OO UT S WD -

bioRxiv preprint doi: https://doi.org/10.1101/494450; this version posted February 22, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

cis-Regulatory Chromatin Contacts in Neural Cells Reveal Contributions of Genetic Variants to
Complex Neurological Disorders

Authors: Michael Song'?, Xiaoyu Yang', Xingjic Ren', Lenka Maliskova', Bingkun Li', Ian Jones',
Chao Wang3, Fadi Jacob®’ , Kenneth Wu6, Michela Traglia7, Tsz Wai Taml, Kirsty Jamiesonl, Si-Yao
Lu8, Guo-Li Ming4’9’1°’“, Jun Yaog, Lauren A. Weiss”, Jesse Dixonlz, Luke M. Judgeé’n, Bruce R
Conklin6’14, Hongjun Song4’9’10’15 , Li Gan3, Yin Shen'!%%*

Affiliation:

nstitute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San
Francisco, San Francisco, CA, USA

3Gladstone Institute for Neurological Disorders, San Francisco, CA, USA

*Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine,
University of Pennsylvania, Philadelphia, PA 19104, USA.

>The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine,
Baltimore, MD 21205, USA.

SGladstone Institute for Cardiovascular Disease, San Francisco, CA, USA

"Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA

8State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life
Sciences, Tsinghua University, Beijing, China.

Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104,
USA.

PInstitute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
"Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA.

12Salk Institute for Biological Studies, La Jolla, CA, USA

13 Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
“Departments of Medicine and Ophthalmology, University of California, San Francisco, San Francisco,
CA, USA

">The Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Neurology, University of California, San Francisco, San Francisco, CA, USA

*Corresponding Author: yin.shen@ucsf.edu



https://doi.org/10.1101/494450
http://creativecommons.org/licenses/by-nc-nd/4.0/

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

bioRxiv preprint doi: https://doi.org/10.1101/494450; this version posted February 22, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Abstract

Mutations in gene regulatory elements have been associated with a wide range of complex neurological
disorders. However, due to their inherent cell type-specificity and difficulties in characterizing their
regulatory targets, our ability to identify causal genetic variants has remained limited. To address these
constraints, we perform integrative analysis of chromatin interactions using promoter capture Hi-C
(pcHi-C), open chromatin regions using ATAC-seq, and transcriptomes using RNA-seq in four
functionally distinct neural cell types: iPSC-induced excitatory neurons and lower motor neurons, iPSC-
derived hippocampal dentate gyrus (DG)-like neurons, and primary astrocytes. We identify hundreds of
thousands of long-range cis interactions between promoters and distal promoter-interacting regions
(PIRs), enabling us to link regulatory elements to their target genes and reveal putative pathways that are
dysregulated in disease. We validate several novel PIRs using CRISPR techniques in human excitatory
neurons, demonstrating that CDK5RAP3, STRAP, and DRD?2 are transcriptionally regulated by
physically linked enhancers. Finally, we show that physical chromatin interactions mediate genetic
interactions in autism spectrum disorder (ASD). Our study illustrates how characterizing the 3D
epigenome elucidates novel regulatory relationships in the central nervous system (CNS), shedding light

on previously unknown functions for noncoding variants in complex neurological disorders.

Introduction

A large number of genetic variations associated with diverse human traits and diseases are located in
putative regulatory regions. Genetic lesions in these regulatory elements can contribute to complex
human disease by modulating gene expression and disrupting finely tuned transcriptional networks in
development and function. However, deciphering the roles of regulatory variants in disease pathogenesis
remains nontrivial due to their lack of annotation in the physiologically relevant cell types. Furthermore,
regulatory elements often interact with their cognate genes over long genomic distances, precluding a
straightforward mapping of regulatory element connectivity and limiting the functional interpretation of
noncoding variants from genome wide association studies (GWAS). Typically, neighboring genes are
assigned as risk loci for noncoding variants. However, this nearest gene model is challenged both by
experimental and computational evidence'. For instance, two independent obesity-associated SNPs in
the FTO gene have been shown not to regulate F70O, but /RX3 in the brain and both /RX3 and /RX5 in
adipocytes, respectively®*. The FTO locus in obesity illustrates the potentially intricate and cell type-

specific manner in which noncoding variants contribute to disease. However, such well-annotated cases
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are rare, and we still lack systematic mappings of GWAS SNPs to their regulatory targets, especially in

the context of complex neurological disorders.

Previous epigenomic annotations of the germinal zone (GZ) and cortical and subcortical plates (CP) in
the human brain revealed the importance of 3D chromatin structure in gene regulation and disease™®.
However, these studies utilized complex, heterogeneous tissues, limiting their abilities to interpret gene
regulation in a cell type-specific manner. Therefore, charting the landscape of epigenomic regulation in
well-characterized, physiologically relevant cell types should offer significant advantages for identifying
causal variants, deciphering their functions, and enabling novel therapies for previously intractable
diseases. Towards this goal, we used wild type human induced pluripotent stem cells (iPSCs) from the
WTCI11 line’ to generate three neuronal cell types: excitatory neurons®, hippocampal dentate gyrus
(DG)-like neurons’, and lower motor neurons'®. GFAP-positive astrocytes from the gastrulating brains
of two individuals were also included for their relevance to human brain development and disease. By
performing integrative analysis of promoter-centric, long-range chromatin interactions, open chromatin
regions, and transcriptomes (Fig. 1a), we provide comprehensive annotations of promoters and distal
promoter-interacting regions (PIRs) for each of the neural cell types. We identify putative gene targets
for both in vivo validated enhancer elements from the VISTA Enhancer Browser'' and disease-
associated variants, enabling the functional validation of PIRs driving diverse processes in cellular

identity and disease.

Results

Characterizing the epigenomic landscape of long-range chromatin interactions in human neural
cells

To investigate general features of the epigenomic landscape for specific cell types in the human central
nervous system (CNS), we focused on isogenic iPSC-induced excitatory neurons, iPSC-derived
hippocampal dentate gyrus (DG)-like neurons, and iPSC-induced lower motor neurons, three neuronal
subtypes which are currently impractical to isolate from primary tissue. Excitatory neurons were induced
from a wild type male iPSC line (WTC11) containing an integrated, isogenic, and inducible neurogenin-
2 (Ngn2) cassette (i°N iPSCs) with doxycycline-inducible Ngn2 at the AAVSI safe-harbor locus®. The
i*N iPSCs enabled us to obtain homogenous excitatory neurons expressing both the cortical neuron

8,12
1%

marker CUX1 and the glutamatergic neuron marker VGLUT (Supplementary Fig. 1a, b).
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Hippocampal DG-like neurons expressing the DG granule cell marker PROX1 were differentiated from
a WTC11 iPSC line using defined factors as described in previous publications”'” (Supplementary Fig.
1a, b). Finally, lower motor neurons were induced from a WTCI11 line containing integrated, isogenic,
and inducible copies of NGN2, ISL1, and LHX3 at the AAVS] safe-harbor locus (i’LMN iPSCs)'’. The
cells exhibited homogenous expression of the lower motor neuron markers HB9 and SMI32 in culture
(Supplementary Fig. 1a, b). In addition, all three neuronal subtypes exhibited high expression of the
synaptic genes SYNI and SYN2, the NMDA receptor genes GRINI and GRIN2A, and the AMPA
receptor genes GRIAI and GRIA2, evidencing mature synaptic functions (Supplementary Fig. 1b). We
included two batches of astrocytes isolated from 19 week gastrulating male fetal brain samples using
GFAP as a selection marker (ScienCells). Astrocytes were cultured for two or fewer passages in vitro
and confirmed for positive expression of GFAP prior to harvesting (Supplementary Fig. 1a). Based on
the age of the donors and transcriptional signatures for dozens of marker genes distinguishing astrocyte
progenitor cells (APCs) and mature astrocytes (e.g. high expression of the APC markers TOP24 and
TNC and low expression of the mature astrocyte markers AGXT2L1 and WIFI)", the astrocytes were
determined to most likely be APCs (Supplementary Fig. 1b).

We constructed pcHi-C, ATAC-seq, and RNA-seq libraries using two to four biological replicates for
each cell type (Supplementary Table 1). Specifically, promoter-centric, long-range chromatin
interactions were mapped using a set of 280,445 unique RNA probes targeting the promoters of 19,603
coding genes in GENCODE 19 (Jung et al., in revision). We first confirm the reproducibility of contact
frequency and saturation of inter-replicate correlation for our pcHi-C libraries using HiCRep
(Supplementary Fig. 2¢, d). Hierarchical clustering of ATAC-seq read density and gene expression
similarly group the replicates by cell type (Supplementary Fig. 2a, b), evidencing minimal variations
during the cell derivation process. Using CHICAGO'"®, we identified significant chromatin interactions
with score = 5 at a total of 195,322 unique interacting loci across the four cell types, with 73,890,
108,156, 66,978, and 84,087 significant interactions being represented in the excitatory neurons,
hippocampal DG-like neurons, lower motor neurons, and astrocytes, respectively (Supplementary
Table 2). Overall, 17,065 or 83.9% of coding gene promoters participate in interactions in at least one
cell type (Supplementary Fig. 1¢), with 80% of PIRs interacting within a distance of 160 kb (Fig 1c,
Supplementary Fig. 3a). Furthermore, over 97% of interactions reside within topologically associating

domains (TADs) from Hi-C datasets in human fetal brain tissue® (Fig. 1b). Approximately 40% of
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interactions occur between promoter-containing bins, while the remaining 60% occur between promoter-
and non-promoter-containing bins (Fig. 1d). The observed numbers of promoter-promoter interactions

can potentially be attributed to transcriptional factories of co-regulated genes, widespread co-

16,17 18,19

localization of promoters ', and the ability of many promoters to doubly function as enhancers
Finally, up to 40% of interacting distal open chromatin peaks are specific to each cell type (Fig. 1e),
suggesting that PIRs are capable of orchestrating cell type-specific gene regulation. Astrocytes in
particular exhibit the largest proportion of cell type-specific open chromatin peaks, likely reflecting

basic differences between the neuronal and glial lineages.

We observe that the majority of promoters interact with more than one PIR (Fig. 2a). This observation is
consistent with the large number of regulatory elements in the human genome and previous findings
that each promoter can be regulated by multiple enhancers®'. To examine global chromatin signatures at
PIRs, we leveraged chromatin states inferred by ChromHMM? in matched human brain tissues from the
Roadmap Epigenomics Project” (dorsolateral prefrontal cortex for excitatory neurons, hippocampus
middle for hippocampal DG-like neurons, and normal human astrocytes for fetal astrocytes). We show
that PIRs are highly enriched for active chromatin features including open chromatin peaks, enhancers,
and transcriptional start sites (TSSs) while simultaneously exhibiting depletion for repressive
heterochromatin marks (Fig. 2b). PIRs are also enriched for H3K27ac and CTCF binding sites mapped
using CUT&RUN?" in excitatory neurons and lower motor neurons, as well as ChIP-seq in astrocytes
from ENCODE (Supplementary Fig. 3b). We find that promoters interacting exclusively with
enhancer-PIRs exhibit elevated levels of transcription compared to promoters interacting exclusively
with repressive-PIRs (two sample t-test, one-sided, p=9.4x10") (Fig. 2¢c, Supplementary Fig. 3c).
Since multiple enhancers can interact with and regulate the same promoter, we assessed whether
interactions with multiple enhancer-PIRs could present evidence for additive effects on transcription. By
grouping genes according to the number of interactions their promoters form with enhancer-PIRs in each
cell type, we discover a positive correlation between the number of enhancer-PIR interactions and the
mean gene expression in each group (linear regression test, p=2.1x10) (Fig. 2d, Supplementary Fig.
3d). Our results demonstrate that chromatin interactions enable the identification of PIRs which are not

only enriched for regulatory features, but which can also modulate gene expression.

PIRs contribute to cellular identity
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We find that chromatin interactions exhibit distinct patterns of cell type specificity, with tens of
thousands of interactions that are specific to each cell type (Fig. 3a, Supplementary Fig. 4a). These
interactions may underlie important functional differences between the cell types, as gene ontology
(GO) enrichment analysis for genes interacting with cell type-specific PIRs produced terms associated
with neuronal function in the neuronal subtypes and immune function in the astrocytes (Fig. 3b,
Supplementary Table 3). Meanwhile, 58,809 or 30.1% of unique interactions are shared across all four
cell types, with neural precursor cell proliferation and neuroblast proliferation ranking among the top
GO terms for genes participating in shared interactions. In conjunction with the observed enrichment of
active chromatin signatures at PIRs, the cell type-specific nature of PIRs suggests that they harbor
lineage-specific regulatory roles. Indeed, numerous promoters of differentially expressed genes form
specific contacts with PIRs in the corresponding cell types, including OPHNI in hippocampal DG-like
neurons, CHAT in lower motor neurons, and 7LR4 in astrocytes (Supplementary Fig. 4b). OPHNI1 is
known to stabilize synaptic AMPA receptors and mediate long-term depression in the hippocampus, and
its loss of function is associated with X-linked mental retardation”>. Meanwhile, CHAT is a principal
marker for lower motor neuron maturity and function, and TLR4 is a key regulator of immune activation
and synaptogenesis in astrocytes”®. Finally, hierarchical clustering of interaction scores across all
significant promoter-PIR interactions demonstrates that cell types can reliably be grouped according to
lineage-specific features, with the three neuronal subtypes clustering together more tightly than with the

astrocytes (Fig. 3a).

