

1
2
3
4 **How to Build a Fruit: Transcriptomics of a Novel Fruit Type in the**
5 **Brassicaceae**
6
7 **Shane Carey¹, Kerrin Mendler^{1,2}, Jocelyn C. Hall¹**

8
9
10
11 ¹Biological Sciences, University of Alberta, Edmonton, AB, Canada

12 ²Department of Biology, University of Waterloo, Waterloo, ON.

13

14

15 **Correspondence:**

16 Shane Carey

17 scarey@ualberta.ca

18

19 **Abstract:**

20 Comparative gene expression studies are invaluable for predicting how existing genetic
21 pathways may be modified or redeployed to produce novel and variable phenotypes. Fruits are
22 ecologically important organs because of their impact on plant fitness and seed dispersal,

23 modifications in which results in morphological variation across species. A novel fruit type in
24 the Brassicaceae known as heteroarthrocarpy enables distinct dispersal methods in a single fruit
25 through segmentation via a lateral joint and variable dehiscence at maturity. Given the close
26 relationship to *Arabidopsis*, species that exhibit heteroarthrocarpy are powerful models to
27 elucidate how differences in gene expression of a fruit patterning pathway may result in novel
28 fruit types. Transcriptomes of distal, joint, and proximal regions from *Erucaria erucarioides* and
29 *Cakile lanceolata* were analyzed to elucidate within and between species differences in whole
30 transcriptome, gene ontology, and fruit patterning expression profiles. Whole transcriptome
31 expression profiles vary between fruit regions in patterns that are consistent with fruit anatomy.
32 These transcriptomic variances do not correlate with changes in gene ontology, as they remain
33 generally stable within and between both species. Upstream regulators in the fruit patterning
34 pathway, *FILAMENTOUS FLOWER* and *YABBY3*, are expressed in the distal and proximal
35 regions of *E. erucarioides*, but not in the joint, implicating alterations in the pathway in
36 heteroarthrocarpic fruits. Downstream gene, *INDEHISCENT*, is significantly upregulated in the
37 abscissing joint region of *C. lanceolata*, which suggests repurposing of valve margin genes for
38 novel joint disarticulation in an otherwise indehiscent fruit. In summary, these data are consistent
39 with modifications in fruit patterning genes producing heteroarthrocarpic fruits through different
40 components of the pathway relative to other indehiscent, non-heteroarthrocarpic, species within
41 the family. Our understanding of fruit development in *Arabidopsis* is now extended to atypical
42 siliques within the Brassicaceae, facilitating future studies on seed shattering in important
43 Brassicaceous crops and pernicious weeds.
44
45

46 **Introduction**

47

48 Studying gene expression patterns across plant structures and species can elucidate how their
49 modification may produce morphological variation (1,2). Fruits are diverse and ecologically
50 relevant plant structures to investigate because their morphological variation determines how
51 their seeds are dispersed (3,4). There are multitudinous fruit morphologies in nature, and they are
52 often categorized as fleshy or dry. Fleshy fruits are distributed primarily by animals, as the seeds
53 are discarded before or after consuming. Dry fruits however, may be dispersed by animals, wind,
54 or water. Dry fruits are further classified by whether they are dehiscent, releasing seeds into the
55 environment, or indehiscent, releasing seeds in a protected fruit wall propagule. Thus, variation
56 in fruit morphology is directly tied to differences in dispersal capabilities.

57

58 *Arabidopsis thaliana* (Brassicaceae) is the premier model for dry dehiscent fruits. *Arabidopsis*
59 fruits have been characterized from gynoecium formation to seed release, and many genes
60 responsible for fruit development are described, as are their interactions (5–7). This knowledge
61 forms a basis of comparison in the investigation of complex trait morphologies that diverge from
62 *Arabidopsis*, especially amongst close relatives e.g., the loss of dehiscence in many species
63 across the Brassicaceae (1).

64

65 Brassicaceae fruits vary markedly in shape, structure, and size (1,8). Their variation in
66 dehiscence is a focal point for research because it fundamentally changes fruit structure,
67 subsequently affecting dispersal and diversification (9). A prerequisite for exploring how
68 differences in fruit morphology are achieved across the Brassicaceae is familiarity with both the
69 fruit structure and underlying genetic pathways in *Arabidopsis* (10,11). *Arabidopsis* fruits,

70 hereafter referred to as typical siliques, are composed of five basic elements: valve, replum,
71 seeds, septum, and valve margins. The valve, synonymous with ovary wall in *Arabidopsis*, is the
72 outermost tissue of the fruit that protects the developing seeds and is separated from the replum
73 at maturity to release seeds. The replum is the persistent placental tissue to which the seeds are
74 attached. The septum, which connects to the replum, divides the fruit into two locules or
75 chambers. The valve and replum are separated by the valve margin, which consists of a
76 lignification and separation layer. Thus, proper fruit formation relies on the establishment of
77 medial (replum) and lateral (valves and valve margin) components (12). As the fruit dries,
78 tension is created via the lignified layer, which facilitates the separation of the valves from the
79 replum at the separation layer (13). This general morphology is stable across most dehiscent
80 members of *Brassicaceae* (1).

