

1 **Interpreting mosquito feeding patterns in Australia through an
2 ecological lens; an analysis of blood meal studies**

3 E.B. Stephenson^{1*}, A. Murphy², C.C. Jansen³, A.J. Peel¹ and H. McCallum¹

4 ¹Environmental Futures Research Institute, Griffith University, Queensland

5 ²QIMR, Herston, Queensland, 4006, Australia

6 ³Communicable Diseases Branch, Department of Health, Queensland Government, Herston, Queensland, 4006

7 *corresponding author e-mail eloise.stephenson@griffithuni.edu.au

8 **Abstract**

9 Mosquito-borne pathogens contribute significantly to the global burden of disease, infecting
10 millions of people each year. Mosquito feeding is critical to the transmission dynamics of
11 pathogens, and thus it is important to understand and interpreting mosquito feeding patterns.
12 In this paper we explore mosquito feeding patterns and their implications for disease ecology
13 through a meta-analysis of published blood meal results collected across Australia from more
14 than 12,000 blood meals from 22 species. To assess mosquito-vertebrate associations and
15 identify mosquitoes on a spectrum of generalist or specialist feeders, we analysed blood meal
16 data in two ways; first using a novel odds ratio analysis, and secondly by calculating Shannon
17 diversity scores. We find that each mosquito species had a unique feeding association with
18 different vertebrates, suggesting species-specific feeding patterns. Broadly, mosquito species
19 could be grouped broadly into those that were primarily ornithophilic and those that fed more
20 often on livestock. Aggregated feeding patterns observed across Australia were not explained
21 by intrinsic variables such as mosquito genetics or larval habitats. We discuss the implications
22 for disease transmission by vector mosquito species classified as generalist-feeders (such as
23 *Aedes vigilax* and *Culex annulirostris*), or specialists (such as *Aedes aegypti*) in light of
24 potential influences on mosquito host choice. Overall, we find that whilst existing blood meal
25 studies in Australia are useful for investigating mosquito feeding patterns, standardisation of
26 blood meal study methodologies and analyses, including the incorporation of vertebrate
27 surveys, would improve predictions of the impact of vector-host interactions on disease

28 ecology. Our analysis can also be used as a framework to explore mosquito-vertebrate
29 associations, in which host availability data is unavailable, in other global systems.

30 **Keywords**

31 Blood meal; associations; vector; vertebrate; disease risk; blood feeding

32 **Introduction**

33 Mosquitoes are the most important disease vector globally, responsible for infecting millions
34 of people and animals annually with pathogens that influence human health, livestock and
35 economic trade and wildlife biodiversity [1]. Mosquitoes comprise a broad taxonomic group
36 with more than 3000 species recognised across 40 genera [2], but not all species are involved
37 in pathogen transmission. Pathogen transmission requires a mosquito to take a bloodmeal from
38 a source host and then to subsequently feed on a recipient host. Understanding the feeding
39 patterns of mosquitoes can inform disease management strategies (such as targeted vector
40 control to reduce vector-host contact), and can contribute to models forecasting future disease
41 risk in human and animal populations [3].

42 Mosquito host choice is complex; both intrinsic and extrinsic factors can influence feeding
43 preference [3, 4]. Intrinsic variables can include genetics, whereby individuals are more likely
44 to feed on the same host as previous generations [5, 6], and the nutritional state of the mosquito,
45 with nutrition-poor individuals being more likely to feed on non-preferred hosts [4]. Extrinsic
46 host-seeking behaviour is predominantly guided by detection of heat and carbon dioxide (CO₂),
47 and is also affected by host abundance, biomass, various odorants and chemicals that are
48 released by hosts, and host defensive behaviour [7-13]. Other extrinsic factors may include
49 climatic variables such as relative humidity, along with habitat characteristics that determine
50 availability and diversity of hosts [12, 14]. In addition to these broad intrinsic and extrinsic
51 variables, evidence suggests that mosquitoes may adjust their host-seeking behaviours based

52 on positive and negative experiences, in essence, adapting feeding choices according to their
53 individual circumstances [4].

54 Mosquito-host relationships in Australia are largely understudied. The island biogeography of
55 Australia and its varied climatic zones and bioregions promote a unique endemic biodiversity
56 for mosquito and vertebrate host species. Along with a high diversity of native marsupials,
57 placental mammals and birds in Australia, there are more than 300 species of mosquitoes
58 described, many of which are unique to the continent [15]. The interactions between these
59 populations of mosquitoes and vertebrate hosts across different climatic zones provide
60 opportunities for maintenance and emergence of mosquito-borne pathogens. The transmission
61 of numerous medically-important arboviruses has been documented in Australia to date,
62 including dengue (DENV), Ross River (RRV), Murray valley encephalitis (MVEV), Barmah
63 Forest (BFV) and Kunjin [16] viruses.

64 Taking into account the complexity of contributing factors, critical analysis of the feeding
65 patterns of mosquitoes may represent an important approach to explore disease risks for both
66 human and animal populations. This study aims to synthesise existing literature describing
67 blood meal studies in Australia, specifically assessing the most likely mosquito-host
68 associations, and the diversity of feeding patterns for common mosquito species. In light of
69 these feeding patterns, we discuss broad implications for disease ecology.

70 **Methods**

71 **Data collection**

72 Original research articles were systematically searched by using the following search terms in
73 different combination across five search engines (Web of Science, ProQuest, Science Direct,
74 PubMed and Google Scholar): ‘bloodmeal*’, ‘blood meal’, blood-meal’, ‘feeding’, ‘habit’,
75 ‘pattern*’, ‘preference*’, ‘interaction*’, ‘mosquito*’, ‘vector*’, ‘vector-host’, ‘host*’,

76 ‘vertebrate*’, ‘animal*’ and ‘Australia’. The asterisk (*) operator was used as a wildcard to
77 search for all possible variations of keywords. We then manually searched the reference lists
78 of papers to identify additional relevant articles. Papers were included in this review if they
79 were original peer-reviewed research articles, undertaken on mainland Australia (e.g. [17] was
80 undertaken in Badu Island in the Torres Strait and thus excluded), analysed field collected
81 mosquitoes that had fed under natural conditions on free-living vertebrates (e.g. [18] used
82 tethered animal baits and was excluded), and assessed at least 3 potential vertebrate species
83 (e.g. [19] only tested for a single flying fox species, and was excluded).

84 The following information was extracted from identified articles: the geographic area in which
85 the study took place (including site location, bioregion of each site (as defined by Thackway
86 and Cresswell [20])); the mosquito collection method used (including the year, month and
87 collection method/trap type); and the methods used to determine the vertebrate origin of blood
88 meals (including the vertebrate species investigated, the source of vertebrate reference samples,
89 and laboratory technique). Additional notes were made on stated limitations (if any) of each
90 paper and whether data on vertebrate abundance and diversity was included. A database of
91 blood meal results was populated and is reported in Supplementary Table 2.

