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ABSTRACT 28 

RNA molecules often fold into evolutionarily selected functional structures. Yet, the literature 29 
offers neither a satisfactory definition for “structured RNA regions”, nor a computational 30 
method to accurately identify such regions. Here, we define structured RNA regions based 31 
on the premise that both stems and loops in functional RNA structures should be conserved 32 
among RNA molecules sharing high sequence homology. In addition, we present a 33 
computational approach to identify RNA regions possessing evolutionarily conserved 34 
secondary structures, RNA ISRAEU (RNA Identification of Structured Regions As 35 
Evolutionary Unchanged). Applying this method to H1N1 influenza mRNAs revealed 36 
previously unknown structured RNA regions that are potentially essential for viral replication 37 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/494336doi: bioRxiv preprint 

https://doi.org/10.1101/494336
http://creativecommons.org/licenses/by-nc/4.0/


2 
 

and/or propagation. Evolutionary conservation of RNA structural elements may explain, in 38 
part, why mutations in some nucleotide positions within influenza mRNAs occur significantly 39 
more often than in others. We found that mutations occurring in conserved nucleotide 40 
positions may be more disruptive for structured RNA regions than single nucleotide 41 
polymorphisms in positions that are more prone to changes. Finally, we predicted 42 
computationally a previously unknown stem-loop structure and demonstrated that 43 
oligonucleotides complementing the stem (but not the loop or unrelated sequences) reduce 44 
viral replication in vitro. These results contribute to understanding influenza A virus evolution 45 
and can be applied to rational design of attenuated vaccines and/or drug designs based on 46 
disrupting conserved RNA structural elements.    47 

 48 

AUTHOR SUMMARY 49 

RNA structures play key biological roles. However, the literature offers neither a satisfactory 50 
definition for “structured RNA regions” nor the computational methodology to identify such 51 
regions. We define structured RNA regions based on the premise that functionally relevant 52 
RNA structures should be evolutionarily conserved, and devise a computational method to 53 
identify RNA regions possessing evolutionarily conserved secondary structural elements. 54 
Applying this method to influenza virus mRNAs of pandemic and seasonal H1N1 influenza A 55 
virus generated Predicted Structured Regions (PSRs), which were previously unknown. This 56 
explains the previously mysterious sequence conservation among evolving influenza strains. 57 
Also, we have experimentally supported existence of a computationally predicted stem-loop 58 
structure predicted computationally. Our approach may be useful in designing live 59 
attenuated influenza vaccines and/or anti-viral drugs based on disrupting necessary 60 
conserved RNA structures.   61 

 62 

INTRODUCTION 63 

The biological functions of RNA secondary structures and their evolutionary impact is a topic 64 
of great interest and importance (1-11). Since 1990s, conceptually novel computational 65 
approaches have been appearing to analyze RNA shapes. Multiple copies of the same RNA 66 
molecule fold into different coexisting conformations constituting an ensemble of RNA 67 
structures. The same nucleotide within the RNA may be coupled via W-C bonds in some 68 
conformations (being a part of a stem) while remaining uncoupled in others (i.e. belonging to 69 
a loop). If one analyzes the entire ensemble, they can attribute to each nucleotide within an 70 
RNA sequence its base pairing probability. This probability value reflects i) the percentage of 71 
RNA structures which have this particular nucleotide W-C bonded (although in different 72 
structures it may be bonded to a different coupling partners), and ii) the likelihood of each 73 
RNA structure within the ensemble of all possible conformations that is based on the 74 
structure’s free energy. Hence, if an RNA molecule contains X nucleotides, a series of X 75 
numbers ranging from 0 to 1 can be estimated such that each number reflects the probability 76 
of a nucleotide in this position to be coupled. 77 

 78 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/494336doi: bioRxiv preprint 

https://doi.org/10.1101/494336
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

Viruses represent an excellent system for studying RNA structural biology based on several 79 
factors, including the high abundance of viral RNAs, the high mutation rate of many viruses, 80 
the ease of selecting conditional mutants, and the large number of closely related strains 81 
available for sequence conservation analysis. 82 

Mutations disrupting influenza A virus RNA secondary structures dramatically reduce the 83 
levels of gene expression (12).  We previously reported that influenza A virus, a negative 84 
strand RNA virus with a segmented genome, possesses clusters of nucleotides that 85 
significantly change their base pairing probabilities with temperature elevation (13). This 86 
suggests that local structures dispersed between non-structured RNA regions (nonPSRs) 87 
are evolutionarily selected.   88 

Previous attempts to define “structured RNA regions” were aimed either at finding regions 89 
possessing the most stable secondary structure predicted by minimum free energy (MFE) of 90 
based paired sequences (14-16), or predicting a consensus secondary structure based on a 91 
given multiple-sequence alignment, which can be inferred either by means of energy-92 
directed folding or using a phylogenetic stochastic context-free grammar model (17-21). The 93 
latter approach works well on short non-coding RNAs, which usually have one predicted 94 
stable structure, but its accuracy drops significantly with the increasing RNA length (22). In 95 
addition, mRNAs are typically less structured than non-coding RNAs, since structures 96 
interfere with translation by ribosomes (23). At the same time, the former approach 97 
misinterprets “PSRs” as stems possessing abnormally many W-C coupled nucleotides; i.e. it 98 
would view an RNA structure possessing evolutionarily conserved loops (where the 99 
nucleotides are not paired) as an unstructured element. The following example 100 
demonstrates how misleading interchangeable use of the words “structured” and “paired” is: 101 
a cloverleaf-like secondary structure may serve an indispensable biological function and be 102 
conserved in every strain of some organism, despite the fact that it may have fewer paired 103 
nucleotides than a simple stem (see Figure 1). Also, such approach may introduce systemic 104 
bias typically identifying mRNAs as less structured than non-coding RNAs, since excessive 105 
abundance of W-C pairing may interfere with translation by ribosomes (23). 106 

In addition, any particular RNA sequence beyond certain length clearly can fold into stable 107 
alternative states with energies being somehow different from the global minimum (24-26); 108 
and several alternative RNA conformations coexist at equilibrium (27). Some of these RNA 109 
structures may be present in multiple RNAs, especially homologous ones, while others 110 
would exist for the particular sequence only. One can assume that evolutionary conservation 111 
of the RNA shape may be indicative of its biological function. Current approaches relied 112 
upon analysis of a single sequence cannot differentiate an evolutionarily conserved 113 
structural element from an RNA shape that is energetically favorable only in a particular 114 
strain. Thus, future progress in the field requires a new methodology. Addressing these 115 
problems and proposing a computational methodology free of these shortcuts is the main 116 
aim of this paper.  117 

