

1 **Establishment of the mayfly *Cloeon dipterum* as a new model system to**
2 **investigate insect evolution**

3

4 Isabel Almudi¹, Carlos Martín-Blanco¹, Isabel M. García-Fernandez¹, Adrián López-
5 Catalina¹, Kristofer Davie^{2,3}, Stein Aerts^{2,3}, Fernando Casares¹.

6

7 1- GEM-DMC2 Unit, the CABD (CSIC-UPO-JA). Ctra. de Utrera km1 41013,
8 Sevilla SPAIN

9 2- Laboratory of Computational Biology, VIB Center for Brain & Disease
10 Research, Herestraat 49, 3000 Leuven, Belgium

11 3- Department of Human Genetics, KU Leuven, Oude Markt 13, 3000 Leuven,
12 Belgium

13

14 isabelalmudi@gmail.com

15 carlant1991@gmail.com

16 imargarfer@gmail.com

17 adrlopcat@gmail.com

18 kristofer.davie@kuleuven.vib.be

19 stein.aerts@kuleuven.vib.be

20 fcasfer@upo.es

21 Authors of correspondence: isabelalmudi@gmail.com, fcasfer@upo.es

22

23 **Abstract**

24 The great capability of insects to adapt to new environments promoted their
25 extraordinary diversification, resulting in the group of Metazoa with the largest
26 number of species distributed worldwide. To understand this enormous diversity, it is
27 essential to investigate lineages that would allow the reconstruction of the early
28 events in the evolution of insects. However, research on insect ecology, physiology,
29 development and evolution has mostly focused on few well-established model
30 species. The key phylogenetic position of mayflies within Paleoptera, as the sister
31 group of the rest of winged insects and life history traits of mayflies make them an
32 essential order to understand insect evolution. Here, we describe the established of

33 a continuous culture system of the mayfly *Cloeon dipterum* and a series of
34 experimental protocols and -omics resources that allow the study of its development
35 and its great regenerative capability. Thus, the establishment of *Cloeon* as an
36 experimental platform paves the way to understand genomic and morphogenetic
37 events that occurred at the origin of winged insects.

38

39 **Introduction**

40

41 Insects are the most diverse group of Metazoa, harbouring the largest number of
42 animal species [1]. Insects comprise more than thirty extant orders distributed
43 worldwide - they are found in all sorts of habitats with the exception of marine
44 environments [2]. Despite the fact that other animals populated the land before
45 insects, like chelicerates and myriapods [3-5], the appearance of winged insects
46 meant a complete biological revolution with profound effects on the history of life on
47 earth. The colonization of the air allowed insects unprecedented dispersal capacities
48 and novel ecological interactions –such as their role as pollinator agents that drove
49 the further coevolution of insects and angiosperms.

50 Although the impact that the appearance of insects had in the shaping and
51 evolution of, not only their own group, but also other phyla and even kingdoms, our
52 knowledge of insects comes mainly from work on a handful of well-established
53 model species. Among them, *Drosophila melanogaster*, which is one of the best-
54 studied model organisms, broadly used in multiple fields of research, including the
55 evo-devo field [6-8]. Probably the second more used insect in evolutionary and
56 developmental studies is *Tribolium castaneum* (Coleoptera), followed by some
57 butterflies and moths (Lepidoptera) species. In addition to these established models,
58 other dipterans with important impact in human health (as vectors transmitting
59 diseases: *Anopheles*, *Glossina*, *Aedes*) and economy (becoming agricultural pests:
60 *Ceratitis capitata*, *D. suzukii*) have been studied in more detail. Unfortunately, these
61 insect orders are all part of the holometabola group of hexapoda, which appeared
62 relatively recently within the insect phylogeny ([9] and references therein). Some
63 efforts have been made in order to fill this gap of studies in hemimetabola animal
64 systems, such as *Oncopeltus fasciatus* [10], *Blattella germanica* [11] and water
65 striders [12, 13].

66 This dearth of laboratory models is even more acute in the case of early
67 branching groups of insects that correspond to the first representatives of the crucial
68 biological and ecological transitions mentioned above. Such transitions are for
69 instance, key adaptations to terrestrial life such as the development of the
70 extraembryonic tissue amnion and serosa [14-18], the establishment of early embryo

71 segmentation mechanisms and the transition from short- to long-germ band embryos
72 [19-23], the basal organization of the head [24, 25], or the origin of wings and the
73 capacity to fly (an issue that is currently hotly debated [26-34]). Overall, what these
74 examples reveal ultimately is the need of developing and establishing new model
75 systems, in particular around the nodes of the tree where these key novelties
76 originated.

77 The advent of new technologies that permit the editing of genomes and
78 especially the appearance of next-generation sequencing (NGS) techniques allows
79 the re-examination of long-standing questions in Evolutionary Biology using
80 comparative approaches. For instance, the use of functional genomics methods and
81 other "-omic" techniques enables the interrogation of genomes and transcriptomes in
82 search for changes in gene content (appearance of new lineage-specific gene
83 families) and regulatory elements that promoted the origin and evolution of these key
84 innovations that appeared for the first time in insect lineages. However, one of the
85 challenges that researchers are encountering is getting access to the biological
86 material, especially at the desired developmental stage for a particular study. Thus,
87 there is a great interest in increasing the number of emergent model organisms that,
88 due to their key phylogenetic position or their specific traits, would permit evo-devo
89 studies in the precise clade of interest. Here, to contribute in this direction, we
90 developed an Ephemeroptera laboratory model, *Cloeon dipterum*.

91 Ephemeroptera (mayflies) is an order of winged hemimetabola insects that
92 live in freshwater ecosystems. The Ephemeroptera order has over 3000 species
93 distributed in 40 different families approximately [35, 36]. Mayflies belong to an
94 ancient group of insects that were present already in the late Carboniferous or early
95 Permian period [1]. Mayflies have a life cycle that consists of two well-defined
96 phases. The aquatic phase, that comprises embryogenesis and nymphal stages and
97 the terrestrial phase, which consists on a sexually immature subimago and a
98 sexually active imago (Fig 1). Their aquatic phase makes mayflies ideal as
99 bioindicators of the quality of freshwater ecosystems [37-39], while their terrestrial
100 phase contributes to population dispersal; thus, mayflies have been used to
101 investigate biogeographical events, such as dispersion and colonization of new
102 communities [40-42]. The embryogenesis occurs in a variable amount of time that

103 can range from days until months, depending on the species and environmental
104 factors, as the temperature [43]. Once the nymphs eclose from the eggs, they
105 undergo a series of moulds to finally mould into a terrestrial subimago that leaves the
106 water. Strikingly, this sexually immature individual has to mould once more to
107 become an imago, which is a singularity that only occurs in mayflies in contrast to all
108 other insects that do not mould once they reach the adult stage [44, 45]. The mating
109 occurs in flying swarms formed by hundreds of individuals several meters above the
110 ground/water surface level [46-48].

111 In most phylogenetic analyses, Ephemeroptera are grouped together with
112 Odonata (damselflies and dragonflies) as the sister group of Neoptera, the rest of
113 winged insects ([49] and references therein). Therefore, the extinct relatives of
114 mayflies were the first insects developing wings, which makes extant mayflies a key
115 organism to test the hypotheses postulated for the wing origin in pterygote insects.
116 Their position in the phylogenetic tree also makes them an essential group to
117 investigate segmentation, head specification and other morphogenetic processes
118 occurring in the embryo, beyond the classical insect models already used to address
119 these problems (*Drosophila*, *Tribolium*, *Oncopeltus*). Moreover, their particular life
120 cycle with an aquatic and a terrestrial period makes mayflies a relevant organism to
121 examine different adaptations to the land, such as the evolution of the extra-
122 embryonic layers and other metabolic and physiologic traits derived from this
123 complex life cycle, such as the hormonal control, ecdysis and metabolic rates.

124 By having established *C. dipterum* in the laboratory, we have now unlimited
125 access to all embryonic and postembryonic stages through the year, permitting the
126 study of fundamental processes that originated for the first time in Ephemeroptera or
127 that are specific to the extant members of this order. Moreover, the development of a
128 series of genomic and transcriptomic resources will facilitate comparative analyses
129 at the genome, transcriptome and epigenomic levels that can clarify the role of
130 certain genes and regulatory networks in the origin of those novelties. Finally, the
131 highly regenerative capabilities of *C. dipterum*, together with its short life cycle (which
132 lasts from forty to sixty days on average), make this species a significant and very
133 useful system to investigate the regeneration of non-embryonic tissues in insects.