Gene expression is coordinately controlled by transcription factors (TFs) and regulatory elements such
as enhancers. Therefore, PIRs identified through chromatin interactions provide a unique perspective to
investigate potential mechanisms underlying cell type-specific gene regulation. We use HOMER?’ to
evaluate TF motif enrichment at cell type-specific distal open chromatin peaks in PIRs for each cell type
(Fig. 3¢, Supplementary Table 4). We find that the CTCF motif is highly enriched across all cell types,
consistent with its role in mediating looping between promoters and regulatory elements within TADs**
3 Furthermore, motifs for ASCL1, ISL1, NEUROG2, OLIG2, and ZIC3, TFs linked to neuronal fate
commitment, are enriched in various patterns across the neuronal subtypes. Other TFs functioning in
brain development include CUX1/CUX2, EBF1/EBF2, HFN6, LHX1/LHX2, NKX6-1, TCF4, TGIF2,
and the RFX factors. The TBR1 motif is enriched in hippocampal DG-like neurons, consistent with

TBRI1’s roles in NMDA receptor assembly and maintaining long-term potentiation in the
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hippocampus®”>. Meanwhile, astrocytes are enriched for motifs in the Fos and Jun families, which
contain key regulators for inflammatory and immune pathways. Also enriched in astrocytes are motifs
for ATF3 and the RUNX and TEAD families, TFs with established roles in astrocyte differentiation,
maturation, and proliferation. Motif enrichment is not always accompanied by expression of the
corresponding TFs, potentially reflecting synergistic interactions between different cell types in the
CNS. For example, NRF2 is a key regulator of the oxidative stress response, and its activity has been
shown to be repressed in neurons while inducing a strong response in astrocytes>>. Therefore, its shared
expression may reflect the neuroprotective role that astrocytes provide for other cell types. Alternatively,
TFs do not have to be expressed at high levels to perform their cellular functions due to additional
avenues for regulation at the post-transcriptional and protein levels. Overall, our results demonstrate that
PIRs contribute to cell fate commitment and are capable both of recapitulating known and revealing

novel regulators.

In vivo validation of interactions linking enhancer elements to their target genes

Regulation of target genes by enhancers is thought to be mediated by physical chromatin looping.
Congruent with this concept, interactions detected by pcHi-C can be used to link enhancers with their
target genes. The VISTA Enhancer Browser'' is a database containing experimentally validated human
and mouse noncoding sequences with enhancer activity. To date, it contains 2,956 tested elements,
1,568 of which exhibit enhancer activity during embryonic development''. However, the regulatory
targets for these enhancer elements remain largely uncharacterized. To address this knowledge gap, we
provide detailed cell type-specific annotations of putative target genes for each enhancer element using
our significant promoter-PIR interactions and open chromatin peaks (Supplementary Table 5). In total,
our interactions recover 589 or 37.6% of positively annotated enhancer elements with human sequences,
320 of which were further annotated as neural enhancers according to tissue-specific patterns of LacZ
staining in mouse embryos (Fig. 4a, b). Of the 589 interacting positive enhancer elements, only 60
interact exclusively with their nearest genes (scenario III), whereas 306 interact exclusively with more
distal genes (scenario I), identifying 464 novel gene targets (Fig. 4c). Meanwhile, 118 elements interact
with both their nearest genes and a total of 484 more distal genes (scenario II). The remaining 105
elements cannot be resolved at the HindIIl fragment level for interactions with their nearest genes

(scenario 1V), though they interact with 395 additional non-neighboring genes. In total, our chromatin
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interactions identify 1,343 novel, putative gene targets for positive enhancer elements in the VISTA

Enhancer Browser, significantly expanding our knowledge of gene regulatory relationships at these loci.

Validation of PIRs detected in human neural cells using CRISPR techniques

We performed validation of two PIRs (regions 1 and 2) physically interacting up to 40 kb away with the
promoter of CDK5RAP3 (Fig. 4d). CDK5RAP3 is a known regulator of CDKS5, which functions in
neuronal development™ and regulates proliferation in non-neuronal cells®. Both PIRs overlap open
chromatin peaks as well as enhancer elements with positively annotated forebrain activity in the VISTA
Enhancer Browser (mm8766 and mm999 for region 1 and mm1299 for region 2) (Fig. 4e). We targeted
both regions for CRISPR deletion in i°N iPSCs, followed by differentiation of the iPSCs into excitatory
neurons and quantification of any changes in gene expression by qPCR. Deleting the 2 kb open
chromatin peak in region 1 led to significant downregulation of CDK5RAP3 expression (two sample t-
test, two-sided, p=7.7x10") (Supplementary Fig. 4c). Upon trying to delete the open chromatin peak in
region 2, we observed massive cell death of iPSCs immediately following introduction of the Cas9-
sgRNA protein complex. We picked 48 individual clones from cells surviving the transfection, but failed
to isolate any clones with deletions, suggesting that this locus is essential for maintaining CDK5RAP3
expression and survival in iPSCs. To circumvent the lethal phenotype for iPSCs associated with region
2, we silenced both regions using CRISPR interference (CRISPRi) in excitatory neurons. We also
silenced a third region interacting in the other cell types, but not in excitatory neurons (region 3). We
show that silencing of regions 1 and 2 but not region 3 leads to significant downregulation of
CDK5RAP3 expression without influencing the expression of nearby genes (two sample t-test, two-
sided, p=3.2x10® for region 1 and p=2.2x10" for region 2) (Fig. 4f-g). Interestingly, a neighboring
enhancer element annotated with spinal cord activity (mm1576) also participates in interactions with the
CDK5RAP3 promoter in lower motor neurons and astrocytes, but not in the excitatory neurons and
hippocampal DG-like neurons (Fig. 4d, e). These results demonstrate that chromatin interactions
recapitulate cell type-specific patterns of enhancer activity, underscoring the importance of studying

epigenomic regulation in the appropriate cell types.

Cell type-specific enrichment and regulatory target identification for complex neurological

disorder-associated variants at PIRs
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Previous large-scale epigenomic studies of human tissues and cell lines highlighted the importance of
disease-associated variants at distal regulatory regions® and the need for high-throughput approaches to
prioritize variants for further validation. Therefore, we used our chromatin interactions to annotate
complex neurological disorder- and trait-associated variants available from the GWAS Catalog®. We
downloaded a total of 6,396 unique GWAS SNPs at a significance threshold of 10 for eleven traits
including Alzheimer’s disease (AD), attention deficit hyperactivity disorder (ADHD), autism spectrum
disorder (ASD), amyotrophic lateral sclerosis (ALS), bipolar disorder (BD), epilepsy (EP),
frontotemporal dementia (FTD), mental processing (MP), Parkinson’s disease (PD), schizophrenia
(SCZ), and unipolar depression (UD). The GWAS SNPs were imputed at a linkage disequilibrium (LD)
threshold of 0.8 using HaploReg®” and filtered to obtain a total of 95,954 unique imputed SNPs across
all traits (Supplementary Table 6). We find that SNPs are enriched at PIRs in a disease- and cell type-
specific manner (Fig. Sa), with ASD, MP, and SCZ SNPs enriched at PIRs across all cell types. UD
SNPs are exclusively enriched in excitatory neurons and hippocampal DG-like neurons, whereas AD,
ADHD, and BD SNPs also exhibit enrichment in lower motor neurons. ALS SNPs are enriched in all the
neuronal subtypes but not in astrocytes, consistent with the characterization of ALS as a motor neuron
disease and reinforcing evidence for its role in hippocampal degeneration®. Notably, PD SNPs are
enriched in astrocytes but not in other cell types. The enrichment of PD SNPs at astrocyte-specific PIRs
also supports the theory that astrocytes play an initiating role in PD*’, based on evidence that numerous
genes implicated in PD possess functions unique to astrocyte biology, as well as the neuroprotective
roles that astrocytes serve for dopaminergic neurons in the substantia nigra. Finally, EP and FTD SNPs
are not enriched in any of the cell types, indicating their potential functions in alternative cell types,

insufficient study power, or mechanisms acting outside of chromatin-mediated gene regulation.

Up to 70% of GWAS SNPs have at least one SNP in linkage overlapping PIRs in one or more cell types
(Fig. Sb). As it is common practice in association studies to assign GWAS SNPs to their nearest genes,
we evaluated the number of GWAS SNPs with at least one SNP in linkage interacting with their nearest
genes. Overall, across all diseases, we find that 248 GWAS SNPs interact exclusively with their nearest
genes (scenario III), 1,365 GWAS SNPs interact exclusively with more distal genes (scenario I), and
1,243 GWAS SNPs interact with both their nearest genes and more distal genes (scenario II) (Fig. Sc,
Supplementary Fig. 5a). Our interactions identify a total of 16,471 non-neighboring gene targets across

all diseases (Supplementary Table 7). To prioritize variants potentially disrupting regulatory activity,
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we focused on SNPs overlapping open chromatin peaks at PIRs. We find that PIRs for these putative
regulatory SNPs interact with genes possessing functions that are relevant in the context of their
respective disease etiologies. For example, GO enrichment results for genes targeted by AD SNPs
include terms associated with amyloid beta formation, interferon beta production, and cranial nerve
development (Supplementary Fig. 6, Supplementary Table 9). Meanwhile, genes targeted by ASD,
BD, SCZ, and UD SNPs are enriched for epigenetic terms including chromatin assembly, nucleosome
assembly, and nucleosome organization. For genes targeted by SNPs in the remaining diseases, enriched
terms include neuronal processes such as myelin maintenance, neuron projection extension, synapse
assembly, synaptic transmission, and nervous system development. A comprehensive annotation of PIRs
overlapping putative regulatory SNPs is available in Supplementary Table 8. Notably, a previously
reported interaction between the FOXGI promoter and a PIR containing SCZ SNPs over 700 kb away is
recapitulated in our chromatin interactions® (Supplementary Fig. 5b). In another example, an astrocyte-
specific PIR containing AD SNPs targets the promoters of both CASP2, a well-known mediator of

apoptosis that is also associated with neurodegeneration®**!

, and FAMI31B, a putative neurokine
(Supplementary Fig. 7a). Elsewhere, hippocampal DG-like neuron-specific PIRs containing ASD
SNPs target the promoter of BCAS2, whose knockdown in mice leads to microcephaly-like phenotypes
with reduced learning, memory, and DG volume* (Supplementary Fig. 7c). Finally, the MSI2
promoter is simultaneously targeted by PIRs containing BD SNPs in hippocampal-DG like neurons,
lower motor neurons, and astrocytes, as well as a PIR in astrocytes containing SCZ SNPs
(Supplementary Fig. 7d). Overall, we show that an approach utilizing epigenomic annotations to

jointly prioritize variants and identify their regulatory targets enables the identification of regulatory

mechanisms with consequential roles in development and disease.

Validation of PIRs containing neurological disorder-associated regulatory variants

We used CRISPR techniques to validate two PIRs containing putative regulatory SNPs targeting the
promoters of the STRAP and DRD?2 genes. At the STRAP locus, PIRs containing MP SNPs in an intron
for PTPRO interact over 300 kb away with the promoter of STRAP (Fig. 5d). STRAP influences the
cellular distribution of the survival of motor neuron (SMN) complex, which in turn facilitates
spliceosome assembly and is associated with spinal muscular atrophy®. We derived three independent
N iPSC clones containing bi-allelic deletions for this candidate PIR and observed significant

downregulation of STRAP expression following differentiation of the i°N iPSCs into excitatory neurons
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(two sample t-test, two-sided, p=9.4x10™"%). Targeting the same region with CRISPRi silencing also
consistently downregulated STRAP expression in the excitatory neurons (two sample t-test, two-sided,
p=1.5x10") (Supplementary Fig. 5¢). Next, we focused on a candidate PIR 20 kb upstream from the
promoter of DRD2, which encodes the D2 subtype of the dopamine receptor. Previously, rs2514218, a
noncoding variant 47 kb upstream from DRDZ2, was found to be associated with anti-psychotic drug
response in a cohort of schizophrenia patients*. Notably, this variant is in linkage with a cluster of SCZ
SNPs overlapping open chromatin peaks within our candidate PIR. DRD?2 is also the gene associated
with the TaqlA polymorphism which is linked to reduced dopamine receptor density as well as
addiction, anxiety, depression, and social problems in patients*. We first demonstrate that mono-allelic
deletion of the candidate PIR in three independent clones leads to significant downregulation of DRD?2
expression in excitatory neurons (two sample t-test, two-sided, p=2.7x10”") (Fig. 5e). Next, we confirm
that mono-allelic deletion of the candidate PIR leads to allelic imbalance in the expression of DRD2 by
performing TOPO cloning and genotyping cDNA with allele-specific variants (Supplementary Fig.
5d). DRD?2 is a key gene possessing multifaceted roles in human brain function, and it has been
implicated in numerous complex neurological disorders including addiction, bipolar disorder, migraine,
and obesity*’. By prioritizing and validating putative regulatory SNPs for genes such as DRD2, our
integrative approach enables the development of novel therapeutic and diagnostic strategies targeting

specific variants for their roles in otherwise recalcitrant complex neurological disorders.

Genetic variants contribute to chromatin interaction bias and alterations in gene expression

Since regulatory variants and other genetic perturbations are thought to disrupt chromatin looping
between promoters and PIRs, we were interested to see if we could detect instances of allelic bias across
our sets of significant promoter-PIR interactions. We used our chromatin interaction data to perform
genome-wide phasing of WTC11 variants using HaploSeq*’ and performed allele-specific mapping at a
resolution of 10 kb using HiC-Pro. We identify 41 (0.185%) and 151 (0.703%) of significantly
interacting bins to exhibit allelic bias at an FDR cutoff of 5% in excitatory neurons and lower motor
neurons, respectively, confirming that genetic diversity can contribute to allelic bias in chromatin
interactions (Fig. 6a, Supplementary Table 10). In one instance, allelically biased interactions were
detected between a PIR containing SNPs for bipolar alcoholism® and the promoter of SYT17 (Fig. 6b).
SYT17 encodes a member of a family of membrane-trafficking proteins that mediate synaptic function

and regulate calcium-controlled neurotransmitter release®’. The identification of chromatin interactions
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with allelic bias at the SYT17 locus suggests that variants can increase individual risk for bipolar
alcoholism by disrupting interactions for SY7'/7, consistent with a model in which regulatory sequences

recruit TFs and other activating factors to form physical contacts with their gene targets.

