 10.1038/ng.2725

659 Vandoorne B, Beff L, Lutts S, Javaux M (2012a) Root water uptake dynamics of *Cichorium*
660 *intybus* var. *sativum* under water-limited conditions. *Vadose Zo J* 11:. doi: 10.2136/vzj2012.0005

661 Vandoorne B, Mathieu A-S, Van den Ende W, et al (2012b) Water stress drastically reduces
662 root growth and inulin yield in *Cichorium intybus* (var. *sativum*) independently of photosynthesis. *J*
663 *Exp Bot* 63:4359–73. doi: 10.1093/jxb/ers095

664 Walker B, Noy-Meir I (1982) Aspects of the stability and resilience of savanna ecosystems. In:
665 *Ecology of tropical savannas*. Springer, Berlin, Berlin, pp 556–590

666 Walter H (1939) Grasland, savanne und busch der arideren teile Afrikas in ihrer ökologischen
667 bedingtheit. In: *Jahrb Wiss Bot* 87. Berlin, pp 750–860

668 Walter H (1971) VI. Natural savannahs as a transition to the arid zone. In: Huntley BJ and
669 Walker H (ed) *Ecology of tropical and subtropical vegetation*. Oliver & Boyd, Edinburgh, pp 238–
670 265

671 Ward PR, Fillery IRP, Maharaj EA, Dunin FX (2003) Water budgets and nutrients in a native
672 Banksia woodland and an adjacent *Medicago sativa* pasture. *Plant Soil* 257:305–319. doi:
673 10.1023/A:1027331712165

674 Wershaw R, Friedman I, Heller S, Frank P (1966) Hydrogen isotopic fractionation of water
675 passing through trees. In: Hobson and Speers (ed) *Advances in Organic Geochemistry: Proceedings*
676 of the Third International Congress. Pergamon, pp 55–67

677 Ytting NK (2015) Genetic variation in deep root growth of North-European winter wheat.
678 University of copenhagen

679 Zhang J, Davies WJ (1990a) Does ABA in the xylem control the rate of leaf growth in soil-
680 dried maize and sunflower plants? *J Exp Bot* 41:1125–1132. doi: 10.1093/jxb/41.9.1125

681 Zhang J, Davies WJ (1990b) Changes in the concentration of ABA in xylem sap as a function
682 of changing soil water status can account for changes in leaf conductance and growth. *Plant, Cell*
683 *Environ* 13:277–285. doi: 10.1111/j.1365-3040.1990.tb01312.x

684 Zhu J, Brown KM, Lynch JP (2010) Root cortical aerenchyma improves the drought tolerance
685 of maize (*Zea mays* L.). *Plant, Cell Environ* 33:740–749. doi: 10.1111/j.1365-3040.2009.02099.x

686 Zipper S, J Q, Kucharik C (2016) Drought effects on US maize and soybean production:
687 spatiotemporal patterns and historical changes. *Environ Res Lett* 11:094021. doi: 10.1088/1748-
688 9326/11/9/094021

689

690 Table 1: Main characteristics of the soil used in the rhizotrons

Depth (m)	Organic matter ¹ (%)	Clay (%) <0.002 mm	Silt (%) 0.002-0.02 mm	Fine sand (%) 0.02-0.2 mm	Coarse sand (%) 0.2-2.0 mm	pH ²
0.00-0.25	2.0	8.7	8.6	46.0	35.0	6.8
0.25-4.00	0.2	10.3	9.0	47.7	33.0	7.5

691 ¹ Assuming that organic matter contains 58.7 % carbon.

692 ² pH = Reaction Number (Rt) – 0.5. Measured in a 0.01 M CaCl₂ suspension, soil:suspension ratio 1:2.5.

693 Table 2: Timeline of the experiments in 2016 and 2017

	2016	2017
Sowing	May 2015	11 April
Transplanting	29 February	3 May
Onset of drying out	26 June	13 July
H ² tracer study	19-25 July	15-21 August
Water uptake calculations	24-27 July	17-21 August
Harvest	28 July	11 September

694

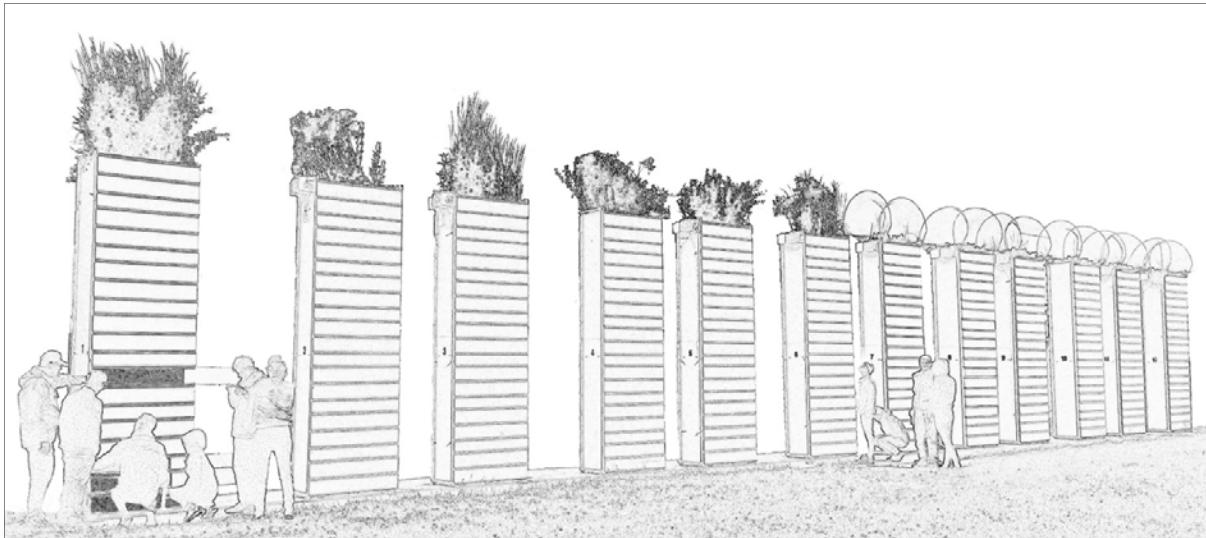
695 **Fig. 1** The rhizotron facility, consisting of 12 columns of 4 m height each divided into an east- and a
696 west-facing chamber. See text for a detailed description
697