134

135 ***C. dipterum* continuous culture in the laboratory**

136 *C. dipterum*, from the Baetidae family, is one of the few ovoviparous
137 ephemeropteran species: the female keeps the fertilized eggs inside the abdomen
138 and only when they are ready to hatch, after ten to twenty days, the female sets
139 down onto the surface of a water stream or pond and lays the eggs, that sink to the
140 bottom ready to eclose. Just few seconds after the eggs are laid, the nymphs hatch
141 [50].

142 Individual lines were established starting from single gravid females captured
143 in Dos Hermanas (Sevilla, Spain) and Alfacar (Granada, Spain). In the laboratory,
144 gravid females are kept in a petri dish with a wet filter paper to avoid its desiccation.
145 After thirteen days, the female is placed on the surface of unchlorinated water in a
146 beaker to let it lay the eggs. Usually, they immediately spawn if the eggs are ready to
147 hatch, but the duration of embryogenesis is a bit variable, between thirteen and
148 seventeen days. Thus, it is important to take the female back to the petri dish in case
149 it did not spawn within the first minute on the water to avoid the laying of
150 underdeveloped eggs. It is therefore advisable to try to induce the spawning during
151 several days until reaching the appropriate moment when the embryos are fully
152 developed. The amount of eggs a female can lay depends mainly on its nutritional
153 condition. In general, bigger females produce larger clutches. In the laboratory, the
154 females tend to lay between one hundred and three hundred eggs per clutch. Shortly
155 after delivering the eggs, the females die.

156 The hatchlings take only a few seconds to hatch (Figure 2B-E, supplementary
157 movie 1) as swimming nymphs. They instantly start feeding from algae that are
158 placed at the bottom of the beaker. In the moment of hatching, the nymphs do not
159 have external gills, it is only two moults later, approximately 72 hours after hatching
160 that seven pairs of gills are visible in the first seven abdominal segments. The
161 nymphs are kept in the unchlorinated water in the beaker during the whole juvenile
162 period. A portion of the water is replaced once a week, though the frequency can be
163 increased if the culture becomes cloudy due to an excess of mayfly faeces or
164 overgrown of the algae. To improve the exchange of oxygen between the water and
165 the air, a bubbling tube connected to an air pump is introduced in the water (Figure

166 2F). The nymphs feed regularly with *Chara*, filamentous algae, pulverised vegetarian
167 fish flakes or small pieces of carrot that are added to the water.

168 The beakers are placed inside PET bottles, so when nymphs reach the last
169 nymphal stage and mould into a subimago that emerges and leaves the water, they
170 can be easily recovered, as they cannot fly away and stay inside the bottles. To
171 avoid water condensation that could damage the newly emerged subimagos while
172 they stay inside the PET bottles, the plastic surface of their upper side is replaced by
173 small net. The subimagos are carefully collected and kept for 24 hours in a tube with
174 some wet paper to maintain the humidity and promote the last moult to imago, which
175 happens some hours after the previous moult. To close the cycle in the laboratory, it
176 is necessary to perform forced copulas [51], since mayflies mate during flight in large
177 swarms [46-48]. To perform these matings, both, male and female are grasped very
178 carefully by the wings with forceps. The female is placed with the ventral side
179 upwards and the most posterior region of the male is brought close to the female
180 seventh abdominal segment. Males, then, clasp the abdomen of the female using
181 their genital forceps or stylus, allowing the contact of the two external genitalia to
182 engage the copula (Fig. 2A). Copulas have a variable duration; they can last from
183 few seconds to several minutes. During this time, males bend themselves to favour
184 the fertilisation of the eggs. After the copula, the male is discarded and the female is
185 kept in a petri dish with a small piece of humidified filter paper. The culture is
186 maintained in a room at a constant temperature of 23 degrees Celsius and a 12:12
187 light:dark illumination cycle.

188

189 ***C. dipterum* embryogenesis**

190 The establishment of *C. dipterum* culture in the laboratory allows the study of the
191 complete embryogenesis of these mayflies by obtaining the embryos directly from
192 the abdomen of gravid females. Once the embryos are collected from the female
193 abdomen, it is possible to use antibodies and other markers to visualise the
194 morphology of the embryo and morphogenetic processes occurring at specific
195 developmental stages (Figure 3).

196 *C. dipterum* embryogenesis takes between thirteen and seventeen days,
197 depending on the temperature. The morphogenesis in this species is similar to the

198 previously described embryogenesis of other mayflies [52, 53]. Briefly, after egg
199 cleavage the blastoderm is formed. Within the blastoderm, two populations of cells
200 are soon distinguishable, the most posterior ones, that will form the germ disc and
201 the larger and most anterior cells that will become the serosa (Figure 3A-B).
202 Thereafter, the germ disc starts elongating and the future cephalic region and future
203 caudal segment addition zone become apparent. During the following highly
204 proliferative stages, as showed by an increased density of PH3-positive mitotic cells,
205 especially in the most posterior regions (Figure C'-E'), the embryo elongates within
206 the egg, adopting a S-shape (Figure 3C). The elongating embryo folds its most
207 posterior region, which will correspond to abdominal segments, several times. After
208 this phase, the developing *C. dipterum* reaches its final length and its segmentation
209 starts. Segmentation happens from anterior to posterior, thus cephalic and thoracic
210 appendages are the first to become visible (Figure 3D). Afterwards, the embryo
211 undergoes a series of final developmental events in which the final form of the
212 embryo is completed, such as the appearance of the caudal filament, two posterior
213 cerci and the three ocelli and compound eyes (Figure 3E-F).

214 Beyond general morphology, access to all developmental stages allows the
215 study of the development of specific tissues and organs. Using antibodies to detect
216 neural structures, such as acetylated Tubulin (acTub, Figure 4) or probes against
217 genes responsible for the patterning of specific regions of the nervous system, like
218 *orthodenticle* (*otd*) or *engrailed* (*en*) to perform *in situ* hybridizations (Figure 5C-D), it
219 is feasible to investigate the development of the nervous system, -or any other
220 chosen embryonic territory- in embryos of the sister group to all other winged
221 insects. Therefore, applying such techniques in *C. dipterum* embryos brings the
222 possibility of studying fundamental processes (nervous system development, dorso-
223 ventral patterning, segmentation, head development, extra-embryonic tissue
224 specification, etc.) of insect development in an organism in a key position in the
225 insect phylogeny.

226

227 **The transcriptome of *C. dipterum***

228 Until now, there were no appropriate genomic tools available to investigate
229 *C. dipterum* at the genetic level. Only a genomic survey sequencing for molecular

230 markers to study *C. dipterum* population structure using 454 technology at low
231 coverage has been reported [40, 54]. Therefore, to explore *C. dipterum* gene
232 content, we sequenced the transcriptome of a male nymph. The assembly of the
233 paired-end reads, using Trinity RNA-Seq *de novo* assembly software [55] resulted in
234 117233 transcripts. From these 117233 transcripts we obtained 95053 peptide
235 sequences using transDecoder software [56] to get the longest translated ORFs.
236 Running BLASTp, we got a list of 15799 sequences from UniRef90 database which
237 showed homology to other sequences (e-value < 10e-6). These hits showed a
238 majority of results, more than 80% (13059 best hits), within the hexapoda (insects
239 and Collembola). The second most frequent groups of hits fell within Arthropoda
240 (Chelicerata and Myriapoda, 4,24%) and Crustacea (4,15%) categories, which
241 demonstrated the good quality of the assembly (Figure 5B). Less frequent categories
242 present in our best hit results corresponded, on the one hand, to Bacteria and virus
243 which probably derive from the mayfly microbiota and on the other hand, Plantae
244 and Red algae, which most likely belonged to the gut content of the specimen at the
245 moment of the RNA extraction, as *C. dipterum* feeds on algae and plants.

246 Although the transcriptome generated was obtained from a single male
247 nymph, and it thus represents only the genes that are expressed at that particular
248 developmental stage, it can nevertheless serve as a very useful resource to identify
249 homologous transcripts and to design probes to perform subsequent expression
250 pattern analyses of genes of interest expressed during nymphal stages and other
251 stages, as in the case of *orthodenticle* (*otd*) and *engrailed* (*en*) (real time PCRs, *in*
252 *situ* hybridization, Figure 5C-D).

253 This transcriptome assembly is a first step in order to have resources that
254 can be used to tackle questions in the evolution of first winged insects at a
255 genomic/transcriptomic level. Nevertheless, more tools are needed, so the high
256 quality genome sequencing project that is currently in progress will provide an
257 invaluable resource and a platform for subsequent analyses (ATAC-Seq, Chip-Seq,
258 etc.) to investigate long standing questions related to the origin of pterygotes and
259 other important traits that contributed to the diversification of insects.