 118 

Results 119 

A Novel Quantitative Definition of Structured RNA Regions 120 
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Here, we present a quantitative definition of a structured RNA region (PSR) that is equally 121 
useful to predicting both, stems and loops as structured regions  based on their evolutionary 122 
conservation, and a new computational method for identifying those regions. The method is 123 
robust to random RNA shapes present in a particular sequence but not selected and 124 
conserved evolutionarily. We call this method RNA ISRAEU (RNA Identification of Structured 125 
Regions As Evolutionary Unchanged). 126 

As the first step in this method, we created a non-redundant dataset of sequences for each 127 
RNA of interest constituted of highly homologous RNAs of the same length, and built 128 
multiple sequence alignments. For the second step, the probability of every nucleotide to be 129 
paired was calculated for each RNA sequence in the dataset. Third, we substituted every 130 
nucleotide in the multiple alignment, with the nucleotide's pairing probability, thus aligning 131 
pairing probabilities by nucleotide position. We took probabilities to be paired for all the 1st 132 
nucleotides in each RNA sequence and grouped them together; for all 2nd nucleotides; for all 133 
Nth nucleotides. Thus, if we have X RNA sequences each constituted of Y nucleotides, we 134 
create Y sets of numbers ranging from 0 to 1; each set contains X numbers. Standard 135 
deviation was computed for each set of probability values corresponding to every position 136 
within the RNA. We proposed that such standard deviations be used as a measure of 137 
structural conservation in a specific position. If the standard deviation for a particular position 138 
within the RNA dataset was small, the probability of a nucleotide to be in a double-stranded 139 
conformation did not vary substantially across the entire dataset of aligned mRNAs. We call 140 
such positions “structure-conserved”. In contrast, if the standard deviation was high, the 141 
probability of a nucleotide to be paired changed vastly from strain to strain, a position was 142 
called “structure-variable”. The mean probability at a particular position did not matter to the 143 
position classification. 144 

We called regions within RNA sequences formed by consecutive structure-conserved 145 
positions “Predicted Structured Regions” (PSRs), while regions predominantly formed by 146 
structure-variable positions were called “non-structured” (nonPSR). Apparently, such 147 
definition is stem-loop agnostic. A stretch of nucleotide positions, which demonstrate high 148 
probability of being paired across the entire dataset of RNAs, may form a functionally 149 
important and evolutionarily conserved stem. Similarly, a batch of nucleotide positions with 150 
low base pairing probabilities, which repeats itself across all RNAs in the dataset may form a 151 
functionally important and evolutionarily conserved loop. Still, further analysis is necessary to 152 
confirm both the stems and the loops. In all cases, within a PSR, the probability of each 153 
nucleotide to be in a double-stranded conformation does not vary significantly across the 154 
entire dataset of aligned RNAs and these positions are structure-conserved positions.  155 

Identification of Structured RNA Regions in H1N1 Influenza Virus mRNAs 156 

We applied RNA ISRAEU to predict evolutionarily conserved RNA structures of influenza A 157 
virus (IAV) (28, 29).   158 

We selected sequences encoded by the complete genomes of 107 pre-pandemic (1999 to 159 
2009) and 173 pandemic (post-2009) human H1N1 strains (Supplementary Table 2). In 160 
2009, a swine IAV strain was introduced into man and rapidly replaced the circulating 161 
strains.   All mRNAs selected for a given gene were of the same length. For each of the 10 162 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/494336doi: bioRxiv preprint 

https://doi.org/10.1101/494336
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

major viral mRNAs, we predicted structured regions and calculated sequence variation. 163 
Profiles for non-pandemic and pandemic NS2 mRNA are depicted in Figure 2 (profiles for 164 
other mRNAs are presented in Supplementary Figures 2-38). 165 

142 and 134 PSRs were identified in non-pandemic and pandemic influenza mRNAs 166 
respectively. The length of PSRs varies from 5 to 121 nucleotides for non-pandemic and 167 
from 5 to 103 nucleotides for pandemic strains (Table 1). The number of PSRs varies from 2 168 
for NS2 to 31 for NP (Table 1).  Only a fraction of PSRs overlap between pandemic and non-169 
pandemic strains. In some mRNAs (namely PB1, PB2, PA, HA and NA), the percentage of 170 
such non-overlapping regions is higher than 70%. The location of each PSR are presented 171 
in Supplementary Table 3. 172 

In comparing PSR profiles with the profiles of mean pairing probabilities, we found two 173 
evolutionarily conserved structural elements. One is located between positions 105 and 132 174 
in non-pandemic NS2 mRNA (Figure 2), which contains a previously unknown predicted 175 
conserved hairpin (Figure 3). Nucleotides 105 to 114 and 123 to 132 have a strong predicted 176 
tendency to be paired while intervening nucleotides 115 to 124 have a strong tendency to be 177 
unpaired. By comparing Figures 2(b) and 2(e), one can predict that this new hairpin structure 178 
also exists in pandemic NS2 influenza mRNAs. The second novel PSR identified in non-179 
pandemic NS2 mRNA is between positions 24 and 89 (Figures 2 and 3). In this case 180 
pandemic mRNAs contain only the PSR created by nucleotides 40 to 73.  181 

Oligonucleotides complementing the stem of the newly Predicted Structured Regions 182 
interfere with in vitro viral replication  183 

To test the computationally predicted RNA structured regions, we have designed 184 
oligonucleotides complementing the stem and the loop, as well as two controls of the same 185 
length. The first control did not complement any sequence within the viral or human genome 186 
while the other control bound a non-structured region adjacent to the PSR. The MDCK cell 187 
monolayer was either transfected with one of the oligonucleotides and then infected with 188 
А/California/7/09 strain or the cells were infected without prior transfection. The transfection 189 
doze was not toxic for the cells as it was proven by the cell viability assay. Twenty four hours 190 
post transfection and infection, the viral replication was assessed by developing the cell 191 
monolayer with anti-NP ELISA. We observed that only the decamer complementing the stem 192 
of the computationally predicted hairpin has significantly reduced the viral replication 193 
comparing to the controls. Neither the oligonucleotide complementing the loop, nor the two 194 
control oligos had a statistically significant effect on the in vitro viral replication (Figure 4).  195 