Physical chromatin interactions have also been theorized to mediate the effects of cis-acting regulatory
variants such as expression quantitative trait loci (eQTLs) on gene expression. To test this hypothesis,
we first show that significant eQTLs filtered at an FDR cutoff of 5% in cortical and hippocampal tissues
from GTEx V7°° are enriched at PIRs for the excitatory neurons and hippocampal DG-like neurons,
respectively (one sample z-test, p<2.2x107'° for both cell types) (Fig. 6¢). Next, we demonstrate that the
mean scores for interactions overlapping significant eQTL-TSS pairs are significantly higher than the
scores for interactions overlapping randomly shuffled eQTL-TSS pairs (Kolmogorov-Smirnov test,
p=2.28x10" for excitatory neurons and p=1.76x10" for hippocampal DG-like neurons) (Fig. 6d). This
indicates that significant promoter-PIR interactions recapitulating regulatory relationships between
eQTL-TSS pairs are called with increased levels of confidence. Our results present orthogonal lines of
evidence that chromatin interactions can not only be altered by variants in an allele-specific manner, but

that variants can also influence gene expression through the formation of chromatin interactions.

Enrichment of chromatin interactions at ASD SNP pairs

Genetic epistasis refers to combinations of independent variants exhibiting effects which cannot be
predicted from their individual contributions alone, and it has been found to contribute to complex traits,
including behavioral ones, in model organisms®'~>*. Epistasis has also been theorized to drive complex
traits in humans such as ASD>. However, studying epistasis in humans in an unbiased fashion is
challenging due to the large number of loci that need to be tested. In addition, most candidate pairs
studied for epistasis are based on interactions between proteins encoded at the loci of interest. Therefore,
chromatin interactions present a unique opportunity to identify epistatic effects in an unbiased fashion,
as they suggest an attractive model in which physical contacts bridge independent variants to mediate

genetic interactions in epistasis.

For each cell type, we tested for epistatic effects between all combinations of SNP pairs occurring at
both ends of our significant promoter-PIR interactions. Specifically, we evaluated enrichment in our

interactions for independent ASD case-specific SNP pairs over non-overlapping matched pseudo-
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control-specific SNP pairs (see methods)*®. Of all the cell types, only the hippocampal DG-like neurons
showed enrichment at PLINK’s default significance threshold of 107 (chi-squared test, p=2.7x10"'%)
(Fig. 6e). Next, we explored sets of increasingly stringent significance thresholds (Supplementary
Table 11), demonstrating that excitatory neurons also exhibit enrichment at a significance threshold of
10%° (chi-squared test, p=0.02). As an additional set of controls, we tested for epistatic effects in
nonsignificant promoter-PIR interactions with score < 1, demonstrating that for all cell types, significant
interactions exhibit greater enrichments for epistatic effects than are observed in nonsignificant ones.
Overall, our results confirm that genetic interactions can indeed be mediated by chromatin interactions,
underscoring the importance of the 3D epigenome for elucidating factors underlying individual disease

risk.

Discussion

There is a distinct lack of 3D epigenomic annotations in cell types that are relevant to disease and
development, especially in the field of brain research. Past studies have frequently relied on
heterogeneous tissues containing cell types with disparate functions, limiting their abilities to detect and
interpret instances of cell type-specific gene regulation. Neurons and glia, for example, represent
lineages with divergent functions that coexist in most tissues of the CNS. At the same time, complex
diseases often involve multiple dysregulated loci exhibiting cell type-specific patterns of activity. This
presents unique challenges for deciphering disease etiology, for example in distinguishing causative
mechanisms from secondary, reactive phenotypes across distinct populations of cells. Therefore, the
annotation of regulatory relationships in specific, well-characterized cell types should enable the wider
community to derive numerous insights into complex disease biology. Chromatin interactions in
particular are ideal for mapping promoters to distal regulatory elements, as they provide direct physical
evidence of regulatory sequences contacting genes. To date, several studies have characterized
chromatin interactions in fetal brain tissues and neural cell types®’. However, these studies used in situ

Hi-C, which lacks power for calling interactions compared to targeted approaches such as pcHi-C.

In this study, we leverage pcHi-C, ATAC-seq, and RNA-seq to annotate previously uncharted regulatory
relationships between promoters and distal regulatory elements in cell types that are relevant to
neurological disease. We show that PIRs in our interactions are not only cell type-specific, but they are

also enriched for regulatory chromatin signatures including open chromatin peaks as well as in vivo
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validated enhancers in the VISTA Enhancer Browser. Despite functional similarities between the cell
types used in this study, the inspection of cell type-specific distal open chromatin peaks at PIRs reveals
subtype-specific binding sites for TFs involved in the specification and maintenance of cellular identity.
Furthermore, our interactions enable the identification of novel gene targets for disease-associated
variants and the prioritization of variants for validation using CRISPR techniques. We report a large
number of putative regulatory variants which may reveal additional aspects of complex disease biology.
Finally, the disease- and cell type-specific enrichment of variants at PIRs, combined with the
observation that the same PIRs can target different promoters in different cell types, affirms that
regulatory variants possess context-dependent functional specificities, underscoring the importance of

performing validation in the appropriate cell types.

The integrative analysis in this study has several limitations including a lack of cell type-specific
annotations for various genomic and epigenomic features occurring at PIRs. For example, the analysis of
chromatin state enrichment at PIRs utilized data in matched tissues from the Roadmap Epigenomics
Project. Although we generated our own maps of H3K27ac and CTCF binding sites, our results would
be even more sensitive if chromatin states were inferred in matching cell types. Furthermore, while
studying chromatin interactions in healthy cells enables the detection of regulatory interactions in the
absence of dysregulation, the characterization of patient-derived iPSCs will also be important in the
future to glean specific insights into how the 3D epigenome is altered in disease. Additional follow-up
experiments are necessary to determine how the haploinsufficiency of proteins such as STRAP and
DRD2 may contribute to phenotypes in disease. Finally, in vitro cultured cells can at present only
approximate the full set of cellular responses occurring in vivo, especially in complex structures such as
the brain. Future approaches isolating specific cell populations from tissues, leveraging single cell
sequencing, or studying advanced organoid models will be essential for drilling down even deeper into
mechanisms driving cellular identity and disease. In conclusion, our study presents a roadmap for the
annotation of cell type-specific interactions in the CNS, advancing our ability to elucidate mechanisms
by which noncoding variants drive complex neurological disorders. The epigenomic characterization of
additional cell types should continue to yield rich insights into the landscape of transcriptional

regulation, contributing towards an improved understanding of complex disease biology™*.

Methods
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Cell culture

Human excitatory neurons were generated using integrated, isogenic, and inducible neurogenin-2
(Ngn2) iPSCs (i’N iPSCs) with doxycycline-inducible mouse Ngn2 integrated at the AAVSI safe-
harbor locus. The i’N iPSCs have a well-characterized wild type genetic background (WTC11)". A
simplified, two-step pre-differentiation and maturation protocol was used to generate excitatory
neurons®. Briefly, N iPSCs were incubated with 2 pg/ml doxycycline in pre-differentiation media
containing KnockOut DMEM/F12 supplemented with 1x N-2, 1x NEAA, 1 pug/ml mouse laminin, 10
ng/ml BDNF, and 10 ng/ml NT3. In addition, 10 uM Rock inhibitor was included in the pre-
differentiation media for the first day. Media was changed daily for three days. For maturation, pre-
differentiated precursor cells were dissociated and subplated on poly-D-lysine/laminin plates in
maturation media containing equal parts DMEM/F12 and Neurobasal-A with 2 ug/ml doxycycline and
supplemented with 0.5x B-27, 0.5x N-2, 1x NEAA, 0.5x GlutaMax, 1 ug/ml mouse laminin, 10 ng/ml
BDNF, and 10 ng/ml NT3. The doxycycline was omitted from all subsequent media changes. Half of the
media was half changed weekly over the first two weeks, then the amount of media was doubled on day
21. Thereafter, a third of the media was replaced weekly until harvesting. 7 to 8 week old excitatory

neurons were harvested for library preparation.

Human hippocampal DG-like neurons were generated from dissociated hippocampal organoids
(unpublished). Briefly, WTC11 iPSCs were grown on MEF feeder cells and patterned towards a neural
ectoderm fate using dual SMAD inhibition as floating embryoid bodies (EBs) in media containing 20%
KnockOut Serum Replacement. Next, 4 week old EBs were patterned towards a hippocampal fate using
WNT and BMP in media containing 1x N-2. After patterning, organoids were dissociated using a neural
tissue dissociation kit (MiltenyiBiotech), plated on PDL- and laminin-coated plates, then cultured for 4
weeks in media containing 1x B-27, 10 ng/ml BDNF, 10 ng/ml GDNF, 0.5 mM cAMP, and 200 uM

ascorbic acid.

Human lower motor neurons were differentiated from WTCI11 iPSCs with a doxycycline inducible
transgene expressing NGN2, ISL1, and LHX3 integrated at the AAVSI safe-harbor locus (i’'LMN
iPSCs) as previously reported'®. Briefly, i'LMN iPSCs were maintained on growth factor reduced
Matrigel in StemFit media (Nacalai USA). On day 0, 1.5x10° ’LMN iPSCs were plated on 10-cm

dishes, followed 24 hours later by exchange into neural induction media containing doxycycline and
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compound E. On day 3, the precursor cells were replated onto 12-well plates coated with poly-D-lysine
and laminin at a density of 2.5x10° cells per well. From day 3 to day 4, the cells were treated with a
pulse of 40 uM BrdU for 24 hours to suppress the proliferation of undifferentiated cells. Media was
exchanged on day 4 and every three days thereafter. The cells were harvested 10 days post-

differentiation for library preparation.

Human primary astrocytes (PO) were purchased from ScienCell Research Laboratories (catalog #1800)
and cultured using the recommended media (catalog #1801). Briefly, cells were cultured in flasks coated

with poly-L-lysine (2p/cm?) and passaged once using trypsin and EDTA before harvesting.

All cells used in the present study were verified as mycoplasma contamination free.

Immunofluorescence

Cells were fixed in 4% paraformaldehyde (PFA) for 15 minutes at room temperature, then washed
multiple times with PBS containing 0.1% Triton X-100 (PBS-T) before undergoing blocking using a
solution of 5% bovine serum albumin (BSA) in PBS-T for 1 hour at room temperature. Primary
antibodies against Cuxl (Abcam, ab54583, lot: GR3224721-2), MAP2 (Abcam, ab5392, Iot:
GR3242762-1), PROX1 (Millipore, MAB5654, lot: 3075604), HB9 (Millipore, ABN174, lot: 3050643),
SMI32 (Abcam, ab7795, lot: GR299862-23), and GFAP (Abcam, ab7260, lot: GR3240356-1) were
diluted in 5% BSA solution and incubated overnight at 4°C prior to use. Secondary antibodies including
Alexa Fluor 568 goat anti-chicken IgG, Alexa Fluor 568 goat anti-mouse IgG, Alexa Fluor 488 donkey
anti-rabbit IgG, and Alexa Fluor 488 donkey anti-mouse IgG (Molecular Probes) were diluted in 5%
BSA solution and incubated for 1 to 2 hours at room temperature prior to use. Images were acquired

using a Leica TCS SP8 confocal microscope with a 40x oil immersion objective lens.

Promoter capture Hi-C (pcHi-C)

In situ Hi-C libraries for the excitatory neurons, hippocampal DG-like neurons, lower motor neurons,
and astrocytes were constructed from 1 to 2 million cells using HindIII as a restriction enzyme as
previously described™. pcHi-C was performed using biotinylated RNA probes prepared according to an
established protocol (Jung et al., under review). Briefly, sets of 120 bp probes with 30 bp overhangs

were designed to capture the sequences adjacent to restriction sites flanking each promoter-containing
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HindIII fragment. Three probes were targeted to each side of each restriction site, such that a total of 12
probes targeted each promoter-containing HindIIl fragment. In total, promoters (defined as the
sequences up to 500 bp upstream and downstream of each transcription start site) for 19,603 of the
20,332 protein coding genes in GENCODE 19 were captured using this approach. While noncoding
RNA promoters were not explicitly targeted by this design, HindIII fragments containing 3,311 of the
14,069 noncoding RNA promoters in GENCODE 19 were also baited by the probes.

To perform the hybridization, 500 ng of in situ Hi-C libraries were first mixed with 2.5 ug human Cot-1
DNA (Invitrogen #15279011), 2.5 pg salmon sperm DNA (Invitrogen #15632011), and 0.5 nmol each
of the p5 and p7 IDT xGen Universal Blocking Oligos in a volume of 10 pL, then denatured for 5 min at
95°C before holding at 65°C. Next, a hybridization buffer mix was prepared by mixing 25 uL 20x SSPE,
1 uL 0.5 M EDTA, 10 pL 50x Denhardt’s solution, and 13 pL 1% SDS, followed by pre-warming to
65°C. Finally, 500 ng of the probe mix was combined with 1 pL 20 U/uL SUPERase-In (Invitrogen
#AM2696) in a 6 uL volume, pre-warmed to 65°C, then promptly mixed with the library and
hybridization buffer mix. The final solution was transferred to a humidified hybridization chamber and
incubated for 24 hours at 65°C. 0.5 mg Dynabeads MyOne Streptavidin T1 magnetic beads (Invitrogen
#65601) were used to pull down the captured fragments in a binding buffer consisting of 10 mM Tris-
HCI1 pH 7.5, 1 M NaCl, and 1 mM EDTA. Next, the beads were washed once with 1x SSC and 0.1%
SDS for 30 minutes at 25°C, followed by three washes with pre-warmed 0.1X SSC and 0.1% SDS for
10 minutes each at 65°C. The final library was eluted in 20 pL nuclease-free water, amplified, then sent
for paired-end sequencing on the HiSeq 4000 (50 bp reads), the HiSeq X Ten (150 bp reads), or the
NovaSeq 6000 (150 bp reads).