260
261

262 **The regenerative potential of *C. dipterum***

263 The capacity to regenerate lost or damaged organs, body parts (or even whole
264 organisms) is widespread through the animal kingdom [57-59]. Several phyla, such
265 as Cnidarian, Platyhelminthes, annelids, arthropods or vertebrates, have this ability
266 that can vary in several aspects. Different species or even phyla have very different
267 regenerative capabilities; for instance, Platyhelminthes (flatworms) are able to
268 regenerate a complete organism from few hundreds of cells [60-66] whereas
269 mammals have lost most of their regenerative potential, and they are able to
270 regenerate only particular tissues or organs in specific conditions [67, 68]. The
271 mechanisms used in the regeneration process are also different depending on the
272 species; flatworms use totipotent cells, the neoblasts, to regenerate, while other
273 organisms, such as the crustacean *Parhyale*, rely on the dedifferentiation of cell
274 populations to re-grow an amputated limb [58, 69, 70]. Despite the diversity of
275 species that are able to regenerate and the varying modes, mechanisms and
276 degrees of their regeneration capabilities, only a small number of organisms have
277 been used to investigate how regeneration occurs. Thus, increasing the diversity of
278 regenerating model species will greatly contribute to study whether general rules
279 work in the morphogenetic process or whether the same gene networks and
280 regulatory modules are common to different phyla with regeneration potential. This is
281 particular evident for insects, where only a handful of species have been used as
282 models for regeneration studies, *Drosophila melanogaster* [71-75], cockroaches [76,
283 77] and *Gryllus bimaculatus* [77-79]. The genetic toolkit available for *Drosophila*
284 manipulation has greatly contributed to the identification of gene networks involved in
285 the regeneration event [80-86]. However, the regenerative potential of *Drosophila* is
286 quite limited, thus, it has been only described in imaginal discs, which are highly
287 proliferative and undifferentiated organs that will give rise to the adult appendages,
288 and in the gut, which, in the same manner as the imaginal discs, possesses a high
289 proliferative population of cells, including intestinal stem cells that promote the
290 regrowth of the gut after damage [75, 87]. On the other hand, crickets and
291 cockroaches have been developed as models for limb regeneration, giving the
292 possibility of studying fully functional organs with terminally differentiated cell types

293 [77, 78, 88-92]. However, crickets take one month to complete the regeneration of a
294 leg, while in cockroaches the whole process can last more than eighteen weeks [89].

295 Dewitz, already in 1890, described that mayfly nymphs were able to
296 regenerate their gills completely after amputation [93]. Since then, several
297 researchers [94, 95] confirmed these observations. Indeed, we observed that *C.*
298 *dipterum* is able to regenerate gills, antennae, cerci and legs completely in a very
299 short period of time, ranging from six to nine days (Fig. 6). For instance, after
300 amputation of the 3rd pair of legs, *C. dipterum* takes less than 24 hours to heal the
301 wound and only 72 hours to exhibit a clear re-growth of the appendage, completing
302 the entire process in a period of no more than seven days (Fig. 6). Thus, *C. dipterum*
303 has extraordinarily rapid regenerative capabilities, that could give this species a
304 privileged status because of its fast regeneration of postembryonic, fully functional
305 organs.

306

307 **Conclusions**

308 Although Ephemeroptera have been the focus of biogeography, taxonomy and
309 ecology studies, until now they have been very rarely used as a laboratory model to
310 address developmental and evolutionary questions [34, 96], despite the fact they are
311 fundamental to understand insect evolution at multiple time scales. Here we present
312 *C. dipterum* as an emergent model for evo-devo studies. There are several traits in
313 this species that make it especially helpful to answer long-standing questions in
314 evolutionary biology and its establishment in the laboratory provides great
315 advantages. First, the setting up of a continuous culture system in the laboratory
316 facilitates the access to all the developmental stages, and as for the particular case
317 of the ovoviparism of *C. dipterum*, it allows having high number of synchronised
318 embryos. The continuous culture also permits to obtain large amounts of material
319 that can be used in genomics and transcriptomics assays. Second, the use of forced
320 copulas ensures a complete control on the matings, so it is feasible to have inbred
321 lines to reduce genetic heterozygosity to perform genetic experiments and when
322 applying functional genomics techniques. Moreover, the relatively short life cycle of
323 *C. dipterum* permits the investigation of embryonic and postembryonic processes in a
324 brief period of time and making experimental designs feasible. Although RNA

325 interference techniques are not established in the mayfly yet, its aquatic life phase
326 allows us to perform drug treatments, by just adding the molecule to the water, to
327 interfere with signalling pathways in order to investigate their function in specific
328 conditions. However, these functional experiments are limited by the amount of
329 drugs available to alter specific gene networks, thus, efforts must be made to set up
330 interference RNA and CRISPR/Cas9 methods to downregulate genes or edit the
331 genome in *C. dipterum*.

332 Moreover, the generation of -omic resources, through the sequencing of *C.*
333 *dipterum* genome and different tissue and stage specific RNA-seq datasets, and the
334 development of protocols to investigate changes in regulatory regions of the
335 genome, such as ATAC-seq and ChIP-seq techniques, will provide a great resource
336 to investigate evolutionary and developmental questions at the genomic level.

337 Beyond the technical and methodological advantages that *C. dipterum* system
338 confers, its key phylogenetic position, ecology, physiology, and plasticity make
339 mayflies an essential order to investigate very diverse topics, from genomic and
340 morphogenetic events that occurred at the origin of winged insects, the origin of
341 metamorphosis and hormone control of ecdysis, to the regenerative potential in
342 insects.

343

344 **Figure legends**

345

346 **Figure 1. *C. dipterum* life cycle.** (A) *C. dipterum* adult female (B) *C. dipterum* adult
347 male. (C) Cartoon depicting *C. dipterum* life cycle. Female lays the eggs in a water
348 stream where they hatch as juvenile nymphs. After several moults nymphs emerge
349 from the water to the land as immature subimagoes. Then, they moult again to
350 become sexually mature individuals that fly forming swarms to mate. (D) Early-mid
351 nymph. (E) Late female nymph. (F) Late male nymph. (G) Female subimago. (H)
352 Male subimago.

353

354 **Figure 2. *C. dipterum* culture in the laboratory.** (A) Couple of adults mating
355 through forced copula. (B) Temporal sequence of a gravid female laying fertilised
356 eggs that after 94 seconds hatch as swimming nymphs (white arrowheads). (C-D)

357 Fertilised eggs and nymphs hatching. **(E)** Freshly hatched nymphs. **(F)** Culture
358 system in the laboratory. Nymphs are in the beaker with bubbling water and algae.
359 The beaker is placed inside a PET bottle to keep the subimagoes once they emerge
360 from the water. Scale bars: 50 μ m

361

362 **Figure 3. Representative phases of *C. dipterum* embryogenesis.** Upper panels
363 show embryo morphology detectable through DAPI staining (white). Lower panels
364 show DAPI (nuclei, blue), Actin (cell contour cRed) and mitosis (anti-PH3, green).
365 **(A-A')** Blastoderm formation (stage 2: st. 2) bcd: blastoderm cells are replicating very
366 actively, shown by PH3 staining (A'), in green. **(B-B')** Germ disc (gd) formation (st.
367 3). **(C-C')** S-shaped embryo (st. 6). The germ band elongates backwards through
368 active cell proliferation, mainly in the posterior region of the embryo (abr: abdominal
369 region; hl: head lobe). **(D-D')** Segmentation of the embryo (st. 8) starts from the
370 cephalic (hl) and thoracic regions, which segments are already visible, towards the
371 abdominal regions (abr). **(E-E')** Proctodaeum formation (st. 9). Segmentation
372 progresses, appendages enlarge and get segmented (an: antenna, md: mandible,
373 mx: maxilla, lb: labium, pl: pro-leg). **(F-F')** The abdominal regions are already
374 segmented (abs: abdominal segments). Cercei (ce) are already visible. Dorsal
375 closure proceeds. Scale bars: 50 μ m

376

377 **Figure 4. *C. dipterum* embryonic nervous system.** **(A-C)** Embryo (DAPI staining
378 reveals embryo morphology, B) exhibiting the ventral nervous cord (staining using
379 anti-acetylated alphaTubulin antibody, C). **(D)** Surface reconstruction of the ventral
380 nervous cord and its projections towards the appendages. Scale bars: 50 μ m.