81
82 The causal factors for dehiscence have been well characterized in *Arabidopsis* (14–17), with
83 proper formation and positioning of the valve margin being a key to this process. The valve
84 margin pathway is essential for spatial regulation and development of valve, replum, and valve
85 margin tissues (11,18–23). Briefly, *FRUITFULL* (*FUL*) and *REPLUMLESS* (*RPL*), as well as
86 other upstream regulators, restrict the expression of the valve margin genes to two cell layers
87 between the valve and replum, respectively. The valve margin genes, *SHATTERPROOF 1/2*
88 (*SHP1/2*), *INDEHISCENT* (*IND*), *SPATULA* (*SPT*), and *ALCATORAZ* (*ALC*), are responsible for
89 the formation of the valve margin, specifically of the separation and lignification layers that
90 control dehiscence (Fig 1). Upstream regulators of *FUL* and *RPL*, e.g., *APETALA2* (*AP2*),
91 *FILAMENTOUS FLOWER* (*FIL*), *YABBY3* (*YAB3*), and *JAGGED* (*JAG*) are also key to precise
92 positioning of the valve margin because they tightly regulate downstream processes. In sum,

93 replum and valve genes function in an antagonistic manner to ensure proper formation of these
94 regions of the fruit(12).

95

96 **Figure 1.** Diagram of simplified valve margin pathway for fruit dehiscence in *Arabidopsis*
97 *thaliana*; valve margin. R, replum. Sl, separation layer. ll, lignification layer. Valve margin = sl
98 + ll. Modified from data available in (10-11,14) and figure 2 (36).

99

100 Most of the *Arabidopsis* valve margin genes are pleiotropic and many of them share
101 indehiscence as a phenotype of mutation. For example, a mutation in any of the following genes
102 results in indehiscent fruits in *Arabidopsis*: *SHP1/2*, *SPT*, *ALC* and *IND* (24–27). Overexpression
103 of *FUL* or *NO TRANSMITTING TRACT* (*NTT*) also results in indehiscent fruits (28,29); *FUL*
104 overexpression completely suppresses *SHP1/2*, resulting in reduced lignification in the enb layer
105 and reduced valve margin formation; overexpression of *NTT* phenocopies the *ful* mutation
106 resulting in valve margin specific genes being expressed throughout valve. In summary, a
107 modification of many components in this pathway results in a loss of dehiscence. Because
108 indehiscence is observed in at least 20 different lineages across the family, it is likely that this
109 phenotype evolved via multiple modifications to this pathway (30). As such, there is no singular
110 alteration to the fruit patterning pathway implicated in this shift for all tribes.

111

112 To date, little is known about the genetic basis of indehiscence in the Brassicaceae, although it is
113 currently being bridged by studies in taxa with varying indehiscent morphologies. Recently, a
114 study demonstrated a deviation in expression of eight key genes between pod shatter sensitive
115 species and shatter resistant species of *Brassica* and *Sinapis* (2). In *Lepidium*, there has been an
116 evolutionary shift from dehiscence to indehiscence, e.g., valve margin genes that are conserved

117 between the dehiscent *L. campestris* and *Arabidopsis* have been lost in the indehiscent *L.*
118 *apellianum* (31,32). Upregulation in upstream regulator *AP2* has been suggested as a factor in
119 this indehiscence (32).

120

121 A notable morphological adaptation is the evolution of a complex fruit type known as
122 heteroarthrocarpy, which is only found in some members of the tribe Brassiceae (30,33,34). This
123 modified siliques is defined by the presence of a variably abscising central joint, an indehiscent
124 distal region, and a variably dehiscent proximal region (Fig 2). As such, this novel morphology
125 offers an opportunity to investigate fruit variation beyond shifts from dehiscent to indehiscent.
126 Anatomically, heteroarthrocarpic fruits appear most like *Arabidopsis* siliques in their proximal
127 regions, varying by a lack of a valve margin cell layer in indehiscent variants (35–37). There are
128 three described variations of heteroarthrocarpy: a non-abscising joint with a dehiscent proximal
129 region, an abscising joint with an indehiscent proximal region or an abscising joint with a
130 dehiscent proximal region (36). These subtypes have evolved multiple times, perhaps as a bet
131 hedging strategy in response to selective pressure from hostile desert environments (9,37).
132 Heteroarthrocarpic subtypes may be developmental enablers that have facilitated changes in fruit
133 morphology across the tribe, which would explain heteroarthrocarpy's evolutionary lability (36).
134 Regardless of lability, all types are linked by the mechanism in which seeds from the same fruit
135 are released by different means. In other words, the joint is the novel and unifying feature of
136 heteroarthrocarpy (36).

137

138

139

140 **Figure 2.** Mature and young heteroarthrocopic fruits. (A), Mature *Erucaria erucariooides* fruit in
141 lateral view before dehiscence (left), and medial view after dehiscence (right). (B), Young *E.*
142 *erucariooides* fruit in medial view. C, *Cakile lanceolata* fruit in lateral view before dehiscence
143 (left), and medial view after joint abscission (right). (D), Young *C. lanceolata* fruit in medial
144 view; Modified from figure 1 (36). White arrows indicate joint region; blue arrows indicate
145 replum. Scale bars = 5mm

