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ABSTRACT

RNA molecules often fold into evolutionarily selected functional structures. Yet, the literature
offers neither a satisfactory definition for “structured RNA regions”, nor a computational
method to accurately identify such regions. Here, we define structured RNA regions based
on the premise that both stems and loops in functional RNA structures should be conserved
among RNA molecules sharing high sequence homology. In addition, we present a
computational approach to identify RNA regions possessing evolutionarily conserved
secondary structures, RNA ISRAEU (RNA Identification of Structured Regions As
Evolutionary Unchanged). Applying this method to HIN1 influenza mRNAs revealed
previously unknown structured RNA regions that are potentially essential for viral replication
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38 and/or propagation. Evolutionary conservation of RNA structural elements may explain, in
39 part, why mutations in some nucleotide positions within influenza mRNAs occur significantly
40 more often than in others. We found that mutations occurring in conserved nucleotide

41  positions may be more disruptive for structured RNA regions than single nucleotide

42  polymorphisms in positions that are more prone to changes. Finally, we predicted

43  computationally a previously unknown stem-loop structure and demonstrated that

44  oligonucleotides complementing the stem (but not the loop or unrelated sequences) reduce
45  viral replication in vitro. These results contribute to understanding influenza A virus evolution
46  and can be applied to rational design of attenuated vaccines and/or drug designs based on
47  disrupting conserved RNA structural elements.

48
49 AUTHOR SUMMARY

50 RNA structures play key biological roles. However, the literature offers neither a satisfactory
51  definition for “structured RNA regions” nor the computational methodology to identify such
52 regions. We define structured RNA regions based on the premise that functionally relevant
53 RNA structures should be evolutionarily conserved, and devise a computational method to
54 identify RNA regions possessing evolutionarily conserved secondary structural elements.
55  Applying this method to influenza virus mRNAs of pandemic and seasonal H1N1 influenza A
56  virus generated Predicted Structured Regions (PSRs), which were previously unknown. This
57  explains the previously mysterious sequence conservation among evolving influenza strains.
58 Also, we have experimentally supported existence of a computationally predicted stem-loop
59  structure predicted computationally. Our approach may be useful in designing live
60 attenuated influenza vaccines and/or anti-viral drugs based on disrupting necessary
61 conserved RNA structures.

62
63 INTRODUCTION

64  The biological functions of RNA secondary structures and their evolutionary impact is a topic
65 of great interest and importance (1-11). Since 1990s, conceptually novel computational
66  approaches have been appearing to analyze RNA shapes. Multiple copies of the same RNA
67 molecule fold into different coexisting conformations constituting an ensemble of RNA
68  structures. The same nucleotide within the RNA may be coupled via W-C bonds in some
69 conformations (being a part of a stem) while remaining uncoupled in others (i.e. belonging to
70 aloop). If one analyzes the entire ensemble, they can attribute to each nucleotide within an
71  RNA sequence its base pairing probability. This probability value reflects i) the percentage of
72  RNA structures which have this particular nucleotide W-C bonded (although in different
73  structures it may be bonded to a different coupling partners), and ii) the likelihood of each
74  RNA structure within the ensemble of all possible conformations that is based on the
75  structure’s free energy. Hence, if an RNA molecule contains X nucleotides, a series of X
76  numbers ranging from 0 to 1 can be estimated such that each number reflects the probability
77  of anucleotide in this position to be coupled.
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79  Viruses represent an excellent system for studying RNA structural biology based on several
80 factors, including the high abundance of viral RNAs, the high mutation rate of many viruses,
81 the ease of selecting conditional mutants, and the large number of closely related strains
82 available for sequence conservation analysis.

83  Mutations disrupting influenza A virus RNA secondary structures dramatically reduce the
84  levels of gene expression (12). We previously reported that influenza A virus, a negative
85 strand RNA virus with a segmented genome, possesses clusters of nucleotides that
86 significantly change their base pairing probabilities with temperature elevation (13). This
87  suggests that local structures dispersed between non-structured RNA regions (nonPSRs)
88  are evolutionarily selected.

89  Previous attempts to define “structured RNA regions” were aimed either at finding regions
90 possessing the most stable secondary structure predicted by minimum free energy (MFE) of
91 based paired sequences (14-16), or predicting a consensus secondary structure based on a
92 given multiple-sequence alignment, which can be inferred either by means of energy-
93 directed folding or using a phylogenetic stochastic context-free grammar model (17-21). The
94  latter approach works well on short non-coding RNAs, which usually have one predicted
95 stable structure, but its accuracy drops significantly with the increasing RNA length (22). In
96 addition, mRNAs are typically less structured than non-coding RNAs, since structures
97 interfere with translation by ribosomes (23). At the same time, the former approach
98 misinterprets “PSRs” as stems possessing abnormally many W-C coupled nucleotides; i.e. it
99 would view an RNA structure possessing evolutionarily conserved loops (where the
100 nucleotides are not paired) as an unstructured element. The following example
101 demonstrates how misleading interchangeable use of the words “structured” and “paired” is:
102  a cloverleaf-like secondary structure may serve an indispensable biological function and be
103 conserved in every strain of some organism, despite the fact that it may have fewer paired
104 nucleotides than a simple stem (see Figure 1). Also, such approach may introduce systemic
105 bias typically identifying mRNAs as less structured than non-coding RNAs, since excessive
106  abundance of W-C pairing may interfere with translation by ribosomes (23).

107 In addition, any particular RNA sequence beyond certain length clearly can fold into stable
108 alternative states with energies being somehow different from the global minimum (24-26);
109 and several alternative RNA conformations coexist at equilibrium (27). Some of these RNA
110 structures may be present in multiple RNAs, especially homologous ones, while others
111  would exist for the particular sequence only. One can assume that evolutionary conservation
112  of the RNA shape may be indicative of its biological function. Current approaches relied
113 upon analysis of a single sequence cannot differentiate an evolutionarily conserved
114  structural element from an RNA shape that is energetically favorable only in a particular
115 strain. Thus, future progress in the field requires a new methodology. Addressing these
116 problems and proposing a computational methodology free of these shortcuts is the main
117  aim of this paper.

118
119 Results
120 A Novel Quantitative Definition of Structured RNA Regions
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121  Here, we present a quantitative definition of a structured RNA region (PSR) that is equally
122  useful to predicting both, stems and loops as structured regions based on their evolutionary
123  conservation, and a new computational method for identifying those regions. The method is
124  robust to random RNA shapes present in a particular sequence but not selected and
125  conserved evolutionarily. We call this method RNA ISRAEU (RNA Identification of Structured
126  Regions As Evolutionary Unchanged).

127  As the first step in this method, we created a non-redundant dataset of sequences for each
128 RNA of interest constituted of highly homologous RNAs of the same length, and built
129 multiple sequence alignments. For the second step, the probability of every nucleotide to be
130 paired was calculated for each RNA sequence in the dataset. Third, we substituted every
131 nucleotide in the multiple alignment, with the nucleotide's pairing probability, thus aligning
132  pairing probabilities by nucleotide position. We took probabilities to be paired for all the 1st
133  nucleotides in each RNA sequence and grouped them together; for all 2™ nucleotides; for all
134  N™ nucleotides. Thus, if we have X RNA sequences each constituted of Y nucleotides, we
135 create Y sets of numbers ranging from 0 to 1; each set contains X numbers. Standard
136 deviation was computed for each set of probability values corresponding to every position
137  within the RNA. We proposed that such standard deviations be used as a measure of
138 structural conservation in a specific position. If the standard deviation for a particular position
139  within the RNA dataset was small, the probability of a nucleotide to be in a double-stranded
140 conformation did not vary substantially across the entire dataset of aligned mRNAs. We calll
141  such positions “structure-conserved”. In contrast, if the standard deviation was high, the
142  probability of a nucleotide to be paired changed vastly from strain to strain, a position was
143  called “structure-variable”. The mean probability at a particular position did not matter to the
144  position classification.

145 We called regions within RNA sequences formed by consecutive structure-conserved
146  positions “Predicted Structured Regions” (PSRs), while regions predominantly formed by
147  structure-variable positions were called “non-structured” (nonPSR). Apparently, such
148  definition is stem-loop agnostic. A stretch of nucleotide positions, which demonstrate high
149 probability of being paired across the entire dataset of RNAs, may form a functionally
150 important and evolutionarily conserved stem. Similarly, a batch of nucleotide positions with
151 low base pairing probabilities, which repeats itself across all RNAs in the dataset may form a
152  functionally important and evolutionarily conserved loop. Still, further analysis is necessary to
153 confirm both the stems and the loops. In all cases, within a PSR, the probability of each
154  nucleotide to be in a double-stranded conformation does not vary significantly across the
155 entire dataset of aligned RNAs and these positions are structure-conserved positions.

156 Identification of Structured RNA Regions in HIN1 Influenza Virus mRNAs

157 We applied RNA ISRAEU to predict evolutionarily conserved RNA structures of influenza A
158 virus (IAV) (28, 29).

159 We selected sequences encoded by the complete genomes of 107 pre-pandemic (1999 to
160 2009) and 173 pandemic (post-2009) human HIN1 strains (Supplementary Table 2). In
161 2009, a swine IAV strain was introduced into man and rapidly replaced the circulating
162 strains. All mRNAs selected for a given gene were of the same length. For each of the 10
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163 major viral mMRNAs, we predicted structured regions and calculated sequence variation.
164  Profiles for non-pandemic and pandemic NS2 mRNA are depicted in Figure 2 (profiles for
165 other mRNAs are presented in Supplementary Figures 2-38).

166 142 and 134 PSRs were identified in non-pandemic and pandemic influenza mRNAs
167 respectively. The length of PSRs varies from 5 to 121 nucleotides for non-pandemic and
168 from 5 to 103 nucleotides for pandemic strains (Table 1). The number of PSRs varies from 2
169 for NS2 to 31 for NP (Table 1). Only a fraction of PSRs overlap between pandemic and non-
170 pandemic strains. In some mRNAs (namely PB1, PB2, PA, HA and NA), the percentage of
171  such non-overlapping regions is higher than 70%. The location of each PSR are presented
172  in Supplementary Table 3.

173  In comparing PSR profiles with the profiles of mean pairing probabilities, we found two
174  evolutionarily conserved structural elements. One is located between positions 105 and 132
175 in non-pandemic NS2 mRNA (Figure 2), which contains a previously unknown predicted
176  conserved hairpin (Figure 3). Nucleotides 105 to 114 and 123 to 132 have a strong predicted
177  tendency to be paired while intervening nucleotides 115 to 124 have a strong tendency to be
178 unpaired. By comparing Figures 2(b) and 2(e), one can predict that this new hairpin structure
179 also exists in pandemic NS2 influenza mRNAs. The second novel PSR identified in non-
180 pandemic NS2 mRNA is between positions 24 and 89 (Figures 2 and 3). In this case
181 pandemic mRNAs contain only the PSR created by nucleotides 40 to 73.

182 Oligonucleotides complementing the stem of the newly Predicted Structured Regions
183 interfere with in vitro viral replication

184  To test the computationally predicted RNA structured regions, we have designed

185 oligonucleotides complementing the stem and the loop, as well as two controls of the same
186 length. The first control did not complement any sequence within the viral or human genome
187  while the other control bound a non-structured region adjacent to the PSR. The MDCK cell
188 monolayer was either transfected with one of the oligonucleotides and then infected with
189  A/California/7/09 strain or the cells were infected without prior transfection. The transfection
190 doze was not toxic for the cells as it was proven by the cell viability assay. Twenty four hours
191 post transfection and infection, the viral replication was assessed by developing the cell

192  monolayer with anti-NP ELISA. We observed that only the decamer complementing the stem
193  of the computationally predicted hairpin has significantly reduced the viral replication

194 comparing to the controls. Neither the oligonucleotide complementing the loop, nor the two
195  control oligos had a statistically significant effect on the in vitro viral replication (Figure 4).

196 Location of the Most Mutable Positions

197 We distinguish between two types of positions in the influenza genome — the mutable
198 positions which mutate quite frequently, and conserved positions. We tested if positions
199 mutating more often cluster outside of PSRs, while conserved positions are predominantly
200 located within the PSRs. The numbers for both types of positions in every mRNA of
201 pandemic and non-pandemic HIN1 strain are provided in the Supplementary Table 1.
202  Percentage of highly mutable positions in influenza mRNAs varies in a range from 7.9% in
203 M1 to 15.5% in NA and from 6.8% in M2 to 15.8% in HA for non-pandemic and pandemic
204  influenza strains respectively. Among the highly mutable positions from 56.1% for NS1 to

5


https://doi.org/10.1101/494336
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/494336; this version posted December 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

205 88.4% for NP and from 50.0% for M2 to 85.1% for M1 are third-codon positions for non-
206 pandemic and pandemic influenza mRNAs respectively. Results presented at plots (c) and
207  (f) of Figure 2 and Supplementary Figures 2-38 demonstrate that the most mutable positions
208 are randomly distributed within each mRNA and do not form clusters. Absence of
209 relationship between mutability value for every nucleotide position and corresponding value
210 of moving average of individual standard deviations of the probabilities of nucleotides to be
211 paired was confirmed by calculating Pearson correlation coefficients (Supplementary Table 4
212  and Supplementary Figures 39-58). All correlation coefficients were in a range from 0.006 to
213 0.222. This result refutes the intuitive notion that location of mutable positions would
214 correspond to the least structured RNA regions, while sequence conserved positions would
215  be collocated with the most structured RNA regions.

216 Comparison of Mutation’s Effect on RNA PSRs

217 We generated two groups of in silico mutants by introducing synonymous mutations into
218 influenza mRNAs. In the first group, mutations were introduced only into positions that are
219 highly prone to being mutated; in the second one, mutations were introduced only into
220 sequence conserved positions. The number of introduced in silico mutations was
221  proportional to the length of every mRNA (Table 1). The effects of two groups of in silico
222  mutations on structured RNA regions were compared, as described in the Materials and
223 Methods section (Table 2). The results of statistical tests (Table 2) demonstrate that for
224  majority of mRNAs the mutations introduced into sequence conserved positions have a
225 greater effect on PSRs than mutations introduced into the mutable positions. This result
226  stands out the most in mRNAs of non-pandemic NP, M2, and NS1 genes and pandemic
227 NS2 gene.

228
229 DISCUSSION

230 Evolutionarily conserved RNA structural elements may perform important biological
231 functions. Hence, identification and/or prediction of such elements can help in the
232  understanding of the mechanism of RNA functions. This is true for identification of not only
233  paired regions (stems), but loops too. In fact, kissing loop interactions are a common type of
234  tertiary interaction motif in RNA that brings terminal loops together through Watson-Crick
235 base pairing. Also, bulged nucleotides in the loop-loop interaction can be critical for ligand-
236 dependent regulation. Yet, despite many efforts, it has still been a challenge to introduce an
237  objective, quantitative, biologically meaningful and computationally friendly definition of what
238 a “structured” RNA region is. Therefore, we had to propose a new definition and a new
239 computational methodology free of these shortcomings.

240 In analyzing an individual RNA sequence, one has little chance to distinguish a biologically
241 important structure formed by a folded molecule from simply a random shape with no
242  biological importance. However, if one observes the same RNA configuration conserved and
243  repeated across all related RNA sequences isolated from different strains and/or species,
244  this increases the likelihood of biologically significant RNA structure. Following this logic, a
245  definition of a structured RNA region should be based on a dataset of multiple aligned RNA
246  sequences. Thus, assume that some structural element in a particular location is of such
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247  importance that it is present across all the strains. In this case, nucleotides in positions
248  correspondent to the stem would have very high base pairing probabilities in all aligned RNA
249  sequences of the dataset, while nucleotides in positions correspondent to the loop would
250 have very low base pairing probabilities in all the strains. At the same time, nucleotides
251 correspondent to a potential bistable structure would have their base pairing probabilities
252  neither too high nor very low across all RNA sequences. Therefore, we propose that
253  ‘“structured RNA regions” are defined as the patterns of probability values of the nucleotides
254  to be paired, which are manifested across the spectrum of strains and/or organisms. This
255  definition equally considers the conservation of stems, loops and potential bistable structures
256  while also providing a computationally friendly quantitative definition for the degree of RNA
257  structure conservation.

258 Mathematically, the fact that nucleotides in a particular position in each RNA of a dataset are
259 likely to belong to an evolutionarily conserved structural element means that if we collect
260 values of pairing probabilities for this nucleotide from each RNA sequence in the dataset,
261 and build a sample of these values to calculate its standard deviation, this standard deviation
262  will be relatively low compared with the majority of standard deviations for other positions.
263 Indeed, if this standard deviation is low, it means that mutations occurring in the analyzed
264 RNA do not affect the base pairing probability of a nucleotide in this position across the
265  spectrum of strains. Thus, it is most likely that mutations affecting pairing probability for this
266 nucleotide are filtered out. This is a good indicator of evolutionary conservation and the
267  biological importance of the RNA structure in this position. In contrary, if the standard
268 deviation is high, it means that the correspondent nucleotide is very likely to be bonded in
269 some strains but not in others; hence, the presence of any crucial RNA structure at this
270  position is unlikely (unless there is a bistable secondary structure in this area playing roles in
271 different functions). If an RNA contained five consecutive nucleotides with low standard
272  deviations of their mean pairing probabilities, the region was considered structured.

273  Applications of a Newly Introduced Computational Definition

274  Introduction of a new definition adequately describing the subject matter under study and
275 development of a new technique for analysis, however, are only as good as they can be
276 applied to a multitude of biological phenomena, generate new observations and
277  experimentally testable hypotheses, explain old conundrums, and generate new questions
278 (41). The presented approach was used to examine the existence of structured RNA regions
279 in mRNAs of pandemic and non-pandemic influenza A H1N1 virus. This method revealed
280 that influenza mRNAs contain nucleotide positions highly conserved in their base pairing
281 probabilities. For every analyzed RNA type, such positions group together and constitute
282  well-defined structured RNA regions, while the rest of the RNA molecule is significantly less
283  structured. To the best of our knowledge, such mosaic structurization of RNA molecules was
284  not reported previously. In vitro testing has confirmed that interfering with a stem of a
285  previously unknown computationally predicted RNA structured region indeed reduces viral
286 replication. We expect that future experimental testing will reveal the functions, these
287  evolutionarily conserved RNA secondary structures, perform during the course of viral
288 infection.
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289 We hypothesized that mosaic structurization of influenza mRNAs may explain a long-
290 standing conundrum of why different nucleotides in influenza genome mutate with such a
291 varied frequency. The enormous influence of amino acid conservation could explain only a
292  part of this phenomenon because many nucleotide substitutions are synonymous ones thus
293 cannot be explained by amino acid conservation. The first hypothesis was that if a mutation
294  happens within a structured RNA region it would disrupt the structure and be filtered out.
295 Thus, even if a mutation rate was the same for all nucleotides, the only mutations observed
296 in nature would be those happening outside of the structured RNA regions (PSR) and
297 neutral for RNA structures. If an exact picture of each RNA structure was available, it would
298 be possible to define structurally disruptive mutations visually as those that change the
299 shape(s) of the structure(s). However, modern computational methods do not make it
300 possible to predict exact RNA structures for long RNA molecules. Such predictions are
301 inaccurate and cannot be relied upon (14, 42-44). Thus, we had to define structurally
302 disruptive mutations based on the number of nucleotides in structured RNA regions, which
303  would change their W-C pairing probabilities to a level aberrant of their naturally observed
304 range. Contrary to original expectations, we showed that the nucleotide positions which are
305 the least prone to being mutated do not collocate with regions of conserved RNA structures.
306 Instead, the frequently and/or rarely mutating positions are randomly spread along the RNA
307 sequences. Although it was demonstrated that the most frequently mutating positions within
308 influenza genome are not collocated within unstructured RNA regions, this finding does not
309 refute the main hypothesis that states: “Mutations, which occur in nucleotide positions that
310 are the most prone to single nucleotide polymorphisms, have less of an effect on structured
311 RNA regions than mutations, which occur in positions that are less likely to be changed”.

312 A mutation does not necessarily have to take place inside the PSR in order to be disruptive
313 for a structure. For example, prior to mutation, a particular G was paired to a particular C
314 forming a structure. If a mutation outside the structure changes some A to C, it may become
315 a new paring partner for the G, thereby leading to an energetically more favorable RNA
316 folding and disrupting the original structural element. This effect may be especially strong if
317 mutations outside of the PSRs occur in combinations. Also, mutations in certain positions
318 may have a greater effect on RNA structures than that of other positions. Thus, if RNA
319 structures should indeed remain intact for successful viral propagation, all positions, SNPs in
320 which would have a striking effect on the structures, would seem as rarely mutating
321 compared to those positions, SNPs in which would have little effect on the structures. The
322 results presented here support this hypothesis. We demonstrated for some influenza
323 mRNAs that in silico mutations introduced into nucleotide positions, which mutate in the wild
324 less frequently, would possess a greater disruptive effect on areas of conserved RNA
325  structures than in silico mutations in positions which are known to mutate more frequently.
326 As a result, mutations deleterious for vital RNA structures would be eliminated due to the
327 negative selection pressure. This demonstrates that conservation of RNA structures could
328 be a contributing mechanism defining a highly differential mutation rate for different influenza
329 nucleotide positions. Additionally, the computational conclusion stipulates a direction for
330 experimental testing. Although it is time/cost-consuming, it is possible to test RNA shapes
331 experimentally (4, 45-49). If our hypothesis is correct, then influenza mRNAs observed in
332 nature and those RNAs carrying mutations, which we predicted to be structurally non-
333 disruptive, would possess similar RNA structures. By contrast, introducing into the RNA
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334  sequence mutations, which are predicted to disrupt structured RNA regions, would eliminate
335 atleast some of the RNA structures vital for a virus.

336 Identification of Evolutionarily Conserved RNA Structural Elements

337 Plotting a graph with nucleotide positions on axis X and standard deviations of nucleotide
338 paring probabilities for these positions on axis Y shows stretches along the RNA sequence
339 with low standard deviations. These areas potentially have conserved RNA secondary
340 structural elements. However, these graphs alone do not demonstrate whether the
341 probability of a nucleotide to form bonds is high across different strains or low. In other
342  words, a structurization profile may help identifying localization of RNA PSRs, but it does not
343 indicate what kind of structure is there. Nevertheless, some assumptions about the RNA
344  shape can be made if we complement structurization profiles with profiles presenting mean
345  pairing probability for each nucleotide (i.e. for each nucleotide position in the RNA sequence,
346  the pairing probability values from every RNA in the dataset would be used to calculate the
347  mean for the position).

348  Extracting complex structures from comparing structurization profiles with profiles of mean
349  pairing probabilities may require special analytical tools that are not a part of this first-stage
350 study. However, discovering the simplest hairpin structure may not require additional
351 instruments. Thus, when 10 nucleotides were found to possess very high means of
352  probabilities to be bonded in the entire dataset, followed by 8 structurally conserved
353 nucleotides which were apparently uncoupled, and then another 10 nucleotides that are
354  likely to be paired and complementing the first 10 as W-C bonding partners, these findings
355  showed existence of a previously unknown evolutionarily conserved RNA hairpin structure.
356 In vitro testing has confirmed that interfering with a stem of a previously unknown
357  computationally predicted RNA structured region indeed reduces viral replication. We expect
358 that future experimental testing will reveal the functions, these evolutionarily conserved RNA
359 secondary structures, perform during the course of viral infection.

360 It would be important to test whether pandemic and seasonal influenza strains indeed share
361 some PSRs and whether the difference in RNA structurization may play a role in pandemic
362 vs. non-pandemic viral phenotypes. Another direction of the future research would be to
363 expand our computational definition of a structured RNA region to predict evolutionarily
364  conserved RNA tertiary structures, especially in those RNAs that are hard to study by high-
365 resolution experimental methods (50). In addition to helical segments, RNAs can fold into
366 complex three-dimensional shapes. Computational modeling of RNA tertiary structures and
367 determining of three-dimensional shapes of complex RNAs constitutes a major intellectual
368 challenge (51-55). Thus, the most practical way to expand the proposed computational
369 method to studying RNA 3D structures would be to incorporate RNA 3D structural modules
370 that define sets of non-Watson-Crick base pairs embedded in WC pairs (56, 57).

371 Novel Approach for the Rational Design of Live-Attenuated Vaccines and Anti-Viral
372  Therapies

373 The method we proposed and applied to define structured RNA regions revealed several
374  areas possessing conserved secondary structures in mRNAs of HIN1 influenza virus. As a
375 next step, these structures have to be confirmed by in vitro analysis and their biological roles
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376  have to be assessed in vitro and/or in vivo. Potentially, structurally conserved RNA regions
377  of viral RNAs may become a novel class of anti-viral drug targets. For example, anti-viral
378 agents selectively disrupting RNA structures vital for a viral life cycle may become a new
379 class of anti-viral therapies. As a preliminary proof of concept, we have demonstrated that an
380 oligonucleotide binding the computationally predicted stem of a hairpin in a PSR, indeed acts
381 as an anti-viral agent reducing in vitro viral replication. In contrast, statistically significant
382 effect on viral replication was not observed if the infected cells transfected with the oligos of
383  the same length, which bind outside of the predicted hairpin or do not bind to anything at all.
384 Interestingly, even an oligonucleotide complementing the loop of this hairpin was unable to
385 reduce viral replication in a statistically significant manner. Thus, the anti-viral effect was
386  specific to disrupting the hairpin's stem. RNA ISRAEU allows rapid rational design of
387 oligonucleotide cocktails interfering with multiple computationally predicted structures, so no
388  single or few mutations would result in a resistant viral strain.

389  Several approaches have been proposed for analysis of impact of SNPs on RNA structures
390 and deleterious mutation prediction (1, 58), including RNAsnp (59, 60), SNPfold (61),
391 RNAmute (62, 63), RNAmutants (64), and RDMAS (65). However, all these methods
392 compare structures of the original and mutated RNAs assessing the distance, the effect on
393 the RNA structure caused by SNPs. Although these methods are productive for the tasks
394  they were developed for, they cannot be applied to our problem. We do not compare
395 structures of an original and an altered RNA sequences. Instead, we compare structures of
396 hundreds of RNA sequences without attributing any of them the “original” status. Therefore,
397 the approach proposed here allows us to define: (i) a naturally occurring range of
398  probabilities, which represents a range of probability values that are the most likely to be
399 observed for natural RNA strains (see Quantitative Assessment of Mutation’s Effect on RNA
400 PSRs in the Materials and Methods section for the specification) for every nucleotide
401 position within an RNA region possessing an evolutionarily conserved structure; (ii)
402  mutation(s) that would change base pairing probabilities within the structured RNA regions to
403 an extent that the new probabilities would not belong to a naturally occurring range for
404  corresponding positions.

405

406 Finally, we propose a new approach for the rational design of attenuated vaccines that would
407 be based on predicting mutations disruptive for conserved RNA structures and introducing
408 such mutations into viral genome. Indeed, disruption of an mRNA structure may serve as a
409 functional gene knock out reducing expression of a viral gene to a level insufficient for viral
410 cycle (12). Viral strain possessing such RNA can be administered to induce an immune
411 response with little risk for a patient. Such attenuated viral strains can be grown on
412  supporting cell lines actively expressing the limiting protein. Although LAVs are the most
413  successful achievements in the history of public health (38), we believe there were no prior
414  attempts to create LAVs based on perturbation of RNA structures.

415

416 MATERIALS AND METHODS
417

418 Data
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419  Selecting HIN1 influenza mRNAs for this work constituted a crucial initial step. Influenza A
420 genome consists of eight segments encoding seventeen proteins (66). Seven of those
421  proteins were excluded from the analysis due to the limited information about them. It is
422  known, however, that different influenza segments have different mutation rates (67). To
423 eliminate potential bias that can be caused by disproportional representation of similar
424 hemagglutinin (HA) and neuraminidase (NA) sequences (these two influenza genes are
425 sequenced more often than the others because they constitute major viral antigens) and to
426  compare evolutionary structure conservation between different influenza mRNAs, only
427  completely sequenced influenza genomes were utilized in the analysis. An influenza genome
428 was considered completely sequenced if it had no missing parts, no unknown nucleotides,
429 and if sequences of the ten major mMRNAs (namely, PB1, PB2, PA, HA, NP, NA, M1, M2,
430 NS1, and NS2) were known. In order to further increase coherence of the dataset, only
431 human influenza strains were utilized; other hosts were excluded because they demonstrate
432  different characteristics (68). Finally, only those strains possessing the identical length of
433 each influenza mRNA were selected. The fact that every mRNA of the same type has the
434  same length in every viral genome selected eliminates potential mistakes, which could be
435 introduced by effects of deletion and insertion polymorphisms (DIPs) on RNA secondary
436  structures. Sequences of pandemic and non-pandemic complete influenza genomes
437  satisfying the above mentioned criteria were downloaded from the Influenza Virus Resource
438  (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html) (69).

439  Filtering Redundant Sequences

440 Redundancy of data may introduce significant bias. To avoid it, one must only use a
441 representative subset of sequences instead of analyzing all possible strains. Therefore,
442  strains that were too similar were eliminated from further analysis; and, a non-redundant
443  subset of strains was created. Any two strains in the non-redundant subset possess no less
444  than 50 nucleotide differences per complete genome. In short, the first strain was chosen
445  randomly from the dataset described in the previous section, then added to the non-
446  redundant subset. Then, a different strain was randomly chosen and added to the non-
447  redundant subset only if the newly chosen sequence had at least 50 nucleotide differences
448  versus all strains in the non-redundant subset. This step was repeated until no more
449  sequences could be added to the non-redundant subset. The described procedure was done
450 separately for the pandemic and non-pandemic influenza datasets described above.

451 Structural Conservation of a Nucleotide Position

452  As afirst step, for each mRNA sequence in the datasets, the probability of every nucleotide
453  within an RNA chain to be coupled via W-C bond was calculated. For that purpose, the
454  RNAfold tool from the Vienna RNA package was used (70). RNAfold was used with the
455 command line options —p that calculates the partition function and base pairing probability
456  matrix, --noLP that disallows base pairs that can only occur as helices of length 1, and the
457  default folding temperature fixed at 37°C. As a result, if a non-redundant dataset consisted
458  of N sequences, a sample of N probability values would be created for each position (exactly
459 N for a position, in which there is no deletion/insertion polymorphisms) within analyzed RNA.
460 The standard deviation was calculated for every sample. The procedure described above
461 was conducted for each of ten mRNAs from both subsets. Thus, we have calculated
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462 standard deviations of the probabilities of nucleotides to be paired for every nucleotide
463  position within each of ten influenza mRNAs in both pandemic and non-pandemic datasets.
464  To smooth stochastic fluctuations, moving averages of individual standard deviations with
465 the sliding window of 5-nt length were calculated (Figure 2). To determine structure
466 conserved positions, all moving average values of individual standard deviations from all
467 mRNAs were combined to one dataset of moving averages, and the mean value and
468 standard deviation of the values in that dataset were calculated. If an individual moving
469 average calculated for a particular position was smaller than the overall mean of moving
470 averages minus the overall standard deviation of moving averages, the correspondent
471  position was considered “structure-conserved”.

472  RNA Structurization and Structured RNA Regions

473 As described above, noticeable areas of structure-conserved positions possessing low
474  standard deviation values were observed. Areas possessing at least five consequent
475  structure-conserved nucleotides were defined as “structured RNA regions”. The described
476  procedure was repeated separately for pandemic and non-pandemic influenza strains.

477  Mutability

478 Intuitively, “mutability” demonstrates how likely it is for a nucleotide in a particular position to
479  be mutated. Mathematically, this simple notion is defined as the value of Shannon entropy
480 (35), which is calculated based on the frequencies of every ribonucleotide recorded in a
481 particular position, with a pseudocount regularizers equal to 1 being added to the frequency
482  of each of four ribonucleotides according to Laplace’s rule. To identify nucleotide positions
483 that are the most/least prone to being mutated, the mutability value was computed for each
484  nucleotide position. The more variable a set of ribonucleotides observed in a particular
485  position, the higher the entropy. Then, all mutability values from all mMRNAs were combined
486 into one dataset. Those positions that had their mutability values higher than the 80th
487 percentile of the dataset were considered as mutable positions. In contrast, those positions
488 that did not contain SNPs among the sequences in the dataset were considered conserved
489 positions. The described procedure was repeated separately for pandemic and non-
490 pandemic influenza strains.

491 Quantitative Assessment of Mutation’s Effect on RNA PSRs

492  Following the analysis discussed above, a new method was proposed and implemented,
493  which defines “structurally disruptive mutations” based on their effect on structured RNA
494  regions (PSRs). As described previously, two datasets of aligned influenza sequences were
495 created. For each individual RNA sequence within the datasets, the probability of each
496 nucleotide to be paired was computed. For every nucleotide position within coding regions of
497 influenza mRNA sequences, the mean value and the standard deviation of the probabilities
498  of nucleotides to be paired were calculated. Based on these values, a naturally occurring
499 range of probabilities was calculated for every nucleotide position within a PSR. A naturally
500 occurring range of probabilities was defined as a range of probabilities from the mean value
501 decreased by two standard deviations to the mean value increased by two standard
502  deviations.
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503  Apparently, a mutation occurring in an RNA sequence may change probability of forming
504  Watson-Crick pairs for multiple nucleotides within a particular sequence. For some of those
505 nucleotides, their new probability values would still belong to the naturally occurring range of
506 probabilities for this position. For other positions, the mutation would change their pairing
507 probabilities to an extent that the new probabilities would not belong to their naturally
508 occurring range. A quantitative effect of mutation(s) on RNA structurization is defined as a
509 number of nucleotides within structured RNA regions (PSRs), which would change their
510 probabilities to an extent that the new probabilities would not belong to a naturally occurring
511 range for corresponding positions.

512  Statistical Analysis: Do Mutations Taking Place in the Most vs. Least Often Mutating
513 Positions Have a Different Effect on RNA Structurization?

514 Some positions in influenza genome are more prone to being mutated than others. The
515 ability to define quantitatively effects of mutations on RNA structurization permitted the
516  opportunity to propose a method for assessment, if mutations taking place in the frequently
517 mutating positions have the same effect on RNA structurization as mutations occurring in the
518 conserved ones. Two sets of in silico mutants were generated introducing synonymous
519 mutations in nucleotide positions that are either the most or the least prone to being
520 mutated. These two sets of mutations were compared for their effect on structured RNA
521 regions.

522 In order to normalize for the length difference among influenza mRNAs, the number of
523 changed nucleotides, which were introduced into each mRNA, was in proportion to the
524  length of the mRNA (Table 1). The required number of synonymous SNPs was introduced
525 into every mRNA sequence from the original datasets. In order to generate an in silico
526  mutant from an original mMRNA sequence, the required number of positions that are the most
527  or the least prone to being mutated were randomly selected. Every codon, which contains
528 the selected position, was changed to an alternative one encoding the same amino acid with
529 the condition that the new codon is not observed in the particular position in any mRNA
530 sequence from the datasets. Influenza mRNAs contain relatively high number of conserved
531 positions and relatively few often mutating ones. As a result, for every mRNA, the number of
532 in silico mutants with SNPs in conserved positions was equal to the number of wild type
533 influenza strains in the datasets. However, due to a small number of frequently mutating
534  positions, it was impossible for some mRNAs to generate the same number of unique
535 mutants by introducing SNPs only to positions prone to being mutated. In those cases, all
536  possible mutants were kept for further analysis - namely, 103 for non-pandemic M2, 95 for
537  pandemic M2, and 109 for pandemic NS2.

538 For each computer-generated mutant, the probability of every nucleotide to be in a double-
539 stranded conformation was calculated. Based on those probabilities, we calculated the
540 number of nucleotides within structured RNA regions (PSRs), which changed their
541  probability of being paired to a value outside of the naturally occurring range of probabilities
542  for this position. Such numbers were combined into two datasets: one for mutations
543 introduced into highly mutable positions and another — for mutations introduced in highly
544  conserved positions. The Mann-Whitney U test was conducted for comparing these two
545 datasets. The significance level for the test was Bonferroni-corrected by dividing the
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546  significance level of 5% by the total number of mRNAs in influenza virus, i.e. 10. The
547  described procedure was repeated separately for pandemic and non-pandemic influenza
548  strains.

549  Profiles of Mean Pairing Probabilities

550 Profiles of mean pairing probabilities were created for influenza mRNAs (Figure 2 and
551 Supplementary Figures 2-38). These profiles demonstrate how likely on average each
552  nucleotide within an mRNA is to be paired based on an analysis of the entire dataset of
553 sequences. As mentioned, for every RNA sequence in the dataset, the probability of every
554  nucleotide within the RNA chain to be coupled via W-C bond was calculated. Then, for every
555  nucleotide position, we computed the mean for probability values of this nucleotide based on
556 all RNA sequences. The resulting series of means is used as a profile of mean pairing
557  probabilities for a particular mRNA. The same work was performed for every influenza
558 mRNA.

559  Virus and Cells

560 Influenza virus A/California/7/09 (H1N1pdm) was provided by the Research Institute of
561 Influenza museum of viruses, Saint-Petersburg, Russian Federation. The 50% tissue culture
562 infective dose (TCID50) of this virus strain was defined by Reed—Muench method (72). The
563 aliquots of virus were stored at -800C. According to the American Tissue Madin-Darby
564  canine kidney (MDCK) cell culture was provided from the cell collection of Research Institute
565 of Influenza, Saint-Petersburg, Russian Federation. Cells were cultivated in cultural flasks
566 using minimum essential medium Eagle alpha modification (aMEM, Biolot) with 2mM L-
567  glutamine supplemented with 10% heat-inactivated fetal bovine serum (FBS, GIBCO, USA).

568 Design of Antisense DNA-oligonucleotides

569 We designed antisense oligonucleotides, which may potentially disrupt the aforementioned
570 predicted RNA-structure. A random oligonucleotide, “rand10”, with minimal probability of
571 having targets in the human hosts and viral genome was used as a control . Another control,
572  “off10”, was an oligonucleotide with a target to the adjacent region on the NS2 gene mRNA
573 (Table 3).

574
575  Cell Viability Assay

576 The cell viabilty was determined 24 hours post infection and transfection by
577  microtetrazolium test (MTT assay). A solution of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-
578 diphenyltetrazolium bromide] (Sigma) at a concentration of 2,5 mg/ml was prepared in PBS.
579  The medium was removed, the cells were washed once with PBS, MTT solution was added
580 into the wells (100 ul/well). The cells were incubated at 37°C and 5% CO 2 for 4 hours and
581 then the solution was removed and 96% ethanol (100 ul/well) was added for formazan
582 crystals dissolving. The absorbance signal was measured using multifunctional reader
583 CLARIOstar ® BMG LABTECH, Germany) at 535 nm.

584  Virus Infection and Transfection
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585 The cells were detached by 0,25% trypsin/EDTA solution (Invitrogen) for 5 min and plated in
586  96-well plates (Nucl) at 104 cells per well the day before the infection experiment. Cells were
587  washed twice with Dulbecco's Phosphate-Buffered Saline (DPBS, GIBCO) and infected with
588  A/California/7/09 (H1N1pdm) viral strain in 100TCID50 dose per well. The medium for cells
589 infection was minimum essential medium Eagle alpha modification (aMEM, Biolot) with 2mM
590 L-glutamine, 2,5 ug/ml trypsin TPCK-treated from bovine pancreas (TPCK, Sigma) and
591 1:100 antibiotic-antimycotic (100X, GIBCO). Inoculation was conducted at 37°C and 5%
592 CO2 for 60 minutes. Then the medium was removed and the cells were transfected using
593 100 pl of OptiPro SFM medium (GIBCO) contained 10 uM of DNA-oligonucleotides and 0.7
594  uliwell of Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol. In
595  addition, the transfection medium is also supplemented with 1:100 antibiotic-antimycotic
596 (100X) and 2,5 ug/ml TPCK. Viral control samples were also transfected with lipofectamin
597 2000 only, without any oligonucleotides. Four hours post-transfection, the medium was
598 replaced with fresh aMEM (Biolot) which contained 2mM L-glutamine, 2,5 ug/ml TPCK and
599  1:100 antibiotic-antimycotic (100X). Twenty four hours post- infection, cells were used for the
600 further relative ELISA analyses. Each treatment was performed in triplicates.

601 Enzyme-Linked Immunosorbent Assays (ELISA)

602 Twenty four hours post influenza virus infection and transfection with oligonucleotides,
603  continuity of the cell monolayer was assessed microscopically. Then, medium was removed
604 and the MDCK cells in 96-wells Nunc plates were fixed with 150 pl per well of cold 80%
605 acetone at 4°C for 30 minutes. The fixed samples were washed three times with phosphate
606 buffered saline containing 0.05% Tween (PBS-T) and blocked with 5% milk dissolved in
607 PBST (200 ul/well) for 30 minutes at 37°C. The fixed cells were incubated with lug/ml
608 mouse antibody against NP-protein (100 ul/well) produced in the Influenza Research
609 Institute (clone 4H1) at 37°C for 1 hour. After the next three washes the secondary goat anti-
610 mouse antibody conjugated with horseradish peroxidase (GAM-HRP, BioRad, USA) was
611 added at 1ug/ml (100 ul/well) and incubated for 1 hour at 37°C. Cells were washed three
612 times with PBS-T followed by adding TMB Peroxidase EIA Substrate Kit (Bio-Rad, USA)
613 according to manufacturer’s instructions for further absorbance analysis. The absorbance
614 was measured using multifunctional reader CLARIOstar ® (BMG LABTECH) as delta optical
615 density OD 450 — OD 655. The absorbance signal from uninfected cells was taken as zero
616 and was subtracted from the obtained values of the samples. The results were presented
617 relative to infection control.

618  Statistical Analysis of Viral Replication Inhibition Assay

619 Data shown are means +/- SD as percentage of untreated “Flu” group. P-values for
620 comparing the four treatment groups with the untreated group (Flu) were calculated using
621 student T test. The significance level for the test was Bonferroni-corrected by dividing the
622 significance level of 0.05 by the total number of group comparisons, i.e. 10. Analysis was
623  performed using the R software.

624

625 FUNDING
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TABLE AND FIGURE LEGENDS

Table 1: Numbers of identified structured RNA regions within influenza mRNAs.

Non-pandemic Pandemic Number
of in
silico
SNPs

Gene . .
name Length Do not overlap with Length Do not overlap with
PSRs in pandemic PSRs in non-
Total strains Total pandemic strains
number number
Min | Max | Median Percentage Min | Max | Median Percentage
Number Number
of total, % of total, %
PB2 23 3) 31 7 19 82.6 18 5 34 8.5 13 72.2 7
PB1 15 5 32 7 13 86.7 15 5 | 103 9 13 86.7 7
PA 20 3) 54 8 17 85.0 13 5 27 9 10 76.9 7
HA 11 5 10 9 9 81.8 21 5 24 8 19 90.5 5
NP 28 3) 24 9 15 53.6 31 5 67 7 17 54.8 5
NA 7 5 18 10 6 85.7 6 7 24 10.5 5 83.3 5
M1 22 3) S7 10 10 455 15 5 30 8 2 13.3 2
M2 5 7 34 14 2 40.0 5 5 43 9 3 60.0 1
NS1 8 3) 46 22.5 6 75.0 2 5 26 155 0 00.0 2
NS2 3 7 | 121 14 0 00.0 8 5 48 11 2 25.0 1
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802

Total | 142 5 | 121 9 97 68.3 134 5 | 103 84 62.7 42
L Gene | Total length | Percentage of Number of nucleotides within structured RNA P-value
= name of PSRs MRNA regions, which changed their probability of being

covered by paired to a value outside of the naturally occurring
PSRs range of probabilities for this position
Mutations in positions Mutations in conserved
that are prone to be -
positions
mutated
Mean Standard Mean Standard
deviation deviation
g PB2 257 0.113 18.6 135 20.8 14.9 0.1395
§ PB1 156 0.069 11.4 10.5 11.8 104 0.3264
$- PA 262 0.122 21.8 20.4 24.0 18.8 0.064
c
S HA 85 0.050 5.9 5.4 5.3 5.6 0.0813
NP 300 0.200 24.6 17.2 31.3 17.7 0.001
NA 75 0.053 4.0 5.1 4.4 6.2 0.2283
M1 334 0.440 24.3 23.3 21.1 21.2 0.1068
M2 77 0.262 4.1 4.7 7.0 7.5 0.0022
NS1 183 0.264 9.6 11.0 15.2 15.7 0.0008
NS2 142 0.388 114 19.2 12.0 22.8 0.0311
2 PB2 232 0.102 16.7 14.0 16.0 13.0 0.2883
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804
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806

PB1 251 0.110 15.8 14.3 17.0 14.6 0.1722
PA 138 0.064 12.0 10.7 125 10.8 0.3317
HA 205 0.121 17.5 18.0 15.9 185 0.0273
NP 351 0.234 41.2 27.5 44.8 27.8 0.0955
NA 84 0.060 4.7 6.8 5.5 7.7 0.3006
M1 174 0.229 111 11.8 12.0 111 0.0917
M2 77 0.262 10.5 8.7 9.8 11.2 0.0395
NS1 31 0.047 2.8 5.7 3.3 5.7 0.1341
NS2 146 0.399 10.4 14.7 215 28.0 0.0007

Table 2: Comparative analysis of the effects on RNA PSRs elicited by in silico mutations in frequently vs. rarely mutating positions of HIN1

influenza mRNAs.
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Table 3: List of antisense oligonucleotides used to examine influenza viral replication inhibition.

Name Seqguence Nucleotide position in NS2 mRNA
stem CAGAGACTCG 105 -114
loop TATATTTT 115-122

off10 CTTATTTCCT 221-230

rand10 TATCCCACAC NA

Figure 1: Computationally predicted by mfold 3.6 (71) (a) optimal and (b) one of many suboptimal secondary structures of tRNA. Mfold was
used with the default energy parameters including the folding temperature fixed at 37°C. Despite the fact that the left structure contains more
base pairs, the right structure is functional and evolutionarily conserved.

Figure 2: Structure variability and mutability profiles for non-pandemic ((a), (b), and (c)) and pandemic ((d), (e), and (f)) NS2 influenza mRNAs.
Plots (a) and (d) demonstrate structure conservation profiles; namely, they show the moving average that was calculated by applying a sliding
window approach to smooth individual fluctuations of standard deviations of nucleotide base pairing probabilities. The blue solid line
demonstrates the mean level of all moving average values, and the blue dashed line demonstrates the level equal to the mean of all moving
average values decreased by the standard deviation of all moving average values. In this case, the mean and the standard deviation were
computed based on all moving average values from all mMRNAs of a particular type (pandemic or non-pandemic) of influenza strains. According
to our definition, when the moving average goes below the blue dashed line, it is a structured RNA region. Such regions are colored with either
yellow or green across the plots. Plots (b) and (e) demonstrate profiles of the mean values of probabilities of nucleotide positions to be in a
double-stranded conformation. If this value is close to 1, it means that in most strains in the dataset the correspondent nucleotide has a very
high probability to be paired; and, if this value is close to 0, the correspondent nucleotide is very likely to be unpaired in most strains in the
dataset. Plots (c) and (f) demonstrate mutability profiles for NS2 mRNAs. Mutability of every nucleotide position is computed as a value of
Shannon entropy which is calculated based on frequency of every ribonucleotide in a particular position. Areas within RNA colored with yellow
or green demonstrate identified structured RNA regions. Meanwhile, areas colored with green show regions in which particular secondary
structure was determined.
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Figure 3: Secondary structural elements identified in the NS2 mRNA of HIN1 influenza A virus. These structural elements are evolutionarily
conserved among analyzed strains. Hairpin at plot (b) was identified in both non-pandemic and pandemic H1N1 influenza. Structure shown at
plot (a) exists in non-pandemic influenza virus, while pandemic mRNAs contain only part of that structure covered by nucleotide positions 40 to
73.

Figure 4: Influenza viral replication inhibition effect of antisense oligonucleotides, 24 hours post infection. P-value for the comparison between
“Stem” and “Flu” is 0.0043 and is the only statistically significant difference.
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