381

382 **Figure 5. Genomics and transcriptomic tools.** **(A)** The genome of *C. dipterum* is
383 structured in a karyotype of $2n = 10$ [97, 98]. Somatic embryonic cell showing
384 condensed DNA in chromosomes (each of them highlighted with an asterisk). DNA
385 stained with DAPI (white) and cell membrane visible through Phalloidin-Rhodamin
386 staining (green). Scale bar: 20 μ m **(B)** Pie chart representing top blastp results of
387 unigenes against UniRef90 protein database. **(C-C'')** *otd* expression pattern (C, C'')

388 in the mayfly embryo visible through DAPI staining (C, C'). **(D-D")** *en* expression
389 domain (D, D") in *C. dipterum* embryo (D, D').

390

391 **Figure 6. Leg regeneration of a *C. dipterum* nymph. (A)** Mayfly nymph before
392 amputation of the 3rd leg. **(B)** Nymphal leg (white arrowhead) immediately after
393 amputation. **(C)** 24 hours after amputation the wound is healed (arrowhead). **(D)** 72
394 hours after amputation, the tissue is already partially regenerated. **(E-F)** After seven
395 days, the amputated leg has recovered its initial size and shape with all the
396 segments perfectly formed.

397

398 **Acknowledgements**

399 We thank David Funk, Pablo Jáimez and Julio Miguel Luzón for helping and advise
400 on the collection and establishment of the *C. dipterum* continuous system in the
401 laboratory and Zeynep Kalender for helping on the initial analyses of the
402 transcriptome. We also thank the CABD Fish facility and members of the Martinez-
403 Morales lab for providing filamentous algae to feed the mayflies, the CABD ALMI
404 platform for confocal microscopy support and Ignacio Maeso for critically reading the
405 manuscript. This project has been funded by the European Union's Horizon 2020
406 research and innovation programme under the Marie Skłodowska-Curie grant
407 agreement 657732 to IA and *Apoyo a Unidades de Excelencia María de Maeztu*
408 (MDM-2016-0687) and MINECO (Spain) through grant no. BFU2015-66040-P to FC
409 from the Ministry of Economy, Industry and Competitiveness of Spain.

410

411 **Competing interests**

412 The authors declare that they have no competing interests.

413

414 **Authors' contributions**

415 IA and FC conceived and designed the study. IA and CM-B established and
416 maintained *C. dipterum* culture. IA and CM-B performed embryogenesis
417 characterisation. IA, IMG-F and AL-C performed *in situ* hybridization experiments. IA,
418 KD and SA generated and analysed the transcriptome data. CM-B and IA performed
419 regeneration assays. IA prepared the figures and wrote the manuscript with the help

420 of FC and inputs from all authors. All authors read, corrected and approved the final
421 manuscript.

422

423 **References**

- 424 1. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG *et al*: **Phylogenomics resolves the timing and pattern of insect evolution.** *Science* 2014, **346**(6210):763-767.
- 425 2. Collins NM, Thomas JA: **The conservation of insects and their habitats.** *Academic Press, London* 1991.
- 426 3. Lozano-Fernandez J, Carton R, Tanner AR, Puttik MN, Blaxter M, Vinther J, Olesen J, Giribet G, Edgecombe GD, Pisani D: **A molecular palaeobiological exploration of arthropod terrestrialization.** *Philos Trans R Soc Lond B Biol Sci* 2016, **371**(1699).
- 427 4. Rota-Stabelli O, Daley Allison C, Pisani D: **Molecular Timetrees Reveal a Cambrian Colonization of Land and a New Scenario for Ecdysozoan Evolution.** *Current Biology* 2013, **23**(5):392-398.
- 428 5. Little C: **The colonisation of land : origins and adaptations of terrestrial animals.** *Cambridge University Press, Cambridge [Cambridgeshire] ; New York* 1983:241-272.
- 429 6. Hilbrant M, Almudi I, Leite DJ, Kuncheria L, Posnien N, Nunes MD, McGregor AP: **Sexual dimorphism and natural variation within and among species in the Drosophila retinal mosaic.** *BMC Evol Biol* 2014, **14**:240.
- 430 7. Kittelmann S, Buffry AD, Franke FA, Almudi I, Yoth M, Sabaris G, Couso JP, Nunes MDS, Frankel N, Gomez-Skarmeta JL *et al*: **Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution.** *PLoS Genet* 2018, **14**(5):e1007375.
- 431 8. Smith SJ, Rebeiz M, Davidson L: **From pattern to process: studies at the interface of gene regulatory networks, morphogenesis, and evolution.** *Current Opinion in Genetics & Development* 2018, **51**:103-110.
- 432 9. Schmidt-Ott U, Lynch JA: **Emerging developmental genetic model systems in holometabolous insects.** *Current Opinion in Genetics & Development* 2016, **39**:116-128.

452 10. Chipman AD: **Oncopeltus fasciatus as an evo-devo research organism.**
453 *genesis* 2017, **55**(5):e23020.

454 11. Korb J, Belles X: **Juvenile hormone and hemimetabolous eusociality: a**
455 **comparison of cockroaches with termites.** *Current Opinion in Insect*
456 *Science* 2017, **22**:109-116.

457 12. Santos ME, Le Bouquin A, Crumière AJJ, Khila A: **Taxon-restricted genes at**
458 **the origin of a novel trait allowing access to a new environment.** *Science*
459 2017, **358**(6361):386-390.

460 13. Toubiana W, Khila A: **The benefits of expanding studies of trait**
461 **exaggeration to hemimetabolous insects and beyond morphology.**
462 *Current Opinion in Genetics & Development* 2016, **39**:14-20.

463 14. Schmidt-Ott U, Kwan CW: **Morphogenetic functions of extraembryonic**
464 **membranes in insects.** *Current Opinion in Insect Science* 2016, **13**:86-92.

465 15. Jacobs CGC, Rezende GL, Lamers GEM, van der Zee M: **The**
466 **extraembryonic serosa protects the insect egg against desiccation.**
467 *Proceedings of the Royal Society B: Biological Sciences* 2013, **280**(1764).

468 16. van der Zee M, Berns N, Roth S: **Distinct Functions of the Tribolium**
469 **zerknu¨llt Genes in Serosa Specification and Dorsal**
470 **Closure.** *Current Biology* 2005, **15**(7):624-636.

471 17. Jacobs CGC, Spaink HP, van der Zee M: **The extraembryonic serosa is a**
472 **frontier epithelium providing the insect egg with a full-range innate**
473 **immune response.** *eLife* 2014, **3**:e04111.

474 18. Hilbrant M, Horn T, Koelzer S, Panfilio KA: **The beetle amnion and serosa**
475 **functionally interact as apposed epithelia.** *eLife* 2016, **5**:e13834.

476 19. Auman T, Chipman AD: **Growth zone segmentation in the milkweed bug**
477 **Oncopeltus fasciatus sheds light on the evolution of insect**
478 **segmentation.** *BMC Evolutionary Biology* 2018, **18**(1):178.

479 20. Zhu X, Rudolf H, Healey L, François P, Brown SJ, Klingler M, El-Sherif E:
480 **Speed regulation of genetic cascades allows for evolvability in the body**
481 **plan specification of insects.** *Proceedings of the National Academy of*
482 *Sciences* 2017, **114**(41):E8646-E8655.

483 21. Liu PZ, Kaufman TC: **Short and long germ segmentation: unanswered**
484 **questions in the evolution of a developmental mode.** *Evolution &*
485 *Development* 2005, **7**(6):629-646.

486 22. Stabi R, Chipman AD: **Blastoderm segmentation in Oncopeltus**
487 **fasciatus and the evolution of insect segmentation mechanisms.**
488 *Proceedings of the Royal Society B: Biological Sciences* 2016, **283**(1840).

489 23. Peel A: **The evolution of arthropod segmentation mechanisms.** *BioEssays*
490 2004, **26**(10):1108-1116.

491 24. Magri MS, Domínguez-Cejudo MA, Casares F: **Wnt controls the medial–**
492 **lateral subdivision of the Drosophila head.** *Biology Letters*
493 2018, **14**(7).

494 25. Posnien N, Schinko JB, Kittelmann S, Bucher G: **Genetics, development**
495 **and composition of the insect head – A beetle’s view.** *Arthropod Structure*
496 & *Development* 2010, **39**(6):399-410.

497 26. Hamilton KGA: **The insect wing. Part 1. Origin and development of wings**
498 **from notal lobes.** 1971, **44**:421-433. *J Kansas Entomol Soc* 1971, **44**:421-
499 433.

500 27. Rasnitsyn AP: **A modified paranotal theory of insect wing origin.** *Journal*
501 *of Morphology* 1981, **168**(3):331-338.

502 28. Ohde T, Yaginuma T, Niimi T: **Insect Morphological Diversification**
503 **Through the Modification of Wing Serial Homologs.** *Science* 2013,
504 **340**(6131):495-498.

505 29. Averof M, Cohen SM: **Evolutionary origin of insect wings from ancestral**
506 **gills.** *Nature* 1997, **385**(6617):627-630.

507 30. Clark-Hachtel CM, Tomoyasu Y: **Exploring the origin of insect wings from**
508 **an evo-devo perspective.** *Current Opinion in Insect Science* 2016, **13**:77-85.

509 31. Kukalova-Peck J: **Origin and evolution of insect wings and their relation**
510 **to metamorphosis, as documented by the fossil record.** *Journal of*
511 *Morphology* 1978, **156**(1):53-125.

512 32. Kukalová-Peck J: **Origin of the insect wing and wing articulation from the**
513 **arthropodan leg.** *Canadian Journal of Zoology* 1983, **61**(7):1618-1669.

514 33. Linz DM, Tomoyasu Y: **Dual evolutionary origin of insect wings supported**
515 **by an investigation of the abdominal wing serial homologs in *Tribolium*.**
516 *Proc Natl Acad Sci U S A* 2018, **115**(4):E658-E667.

517 34. Niwa N, Akimoto-Kato A, Niimi T, Tojo K, Machida R, Hayashi S: **Evolutionary origin of the insect wing via integration of two**
518 **developmental modules.** *Evolution & Development* 2010, **12**(2):168-176.

520 35. Barber-James HM, Gattoliat J-L, Sartori M, Hubbard MD: **Global diversity of**
521 **mayflies (Ephemeroptera, Insecta) in freshwater.** *Hydrobiologia* 2008,
522 **595**(1):339-350.

523 36. Sartori M, Brittain JE: **Chapter 34 - Order Ephemeroptera.** In: *Thorp and*
524 *Covich's Freshwater Invertebrates (Fourth Edition)*. Edited by Thorp JH,
525 Rogers DC. Boston: Academic Press; 2015: 873-891.

526 37. Chou H, Pathmasiri W, Deese-spruill J, Sumner SJ, Jima DD, Funk DH,
527 Jackson JK, Sweeney BW, Buchwalter DB: **The Good, the Bad, and the**
528 **Lethal: Gene Expression and Metabolomics Reveal Physiological**
529 **Mechanisms Underlying Chronic Thermal Effects in Mayfly Larvae**
530 **(*Neocloeon triangulifer*).** *Frontiers in Ecology and Evolution* 2018, **6**(27).

531 38. Peschke K, Geburzi J, Ko"hler H-R, Wurm K, Triebeskorn R: **Invertebrates as**
532 **indicators for chemical stress in sewage-influenced stream systems:**
533 **Toxic and endocrine effects in gammarids and reactions at the**
534 **community level in two tributaries of Lake Constance, Schussen and**
535 **Argen.** *Ecotoxicology and Environmental Safety* 2014, **106**:115-125.

536 39. Scarduelli L, Giacchini R, Parenti P, Migliorati S, Di Brisco AM, Vighi M: **Natural variability of biochemical biomarkers in the macro-zoobenthos:**
537 **Dependence on life stage and environmental factors.** *Environmental*
538 *Toxicology and Chemistry* 2017, **36**(11):3158-3167.

540 40. Rutschmann S, Detering H, Simon S, Funk DH, Gattoliat J-L, Hughes SJ,
541 Raposeiro PM, DeSalle R, Sartori M, Monaghan MT: **Colonization and**
542 **diversification of aquatic insects on three Macaronesian archipelagos**
543 **using 59 nuclear loci derived from a draft genome.** *Molecular*
544 *Phylogenetics and Evolution* 2017, **107**:27-38.

545 41. Vuataz L, Rutschmann S, Monaghan MT, Sartori M: **Molecular phylogeny**
546 **and timing of diversification in Alpine Rhithrogena (Ephemeroptera:**
547 **Heptageniidae).** *BMC Evolutionary Biology* 2016, **16**(1):194.

548 42. Gueuning M, Suchan T, Rutschmann S, Gattoliat J-L, Jamsari J, Kamil AI,
549 Pitteloud C, Buerki S, Balke M, Sartori M *et al*: **Elevation in tropical sky**
550 **islands as the common driver in structuring genes and communities of**
551 **freshwater organisms.** *Scientific Reports* 2017, **7**(1):16089.

552 43. Humpesch UH: **Effect of fluctuating temperature on the duration of**
553 **embryonic development in two Ecdyonurus spp. and Rhithrogena cf.**
554 **hybrida (Ephemeroptera) from Austrian streams.** *Oecologia* 1982,
555 **55**(3):285-288.

556 44. Edmunds JGF, McCafferty WP: **The mayfly subimago.** *Ann Rev Entomology*
557 1988, **33**: 509-29.

558 45. Maiorana VC: **Why do adult insects not moult?** *Biological Journal of the*
559 *Linnean Society* 1979, **11**(3):253-258.

560 46. Harker JE: **Swarm behaviour and mate competition in mayflies**
561 **(Ephemeroptera).** *Journal of Zoology* 1992, **228**(4):571-587.

562 47. Allan JD, Flecker AS: **The mating biology of a mass-swarming mayfly.**
563 *Animal Behaviour* 1989, **37**:361-371.

564 48. Peckarsky BL, McIntosh AR, Caudill CC, Dahl J: **Swarming and mating**
565 **behavior of a mayfly Baetis bicaudatus suggest stabilizing selection for**
566 **male body size.** *Behavioral Ecology and Sociobiology* 2002, **51**(6):530-537.

567 49. Simon S, Blanke A, Meusemann K: **Reanalyzing the Palaeoptera problem –**
568 **The origin of insect flight remains obscure.** *Arthropod Structure &*
569 *Development* 2018, **47**(4):328-338.

570 50. Berner L: **Ovoviviparous Mayflies in Florida.** *The Florida Entomologist*
571 1941, **24**(2):32-34.

572 51. Huff BL, Jr. ; McCafferty, W. P.: **Parthenogenesis and experimental**
573 **reproductive biology in four species of the mayfly genus stenonema.**
574 *The Wasmann Journal of Biology* 1974, **32**(2).

575 52. Bohle HW: **The effect of temperature on embryogenesis and diapause of**
576 **Ephemerella ignita (Poda).** *Oecologia* 1972, **10**(3):253-268.

577 53. Tojo K, Machida R: **Early embryonic development of the mayfly *Ephemera***
578 **japonica McLachlan (Insecta: Ephemeroptera, Ephemeridae)**. *J Morphol*
579 1998, **238**(3):327-335.

580 54. Rutschmann S, Detering H, Simon S, Fredslund J, Monaghan MT: **discomark: nuclear marker discovery from orthologous sequences**
581 **using draft genome data**. *Molecular Ecology Resources* 2017, **17**(2):257-
582 266.

583 55. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis
584 X, Fan L, Raychowdhury R, Zeng Q *et al*: **Full-length transcriptome**
585 **assembly from RNA-Seq data without a reference genome**. *Nat*
586 *Biotechnol* 2011, **29**(7):644-652.

587 56. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J,
588 Couger MB, Eccles D, Li B, Lieber M *et al*: **De novo transcript sequence**
589 **reconstruction from RNA-seq using the Trinity platform for reference**
590 **generation and analysis**. *Nature protocols* 2013, **8**(8):1494-1512.

591 57. Bely AE, Nyberg KG: **Evolution of animal regeneration: re-emergence of a**
592 **field**. *Trends in Ecology & Evolution* 2010, **25**(3):161-170.

593 58. Grillo M, Konstantinides N, Averof M: **Old questions, new models:**
594 **unraveling complex organ regeneration with new experimental**
595 **approaches**. *Curr Opin Genet Dev* 2016, **40**:23-31.

596 59. Morgan TH: **Regeneration**. *The Macmillan Company* 1901.

597 60. Atabay KD, LoCascio SA, de Hoog T, Reddien PW: **Self-organization and**
598 **progenitor targeting generate stable patterns in planarian regeneration**.
599 *Science* 2018, **360**(6387):404-409.

600 61. Cebria F, Adell T, Salo E: **Rebuilding a planarian: from early signaling to**
601 **final shape**. *Int J Dev Biol* 2018, **62**(6-7-8):537-550.

602 62. Egger B, Gschwentner R, Hess MW, Nimeth KT, Adamski Z, Willems M,
603 Rieger R, Salvenmoser W: **The caudal regeneration blastema is an**
604 **accumulation of rapidly proliferating stem cells in the flatworm**
605 ***Macrostomum lignano***. *BMC Dev Biol* 2009, **9**:41.

606 63. Egger B, Ladurner P, Nimeth K, Gschwentner R, Rieger R: **The regeneration**
607 **capacity of the flatworm *Macrostomum lignano*--on repeated**

609 **regeneration, rejuvenation, and the minimal size needed for**
610 **regeneration.** *Dev Genes Evol* 2006, **216**(10):565-577.

611 64. Fincher CT, Wurtzel O, de Hoog T, Kravarik KM, Reddien PW: **Cell type**
612 **transcriptome atlas for the planarian *Schmidtea mediterranea*.** *Science*
613 2018, **360**(6391).

614 65. Nimeth KT, Egger B, Rieger R, Salvenmoser W, Peter R, Gschwentner R:
615 **Regeneration in *Macrostomum lignano* (Platyhelminthes): cellular**
616 **dynamics in the neoblast stem cell system.** *Cell Tissue Res* 2007,
617 **327**(3):637-646.

618 66. Reddien PW: **The Cellular and Molecular Basis for Planarian**
619 **Regeneration.** *Cell* 2018, **175**(2):327-345.

620 67. Quaife-Ryan GA, Sim CB, Ziemann M, Kaspi A, Rafehi H, Ramialison M, El-
621 Osta A, Hudson JE, Porrello ER: **Multicellular Transcriptional Analysis of**
622 **Mammalian Heart Regeneration.** *Circulation* 2017, **136**(12):1123-1139.

623 68. Zacharias WJ, Frank DB, Zepp JA, Morley MP, Alkhaleel FA, Kong J, Zhou S,
624 Cantu E, Morrisey EE: **Regeneration of the lung alveolus by an**
625 **evolutionarily conserved epithelial progenitor.** *Nature* 2018,
626 **555**(7695):251-255.

627 69. Konstantinides N, Averof M: **A Common Cellular Basis for Muscle**
628 **Regeneration in Arthropods and Vertebrates.** *Science* 2014,
629 **343**(6172):788-791.

630 70. Alwes F, Enjolras C, Averof M: **Live imaging reveals the progenitors and**
631 **cell dynamics of limb regeneration.** *eLife* 2016, **5**:e19766.

632 71. Hariharan IK, Serras F: **Imaginal disc regeneration takes flight.** *Curr Opin*
633 *Cell Biol* 2017, **48**:10-16.

634 72. Repiso A, Bergantiños C, Corominas M, Serras F: **Tissue repair and**
635 **regeneration in *Drosophila* imaginal discs.** *Development, Growth &*
636 *Differentiation* 2011, **53**(2):177-185.

637 73. Vizcaya-Molina E, Klein CC, Serras F, Mishra RK, Guigo R, Corominas M:
638 **Damage-responsive elements in *Drosophila* regeneration.** *Genome Res*
639 2018.

640 74. Ahmed-de-Prado S, Baonza A: **Drosophila as a Model System to Study**
641 **Cell Signaling in Organ Regeneration.** *Biomed Res Int* 2018,
642 **2018:**7359267.

643 75. Guo Z, Lucchetta E, Rafel N, Ohlstein B: **Maintenance of the adult**
644 **Drosophila intestine: all roads lead to homeostasis.** *Curr Opin Genet Dev*
645 **2016, 40:**81-86.

646 76. French V: **Leg regeneration in the cockroach, Blattella**
647 **germanica. II Regeneration from a non-congruent tibial graft/host**
648 **junction** 1976, **35**(2):267-301.

649 77. Nakamura T, Mito T, Bando T, Ohuchi H, Noji S: **Molecular and Cellular**
650 **Basis of Regeneration and Tissue Repair.** *Cellular and Molecular Life*
651 **Sciences** 2007, **65**(1):64.

652 78. Bando T, Mito T, Hamada Y, Ishimaru Y, Noji S, Ohuchi H: **Molecular**
653 **mechanisms of limb regeneration: insights from regenerating legs of the**
654 **cricket Gryllus bimaculatus.** *Int J Dev Biol* 2018, **62**(6-7-8):559-569.

655 79. Das S: **Morphological, Molecular, and Hormonal Basis of Limb**
656 **Regeneration across Pancrustacea.** *Integrative and Comparative Biology*
657 **2015, 55**(5):869-877.

658 80. Ahmed-de-Prado S, Diaz-Garcia S, Baonza A: **JNK and JAK/STAT**
659 **signalling are required for inducing loss of cell fate specification during**
660 **imaginal wing discs regeneration in Drosophila melanogaster.** *Dev Biol*
661 **2018, 441**(1):31-41.

662 81. Bergantinos C, Corominas M, Serras F: **Cell death-induced regeneration in**
663 **wing imaginal discs requires JNK signalling.** *Development* 2010,
664 **137**(7):1169-1179.

665 82. Blanco E, Ruiz-Romero M, Beltran S, Bosch M, Punset A, Serras F,
666 Corominas M: **Gene expression following induction of regeneration in**
667 **Drosophila wing imaginal discs. Expression profile of regenerating wing**
668 **discs.** *BMC Dev Biol* 2010, **10**:94.

669 83. Bosch M, Bishop SA, Baguna J, Couso JP: **Leg regeneration in Drosophila**
670 **abridges the normal developmental program.** *Int J Dev Biol* 2010, **54**(8-
671 9):1241-1250.

672 84. Bosch M, Serras F, Martin-Blanco E, Baguna J: **JNK signaling pathway**
673 **required for wound healing in regenerating Drosophila wing imaginal**
674 **discs.** *Dev Biol* 2005, **280**(1):73-86.

675 85. Harris RE, Setiawan L, Saul J, Hariharan IK: **Localized epigenetic silencing**
676 **of a damage-activated WNT enhancer limits regeneration in mature**
677 **Drosophila imaginal discs.** *Elife* 2016, **5**.

678 86. Santabarbara-Ruiz P, Lopez-Santillan M, Martinez-Rodriguez I, Binagui-
679 Casas A, Perez L, Milan M, Corominas M, Serras F: **ROS-Induced JNK and**
680 **p38 Signaling Is Required for Unpaired Cytokine Activation during**
681 **Drosophila Regeneration.** *PLoS Genet* 2015, **11**(10):e1005595.

682 87. Schwartz S, Rhiner C: **Reservoirs for repair? Damage-responsive stem**
683 **cells and adult tissue regeneration in Drosophila.** *Int J Dev Biol* 2018,
684 **62**(6-7-8):465-471.

685 88. Bando T, Ishimaru Y, Kida T, Hamada Y, Matsuoka Y, Nakamura T, Ohuchi
686 H, Noji S, Mito T: **Analysis of RNA-Seq data reveals involvement of**
687 **JAK/STAT signalling during leg regeneration in the cricket Gryllus**
688 **bimaculatus.** *Development* 2013, **140**(5):959-964.

689 89. Hamada Y, Bando T, Nakamura T, Ishimaru Y, Mito T, Noji S, Tomioka K,
690 Ohuchi H: **Leg regeneration is epigenetically regulated by histone H3K27**
691 **methylation in the cricket Gryllus bimaculatus.** *Development* 2015,
692 **142**(17):2916-2927.

693 90. Hamada Y, Tokuoka A, Bando T, Ohuchi H, Tomioka K: **Enhancer of zeste**
694 **plays an important role in photoperiodic modulation of locomotor**
695 **rhythm in the cricket, Gryllus bimaculatus.** *Zoological Lett* 2016, **2**:5.