92 **Data analysis**

93 *Mosquito-vertebrate associations*

94 Odds ratios were used to calculate the direction (positive or negative) and strength of
95 associations in the database between each mosquito species and vertebrate taxon. For this
96 analysis, the blood meal origin data compiled from the literature were aggregated such that
97 each vertebrate species was grouped into the broader taxonomic groups of Humans, Carnivores
98 (cats, dogs and foxes), Aves (all birds), Diprotodontia (all possum and kangaroo species),
99 Artiodactyla (cows, sheep, pigs and goats) and Perisodactyl (horses). Flying fox [21], rodent

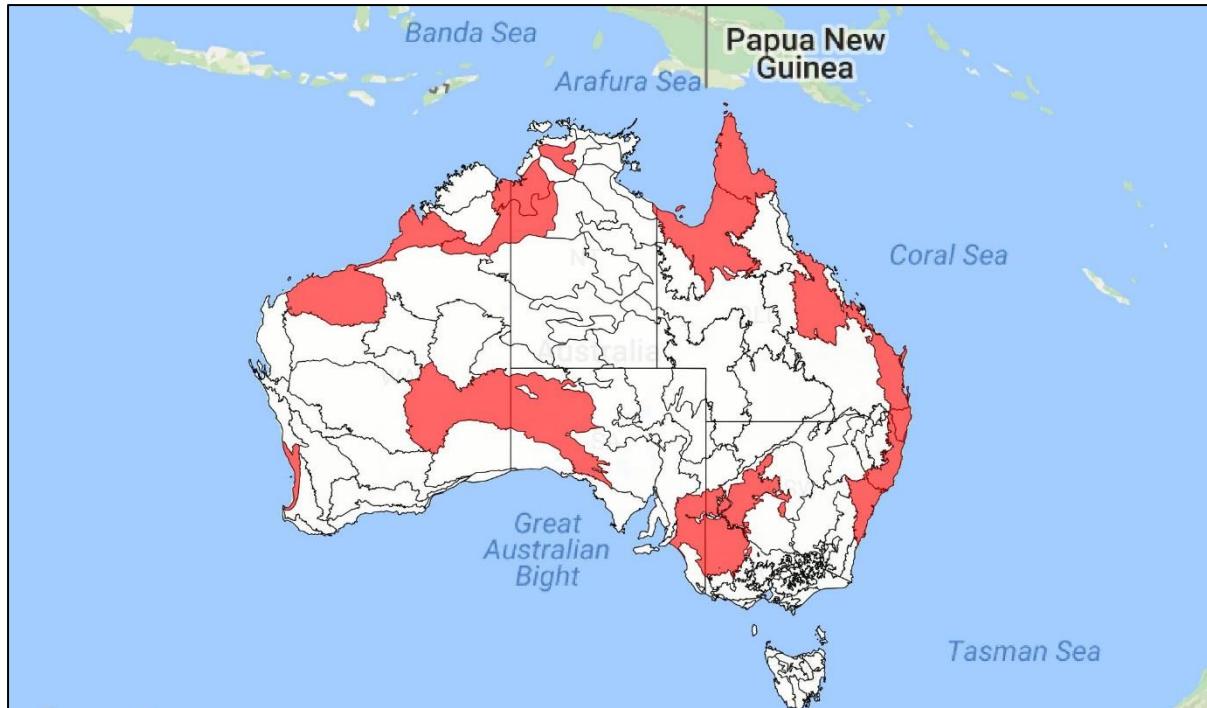
100 [22, 23] and rabbit [22, 24] species were excluded from this analysis, as the sample size of
101 blood meals from these species was too small (either one or two studies, with these species
102 comprising less than 9% of blood meal origins within each). To be included in the analysis,
103 mosquito species needed to meet all minimum data criteria of i) their blood meal origins being
104 reported more than twice in the literature, and ii) having an arbitrary minimum of 35 blood
105 meals identified.

106 Log odds ratios were calculated between each mosquito and vertebrate taxon using two by two
107 feeding frequency tables, derived from the raw data (Supplementary Table 1). Positive log odds
108 ratios indicate a positive feeding association between a given mosquito species and vertebrate
109 host, whereby there is a higher likelihood than random chance that a blood meal of that
110 mosquito species would originate from the given vertebrate taxon. The greater the log odds
111 ratio, the stronger the feeding association. Conversely, a negative log odds ratio suggested a
112 negative feeding association, whereby there is a lower likelihood that a blood meal from the
113 mosquito species would originate from the given vertebrate taxon. Log odds ratios close to 0
114 indicate no association between the mosquito species and vertebrate taxon.

115 The log odds ratios were plotted in a heatmap chart and sorted using hierarchical clustering.
116 The clustering grouped mosquitoes with similar feeding patterns together by similarity in log
117 odds ratio across all vertebrate taxa. All calculations and graphs were generated using R
118 software, with packages *gplots* and *RColorBrewer* [25] with modified script from Raschka
119 [26].

120 *Mosquito feeding diversity*

121 We used the Shannon diversity index to place mosquito species on a spectrum between
122 generalist or specialist feeders. The inclusion criteria for this analysis was that each mosquito
123 species needed to have fed on greater than three vertebrate species and had to have a minimum


124 number of 10 blood meals analysed. Vertebrates were not aggregated by taxonomic group in
125 this analysis, but remained at the level reported in the literature (mostly as species but, for the
126 case of birds, several studies reported as class). A total of 15 vertebrate species were included
127 in this analysis as blood meal origins, and 13,934 blood meals from 21/41 mosquito species
128 met the criteria (Supplementary Table 2).

129 Shannon diversity indices were calculated for each mosquito species [27] and expressed as an
130 h-index. A higher h-index is associated with a greater feeding diversity, as it suggests a
131 mosquito species has fed on a greater number of vertebrate species and/or feeds evenly across
132 vertebrates. Conversely a lower h-index suggests mosquito species have a low feeding
133 diversity, and are associated with feeding on fewer vertebrate species and/or a greater number
134 of feeds on a small number of vertebrates. Within this dataset, we categorised an h-index in the
135 top quartile as ‘high feeding diversity’, whilst an h-index in the lowest quartile was considered
136 a ‘low feeding diversity’. Shannon diversity indices were calculated in Excel.

137 **Results**

138 *Characteristics of the selected studies*

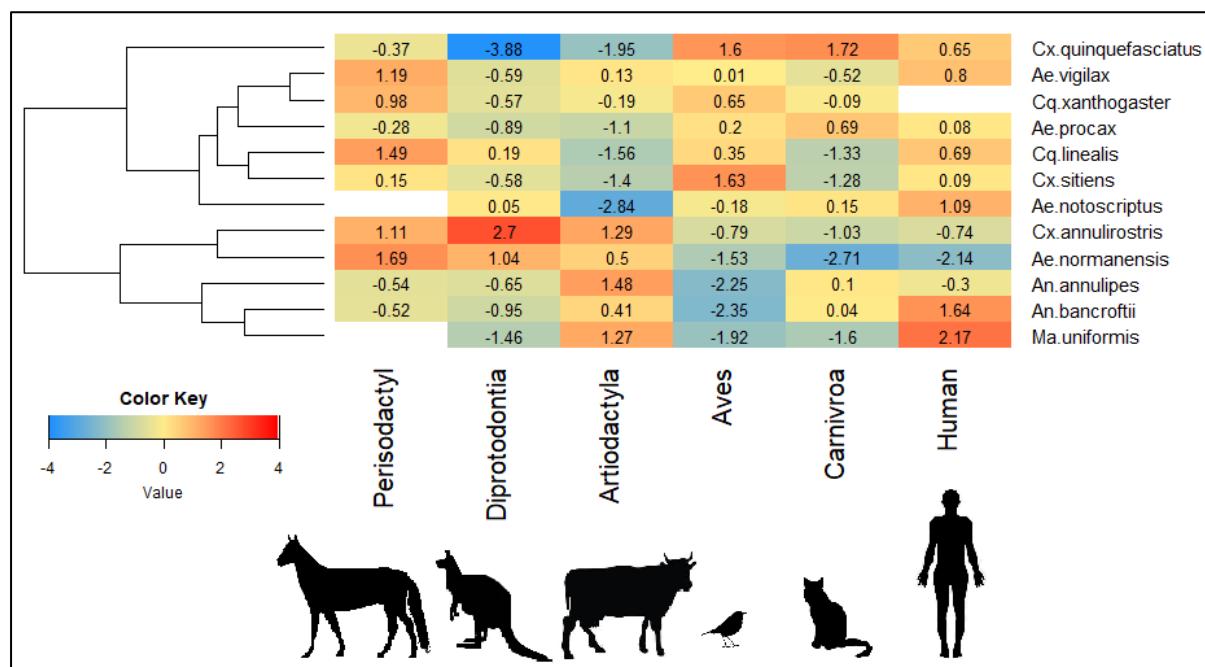
139 We identified ten papers that met the search criteria, comprising 14,044 mosquito blood meals
140 across 48 mosquito species. Study characteristics and methodologies are summarised in Table
141 1. These studies took place at 32 sites across 14 bioregions, in all mainland states and territories
142 in Australia (Figure 1). The selected studies were undertaken over a 62 year-period, from 1954
143 to 2016.