146

147

148 A comparison of expression patterns between heteroarthrocopic subtypes is potentially
149 informative for formulating hypotheses about its evolutionary origins. *Erucaria erucariooides* and
150 *Cakile lanceolata*, hereafter referred to as *Erucaria* and *Cakile*, are two well-studied
151 representatives for heteroarthrocarpy because of their close relation and divergent subtypes (Fig
152 2) (9,10,36,37). In previous studies it was hypothesized that the formation of heteroarthrocarpy
153 is the result of repositioning of the valve margin, such that the valve is only present in the
154 proximal region of the fruit, unlike in *Arabidopsis* where it is found in the entire ovary (36). In
155 other words, the joint is the distal portion of the valve margin. This hypothesis was partially
156 supported by comparative gene expression data of some, but not all, genes in the valve margin
157 pathway using a candidate gene approach (10). However, that study did not definitively
158 determine how the pathway has been repositioned because it did not investigate upstream genes.
159 Candidate gene approaches will, by design, overlook non-targeted genes, and a lack of in situ
160 hybridization does not necessarily indicate a lack of expression. Further, the basis of the joint
161 remains unknown.

162 No study to date has investigated transcriptional variation of heteroarthrocopic fruits sectioned
163 transversely into distal, joint and proximal regions. This approach is complementary to prior

164 research because it quantifies expression of all transcripts in discrete regions of a whole system.
165 Expression profiles from these regions will elucidate broad patterns and potentially identify key
166 players involved in the formation of heteroarthrocarpy. They will clarify unique and shared gene
167 expression patterns between and within *Erucaria* and *Cakile*, and will set the groundwork for
168 future research regarding the evolution of the joint. Herein, the objective is to uncover transcript
169 patterns, unique or shared, between and within, two variant heteroarthrocarpic species. We
170 expect gene expression to be consistent with anatomical features within fruits, and that
171 expression of fruit patterning transcripts will be consistent with repositioning of the valve margin
172 in heteroarthrocarpy.

173
174
175
176
177

178 **Materials and Methods**

179

180 **Plant material**

181

182 Seeds from *Erucaria erucariooides* (Coss. and Durieu) Müll.Berol and *Cakile lanceolata* (Willd.)
183 O.E.Schulz were obtained from the late César Gómez-Campo's and KEW royal botanical
184 garden's seed collections, respectively. Vouchers for *Cakile* and *Erucaria* have been deposited in
185 the Vascular Plant Herbarium at the University of Alberta, and the Harvard University Herbaria,
186 respectively. Seeds were germinated in 1% agar and transferred to clay pots containing a 2:1 soil
187 (Sungro sunshine mix #4, Agawam, MA, USA) to perlite mixture. Plants were grown under a

188 16/8-hour light/dark schedule at 24°C with scheduled watering in the University of Alberta,
189 Department of Biological Sciences, growth chambers.
190
191 Distal, joint, and proximal regions from 10mm fruits (~10 days post fertilization) were collected
192 and flash frozen in liquid nitrogen prior to storage at -80°C. Distal and proximal regions were
193 classified as all tissue ~1mm above or below the joint, and the joint is remaining tissue between
194 distal and proximal regions (Fig 2). The 10mm fruit size is roughly equivalent to *Arabidopsis*
195 stage 17A fruits (7), which go through elongation and cell expansion before maturity. This size
196 was chosen to capture late stage valve margin gene expression because the valve margin is easily
197 distinguished at this stage, and an increase in lignification is observed in key layers, e.g., *enb*.
198 (36).

199

200

201

202 **RNA isolation and cDNA library preparation**
203

204 RNA was extracted from frozen tissue using manual grinding and a Qiagen RNeasy micro kit
205 (Hilden, Germany) with the following amendments to protocol: RNA was incubated in nuclease
206 free water for five minutes prior to elution, and this eluate was spun through the same extraction
207 column to maximize RNA yield. RNA concentration was verified using a Nanodrop ND-1000
208 spectrophotometer (Software version 3.1.2), and quality was confirmed using the Agilent 2100
209 bioanalyzer (Software version B.02.09.SI720). All cDNA samples were set at the same
210 concentration of the most dilute RNA extraction. Samples were processed using the Illumina
211 TruSeq stranded mRNA LT sample prep kit RS-122-2101 (California, U.S.), and the procedure

212 was followed as described in the low sample protocol. The mRNA from each sample was
213 isolated and purified using AMPure XP magnetic beads (Agencourt; Beverly, Massachusetts)
214 before primary and secondary strand cDNA synthesis. Unique Illumina adapters were ligated,
215 and each sample was PCR amplified before validation. Samples were normalized, pooled, and
216 sequenced by the center for applied genetics (TCAG) facilities of the Toronto Sick Kids hospital,
217 Ontario, Canada.

218

219 **De novo transcript assembly, differential expression, and annotation** 220

221 Raw reads were trimmed and quality checked using Trim Galore! (Version 0.4.1) (38) and
222 FastQC (Version 0.11.3) (39) then assembled using Trinity (Version 2.2.0) (40). Corset (Version
223 1.0.6) (41) was used to estimate contig abundance by grouping contigs into representative gene
224 clusters as the first step of the differential expression analysis. Contigs are defined as continuous
225 overlapping paired-end reads. Next, edgeR (Version 3.6.2) (42,43) was used to perform pairwise
226 differential expression analysis of Trinity gene, Trinity contig, and Corset clusters between
227 proximal, joint, and distal regions of the same species. Genes, contigs, and clusters were
228 classified as significantly differentially expressed if $\log_2(\text{fold-change}) > 2$ and the False
229 Discovery Rate (FDR)-corrected p-value (α) < 0.05 . The analyze_diff_expr.pl script, provided
230 with Trinity, was used to generate z-score heatmaps of all significantly differentially expressed
231 contig clustered transcripts (α) < 0.05 . A z-score is used to indicate how many standard
232 deviations a value is above the mean. The transcriptomes were annotated using the Basic Local
233 Alignment Search Tool (BLAST) (44) algorithm on a local copy of both the National Center for
234 Biotechnology Information (NCBI) non-redundant protein (nr) database and The Arabidopsis
235 Information Resource (TAIR) database (45). BLASTx (E-value $< 10^{-10}$) was used to identify highly