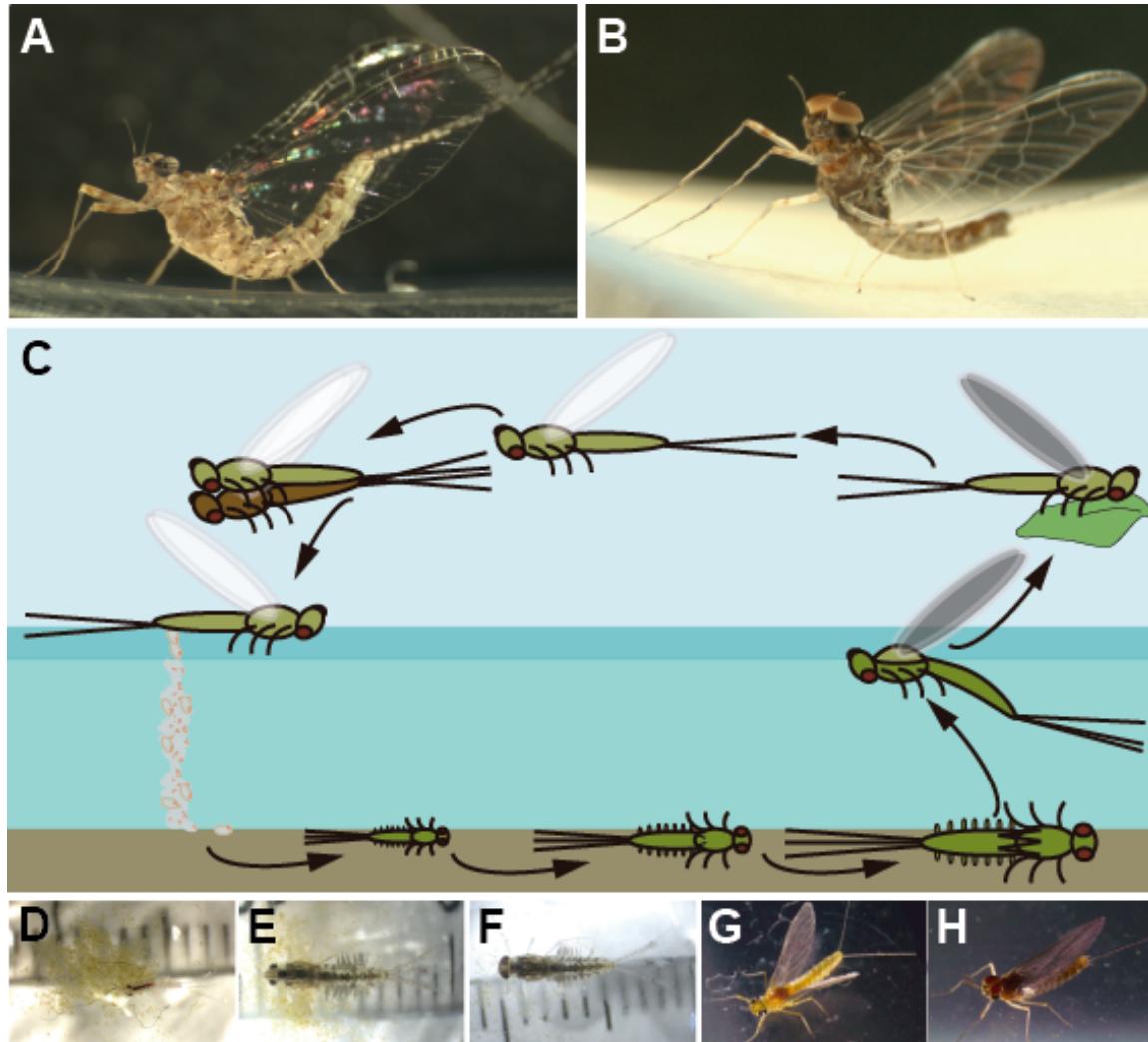
696 91. Nakamura T, Mito T, Miyawaki K, Ohuchi H, Noji S: **EGFR signaling is**
697 **required for re-establishing the proximodistal axis during distal leg**
698 **regeneration in the cricket Gryllus bimaculatus nymph.** *Developmental*
699 *Biology* 2008, **319**(1):46-55.

700 92. Tanaka A, Akahane H, Ban Y: **The problem of the number of tarsomeres**
701 **in the regenerated cockroach leg.** *Journal of Experimental Zoology* 1992,
702 **262**(1):61-70.

703 93. Dewitz H: **Zool Anz.** 13 1890, **525**.

704 94. Cuénot L: **L'adaptation**: les Impr. réunies; 1925.

705 95. Wingfield CA: **The Function of the Gills of Mayfly Nymphs from Different**
706 **Habitats**. *Journal of Experimental Biology* 1939, **16**(3):363-373.

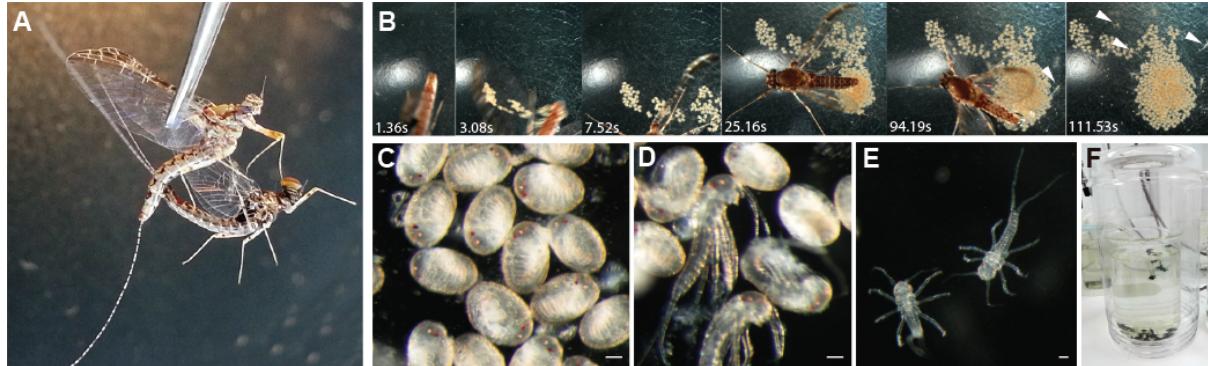

707 96. O'Donnell BC, Jockusch EL: **The expression of wingless and Engrailed in**
708 **developing embryos of the mayfly Ephoron leukon (Ephemeroptera:**
709 **Polymitarcyidae)**. *Development Genes and Evolution* 2010, **220**(1):11-24.

710 97. Kiauta B, M. MAW: **Behaviour of the spermatocyte chromosomes of the**
711 **mayfly, Cloeon dipterum (Linnaeus, 1761) s.l. (Ephemeroptera:**
712 **Baetidae), with a note on the cytology of the order**. *Genen Phaenen* 19
713 (2/3): 31-39 1977.

714 98. Wolf E: **Zur Karyologie der Eireifung und Furchung bei Cloeon dipterum**
715 **L. (Bengtsson)(Ephemerida, Baetidae)**. *Biol Zbl* 79: 153-198 1960.

716

717

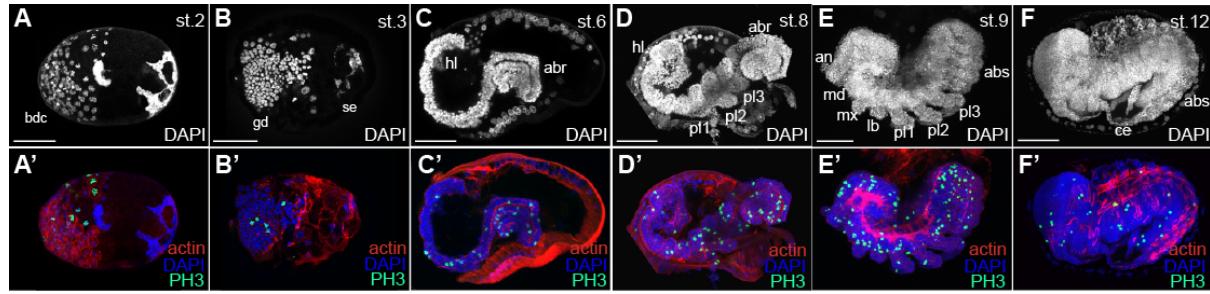


718

719

720 **Figure 1. *C. dipterum* life cycle. (A)** *C. dipterum* adult female **(B)** *C. dipterum* adult
721 male. **(C)** Cartoon depicting *C. dipterum* life cycle. Female lays the eggs in a water
722 stream where they hatch as juvenile nymphs. After several molts nymphs emerge
723 from the water to the land as immature subimagoes. Then, they moult again to
724 become sexually mature individuals that fly forming swarms to mate. **(D)** Early-mid
725 nymph. **(E)** Late female nymph. **(F)** Late male nymph. **(G)** Female subimago. **(H)**
726 Male subimago.

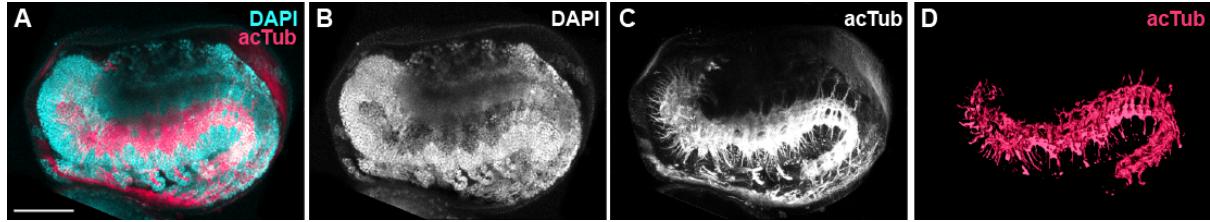
727



728

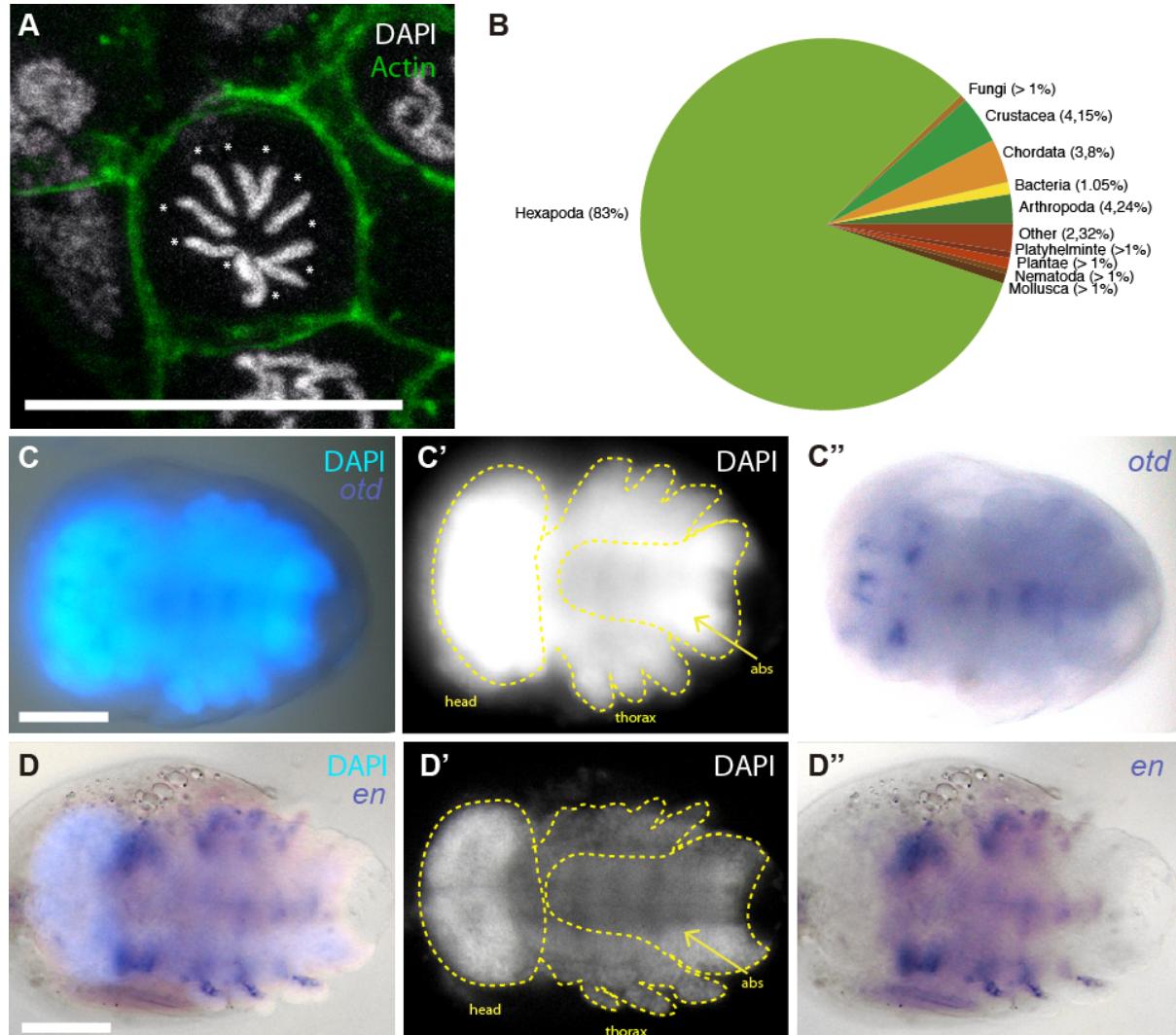
729

730 **Figure 2. *C. dipterum* culture in the laboratory.** (A) Couple of adults mating
731 through forced copula. (B) Temporal sequence of a gravid female laying fertilised
732 eggs that after 94 seconds hatch as swimming nymphs (white arrowheads). (C-D)
733 Fertilised eggs and nymphs hatching. (E) Freshly hatched nymphs. (F) Culture
734 system in the laboratory. Nymphs are in the beaker with bubbling water and algae.
735 The beaker is placed inside a PET bottle to keep the subimagoes once they emerge
736 from the water. Scale bars: 50 μ m


737

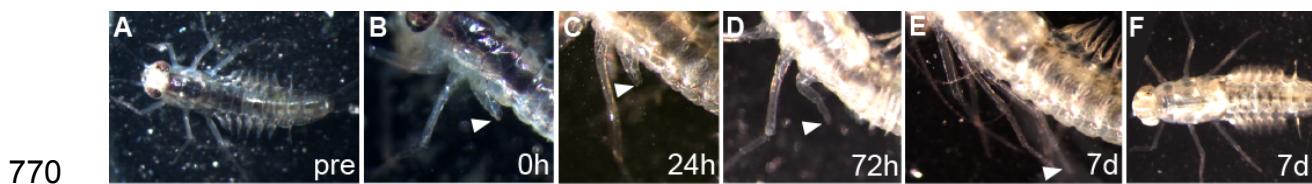
738

739 **Figure 3. Representative phases of *C. dipterum* embryogenesis.** Upper panels
740 show embryo morphology detectable through DAPI staining (white). Lower panels
741 show DAPI (nuclei, blue), Actin (cell contour cRed) and mitosis (anti-PH3, green).
742 **(A-A')** Blastoderm formation (stage 2: st. 2) bcd: blastoderm cells are replicating very
743 actively, shown by PH3 staining (A'), in green. **(B-B')** Germ disc (gd) formation (st.
744 3). **(C-C')** S-shaped embryo (st. 6). The germ band elongates backwards through
745 active cell proliferation, mainly in the posterior region of the embryo (abr: abdominal
746 region; hl: head lobe). **(D-D')** Segmentation of the embryo (st. 8) starts from the
747 cephalic (hl) and thoracic regions, which segments are already visible, towards the
748 abdominal regions (abr). **(E-E')** Proctodaeum formation (st. 9). Segmentation
749 progresses, appendages enlarge and get segmented (an: antenna, md: mandible,
750 mx: maxilla, lb: labium, pl: pro-leg). **(F-F')** The abdominal regions are already
751 segmented (abs: abdominal segments). Cercei (ce) are already visible. Dorsal
752 closure proceeds. Scale bars: 50 μ m


753

754

755 **Figure 4. *C. dipterum* embryonic nervous system. (A-C)** Embryo (DAPI staining
756 reveals embryo morphology, B) exhibiting the ventral nervous cord (staining using
757 anti-acetylated alphaTubulin antibody, C). **(D)** Surface reconstruction of the ventral
758 nervous cord and its projections towards the appendages. Scale bars: 50 μ m.


759

760

761 **Figure 5. Genomics and transcriptomic tools.** (A) The genome of *C. dipterum* is
762 structured in a karyotype of $2n = 10$ [97, 98]. Somatic embryonic cell showing
763 condensed DNA in chromosomes (each of them highlighted with an asterisk). DNA
764 stained with DAPI (white) and cell membrane visible through Phalloidin-Rhodamin
765 staining (green). Scale bar: 20 μ m (B) Pie chart representing top blastp results of
766 unigenes against UniRef90 protein database. (C-C'') *otd* expression pattern (C, C'')
767 in the mayfly embryo visible through DAPI staining (C, C'). (D-D'') *en* expression
768 domain (D, D'') in *C. dipterum* embryo (D, D').

769

770 **Figure 6. Leg regeneration of a *C. dipterum* nymph. (A)** Mayfly nymph before
771 amputation of the 3rd leg. **(B)** Nymphal leg (white arrowhead) immediately after
772 amputation. **(C)** 24 hours after amputation the wound is healed (arrowhead). **(D)** 72
773 hours after amputation, the tissue is already partially regenerated. **(E-F)** After seven
774 days, the amputated leg has recovered its initial size and shape with all the
775 segments perfectly formed.
776

777