144

145 Figure 1: Bioregions in which blood meal studies took place (indicated in red) across
146 Australia

147 To collect blood-fed mosquitoes, most studies ($n = 8$) used Centers for Disease Control (CDC)
148 CO_2 -baited miniature light traps [28], supplemented with 1-octen-3-ol in some cases (Table 1).
149 Other methods included unbaited BioGent® (BG) sentinel traps [22] and aspiration of resting
150 sites [21, 29, 30]. One study [29] also used vehicle-mounted traps. To analyse blood meals,
151 early studies employed precipitin tests [29-31] and serological gel diffusion techniques [32, 33]
152 (Table 1). More recent studies adopted enzyme-linked immunosorbent assay (ELISA) and
153 various molecular techniques including polymerase chain reaction (PCR) and gene sequencing
154 [22-24, 34]. Vertebrate reference sources most commonly employed in immunoassays and gel
155 diffusion techniques were commercially-available anti-sera and included horse, rabbit, rat, dog,
156 chicken, cat, bird, kangaroo, cow and pig. Molecular studies which included wildlife used
157 vertebrate references provided through wildlife hospitals, zoos and roadkill. These studies also
158 included DNA sequence data available on GenBank.

Table 1: Location and methods for mosquito collection and blood meal analysis for the studies included in this review

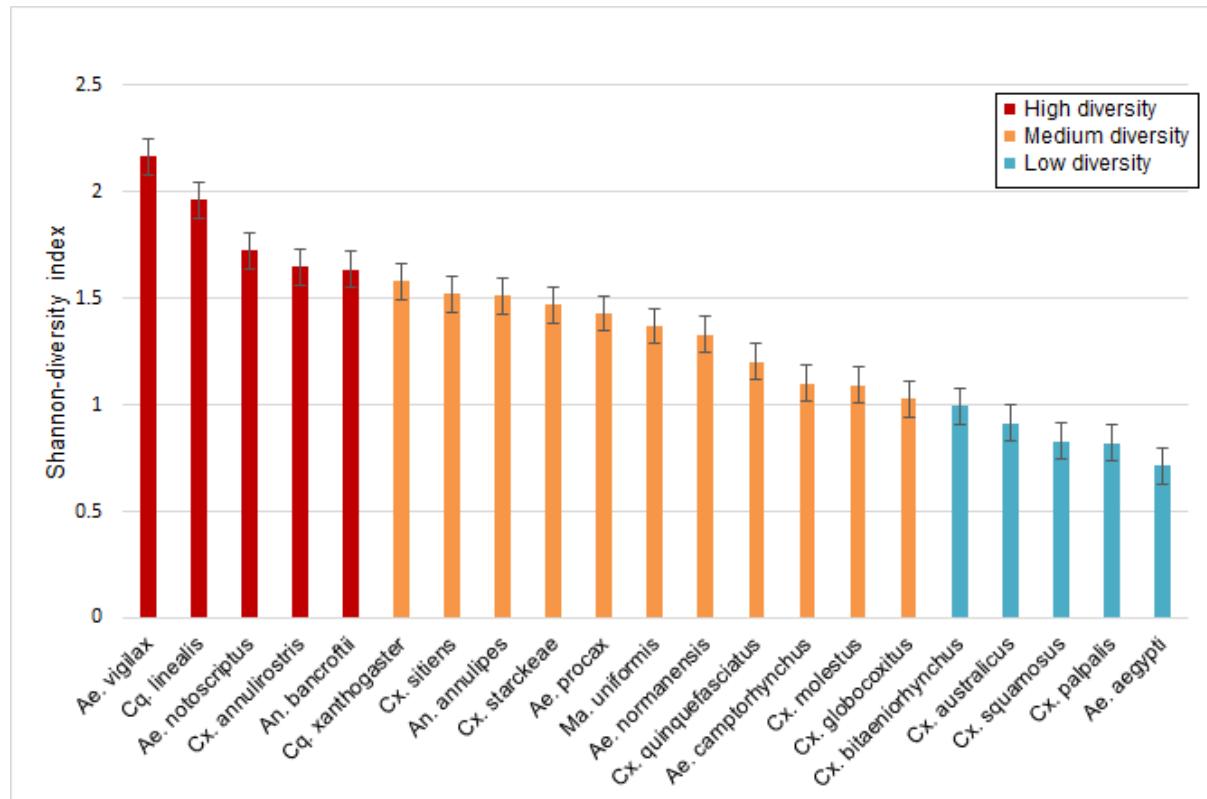

Study (Year) [Reference]	Site name (state)	Site habitat type	Collection months (years)	Mosquito collection method	Number of blood meals (& species) analysed	Blood meal analysis method	Vertebrate species tested
Flies <i>et al.</i> (2016) [23]	Adelaide Hills, Adelaide City, Murray River valley (South Australia)	Urban and rural	August – May (2006-2015)	EVS + CO ₂	199 (8)	Cytochrome b PCR using vertebrate, avian and mammalian primers, gene sequencing	Dog, cat, cow, sheep, pig, chicken, brushtail and ringtail possum, red kangaroo, koala, rainbow lorikeet, galah, Australian magpie
Hall- Mendelin <i>et</i> <i>al.</i> (2012) [34]	(Queensland), (Northern Territory)	Rural	February, March, October (2002-2006)	CDC + CO ₂ +/- octenol	1,128 (1)	Double-antibody ELISA modified from	Horse, rat, human, dog, cat, bird, kangaroo, cow, pig
Johansen <i>et</i> <i>al.</i> (2009) [24]	32 sites (Western Australia)	Urban and rural	All year round (1993-2004)	EVS + CO ₂	2,606 (29)	Double-antibody ELISA modified from	Cow, sheep, goat, pig, rabbit, horse, donkey, human, cat, fox, dog, brushtail possum, quokka, Western grey kangaroo, mouse, chicken, duck
Jansen <i>et al.</i> (2009) [22]	Cairns (Queensland), Brisbane (Queensland), Newcastle (New South Wales), Sydney (New South Wales)	Urban	All year round (2005-2008)	CDC, EVS + CO ₂ ; Unbaited BG sentinel traps	1,180 (15)	Indirect ELISA; PCR using avian- and mammalian- specific primers, gene sequencing	Horse, rabbit, rat, human, dog, chicken, cat, bird, kangaroo, cow, pig, 50 wild bird species

Study (Year) [Reference]	Site name (state)	Site habitat type	Collection months (years)	Mosquito collection method	Number of blood meals (& species) analysed	Blood meal analysis method	Vertebrate species tested
Kay <i>et al.</i> (2007) [21]	Brisbane (Queensland)	Urban	September- April (2000- 2001)	CDC + CO ₂ +/- OCT	865 (10)	Gel diffusion immunoassay	Bird, kangaroo, cat, dog, horse, human, brushtail possum, flying fox species
Frances <i>et al.</i> (2004) [32]	Shoalwater Bay (Queensland)	Rural	All year round (1998-2000)	EVS + CO ₂	763 (15)	Gel diffusion immunoassay	Human, kangaroo, bird, dog, horse, cow
van den Hurk <i>et al.</i> (2003) [33]	Cape York, Gulf Plains (Queensland)	Rural	January-May (1995-2001)	CDC + CO ₂ +/- OCT	2,582 (15)	Gel diffusion immunoassay	Horse, rabbit, rat, human, dog, chicken, cat, bird, kangaroo, cow, pig
Muller <i>et al.</i> (1981) [29]	Beatrice Hill (Northern Territory)	Rural	All year round (1974-1976)	Light trap (not specified) and vehicle mounted trap	1,628 (18)	Precipitin test	Cow, horse, dog, human, marsupial, chicken
Kay <i>et al.</i> (1979) [30]	Charleville (Queensland)	Rural	February (1976)	Aspiration of resting sites	5,431 (16)	Precipitin test	Reptile, amphibian, bird, pig, dog, cat, man, cow, horse, rodent, bat, marsupial, carnivore
Lee <i>et al.</i> (1954) [31]	Moree, Hornsby (New South Wales), Texas (Queensland), Golburn Valley (Victoria), Canberra (Australian Capital Territory)	Mostly rural	December- January (1951-1952)	Aspiration of resting sites	1,231 (15)	Precipitin test	Human, chicken, cow, dog, rabbit, horse, marsupial (unspecified)
Total					14,044 (48)		

161 Abbreviations: Encephalitis Vector Survey (EVS); Carbon Dioxide (CO₂); Centers for Disease Control (CDC); BioGent (BG); Polymerase chain reaction
162 (PCR); Enzyme-linked immunosorbent assay (ELISA); Octane (OCT)

163 *Mosquito-vertebrate associations*

164 Of the 10 studies of blood meal origins, data on 41 mosquito species were reported, and data
165 on 12 of these met the criteria to be included in analysis; *Aedes normanensis*, *Ae. notoscriptus*,
166 *Ae. procax*, *Ae. vigilax*, *Anopheles annulipes*, *An. bancroftii*, *Coquillettidia linealis*, *Cq.*
167 *xanthogaster*, *Culex annulirostris*, *Cx. sitiens*, *Cx. quinquefasciatus* and *Mansonia uniformis*
168 (Figure 2). All species, except *Ae. procax*, showed significant positive associations with at least
169 one vertebrate host. The strongest positive log odds ratio was between *Cx. annulirostris* and
170 the Diprodontia taxa (possums and kangaroos; log odds ratio (LOR) = 2.77), followed by *Ma.*
171 *uniformis* and humans (LOR = 2.2). All mosquito species except *Ae. vigilax* and *Cq.*
172 *xanthogaster* had strong negative association with at least one vertebrate taxon. The strongest
173 negative log odds ratio was between *Cx. quinquefasciatus* and Diprodontia (LOR = -3.8),
174 followed by *Ae. notoscriptus* and Artiodactyla (cows, sheep, pigs and goats; LOR = -2.8).


175
176 Figure 2. Feeding associations between Australian mosquito species and vertebrate taxa. Log
177 odds ratio for mosquito species (right hand side) indicate feeding likelihood on vertebrate taxa
178 (bottom). Each are sorted by hierachal cluster (left) according to similarities in feeding ratios
179 between mosquito species.

180 The mosquito species clustered together in two broad groups. The first cluster group consisted
181 of seven mosquito species (*Cx. quinquefasciatus*, *Ae. vigilax*, *Cq. xanthogaster*, *Ae. procax*,
182 *Cq. linealis*, *Cx. Sitiens* and *Ae. notoscriptus*), of which most shared a negative association with
183 the Artiodactyla (6 of the 7 species) and Diprodontia vertebrates (5/7), and a positive
184 association with Humans (7/7) and Aves (6/7). Within this cluster, *Ae. vigilax* and *Cq.*
185 *xanthogaster* were in the same clade and shared a strong positive association with
186 Perisodactyla. *Coquillettidia linealis* and *Cx. sitiens* also shared a clade and strong negative
187 association with both Aritodactyl and Carnivora.

188 The second major cluster group consisted of five mosquito species (*Cx. annulirostris*, *Ae.*
189 *normanensis*, *An. annulipes*, *An. bancroftii* and *Ma. uniformis*). These species all shared a
190 positive association with Aritodactyla and a negative association with Aves. *Culex*
191 *annulirostris* and *Ae. normanensis* were on the same clade and shared a strong positive
192 association with Perisodactyl and Diprodontia. Although they both also had a negative
193 association with Aves, Carnivora and Humans, this was strongest only for *Ae. normanensis*.
194 *Anopheles annulipes* and *Ma. uniformis* were on a single clade and were both had high
195 associations with humans.

196 *Mosquito feeding diversity*

197 Twenty-two mosquito species met the criteria for inclusion in the Shannon diversity analysis
198 analysis (Figure 3), comprising 12,424 individual blood meals in total. The median h-index
199 reported across all species was 1.40, and the mean was 1.34. Low feeding diversity (h-index =
200 <0.99) was observed in five mosquito species; of which *Ae. aegypti* had the lowest diversity
201 (h-index = 0.72). High feeding diversity (h-index = >1.64) was reported in five mosquito
202 species; of which *Ae. vigilax* had the highest diversity (h-index = 2.17).

203

204 Figure 3: Shannon diversity (h-index) of blood meal origins for Australian mosquitoes, error
205 bars represent the standard error for all measures

206 **Discussion**

207 Our analysis found that each mosquito species had a unique feeding association with different
208 vertebrates, suggesting species-specific feeding patterns. The hierarchical clustering from the
209 odds ratio analysis sorted mosquitoes in two broad groups; mosquitoes that either had a positive
210 association with birds (Aves) and negative association with livestock (Artiodactyla), or vice-
211 versa. Interpreting the feeding patterns of these particular mosquito species is important, given
212 that at least half of these mosquitoes have been found to be competent vectors for notifiable
213 arboviruses in Australia [35-40], whilst the other half have been demonstrated to carry some
214 viruses, though their ability to transmit them hasn't been fully investigated [41-43].

215 Intrinsic drivers of mosquito host choices (such as genetics, larval ecology and dispersal) did
216 not explain feeding patterns in this analysis. Specifically mosquito species did not group
217 together by taxonomic relatedness (e.g. genus). Studies examining the effect of genetics on

218 mosquito host choices have found that offspring are more likely to feed on the same host as
219 previous generations [5, 6]. However, this has only been demonstrated within-species and is
220 unlikely to be important between species belonging to same genus, particularly since potential
221 for rapid evolution (due to short generation span) likely reduces the influence that taxonomic
222 relatedness may have on mosquito feeding host behaviour. Another intrinsic factor, mosquito
223 larval ecology, may partially explain some clustering. For example, *Ae. normanensis* and *Cx.*
224 *annulirostris* grouped together and larvae of both typically inhabit inland freshwater; similarly,
225 the larval habitat of both *An. bancroftii* and *Ma. uniformis* is freshwater swamps. Although this
226 pattern did not explain all clusters, it implies that local environmental influences, at least
227 partially, drive mosquito host choice. This is perhaps not surprising when considering potential
228 limitations on dispersal from larval habitats for various mosquito species. For example, *Ae.*
229 *vigilax* is recognised as having large dispersal capability, being found more than 50 km from
230 potential saltwater larval habitats, albeit likely wind-assisted in some cases [44]. This high
231 dispersal potential suggests that *Ae. vigilax* can move readily between locations, allowing
232 feeding on a diversity of vertebrate taxa, as reflected in our feeding diversity analysis. As such,
233 whilst genetics and larval habitats may be important within species on a local scale, they do
234 not explain the aggregated feeding patterns observed across Australia.