236 similar sequences, and transcripts with the highest bit-score from the TAIR database were used
237 as representative transcripts for heatmap generation. Whole transcriptome and fruit patterning
238 heatmaps were generated using ggplot2 (46) and ggplot in R, respectively (Version 3.4.2) (47).
239

240 **Orthologous Clustering**

241

242 Orthofinder (Version 1.1.8) (48) was used to match orthologous transcripts from unfiltered
243 *Erucaria* and *Cakile* transcriptomes. Orthogroups containing transcripts from both species as
244 well as top BLAST matches for fruit patterning genes of interest were used to generate heatmaps.
245 For Venn diagram generation, high-throughput sequencing (HTS) (49) filtered transcripts, sorted
246 by regions, were translated to longest open reading frame (ORF) protein fasta files using
247 TransDecoder (Version 5.0.0) (50). These files were uploaded for comparison using the
248 Orthovenn webserver (51). HTS filtering was used to reduce file size due to the web server
249 upload limit, and to reduce the number of insubstantial transcripts.

250

251 **Gene ontology**

252

253 Transcriptome fasta files from *Erucaria* and *Cakile* were imported to BLAST2GO (Version 2.8)
254 (52). Annotation files were exported and filtered to generate gene ontology (GO) terms for each
255 region and species. These GO terms were used to produce graphs containing transcriptome hits
256 for chosen terms. Terms were chosen based on searches for lignin, abscission, dehiscence,
257 specific hormone keywords, and top hits. For comparison between transcriptomes, the log2 of
258 selected GO term counts were divided over the log2 of all GO term counts ($\log_2(n)/\log_2(N)$).

259

260

261 **Results**
262

263 **De novo Assembly of *Erucaria* and *Cakile* Transcriptome Data**
264

265 RNA-seq libraries were constructed from 9 total replicates of triplicate distal, proximal, and joint
266 regions. RNA samples from segmented fruits of two distinct plants were combined before
267 sequencing to achieve optimal yield for library preparation. Sequencing from both libraries
268 averaged 27.41 and 29.41 million paired-reads for *Erucaria* and *Cakile*, respectively. After
269 quality trimming read counts were reduced to 27.36 million and 28.36 million high quality reads,
270 respectively. Inter-quartile ranges per base were minimally 33 for *Erucaria* for the first 5 base
271 pairs, and minimally 32 in the 90th percentile; *Cakile*'s inter-quartile ranges were minimally 33
272 for the first 5 base pairs, and minimally 29 in the 90th percentile.

273

274 The transcriptome from *Erucaria* had an average contig length of 942.83, and *Cakile*'s had an
275 average length of 877.15. The total transcript count for *Erucaria* and *Cakile* was 227,530 and
276 314,194 reads, respectively (Table 1). Corset cluster counts averaged 365,257 (*Erucaria*) and
277 436,177 (*Cakile*). Notably, the first replicate for *Cakile* had a read count of 269,732, which is
278 minimally 130,000 fewer than replicate 2 and 3. This inconsistency may have caused some
279 issues in downstream analyses, but overall, both transcriptomes were of adequate quality and
280 read-depth.

281

282

283

284 **Table 1.** Statistics for de novo Trinity assembly of *Erucaria erucariooides* and *Cakile lanceolata*
285 pairwise reads.

All (Longest Isoform)	<i>Erucaria</i>	<i>Cakile</i>
N50	1544 (1017)	1464 (835)
Median Contig Length	578 (374)	517 (330)
Average Contig length	942.83 (656.94)	877.15 (577.55)
Total Assembled bases	214,521,562 (92,098,767)	275,595,508 (108,815,069)
Total Trinity Genes	140194	184945
Total Trinity Transcripts	227530	314194
GC%	41.89	42.05

286

287

288

289 **Annotation of Assembled Transcripts**

290

291 Both transcriptomes were compared to the nr and TAIR peptide database using a BLASTx
292 algorithm, and all downstream analyses used the TAIR10 annotation for facilitated comparison
293 to Arabidopsis. A total of 254,592 (*Cakile*) and 213,757 (*Erucaria*) transcripts with e-values \leq
294 10^{-5} were matched to the TAIR10 database with multiple transcripts matches per gene. The GO
295 analysis averaged 8,644 and 8,941 terms for *Erucaria* and *Cakile*, respectively. The top 15 GO
296 terms consisted of 11 cellular component, three molecular function, and one biological process.
297 Nucleus, plasma membrane, and protein binding were the top three terms, all of which are
298 biological processes (Fig S1).