698 **Fig. 2** Biomass harvested 28 July 2016 and 11 September 2017 in the well-watered (WW) and
699 drought stressed (DS) chicory sole crop treatments, and the chicory intercropping treatments with
700 ryegrass and black medic respectively. Error bars denote standard errors, and letters indicate
701 significant differences among treatments for each year. Part of the data has also been published in
702 (Rasmussen et al. 2018).

703
704 **Fig. 3** Root intensity in the well-watered (WW) and drought stressed (DS) chicory sole crop
705 treatments and in the chicory intercropping treatment with ryegrass and black medic respectively
706 in (a) 21 June 2016, (a) 18 July 2016, (c) 6 July 2017, (d) 16 August 2017 and (e) 12 September
707 2017, corresponding to the time of drought initiation in the DS treatment, ^{2}H tracer injection and
708 for 2017, harvest. Letters indicate significant differences among treatments in the given depth.
709 Arrows indicate the depth of TDR sensors and ^{2}H tracer injection.
710

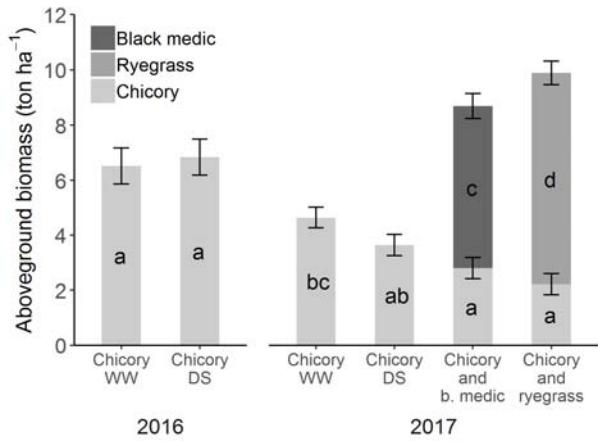
711 **Fig. 4** Difference in soil volumetric water content from field capacity at 0.5 and 1.7 m depth in
712 2016 and 0.5 and 2.3 m depth in 2017 in the well-watered (WW) and drought stressed (DS) chicory
713 sole crop treatments and in the chicory intercropping treatment with ryegrass and black medic
714 respectively. Line segments represent the outcome of a three-way ANCOVA on the time interval
715 from 24 to 27 July in 2016 and 17 to 21 August in 2017. The slope of the segments gives the daily
716 decrease in volumetric water content and is interpreted as daily plant water uptake. See also Fig. 5
717

718 **Fig. 5** Mean daily decrease in soil volumetric water content at 0.5 and 1.7 m depth 24 to 28 July
719 2016 and 0.5 and 2.3 m depth 17 to 21 August 2017 in the well-watered (WW) and drought
720 stressed (DS) chicory sole crop treatments and in the chicory intercropping treatment with
721 ryegrass and black medic respectively. All days included. The daily decrease in volumetric water
722 content is interpreted as daily plant water uptake. Error bars denote standard errors, and letters
723 indicate significant differences among treatments in a three-way ANCOVA, with depth and
724 treatment as factors and time as covariate. Separate analyses were made for each year

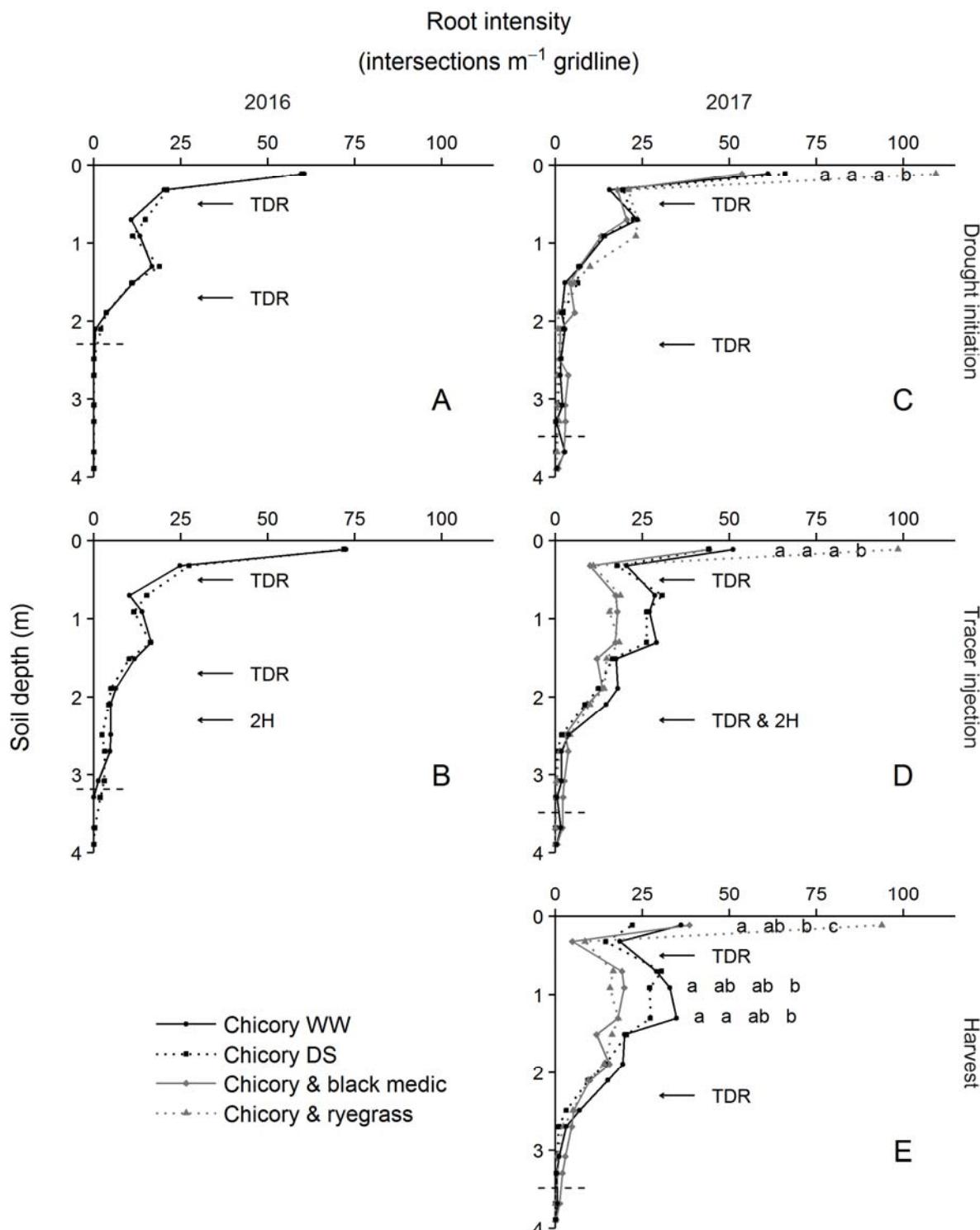

725

726 **Fig. 6** ^2H concentration in transpiration water before and after application of tracer at 2.3 m depth
727 in (A) 2016 and (B) 2017 in the well-watered (WW) and drought stressed (DS) chicory sole crop
728 treatments and in the chicory intercropping treatment with ryegrass and black medic respectively.
729 We tested significant differences in a mixed effects two-way ANOVA. To meet the assumptions of
730 homoscedasticity data were log-transformed. Separate analyses were made for each year and
731 pairwise comparisons were only made for the last date. There was no effect of treatment in 2016.
732 In 2017, the ^2H concentration in chicory and in black medic in the intercropping treatment
733 differed. Likewise in the chicory and ryegrass intercropping. Differing treatments are marked with
734 identical symbols

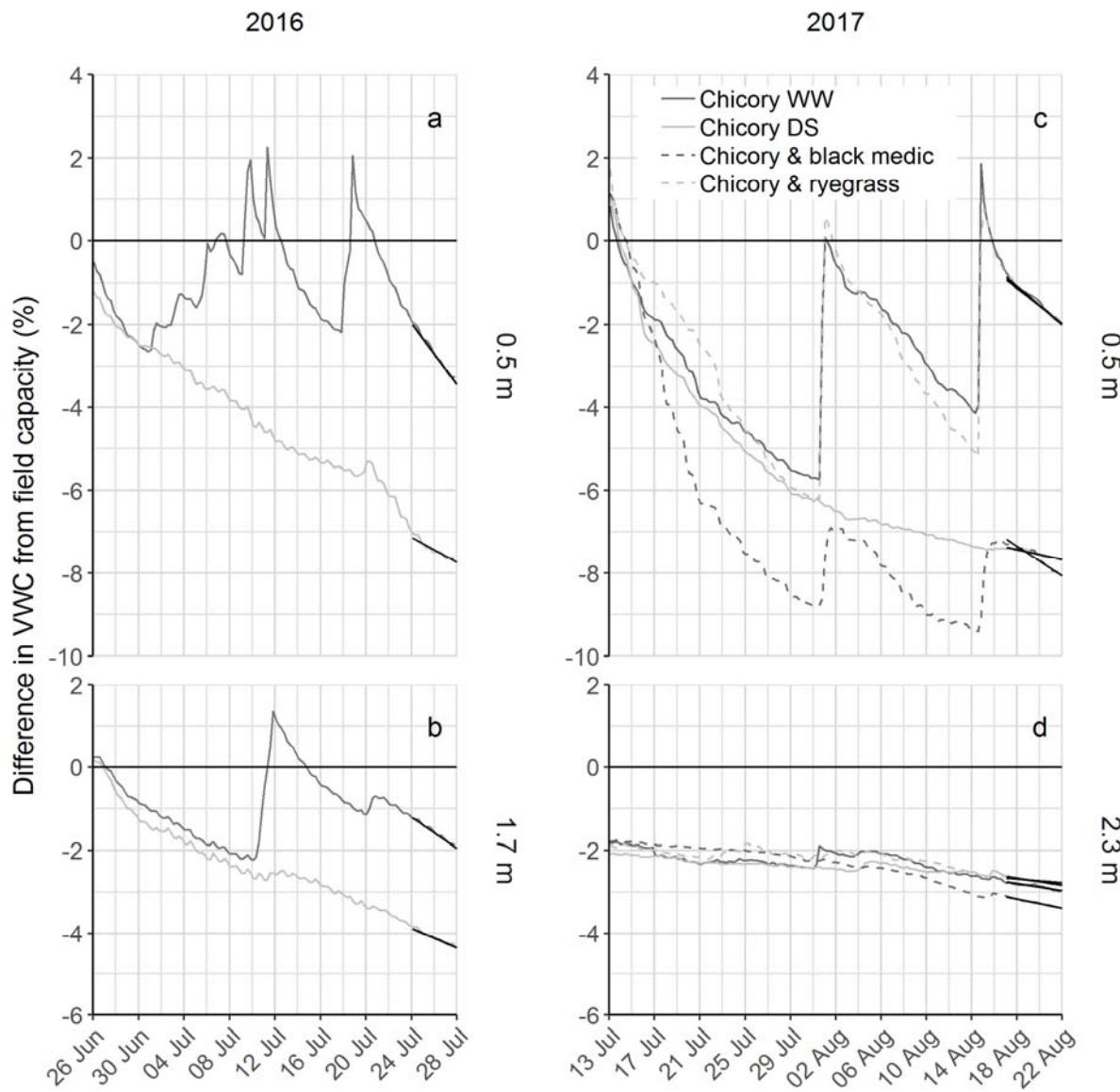
735


736 **Fig. 7** ^{13}C concentration in chicory harvested 28 July 2016 and 11 September 2017 in the well-
737 watered (WW) and drought stressed (DS) chicory sole crop treatments and in the chicory
738 intercropping treatment with ryegrass and black medic respectively. Error bars denote standard
739 errors, and letters indicate significant differences among treatments in a one-way ANOVA.
740 Separate analyses were made for each year. For 2017, the model is a mixed effects model because
741 samples for each plant in a chamber were analysed separately

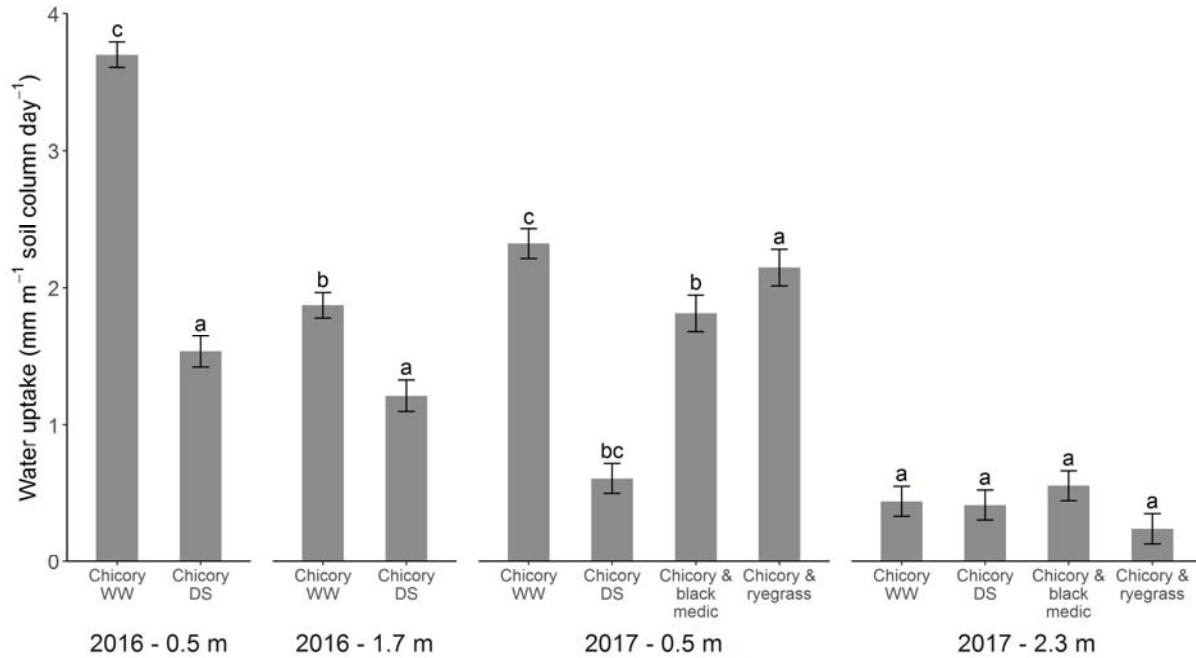
742 Figure 1


743
744

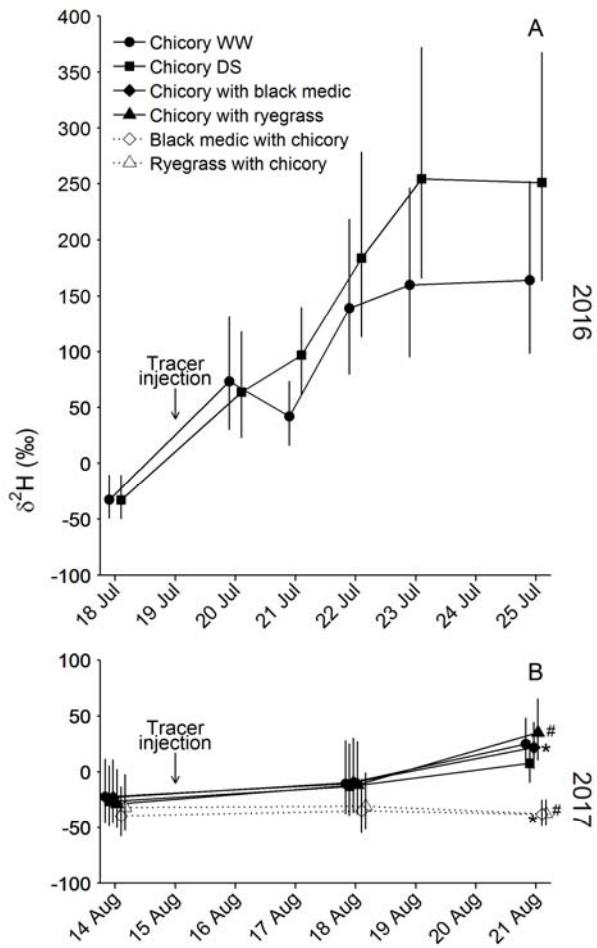
745 Figure 2


746

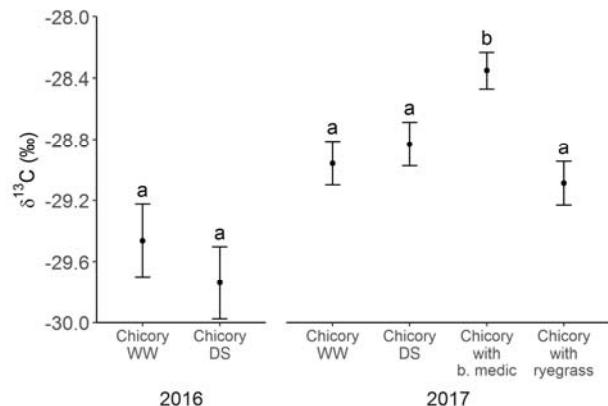
747 Figure 3


748
749

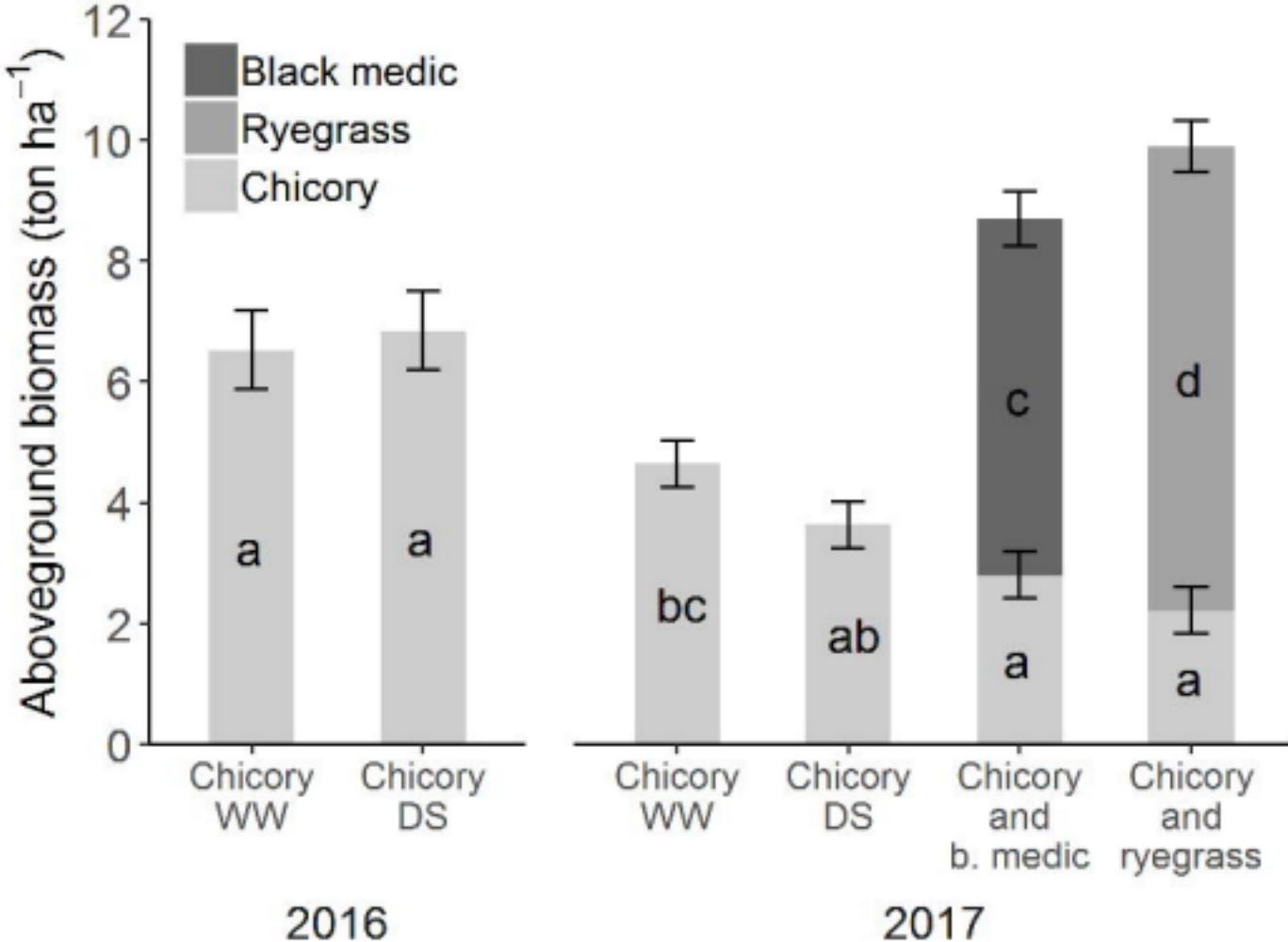
750 Figure 4

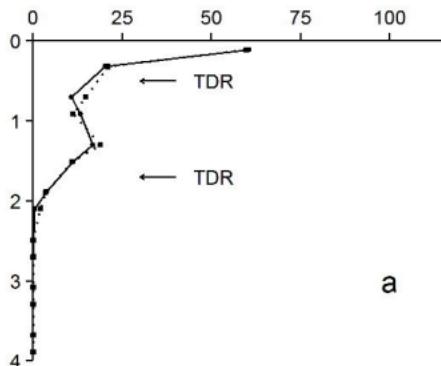
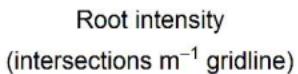

751

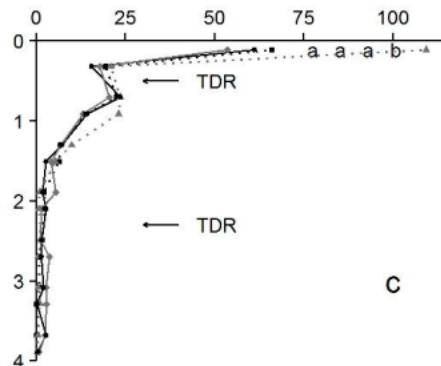
752 Figure 5

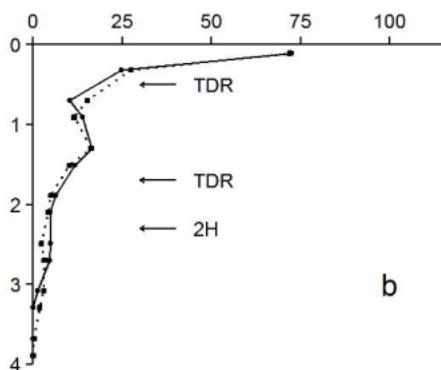

753

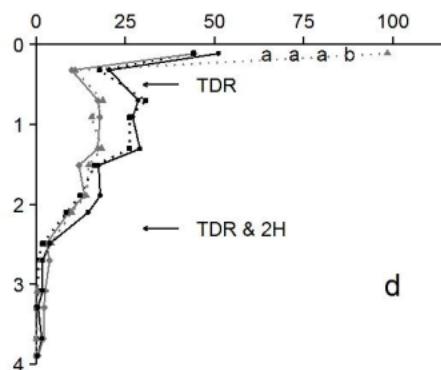
754 Figure 6


755

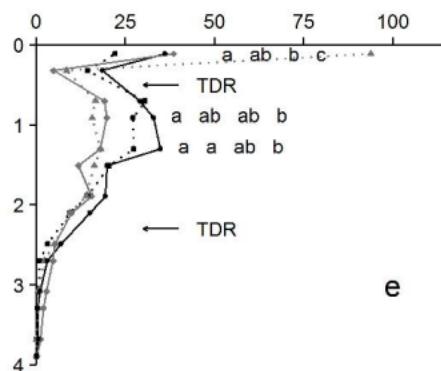


756 Figure 7


757




a

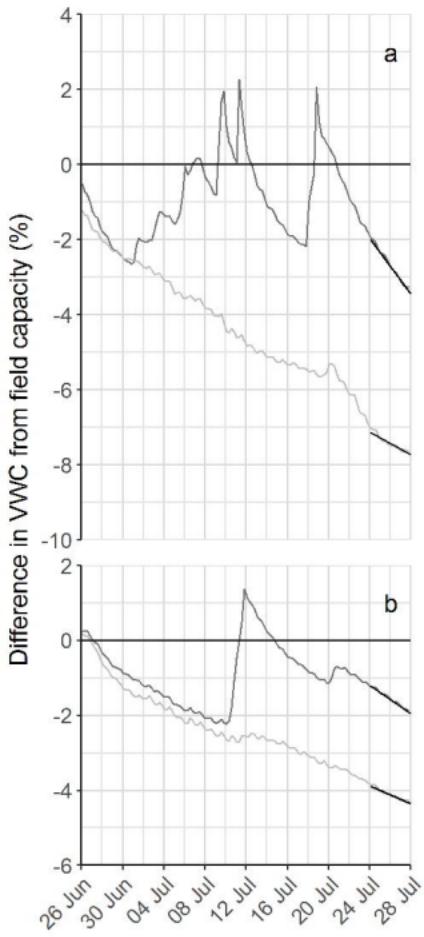
c



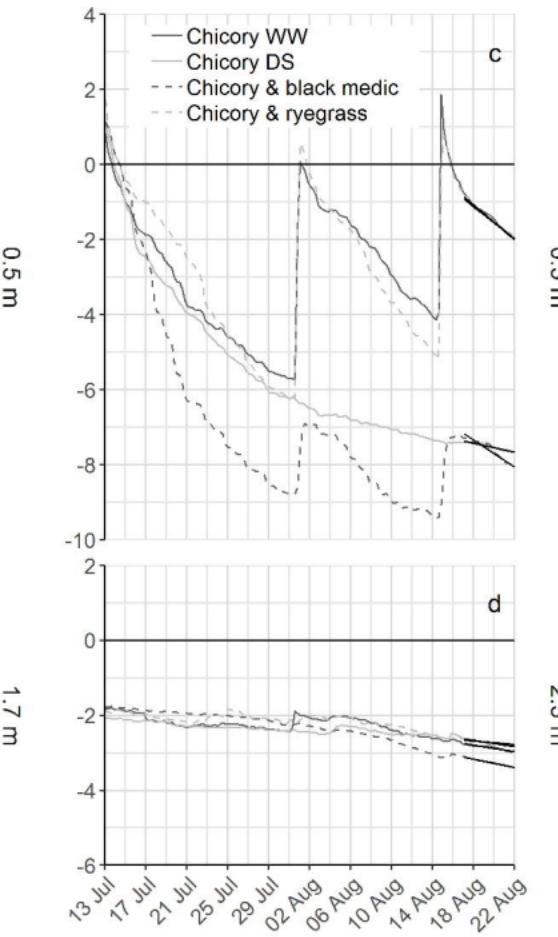
b

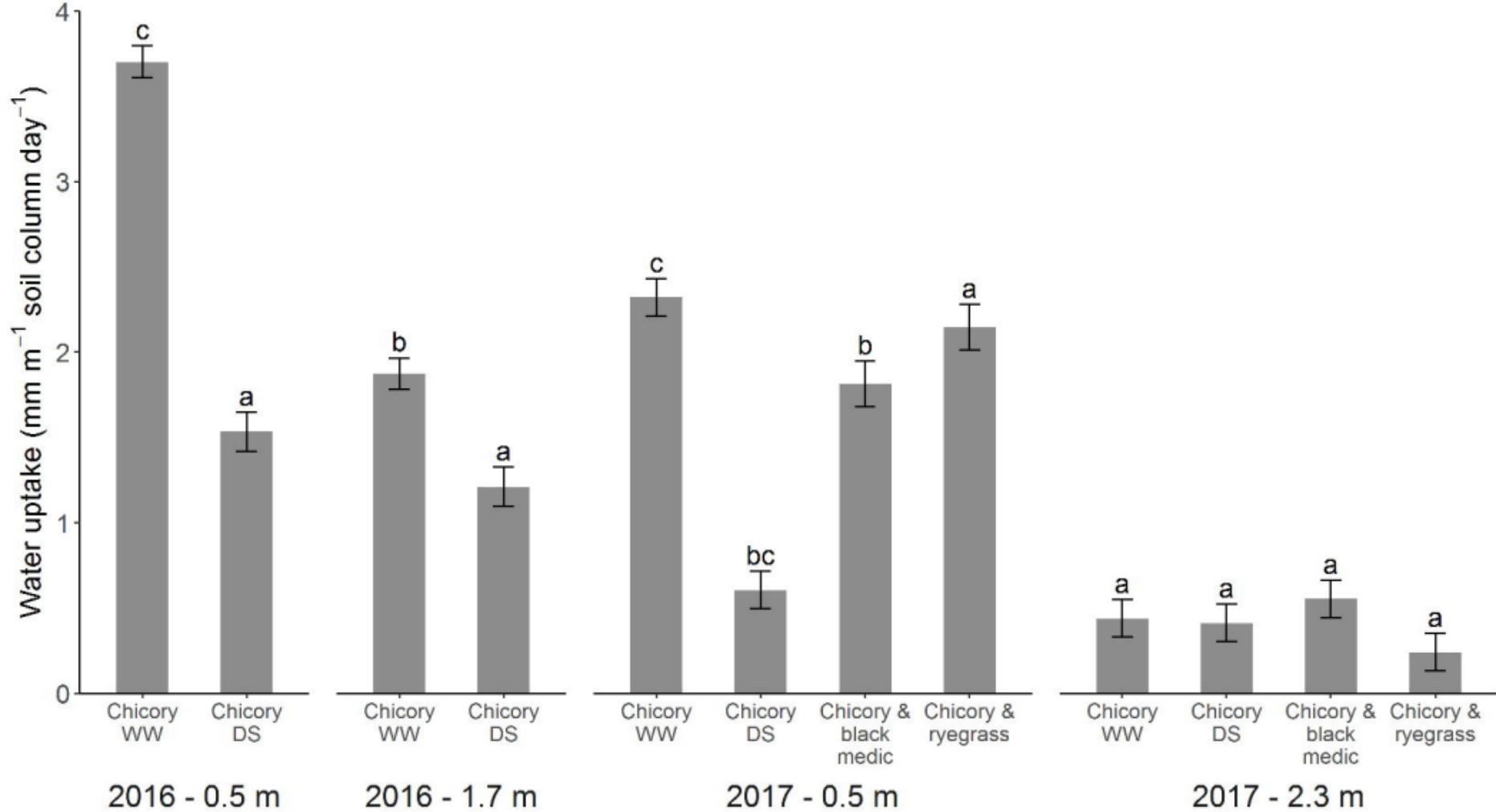
d

- Chicory WW
- Chicory DS
- Chicory & black medic
- Chicory & ryegrass

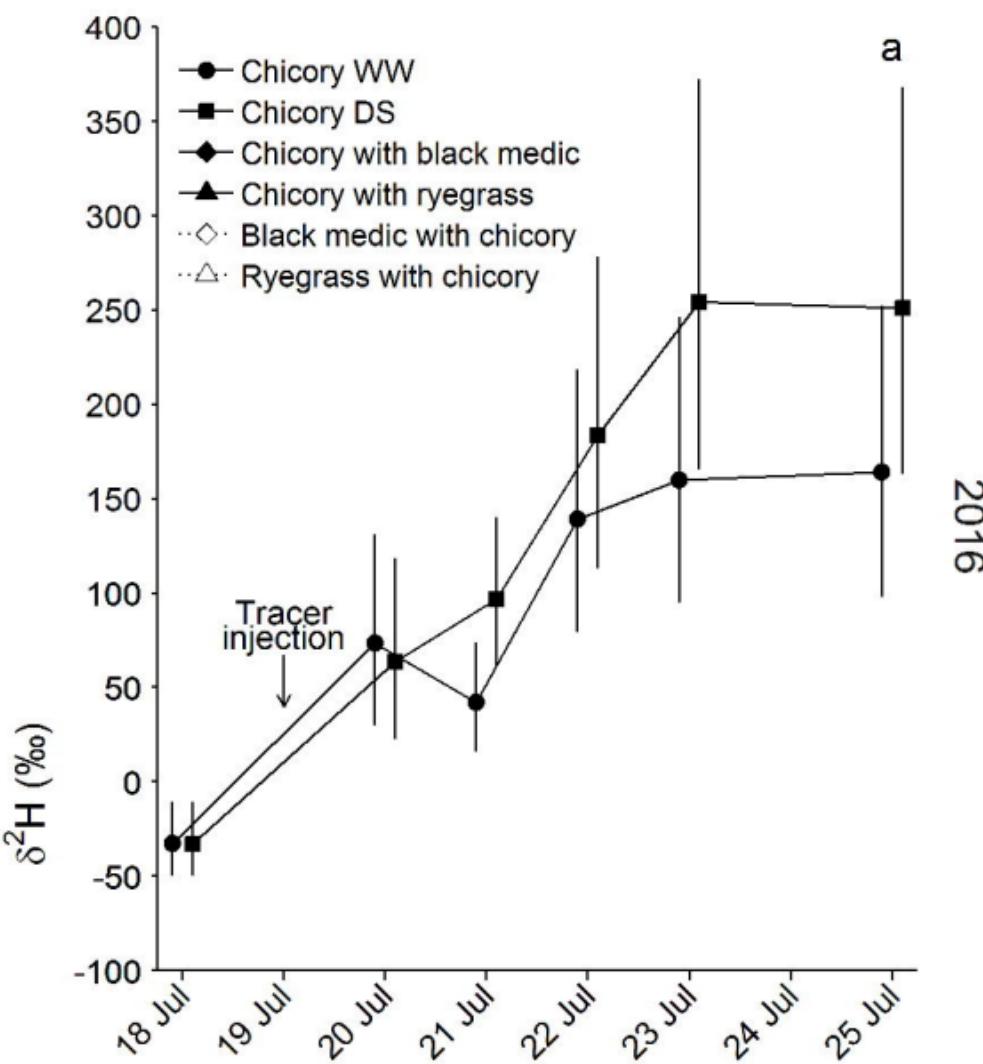

Harvest

Drought initiation

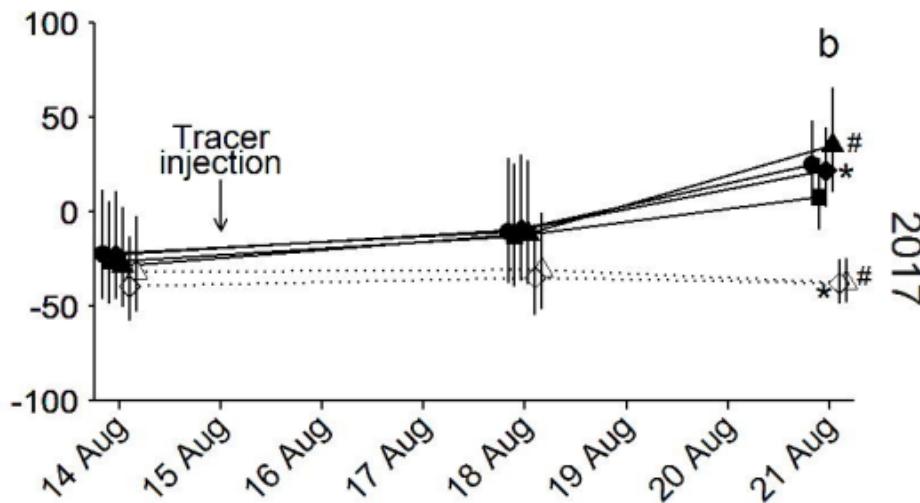

Tracer injection

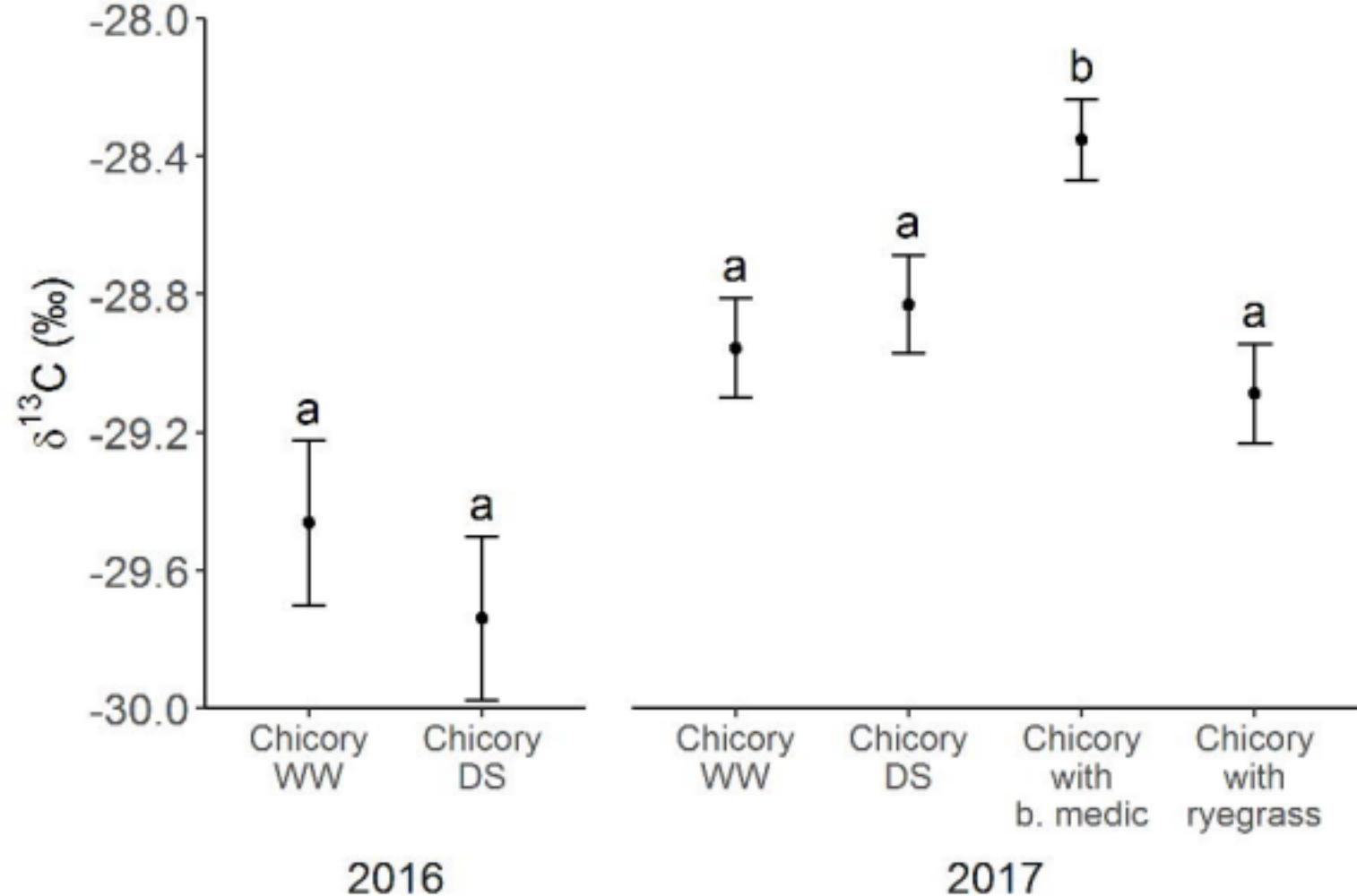

e

2016



2017





a

b