235 Extrinsic variables, such as species abundance and diversity, explain in part some of the feeding
236 associations in this analysis, but not all. Mosquitoes have complex interactions with their
237 environment. Thus, factors broader than vertebrate abundance alone are important to consider
238 for mosquito feeding patterns. For example, mosquito flying/resting height has been linked to
239 host feeding patterns [45-48]. In two Australian studies, more *Cx. sitiens* and *Cx.*
240 *quinquefasciatus* were caught in traps set at least 8m off the ground, whilst a higher abundance
241 of *Ae. vigilax* were found in traps 1.5m off the ground, for the same locations [47, 48]. In our
242 meta-analysis, *Cx. sitiens* and *Cx. quinquefasciatus* had strong positive associations with blood

243 meals originating from tree dwelling bird species (i.e. Australasian figbirds *Sphecotheres*
244 *vieilloti*, Common myna *Sturnus tristis* and Helmeted friarbirds *Philemon buceroides* [22]),
245 whilst *Ae. vigilax* had the strongest positive associations with ground dwelling species (horses
246 and humans). This could suggest that whilst overall vertebrate abundance within a given
247 environment can influence the availability of a particular host, mosquitoes are highly mobile
248 and may seek a blood meals across ecological niches a given habitat. As such different
249 mosquito species can exhibit different feeding patterns despite being exposed to the same
250 vertebrate abundance and climate conditions in the same habitat.

251 In the odds ratio analysis, *Cx. annulirostris* exhibited an unexpected feeding pattern. This
252 species is considered an important vector for medically-important arboviruses [36, 49, 50],
253 however the meta-analyses which included more than 5700 blood meals, found that *Cx.*
254 *annulirostris* had only a weak feeding association with humans (LOR = -0.74). This is
255 consistent with an early field study assessing mosquito feeding preferences using live baits, in
256 which *Cx. annulirostris* preferred cows, pigs and dogs more than humans [30]. The Shannon
257 diversity analysis, along with other studies, have identified *Cx. annulirostris* as a generalist
258 feeder with plastic feeding patterns that may shift temporally or spatially [51, 52]. This
259 knowledge, in combination with the widespread distribution of *Cx. annulirostris* across
260 Australia, suggests that localised studies of *Cx annulirostris* feeding are required to assess the
261 role the species plays in disease transmission for which it is theoretically an important vector.

262 In addition to *Cx. annulirostris*, *Aedes vigilax* and *Ae. notoscriptus* were identified as
263 generalists due to their high diversity scores in the Shannon diversity analysis. International
264 studies [53-55] suggest that generalist feeders are capable of playing a role as bridge vectors
265 due to their ability to acquire pathogens from animal hosts, and subsequently transmitting the
266 pathogen to humans. Bridge vectors are particularly important for enzootic amplification of
267 arboviruses and are often associated with outbreaks [53]. For the species identified in this

268 analysis as generalists, they have been demonstrated to be competent vectors of zoonotic
269 arboviruses in Australia [35, 56-58], and as such should be closely monitored to reduce
270 transmission between vectors and humans.

271 The disease ecology associated with specialist feeders is also important to consider. Here we
272 identified *Ae. aegypti* as having the lowest feeding diversity, indicating the species as a
273 specialist feeder. Indeed, more than 70% of the blood meals originated from humans. The
274 anthropophilic feeding observed in *Ae. aegypti* is similar to that reported in international
275 studies, where 80 to 99% of all blood meals are human in origin [59, 60]. This feeding pattern
276 for *Ae. aegypti* is consistent with its role as an important vector of several arboviruses which
277 are transmitted between humans without an animal reservoir, including dengue, Zika and
278 chikungunya viruses. Interestingly, although the importance of *Ae. aegypti* is recognised, *Ae.*
279 *aegypti* is sometimes under laboratory conditions the species has been observed to demonstrate
280 relatively poor transmission rates for DENV, when compared to other mosquito species [61,
281 62]. In this case, being a specialist feeder, preferring mainly humans, is what determines the
282 status of *Ae. aegypti* as an important disease vector, rather than its competence [63].

283 ***Future directions***

284 An absence of data on host availability in the regions where mosquitoes were collected limits
285 inferences on host preference specifically. Of the blood meal studies reviewed here, only one
286 considered host abundance [21]. That study assessed abundance through a local resident survey
287 on the number of pets, people and estimated number of possums in the vicinity, adding
288 confidence to the interpretation of vector-feeding patterns. Such collection of host ecology data
289 in conjunction with blood fed mosquitoes can be considerably labour intensive; however, it
290 provides a more thorough assessment of how host abundance and biomass may influence
291 observed mosquito feeding patterns and informs the selection of appropriate reference samples

292 against which to compare blood meals in the laboratory. Where data cannot be collected in
293 conjunction with blood fed mosquitoes, alternative sources such as the Atlas of Living
294 Australia and the Global Biodiversity Information Facility (GBIF) may offer a suitable proxy.
295 This methodology has been adopted successfully in international blood meal studies [64, 65]
296 and could be beneficial for future investigations.

297 Although a range of reference vertebrates were often included in Australian blood meal studies,
298 they were rarely a true representation of the vertebrates available to mosquitoes for feeding. At
299 present there are large gaps in understanding the role of cryptic, migratory or smaller
300 mammalian species in mosquito feeding patterns. For example, only two studies included
301 rabbits [22, 24] and rodents [22, 23] in their analysis. Despite their small size, rabbits and
302 rodents were identified to be the origin of blood meals for *Cx. sitiens* and *Cq. linealis* [22].
303 Mosquito-rodent associations have also been identified in the literature, where by at least 27%
304 of mice were seropositive to RRV [58, 66]. It is therefore important that, despite small body
305 size, rats and rodents are included in future investigations of mosquito blood meals.

306 Conclusion

307 Improved understanding of mosquito feeding patterns can lead to better management and risk
308 predictions for medically important arboviruses. Here we find that of the Australian mosquito
309 species tested, each had a unique feeding pattern; however, the particular specialist or generalist
310 feeding patterns of mosquito species could be a key determinant of the risk they pose for human
311 disease. These patterns, and the resulting human disease risk, are likely influenced by a suite
312 of intrinsic and extrinsic variables. Broader ecological considerations alongside these feeding
313 patterns could be useful for the interpretation of these complex biological systems, but at
314 present data available to do this is limited. Future studies should utilise multidisciplinary
315 approaches to collect data on vertebrate communities in parallel with mosquito communities.

316 More data from both top-down (broad assessments of blood meals) and bottom-up approaches
317 (specialised host choice experiments) are needed in conjunction with modelling techniques to
318 bring these data together for meaningful interpretation of arbovirus transmission risk in
319 Australia.

320 **References**

- 321 1. Gubler, D.J., *Human arbovirus infections worldwide*. Annals of the New York Academy of
322 Sciences, 2001. **951**(1): p. 13-24.
- 323 2. Wongkamchai, S., et al., *Comparative identification of protein profiles and major allergens of*
324 *saliva, salivary gland and whole body extracts of mosquito species in Thailand*. Asian Pacific
325 journal of allergy and immunology, 2010. **28**(2-3): p. 162.
- 326 3. Lyimo, I.N. and H.M. Ferguson, *Ecological and evolutionary determinants of host species*
327 *choice in mosquito vectors*. Trends Parasitol, 2009. **25**(4): p. 189-96.
- 328 4. Takken, W. and N.O. Verhulst, *Host preferences of blood-feeding mosquitoes*. Annu Rev
329 Entomol, 2013. **58**: p. 433-53.
- 330 5. Mukwaya, L., *Genetic control of feeding preferences in the mosquitoes Aedes (Stegomyia)*
331 *simpsoni and aegypti*. Physiological Entomology, 1977. **2**(2): p. 133-145.
- 332 6. Ulloa García, A., et al., *Innate host selection in Anopheles vestitipennis from southern Mexico*.
333 Journal of the American Mosquito Control Association, 2004. **20**(4): p. 337-341.
- 334 7. Edman, J.D. and D.J. Taylor, *Culex nigripalpus: seasonal shift in the bird-mammal feeding ratio*
335 *in a mosquito vector of human encephalitis*. Science, 1968. **161**(3836): p. 67-68.
- 336 8. Balenghien, T., et al., *Horse-, bird-, and human-seeking behavior and seasonal abundance of*
337 *mosquitoes in a West Nile virus focus of southern France*. Journal of Medical Entomology,
338 2006. **43**(5): p. 936-946.
- 339 9. Kilpatrick, A.M., et al., *West Nile virus epidemics in North America are driven by shifts in*
340 *mosquito feeding behavior*. PLoS biology, 2006. **4**(4): p. e82.
- 341 10. Eiras, A.E. and P. Jepson, *Responses of female Aedes aegypti (Diptera: Culicidae) to host odours*
342 *and convection currents using an olfactometer bioassay*. Bulletin of Entomological Research,
343 1994. **84**(2): p. 207-211.
- 344 11. Bowen, M., *The sensory physiology of host-seeking behavior in mosquitoes*. Annual review of
345 entomology, 1991. **36**(1): p. 139-158.
- 346 12. Clements, A., *The biology of mosquitoes*. 1992. Oxon: CABI Publ Google Scholar.
- 347 13. Day, J.F., K.M. Ebert, and J.D. Edman, *Feeding patterns of mosquitoes (Diptera: Culicidae)*
348 *simultaneously exposed to malarious and healthy mice, including a method for separating*
349 *blood meals from conspecific hosts*. Journal of Medical Entomology, 1983. **20**(2): p. 120-127.
- 350 14. Olanga, E.A., et al., *Attraction of Anopheles gambiae to odour baits augmented with heat and*
351 *moisture*. Malaria journal, 2010. **9**(1): p. 6.
- 352 15. Webb, C., R. Russell, and S. Doggett, *A guide to mosquitoes of Australia*. 2016: Csiro Publishing.
- 353 16. van den Hurk, A.F. and C.C. Jansen, *Arboviruses of Oceania*, in *Neglected Tropical Diseases-Oceania*. 2016, Springer. p. 193-235.
- 355 17. van den Hurk, A., et al., *Japanese encephalitis on Badu Island, Australia: the first isolation of*
356 *Japanese encephalitis virus from Culex gelidus in the Australasian region and the role of*
357 *mosquito host-feeding patterns in virus transmission cycles*. Transactions of the Royal Society
358 of Tropical Medicine and Hygiene, 2001. **95**(6): p. 595-600.
- 359 18. Muller, M. and M. Murray, *Blood-sucking flies feeding on sheep in eastern Australia*. Australian
360 Journal of Zoology, 1977. **25**(1): p. 75-85.

361 19. Ryan, P.A., et al., *Investigation of gray-headed flying foxes (Pteropus poliocephalus)*
362 (*Megachiroptera: Pteropodidae*) and *mosquitoes in the ecology of Ross river virus in Australia*.
363 American Journal of Tropical Medicine and Hygiene, 1997. **57**(4): p. 476-482.

364 20. Thackway, R. and I. Cresswell, *An Interim Biogeographic Regionalisation for Australia: a*
365 *framework for establishing the national system of reserves, Version 4.0*. Australian Nature
366 Conservation Agency, Canberra, 1995. **88**.

367 21. Kay, B.H., et al., *Mosquito feeding patterns and natural infection of vertebrates with Ross River*
368 *and Barmah Forest viruses in Brisbane, Australia*. American Journal of Tropical Medicine and
369 Hygiene, 2007. **76**(3): p. 417-423.

370 22. Jansen, C.C., et al., *Blood sources of mosquitoes collected from urban and peri-urban*
371 *environments in eastern Australia with species-specific molecular analysis of avian blood*
372 *meals*. American Journal of Tropical Medicine and Hygiene, 2009. **81**(5): p. 849-857.

373 23. Flies, E.J., et al., *Regional comparison of mosquito bloodmeals in South Australia: implications*
374 *for Ross River virus vecology*. Journal Of Medical Entomology, 2016.

375 24. Johansen, C.A., S.L. Power, and A.K. Broom, *Determination of mosquito (Diptera: Culicidae)*
376 *bloodmeal sources in Western Australia: implications for arbovirus transmission*. Journal of
377 Medical Entomology, 2009. **46**(5): p. 1167-1175.

378 25. Neuwirth, E. *Package 'RColorBrewer'*. 2015; Available from: www.colorbrewer2.org.

379 26. Raschka, S., *Instant Heat Maps in R: How-to*. 2013: Packt Publishing Ltd.

380 27. Morris, E.K., et al., *Choosing and using diversity indices: insights for ecological applications*
381 *from the German Biodiversity Exploratories*. Ecology and evolution, 2014. **4**(18): p. 3514-3524.

382 28. Sudia, W. and R. Chamberlain, *Battery-operated light trap, an improved model*. Mosquito
383 news, 1962. **22**(2): p. 126-129.

384 29. Muller, M., M. Murray, and J. Edwards, *Blood-sucking midges and mosquitoes feeding on*
385 *mammals at Beatrice Hill, NT*. Australian Journal of Zoology, 1981. **29**(4): p. 573-588.

386 30. Kay, B., P. Boreham, and G. Williams, *Host preferences and feeding patterns of mosquitoes*
387 (*Diptera: Culicidae*) *at Kowanyama, Cape York Peninsula, northern Queensland*. Bulletin of
388 Entomological Research, 1979. **69**(3): p. 441-457.

389 31. Lee, D.J., K. Clinton, and A. O'gower, *The blood sources of some Australian mosquitoes*.
390 Australian journal of biological sciences, 1954. **7**(3): p. 282-301.

391 32. Frances, S.P., et al., *Occurrence of Ross River virus and Barmah Forest virus in mosquitoes at*
392 *Shoalwater Bay military training area, Queensland, Australia*. Journal of Medical Entomology,
393 2004. **41**(1): p. 115-120.

394 33. van den Hurk, A., et al., *Mosquito host-feeding patterns and implications for Japanese*
395 *encephalitis virus transmission in northern Australia and Papua New Guinea*. Medical and
396 veterinary entomology, 2003. **17**(4): p. 403-411.

397 34. Hall-Mendelin, S., et al., *Culex annulirostris (Diptera: Culicidae) Host Feeding Patterns and*
398 *Japanese Encephalitis Virus Ecology in Northern Australia*. Journal of Medical Entomology,
399 2012. **49**(2): p. 371-377.

400 35. Watson, T.M. and B.H. Kay, *Vector competence of Aedes notoscriptus (Diptera : Culicidae) for*
401 *Barmah Forest virus and of this species and Aedes aegypti (Diptera : Culicidae) for dengue 1-4*
402 *viruses in Queensland, Australia*. Journal of Medical Entomology, 1999. **36**(4): p. 508-514.