299

300 The majority of selected orthogroups were similar between and within species (lignin,
301 abscission, and dehiscence processes, and hormone response) (Fig 3). Exceptions include: cell
302 wall modification related to abscission, general abscission, and catabolic lignification. *Cakile* has
303 a greater ratio of cell wall modification processes and a lower ratio of general abscission
304 processes relative to *Erucaria*. *Erucaria* has a higher ratio of catabolic lignification processes in
305 the joint region despite having similar ratios relative to *Cakile* in the distal and proximal regions
306 (Fig 3). Overall, the GO analysis results are consistent between and within species.

307

308 **Figure 3.** Graph of select Gene Ontology (GO) terms for *Erucaria erucarioides* and *Cakile*
309 *lanceolata*. Sample(n) and total(N) raw counts log2 transformed for interspecies comparison. GO
310 terms chosen based on search terms: lignin, abscission, dehiscence, and response to hormone.

311

312 Additional results from OrthoVenn showed minimal difference in orthologous clustering within
313 species, but some differences between species (Fig 4). There are a greater number of shared
314 clusters between the proximal and distal regions in *Erucaria* (2548) than *Cakile* (2306) despite
315 *Cakile* having substantially more overall clusters than *Erucaria* (50,003 vs 32,757). Additionally,
316 there are fewer clusters unique to the joint for *Cakile* (21) than *Erucaria* (112). In sum, there are
317 fewer orthologous clusters in common within regions of *Cakile* fruits than within regions of
318 *Erucaria* fruits.

319

320

321

322

323 **Figure 4.** Venn diagrams of three-way and pairwise High Throughput Sequencing (HTS) filtered
324 transcripts for *Erucaria erucarioides* and *Cakile lanceolata* transcriptomes. (A), Three-way
325 Venn diagrams of *Erucaria* and *Cakile* orthologous clusters for distal, joint, and proximal
326 regions. (B), Pairwise Venn diagrams of *Erucaria* and *Cakile* orthologue-clustered transcripts
327 (*Erucaria* region vs *Cakile* region).

328
329
330 *Cakile* shares a greater number of representative transcripts from the valve margin pathway with
331 *Erucaria* (12) than *Erucaria* does with *Cakile* (7), i.e., more representative BLAST transcripts
332 from *Cakile* are orthologous with transcripts from the *Erucaria* transcriptome than vice versa. Of
333 the representative valve margin gene transcripts, only two are orthologous between both species,
334 *ASYMETRIC LEAVES 2 (AS2)* and *SHP2*. (Fig 5 and 6). Representative transcripts are those with
335 the highest bit-score after a BLAST search against the TAIR database.

336
337 **Figure 5.** Heatmap of edgeR contig clustered transcripts from *Erucaria erucarioides* expressed
338 in log2 TPM with TMM normalization. Representative transcripts based off largest bitscore hit
339 against TAIR database. Bolding indicates shared orthogroup with *Cakile lanceolata*. TPM,
340 Transcripts Per Million; TMM, Trimmed Mean of M-values. *FULa,b,c,d* are copies of *FUL* that
341 are present in some species across the Brassicaceae (72). Asterisks indicate significant
342 differential expression between proximal and joint region (FDR-corrected $\alpha=0.01$)

343

344

345

346 **Figure 6.** Heatmap of edgeR contig clustered transcripts from *Cakile lanceolata* expressed in
347 log₂ TPM with TMM normalization. Representative transcripts based off largest bitscore hit
348 against TAIR database. Bolding indicates shared orthogroup with *Cakile lanceolata*. TPM,
349 Transcripts Per Million; TMM, Trimmed Mean of M-values. *FULa,b,c,d* are copies of *FUL* that
350 are present in some species across the Brassicaceae (72). Asterisks indicate significant differential
351 expression between distal and joint region (FDR-corrected $\alpha=0.05$)

352

353

354

355 **Identification of Differentially Expressed Transcripts in 10mm fruit** 356

357 For whole transcriptome comparison, two heatmaps of significant pairwise differentially
358 expressed transcripts ($\alpha = 0.01$) were generated (Figs 7 and 8). Contig clustering was chosen for
359 this analysis because it is a more conservative estimation of significant differential expression at
360 the transcript level, i.e., there are a greater number of transcripts being compared with more
361 stringent FDR correction relative to corset clustering. Values were then converted to z-score to
362 facilitate interspecies comparison, and for visual clarity. The joint and proximal regions of
363 *Erucaria* are most alike in expression and are both dissimilar to the distal region (Fig 7). All
364 three regions in *Cakile* have different expression patterns, and the distal region has a relatively
365 large inter-replicate variance (Fig 8). There are 15,345 (*Erucaria*) and 74 (*Cakile*) significantly
366 differentially expressed (SDE) transcripts in each transcriptome. There were no SDE *Cakile*
367 transcripts with FDR-adjusted p-values < 0.01 . The low number of SDE genes between *Cakile*
368 regions indicates a lack of regional distinction in terms of transcript expression. These data
369 demonstrate a large difference in significant differential expression between the distal region

370 relative to the joint and proximal region in *Erucaria*, and little significant variation between all
371 three *Cakile* regions.

372

373 **Figure 7.** Heatmap of all significant edgeR contig clustered transcripts in *Erucaria erucarioides*,
374 expressed as z-scores (FDR-corrected $\alpha=0.01$). Row and column dendograms indicate clustering
375 of transcripts (n=15,345) and biological replicates (n=3 per region), respectively.