Location of the Most Mutable Positions 196 

We distinguish between two types of positions in the influenza genome – the mutable 197 
positions which mutate quite frequently, and conserved positions. We tested if positions 198 
mutating more often cluster outside of PSRs, while conserved positions are predominantly 199 
located within the PSRs. The numbers for both types of positions in every mRNA of 200 
pandemic and non-pandemic H1N1 strain are provided in the Supplementary Table 1. 201 
Percentage of highly mutable positions in influenza mRNAs varies in a range from 7.9% in 202 
M1 to 15.5% in NA and from 6.8% in M2 to 15.8% in HA for non-pandemic and pandemic 203 
influenza strains respectively. Among the highly mutable positions from 56.1% for NS1 to 204 
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88.4% for NP and from 50.0% for M2 to 85.1% for M1 are third-codon positions for non-205 
pandemic and pandemic influenza mRNAs respectively. Results presented at plots (c) and 206 
(f) of Figure 2 and Supplementary Figures 2-38 demonstrate that the most mutable positions 207 
are randomly distributed within each mRNA and do not form clusters. Absence of 208 
relationship between mutability value for every nucleotide position and corresponding value 209 
of moving average of individual standard deviations of the probabilities of nucleotides to be 210 
paired was confirmed by calculating Pearson correlation coefficients (Supplementary Table 4 211 
and Supplementary Figures 39-58). All correlation coefficients were in a range from 0.006 to 212 
0.222. This result refutes the intuitive notion that location of mutable positions would 213 
correspond to the least structured RNA regions, while sequence conserved positions would 214 
be collocated with the most structured RNA regions. 215 

Comparison of Mutation’s Effect on RNA PSRs 216 

We generated two groups of in silico mutants by introducing synonymous mutations into 217 
influenza mRNAs. In the first group, mutations were introduced only into positions that are 218 
highly prone to being mutated; in the second one, mutations were introduced only into 219 
sequence conserved positions. The number of introduced in silico mutations was 220 
proportional to the length of every mRNA (Table 1). The effects of two groups of in silico 221 
mutations on structured RNA regions were compared, as described in the Materials and 222 
Methods section (Table 2). The results of statistical tests (Table 2) demonstrate that for 223 
majority of mRNAs the mutations introduced into sequence conserved positions have a 224 
greater effect on PSRs than mutations introduced into the mutable positions. This result 225 
stands out the most in mRNAs of non-pandemic NP, M2, and NS1 genes and pandemic 226 
NS2 gene. 227 

 228 

DISCUSSION 229 

Evolutionarily conserved RNA structural elements may perform important biological 230 
functions. Hence, identification and/or prediction of such elements can help in the 231 
understanding of the mechanism of RNA functions. This is true for identification of not only 232 
paired regions (stems), but loops too. In fact, kissing loop interactions are a common type of 233 
tertiary interaction motif in RNA that brings terminal loops together through Watson-Crick 234 
base pairing. Also, bulged nucleotides in the loop-loop interaction can be critical for ligand-235 
dependent regulation. Yet, despite many efforts, it has still been a challenge to introduce an 236 
objective, quantitative, biologically meaningful and computationally friendly definition of what 237 
a “structured” RNA region is. Therefore, we had to propose a new definition and a new 238 
computational methodology free of these shortcomings. 239 

In analyzing an individual RNA sequence, one has little chance to distinguish a biologically 240 
important structure formed by a folded molecule from simply a random shape with no 241 
biological importance. However, if one observes the same RNA configuration conserved and 242 
repeated across all related RNA sequences isolated from different strains and/or species, 243 
this increases the likelihood of biologically significant RNA structure. Following this logic, a 244 
definition of a structured RNA region should be based on a dataset of multiple aligned RNA 245 
sequences. Thus, assume that some structural element in a particular location is of such 246 
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importance that it is present across all the strains. In this case, nucleotides in positions 247 
correspondent to the stem would have very high base pairing probabilities in all aligned RNA 248 
sequences of the dataset, while nucleotides in positions correspondent to the loop would 249 
have very low base pairing probabilities in all the strains. At the same time, nucleotides 250 
correspondent to a potential bistable structure would have their base pairing probabilities 251 
neither too high nor very low across all RNA sequences. Therefore, we propose that 252 
“structured RNA regions” are defined as the patterns of probability values of the nucleotides 253 
to be paired, which are manifested across the spectrum of strains and/or organisms. This 254 
definition equally considers the conservation of stems, loops and potential bistable structures 255 
while also providing a computationally friendly quantitative definition for the degree of RNA 256 
structure conservation.  257 

Mathematically, the fact that nucleotides in a particular position in each RNA of a dataset are 258 
likely to belong to an evolutionarily conserved structural element means that if we collect 259 
values of pairing probabilities for this nucleotide from each RNA sequence in the dataset, 260 
and build a sample of these values to calculate its standard deviation, this standard deviation 261 
will be relatively low compared with the majority of standard deviations for other positions. 262 
Indeed, if this standard deviation is low, it means that mutations occurring in the analyzed 263 
RNA do not affect the base pairing probability of a nucleotide in this position across the 264 
spectrum of strains. Thus, it is most likely that mutations affecting pairing probability for this 265 
nucleotide are filtered out. This is a good indicator of evolutionary conservation and the 266 
biological importance of the RNA structure in this position. In contrary, if the standard 267 
deviation is high, it means that the correspondent nucleotide is very likely to be bonded in 268 
some strains but not in others; hence, the presence of any crucial RNA structure at this 269 
position is unlikely (unless there is a bistable secondary structure in this area playing roles in 270 
different functions). If an RNA contained five consecutive nucleotides with low standard 271 
deviations of their mean pairing probabilities, the region was considered structured. 272 

Applications of a Newly Introduced Computational Definition 273 

Introduction of a new definition adequately describing the subject matter under study and 274 
development of a new technique for analysis, however, are only as good as they can be 275 
applied to a multitude of biological phenomena, generate new observations and 276 
experimentally testable hypotheses, explain old conundrums, and generate new questions 277 
(41). The presented approach was used to examine the existence of structured RNA regions 278 
in mRNAs of pandemic and non-pandemic influenza A H1N1 virus. This method revealed 279 
that influenza mRNAs contain nucleotide positions highly conserved in their base pairing 280 
probabilities. For every analyzed RNA type, such positions group together and constitute 281 
well-defined structured RNA regions, while the rest of the RNA molecule is significantly less 282 
structured. To the best of our knowledge, such mosaic structurization of RNA molecules was 283 
not reported previously. In vitro testing has confirmed that interfering with a stem of a 284 
previously unknown computationally predicted RNA structured region indeed reduces viral 285 
replication. We expect that future experimental testing will reveal the functions, these 286 
evolutionarily conserved RNA secondary structures, perform during the course of viral 287 
infection.  288 
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We hypothesized that mosaic structurization of influenza mRNAs may explain a long-289 
standing conundrum of why different nucleotides in influenza genome mutate with such a 290 
varied frequency. The enormous influence of amino acid conservation could explain only a 291 
part of this phenomenon because many nucleotide substitutions are synonymous ones thus 292 
cannot be explained by amino acid conservation. The first hypothesis was that if a mutation 293 
happens within a structured RNA region it would disrupt the structure and be filtered out. 294 
Thus, even if a mutation rate was the same for all nucleotides, the only mutations observed 295 
in nature would be those happening outside of the structured RNA regions (PSR) and 296 
neutral for RNA structures. If an exact picture of each RNA structure was available, it would 297 
be possible to define structurally disruptive mutations visually as those that change the 298 
shape(s) of the structure(s). However, modern computational methods do not make it 299 
possible to predict exact RNA structures for long RNA molecules. Such predictions are 300 
inaccurate and cannot be relied upon (14, 42-44). Thus, we had to define structurally 301 
disruptive mutations based on the number of nucleotides in structured RNA regions, which 302 
would change their W-C pairing probabilities to a level aberrant of their naturally observed 303 
range. Contrary to original expectations, we showed that the nucleotide positions which are 304 
the least prone to being mutated do not collocate with regions of conserved RNA structures. 305 
Instead, the frequently and/or rarely mutating positions are randomly spread along the RNA 306 
sequences. Although it was demonstrated that the most frequently mutating positions within 307 
influenza genome are not collocated within unstructured RNA regions, this finding does not 308 
refute the main hypothesis that states: “Mutations, which occur in nucleotide positions that 309 
are the most prone to single nucleotide polymorphisms, have less of an effect on structured 310 
RNA regions than mutations, which occur in positions that are less likely to be changed”. 311 

A mutation does not necessarily have to take place inside the PSR in order to be disruptive 312 
for a structure. For example, prior to mutation, a particular G was paired to a particular C 313 
forming a structure. If a mutation outside the structure changes some A to C, it may become 314 
a new paring partner for the G, thereby leading to an energetically more favorable RNA 315 
folding and disrupting the original structural element. This effect may be especially strong if 316 
mutations outside of the PSRs occur in combinations. Also, mutations in certain positions 317 
may have a greater effect on RNA structures than that of other positions. Thus, if RNA 318 
structures should indeed remain intact for successful viral propagation, all positions, SNPs in 319 
which would have a striking effect on the structures, would seem as rarely mutating 320 
compared to those positions, SNPs in which would have little effect on the structures. The 321 
results presented here support this hypothesis. We demonstrated for some influenza 322 
mRNAs that in silico mutations introduced into nucleotide positions, which mutate in the wild 323 
less frequently, would possess a greater disruptive effect on areas of conserved RNA 324 
structures than in silico mutations in positions which are known to mutate more frequently. 325 
As a result, mutations deleterious for vital RNA structures would be eliminated due to the 326 
negative selection pressure. This demonstrates that conservation of RNA structures could 327 
be a contributing mechanism defining a highly differential mutation rate for different influenza 328 
nucleotide positions. Additionally, the computational conclusion stipulates a direction for 329 
experimental testing. Although it is time/cost-consuming, it is possible to test RNA shapes 330 
experimentally (4, 45-49). If our hypothesis is correct, then influenza mRNAs observed in 331 
nature and those RNAs carrying mutations, which we predicted to be structurally non-332 
disruptive, would possess similar RNA structures. By contrast, introducing into the RNA 333 
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sequence mutations, which are predicted to disrupt structured RNA regions, would eliminate 334 
at least some of the RNA structures vital for a virus.  335 

Identification of Evolutionarily Conserved RNA Structural Elements 336 

Plotting a graph with nucleotide positions on axis X and standard deviations of nucleotide 337 
paring probabilities for these positions on axis Y shows stretches along the RNA sequence 338 
with low standard deviations. These areas potentially have conserved RNA secondary 339 
structural elements. However, these graphs alone do not demonstrate whether the 340 
probability of a nucleotide to form bonds is high across different strains or low. In other 341 
words, a structurization profile may help identifying localization of RNA PSRs, but it does not 342 
indicate what kind of structure is there. Nevertheless, some assumptions about the RNA 343 
shape can be made if we complement structurization profiles with profiles presenting mean 344 
pairing probability for each nucleotide (i.e. for each nucleotide position in the RNA sequence, 345 
the pairing probability values from every RNA in the dataset would be used to calculate the 346 
mean for the position). 347 

Extracting complex structures from comparing structurization profiles with profiles of mean 348 
pairing probabilities may require special analytical tools that are not a part of this first-stage 349 
study. However, discovering the simplest hairpin structure may not require additional 350 
instruments. Thus, when 10 nucleotides were found to possess very high means of 351 
probabilities to be bonded in the entire dataset, followed by 8 structurally conserved 352 
nucleotides which were apparently uncoupled, and then another 10 nucleotides that are 353 
likely to be paired and complementing the first 10 as W-C bonding partners, these findings 354 
showed existence of a previously unknown evolutionarily conserved RNA hairpin structure. 355 
In vitro testing has confirmed that interfering with a stem of a previously unknown 356 
computationally predicted RNA structured region indeed reduces viral replication. We expect 357 
that future experimental testing will reveal the functions, these evolutionarily conserved RNA 358 
secondary structures, perform during the course of viral infection.  359 

It would be important to test whether pandemic and seasonal influenza strains indeed share 360 
some PSRs and whether the difference in RNA structurization may play a role in pandemic 361 
vs. non-pandemic viral phenotypes. Another direction of the future research would be to 362 
expand our computational definition of a structured RNA region to predict evolutionarily 363 
conserved RNA tertiary structures, especially in those RNAs that are hard to study by high-364 
resolution experimental methods (50). In addition to helical segments, RNAs can fold into 365 
complex three-dimensional shapes. Computational modeling of RNA tertiary structures and 366 
determining of three-dimensional shapes of complex RNAs constitutes a major intellectual 367 
challenge (51-55). Thus, the most practical way to expand the proposed computational 368 
method to studying RNA 3D structures would be to incorporate RNA 3D structural modules 369 
that define sets of non-Watson-Crick base pairs embedded in WC pairs (56, 57). 370 

Novel Approach for the Rational Design of Live-Attenuated Vaccines and Anti-Viral 371 
Therapies 372 

The method we proposed and applied to define structured RNA regions revealed several 373 
areas possessing conserved secondary structures in mRNAs of H1N1 influenza virus. As a 374 
next step, these structures have to be confirmed by in vitro analysis and their biological roles 375 
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have to be assessed in vitro and/or in vivo. Potentially, structurally conserved RNA regions 376 
of viral RNAs may become a novel class of anti-viral drug targets. For example, anti-viral 377 
agents selectively disrupting RNA structures vital for a viral life cycle may become a new 378 
class of anti-viral therapies. As a preliminary proof of concept, we have demonstrated that an 379 
oligonucleotide binding the computationally predicted stem of a hairpin in a PSR, indeed acts 380 
as an anti-viral agent reducing in vitro viral replication. In contrast, statistically significant 381 
effect on viral replication was not observed if the infected cells transfected with the oligos of 382 
the same length, which bind outside of the predicted hairpin or do not bind to anything at all. 383 
Interestingly, even an oligonucleotide complementing the loop of this hairpin was unable to 384 
reduce viral replication in a statistically significant manner. Thus, the anti-viral effect was 385 
specific to disrupting the hairpin’s stem. RNA ISRAEU allows rapid rational design of 386 
oligonucleotide cocktails interfering with multiple computationally predicted structures, so no 387 
single or few mutations would result in a resistant viral strain.  388 

Several approaches have been proposed for analysis of impact of SNPs on RNA structures 389 
and deleterious mutation prediction (1, 58), including RNAsnp (59, 60), SNPfold (61), 390 
RNAmute (62, 63), RNAmutants (64), and RDMAS (65). However, all these methods 391 
compare structures of the original and mutated RNAs assessing the distance, the effect on 392 
the RNA structure caused by SNPs. Although these methods are productive for the tasks 393 
they were developed for, they cannot be applied to our problem. We do not compare 394 
structures of an original and an altered RNA sequences. Instead, we compare structures of 395 
hundreds of RNA sequences without attributing any of them the “original” status. Therefore, 396 
the approach proposed here allows us to define: (i) a naturally occurring range of 397 
probabilities, which represents a range of probability values that are the most likely to be 398 
observed for natural RNA strains (see Quantitative Assessment of Mutation’s Effect on RNA 399 
PSRs in the Materials and Methods section for the specification) for every nucleotide 400 
position within an RNA region possessing an evolutionarily conserved structure; (ii) 401 
mutation(s) that would change base pairing probabilities within the structured RNA regions to 402 
an extent that the new probabilities would not belong to a naturally occurring range for 403 
corresponding positions. 404 
 405 
Finally, we propose a new approach for the rational design of attenuated vaccines that would 406 
be based on predicting mutations disruptive for conserved RNA structures and introducing 407 
such mutations into viral genome. Indeed, disruption of an mRNA structure may serve as a 408 
functional gene knock out reducing expression of a viral gene to a level insufficient for viral 409 
cycle (12). Viral strain possessing such RNA can be administered to induce an immune 410 
response with little risk for a patient. Such attenuated viral strains can be grown on 411 
supporting cell lines actively expressing the limiting protein. Although LAVs are the most 412 
successful achievements in the history of public health (38), we believe there were no prior 413 
attempts to create LAVs based on perturbation of RNA structures. 414 

 415 

MATERIALS AND METHODS 416 
 417 
Data 418 
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Selecting H1N1 influenza mRNAs for this work constituted a crucial initial step. Influenza A 419 
genome consists of eight segments encoding seventeen proteins (66). Seven of those 420 
proteins were excluded from the analysis due to the limited information about them. It is 421 
known, however, that different influenza segments have different mutation rates (67). To 422 
eliminate potential bias that can be caused by disproportional representation of similar 423 
hemagglutinin (HA) and neuraminidase (NA) sequences (these two influenza genes are 424 
sequenced more often than the others because they constitute major viral antigens) and to 425 
compare evolutionary structure conservation between different influenza mRNAs, only 426 
completely sequenced influenza genomes were utilized in the analysis. An influenza genome 427 
was considered completely sequenced if it had no missing parts, no unknown nucleotides, 428 
and if sequences of the ten major mRNAs (namely, PB1, PB2, PA, HA, NP, NA, M1, M2, 429 
NS1, and NS2) were known. In order to further increase coherence of the dataset, only 430 
human influenza strains were utilized; other hosts were excluded because they demonstrate 431 
different characteristics (68). Finally, only those strains possessing the identical length of 432 
each influenza mRNA were selected. The fact that every mRNA of the same type has the 433 
same length in every viral genome selected eliminates potential mistakes, which could be 434 
introduced by effects of deletion and insertion polymorphisms (DIPs) on RNA secondary 435 
structures. Sequences of pandemic and non-pandemic complete influenza genomes 436 
satisfying the above mentioned criteria were downloaded from the Influenza Virus Resource 437 
(http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html) (69). 438 

Filtering Redundant Sequences 439 

Redundancy of data may introduce significant bias. To avoid it, one must only use a 440 
representative subset of sequences instead of analyzing all possible strains. Therefore, 441 
strains that were too similar were eliminated from further analysis; and, a non-redundant 442 
subset of strains was created. Any two strains in the non-redundant subset possess no less 443 
than 50 nucleotide differences per complete genome. In short, the first strain was chosen 444 
randomly from the dataset described in the previous section, then added to the non-445 
redundant subset. Then, a different strain was randomly chosen and added to the non-446 
redundant subset only if the newly chosen sequence had at least 50 nucleotide differences 447 
versus all strains in the non-redundant subset. This step was repeated until no more 448 
sequences could be added to the non-redundant subset. The described procedure was done 449 
separately for the pandemic and non-pandemic influenza datasets described above. 450 

Structural Conservation of a Nucleotide Position 451 

As a first step, for each mRNA sequence in the datasets, the probability of every nucleotide 452 
within an RNA chain to be coupled via W-C bond was calculated. For that purpose, the 453 
RNAfold tool from the Vienna RNA package was used (70). RNAfold was used with the 454 
command line options –p that calculates the partition function and base pairing probability 455 
matrix, --noLP that disallows base pairs that can only occur as helices of length 1, and the 456 
default folding temperature fixed at 37°C. As a result, if a non-redundant dataset consisted 457 
of N sequences, a sample of N probability values would be created for each position (exactly 458 
N for a position, in which there is no deletion/insertion polymorphisms) within analyzed RNA. 459 
The standard deviation was calculated for every sample. The procedure described above 460 
was conducted for each of ten mRNAs from both subsets. Thus, we have calculated 461 
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standard deviations of the probabilities of nucleotides to be paired for every nucleotide 462 
position within each of ten influenza mRNAs in both pandemic and non-pandemic datasets. 463 
To smooth stochastic fluctuations, moving averages of individual standard deviations with 464 
the sliding window of 5-nt length were calculated (Figure 2). To determine structure 465 
conserved positions, all moving average values of individual standard deviations from all 466 
mRNAs were combined to one dataset of moving averages, and the mean value and 467 
standard deviation of the values in that dataset were calculated. If an individual moving 468 
average calculated for a particular position was smaller than the overall mean of moving 469 
averages minus the overall standard deviation of moving averages, the correspondent 470 
position was considered “structure-conserved”. 471 

RNA Structurization and Structured RNA Regions 472 

As described above, noticeable areas of structure-conserved positions possessing low 473 
standard deviation values were observed. Areas possessing at least five consequent 474 
structure-conserved nucleotides were defined as “structured RNA regions”. The described 475 
procedure was repeated separately for pandemic and non-pandemic influenza strains. 476 

Mutability 477 

Intuitively, “mutability” demonstrates how likely it is for a nucleotide in a particular position to 478 
be mutated. Mathematically, this simple notion is defined as the value of Shannon entropy 479 
(35), which is calculated based on the frequencies of every ribonucleotide recorded in a 480 
particular position, with a pseudocount regularizers equal to 1 being added to the frequency 481 
of each of four ribonucleotides according to Laplace’s rule. To identify nucleotide positions 482 
that are the most/least prone to being mutated, the mutability value was computed for each 483 
nucleotide position. The more variable a set of ribonucleotides observed in a particular 484 
position, the higher the entropy. Then, all mutability values from all mRNAs were combined 485 
into one dataset. Those positions that had their mutability values higher than the 80th 486 
percentile of the dataset were considered as mutable positions. In contrast, those positions 487 
that did not contain SNPs among the sequences in the dataset were considered conserved 488 
positions. The described procedure was repeated separately for pandemic and non-489 
pandemic influenza strains. 490 

Quantitative Assessment of Mutation’s Effect on RNA PSRs 491 

Following the analysis discussed above, a new method was proposed and implemented, 492 
which defines “structurally disruptive mutations” based on their effect on structured RNA 493 
regions (PSRs). As described previously, two datasets of aligned influenza sequences were 494 
created. For each individual RNA sequence within the datasets, the probability of each 495 
nucleotide to be paired was computed. For every nucleotide position within coding regions of 496 
influenza mRNA sequences, the mean value and the standard deviation of the probabilities 497 
of nucleotides to be paired were calculated. Based on these values, a naturally occurring 498 
range of probabilities was calculated for every nucleotide position within a PSR. A naturally 499 
occurring range of probabilities was defined as a range of probabilities from the mean value 500 
decreased by two standard deviations to the mean value increased by two standard 501 
deviations. 502 
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Apparently, a mutation occurring in an RNA sequence may change probability of forming 503 
Watson-Crick pairs for multiple nucleotides within a particular sequence. For some of those 504 
nucleotides, their new probability values would still belong to the naturally occurring range of 505 
probabilities for this position. For other positions, the mutation would change their pairing 506 
probabilities to an extent that the new probabilities would not belong to their naturally 507 
occurring range. A quantitative effect of mutation(s) on RNA structurization is defined as a 508 
number of nucleotides within structured RNA regions (PSRs), which would change their 509 
probabilities to an extent that the new probabilities would not belong to a naturally occurring 510 
range for corresponding positions. 511 

Statistical Analysis: Do Mutations Taking Place in the Most vs. Least Often Mutating 512 
Positions Have a Different Effect on RNA Structurization? 513 

Some positions in influenza genome are more prone to being mutated than others. The 514 
ability to define quantitatively effects of mutations on RNA structurization permitted the 515 
opportunity to propose a method for assessment, if mutations taking place in the frequently 516 
mutating positions have the same effect on RNA structurization as mutations occurring in the 517 
conserved ones. Two sets of in silico mutants were generated introducing synonymous 518 
mutations in nucleotide positions that are either the most or the least prone to being 519 
mutated. These two sets of mutations were compared for their effect on structured RNA 520 
regions. 521 

In order to normalize for the length difference among influenza mRNAs, the number of 522 
changed nucleotides, which were introduced into each mRNA, was in proportion to the 523 
length of the mRNA (Table 1). The required number of synonymous SNPs was introduced 524 
into every mRNA sequence from the original datasets. In order to generate an in silico 525 
mutant from an original mRNA sequence, the required number of positions that are the most 526 
or the least prone to being mutated were randomly selected. Every codon, which contains 527 
the selected position, was changed to an alternative one encoding the same amino acid with 528 
the condition that the new codon is not observed in the particular position in any mRNA 529 
sequence from the datasets. Influenza mRNAs contain relatively high number of conserved 530 
positions and relatively few often mutating ones. As a result, for every mRNA, the number of 531 
in silico mutants with SNPs in conserved positions was equal to the number of wild type 532 
influenza strains in the datasets. However, due to a small number of frequently mutating 533 
positions, it was impossible for some mRNAs to generate the same number of unique 534 
mutants by introducing SNPs only to positions prone to being mutated. In those cases, all 535 
possible mutants were kept for further analysis - namely, 103 for non-pandemic M2, 95 for 536 
pandemic M2, and 109 for pandemic NS2. 537 

For each computer-generated mutant, the probability of every nucleotide to be in a double-538 
stranded conformation was calculated. Based on those probabilities, we calculated the 539 
number of nucleotides within structured RNA regions (PSRs), which changed their 540 
probability of being paired to a value outside of the naturally occurring range of probabilities 541 
for this position. Such numbers were combined into two datasets: one for mutations 542 
introduced into highly mutable positions and another – for mutations introduced in highly 543 
conserved positions. The Mann-Whitney U test was conducted for comparing these two 544 
datasets. The significance level for the test was Bonferroni-corrected by dividing the 545 
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significance level of 5% by the total number of mRNAs in influenza virus, i.e. 10. The 546 
described procedure was repeated separately for pandemic and non-pandemic influenza 547 
strains. 548 

Profiles of Mean Pairing Probabilities 549 

Profiles of mean pairing probabilities were created for influenza mRNAs (Figure 2 and 550 
Supplementary Figures 2-38). These profiles demonstrate how likely on average each 551 
nucleotide within an mRNA is to be paired based on an analysis of the entire dataset of 552 
sequences. As mentioned, for every RNA sequence in the dataset, the probability of every 553 
nucleotide within the RNA chain to be coupled via W-C bond was calculated. Then, for every 554 
nucleotide position, we computed the mean for probability values of this nucleotide based on 555 
all RNA sequences. The resulting series of means is used as a profile of mean pairing 556 
probabilities for a particular mRNA. The same work was performed for every influenza 557 
mRNA. 558 

Virus and Cells 559 

Influenza virus А/California/7/09 (H1N1pdm) was provided by the Research Institute of 560 
Influenza museum of viruses, Saint-Petersburg, Russian Federation. The 50% tissue culture 561 
infective dose (TCID50) of this virus strain was defined by Reed–Muench method (72). The 562 
aliquots of virus were stored at -80oC. According to the American Tissue Madin-Darby 563 
canine kidney (MDCK) cell culture was provided from the cell collection of Research Institute 564 
of Influenza, Saint-Petersburg, Russian Federation. Cells were cultivated in cultural flasks 565 
using minimum essential medium Eagle alpha modification (aMEM, Biolot) with 2mM L-566 
glutamine supplemented with 10% heat-inactivated fetal bovine serum (FBS, GIBCO, USA).  567 

Design of Antisense DNA-oligonucleotides 568 

We designed antisense oligonucleotides, which may potentially disrupt the aforementioned 569 
predicted RNA-structure. A random oligonucleotide, “rand10”, with minimal probability of 570 
having targets in the human hosts and viral genome was used as a control . Another control, 571 
“off10”, was an oligonucleotide with a target to the adjacent region on the NS2 gene mRNA 572 
(Table 3). 573 

 574 

Cell Viability Assay 575 

The cell viability was determined 24 hours post infection and transfection by 576 
microtetrazolium test (MTT assay). A solution of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-577 
diphenyltetrazolium bromide] (Sigma) at a concentration of 2,5 mg/ml was prepared in PBS. 578 
The medium was removed, the cells were washed once with PBS, MTT solution was added 579 
into the wells (100 ul/well). The cells were incubated at 37°C and 5% CO 2 for 4 hours and 580 
then the solution was removed and 96% ethanol (100 ul/well) was added for formazan 581 
crystals dissolving. The absorbance signal was measured using multifunctional reader 582 
CLARIOstar ®(BMG LABTECH, Germany) at 535 nm. 583 

Virus Infection and Transfection 584 
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The cells were detached by 0,25% trypsin/EDTA solution (Invitrogen) for 5 min and plated in 585 
96-well plates (Nucl) at 104 cells per well the day before the infection experiment. Cells were 586 
washed twice with Dulbecco's Phosphate-Buffered Saline (DPBS, GIBCO) and infected with 587 
А/California/7/09 (H1N1pdm) viral strain in 100TCID50 dose per well. The medium for cells 588 
infection was minimum essential medium Eagle alpha modification (aMEM, Biolot) with 2mM 589 
L-glutamine, 2,5 ug/ml trypsin TPCK-treated from bovine pancreas (TPCK, Sigma) and 590 
1:100 antibiotic-antimycotic (100X, GIBCO). Inoculation was conducted at 37°C and 5% 591 
CO2 for 60 minutes. Then the medium was removed and the cells were transfected using 592 
100 μl of OptiPro SFM medium (GIBCO) contained 10 μM of DNA-oligonucleotides and 0.7 593 
μl/well of Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol. In 594 
addition, the transfection medium is also supplemented with 1:100 antibiotic-antimycotic  595 
(100X) and 2,5 ug/ml TPCK. Viral control samples were also transfected with lipofectamin 596 
2000 only, without any oligonucleotides. Four hours post-transfection, the medium was 597 
replaced with fresh aMEM (Biolot) which contained 2mM L-glutamine, 2,5 ug/ml TPCK and 598 
1:100 antibiotic-antimycotic (100X). Twenty four hours post- infection, cells were used for the 599 
further relative ELISA analyses. Each treatment was performed in triplicates. 600 

Enzyme-Linked Immunosorbent Assays (ELISA) 601 

Twenty four hours post influenza virus infection and transfection with oligonucleotides, 602 
continuity of the cell monolayer was assessed microscopically.  Then, medium was removed 603 
and the MDCK cells in 96-wells Nunc plates were fixed with 150 μl per well of cold 80% 604 
acetone at 4°C for 30 minutes. The fixed samples were washed three times with phosphate 605 
buffered saline containing 0.05% Tween (PBS-T) and blocked with 5% milk dissolved in 606 
PBST (200 ul/well) for 30 minutes at 37°C.  The fixed cells were incubated with 1ug/ml 607 
mouse antibody against NP-protein (100 ul/well) produced in the Influenza Research 608 
Institute (clone 4H1) at 37°C for 1 hour. After the next three washes the secondary goat anti-609 
mouse antibody conjugated with horseradish peroxidase (GAM-HRP, BioRad, USA) was 610 
added at 1ug/ml (100 ul/well) and incubated for 1 hour at 37°C. Cells were washed three 611 
times with PBS-T followed by adding TMB Peroxidase EIA Substrate Kit (Bio-Rad, USA) 612 
according to manufacturer’s instructions for further absorbance analysis. The absorbance 613 
was measured using multifunctional reader CLARIOstar ® (BMG LABTECH) as delta optical 614 
density OD 450 – OD 655. The absorbance signal from uninfected cells was taken as zero 615 
and was subtracted from the obtained values of the samples. The results were presented 616 
relative to infection control. 617 

Statistical Analysis of Viral Replication Inhibition Assay 618 

Data shown are means +/- SD as percentage of untreated “Flu” group. P-values for 619 
comparing the four treatment groups with the untreated group (Flu) were calculated using 620 
student T test. The significance level for the test was Bonferroni-corrected by dividing the 621 
significance level of 0.05 by the total number of group comparisons, i.e. 10. Analysis was 622 
performed using the R software. 623 

 624 
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TABLE AND FIGURE LEGENDS 799 
 800 
Table 1: Numbers of identified structured RNA regions within influenza mRNAs. 801 

Gene 
name 

Non-pandemic Pandemic Number 
of in 
silico 
SNPs 

Total 
number 

Length Do not overlap with 
PSRs in pandemic 

strains Total 
number 

Length Do not overlap with 
PSRs in non-

pandemic strains 

 

Min Max Median Number Percentage 
of total, % 

Min Max Median Number Percentage 
of total, % 

 

PB2 23 5 31 7 19 82.6 18 5 34 8.5 13 72.2 7 

PB1 15 5 32 7 13 86.7 15 5 103 9 13 86.7 7 

PA 20 5 54 8 17 85.0 13 5 27 9 10 76.9 7 

HA 11 5 10 9 9 81.8 21 5 24 8 19 90.5 5 

NP 28 5 24 9 15 53.6 31 5 67 7 17 54.8 5 

NA 7 5 18 10 6 85.7 6 7 24 10.5 5 83.3 5 

M1 22 5 57 10 10 45.5 15 5 30 8 2 13.3 2 

M2 5 7 34 14 2 40.0 5 5 43 9 3 60.0 1 

NS1 8 5 46 22.5 6 75.0 2 5 26 15.5 0 00.0 2 

NS2 3 7 121 14 0 00.0 8 5 48 11 2 25.0 1 
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Total 142 5 121 9 97 68.3 134 5 103 8 84 62.7 42 

 802 

T
yp

e

 
Gene 
name 

Total length 
of PSRs 

Percentage of 
mRNA 

covered by 
PSRs 

Number of nucleotides within structured RNA 
regions, which changed their probability of being 

paired to a value outside of the naturally occurring 
range of probabilities for this position 

P-value 

Mutations in positions 
that are prone to be 
mutated 

Mutations in conserved 
positions 

Mean Standard 
deviation Mean Standard 

deviation 

N
o

n
-p

an
d

em
ic

 

PB2 257 0.113 18.6 13.5 20.8 14.9 0.1395 

PB1 156 0.069 11.4 10.5 11.8 10.4 0.3264 

PA 262 0.122 21.8 20.4 24.0 18.8 0.064 

HA 85 0.050 5.9 5.4 5.3 5.6 0.0813 

NP 300 0.200 24.6 17.2 31.3 17.7 0.001 

NA 75 0.053 4.0 5.1 4.4 6.2 0.2283 

M1 334 0.440 24.3 23.3 21.1 21.2 0.1068 

M2 77 0.262 4.1 4.7 7.0 7.5 0.0022 

NS1 183 0.264 9.6 11.0 15.2 15.7 0.0008 

NS2 142 0.388 11.4 19.2 12.0 22.8 0.0311 

m
ic PB2 232 0.102 16.7 14.0 16.0 13.0 0.2883 
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PB1 251 0.110 15.8 14.3 17.0 14.6 0.1722 

PA 138 0.064 12.0 10.7 12.5 10.8 0.3317 

HA 205 0.121 17.5 18.0 15.9 18.5 0.0273 

NP 351 0.234 41.2 27.5 44.8 27.8 0.0955 

NA 84 0.060 4.7 6.8 5.5 7.7 0.3006 

M1 174 0.229 11.1 11.8 12.0 11.1 0.0917 

M2 77 0.262 10.5 8.7 9.8 11.2 0.0395 

NS1 31 0.047 2.8 5.7 3.3 5.7 0.1341 

NS2 146 0.399 10.4 14.7 21.5 28.0 0.0007 

Table 2: Comparative analysis of the effects on RNA PSRs elicited by in silico mutations in frequently vs. rarely mutating positions of H1N1 803 
influenza mRNAs. 804 
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Table 3: List of antisense oligonucleotides used to examine influenza viral replication inhibition. 807 

Name Sequence Nucleotide position in NS2 mRNA 
stem CAGAGACTCG 105 -114 
loop TATATTTT 115-122 
off10 CTTATTTCCT 221-230 

rand10 TATCCCACAC NA 
 808 
 809 
Figure 1: Computationally predicted by mfold 3.6 (71) (a) optimal and (b) one of many suboptimal secondary structures of tRNA. Mfold was 810 
used with the default energy parameters including the folding temperature fixed at 37°C. Despite the fact that the left structure contains more 811 
base pairs, the right structure is functional and evolutionarily conserved. 812 

 813 

Figure 2: Structure variability and mutability profiles for non-pandemic ((a), (b), and (c)) and pandemic ((d), (e), and (f)) NS2 influenza mRNAs. 814 
Plots (a) and (d) demonstrate structure conservation profiles; namely, they show the moving average that was calculated by applying a sliding 815 
window approach to smooth individual fluctuations of standard deviations of nucleotide base pairing probabilities. The blue solid line 816 
demonstrates the mean level of all moving average values, and the blue dashed line demonstrates the level equal to the mean of all moving 817 
average values decreased by the standard deviation of all moving average values. In this case, the mean and the standard deviation were 818 
computed based on all moving average values from all mRNAs of a particular type (pandemic or non-pandemic) of influenza strains. According 819 
to our definition, when the moving average goes below the blue dashed line, it is a structured RNA region. Such regions are colored with either 820 
yellow or green across the plots. Plots (b) and (e) demonstrate profiles of the mean values of probabilities of nucleotide positions to be in a 821 
double-stranded conformation. If this value is close to 1, it means that in most strains in the dataset the correspondent nucleotide has a very 822 
high probability to be paired; and, if this value is close to 0, the correspondent nucleotide is very likely to be unpaired in most strains in the 823 
dataset. Plots (c) and (f) demonstrate mutability profiles for NS2 mRNAs. Mutability of every nucleotide position is computed as a value of 824 
Shannon entropy which is calculated based on frequency of every ribonucleotide in a particular position. Areas within RNA colored with yellow 825 
or green demonstrate identified structured RNA regions. Meanwhile, areas colored with green show regions in which particular secondary 826 
structure was determined. 827 
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 828 

Figure 3: Secondary structural elements identified in the NS2 mRNA of H1N1 influenza A virus. These structural elements are evolutionarily 829 
conserved among analyzed strains. Hairpin at plot (b) was identified in both non-pandemic and pandemic H1N1 influenza. Structure shown at 830 
plot (a) exists in non-pandemic influenza virus, while pandemic mRNAs contain only part of that structure covered by nucleotide positions 40 to 831 
73. 832 

 833 

Figure 4: Influenza viral replication inhibition effect of antisense oligonucleotides, 24 hours post infection. P-value for the comparison between 834 
“Stem” and “Flu” is 0.0043 and is the only statistically significant difference. 835 

 836 
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