403 36. Boyd, A.M. and B.H. Kay, *Vector competence of Aedes aegypti, Culex sitiens, Culex*
404 *annulirostris, and Culex quinquefasciatus (Diptera : Culicidae) for Barmah Forest virus*. Journal
405 *of Medical Entomology*, 2000. **37**(5): p. 660-663.

406 37. Ryan, P.A. and B.H. Kay, *Vector competence of mosquitoes (Diptera : Culicidae) from Maroochy*
407 *Shire, Australia, for Barmah Forest virus*. Journal of Medical Entomology, 1999. **36**(6): p. 856-
408 860.

409 38. Wells, P.J., R.C. Russell, and M.J. Cloonan, *Investigating vector competence of Culex*
410 *annulirostris and Aedes vigilax for Ross River virus and other alpha- and bunyaviruses*.
411 Arbovirus Research in Australia, 1993. **6**: p. 10-14.

412 39. Kay, B.H., I.D. Fanning, and J.G. Carley, *VECTOR COMPETENCE OF CULEX-PIPIENS-QUINQUEFASCIATUS FOR MURRAY VALLEY ENCEPHALITIS, KUNJIN, AND ROSS RIVER VIRUSES FROM AUSTRALIA*. American Journal of Tropical Medicine and Hygiene, 1982. **31**(4): p. 844-848.

413 40. Kay, B.H., et al., *QUANTITATIVE STUDIES OF THE VECTOR COMPETENCE OF AEDES-AEGYPTI, CULEX-ANNULIROSTRIS AND OTHER MOSQUITOS (DIPTERA, CULICIDAE) WITH MURRAY VALLEY ENCEPHALITIS AND OTHER QUEENSLAND ARBOVIRUSES*. Journal of Medical Entomology, 1979. **16**(1): p. 59-66.

414 41. Jeffery, J.A., et al., *Vector competence of Coquillettidia linealis (Skuse) (Diptera : Culicidae) for Ross River and Barmah Forest viruses*. Australian Journal of Entomology, 2002. **41**: p. 339-344.

415 42. Hurk, A.F.v.d., et al., *Isolation of arboviruses from mosquitoes (Diptera: Culicidae) collected from the Gulf Plains region of Northwest Queensland, Australia*. Journal of Medical Entomology, 2002. **39**(5): p. 786-792.

416 43. Harley, D., et al., *Isolation of Ross River virus from mosquitoes trapped in North Queensland*. Arbovirus Research in Australia, 1997. **7**: p. 92-94.

417 44. Chapman, H., et al., *Population structure and dispersal of the saltmarsh mosquito Aedes vigilax in Queensland, Australia*. Medical and Veterinary Entomology, 1999. **13**(4): p. 423-430.

418 45. Lee, H.I., et al., *Study of flying height of culicid species in the northern part of the Republic of Korea*. Journal of the American Mosquito Control Association, 2006. **22**(2): p. 239-245.

419 46. Swanson, D. and P. Adler, *Vertical distribution of haematophagous Diptera in temperate forests of the southeastern USA*. Medical and veterinary entomology, 2010. **24**(2): p. 182-188.

420 47. Jansen, C.C., et al., *Efficacy of bird-baited traps placed at different heights for collecting ornithophilic mosquitoes in eastern Queensland, Australia*. Australian journal of entomology, 2009. **48**(1): p. 53-59.

421 48. Johnston, E., et al., *Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: implications for disease vector surveillance*. Journal of Vector Ecology, 2014. **39**(1): p. 48-55.

422 49. Jansen, C.C., et al., *Vector Competence of Australian Mosquito Species for a North American Strain of West Nile Virus*. Vector-Borne and Zoonotic Diseases, 2008. **8**(6): p. 805-811.

423 50. Kay, B.H., et al., *Alphavirus infection in mosquitoes at the Ross River reservoir, north Queensland, 1990-1993*. Journal of the American Mosquito Control Association, 1996. **12**(3): p. 421-428.

424 51. Williams, C.R., M.J. Kokkinn, and B.P. Smith, *Intraspecific variation in odor-mediated host preference of the mosquito Culex annulirostris*. Journal of chemical ecology, 2003. **29**(8): p. 1889-1903.

425 52. Standfast, H. and G. Barrow, *Studies of the epidemiology of arthropod-borne virus infections at Mitchell River Mission, Cape York Peninsula, North Queensland*. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1968. **62**(3): p. 418-429.

426 53. Kilpatrick, A.M., et al., *West Nile virus risk assessment and the bridge vector paradigm*. Emerging infectious diseases, 2005. **11**(3): p. 425.

427 54. Hongoh, V., et al., *A review of environmental determinants and risk factors for avian-associated mosquito arboviruses in Canada*. Biodiversity, 2009. **10**(2-3): p. 83-91.

428 55. Andreadis, T.G., *The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America*. Journal of the American Mosquito Control Association, 2012. **28**(4s): p. 137-151.

429 56. Jacups, S.P., et al., *Determining meteorological drivers of salt marsh mosquito peaks in tropical northern Australia*. Journal of Vector Ecology, 2015. **40**(2): p. 277-281.

430 57. Hu, W., et al., *Difference in Mosquito Species (Diptera: Culicidae) and the Transmission of Ross River Virus Between Coastline and Inland Areas in Brisbane, Australia*. Environmental Entomology, 2010. **39**(1): p. 88-97.

462 58. Stephenson, E.B., et al., *The non-human reservoirs of Ross River virus: a systematic review of*
463 *the evidence*. Parasites & vectors, 2018. **11**(1): p. 188.

464 59. Scott, T.W., et al., *Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and*
465 *Puerto Rico: blood feeding frequency*. Journal of medical entomology, 2000. **37**(1): p. 89-101.

466 60. Scott, T.W., et al., *Blood-feeding patterns of Aedes aegypti (Diptera: Culicidae) collected in a*
467 *rural Thai village*. Journal of Medical Entomology, 1993. **30**(5): p. 922-927.

468 61. Calvez, E., et al., *Dengue-1 virus and vector competence of Aedes aegypti (Diptera: Culicidae)*
469 *populations from New Caledonia*. Parasites & vectors, 2017. **10**(1): p. 381.

470 62. Brady, O.J., et al., *Global temperature constraints on Aedes aegypti and Ae. albopictus*
471 *persistence and competence for dengue virus transmission*. Parasites & vectors, 2014. **7**(1): p.
472 338.

473 63. Jansen, C.C., C.R. Williams, and A.F. van den Hurk, *The Usual Suspects: Comparison of the*
474 *Relative Roles of Potential Urban Chikungunya Virus Vectors in Australia*. Plos One, 2015.
475 **10**(8).

476 64. González-Salazar, C., C.R. Stephens, and V. Sánchez-Cordero, *Predicting the Potential Role of*
477 *Non-human Hosts in Zika Virus Maintenance*. EcoHealth, 2017: p. 1-7.

478 65. Chahad-Ehlers, S., et al., *Effects of habitat suitability for vectors, environmental factors and*
479 *host characteristics on the spatial distribution of the diversity and prevalence of*
480 *haemosporidians in waterbirds from three Brazilian wetlands*. Parasites & vectors, 2018. **11**(1):
481 p. 276.

482 66. Gard, G., I.D. Marshall, and G.M. Woodroof, *Annually recurrent epidemic polyarthritis and*
483 *Ross River virus activity in a coastal area of New South Wales. II. Mosquitos, viruses and*
484 *wildlife*. American Journal of Tropical Medicine and Hygiene, 1973. **22**(4): p. 551-560.

485

486

Supplementary Table 1: Derivation of 2x2 contingency tables for mosquito feeding preferences

	Focal host taxon	All other hosts	Totals
Focal mosquito species	<i>a</i>	<i>A-a</i>	<i>A</i>
All other mosquito species	<i>B-a</i>	<i>N-A-B+a</i>	<i>N-A</i>
Totals	<i>B</i>	<i>N-B</i>	<i>N</i>

487 ***a*** Number of records of the focal mosquito species feeding on the focal host taxon

488 ***A*** Total number of records for the focal mosquito species

489 ***B*** Total number of records for the focal host taxon

490 ***N*** Overall number of records

491 Values in grey shaded cells are obtained by subtraction

Supplementary Table 2: Reported blood meal results for Australian mosquito species. Numbers in the columns representing number of blood meals for each vertebrate.

Mosquito species	Reference studies	Human	Dog	Cat	Horse	Bird	Possum	Marsupial	Flying fox	Cattle	Pig	Rabbit	Sheep	Goat	Fox	Rat	Total
<i>Ae aegypti</i>	[22]	131	23	2	0	10	-	0	-	0	-	1	-	-	-	0	174
<i>Ae alboannulatus</i>	[31]	2	-	-	-	-	-	2	-	-	-	1	-	-	-	-	5
<i>Ae alternans</i>	[31]	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	1
<i>Ae camptorhynchus</i>	[23]	5	0	0	-	7	2	-	-	83	-	-	21	2	2	1	125
<i>Ae lineatopennis</i>	[22] [29]	0	1	0	0	0	-	3	-	5	-	0	-	-	-	0	9
<i>Ae multiplex</i>	[22]	0	0	0	0	0	-	1	-	0	-	0	-	-	-	0	1
<i>Ae normanensis</i>	[30] [29] [33]	1	3	0	17	5	-	54	-	21	2	-	-	-	-	-	104
<i>Ae notoscriptus</i>	[23] [22] [30] [21]	38	63	4	0	32	44	16	4	2	0	0	0	0	0	2	207
<i>Ae procax</i>	[22] [21]	3	17	0	1	8	0	5	0	2	-	0	-	-	-	0	36
<i>Ae queenslandis</i>	[31]	5	-	-	-	-	-	24	-	-	-	-	-	-	-	-	29
<i>Ae reesi</i>	[29]	0	0	-	0	-	-	1	-	1	-	-	-	-	-	-	2
<i>Ae subauridorsum</i>	[31]	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
<i>Ae theobaldi</i>	[31]	1	-	-	-	1	-	-	-	-	-	2	-	-	-	-	4
<i>Ae vigilax</i>	[32] [22] [30] [21] [31] [29] [33]	37	47	3	25	45	12	30	1	37	2	30	-	-	-	6	278
<i>Ae vittiger</i>	[21] [31] [33]	6	2	0	3	1	1	1	0	1	0	-	-	-	-	-	15
<i>An amictus</i>	[30] [29]	0	3	0	0	0	-	0	-	2	0	-	-	-	-	-	5
<i>An annulipes</i>	[23] [22] [30] [31] [29]	41	187	18	29	62	0	104	-	276	3	579	0	0	0	0	1332

<i>An. bancroftii</i>	[30] [29]	28	26	3	2	2	-	12	-	18	1	-	-	-	-	-	-	93
<i>An. farauti</i>	[30] [29]	0	1	0	0	0	-	2	-	6	0	-	-	-	-	-	-	9
<i>An. hilli</i>	[30]	1	2	0	0	0	-	0	-	0	0	-	-	-	-	-	-	3
<i>An. meraukensis</i>	[29]	0	0	-	0	-	-	0	-	2	-	-	-	-	-	-	-	2
<i>An. novaguinensis</i>	[29]	0	0	-	0	-	-	0	-	6	-	-	-	-	-	-	-	6
<i>An. stigmaticus</i>	[31]	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	2
<i>Cq. linealis</i>	[23] [22] [21]	4	3	0	4	7	1	8	0	1	-	10	0	0	0	2	41	
<i>Cq. xanthogaster</i>	[22] [21] [29]	0	15	1	5	17	0	10	0	7	-	0	-	-	-	0	55	
<i>Cx. annulirostris</i>	[23] [32] [34] [22] [24] [30] [21] [31] [29] [33]	183	673	42	258	503	57	2884	1	808	347	143	11	0	0	44	6089	
<i>Cx. australicus</i>	[22] [21]	0	1	0	5	17	2	0	0	0	-	0	-	-	-	0	25	
<i>Cx. bitaeniorhynchus</i>	[30] [29] [33]	0	3	0	0	2	-	6	-	0	0	-	-	-	-	-	11	
<i>Cx. fatigans</i>	[31]	54	12	-	15	197	-	-	-	2	-	-	-	-	-	-	280	
<i>Cx. globocoxitus</i>	[23]	2	0	2	-	9	0	-	-	1	-	-	0	0	0	0	14	
<i>Cx. halifaxii</i>	[22]	0	0	0	0	1	-	0	-	0	-	0	-	-	0	1		
<i>Cx. hilli</i>	[22]	3	1	0	0	0	-	0	-	0	-	0	-	-	-	0	4	
<i>Cx. Lophoceramyia</i> sp	[30] [29]	10	6	3	0	5	-	0	-	3	0	-	-	-	-	-	27	
<i>Cx. molestus</i>	[23] [22]	3	1	0	0	10	0	0	-	3	-	0	0	0	0	0	17	
<i>Cx. orbostiensis</i>	[22]	1	0	0	0	1	-	0	-	1	-	0	-	-	-	0	4	
<i>Cx. palpalia</i>	[33]	0	2	0	0	1	-	12	-	1	0	-	-	-	-	-	16	
<i>Cx. pullus</i>	[22] [29]	1	0	0	0	1	-	2	-	2	-	0	-	-	-	0	6	
<i>Cx. quinquefasciatus</i>	[23] [22]	398	2417	73	93	1514	2	35	0	49	58	24	0	-	0	0	4746	

	[30]																
	[21]																
	[31]																
	[29]																
	[33]																
	[32]																
<i>Cx sitiens</i>	[22]	6	8	0	3	39	0	13	0	1	2	2	-	-	-	1	77
	[21]																
	[33]																
<i>Cx squamosus</i>	[30]	0	13	2	2	62	-	2	-	1	0	-	-	-	-	-	84
<i>Cx starckeae</i>	[30]	0	3	1	0	4	-	2	-	1	0	-	-	-	-	-	11
<i>Cx whitmorei</i>	[33]	0	0	0	0	0	-	1	-	0	1	-	-	-	-	-	2
<i>Ma linealis</i>	[31]	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	1
<i>Ma septempunctata</i>	[33]	0	0	0	0	1	-	3	-	0	0	-	-	-	-	-	4
	[22]																
<i>Ma uniformis</i>	[30]	25	4	1	0	2	-	5	-	22	1	0	-	-	-	0	60
	[29]																
	[33]																
<i>U albescens</i>	[30]	0	0	0	0	0	-	1	-	0	0	-	-	-	-	-	1
<i>Ve carmenti</i>	[22]	1	1	0	0	0	-	4	-	0	-	0	-	-	-	0	6
<i>Ve funerea</i>	[22]	3	0	0	0	0	-	0	-	0	0	-	-	-	0	0	3
	[33]																
Grand Total		994	3538	155	462	2567	121	3245	22	1366	417	792	32	2	2	56	14044

492

493

494

495