376

377 **Figure 8.** Heatmap of all significant edgeR contig clustered transcripts in *Cakile lanceolata*,
378 expressed as z-scores (FDR-corrected $\alpha=0.01$). Row and column dendograms indicate clustering
379 of transcripts (n=74) and biological replicates (n=3 per region), respectively.

380

381

382 We compared expression profiles of 21 genes important for valve margin formation and
383 positioning in *Arabidopsis* (2,11,16,53–64) (Fig 5 and 6). Contig clustered transcripts were also
384 chosen for this analysis based on matches against the TAIR database. Most fruit patterning genes
385 for both species have no significant differences in expression across all regions, except for *FIL*
386 and *YAB3* which were significantly upregulated in the distal region relative to the joint in
387 *Erucaria*, and *IND* which is significantly upregulated in the joint relative to both the distal and
388 proximal regions in *Cakile*. Upstream regulators *FIL* and *YAB3* are not expressed in late stage
389 *Cakile* fruits, despite global expression in *Erucaria* fruits. Downstream regulator *IND* is
390 expressed in the whole fruit in *Erucaria*, but only in the joint region of *Cakile* (Fig 5 and 6).

391

392

393 **Discussion**

394

395 **Gene ontology of heteroarthrocarpic fruits**

396

397 Overall, GO terms within fruits and between species are similar (Fig 3 and S1), as expected,
398 because all sections and replicates are from developing fruit with shared components (e.g., ovary
399 wall, septum). Because dehiscence is susceptible to misexpression and loss of function mutations
400 in the valve margin pathway (21,24–28), broad changes in gene ontology are unnecessary to
401 explain heteroarthrocarpy. Additionally, GO analyses of top terms do not usually vary between
402 closely related species (65,66). However, similarities in gene ontology do not imply similarity
403 between all expressed transcripts, so variation of just a few transcripts may still be the driving
404 factor behind heteroarthrocarpy.

405

406 **Global transcript expression of heteroarthrocarpic fruits are 407 consistent with anatomy**

408

409 Transcript expression patterns are consistent with anatomical variances within and between
410 fruits. The distal region of *Erucaria* has opposing transcript expression relative to both its joint
411 and proximal regions (Fig 7), i.e., when transcripts are upregulated distally in *Erucaria* they are
412 downregulated proximally. This pattern is consistent with heteroarthrocarpic fruit anatomy, as
413 distal regions contain no valve or valve margin, and proximal regions have both (36). In contrast,
414 all regions of *Cakile* have variable transcript expression, with the clearest distinction between the
415 proximal and joint regions, i.e., when genes are upregulated proximally they will be
416 downregulated in the joint (Fig 8). As with *Erucaria*, expression profiles in *Cakile* vary in a

417 manner consistent with anatomy. Superficially, one would expect the *Cakile* siliques to have
418 similar expression between all regions because the entire fruit is indehiscent, however the distal
419 region of *Cakile* is more like the distal region of *Erucaria* than to its own proximal region (36).
420 Further, its abscising joint is anatomically reminiscent to a valve margin (36). Abscission zones
421 are also found between septum and seeds, and they too share similar anatomy and expression to
422 typical siliques valve margins (67). Heteroarthrocarpic distal regions are unlike indehiscent non-
423 heteroarthrocarpic siliques such as *L. appelianum*, because heteroarthrocarpic distal regions have
424 no remnant valve margin in contrast to indehiscence observed in *Lepidium* and the proximal
425 region of *Cakile* (32,36). Thus, we expect different expression patterns within heteroarthrocarpic
426 fruits, as well as between heteroarthrocarpic and non-heteroarthrocarpic fruits. In summary, there
427 is a clear difference between distal and proximal expression profiles for both *Erucaria* and
428 *Cakile*, which is consistent with a repositioning of the valve margin, i.e., the distal region is quite
429 distinct from the proximal region due to the lack of valve margin, or its remnant, in the distal
430 region. This consistency is further explored by analysis of fruit patterning transcript expression
431 involved in valve margin formation.

432

433

434

435

436

437 **Fruit patterning genes**

438

439 Despite the substantial differences in anatomy, most valve margin genes reveal similar
440 expression patterns across fruits in both *Erucaria* and *Cakile* (Fig 5 and 6). These differences are
441 initially surprising because previous studies showed variation in expression patterns across fruits

442 with in-situ hybridization (10). *EeFUL1*, one of two *FUL* homologs found in *Erucaria*, was
443 previously shown to only be expressed in the proximal region in earlier stages of carpel
444 development (10), but all *FUL* transcripts are expressed across all regions in this study of later
445 stage development (Fig 5). This discrepancy may be due to dynamic gene expression at different
446 stages or because our methodology cannot distinguish within region differences (e.g., genes
447 expressed in valve but not replum), so differences within regions cannot be distinguished. In
448 contrast to *EeFUL1*, our data are consistent with a previous publication which demonstrated that
449 other fruit patterning genes have broader expression domains than found in *Arabidopsis* (10).

450 *EeALC* and *EeIND* and *ClALC* were expressed in the septum of *Erucaria* and *Cakile*,
451 respectively, which is found throughout all regions sampled in this study. The replum is also
452 found throughout all sampled regions of *Erucaria* and *Cakile*, so expression patterns of
453 pleiotropic genes, e.g., *AP2*, show broader expression patterns than expected in valve and valve
454 margin alone.

455
456 It is a compelling finding that upstream regulators *FIL/YAB3* and *JAG* have variable expression
457 across *Erucaria* (Fig 5). These three genes positively regulate expression of *FUL* and valve
458 margin genes in *Arabidopsis* such that their cooperative function has been designated together as
459 *JAG/FIL* activity (12). Our data suggest a decoupling of this cooperation in heteroarthrocarpic
460 fruits because these three genes do not exhibit the same expression patterns across *Erucaria*
461 fruits (Fig 5 and 6). That is, no expression of *JAG* was detected in any region of either species at
462 this stage. *FIL* and *YAB3* showed differently expression patterns across fruits of *Erucaria*, but
463 neither were detected in *Cakile*. It is important to note that the double mutant of *fil/yab3* in
464 *Arabidopsis* have fruits that are remarkably reminiscent of heteroarthrocarpy: they lack valve
465 margin in the distal region of fruit while maintaining ovary wall identity (11). In contrast to

466 heteroarthrocarpy, these mutants have ectopic valve margin in the proximal region of their fruits
467 (11). As these genes exhibit different patterns across *Cakile* and *Erucaria* and are expressed in
468 both proximal and distal regions of *Erucaria*, heteroarthrocarpy cannot be explained by a simple
469 lack of expression of these key regulators. Further, *FIL/YAB* are absent in the joint region of
470 *Erucaria* (Fig 5), which is confounding since the joint contains small portions of both proximal
471 and distal regions, an unavoidable consequence of segmentation during tissue collection.
472 Nonetheless, deviation in expression patterns of these upstream regulators between Arabidopsis
473 and heteroarthrocarpic fruits implicates variation in their expression profiles in the origin of
474 heteroarthrocarpy.

475
476 When exploring heteroarthrocarpy, we need to consider fruit patterning beyond the basal-apical
477 differences that distinguish distal, joint, and proximal regions. That is, the lateral (valve and
478 valve margin) and medial (replum) patterning is maintained in heteroarthrocarpic fruits whereas
479 the apical-basal is not. In other words, not only is replum tissue present in distal, joint, and
480 proximal regions of heteroarthrocarpic fruits, it is appropriately sized. *FIL/YAB3* and *JAG*
481 function antagonistically with replum promoting gene, *WUSCHEL RELATED HOMEOBOX 13*
482 (*WOX13*), which positively regulates *RPL* in turn. This interaction is necessary for proper
483 medial-lateral formation of Arabidopsis fruits. Further, *ASYMMETRIC LEAVES1* (*ASI*) and *AS2*
484 collaborate with *JAG/FIL* function as promoters of lateral factors (12). The loss of both *ASI/2*
485 and *JAG/FIL* in Arabidopsis results in dramatic medial-lateral differences and substantially
486 enlarged repla, which is interestingly more pronounced in the basal portion of the fruit (12,68).
487 As *ASI/2* and *ASI* are expressed throughout *Cakile* and *Erucaria* regions, respectively, this
488 pattern suggests that *ASI* alone is sufficient for proper replum (aka medial-lateral) formation in
489 heteroarthrocarpic fruits. In other words, the collaboration between *JAG/FIL* function and *ASI/2*

490 is not maintained in heteroarthrocarpic fruits. Further, in at least *Cakile JAG/FIL* activity is non-
491 detectable in the entire fruit, at least at later stages of development. Thus, it appears that some
492 redundancy in lateral-medial patterning of *Arabidopsis* fruits has been lost in heteroarthrocarpic
493 fruits, while simultaneously gaining apical-basal differences.

494

495 **Valve margin pathway recruitment and abscission in the *Cakile*
496 joint.**

497

498 The fruit of *Cakile* is distinct in that the joint abscises (disarticulates) at maturity. The joint,
499 which represents the distal portion of the valve margin, thus represents a novel abscission zone in
500 *Cakile*, completely separating the distal portion of the fruit. This is an unusual feature of certain
501 heteroarthrocarpic subtypes, as there is no equivalent abscission zone in *Arabidopsis*. Our data
502 strongly implicate the recruitment of downstream valve margin genes as responsible for joint
503 abscission, although how that zone is positioned remains elusive. *IND* is significantly
504 upregulated in joint region (Fig 6) and is primarily responsible for formation of separation and
505 lignification layers in typical siliques (24,26), a juxtaposition of cell types also observed in the
506 abscising joint region. Its presence in the joint may be due to a co-option of downstream valve
507 margin pathway genes to facilitate formation of the joint abscission zone. Similar co-option is
508 observed in seed abscission zones, although these zones typically involve *SEEDSTICK (STK)* in
509 lieu of *SHP*, and the functionally similar transcription factor *HEC3* in lieu of *IND* (67). *SHP1/2*
510 and *ALC* expression are both consistent with this co-option, as they are expressed in all three
511 regions (Fig 6). Additionally, *SPT* expression is consistent with expression of *IND*, as expected
512 from its downstream role in valve margin formation. (Fig 6) (14). Further, both representative
513 transcripts are among the 21 unique orthologous clusters in the joint of *Cakile* (Fig 4). This

514 pattern is consistent with in situ hybridization data that showed *SHP2* expressed in septum and
515 ovules of *Cakile*, and in ovules of *Erucaria* (10). Thus, the likely function of *SHP1/2* and *ALC* in
516 the joint region would be to promote expression of *IND* (*SHP1/2*), and the formation of the
517 separation layer (*ALC*). What is unusual about joint abscission is that for the joint to separate, the
518 distal and proximal regions of the replum must also separate. This expression pattern then
519 implies that the mechanism used to physically separate valve from replum may also be in play
520 for replum in the joint region. Taken together with anatomical studies, our data strongly suggests
521 that there is a repurposing of the valve margin pathway in an otherwise indehiscent *Cakile* fruit,
522 and that this pathway may be capable of initializing disarticulation in multiple tissue types.
523

524 Conclusion

525

526 Transcriptomic expression from late stage *Erucaria* and *Cakile* fruits is consistent with some
527 conservation and some deviation of the valve margin pathway, specifically in upstream
528 regulation, e.g., *YAB/FIL/JAG*. Thus, different upstream regulators are implicated in the loss of
529 dehiscence in Brassicaceae relative to *Lepidium*, where *AP2* is likely responsible (32). Loss of
530 expression of *YAB/FIL/JAG* in Arabidopsis results in differing apical and basal phenotypes,
531 which may help to explain the apical/basal differences in heteroarthrocarpic fruits (11). Further,
532 heteroarthrocarpic fruits likely recruit the same mechanism used in valve and seed abscission for
533 joint abscission (Fig 6). Functional tests are necessary to confirm whether redeployment of
534 *FIL/YAB3*, *IND*, and possibly *SPT* have key roles in the origin of heteroarthrocarpy as well as
535 joint abscission.

536

537 There have been multiple whole genome duplications in the Brassicales, which has resulted in
538 many polyploids within the Brassicaceae family (69–71). We considered the possibility of
539 transcriptional differences between gene copies in distal, joint, and proximal regions that were
540 undetected because we were unable to determine copy number in our transcriptome. For
541 example, there are four copies of *FUL* in the Brassiceae (72), but each potential *FUL* copy had
542 multiple hits from the same transcripts in both transcriptomes, so there is no definitive answer
543 about copy number and expression (Fig 5 and 6). That is, we could not confirm or refute
544 subfunctionalization of some fruit patterning genes as having a role in the origin of
545 heteroarthrocarpy. An analysis of multiple transcripts for every fruit patterning gene showed
546 generally similar expression for each, but further analyses are needed to determine if
547 neo/subfunctionalization plays a role in heteroarthrocarpy.

548
549 Understanding the nature of heteroarthrocarpy, and how it relates to fruit development in
550 *Arabidopsis*, will facilitate future studies on seed shattering in important Brassicaceous crops,
551 and pernicious heteroarthrocarpic weeds. Further, these studies inform on the origin of important
552 variation in seed packaging and dispersal capabilities.

553

554

555

556

557

558

559

560 **Acknowledgements**

561 The authors thank Navjot Singh and Erin Yue for their invaluable help in fruit collection. We
562 also thank NSERC for providing the funding required to complete this research.

563

564 **Author Contributions Statements**

565 SC and JH contributed concept and project design. SC and KM contributed to plant care, RNA
566 extraction and cDNA library preparation. KM designed scripts and was lead in initial
567 bioinformatic analyses; SC completed later analyses using scripts produced by KM. SC wrote
568 the first manuscript draft; SC and JH wrote subsequent manuscript drafts. All authors contributed
569 to revision and proofreading of the final submitted version.

570

571 **Conflict of interest statement**

572 There are no conflicts of interest to report.

573

574

575 References

- 576 1. Łangowski Ł, Stacey N, Østergaard L. Diversification of fruit shape in the Brassicaceae
577 family. *Plant Reprod.* 2016;29:149–63.
- 578 2. Zhang Y, Shen YY, Wu XM, Wang JB. The basis of pod dehiscence: anatomical traits of
579 the dehiscence zone and expression of eight pod shatter-related genes in four species of
580 Brassicaceae. *Biol Plant.* 2016;60:343–54.
- 581 3. Gautier-hion AA, Duplantier J, Quris R, Feer F, Sourd C, Decoux J, et al. Fruit Characters
582 as a Basis of Fruit Choice and Seed Dispersal in a Tropical Forest Vertebrate Community.
583 *Oecologia.* 1985;65:324–37.
- 584 4. Janson CH. Adaptation of Fruit Morphology to Dispersal Agents in a Neotropical Forest
585 Published by : American Association for the Advancement of Science Stable URL :
586 <http://www.jstor.org/stable/1690124> Adaptation of Fruit Morphology to Dispersal Agents
587 in a Neotropi. *Adv Sci.* 1983;219:187–9.
- 588 5. Ferrández C, Pelaez S, Yanofsky MF. C Ontrol of C Arpel and F Ruit D Evelopment.
589 *Annu Rev Biochem.* 1999;321–54.
- 590 6. Robles P, Pelaz S. Flower and fruit development in *Arabidopsis thaliana*. *Int J Dev Biol.*
591 2005;49:633–43.
- 592 7. Roeder A, Yanofsky M. Fruit Development in Arabidopsis. In: The Arabidopsis Book.
593 2006. p. 1–50.
- 594 8. Eldridge T, Ł Ł, Stacey N, Jantzen F, Moubayidin L, Sicard A, et al. Fruit shape diversity
595 in the Brassicaceae is generated by varying patterns of anisotropy. *Development.* 2016;
596 143:3394-3406. doi: 10.1242/dev.135327.
- 597 9. Willis CG, Hall JC, