

1 Mapping the bacterial ecology on the phyllosphere of grass hay and the
2 potential hazards of soaking fodder for horse gut health
3 Meriel JS Moore-Colyer¹, Annette Longland², Patricia Harris³, Susan Crosthwaite⁴
4 ¹ Royal Agricultural University, Cirencester Gloucestershire, UK GL7 6JS.
5 ²Equine and Livestock Nutrition Services, Pantafallen Fach, Tregaron, Ceredigion, Wales. SY25 6NF
6 ³Mars Horsecare UK LTD; Equine Studies Group, Waltham Centre for Pet Nutrition, Waltham-on-the Wolds,
7 Leicestershire, UK. LE14 4RT
8 ⁴Faculty of Biology, Medicine and Health, University of Manchester, UK M13 9PT.
9
10 Corresponding author: [*meriel.moore-colyer@rau.ac.uk](mailto:meriel.moore-colyer@rau.ac.uk) ORCID 0000-0002-9172-9862
11
12 Short title: The bacterial ecology on the phyllosphere of dry and post-soaked grass hay for
13 horses
14

15 **Abstract**

16 Globally hay is the preferred forage for stabled horses. Variable nutritional and hygienic quality stimulates pre-
17 feeding soaking to reduce dust and nutrients to reduce respiratory and metabolic disorders in horses. However,
18 this practice has potential negative impacts on horse health. The objectives of this study were to map the
19 bacterial profile of different hays and determine how soaking alters this with the aim of recommending best
20 practice when feeding fodder to stabled horses. Two meadow and one Perennial Ryegrass hays were soaked for
21 0, 1.5, 9 or 16 hours. Post treatment, hays were analysed for water-soluble carbohydrate (WSC) and total
22 aerobic bacteria (TVC), with differences determined using ANOVA and least significant difference. Bacteria
23 were identified *via* genomic DNA extraction (V3 and V4 variable region of the 16S rRNA gene) and 16S library
24 preparation according to the Illumina protocol. Differences in phyla and family operational taxonomic units
25 within hay types were identified *via* paired t-tests on the DESeq2 normalised data and false discovery rates
26 accounted for using Padj (P<0.05). Mean WSC losses g/kg DM (+/- SE) increased with soaking time being 30
27 (10.7), 72 (43.7), 80 (38.8) for 1.5, 9 and 16 hours soak respectively. No relationship existed between WSC
28 leaching and bacteria content or profile. Grass type influenced bacterial profiles. Soaking altered the epiphytic
29 bacterial profile across all hays and 9 hours soaking increased richness and Shannon diversity indices.
30 Clustering of bacteria was seen between meadow hays which differed from perennial rye grass and this
31 difference increased post soaking. The normal industry practice of soaking hay for 9 hours pre-feeding cannot
32 be recommended as it increases total bacteria content with noted increases of some potential pathogens. The
33 alterations in bacteria profile and hygienic quality may explain why changing fodder or pre-feeding treatments
34 can frequently precipitate colic in horses.

35

36 **Key words:** hay, horse, forage, bacteria, soaking

37 **Acknowledgements**

38 Thanks go to Leo Zeef University of Manchester for bioinformatics assistance and Sally Rice and Darren
39 Hawkins for technical help, Royal Agricultural University.

40

41

42 **Introduction:**

43 Grass conserved as hay is an ubiquitous fodder used to feed a wide range of livestock and is still the preferred
44 long forage for stabled equids across the world. [1,2] However, especially in temperate climates, it is difficult to
45 make good quality hay that has low dust, bacteria and mould spore counts. Grass conserved as silage or haylage,
46 which are fermented forages that require less field-drying time [3] are often suggested as suitable alternatives to
47 hay but in many cases these forages are not an economical or practical solution. Small 15-20 kg bales of haylage
48 are expensive and big bales of 200kg or more need mechanical handling and have a shelf-life of 5 days before
49 aerobic despoliation makes it unsuitable to feed. Moreover, the perceived advantages of haylage as being low in
50 dust and lower in non-structural carbohydrate content than hays is not always found. [4]

51 The nutritional value and hygienic quality of hay depends on a plethora of factors such as grass species, edaphic
52 and environmental conditions during growth and at harvest, maturity at harvest and storage conditions.[4,5].
53 This makes hay not only a highly variable feed source in terms of nutritional content but can also present hidden
54 challenges to the health of humans handling it and the animals consuming it.

55 Farmers Lung and Equine Asthma are two well documented conditions arising from the airborne respirable dust
56 (ARD) that is inherent in hay [6]. Veterinary surgeons and horse owners of laminitic or obese horses are also
57 aware that some well conserved hays can contain WSC contents in excess of 310 g/kg DM [7] which although
58 not an issue for horses with high energy demands, makes the hay unsuitable to feed to animals pre-disposed to
59 laminitis who should be fed a forage of less than 100g/kg DM WSC [8]. Both of these conditions have led to the
60 global practice of soaking hay for varying lengths of time before feeding, to reduce the negative impact of ARD
61 and high WSC contents.

62 While the practice has been previously shown to be effective in both of these endeavours [9,10,11,12,13]
63 soaking hay has some well-documented disadvantages such as nutrient and mineral leaching [9,10,11]
64 production of post-soak liquor that is a biological hazard [14,15] and recorded increases of 1.5 to 5 fold of
65 bacteria in post soaked hay samples [16,17]. To date there is no published information on the resident bacterial
66 profile (s) of hays nor what influence soaking might have on such profiles. Hay is still the most common fodder
67 fed globally to stabled equids so it is vitally important to understand how pre-feeding treatments can influence
68 the hygienic quality of the forage.

69 Bacteria can form large heterogeneous aggregates, reputed to constitute between 30 and 80% of the total
70 bacteria on plant surfaces. Many of these aggregates also harbour fungi,[18,19,20].which may pose an additional
71 threat to the hygienic quality of the fodder and the health of the animals consuming it. Identifying bacterial
72 profiles of conserved forage will provide new insights as to which bacterial families commonly colonize cut
73 fodder and if these are a potential threat to animal health. Furthermore, a greater understanding of microbial
74 profiles and interactions between bacteria and the phyllosphere of herbage in fodders may help farmers and
75 horse owners decide on the best conservation process and pre-feeding treatments to apply to the fodder.

76 A series of studies by Dougal *et al.*,[21,22,23,24] has shed light on the bacterial profile, stability and size of the
77 equid gut microbiome. A persistent (at least 6 weeks) core bacterial community was recorded within all regions
78 of the hindgut, but no clustering was seen between individuals (β diversity) according to diet. Diet seemed to
79 influence bacterial profiles within individual horses (α diversity) in that each horse responded differently.

80 Furthermore, the core community has been reported to be smaller than found in ruminants and humans and to be
81 composed of many OTUs of low abundance. Ericsson *et al* [25] found much variation between individuals in
82 foregut bacterial profiles but that hind gut profiles were more uniform. Thus, it would seem that individual horses
83 have a phylogenetic community specific to themselves and their diet and that profile could make them more or
84 less susceptible to dysbiosis when dietary changes are made.

85 Over 70% of an animal's immune system is held in the gut-associated lymphoid tissue (GALT) and for an
86 individual to remain healthy and productive their digestive system must also be healthy [26,27]. This is
87 important for horses, as their immune system is continually challenged by frequent mixing with conspecifics at
88 competitions and leisure rides. The economic impact of days lost for training and veterinary bills are obvious,
89 but the positive aspects of long-term animal welfare and public perception of the industry should not be ignored.

90 The objectives of the current study were to map the resident bacterial profile (s) in different types of hay when
91 dry and to determine how that profile altered post-soaking. Additionally, the study also examined if any
92 relationship existed between WSC leaching and the growth of potentially pathogenic bacteria in post-soaked hay
93 and if such treatment of hay is likely to have a negative impact on the digestive health of the horse. The aim of
94 this research is to reveal unknown information on how pre-feeding treatments affect forage hygiene and thus
95 add to best practice recommendations on feeding fodder to stabled horses.

96 **Materials and Method**

97 *Hay and sampling procedure*

98 Three replicate bales of three different types of hay, were sourced from 2 farms in Wiltshire, UK. Hays were
99 made in July 2013, were well conserved and had no visible signs of microbial spoilage. Hay types were
100 Perennial ryegrass (*Lolium perenne*) (PRG) and Meadow hay medium cut (MC) (Peploe, Swindon, Wiltshire)
101 and Meadow hay medium cut (MS) (Sian, Great Somerford, Wiltshire). Post-purchase, all bales were labelled
102 and stored off the ground on pallets in a wooden building at the Royal Agricultural University. Each hay type
103 was subjected to the following procedure:

104 The three replicate bales of each hay type were opened and individually thoroughly with gloved hands on a
105 clean plastic sheet in a glass- house. Two kg of hay was placed into each of 12 small-holed hay nets. Hay nets
106 were then put into purpose made, pre-labelled, polyester hay bags (Haygain Ltd, Hungerford, Berkshire UK) 6
107 hay nets per bag, and stored until treated. The remaining hay approximately 30 kg was stored in polyester hay
108 bags for later use for bacterial DNA extraction.

109

110 *Treatments*

111

112 Three replicate hay nets for each type of hay were individually subjected to one of the following treatments (3
113 hays x 4 treatments x 3 replicates n= 36). 1. Dry (D) where no additional treatment was applied to the hay; 2.
114 Soaked (W1.5) by total immersion in 30 litres of clean tap water at 16°C for 1.5 hours, then hung up to drain for
115 10 minutes; 3. Soaked (W9) as above for 9 hours; 4. Soaked (W16) as above for 16 hours.

116

117 Post-treatment, the hay was mixed and two sub-samples were taken. Subsample 1 (approximately 10 g) was
118 placed into a sterile plastic bag and placed in a laminar-flow cabinet (Bassaire, Duncan Rd, Swanwick,
119 Southampton), for bacterial culturing. Sub-sample 2 (approximately 800 g), was weighed onto a pre-weighed
120 foil tray and placed in a forced draught oven at 60°C and dried until a constant weight was obtained for dry
121 matter (DM) determination. The sample was then milled using a 1093 Cyclotec Sample Mill (Foss Sweden) and
122 50 g of the dried, milled sample was retained and stored in sterile plastic tubes (VWR, UK) for subsequent WSC
123 analyses.

124

125 *Bacterial culturing and enumeration*

126

127 Immediately post-treatment, sub-sample 1 was roughly chopped into 2cm lengths with scissors, (previously
128 wiped with ethanol, and allowed to dry) and thoroughly mixed. A one gram sub-sample was then weighed into a
129 sterile plastic bag (Seward BA6040) to which 79 ml of sterile peptone saline solution (MRD) was added. The
130 bag was then placed into a Lab Blender 80 model (Steward Laboratory, Blackfriars Rd, London). The mixture
131 was then ‘blended’ for 2 minutes in order to wash bacteria from the hay into the solution as for 3M petrifilms
132 (3M Microbiology, 2013). One millilitre of the blended solution was placed into a sterile screw-cap tube (VWR,
133 UK) containing 9 ml MRD. Serial dilutions were prepared to 10⁻⁶. A 1 ml sample was then taken from 10⁻², 10⁻
134 ⁴10⁻⁶ dilutions and separately placed onto pre-labelled 3M Aerobic TVC 20 cm² petrifilm, (3M Microbiology,
135 Carl-Schurz-Straße 1, Germany). Petrifilms are a sample ready culture medium, containing nutrients, a cold
136 water-soluble gelling agent and a tetrazolium indicator. Three petrifilms were prepared for each sample and
137 incubated for 3 days at 32°C.

138 Colony numbers were enumerated using an illuminated magnifier. All vital stained colonies were counted.

139 When colony numbers were particularly dense and small and >100 per film, three representative 1 cm squares
140 were counted. The average was determined, and scaled up 20-fold as an estimation of the count per film.

141

142 *Water soluble carbohydrate analyses*

143

144 Immediately post-treatment, approximately 300 g of hay was weighed out into pre-weighed foil trays. These
145 were placed into a forced-draught oven and dried for a minimum of 48 hours at 65°C until constant weight was
146 reached. Post-drying samples were milled through 0.75 mm mesh and re-bagged into 100g DM sub-sample
147 batches. Water soluble carbohydrate (WSC) analyses was then carried out on 3 replicates per sample using the
148 Phenol-sulphuric acid method ⁽²⁸⁾.

149

150 *Preparation of hay for DNA extraction and sequencing*

151

152 The remaining 30 kg of stored dry hay from each hay type was sub-sampled 3 times, taking approximately 100
153 g for each sample. Each of the three replicate samples underwent the following procedure. A 0.5g sub-sample
154 was placed in a 50 ml glass tube. Seven and a half ml of tap water at 16 °C was added to each tube, covered with
155 foil and placed in an incubator at 16°C. After soaking, for 0, 1.5, 9 or 16 hours, samples were placed on
156 Whatman filter paper for 10 minutes and then chopped into approximately 0.5 cm lengths for DNA extraction.

157 Genomic DNA was extracted using the MoBio PowerMaxSoil TM kit (MoBio, Carlsbad, CA, USA) according
158 to the manufacturer's protocol. 16S library preparation was carried out according to Illumina's protocol. Briefly,
159 genomic DNA was amplified with forward primer 5'-
160 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGNGGCWGCAG-3'

161 and reverse primer 5' -
162 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3' targeting the
163 V3 and V4 variable region of the 16S rRNA gene. Twenty five microlitre PCR reactions contained 12.5 μ l 5
164 KAPA HiFi HotStart Ready Mix Master Mix, 5 μ M final concentration of forward and reverse primers and 21
165 ng gDNA. Amplification program: 95 °C 3 mins, 25 cycles of 95 °C 30 s, 55 °C 30 s, 72 °C 30 s, final extension
166 72 °C 5 min. A subsequent limited-cycle amplification step was performed to add multiplexing indices and
167 Illumina sequencing adapters. Ampure XP beads were used in the PCR clean-up after 1st and 2nd stage PCR. The
168 libraries were then normalised, pooled and sequenced on the MiSeq platform. The quality of raw sequence data
169 was first checked using FastQC. Next, Trimmomatic was used to filter out poor reads, sequences were truncated
170 to 180 bp and paired ends joined using SeqPrep. Sequences were uploaded to QIME where they were clustered
171 into operational taxonomic units with a 97% similarity cut off using as a reference the pre-clustered versions of
172 the Greengenes database. Sample OTUs were merged using a personal Java script and differences tested with
173 DESeq2 [29].

174 Principal Component Analyses (PCA) and differential counts between conditions were performed. PCA 1 =
175 strongest pattern of variance and PCA 2 the second strongest pattern of variance. Differences between a) the
176 three hay types and b) the four soaking treatments within hay type on the proportion of OTUs of bacterial phyla
177 and family was performed using paired t-tests on the DESeq2 normalised data. In order to take account of false
178 discovery rates that can occur in such data sets with multiple parallel measurements, the Padj value of <0.05 was
179 taken as the cut-off point for significant differences.

180

181 *Bacterial diversity, richness and similarity between hay types and treatments*

182 Shannon diversity indices and richness tests were calculated on the *ca* 250 bacterial family OTUs identified. The
183 three un-treated (D) hay types were compared as were the diversity and richness within hays comparing the dry
184 treatment with each of the 1.5, 9 and 16 hours soaking treatments.

185 Jaccard similarity index was used to determine the level of commonality between the hay types and within
186 individual hays between dry control and soaking treatment. Difference in diversity between the hay types and
187 within hay types compared with soaking time were determined using the Hutchinson's t-test.

188

189 *Data analyses and sample size*

190 Differences in WSC content from this Randomised Block Experiment were determined using analysis of
191 variance (ANOVA), with hay (3), bale (3) and treatment (4) as fixed factors; thus sample size was n = 36.
192 Differences between means were calculated using least significant difference (LSD) test where LSD = $t_{(\text{error df})} \times$
193 s.e.d. Differences in the numbers of bacterial colony forming units (CFU) were determined using ANOVA on

194 log 10 transformed data using Genstat 18 as described by the procedure for right-handed skewed data [30]
195 Differences between treatment means was determined using least significant difference (LSD) test where LSD=
196 t (error df) x s.e.d. Results for WSC contents were expressed as g/kg on a DM basis, while those for total viable
197 count (TVC) were expressed as geometric mean colony forming units (CFU)/g on an as fed basis, as this value
198 approximates closely to the median [30] which is widely accepted to be the most accurate expression of the
199 distribution of the CFU in the samples.

200
201

202 **Results**

203 *Dry matter, water soluble carbohydrate and microbial content in hay*

204 The three hays, two mixed species meadow hays (MC and MS) and a perennial ryegrass (PRG) hay were grown
205 on 2 different farms in Wiltshire. The MC and MS hays contained similar varieties of grass species inclusive of
206 perennial ryegrass, both rough stalked and annual meadow grass, Timothy, Yorkshire fog, Cocksfoot, and small
207 amounts of Crested Dogs Tail. The MS hay was more mature with a higher proportion of stem to leaf than the
208 MC. The hays were well conserved as all three hays were above the 85% DM recommended to ensure good
209 crop conservation [3] as shown in Table 1.

210 The WSC contents of the three hays before treatment are detailed in Table 1 and show that MS hay was
211 significantly ($P<0.05$) lower in WSC content than the other two hays being 118 and 80 g WSC/kg DM lower
212 than MC and PRG respectively.

213 There was no significant difference in the abundance of bacteria as measured by TVC (CFU/g) between the
214 three dry hays. The geometric mean (Table 2) CFU/ g revealed high contents of bacteria for all the hays
215 according to the classification used by Adams [31] and the 30×10^6 the CFU/g noted by Bucher and Thalmann
216 [32]. The MS hay had the lowest content of bacteria at 2.4×10^7 CFU/g and the MC the highest at 7.6×10^8
217 CFU/g.

218

219 *The effect of soaking time on the dry matter, water soluble carbohydrate and microbial content in hay*

220 Post-soaking, the forages absorbed between 50 and 62% additional moisture with no pattern emerging according
221 to soaking time.

222 All hays lost progressively more WSC up to 9 hours soaking. Table 3 details the average WSC loss across all
223 three hay types to be 33.7 g/kg DM post the 1.5 hours soak ($P<0.05$); a further drop ($P<0.05$) of 38 g/kg DM
224 was noted when soaking was increased by 7.5 hours but no further loses were recorded when soaking was
225 extended by a further 7 hours.

226 When looking at individual hays and treatments (Table 2) the PRG showed greatest % WSC losses of 19, 50 and
227 60% for 1.5, 9 and 16 hours soaks respectively, whereas the MS showed the least losses of WSC of 17, 18 and
228 23%. The hay with the highest starting WSC content showed intermediate losses of 17, 39 and 38%
229 demonstrating that in this study no relationship existed in these three hays between WSC content and WSC
230 leaching across a range of soaking times.

231 Table 2 Shows that soaking produced a highly variable response in CFU/g across soaking times and hays.
232 Soaking for 9 hours produced a wide range of increases in % of CFU/g in MS and PRG of 1.24 (MS) to 19
233 (PRG) times that found in the dry samples, whereas a reduction of 6% was recorded for MC hay. Reductions in
234 CFU/g were noted across all hays for the shortest soaking time of 1.5 hours ranging from a 2% in MS to 30% in
235 PRG, but response to 9 and 16 hours soaking were less consistent with some increases at longer soaking times.
236 Therefore, as with WSC levels, the quantitative response of bacteria to soaking in different hays as determined
237 by CFU / g of hay was highly variable and showed no pattern according to soaking time.

238

239 *Profile of bacteria in dry hays using 16S rRNA sequencing*

240 Across all three hays a total of 27 phyla and 265 families were identified. All 27 phyla were present in each of
241 the dry hays, although the family proportional profiles differed between the hays. PCA Figure 1 shows degree of
242 similarity between the two meadow hays but the PRG was clearly different. The profile of bacterial phyla are
243 shown in Figure 2 representing proportions of operational taxonomic units (OTUs) found in the three hays when
244 dry. The 4 phyla that represented >0.96 of the bacteria present were *Proteobacteria*, *Cyanobacteria*,
245 *Actinobacteria* and *Bacteroidetes* and there were no significant differences between any of the hays for these
246 phyla. The other 23 phyla identified comprised less than 4% of the proportion of OTUs in each hay but
247 differences were noted between MC and MS in the proportions of *Verrucomicrobia* and *Acidobacteria* and
248 between MC and PRG in *Fusobacteria* and *Nitrospirae*.

249 Figure 1. Principal component analyses (PCA) of bacteria identified in Meadow Charlie (MC), Meadow Sian
250 (MS) and Perennial Ryegrass hays when dry (0) soaked for 1.5 hrs, 9 hrs and 16 hrs in water

251 Figure 2. Proportions of operational taxonomic units (OTUs) of bacteria phyla present in dry samples of
252 Meadow Charlie (MC), Meadow Sian (MS) and Perennial Ryegrass (PRG) hays

253 The profile of OTUs of bacterial families shown in Figure 3 indicates that *Rivulariaceae*, (phylum
254 *Cyanobacteria*) *Sphingomonadaceae* *Pseudomonadaceae* and *Enterobacteriaceae* (all in the phylum
255 *Proteobacteria*) comprised between 0.48 and 0.69 of the bacteria present in all three hays. *Enterobacteriaceae*
256 was the only major family present to be higher (P<0.05) at 25% in PRG than in the other two hays, with MC at
257 0.02 and MS at 0.05 respectively. Differences (P<0.05) between bacterial families that comprised between 31
258 and 52% of the total present are detailed in Table 4. The two meadow hays were similar with only 3 differences
259 whereas the PRG differed from MC in 12 families and with MS in 20 families.

260 Figure 3. Proportions of operational taxonomic units (OTUs) of bacteria families present in dry samples of
261 Meadow Charlie (MC), Meadow Sian (MS) and Perennial Ryegrass (PRG) hays

262

263 *Bacterial family diversity, richness and similarity in 3 dry hays*

264 As detailed in Table 5, the MC hay had the greatest family richness of 230 and a Shannon Diversity Index (H)
265 2.6; MS was slightly lower at 228 and had a higher H value of 2.8, whereas PRG was lowest at 218 and an H

266 value of 2. The Jaccard Similarity Index (J), shown in Table 6 showed PRG and MC shared 81% of bacterial
267 families, PRG and MS shared 87% and MS and MC shared 86% of the bacterial families sequenced.

268

269

270 *Effect of soaking for 1.5, 9 and 16 hrs on bacteria phyla and families within hay types*

271 Post soaking (Table 7), the phyla *Armatimonadetes*, *Cyanobacteria* and *Thermi* all decreased significantly
272 ($P<0.05$) across all three hays when comparing dry hay with 1.5, 9 and 16 hours soaking, while *Fusobacteria*
273 and *Acidobacteria* increased across all hay types with soaking. The PRG hay showed more alterations in
274 bacterial phyla as a result of soaking than either of the MC or MS hays.

275 The effect of soaking on the richness of bacterial families and the H index can be seen in Table 5. Soaking had a
276 variable effect on the richness and H index. In PRG, richness tended to increase with soaking time whereas in
277 both meadow hays the richness at the 9-hour soak was highest with 1.5 and 16 hours being similar. The greatest
278 diversity was noted for MS after the 9 hour soak which gave an H index of 3 and a richness of bacterial families
279 of 245.

280 Figures 4, 5 and 6 show the alterations in proportions of bacterial families after soaking for 1.5, 9 and 16 hours
281 for MC, PRG and MS hays respectively. Of the four main bacterial families that were present in the dry hay,
282 *Rivulariaceae*, (grey) (phylum *Cyanobacteria*) *Sphingomonadaceae* (orange) *Pseudomonadaceae* (blue) and
283 *Enterobacteriaceae* (yellow) (all in the phylum *Proteobacteria*) behaved differently in each of the hays across the
284 different soaking times. While MS and MC hays did show alterations in bacteria post-soaking, the PRG showed
285 greater fluctuations and thus responded more to soaking than the meadow hays.

286 Figure 4 Proportions of operational taxonomic units (OTUs) of bacteria families present in Meadow hay Charlie
287 (MC) when dry, and post soaking in water for 1.5, 9 and 16 hours

288 Figure 5. Proportions of operational taxonomic units (OTUs) of bacteria families present in Meadow hay Sian
289 (MS) when dry, and post soaking in water for 1.5, 9 and 16 hours

290 Figure 6 Proportions of operational taxonomic units (OTUs) of bacteria families present in Perennial Ryegrass
291 hay (PRG) when dry, and post soaking in water for 1.5, 9 and 16 hours

292 *Pseudomonadaceae* proportions decreased in PRG when soaked for 9 hours, but in the other two hay samples
293 for all soaking times no differences were detected for this family. *Sphingomonadaceae* decreased in PRG
294 after 1.5 hours of soaking but showed no other variation from the dry hay. Proportions of *Enterobacteriaceae*
295 increased in MC hay after 9 and 16 hours soaking but decreased in PRG after soaking for 1.5 and 9 hours but
296 had increased again after 16 hours soaking. *Rivulariaceae*, decreased in both MC and MS when soaked for 9
297 and 16 hours.

298 Of the remaining bacterial families that comprised between 31 to 51% of the bacteria present
299 *Xanthomonadaceae*, a family containing important animal and plant pathogens, increased in all hays at 9 hours.
300 Table 8 details the bacterial families that were influenced either positively or negatively by soaking. Those that
301 increased included bacteria that favour aquatic habitats or are fermentative in nature utilising sugar to produce
302 ethanol (*Rhodobacteraceae*, *Aeromonadaceae* *Rhodocyclaceae*, *Gemmellaceae*, *Acetobacteraceae*). Potential

303 pathogens such as *Mycobacteriaceae*, *Burkholderiaceae*, *Bacillaceae*, *Anaplasmataceae*, *Veillonellaceae*,
304 *Leptotrichiaceae*, *Fusobacterium* (a strong biofilm anchor), all increased post soaking but were present in very
305 small proportions they are unlikely to be of clinical importance to the horse.

306

307 **Discussion**

308 *Dry hay, water soluble carbohydrate content and microbial colony forming units (CFU) / g*

309 The range of WSC in the three hays of 125 to 242 g/kg DM is typical of UK hay and agrees with previously
310 published values [11,33]. MC and PRG hays contained 100 to 140g/kg DM more WSC than is currently
311 recommended for forages intended to be fed to equids with a pre-disposition to laminitis and such levels
312 stimulate horse owners to reduce the level of WSC by soaking for extended periods.

313 Lindow and Brandl [34] noted that bacteria are by far the most numerous colonists of plant leaves, often being
314 found in numbers up to 10^8 cells/g of leaf [35,36,37]. Although there were no visible signs of aerobic spoilage in
315 any of the hays in this study, the bacterial CFU / g were notably higher than in previously published findings
316 for a range of single and mixed species hays [11,28,39]. It has been noted by Behrendt *et al.* [40] Muller *et*
317 *al.* [41] that late harvesting can increase the microbial load in forages. Due to poor early season weather
318 conditions all the hays used in this study were not harvested until late July and this may partially explain the
319 high bacterial levels.

320

321 *Profile of bacteria in dry hays using 16S rRNA sequencing*

322 Bacteria are by far the most abundant inhabitants of the phyllosphere of plants. While yeasts are active and
323 effective colonizers, filamentous fungi in the form of spores are more transient occupants [1]. Commonly the
324 study of bacteria on the leaves of plants has been driven by their deleterious effect on plant productivity and has
325 been largely restricted to aerobic culturable gram negative bacteria, particularly *Pseudomonas spp. (syringae)*
326 and *Enterobacteriaceae (Erwinia, Pantoea)*, which are two of the most ubiquitous bacterial colonizers of the
327 phyllosphere [34]. Despite the importance of bacteria to compromised plant productivity, limited information is
328 available on the bacterial profile of dry fodders or the effect that any pre-feeding treatments might have on that
329 profile. In a study of bacteria on the phyllosphere of grasses growing in extensive grassland, Behrendt *et al.*,
330 [40] found the most prominent 5 genera (phylum in brackets) were *Pseudomonas (Proteobacteria)*,
331 *Stenotrophomonas (Proteobacteria)*, *Pantoea (Proteobacteria)* *Clavibacter (Actinobacteria)* and
332 *Curtobacterium (Firmicutes)* Thus, the bacterial families identified from the grass hays in this study and the
333 genera from Behrendt *et al* [40] shared the phylum *Proteobacteria*, and to a minor extent the phyla
334 *Actinobacteria* and *Firmicutes*, with *Cyanobacteria* being a major constituent in PRG hay but not noted as a
335 major presence on the growing grasses. These differences are not surprising as epiphytic bacterial populations
336 can differ in size between plant species and within plants of the same species. Furthermore, changes in bacterial
337 populations can be rapid and are influenced by a wide range of factors such as physiological age, macro and
338 micro environmental conditions and on-leaf microbial interactions [42,43]. Such factors could readily explain
339 the differences between conserved and growing grasses and within species and between forage types noted here.

340 Variations between phyla on the three hays were only seen for the smaller proportional phyla *Verrucomicrobia*,
341 *Acidobacteria*, *Fusobacteria* and *Nitrospirae*. The data on richness and diversity shows the monoculture of PRG
342 supported a less diverse bacterial community than the two meadow hays which had a high degree of similarity.
343 While physical and nutritional conditions accessible to bacteria can account for considerable variations in plant
344 microbial carrying capacity, individual leaf characteristics can also have an effect. PRG has a shiny under leaf
345 and bacterial establishment and maintenance on the phyllosphere can be affected by glossy mutants with the
346 fewest crystalline waxes. Such leaves prove a less effective host for epiphytic bacteria than those with less shiny
347 cuticles [44]. Such results hint at small-scale interactions between the plant and bacterium that are not yet
348 understood.

349

350 *Soaking effects*

351

352 *The effect of soaking time on the dry matter (DM) and water soluble carbohydrate (WSC) contents of the hays*
353 *and their bacterial numbers and profiles in hays.*

354 The absorption of water of between 50 and 62% noted here were slightly lower than the 73% recorded by
355 Moore-Colyer *et al.*, [11] for a range of Meadow, Timothy and Italian Rye grass hays also soaked for 9 hours.

356 Extended soaking periods of between 9 and 12 hours have been recommended by Longland, *et al.*, [45] and
357 Muller *et al.*, [46] as a method by which to reduce the WSC content of fodder intended to be fed to horses with
358 insulin resistance, metabolic syndrome, laminitis or obesity. Muller [46] recorded an average WSC loss of 43%
359 after a 12-hour soak and the 18, 38 and 42% losses recorded in this experiment after 1.5, 9 and 16 hours soaking
360 are in agreement with these values. However, such losses cannot be predicted nor relied upon as variability of
361 loss across the hays were 17% to 60% and echo the caution expressed by Longland *et al.*, [45] who recorded
362 variations in WSC leaching from a variety of hays of 9 to 54% after a 16-hour soak. This study reported no
363 additional benefit in terms of WSC leaching when hay was soaked for longer than 9 hours. No pattern was
364 evident between initial WSC content and post-soaking losses in any of the studies and so losses of WSC due to
365 soaking cannot be predicted according to hay species or WSC content. It is important therefore, to highlight to
366 horse owners that WSC losses from soaking hay cannot be set nor predicted according to either soaking time or
367 hay species and so individual hay response must be tested to achieve the optimum soaking time for each hay
368 type.

369 There was also a highly variable response in bacterial growth (CFU/g) and in phyla and family profile across
370 soaking times and hays. The similarity noted between the meadows hays in the dry samples continued post
371 soaking with MC and MS producing more similar profiles after treatment compared with PRG. Neither the
372 quantity nor diversity of bacterial growth was correlated with WSC content across the hays. A positive
373 correlation between WSC loss and bacterial CFU/g was seen in MS hay, but this was not repeated in either of
374 the other two hays. This may be partly due to the availability of nutrients on the phyllosphere of the different
375 grasses both before soaking and the amount of WSC leached into the water during soaking. Several studies have
376 revealed [47,9,14] that varying amounts of nutrients can be washed from leaves but what influences the degree
377 of leaching is yet to be determined. As small amounts of sugar, about 0.2 to 10 μ g can support the growth of 10⁷

378 to 10^8 bacterial cells/leaf in the growing plant [34] it is easy to see how more readily available sugar from the
379 leaching of 28 to 121 g WSC/kg hay noted here could support considerable bacterial growth during soaking.

380

381 Within the complex multifactorial relationship that exists between bacteria and the phyllosphere, there are
382 bacteria that can increase the wettability of leaves by producing compounds with surfactant properties [38].
383 Fifty percent of the genus of metabolically diverse and wide niche colonizers *Pseudomonas* have been reported
384 [48] to have this ability. One possible explanation for the degree of WSC leaching is an increase in the
385 wettability which allows solubilisation and diffusion of substrates into the water, increasing availability to
386 colonizing bacteria. The *Pseudomoadaceae* family were present in all the hays in this study and their activity
387 could have influenced the phyllosphere making water penetration more effective and thus facilitating the
388 leaching of nutrients during soaking

389

390 As the 16S rRNA sequencing is a qualitative identification of bacteria and not a quantitative measurement of
391 CFU/g, the alterations in certain families may have little impact on the nutrient and hygienic quality of the
392 forage. However, of the major families that accounted for a significant proportion of the bacteria, the
393 *Enterobacteriaceae* comprised 25% of the proportion of bacterial families present in PRG. Muller *et al.*,[38]
394 also recorded higher levels $4.9 \log^{10}$ CFU/ g of *Enterobacteria* in dry hay samples, compared with the same
395 crop conserved as haylage or silage, thus clearly hay supports the growth of this bacterium. The longer soaking
396 times of 9 and 16 hours caused a proportional increase in this family across all the hays and while this is
397 unlikely to have an impact in hays MC and MS the increase in PRG from 25% up to 47% after 16 hours soaking
398 would have a notable impact on the microbial profile of the fodder. Muller *et al.*,[38] also reported a post-
399 treatment increase in *Enterobacteria* in silage, haylage and hay when soaking for 24 hours, but went on to note
400 that the *Enterobacteriaceae* in silage and haylage are generally considered non-pathogenic. However, the family
401 does contain potentially pathogenic species that produce endotoxins which may be associated with diarrhoea in
402 horses [49].

403

404 *The effect of soaking hay on the digestive health of horses*

405 Scouring in stabled horses after a change in fodder is a frequent anecdotally reported occurrence. While this
406 may be attributed in part to an alteration in nutrient profile of the feed, poor forage hygiene derived from
407 bacterial and mould proliferation has been associated with colic in horses [50]. A similar effect has been noticed
408 in humans where the presence of pre-harvest epiphytic bacteria on fruit and vegetables has been associated with
409 multiple outbreaks of food-borne illness [51]. Clearly, for both species ingested bacteria survive the low pH of
410 the stomach and are therefore able to colonize and upset the normal microbiome causing dysbiosis.

411 Although highly variable between horses, Ericsson *et al.*[25] reported an abundance of *α-Proteobacteria* in the
412 upper gastrointestinal tract of 9 healthy horses. No information is available on what the horses were fed pre-
413 euthanasia, but it is conceivable that like the forages in this study, *Proteobacteria* was present in significant
414 numbers. Epiphytic bacteria on forage may therefore have an impact on foregut bacterial profiles, but
415 simultaneous profiling of feed and gut bacteria would have to be undertaken to determine the existence and

416 strength of this relationship. Dougal *et al.*,[22,23] reported the presence of *Proteobacteria* in the equid gut but
417 these were less abundant than *Bacteroidetes* and *Firmicutes* which were the major phyla found in the gut.
418 *Siprochaetes*, *Actinobacteria* and *Fibrobacteres* were also present but to a lesser degree than the other 3 phyla.
419 Thus, the four phyla that were represented by more than 90% of the bacteria in the hays in the current study i.e.,
420 *Proteobacteria*, *Cyanobacteria*, *Actinobacteria* and *Bacteriodetes* were present in the equid gut but at different
421 proportions to that found in the gut. The fact that the equid core gut community, particularly that in the upper
422 gastro-intestinal tract, which is composed of many small OTUs, lacks commonality between horses on similar
423 diets, suggests that horse response to diet is unique and this could explain the susceptibility of some animals to
424 digestive upset when fed similar diets to those that have no problems.

425 Clearly local environmental conditions contrive to favour the proliferation of some bacteria over others. For
426 example, some bacteria such as *Enterobacteriaceae* *Rhodobacteraceae* *Bacillaceae* *Streptococcaceae*, while
427 present in small numbers on dry leaves rapidly proliferated when wet, thereby altering the microbial profile of
428 the leaf. Therefore, the distribution of common opportunistic bacteria together with the more specific residents
429 to that particular phyllosphere under different environmental conditions can produce an ever-changing profile
430 [52,53]. In hays this could be further altered by a pre-feeding treatment such as soaking.

431 The relationship between feed and foregut bacterial profiles in particular requires further investigation. The
432 highly individualistic nature of the gut microbiome noted by both 25. Ericsson *et al.* [25] and Dougal *et*
433 *al.*,[22,23], and the multiple small OTU core suggests that the gastric profile may lack robustness and be easily
434 influenced by external factors. Understanding how the gastric microbiome responds to the epiphytic challenge
435 from fodder may provide additional insight into gastric pathologies such as ulceration.

436

437 Conclusion

438 The hays tested here supported a diverse population of epiphytic bacteria that was altered by pre-feeding
439 soaking treatments. Grass type influenced the bacterial profile with multi-species meadow hays housing
440 different profiles to the single species perennial ryegrass hay. The response to soaking was highly
441 individualistic in terms of WSC leaching, bacterial numbers and profiles and there was no relationship between
442 any of these parameters. While soaking for one particular time might be most effective for WSC reduction and
443 produce little increase in bacteria in one particular hay, the results from this study show that a definitive
444 recommendation on soaking duration cannot yet be made as other hay types could respond differently to the
445 same treatment. Some increases in potential pathogens occurred post soaking and so caution should be
446 employed when soaking fodder for stabled horses, particularly those with a previous history of colic. As hay is a
447 major constituent of the horse's diet and colic the major cause of death of horses across the developed world,
448 additional studies on plant microbial communities, how pre-feeding treatments alter these and their interaction
449 with the microbiome of the equid gastro intestinal tract are warranted.

450

451

453

References

454 1. Virkajarvi P, Saarijarvi K, Rinne M, Saastamoinen MT. (2012) Grass physiology and its relation to nutritive
455 value In *Forages and Grazing in Horse Nutrition*. Ed Saastamoinen, MT, Frandinho MJ, Miraglia N, and Santos
456 A S.

457 2. King L (2012) A survey of forage feeding practices in UK. *BSc thesis*. Royal Agricultural College,
458 Cirencester Glos. UK.

459 3. Harris PA, Ellis AD, Fradinho MJ. Jansson a. Julliand V. luthersson N. Santos AS. Vervuert I. (2017)
460 Review: Feeding forage to horses: recent advances and recommendations. *Animal*, **11:6**, 958-967

461 4. Muller CE, von Rosen D, Uden P (2008) Effect of forage conservation method on microbial flora and
462 fermentation pattern in forage and in equine colon and faeces. *Livestock Science* **119**, 116-128.

463 5. Longland AC, Barefoot C, Harris PA (2011) Effects of soaking on water soluble carbohydrate and protein
464 content of hay. *Veterinary Record* **168**, 618

465 6. Couëtil LL, Cardwell JM, Gerber V. Lavoie J.-P. Léguillette R. Richard E.A. (2016) Inflammatory airway
466 disease of horses revised consensus statement. *J. Vet. Intern. Med.* **30**, 503–515.

467 7. Harris PA, Geor R (2010) Recent advances in the understanding of laminitis and obesity. In: *The impact of
468 nutrition on the health and welfare of horses*. Ellis AD, Longland AC, Coenen M & Miraglia N (eds) EAAP
469 Publication no 128 Wageningen Academic publishers. P 2152233.

470 8. Frank N, Geor R, Bailey S *et al.* (2010) Equine metabolic syndrome. *J. Vet. Int. Med.* **24**, 467-475

471 9. Moore-Colyer M.J.S. (1996) The effects of soaking hay fodder for horses on dust and mineral content.
472 *Animal Science*. **63**, 337-342.

473 10. Blackman M, Moore-Colyer MJS (1998) Hay for horses: the effects of three different wetting treatments on
474 dust and mineral content. *Animal Science*. **66**, 745-750.

475 11. Moore-Colyer MJS, Lumbis K, Longland AC. Harris P. (2014) The effect of five different wetting
476 treatments on the nutrient content and microbial concentration in hay for horses *PLOS One – November 26*.

477 12. Earing JE, Hathaway MR, Sheaffer CC. (2013) Effect of steaming on forage nutritive values and dry matter
478 intake by horses. *J. Anim. Sci* **91**, 5813–5820.

479 13. Martinson KI, Jung H, Hathaway M. Sheaffer CC. (2012) The effect of soaking on carbohydrate removal and
480 dry matter loss in Orchardgrass and Alfalfa hays. *J. Equine Vet. Sci.* **32**, 332-338

481 14. Warr EM, Petch JL (1992) Effects of soaking hay on its nutritional quality. *Eq.Vet.Edu.* **5**, 169–171.

482 15. Blundell El, Adjei IJ, Brigden CV (2012) The effect of steaming and soaking on respirable particle dust
483 content of hay and the potential environmental polluting impact of the waste water produced In: *Forages and
484 grazing in horse nutrition*. EAAP publication No.132. Ed. Saastamoinen M, Fradinho MJ, Santos AS, and
485 Miraglia N, Pp 101–107.

486 16. Moore-Colyer MJS, Fillery BG (2012) The effect of three different treatments on the respirable particle
487 content, total viable count and mould concentrations in hay for horses. In: *Forages and grazing in horse
488 nutrition*. EAAP publication No.132. Ed. Saastamoinen M, Fradinho MJ, Santos AS, and Miraglia N, Pp 101–
489 107.

490 17. Taylor J, Moore-Colyer MJS (2013) The effect of 5 different wetting treatments on the bacteria and mould
491 concentrations in hay for horses. *European Equine Health and Nutrition Congress*. Ghent. Feb 2013.

492 18. Lindow S E and Brandl MT (2003) Microbiology of the Phyllosphere. *Applied and Environmental
493 Microbiology*. **69**, 1875 – 1883.

494

495

496

497

498

499

500

501

502

503

504 19. Morris C E, Monier J-M, Jacques M-A (1997) Methods for observing microbial biofilms directly on leaf
505 surfaces and recovering them for isolation of culturable microorganisms. *Appl. Environ. Microbiol.* **63**, 1570-
506 1576.

507 20. Morris CE, Monier J-M, JacquesM-A (1998). A technique to quantify the population size and composition
508 of the biofilm component in communities of bacteria in the phyllosphere. *Appl. Environ. Microbiol.* **64**, 4789-
509 4795.

510 21. Dougal K, Harris PA, Edwards A, Pachebat JA. Blackmore T. Worgan HJ. Newbold CJ. (2012) A
511 comparison of the microbiome and the metabolome of different regions of the equid hindgut. *FEMS
512 Microbiology Ecology* **82**, 642-652

513 22. Dougal K. De La Fuente Oliver G. Harris P. Girdwood SE. Pinloche E. Newbold CJ. (2013) Identification
514 of a core bacterial community within the large intestine of the horse. *PLoS One* **8**. (10) e 77660

515

516 23. Dougal K, De La Fuente Oliver, Harris G, (2014). Characterisation of the faecal bacterial community in
517 adult and elderly horses fed a high fibre high oil or high starch diet using Pyrosequencing. *PLoS One* **9** (2)
518 e87424

519

520 24. Dougal K, Harris PA, Girdwood, SE (2017). Changes in the total faecal bacterial population in individual
521 horses maintained on a restricted diet over 6 weeks. *Front Microbiol* **8**, 1502

522

523 25. Ericsson AC, Philip J, Johnson M, (2016) A Microbiological Map of the Healthy Equine *PLoS One* Nov.
524 2016

525 26. Vighi G, Marcucci F, Sensi L, *et al.* (2008). Allergy and the gastrointestinal system. *Clinical and
526 Experimental Immunology*, **153** (Suppl 1), 3-6.

527

528 27. Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. *Nat. Immunol* **12**, 5-9.

529

530 28. Dubois M, Gilles KA, Hamilton JK. Rebers PA. Smith F. (1956) Colorimetric Method for Determination of
531 Sugars and Related Substances. *Analytical Chemistry* **28**, 3 pp 350-357.

532

533 29. Love MI, Huber W, Anders S. (2015) Moderated estimation of fold change and dispersion for RNA-seq data
534 with DESeq2. *Genome Biology* **15**, 550.

535 30. Petrie A, Watson P (1999) *Statistics for Veterinary and Animal Science*. Blackwell Science. London. UK.

536

537 31. Adams RS, Kephart KB, Ishler VA. Hutchinson LJ. Roth GW. (1993) Mould and mycotoxin problems in
538 livestock feeding. Dept of Dairy and Animal Science, Extension Publ. DAS 93-21. Pennsylvania State
539 University, College of Agriculture Sciences and Cooperative Extension, University Park PA.

540

541 32. Butcher E, Thalmann A (2006) Mikrobiologische Untersuchung von Futtermitteln (Microbiological
542 examination of feeds - orientation values to assess soundness). *Feed Magazine / Kraftfutter*, **6** 16-23.

543

544 33. Tinsley SL, Brigden CV, Barfoot C. Harris P. (2014) Nutrient values of forage grown in the UK in 2012 -
545 2013 In *Proceedings of the 7th European Workshop on Equine Nutrition* Leipzig p 82-83.

546 34. Lindow S, and Brandl M (2003) Microbiology of the Phyllosphere *Appl Environ Microbiol.* **69(4)**, 1875-
547 1883

548 35. Andrews J H, Harris R F. (2000). The ecology and biogeography of microorganisms on plant
549 surfaces. *Annu. Rev. Phytopathol.* **38**, 145-180.

550

551 36. Beattie GA, Lindow SE (1995) The secret life of foliar bacterial pathogens on leaves. *Annu. Rev.
552 Phytopathol.* **33**, 145-172

553

554 37. Hirano SS, Upper CD. (2000) Bacteria in the leaf ecosystem with emphasis on *Pseudomonas syringae*—a
555 pathogen, ice nucleus, and epiphyte. *Microbiol. Mol. Biol. Rev.* **64**, 624-653

556 557 38. Muller CE, Nostell K, Brojer J (2015b) Microbial counts in forages for horses – Effect of storage time and
558 of water soaking before feeding. *JEVS*. **35**, 622-627.

559 560 39. Muller CE, von Rosen D, Uden P (2008) Effect of forage conservation method on microbial flora and
561 fermentation pattern in forage and in equine colon and faeces. *Livest. Sci* **119**, 116-128.

562 563 40. Behrendt U, Müller T, Seyfarth W (1997) The influence of extensification in grassland management on the
564 populations of micro-organisms in the phyllosphere of grasses. *Microbiological Research*: **152**, 175-185.

565 566 41. Muller CE. (2009) Influence of harvest date of primary growth on microbial flora of grass herbages and
567 haylage and on fermentation and aerobic stability of haylage conserved in laboratory silos. *Grass and Forage
Science* **64**, 328-338.

568 569 42. Jacobs JL, Sundin GW (2001) Effect of solar UV-B radiation on a phyllosphere bacterial community. *Appl.
570 Environ. Microbiol.* **67**, 5488-5496.

571 572 43. Thompson I P, Bailey MJ, Ellis RJ, Lilley AK, McCormack PJ, Purdy KJ, Rainey PB. (1995) Short-term
573 community dynamics in the phyllosphere microbiology of field-grown sugar beet. *FEMS Microbiol. Ecol.* **16**,
205-211.

574 575 44. Beattie GA (2002) Leaf surface waxes and the process of leaf colonization by microorganisms, p. 3-26. In S.
E. Lindow, E. I. Hecht-Poinar, and V. Elliott (ed.), *Phyllosphere Microbiology*. APS Press, St. Paul, Minn.

576 577 45. Longland AC, Barefoot C, Harris PA (2009) The loss of water soluble carbohydrate and soluble protein
578 from nine different hays soaked in water for up to 16 hours. *J.E.V.S.* **29**, 383–384.

579 580 46. Muller CE, Nostell K, Brojer J. (2015) Methods for reduction of water soluble carbohydrate content in grass
581 forages for horses. *Livestock Sci.* <http://dx.doi.org/10.1016/j.livsc.2015.06.011>

582 583 47. Tukey HB (1970) The leaching of substances from plants. *Annu. Rev. Plant Physiol.* **21**, 305-324.

584 585 48. Bunster L, Fokkema HJ, Schippers B (1989) Effect of surface activity of *Pseudomonas* spp. on leaf
586 wettability. *Appl. Environ. Microbiol.* **55**, 1340-1345.

587 588 49. Van Duijkeren E, van Asten AJAM, Gaastra W (2000) Characterisation of *Escherichia coli* isolated from
589 adult horses with and without enteritis. *Vet. Q.* **22**, 162-166

590 591 50. Kaya GI, Sommerfeld-Stur, Iben C (2009) Risk factors of colic of horses in Austria. *J Anim Physiol Anim
Nutr* **93**, 339–49.

592 593 51. Hedberg CW, Angulo FJ, White KE *et al.* (1999) Outbreaks of salmonellosis associated with eating
594 uncooked tomatoes: implications for public health. *Epidemiol. Infect.* **122**, 385-393.

595 596 52. Brandl MT, Mandrell RE (2002) Fitness of *Salmonella enterica* serovar Thompson in the cilantro
phyllosphere. *Appl. Environ. Microbiol.* **68**, 3614-3621.

597 598 53. O'Brien RD, Lindow SE (1989) Effect of plant species and environmental conditions on epiphytic
599 population sizes of *Pseudomonas syringae* and other bacteria. *Phytopathology* **79**, 619-627.

597 **Table 1. WSC content (g/kg DM) and bacterial content (CFU/g) of dry MS, MC and PRG hays**

	MC	MS	PRG	sed	Sig
DM g/kg	930	970	930		
WSC (g/kg DM)	242.6 ^b	124.6 ^a	204.3 ^b	17.76	0.006
TVC (log 10 CFU/g)	8.06	6.99	7.32	0.765	0.457

598 ^{ab} Values in the same row not sharing common superscripts differ significantly (P<0.05)

599

600

601 **Table 2. The effect of 4 different soaking times 0, 1.5, 9 and 16 hours on the dry matter (DM), bacterial content (CFU/g) and water soluble carbohydrate (WSC) in 2**
 602 **types of mixed species meadow hay (MS and MC) and perennial rye grass (PRG) hay for horses**

parameter	MS 0	MS 1.5	MS 9	MS 16	MC 0	MC 1.5	MC 9	MC 16	PRG 0	PRG 1.5	PRG 9	PRG 16
DM	97	49	44	46	93	49	47	43	93	37	35	43
SD	1.4	6	3.4	1.4	1.2	2.9	4.4	3.4	1.6	5.9	3.5	12.6
% H ₂ O	3	51	56	54	7	51	50	54	7	60	62	54
Log TVC	7.38	7.37	7.47	7.50	8.88	7.49	7.63	7.57	7.6	7.42	8.85	7.56
SD	0.78	0.15	0.05	0.18	1.15	0.09	0.08	0.23	0.57	0.0	1.01	0.03
Geo mean TVC	24016800	23663478	29812800	31529733	762659233	31082066	42603778	36928044	37680217	26159366	715965200	35903500
% diff		0.98	1.24	1.32		0.04	0.06	0.05		0.7	19.0	0.95
WSC	125	104	103	97	242	200	148	151	204	166	103	83
SD	23.6	6.3	6.3	11.4	6.8	124	13.6	13.8	21.9	20.3	3.3	4.5
% loss		17	18	23		17	39	38		19	50	60

603

604 **Table 3. Mean WSC content across all 3 hays after soaking for 0, 1.5, 9 and 16 hours in water at 16°C.**

	0	1.5	9	16	sed	Sig
WSC g/kg DM	190.5 ^c	156.8 ^b	118.4 ^a	110.6 ^a	11.40	0.001

605 ^{ab}Values in the same row not sharing common superscripts differ significantly (P<0.05)

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635 **Table 4. Differences (P<0.05) between proportions of bacteria families present in dry Meadow Charlie (MC),**
636 **Meadow Sian (MS) and Perennial Ryegrass (PRG) hays before treatment**

MC vs PRG	MS vs MC	PRG vs MS
Enterobacteriaceae		Enterobacteriaceae
Xanthomonadaceae		Xanthomonadaceae
Pasteurellaceae		Williamsiaceae
Methylocystaceae	Methylocystaceae	Pasteurellaceae
Patulibacteraceae		Patulibacteraceae
Amoebophilaceae	Moraxellaceae	Micrococcaceae
Bartonellaceae	Chthoniobacteraceae	Methylophilaceae
Micrococcaceae		Chromatiaceae
Sanguibacteraceae		Moraxellaceae
Aeromonadaceae		Coxiellaceae
Francisellaceae		Bacteroidaceae
Carnobacteriaceae		Dermabacteraceae
		Sanguibacteraceae
		Acidobacteriaceae
		Aeromonadaceae
		Chthoniobacteraceae
		Piscirickettsiaceae
		Vibrionaceae
		Francisellaceae
		Sporichthyaceae

637

638

639

640

641

642 **Table 5. Richness of bacterial families and Shannon Diversity Index (H) within the 3 hays Perennial Ryegrass**
643 **(PRG), Meadow Charlie (MC) and Meadow Sian (MS) when soaked in water for 0, 1.5, 9 and 16 hours**

Hay	Richness	H Index
PRG D	218	2
PRG 1.5	215	2
PRG 9	224	3
PRG 16	238	2.1
MC D	230	2.6
MC 1.5	215	2.5
MC 9	229	2.8
MC 16	216	2.2
MS D	228	2.8
MS 1.5	236	2.9
MS 9	245	3
MS 16	236	2.8

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665 **Table 6. The effect of soaking treatment on the similarity of bacterial families**
666 **in Perennial Ryegrass (PRG), Meadow Charlie (MC) and Meadow Sian (MS) hays as calculated using the**
667 **Jaccard Similarity Index**

Hay comparison	Jaccard Similarity Index
PRGD vs PRG 1.5	81
PRG D vs PRG 9	82
PRG D vs PRG 16	85
MC D vs MC 1.5	87
MC D vs MC 9	93
MC D vs MC 16	91
MS D vs MS 1.5	92
MS D vs MS 9	90
MS D vs MS 16	91

668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

689 **Table 7. Within hay differences in OTU phyla between hay and hay soaked for 1.5, 9 or 16 hours**

	MC	PRG	MS
0 vs 1.5	NS	Armatimonadetes	NS
		Fusobacteria	
		thermi	
0 vs 9	Cyanobacteria	Fusobacteria	Acidobacteria
		Thermi	Cyanobacteria
0 vs 16	NS	NS	Cyanobacteria
			Fusobacteria

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

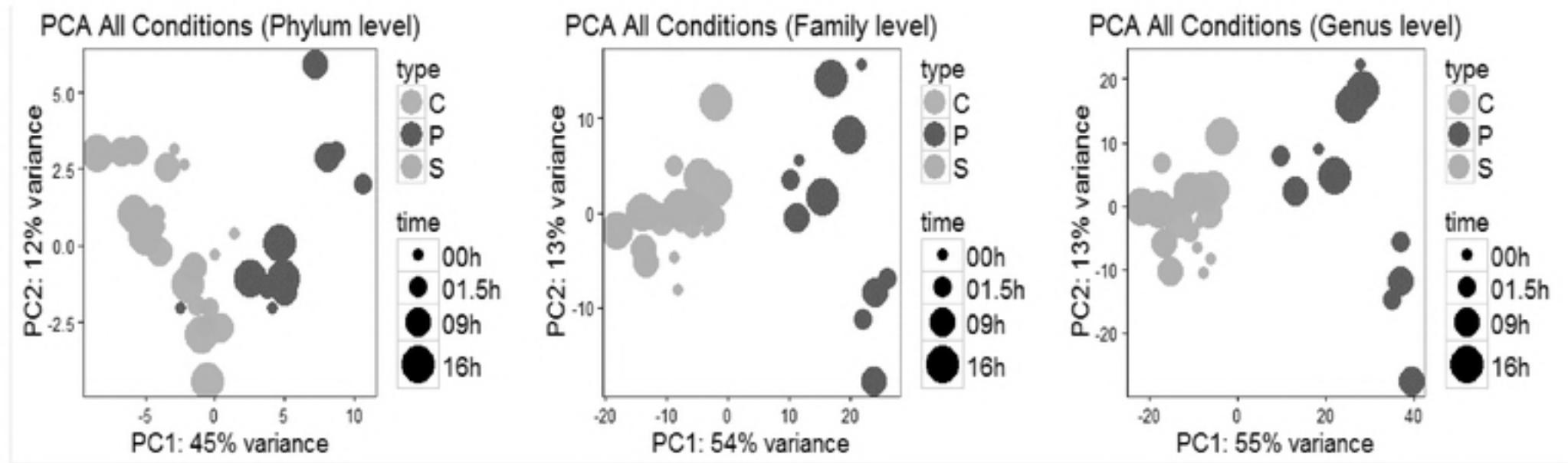
709

710

711

712

713 **Table 8. Comparison within each hay type Perennial Ryegrass (PRG), Meadow Charlie (MC) and Meadow**
 714 **Sian (MS) between dry hay and hay soaked for 1.5, 9 and 16 hours within on the increase (highlighted in**
 715 **yellow) or decrease of bacteria families**


716

MC 0 vs 1.5	MC 0 vs 9	MC 0 vs 16
	Rivulariaceae Enterobacteriaceae Hyphomicrobiaceae Xanthomonadaceae Mycobacteriaceae Nostocaceae Phormidiaceae Rhodobacteraceae Desulfuromonadaceae Alcaligenaceae Thermodesulfovibrionaceae Thermogemmatisporaceae Peptococcaceae Cyanobacteriaceae Spirochaetaceae Xenococcaceae	Enterobacteriaceae Oxalobacteraceae Aeromonadaceae Rhodocyclaceae Burkholderiaceae Waddliaceae
PRG 0 vs 1.5	PRG 0 vs 9	PRG 0 vs 16
Sphingomonadaceae Enterobacteriaceae Oxalobacteraceae Aurantimonadaceae Deinococcaceae Oceanospirillaceae Aeromonadaceae Burkholderiaceae Staphylococcaceae Rhodobacteraceae Streptomycetaceae Streptococcaceae Bacillaceae Bdellovibrionaceae Geobacteraceae Anaplastmataceae Corynebacteriaceae Veillonellaceae Kiloniellaceae Bradyrhizobiaceae Ruminococcaceae Leptotrichiaceae Fimbriimonadaceae Prevotellaceae Gemellaceae Fusobacteriaceae Sporichthyaceae Porphyromonadaceae Odoribacteraceae	Pseudomonadaceae Enterobacteriaceae Caulobacteraceae Kineosporiaceae Deinococcaceae Hyphomicrobiaceae Oceanospirillaceae Xanthobacteraceae Aeromonadaceae Streptococcaceae Bacillaceae Bdellovibrionaceae Neisseriaceae Alcaligenaceae Geobacteraceae Amoebophilaceae Corynebacteriaceae Veillonellaceae Polyangiaceae Ruminococcaceae Leptotrichiaceae Lachnospiraceae Prevotellaceae Gemellaceae Cryptosporangiaceae Cystobacteraceae Coriobacteriaceae Fusobacteriaceae Exiguobacteriaceae Porphyromonadaceae Odoribacteraceae	Nocardiaceae Comamonadaceae Aurantimonadaceae Kineosporiaceae Hyphomicrobiaceae Chitinophagaceae Halomonadaceae Bacillaceae Bdellovibrionaceae Amoebophilaceae Verrucomicrobiaceae Moraxellaceae Polyangiaceae Ruminococcaceae Hyphomonadaceae Cerasicoccaceae Idiomarinaceae Thiohalorhabdaceae Cystobacteraceae Thermicanaceae Bacteriovoracaceae Odoribacteraceae

	Cardiobacteriaceae	
MS 0 vs 1.5	MS 0 vs 9	MS 0 vs 16
Rhodospirillaceae Geobacteraceae Moraxellaceae	Rivulariaceae Xanthomonadaceae Moraxellaceae	Rivulariaceae Xanthomonadaceae Acetobacteraceae Nostocaceae Phormidiaceae Alcaligenaceae Moraxellaceae Acidobacteriaceae Leptotrichiaceae Listeriaceae Cryptosporangiaceae Enterococcaceae Fusobacteriaceae Litoricolaceae Brevibacteriaceae

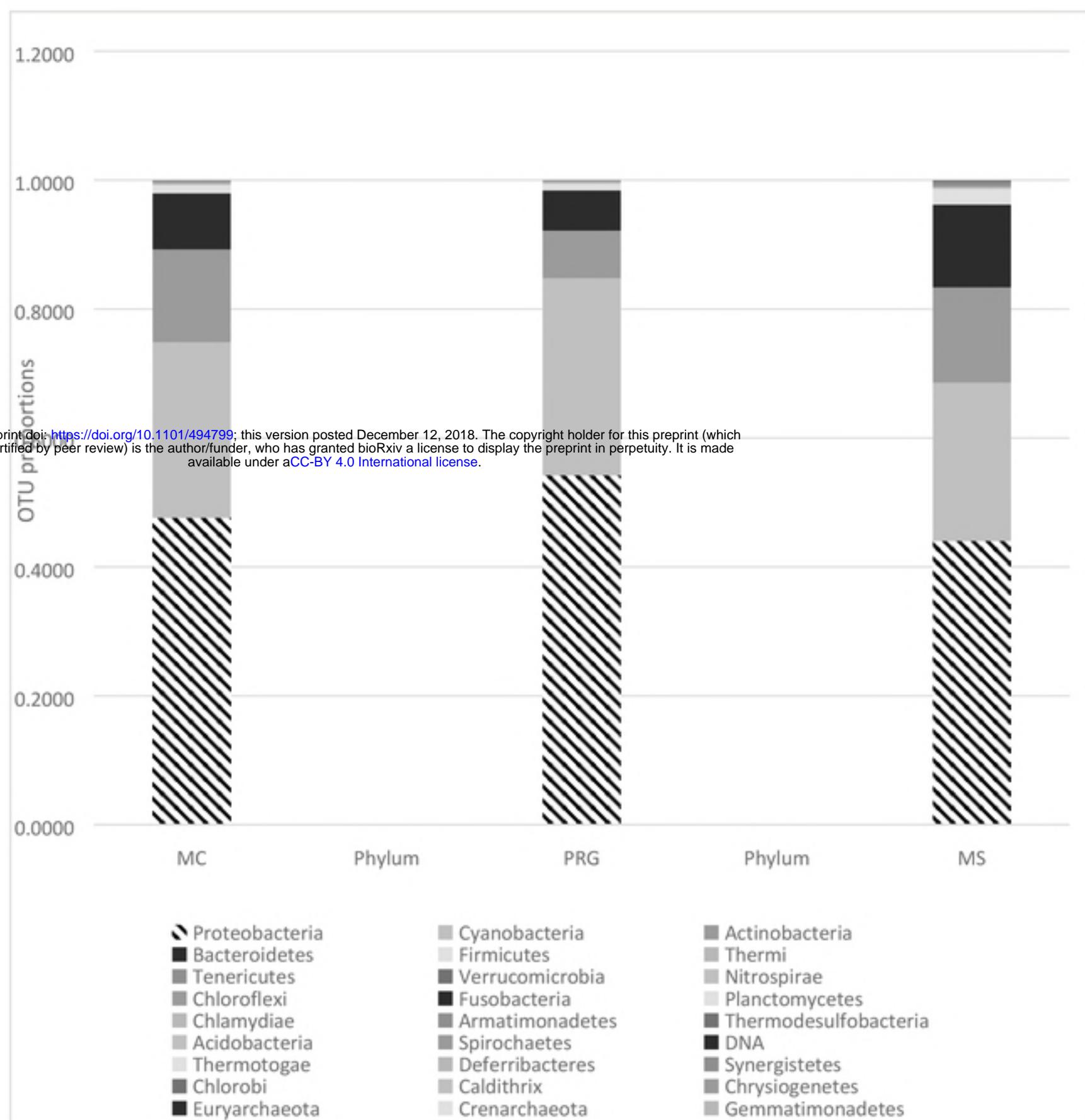

717

Figure 1

Figure

Figure 2

Figure

Figure 3

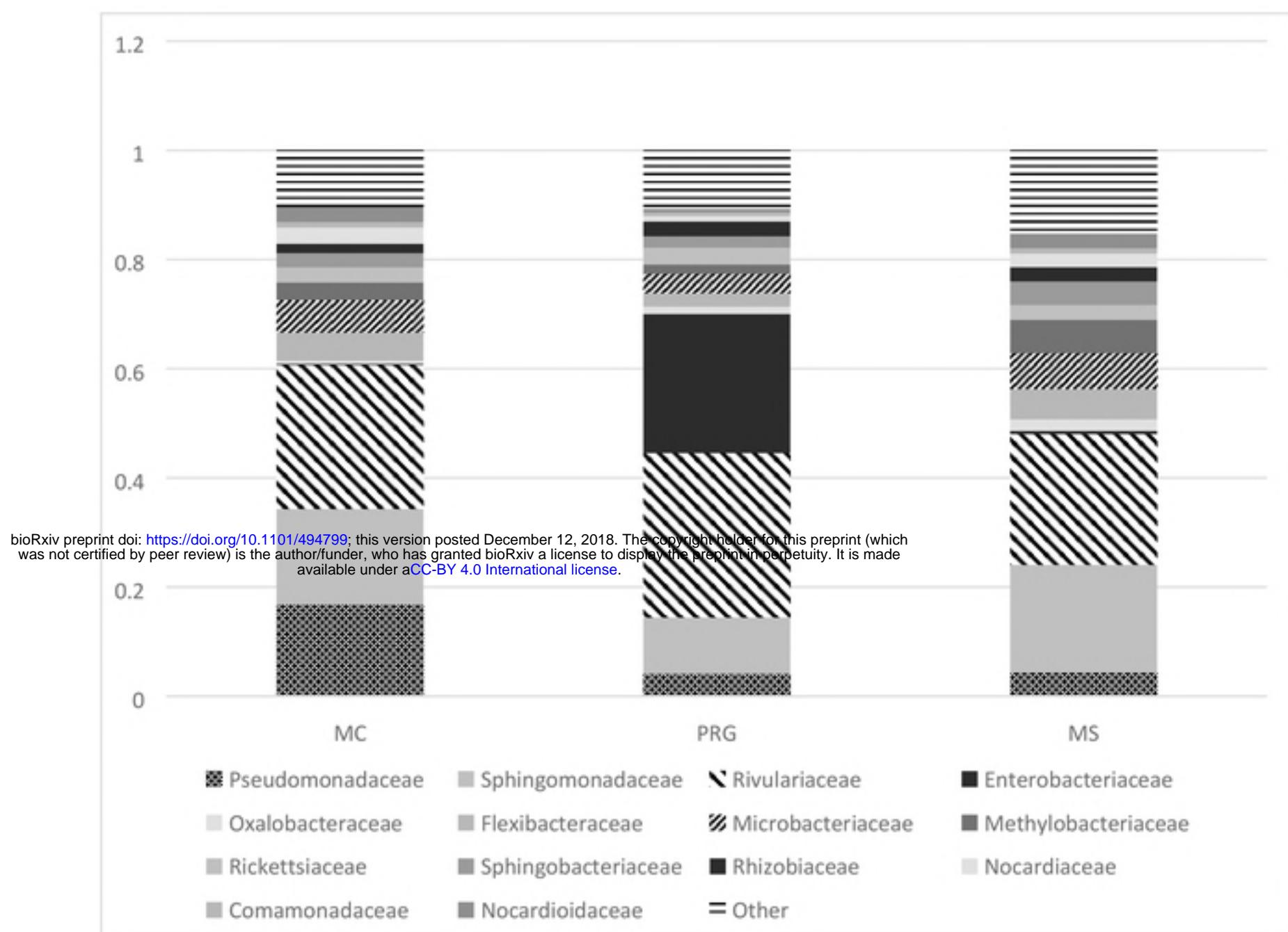
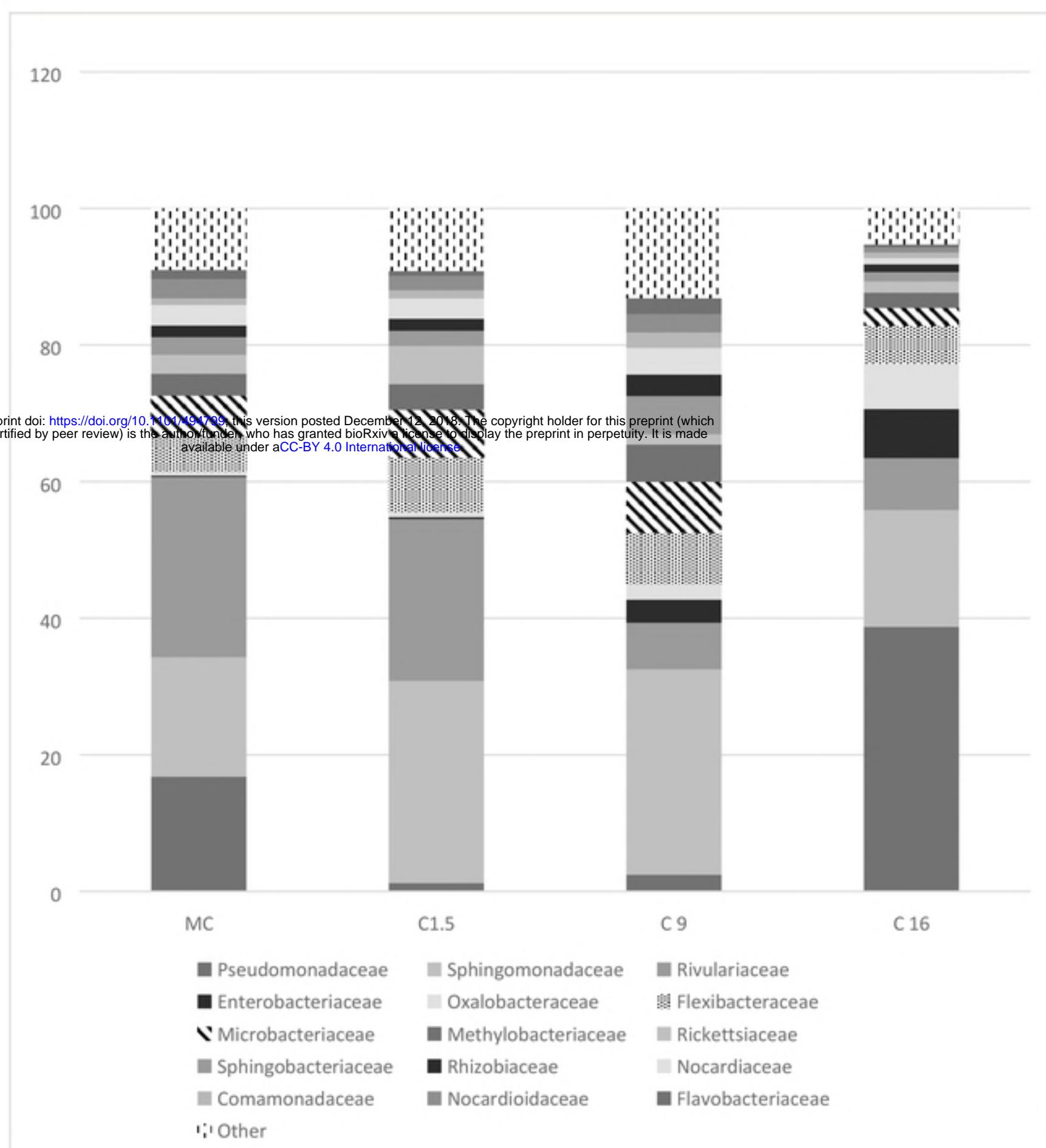
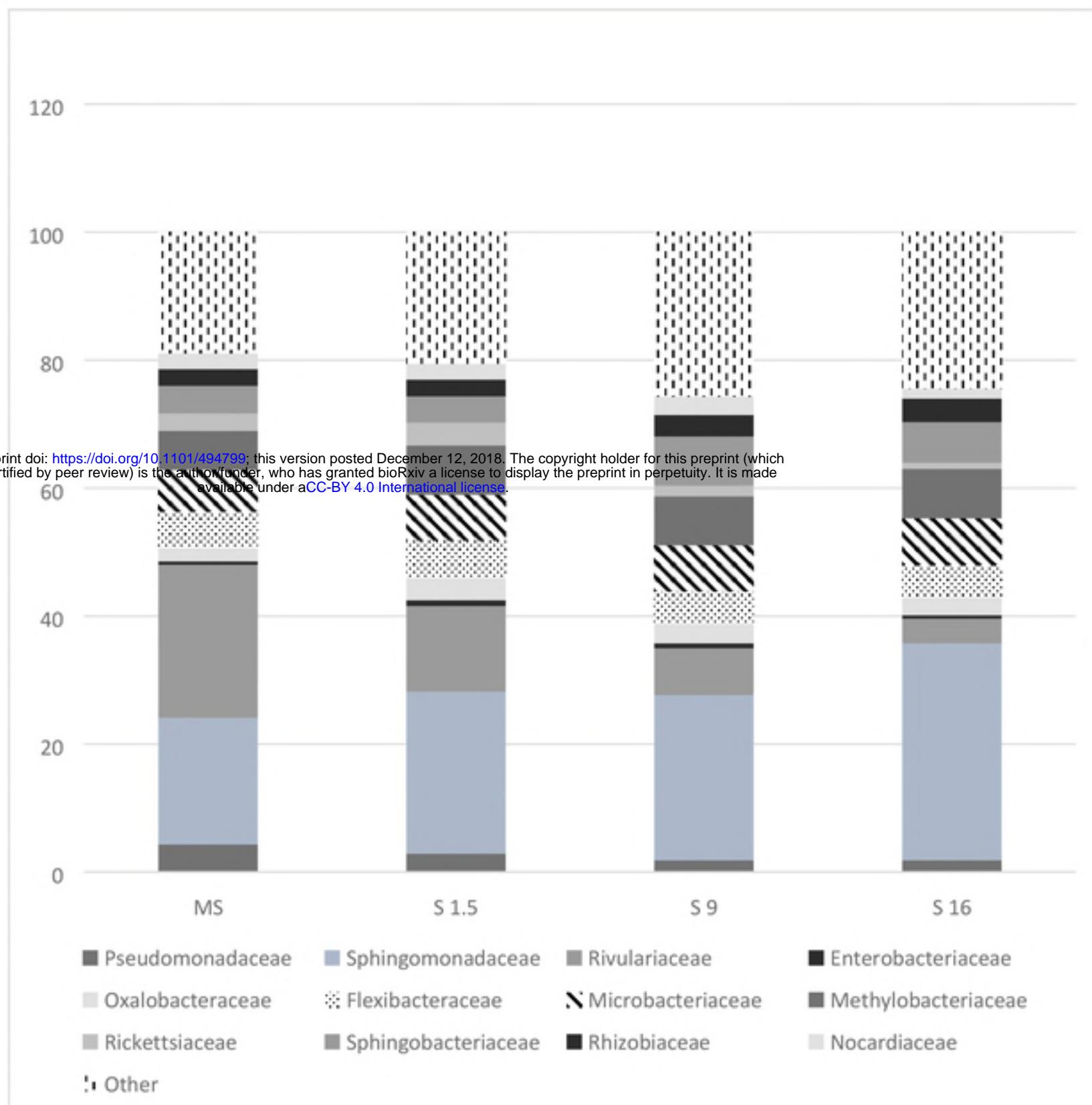




Figure 4

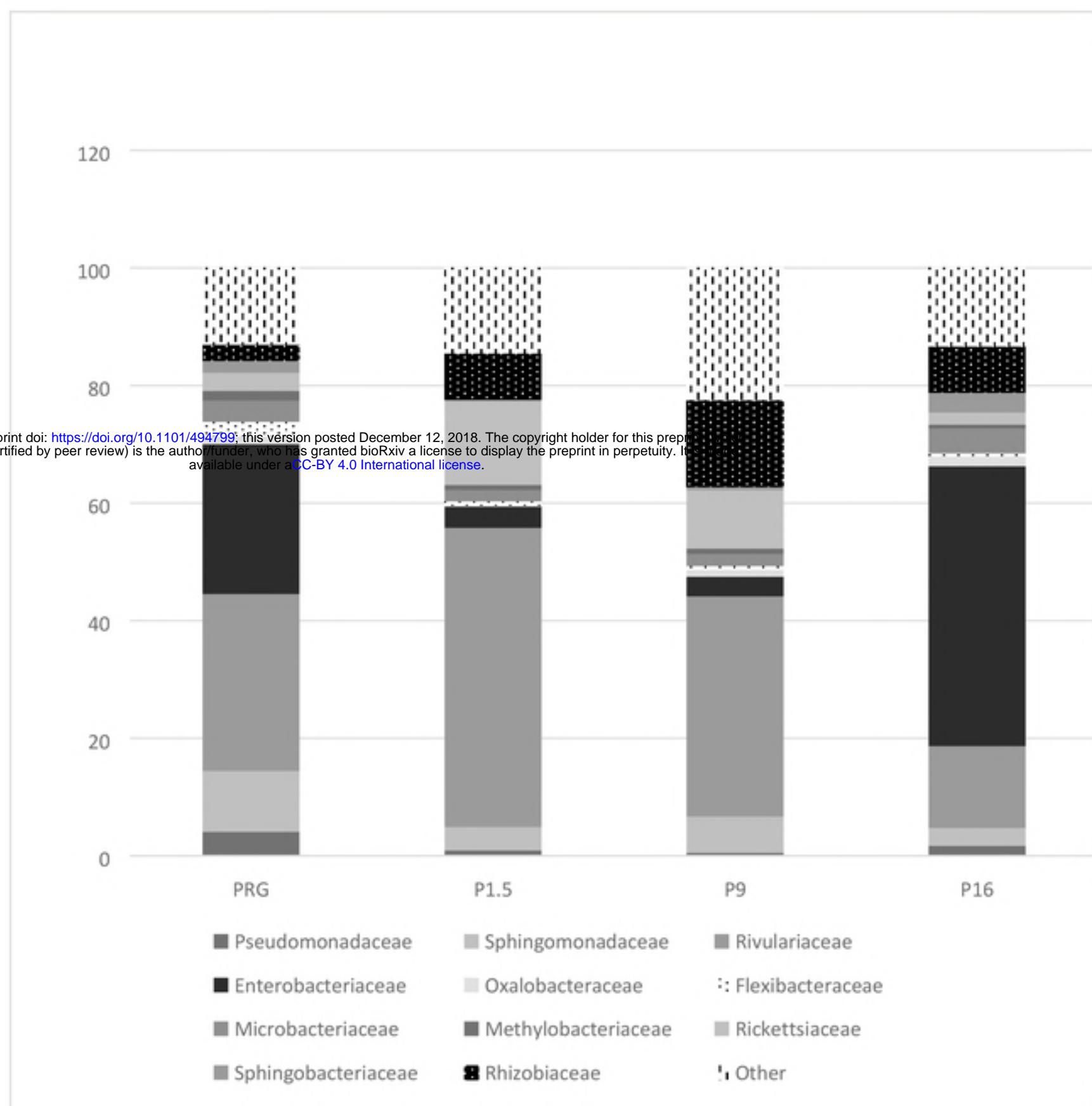

Figure

Figure 5

Figure

Figure 6

Figure