A detailed description of the capture probe design and experimental procedures can be viewed in the

attached manuscript which is under review in Nature.

ATAC-seq
ATAC-seq was carried out as previously described using the Nextera DNA Library Prep Kit (Illumina
#FC-121-1030). First, frozen or fresh cells were washed once with ice cold PBS containing 1x

protease inhibitor before being exchanged into ice cold nuclei extraction buffer (10 mM Tris-HC1 pH

7.5, 10 mM NaCl, 3 mM MgCl,, 0.1% Igepal CA630, and 1x protease inhibitor) and incubated for 5
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minutes on ice. Next, 50,000 cells were counted out, exchanged into 1x Buffer TD, then incubated with
2.5 uL TDE1 for 30 minutes at 37°C with shaking. The transposed DNA was purified using Qiagen
MinElute spin columns, amplified with Nextera primers, then size-selected for fragments between 300
and 1000 bp in size using AMPure XP beads. Libraries were sent for single-end sequencing on the
HiSeq 4000 (50 bp reads) or paired-end sequencing on the NovaSeq 6000 (150 bp reads). Sequencing
reads were mapped to hgl9 and processed using the ENCODE  pipeline
(https://github.com/kundajelab/atac_dnase pipelines) running the default settings. Only the first read
was used, and all sequencing reads were trimmed to 50 bp prior to mapping. Open chromatin peaks
called by the pipeline were expanded to a minimum width of 500 bp for all downstream analyses. Peaks
overlapping coding gene or noncoding RNA promoters were assigned as promoter open chromatin
peaks, while all other peaks were assigned as distal open chromatin peaks. All data processing metrics

are reported in Supplementary Table 1.

RNA-seq

RNA was extracted using the RNeasy Mini Kit (Qiagen #74104). Approximately 500 ng of extracted
RNA was used to construct libraries for sequencing using the TruSeq Stranded mRNA Library Prep Kit
(ITlumina #20020594). Libraries were sent for single-end sequencing on the HiSeq 4000 (50 bp reads) or
paired-end sequencing on the NovaSeq 6000 (150 bp reads). Raw sequencing reads were aligned to
hg19/GRCh37 using STAR running the standard ENCODE parameters, and transcript quantification
was performed in a strand-specific manner using RSEM with the annotation from GENCODE 19. Only
the first read was used, and all sequencing reads were trimmed using TrimGalore 0.4.5 running the
following options: -q 20 --length 20 --stringency 3 --trim-n. The edgeR package in R was used to
calculate TMM-normalized RPKM values for each gene based on the expected counts and gene lengths
for each replicate reported by RSEM. The mean gene expression across all replicates was used for each

cell type. All data processing metrics are reported in Supplementary Table 1.

CUT&RUN

CUT&RUN libraries for excitatory neurons and lower motor neurons were constructed for 100,000 to
250,000 cells with antibodies for H3K27ac and CTCF as previously described®*. First, cells were lysed
in nuclei extraction buffer (20 mM HEPES-KOH pH 7.9, 10 mM KCl, 1 mM MgCl,, 0.1% Triton X-

100, 20% glycerol, and 1x protease inhibitor) for 10 minutes on ice. Next, samples were spun down and
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washed twice with nuclei extraction buffer before being resuspended in 100 pL nuclei extraction buffer.
10 uL of Concanavalin A-coated beads previously washed and resuspended in binding buffer (1x PBS, 1
mM CaCl,, 1 mM MgCl,, and 1 mM MnCl,) were then added to the samples and incubated with rotation
for 15 min at 4°C. Next, samples were washed once each with Buffer 1 (20 mM HEPES-KOH pH 7.9,
150 mM NaCl, 2 mM EDTA, 0.5 mM spermidine, 0.1% BSA, and 1x protease inhibitor) and Buffer 2
(20 mM HEPES-KOH pH 7.9, 150 mM NaCl, 0.5 mM spermidine, 0.1% BSA, and 1x protease
inhibitor) before being resuspended in 50 puL of Buffer 2 containing 0.5 pL antibody (H3K27ac from
Active Motif, 39122, lot: 22618011 and CTCF from Millipore 07-729, lot: 305960) and incubating for at
least 2 hours with rotation at 4°C. Following the incubation, samples were washed twice with Buffer 2
before being incubated in 50 pL of Buffer 2 containing ~700 ng/mL protein A-MNase fusion protein
(Batch #6 from the Henikoff Lab) for 1 hour with rotation at 4°C. Samples were washed two more times
and resuspended in 100 puL of Buffer 2 before starting the MNase digestion by adding CaCl, to a
concentration of 2 mM (with the samples kept on ice), followed 30 minutes thereafter by the addition of
100 pL 2X Stop Buffer (200 mM NaCl, 20 mM EDTA, 4 mM EGTA, 50 ug/mL RNase A, 40 ug/mL
glycogen, and 2 pg/mL spike-in DNA) to inactivate the MNase. Samples were incubated for 20 min at
37°C and spun down for 5 minutes at 4°C to release DNA fragments that were subsequently extracted
from the supernatant using Qiagen MiniElute spin columns. Libraries were prepared using TruSeq
adapters and size-selected using SPRIselect beads before being amplified and sent for paired-end
sequencing on the NovaSeq 6000 (150 bp reads). Sequencing reads were first trimmed to 50 bp using
fastp then mapped to hg19 using bowtie2 running the following options: --local --very-sensitive-local --
no-mixed --no-discordant -1 10 -X 700. Picard Tools was used to remove duplicate reads, and MACS2

was used to call peaks on merged replicates at an FDR cutoff of 5%.

Validation of PIRs using CRISPR deletion

To validate genomic interactions captured by pcHi-C, candidate PIRs were targeted for CRISPR
deletion in i°N iPSCs. At each locus of interest, we designed pairs of sgRNAs to delete the putative
regulatory element as localized by open chromatin peaks in the candidate PIR. All sgRNAs were
synthesized by Synthego, and Cas9 protein was sourced from QB3-Berkeley. To generate deletion lines,
CRISPR/Cas9 nucleofections were performed using the LONZA Human Stem Cell Nucleofector® Kit.
For each nucleofection, 500,000 i’N iPSCs were transfected with Cas9:sgRNA RNP complex
(consisting of 12 pg Cas9, 10 ng sgRNA 1, and 10 pg sgRNA 2) using program “A-023" on the LONZA
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4D-Nucleofector. The cells were then seeded onto Matrigel-coated 6-well plates containing Essential
8™ Medium (ThermoFisher #A15169-01) with added Y-27632 for recovery following nucleofection.
After 48 hours, the cells were split into new 6-well plates at a concentration of approximately 50 cells
per well for picking single colonies. Clones picked from the 6-well plates containing homozygous
deletions were confirmed by PCR and induced into excitatory neurons for quantifying the expression of
genes targeted by the deleted elements. We used three independent deletion clones for each experiment,
and clones with wild type genotypes were used as controls. To perform the quantification, total RNA
from the excitatory neurons was extracted using a Qiagen AllPrep DNA/RNA Mini Kit, and cDNA was
synthesized using a Bio-RAD iScript™ cDNA Synthesis Kit. qPCR for targeted genes was performed
with FastStart Essential DNA Green Master reaction mix (Roche) on the LightCycler® 96 System
(Roche). All CRISPR deletion experiments were performed with two independent transfections.

Detailed information on all the primers used can be found in Supplementary Table 12.

Validation of PIRs using CRISPRi

Excitatory neurons induced from i’N iPSCs were infected with lentivirus carrying dCas9-KRAB-blast
(Addgene #89567), and colonies with high expression of dCas9 were picked. The CROP-seq-opti vector
(Addgene #106280) was used for sgRNA expression. sgRNAs were designed, cloned, and cotransfected
with lentivirus packaging plasmids pMD2.G (Addgene #12259) and psPAX (Addgene #12260) into
293T cells using PolyJet (SignaGen Laboratories #SL100688) according to the manufacturer’s
instructions. Virus-containing media was collected for 72 hours, filtered through a 0.45 um filter
(Millipore #SLHVO033RS), and concentrated using an Amicon Ultra centrifugal filter (Millipore
#UFC801024). The virus was titrated into the excitatory neurons by qPCR 72 hours after infection. The
internal control for qPCR targeted an intronic region (forward primer:
TCCTCCGGAGTTATTCTTGGCA, reverse primer: CCCCCCATCTGATCTGTTTCAC). Integration
of the WPRE fragment was quantified in comparison with a control cell line containing a known copy
number of WPRE. For CRISPRI silencing of putative regulatory elements, excitatory neurons were
treated with lentivirus containing sgRNAs (MOI ~3). Cells were collected for mRNA extraction 7 days
following transfection, and the expression of target genes was determined by qPCR. All CRISPRi
experiments were performed in triplicate, with three technical replicates per experiment. Detailed

information on all the primers used can be found in Supplementary Table 12.
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Reproducibility and saturation analysis

We took pcHi-C contact matrices generated at 10 kb resolution using HiC-Pro 2.11.0 with the following
settings (MIN_MAPQ=20, MIN FRAG SIZE=100, MAX FRAG SIZE=5000000,
MIN _INSERT SIZE=100, MAX INSERT SIZE=1200, and reporting only bin pairs that are baited on
at least one end with our pcHi-C probes, with all other settings set to their default values) and calculated
the pairwise stratum adjusted correlation coefficient (SCC) between replicates across all cell types using
HiCRep 1.4.0 on chromosome 1 (h=20 and only considering contacts with distances below 5 Mb). SCCs
evaluated on the other chromosomes closely resembled the results for chromosome 1 (data not shown).
Hierarchical clustering for the pairwise SCC values was performed using the Seaborn clustermap
function in Python. Pairwise correlation heatmaps and clustering dendrograms for ATAC-seq replicates
were generated by counting reads overlapping a set of consensus peaks using the DiffBind package in R,
with the set of consensus peaks defined as peaks occurring in at least two replicates across all cell types
(minOverlap=2). Pairwise distance estimates and clustering dendrograms for RNA-seq replicates were
generated using the DESeq2 package in R. For saturation analysis, we first downsampled all pcHi-C
libraries to 5%, 10%, 20%, 40%, 60%, 80%, and 100% of the final sequencing depths used in the study.
Next, we computed pairwise SCCs between all pairs of biological replicates using HiCRep at these

downsampled sequencing depths.

Calling significant promoter-PIR interactions

Paired-end sequencing reads were first trimmed using fastp running the default settings before being
mapped, filtered, and deduplicated using HiICUP v0.71 with bowtie2 and filtering for ditags between
100 and 1200 bp®'. In addition, the sequencing depths of all libraries was normalized so that each
replicate had the same number of usable reads, or the number of on-target cis pairs interacting over a
distance of 10 kb. Significant promoter-PIR interactions were called using CHiICAGO running the
default settings, retaining baited fragments that are supported by at least 250 reads (minNPerBaits=250).
Promoter-PIR interactions between HindIIl fragments with a score (negative log p-value) of 5 or greater
in each cell type were determined to be significant. All data processing metrics are reported in
Supplementary Table 1. In cases where CHICAGO reported the same interaction twice due to
directionality between two bait-containing fragments (i.e. bait A to bait B, bait B to bait A), the two
interactions were merged, retaining the more significant score of the two interactions. Interchromosomal

interactions were also omitted from the analysis. To call overlaps between our sets of significant
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interactions and genomic and epigenomic features including promoters, open chromatin peaks,
chromatin states, disease-associated variants, and eQTLs, interacting bins were expanded to a minimum
width of 5 kb or retained as the original widths of the HindIIl fragments if they exceeded 5 kb.
Interactions involving HindIII fragments larger than 100 kb were omitted from our analysis due to low
resolution. An interaction was considered to be shared between cell types if both its interacting ends
intersected the corresponding ends of an interaction in another cell type. Otherwise, an interaction was

classified to be cell type-specific.

Chromatin state analysis

Annotations for the publicly available 15 state ChromHMM model were downloaded from the Roadmap
Epigenomics Project for the dorsolateral prefrontal cortex (E073, “Brain Dorsolateral Prefrontal
Cortex”), hippocampus (E071, “Brain Hippocampus Middle), and normal human astrocytes (E125,
“NH-A Astrocytes Primary Cells”). The states were available at a resolution of 200 bp and grouped as
follows: TssA and TssAFInk were merged as TSS, TxFInk, Tx, and TxWk were merged as Tx, EnhG
and EnhBiv were merged as other enhancer, and ReprPC and ReprPCWk were merged as ReprPC. All
other states (Enh, ZNF/Rpts, Het, TssBiv, and BivFInk) were used as is. Enrichment analysis was
performed for each cell type by counting the number of chromatin states overlapping significant PIRs
versus the number of chromatin states overlapping randomly shuffled PIRs with matching distance

distributions. A total of 100 sets of randomly shuffled PIRs were sampled in each case.

GO enrichment analysis

Protein coding and noncoding RNA genes from GENCODE 19 participating in significant cell type-
specific promoter-PIR interactions were used for cell type-specific GO enrichment analysis. Only genes
participating in interactions between promoter-containing and non-promoter-containing bins with a
promoter open chromatin peak on one end and a distal open chromatin peak on the other end were used.
The promoter open chromatin peaks were used to define the genes with promoters interacting with cell
type-specific PIRs. A minimum normalized RPKM of 0.5 was used to filter out genes not significantly
expressed in each cell type, and the resulting gene lists were input into Enrichr. Enriched GO terms from
the “GO Biological Process 2018 ontology are reported according to their combined scores (calculated
by multiplying the log of the p-value by the z-score of the deviation from the expected rank). For

disease-specific GO enrichment analysis, target genes across all cell types were combined and input into
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Enrichr. All promoters in GENCODE 19 were included in this analysis . The top 100 enriched cell type-
specific and disease-specific GO terms for each category and their raw p-values are reported in

Supplementary Table 3 and Supplementary Table 9.

Motif enrichment analysis

We took the sets of all cell type-specific distal open chromatin peaks participating in significant
promoter-PIR interactions between promoter-containing and non-promoter-containing bins for each cell
type, and used the sequences in 250 bp windows around the peak summits to perform motif enrichment
analysis using HOMER running the default settings. The entire genome was used as a background.
Significance and expression values for each detected motif and its corresponding TFs are reported in
Supplementary Table 3. Entries with similar or identical consensus TF motif sequences were grouped

for brevity.

VISTA enhancer analysis and target gene identification

Human enhancer regions and mouse enhancer regions with orthologous human sequences associated
with positive annotations in the VISTA Enhancer Browser were downloaded and analyzed for overlap
with our sets of significant promoter-PIR interactions for each cell type. Of the 2,956 total tested
elements in their database (January 2019), 1,568 were found to be positive (976 were human elements
and 892 were mouse elements with orthologous human sequences). Positive elements (expanded to a
minimum width of 5 kb) found to participate in significant interactions are reported in Supplementary
Table 5. For determining whether positive elements interacted with their nearest genes or with more
distal genes, we only considered protein coding and noncoding RNA genes in GENCODE 19. To
evaluate cases where interactions between positive elements and their nearest genes were unresolvable
(“same fragment ambiguity”’), we determined if a promoter for the nearest gene overlapped at least one
HindIIl fragment that the expanded positive element did not also overlap. The following were
considered to be neural annotations: neural tube, hindbrain, cranial nerve, midbrain, forebrain,

mesenchyme derived from neural crest, dorsal root ganglion, and trigeminal V.

SNP enrichment analysis and target gene identification
GWAS SNPs for a total of eleven neurological disorders including Alzheimer’s disease (AD), attention

deficit hyperactivity disorder (ADHD), amyotrophic lateral sclerosis (ALS), autism spectrum disorder
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(ASD), bipolar disorder (BD), epilepsy (EP), frontotemporal dementia (FTD), mental processing (MP),
Parkinson’s disease (PD), and schizophrenia (SCZ), and unipolar depression (UD) were mined from the
GWAS Catalog (December 2018) using a p-value threshold of 10°. The GWAS SNPs were imputed
using HaploReg v4.1 at an LD threshold of 0.8 according to the reported study population(s) for each
SNP. The imputed SNPs were lifted over to hgl9 and filtered for unique SNPs by position. See
Supplementary Table S for a detailed summary of the imputation process and the list of studies used.
Disease- and cell type-specific enrichment for SNPs was calculated by taking the ratio of the number of
SNPs overlapping significant PIRs over the mean number of SNPs over the number of SNPs
overlapping randomly shuffled PIRs with matching distance distributions. A total of 100 sets of
randomly shuffled PIRs were sampled in each case. To determine whether a GWAS SNP potentially
interacted with a target gene, we determined whether it or any of its linked SNPs (expanded to a
minimum width of 1 kb) interacted with a promoter for the nearest gene. To evaluate cases where
interactions between GWAS SNPs and their nearest genes were unresolvable (“same fragment
ambiguity”), we determined if a promoter for the nearest gene overlapped at least one HindIII fragment
that a GWAS SNP or any of its linked SNPs did not also overlap. Finally, we derived a list of SNPs for
which the SNP was located within 2 kb of the center of an open chromatin peak at a PIR, indicating

strengthened evidence for a functional regulatory variant at that locus (“putative regulatory SNPs”).

Phasing of the WTC11 genome

The raw WTCI1 genome sequence can be downloaded from http:/genome.ucsc.edu/cgi-

bin/hgTracks?db=hg38&hubClear=https://s3-us-west-

2.amazonaws.com/downloads.allencell.org/genome-sequence/ucsc hubs/WTC genome hub/hub.txt.

Phasing of the WTC11 genome was performed as previously described*’. Briefly, WTC11 variants were
first split by chromosome, and phase-informative pcHi-C reads were extracted using extractHAIRS with
the minimum mapping quality set to 10 and the maximum insert size set to 30000000 bp®*. Phasing was
performed using Hapcut with a maximum of 101 iterations. Next, we extracted the maximum variants
phased (MVP) haplotype block from the output of Hapcut to use as the seed haplotype. We modified the
“neighborhood correction” aspect of phasing by filtering phased variants whose predicted phase would
have a marginal probability below 0.99 using an in-house implementation of a hidden Markov model
(HMM) as described previously®® with a reference haplotype set from the 1000 Genomes

Project. Finally, missing variants were imputed using the same HMM with the reference haplotype set
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from the 1000 Genomes Project. The chromosome-wide SNP phasing data is available at the Gene

Expression Omnibus under the following accessible number: GSE113483.

Allelic bias analysis

We utilized the phasing data for the WTC11 genome along with the allele-specific mapping capabilities
of HiC-Pro to quantify genome-wide allelic bias between significantly interacting 10 kb bins in
excitatory neurons and lower motor neurons. We selected these two cell types because they used
homogenous induction of TFs for differentiation, therefore minimizing the noise introduced by
conventional differentiation techniques. Briefly, reads were mapped using bowtie to a version of the
hg19 reference genome where all sites containing heterozygous phased SNPs were first N-masked. The
unfiltered HiC-Pro contact maps were used for this analysis. Next, nucleotides at the masked
polymorphic sites were used to assign the reads to either allele, with reads containing conflicting allele
assignments or unexpected bases omitted from further analysis. Read pairs with at least one allele-
specific mate were used to construct allele-specific Hi-C contact maps at 10 kb resolution, for which
interacting bins overlapping with the set of significant promoter-PIR interactions with score = 3 was
used to detect bias. Only interacting bins with 10 or more reads across both alleles were kept. A two-
sided binomial test was performed to assess allelic bias for each pair of interacting bins, and the
resulting p-values were adjusted using the BH method to filter out significantly biased loci at an FDR
cutoff of 5%. All allelically biased interactions with p-values < 0.001 are reported in Supplementary

Table 10.

eQTL enrichment analysis

1D enrichment of significant eQTLs with an FDR cutoff of 5% from GTEX V7 at significant versus
randomly shuffled PIRs in matched tissue types for excitatory neurons (Brain - Cortex, n=136) and
hippocampal DG-like neurons (Brain - Hippocampus, n=111) was performed similarly to the chromatin
state and SNP enrichment analysis. Overall, we found that 4.7% of significant cortical eQTLs and 6.7%
of hippocampal eQTLs interact in excitatory neurons and hippocampal DG-like neurons, respectively.
To determine the 2D enrichment of eQTL-TSS pairs in our significant interaction sets, we first filtered
out eQTL-TSS pairs that were within 10 kb of each other or on the same HindIII fragment as this would
be below the minimum detectable resolution by pcHi-C. Next, we sampled a set of nonsignificant

eQTL-TSS pairs with a matching distance distribution as the set of significant eQTL-TSS pairs for each
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cell type. We also controlled for the number of genes around which the eQTL-TSS pairs were centered.
Finally, we compared the distributions of scores for significant interactions supporting the significant
and nonsignificant sets of eQTL-TSS pairs by overlapping the eQTL-TSS pairs with our significant

interactions.

Epistasis analysis

In order to determine whether genetic variation in physically interacting regions might contribute to
neurodevelopmental disorders via genetic interactions, we utilized GWAS data for ASD. For epistasis
testing, we needed individual-level genotype data, so we used a dataset of 4,109 trios and 4,471,807
imputed and genotyped single nucleotide polymorphisms (SNPs), as previously reported*®. This dataset
includes publicly available ASD GWAS data [Autism Genetic Resource Exchange (AGRE), Autism
Genome Project (AGP), Simons Simplex Collection (SSC)] in addition to in-house generated data
[University of California, San Francisco (UCSF)], harmonized, imputed, and quality controlled (QC+)
by us, as previously described”. These data comprised trios with one ASD-affected offspring and both
parents selected for homogeneous genetic ancestry by multidimensional scaling with PLINK®. As our
data were family-based and did not include unrelated controls, we used non-transmitted parental alleles,
commonly known as pseudo-controls, generated using the -fucc option in PLINK. These 4,109 pseudo-
controls are perfectly matched to ASD cases for ancestry, thereby serving as a control for any population

confounding.

For each significant promoter-PIR interaction for each cell type, we extracted all independent SNPs in
each region from our QC+ imputed GWAS data. We performed a case-only test for pairwise epistasis
using the -fust-epistasis, case-only, and set-by-set options in PLINK with p < 107 as a default threshold
in ASD cases and in matched pseudo-controls®®. Across the interacting loci in the four neural cell types,
we performed approximately 19.7 million epistasis tests and 12,637,825 SNP pairs showed p < 107
(65% tests performed).

Because all pairs of regions we tested were on the same chromosome (linked), we expected an excess of
false positives (e.g. 65% at p < 107) for the case-only test due to LD or haplotypes containing rare
variants. We thus excluded all SNP pairs that showed epistasis with p < 107 in both cases and pseudo-

controls to generate case-specific and control-specific epistasis results for comparison, resulting in 0.5%
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of results with p < 10”. We next applied the —clump PLINK option to filter SNPs involved in potential
epistasis in LD (r* > 0.2) across pairs (e.g. one promoter SNP putatively interacting with several
correlated PIR SNPs), such that only one pair (selected based on epistatic p-value) represented the
combination of loci. This resulted in reduction of 15 to 19% of the number of pairs considered. The
average distance between epistatic SNPs was 104 kb in excitatory neurons, 97 kb in hippocampal DG-

like neurons, 87 kb in lower motor neurons, and 90 kb in astrocytes.

To test for enrichment of epistasis signal specific to ASD, we wanted to compare the number of SNP
pairs at P < 107 between the matched cases and pseudo-controls at various signal-to-noise ratios. We
divided the set of case-specific epistatic SNP pairs and the set of control-specific epistatic SNP pairs into
bins based on P-values [10°° < p < 107] and a homogeneous number of SNP pairs to distinguish
expected signal-to-noise (Fig. 6e, Supplementary Table 7). We then compared the number of case-
specific and control-specific SNP pairs in each significance category using a proportion test in R. We
performed meta-analysis of the case-specific and pseudo-control specific results across the four cell
types using the metafor package in R. We illustrated the odds ratios of enrichment with the forestplot

package in R.

As a negative control, we utilized equivalent promoter-PIR interactions with scores < 1 across the neural
cell types. We sampled the same number of non-significant promoter-PIR pairs that we used in the main
analysis for each cell type. For each non-significant interaction in each cell type, we filtered out those
that overlapped interactions with score > 3 in any of the neural cell types. We also made sure to sample
nonsignificant interactions with a similar interaction distance distribution as the significant interactions.
We then performed SNP extraction, epistasis testing, and case-control enrichment analysis as described
above for the nonsignificant interactions. Before filtering, 15-19% of SNPs showed p < 107, and after

filtering 7% met this threshold.
Code availability statement
A copy of the custom code used for all the data analysis and figure generation in this study can be

viewed and downloaded at the following GitHub repository: https://github.com/stayingsong/brain_pchic

Data availability statement
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All datasets used in this study (pcHi-C, ATAC-seq, RNA-seq, CUT&RUN, and chromosome-wide SNP
phasing data) are available at the Gene Expression Omnibus under the accession number GSE113483.

The reviewer access token is mjmrcsuaddkthut.

Data can also be visualized on the WashU Epigenome Browser at the following link:

http://epigenomegateway.wustl.edu/legacy/?genome=hg19&session=2zEdB7v5de4 &statusId=33592151

Tracks include ATAC-seq signal, RNA-seq plus/minus strand signal, CTCF CUT&RUN signal, and
promoter-PIR interactions with score = 5 for each cell type. HindlIII fragments, positive Vista elements,

GENCODE 19 genes, and SNPs for each disease are also shown.
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Figure legends

Figure 1. Genome-wide mapping of physical chromatin interactions in functionally distinct neural
cell types.

(a) Schematic of the study design for generating four functionally distinct cell types in the CNS and
performing integrative analysis of chromatin interactions using promoter capture Hi-C, open chromatin
regions using ATAC-seq, and transcriptomes using RNA-seq. For pcHi-C, we used 3, 2, 3, and 4
biological replicates respectively for the excitatory neurons, hippocampal DG-like neurons, lower motor
neurons, and astrocytes. For ATAC-seq, we used 2, 2, 3, and 4 biological replicates respectively for the
cell types. For RNA-seq, we used 2, 2, 2, and 4 biological replicates respectively for the cell types. (b)
Proportions of interactions occurring within TADs for each cell type. (¢) Histogram and empirical CDF
plots of interaction distances for each cell type. (d) Proportions of interactions between promoter-
containing bins (blue) and promoter- and non-promoter-containing bins (purple) for each cell type. (f)
Proportions of cell type-specific (blue) and shared (grey) distal open chromatin peaks at PIRs for each
cell type.

Figure 2. Integrative analysis of chromatin interactions, epigenomic features, and gene expression.
(a) Histograms of the numbers of PIRs interacting with each promoter in each cell type. The means are
indicated with red lines. Only promoters interacting with at least one PIR are included (15,316
promoters in excitatory neurons, 19,546 promoters in hippocampal DG-like neurons, 14,990 promoters
in lower motor neurons, and 15,397 promoters in astrocytes, out of a total of 34,401 protein coding and
noncoding RNA promoters in GENCODE 19). (b) Bar plots showing counts of epigenomic chromatin
states (inferred at a 200 bp resolution using the ChromHMM core 15 state model in matched tissues)
overlapping significant (solid bars) versus randomly shuffled (striped bars) PIRs for each cell type. Error
bars represent the standard deviation over 100 sampled sets of randomly shuffled PIRs. No matching
tissue data was available for the lower motor neurons so they were omitted from the analysis. (¢)
Comparative gene expression analysis across all cell types for expressed genes (normalized RPKM >

0.5) whose promoters interact exclusively with either enhancer-PIRs (n=6836) or repressive-PIRs
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(n=2612). Distributions of gene expression values are shown for each group. (d) Boxplots showing
distributions of gene expression values across all cell types for expressed genes (normalized RPKM >
0.5) grouped according to the numbers of interactions their promoters form with enhancer-PIRs. Linear
regression was performed on the mean gene expression values for each bin. Only bins containing at least

10 genes were included in the analysis.

Figure 3. Cell type-specific PIRs and TF motif enrichment analysis.

(a) Classification of unique promoter-PIR interactions with interaction score = 5 in at least one cell type
into specificity categories based on their scores in each cell type. The numbers of promoter-PIR
interactions in each specificity category are summarized in Supplementary Fig. 3a. Cell types are also
hierarchically clustered based on their interaction scores over all interacting loci. (b) Top enriched GO
terms from the “GO Biological Process 2018” ontology in Enrichr for genes whose promoters
participate in cell type-specific interactions with distal open chromatin peaks in each cell type (groups 1-
4). Also shown are top enriched GO terms for genes participating in shared interactions across all cell
types (group 15). Enriched GO terms are ranked by their combined scores (calculated by multiplying the
log of the p-value by the z-score of the deviation from the expected rank). An expanded list of enriched
GO terms and their raw p-values is available in Supplementary Table 3. (¢) Enrichment of consensus
TF motif sequences at open chromatin peaks in cell type-specific PIRs using HOMER, organized by
motifs (rows) and cell types (columns). The color of each dot represents the degree of enrichment
(negative log p-value) for each motif in each cell type, while the size of each dot represents gene
expression (normalized RPKM) for the corresponding TFs for each motif. Entries with similar or

identical consensus TF motif sequences are grouped for brevity.

Figure 4. Validation of PIRs in human neural cells.

(a) In vivo validated enhancers with neural annotations overlap a significantly higher proportion of open
chromatin peaks in the neural cells compared to enhancers with non-neural annotations (chi-squared test,
p<2.2x107'%). (b) Pie chart showing counts of in vivo validated enhancers with human sequences
participating in chromatin interactions (589 out of 1568 total elements). Counts of interacting positive
enhancer elements with neural and non-neural annotations are also shown. (¢) Counts of interacting
positive enhancer elements interacting exclusively with their nearest genes (blue), interacting

exclusively with more distal genes (pink), or interacting with both their nearest genes and more distal
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genes (orange). Positive enhancer elements that could not be resolved for interactions with their nearest
genes are also shown (grey). The number of regulatory targets interacting with positive enhancer
elements in each category is shown on the right. (d) Promoter-PIR interactions at the CDK5RAP3 locus.
Open chromatin peaks in PIRs up to 40 kb downstream of CDKRAP3 (regions 1, 2, and 3, yellow
highlight) interact with the promoter of CDK5RAP3 in a cell type-specific manner. Notably, only
regions 1 and 2 participate in interactions with the promoter of CDK5RAP3 in excitatory neurons. In
addition, both in vivo validated enhancers (pink) and CTCF binding sites in excitatory neurons (dark
blue) are shown to be localized to all three candidate regulatory regions. All interactions fall within a CP
TAD (chr17:45,920,000-47,480,000). (e) LacZ staining in mouse embryos shows tissue-specific patterns
of enhancer activity. (f) CRISPRi silencing of region 1 using two independent sgRNAs results in
significant downregulation of CDK5RAP3 expression in excitatory neurons (two sample t-test, two-
sided, p=3.2x10®). No significant downregulation was detected for the neighboring genes MRPLI0,
PNPO, and NFE2LI. Each CRISPRi experiment was performed in triplicate, with three technical
replicates per experiment. (g) CRISPRIi silencing of region 2, but not region 3, results in significant
downregulation of CDKS5RAP3 expression in excitatory neurons (two sample t-test, two-sided,

p=2.2x107).

Figure 5. Genetic analysis of promoter-PIR interactions with complex neurological disorder-
associated variants.

(a) Enrichment analysis for complex neurological disorder-associated SNPs in Alzheimer’s disease
(AD), attention deficit hyperactivity disorder (ADHD), amyotrophic lateral sclerosis (ALS), autism
spectrum disorder (ASD), bipolar disorder (BP), epilepsy (EP), frontotemporal dementia (FTD), mental
processing (MP), Parkinson’s disease (PD), schizophrenia (SCZ), and unipolar depression (UD). The
color and size of each dot respectively represent the enrichment p-value and raw fold enrichment
(calculated as the number of SNPs overlapping significant PIRs divided by the mean number of SNPs
overlapping randomly shuffled PIRs across 100 sampled sets) for each cell type and disease pairing. (b)
Proportions and total counts of GWAS SNPs with at least one SNP in linkage participating in chromatin
interactions. Cell type-specific SNPs for excitatory neurons (blue), hippocampal DG-like neurons
(orange), lower motor neurons (yellow), and astrocytes (green) are highlighted. (¢) Counts of GWAS
SNPs across all diseases with at least one SNP in linkage interacting exclusively with their nearest genes

(scenario II1, blue), interacting exclusively with more distal genes (scenario I, pink), or interacting with
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both their nearest genes and more distal genes (scenario II, orange). GWAS SNPs that could not be
resolved for interactions with their nearest genes are also shown (scenario IV, grey). Counts of
regulatory targets interacting with GWAS SNPs in each scenario are shown on the right. (d) PIRs
containing MP SNPS (yellow highlight) in an intron for PTPRO interact with the promoter of STRAP
over 300 kb away. All interactions fall within a CP TAD (chr12:14,960,000-16,040,000). Homozygous
deletion of this PIR in three independent clones results in significant downregulation of STRAP
expression in excitatory neurons (two sample t-test, two-sided, p=9.4x10"*). Error bars represent the
SEM. (e) A PIR containing SCZ SNPs interacts with the DRD2 promoter 20 kb upstream of the PIR. All
interactions fall within a CP TAD (chr11:113,200,000-114,160,000). Mono-allelic deletion of this PIR
in three independent clones results in significant downregulation of DRD?2 expression in excitatory

neurons (two sample t-test, two-sided, p=2.7x107"). Error bars represent the SEM.

Figure 6. Genetics variants contribute to chromatin interaction bias and alterations in gene
expression.

(a) Quantile-quantile plots showing the proportions of interacting 10 kb bins exhibiting significant
allelic bias at an FDR of 5% in excitatory neurons and lower motor neurons. (b) An example of an
interaction exhibiting significant allelic bias in excitatory neurons (binomial test, two-sided, p=5.4x10"
and lower motor neurons (binomial test, two-sided, p=4.2x107"). The interaction occurs between a PIR
containing SNPs for bipolar alcoholism at an open chromatin peak (green highlight) and the promoter of
SYT17 (orange highlight). Heterozygous WTC11 variants at the PIR are shown, along with bar graphs of
detected read counts for each allele in our chromatin interactions. (¢) Enrichment of significant eQTLs
from GTEX V7 at significant versus randomly shuffled PIRs in matched tissue types for excitatory
neurons and hippocampal DG-like neurons (one sample z-test, p<2.2x10'® for both cell types). Error
bars show the standard deviation over 100 sampled sets of randomly shuffled PIRs. (d) Distributions of
interaction scores for chromatin interactions overlapping significant eQTL-TSS pairs versus randomly
sampled nonsignificant eQTL-TSS pairs in excitatory neurons and hippocampal DG-like neurons.
Interaction scores are significantly enriched for significant eQTL-TSS pairs (Kolmogorov-Smirnov test,
p=2.3x10" for excitatory neurons and p=1.8x10"° for hippocampal DG-like neurons). (e) Forest plot for
independent ASD case-specific and non-overlapping matched pseudo-control-specific SNP pairs for
each cell type. The x-axis shows the odds ratio (OR) estimated between the numbers of case- and

control-specific SNP pairs at a significance threshold of 107 in each cell type. The area inside the
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squares is proportional to the number of observations for each comparison. Hippocampal DG-like
neuron promoter-PIR pairs showed case-specific enrichments of ASD SNP pairs (chi-squared test,
p<2.7x10'%). The confidence intervals for each OR estimation are shown in blue, and the red line

represents a baseline OR of 1.

Supplementary Figure 1. Characterization of the cell types used in the study.

(a) Immunofluorescence staining of key markers in excitatory neurons, hippocampal DG-like neurons,
lower motor neurons, and astrocytes. Excitatory neurons were positively stained for CUX1, an upper
cortical layer marker, and MAP2, a neuronal marker which is specifically expressed in dendrites. The
yield of excitatory neurons is calculated as the number of CUX1 and MAP2 double positive cells
divided by the total number of live cells. Hippocampal DG-like neurons were positively stained for
PROXI1, a transcription factor specifying granule cell identity in the DG. The yield of mature
hippocampal DG-like neurons is calculated as the number of PROX1 and MAP2 double positive cells
divided by the total number of live cells. Lower motor neurons were positively stained for HB9, a motor
neuron marker, and the pan-neuronal neurofilament marker SMI32. The yield of mature lower motor
neurons is calculated as the number of HB9 and SMI32 double positive cells divided by the total number
of live cells. Finally, astrocytes were positively stained for GFAP. The yield of GFAP-positive
astrocytes is calculated as the number of GFAP positive cells divided by the total number of live cells.
The number of staining experiments and the total number of cells is indicated, and error bars represent
the SEM. (b) Heatmaps displaying the expression of key marker genes for the neural cell types.
Astrocytes used in this study exhibit an expression profile consistent with APC identity. (¢) Counts of

protein coding (dark blue) and noncoding RNA (light blue) genes with promoters interacting in each cell

type.

Supplementary Figure 2. Correlation between pcHi-C, ATAC-seq, and RNA-seq replicates.

(a) Gene expression values for each RNA-seq replicate were hierarchically clustered according to
sample distances using DESeq2. (b) Heatmap with pairwise correlations and hierarchical clustering of
read densities at the set of unified open chromatin peaks for the ATAC-seq replicates. (¢) Heatmap with
pairwise correlations based on the stratum-adjusted correlation coefficient (SCC) from HiCRep
(evaluated at a resolution of 10 kb) for the pcHi-C replicates. (d) Saturation of the SCC between

biological replicates for the pcHi-C libraries as a function of total sequencing depth.
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Supplementary Figure 3. Integrative analysis of chromatin interactions in individual cell types.

(a). Histograms of interaction distances for each cell type. The mean interaction distances for each cell
type are indicated with red lines. (b) Bar plots showing counts of H3K27ac and CTCF binding sites
overlapping significant (solid bars) versus randomly shuffled (striped bars) PIRs for excitatory neurons,
lower motor neurons, and astrocytes. Error bars represent the standard deviation over 100 sampled sets
of randomly shuffled PIRs. (¢) Comparative gene expression analysis in individual cell types for
expressed genes (normalized RPKM > 0.5) whose promoters interact exclusively with either enhancer-
PIRs (n=6836) or repressive-PIRs (n=2612). Distributions of gene expression values are shown for each
group. (d) Boxplots showing distributions of gene expression values in individual cell types for
expressed genes (normalized RPKM > 0.5) grouped according to the numbers of interactions their
promoters form with enhancer-PIRs. Linear regression was performed on the mean gene expression

values for each bin. Only bins containing at least 10 genes were included in the analysis.

Supplementary Figure 4. Cell type-specific aspects of chromatin interactions.

(a) Venn diagram displaying counts of unique promoter-PIR interactions across excitatory neurons,
hippocampal DG-like neurons, lower motor neurons, and astrocytes for each specificity pattern (groups
1-15 in Fig. 3a). (b) Examples of interactions between cell type-specific PIRs (yellow highlight) and the
promoters for OPHNI, CHAT, and TLR4 (orange highlight). Open chromatin peaks and gene expression
are also displayed for each of the cell types. (¢) Significant downregulation of CDK5RAPS5 expression
was observed across three independent clones with homozygous deletions for the candidate PIR in

excitatory neurons (two sample t-test, two-sided, p=7.7x107). Error bars represent the SEM.

Supplementary Figure 5. Using chromatin interactions to elucidate the functions of GWAS
variants.

(a) Counts of GWAS SNPs for each disease with at least one SNP in linkage interacting exclusively
with their nearest genes (scenario III), interacting exclusively with more distal genes (scenario I), or
interacting with both their nearest genes and more distal genes (scenario II). GWAS SNPs that could not
be resolved for interactions with their nearest genes are also tabulated (scenario 1V), along with counts
of regulatory targets interacting with GWAS SNPs in each scenario. (b) Significant promoter-PIR

interactions in hippocampal DG-like neurons and astrocytes recapitulate a previously reported
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interaction between the FOXGI promoter and a distal open chromatin peak containing rs1191551, a
schizophrenia-associated variant®. (¢) CRISPRi silencing of a candidate PIR for STRAP using two
independent sgRNAs results in significant downregulation of STRAP expression in excitatory neurons
(two sample t-test, two-sided, p=1.5x10""). No significant downregulation was detected for the
neighboring genes MGSTI and WBPI, though the expression of PTPRO was affected. Each CRISPRi
experiment was performed in triplicate, with three technical replicates per experiment. (d) Schematic of
detected genotypes in the DRD?2 gene and its candidate PIR in mono-allelic deletion clones. Genotyping
and RT-PCR sequencing for WTCI11 variants in the DRD?2 gene reveal allele-specific imbalances in
DRD? expression, consistent with the deletion of the candidate PIR in one of the alleles. Results for two

wild type control clones and three mono-allelic deletion clones are shown for comparison.

Supplementary Figure 6. Top enriched GO terms for genes targeted by complex neurological
disorder-associated variants.

Top enriched GO terms from Enrichr for genes whose promoters are targeted by variants for each
disease. EP and FTD are omitted due to their low numbers of reported variants and target genes
identified by our significant promoter-PIR interactions. An expanded list of enriched GO terms is
available in Supplementary Table 9. In general, we observe enrichment of terms associated with

epigenetic, neuronal, and disease-specific processes across the diseases.

Supplementary Figure 7. Examples of putative regulatory SNPs at cell type-specific PIRs.

In all examples, interacting PIRs are highlighted in yellow and the targeted promoters are highlighted in
orange. (a) A PIR containing AD SNPs interacts with the promoters of FAMI31B and CASP2 in
astrocytes, but interacts instead with the ZYX promoter in hippocampal DG-like neurons and lower
motor neurons. (b) PIRs containing MP SNPs in an intron for PTPRO interacts with the STRAP
promoter in all four cell types. (¢) A PIR containing SCZ SNPs interacts with the TRIM33 promoter in
astrocytes. Two other PIRs containing SCZ SNPs interact with the promoters of TRIM33 and BCAS?2 in
hippocampal DG-like neurons. (d) A PIR containing BD SNPs interacts with the MSI2 promoter in
hippocampal DG-like neurons, lower motor neurons, and astrocytes while also interacting with the
AKAPI promoter in lower motor neurons and astrocytes. Meanwhile, another group of PIRs containing

SCZ SNPs interact with the MSI2 promoter exclusively in astrocytes.
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Tables

Supplementary Table 1. pcHi-C, ATAC-seq, and RNA-seq data processing metrics.

pcHi-C data processing metrics include output from the HICUP mapping pipeline (columns C through
0), the total number of reads in the CHICAGO input file (columns P through Q), and the total number of
processed interactions with score = 5 from the CHiICAGO pipeline (column R). ATAC-seq data
processing and QC metrics from the ENCODE pipeline are reported (columns C through K). The
number of peaks called in individual as well as across all replicates is shown (column L). RNA-seq data

processing metrics from STAR are reported (columns C through G).

Supplementary Table 2. Processed significant interactions called by CHiCAGO.

For each cell type, the left and right interacting BED intervals are shown in columns A through C and
columns E through G, respectively. The number of supporting reads, interaction score, and specificity
string for each interaction are shown in columns I through K. The number of overlaps with promoters,
promoter open chromatin peaks, and distal open chromatin peaks, as well as the interacting gene IDs are
shown in columns L through W. Overlaps for the left and right interacting BED intervals are shown
separately, and “promoter” refers to protein coding and noncoding RNA transcripts in GENCODE 19
while “promoter other” refers to all other transcripts in GENCODE 19. The number of overlaps with
positive Vista elements and SNPs for each disease and their associated IDs are shown separately for the

left and right interacting BED intervals in columns X through BS.

Supplementary Table 3. GO enrichment results for genes interacting with cell type-specific PIRs.

GO enrichment results from the “Biological Process 2018” ontology in Enrichr are shown for genes
interacting with PIRs specific to each of the cell types, as well as for genes interacting with PIRs shared
across all the cell types (“shared terms”). In each tab, the top 100 GO terms and their associated p-

values, Z-scores, combined scores, and genes are shown.

Supplementary Table 4. Motif enrichment results at cell type-specific PIRs.
For each cell type, the complete set of known motif results detected by HOMER are reported. This
includes the motif name, consensus sequence, p-value, # of target sequences with motif, and # of

background sequences with motif.
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Supplementary Table 5. Putative target genes for in vivo validated enhancer elements.

Information about each positive Vista element including its position, ID, and annotation are shown in
columns A through F. Information about its nearest gene, as well as genes whose promoters fall on the
same HindIII fragment as the element are shown in columns G through I (protein coding and noncoding
RNA transcripts in GENCODE 19 only). Column J represents all other transcripts from GENCODE 19
whose promoters fall on the same HindIII fragment as the element. Column K reports whether or not
interactions are resolvable between the Vista element and its nearest gene in column G. Columns L
through W contain information on whether the Vista element overlaps open chromatin peaks,

participates in interactions, or targets genes on the other ends of interactions for each cell type.

Supplementary Table 6. GWAS Catalog SNP imputation summary.

The first tab contains a summary of the SNP imputation process for each disease in the study. This
includes the number of GWAS SNPs downloaded from the GWAS Catalog, the number of GWAS SNPs
passing the significance cutoff of 10, the numbers of GWAS SNPs associated with each study
population, and the numbers of imputed SNPs for each study population. The remaining tabs contain

lists of all the studies included for each disease along with their associated information.

Supplementary Table 7. Putative target genes for neurological disorder-associated SNPs.

Two tabs are included for each disease in Supplementary Table 7 (“GWAS SNPs” and “all SNPs”). The
first tab (“GWAS SNPS”) contains the results for all GWAS SNPs downloaded from the GWAS
Catalog. Information about each GWAS SNP including its position, rsid, allele information, query SNP
status, and whether or not it overlaps any exons are shown in columns A through I. Information about its
nearest gene, as well as genes whose promoters fall on the same HindIII fragment as the element are
shown in columns J through L (protein coding and noncoding RNA transcripts in GENCODE 19 only).
Column M represents all other transcripts from GENCODE 19 whose promoters fall on the same
HindIII fragment as the element. Column N reports whether or not interactions are resolvable between
the GWAS SNP (or any of its linked SNPs) and its nearest gene in column G. The total number of
linked SNPs for each GWAS SNP is shown in column O. Columns P through AE contain information
on whether the GWAS SNP itself or any of its linked SNPs participate in interactions or target genes on
the other ends of interactions for each cell type. The second tab (“all SNPs”) contains similar

information for all imputed SNPs. Columns A through I contain information about each imputed SNP,
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columns J through N contain information about its nearest and same fragment gene(s), and columns O
through AD contain information on whether the imputed SNP overlaps with promoter or distal open
chromatin peaks, participates in interactions, or targets genes on the other ends of interactions for each

cell type.

Supplementary Table 8. Putative target genes for imputed SNPs overlapping open chromatin peaks.
Supplementary Table 8 contains subsets of imputed SNPs from the “all SNPs” tabs in Supplementary
Table 7, for which the imputed SNPs overlap with promoter or distal open chromatin peaks in at least

one cell type.

Supplementary Table 9. GO enrichment results for disease-specific target genes.
GO enrichment results from the “Biological Process 2018” ontology in Enrichr are shown for genes
interacting with PIRs containing variants for each disease. In each tab, the top 100 GO terms and their

associated p-values, Z-scores, combined scores, and genes are shown.

Supplementary Table 10. Interactions exhibiting significant allelic bias.

A list of allelically biased interactions with a p-value cutoff of 10~ are shown for the excitatory neurons
and lower motor neurons. Supplementary Table 10 follows the format of Supplementary Table 2 with a
few exceptions. The number of reads supporting interactions in each allele is reported in column I. The

negative log p-value is reported in column J.

Supplementary Table 11. ASD epistatic SNP pairs by cell type.

The total numbers of epistatic SNP pairs in ASD cases and matched pseudo-controls with the following
P-value thresholds: p < 1.0x10%°, 1.0x10?° < p < 1.0x10™"7, 1.0x10" < p < 1.0x10™*, 1.0x10™* < p <
1.0x10™", 1.0x10™"° < p < 1.0x10™"%, 1.0x10" < p < 1.0x10™"", 1.0x10™" < p < 1.0x107"°, 1.0x10"° < p <
1.0x107, 1.0x10° < p < 1.0x10®, and 1.0x10™® < p < 1.0x107 are shown for the entire dataset including
for excitatory neurons, hippocampal DG-like neurons, lower motor neurons, and astrocytes. Results for

nonsignificant interactions in the corresponding cell types are also shown.

Supplementary Table 12. sgRNA and primer sequences.
A full list of sgRNAs and primers for the CRISPR deletion and CRISPRi experiments are reported here.
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Figure 1. Genome-wide mapping of physical chromatin interactions in functionally distinct neural cell types.

(a) Schematic of the study design for generating four functionally distinct neural cell types in the CNS and performing integrative analysis of
chromatin interactions using promoter capture Hi-C, open chromatin regions using ATAC-seq, and transcriptomes using RNA-seq. For pcHi-C,

we used 3, 2, 3, and 4 biological replicates respectively for the excitatory neurons, hippocampal DG-like neurons, lower motor neurons, and
astrocytes. For ATAC-seq, we used 2, 2, 3, and 4 biological replicates respectively for the cell types. For RNA-seq, we used 2, 2, 2, and 4
biological replicates respectively for the cell types.

(b) Proportions of interactions occuring within TADs for each cell type.

() Histogram and empirical CDF plots of interaction distances for each cell type.

(d) Proportions of interactions between promoter-containing bins (blue) and promoter- and non-promoter-containing bins (purple) for each cell type.
(e) Proportions of cell type-specific (blue) and shared (grey) distal open chromatin peaks at PIRs for each cell type.
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Figure 2. Integrative analysis of chromatin interactions, epigenomic features, and gene expression.

(a) Histograms of the numbers of PIRs interacting with each promoter in each cell type. The means are indicated with red lines. Only promoters interacting
with at least one PIR are included (15,316 promoters in excitatory neurons, 19,546 promoters in hippocampal DG-like neurons, 14,990 promoters in lower
motor neurons, and 15,397 promoters in astrocytes, out of a total of 34,401 protein coding and noncoding RNA promoters in GENCODE 19).

(b) Bar plots showing counts of epigenomic chromatin states (inferred at a 200 bp resolution using the ChromHMM core 15 state model in matched tissues)
overlapping significant (solid bars) versus randomly shuffled (striped bars) PIRs for each cell type. Error bars show the standard deviation over 100 sampled
sets of randomly shuffled PIRs. No matching tissue data was available for the lower motor neurons so they were omitted from the analysis.

(c) Comparative gene expression analysis across all cell types for expressed genes (normalized RPKM > 0.5) whose promoters interact exclusively with
either enhancer-PIRs (n=6,836) or repressive-PIRs (n=2,612). Distributions of gene expression values are shown for each group.

(d) Boxplots showing distributions of gene expression values across all cell types for expressed genes (normalized RPKM > 0.5) grouped according to the
numbers of interactions their promoters form with enhancer-PIRs. Linear regression was performed on the mean gene expression values for each bin.

Only bins containing at least 10 genes were included in the analysis.
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Figure 3. Cell type-specific PIRs and TF motif enrichment analysis.
(a) Classification of unique promoter-PIR interactions with interaction score 2 5 in at least one cell type into
specificity categories based on their scores in each cell type. The numbers of promoter-PIR interactions in
each specificity category are summarized in Supplementary Fig. 3a. Cell types are also hierarchically
clustered based on their interaction scores over all interacting loci.
(b) Top enriched GO terms from the “GO Biological Process 2018” ontology in Enrichr for genes whose
promoters participate in cell type-specific interactions with distal open chromatin peaks in each cell type
(groups 1-4). Also shown are top enriched GO terms for genes participating in shared interactions across all
cell types (group 15). Enriched GO terms are ranked by their combined scores (calculated by multiplying the
log of the p-value by the z-score of the deviation from the expected rank). An expanded list of enriched GO
terms and their raw p-values is available in Supplementary Table 3.
(c) Enrichment of consensus TF motif sequences at open chromatin peaks in cell type-specific PIRs using
HOMER, organized by motifs (rows) and cell types (columns). The color of each dot represents the degree of
enrichment (negative log p-value) for each motif in each cell type, while the size of each dot represents gene
expression (normalized RPKM) for the corresponding TFs for each motif. Entries with similar or identical
consensus TF motif sequences are grouped for brevity.
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Figure 4. Validation of PIRs in human neural cells.

(a) In vivo validated enhancers with neural annotations overlap a significantly higher proportion of open chromatin peaks in the neural cells compared to
enhancers with non-neural annotations (Pearson’s chi-squared test, p<2.2x10-'6).

(b) Pie chart showing counts of in vivo validated enhancers with human sequences participating in chromatin interactions (589 out of 1,568 total elements).
Counts of interacting positive enhancer elements with neural and non-neural annotations are also shown.

(c) Counts of interacting positive enhancer elements interacting exclusively with their nearest genes (blue), interacting exclusively with more distal genes (pink),
or interacting with both their nearest genes and more distal genes (orange). Positive enhancer elements that could not be resolved for interactions with their
nearest genes are also shown (grey). The number of regulatory targets interacting with positive enhancer elements in each category is shown on the right.
(d) Promoter-PIR interactions at the CDK5RAP3 locus. Open chromatin peaks in PIRs up to 40 kb downstream of CDKRAP3 (regions 1, 2, and 3, yellow
highlight) interact with the promoter of CDK5RAP3 in a cell type-specific manner. Notably, only regions 1 and 2 participate in interactions with the promoter of
CDK5RAPS3 in excitatory neurons. In addition, both in vivo validated enhancers (pink) and CTCF binding sites in cortical excitatory neurons (dark blue) are
shown to be localized or near all three candidate regulatory regions. All interactions fall within a CP TAD (chr17:45,920,000-47,480,000).

(e) LacZ staining in mouse embryos shows tissue-specific patterns of enhancer activity.

(f) CRISPRIi silencing of region 1 using two independent sgRNAs results in significant down-regulation of CDK5RAP3 expression in excitatory neurons (two
sample t-test, two-sided, p=3.2x10%). No significant down-regulation was detected for the neighboring genes MRPL10, PNPO, and NFE2L1.

Each CRISPRI experiment was conducted in triplicate, with three technical replicates per experiment.

(g) CRISPRI silencing of region 2, but not region 3, results in significant down-regulation of CDK5RAP3 expression in excitatory neurons (two sample

t-test, two-sided, p=2.2x10-3).
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Figure 5. Genetic analysis of promoter-PIR interactions with complex neurological disorder-associated variants.

(a) Enrichment analysis for complex neurological disorder-associated SNPs in Alzheimer’s disease (AD), attention deficit hyperactivity disorder (ADHD),

autism spectrum disorder (ASD), amyotrophic lateral sclerosis (ALS), bipolar disorder (BP), epilepsy (EP), frontotemporal dementia (FTD), mental

processing (MP), Parkinson’s disease (PD), schizophrenia (SCZ), and unipolar depression (UD). The color and size of each dot respectively represent the
enrichment p-value and raw fold enrichment (calculated as the number of SNPs overlapping significant PIRs divided by the mean number of SNPs overlapping
randomly shuffled PIRs across 100 sampled sets) for each cell type and disease pairing.

(b) Proportions and total counts of GWAS SNPs with at least one SNP in linkage participating in chromatin interactions. Cell type-specific SNPs for excitatory
neurons (blue), hippocampal DG-like neurons (orange), lower motor neurons (yellow), and astrocytes (green) are highlighted.

(c) Counts of GWAS SNPs across all diseases with at least one SNP in linkage interacting exclusively with their nearest genes (scenario lll, blue), interacting
exclusively with more distal genes (scenario |, pink), or interacting with both their nearest genes and more distal genes (scenario Il, orange). GWAS SNPs that
could not be resolved for interactions with their nearest genes are also shown (scenario |V, grey). Counts of regulatory targets interacting with GWAS SNPs in each
scenario are shown on the right.

(d) PIRs containing MP SNPS at an open chromatin peak (yellow highlight) in an intron for PTPRO interacts with the promoter of STRAP over 300 kb away. All
interactions fall within a CP TAD (chr12:14,960,000-16,040,000). Homozygous deletion of this PIR in three independent clones results in significant downregulation
of STRAP expression in excitatory neurons (two sample t-test, two-sided, p=9.4x10'®). Error bars represent the SEM.

(e) A PIR containing SCZ SNPs interacts with the DRD2 promoter 20 kb upstream of the PIR. All interactions fall within a CP TAD (chr11:113,200,000-114,160,000).
Mono-allelic deletion of this PIR in three independent clones results in significant downregulation of DRD2 expression in excitatory neurons (two sample t-test,

two-sided, p=2.7x107). Error bars represent the SEM.
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Figure 6. Genetics variants contribute to chromatin interaction bias and alterations in gene expression.

(a) Quantile-quantile plots showing the proportions of interacting 10 kb bins exhibiting significant allelic bias at an FDR of 5% in
excitatory neurons and lower motor neurons.

(b) An example of an interaction exhibiting significant allelic bias in excitatory neurons (binomial test, two-sided, p=5.4x10+) and
lower motor neurons (binomial test, two-sided, p=4.2x107). The interaction occurs between a PIR containing SNPs for bipolar
alcoholism at an open chromatin peak (green highlight) and the promoter of SYT77 (orange highlight). Heterozygous WTC11
variants at the PIR are shown, along with bar graphs of detected read counts for each allele in our chromatin interactions.

(c) Enrichment of significant eQTLs from GTEX V7 at significant versus randomly shuffled PIRs in matched tissue types for
excitatory neurons and hippocampal DG-like neurons (one sample z-test, p<2.2x10'®for both cell types). Error bars show the
standard deviation over 100 sampled sets of randomly shuffled PIRs.

(d) Distributions of interaction scores for chromatin interactions overlapping significant eQTL-TSS pairs versus randomly sampled
nonsignificant eQTL-TSS pairs in excitatory neurons and hippocampal DG-like neurons. Interaction scores are significantly

enriched for significant eQTL-TSS pairs (Kolmogorov-Smirnov test, p=2.3x10* for excitatory neurons and p=1.8x10- for
hippocampal DG-like neurons).

(e) Forest plot for independent ASD case-specific and non-overlapping matched pseudo-control-specific SNP pairs for each cell type.
The x-axis shows the odds ratio (OR) estimated between the numbers of case- and control-specific SNP pairs at a significance
threshold of 107 in each cell type. The area inside the squares is proportional to the number of observations for each comparison.
Hippocampal DG-like neuron promoter-PIR pairs showed case-specific enrichments of ASD SNP pairs (chi-squared test, p<2.7x106).
The confidence intervals for each OR estimation are shown in blue, and the red line represents a baseline OR of 1.
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g‘gﬂ Supplementary Figure 1. Characterization of the cell types used in the study.
SLC32A1(VGAT) (a) Immunofluorescence staining of key markers in excitatory neurons, hippocampal DG-like neurons,
;g§é1 lower motor neurons, and astrocytes. Excitatory neurons were positively stained for CUX1, an upper
NANOG cortical layer marker, and MAP2, a neuronal marker which is specifically expressed in dendrites. The
C 20,000 yield of excitatory neurons is calculated as the number of CUX1 and MAP2 double positive cells divided
by the total number of live cells. Hippocampal DG-like neurons were positively stained for PROX1, a
transcription factor specifying granule cell identity in the DG. The yield of mature hippocampal DG-like
g 15000 neurons is calculated as the number of PROX1 and MAP2 double positive cells divided by the total
) number of live cells. Lower motor neurons were positively stained for HB9, a motor neuron marker, and
° 10,000 the pan-neuronal neurofilament marker SMI32. The yield of mature lower motor neurons is calculated as
é the number of HB9 and SMI32 double positive cells divided by the total number of live cells. Finally,
3 astrocytes were positively stained for GFAP. The yield of GFAP-positive astrocytes is calculated as the
5,000 number of GFAP positive cells divided by the total number of live cells. The number of staining experiments
and the total number of cells is indicated, and error bars represent the SEM.
(b) Heatmaps displaying the expression of key marker genes for the neural cell types. Astrocytes used

N =5 Coverslips
367 total cells

in this study exhibit an expression profile consistent with APC identity.
(¢) Counts of protein coding (dark blue) and noncoding RNA (light blue) genes with promoters interacting
in each cell type.

excitatory hippocampal motor astrocytes
number of genes that interact with PIRs

[ coding O non-coding


https://doi.org/10.1101/494450
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure

distance

Rxiv preprint doi: https://doi.org/10.1101/494450; this version posted February 22, 2019. The copyright holder for this preprint (which

under aCC-BY-NC-ND Internrfltiq(nal Iigg‘n e.
color kKey an Istogram
T
3
o<
350 o
o
300 04 0.6 08 1
250 éorrélatioh
o . [ 1=

excitatory neuron cell type
replicate 1

excitatory neuron
replicate 2

astrocytes individual 1
replicate 1

astrocytes individual 1
replicate 2

astrocytes individual 2
replicate 1

o

replicate

astrocytes individual 2
replicate 2

hippocampal DG-like neurons
replicate 1

i

hippocampal DG-like neurons
replicate 2
-
s
-2
M oss
EXS -0.90
8o -0.84
g_g -0.78
=
2 ,\,.-o.72
£
» £
S | I —]
079 081 081 084 [l excitatory neuron
replicate 1
083 085 085 087 08 - excitatory neuron
replicate 2
083 085 085 086 08 - excitatoryneuron
replicate 3
084 084 084 091 09 -astrocytesindividual1
replicate 1
085 084 083 089 09 - astrocytesindividual1
replicate 2
0.83 083 083 089 086 - astrocytesindividual 2
replicate 1
089 083 - astrocytes individual 2
replicate 2
B 08 09 -
0.81 085 085 084 084 083 082 088 09 -
0.81 085 085 084 083 083 082 0.89 -
0.84 087 086 091 089 089 0.89 0.9 - hippocampal DG-like neurons
replicate 1
W 08 08 09 09 08 08 09 09 089 hippocampal DG-like neurons

replicate 2

1.00
z 0.95 —o rep1 vs. rep2
_g =~ rep1vs. rep3:| excitatory neuron
2 ~4&— rep2 vs. rep3
2 0.90 -=- rep1 vs. rep2 (individual 1)
‘=’ ~=- rep1 vs. rep2 (individual 2)
S o~ rep1 (!ndividual 1) vs. rep1 (ind!v!dual 2) astrocytes
= 585 =0~ rep1 (individual 1) vs. rep2 (individual 2)
:‘n:’ ~=— rep2 (individual 1) vs. rep1 (individual 2)
9 —— rep2 (individual 1) vs. rep2 (individual 2)
° rep1 vs. rep2
% 0.80 rep1 vs. rep3:|
2 rep2 vs. rep3
T &~ rep1 vs. rep2 hippocampal DG-like neurons
E 075
3
g
?
0.70
0.65
0.60

5% 10% 20% 40% 60%

percentage of total sequencing depth

80% 100%

Supplementary Figure 2. Correlation between pcHi-C, ATAC-seq, and RNA-seq replicates.

(a) Gene expression values for each RNA-seq replicate were hierarchically clustered according to sample distances using DESeq2.
(b) Heatmap with pairwise correlations and hierarchical clustering of read densities at the set of unified open chromatin peaks for
the ATAC-seq replicates.

(c) Heatmap with pairwise correlations based on the stratum-adjusted correlation coefficient (SCC) from HiC-Rep (evaluated at a
resolution of 10 kb) for the pcHi-C replicates.

(d) Saturation of the SCC between biological replicates for the pcHi-C libraries as a function of total sequencing depth.
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Supplementary Figure 3. Integrative analysis of chromatin interactions in individual cell types.

(a). Histograms of interaction distances for each cell type. The mean interaction distances for each cell type are indicated with red lines.

(b) Bar plots showing counts of H3K27ac and CTCF binding sites overlapping significant (solid bars) versus randomly shuffled (striped bars)

PIRs for excitatory neurons, lower motor neurons, and astrocytes. Error bars represent the standard deviation over 100 sampled sets

of randomly shuffled PIRs.

(c) Comparative gene expression analysis in individual cell types for expressed genes (normalized RPKM > 0.5) whose promoters interact
exclusively with either enhancer-PIRs (n=6836) or repressive-PIRs (n=2612). Distributions of gene expression values are shown for each group.
(d) Boxplots showing distributions of gene expression values in individual cell types for expressed genes (normalized RPKM > 0.5) grouped
according to the numbers of interactions their promoters form with enhancer-PIRs. Linear regression was performed on the mean gene expression
values for each bin. Only bins containing at least 10 genes were included in the analysis.
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Supplementary Figure 5. Using chromatin interactions to elucidate the functions of GWAS variants.

(a) Counts of GWAS SNPs for each disease with at least one SNP in linkage interacting exclusively with their nearest genes (scenario Ill), interacting
exclusively with more distal genes (scenario 1), or interacting with both their nearest genes and more distal genes (scenario 1l). GWAS SNPs that could
not be resolved for interactions with their nearest genes are also tabulated (scenario IV), along with counts of regulatory targets interacting with GWAS
SNPs in each scenario.

(b) Significant promoter-PIR interactions in hippocampal DG-like neurons and astrocytes recapitulate a previously reported interaction between the
FOXG1 promoter and a distal open chromatin peak containing rs1191551, a schizophrenia-associated variant6.

(c) CRISPRI silencing of a candidate PIR for STRAP using two independent sgRNAs results in significant downregulation of STRAP expression in
excitatory neurons (two sample t-test, two-sided, p=1.5x107). No significant downregulation was detected for the neighboring genes MGST7 and WBP1,
though the expression of PTPRO was affected. Each CRISPRI experiment was performed in triplicate, with three technical replicates per experiment.
(d) Schematic of detected genotypes in the DRD2 gene and its candidate PIR in mono-allelic deletion clones. Genotyping and RT-PCR sequencing for
WTC11 variants in the DRD2 gene reveal allele-specific imbalances in DRD2 expression, consistent with the deletion of the candidate PIR in one of the
alleles. Results for two WT control clones and three mono-allelic deletion clones are shown for comparison.
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Supplementary Figure 6. Top enriched GO terms for genes targeted by complex neurological disorder-associated variants.

Top enriched GO terms from Enrichr for genes whose promoters are targeted by variants for each disease. EP and FTD are omitted due to their low
numbers of reported variants and target genes identified by our significant promoter-PIR interactions. An expanded list of enriched GO terms is available
in Supplementary Table 9. In general, we observe enrichment of terms associated with epigenetic, neuronal, and disease-specific processes across the
diseases.
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Supplementary Figure 7. Examples of putative regulatory SNPs at cell type-specific PIRs.
In all examples, interacting PIRs are highlighted in yellow and the targeted promoters are highlighted in orange.
(a) A PIR containing AD SNPs interacts with the promoters of FAM131B and CASP2 in astrocytes, but interacts instead with the ZYX promoter in

hippocampal DG-like neurons and lower motor neurons.

(b) PIRs containing MP SNPs in an intron for PTPRO interacts with the STRAP promoter in all four cell types.
(c) APIR containing SCZ SNPs interacts with the TRIM33 promoter in astrocytes. Two other PIRs containing SCZ SNPs interact with the promoters

of TRIM33 and BCAS2 in hippocampal DG-like neurons.

(d) A PIR containing BD SNPs interacts with the MS/2 promoter in hippocampal DG-like neurons, lower motor neurons, and astrocytes while also
interacting with the AKAP1 promoter in lower motor neurons and astrocytes. Meanwhile, another group of PIRs containing SCZ SNPs interact with

the MSI2 promoter exclusively in astrocytes.


https://doi.org/10.1101/494450
http://creativecommons.org/licenses/by-nc-nd/4.0/

	pcHi-C manuscript 0219 YS MS FINAL for bioaxiv 022219
	All Figures 022119
	Figure 1 0119 small
	Figure 2 1218 small
	Figure 3 1218 small
	Figure 4 0119 small
	Figure 5 0119 small
	Figure 6 1218
	Figure S1 0119 small
	Figure S2 0119 small
	Figure S3 0119 small
	Figure S4 0119 small
	Figure S5 0119 small
	Figure S6 0219 small
	Figure S7 0119 small


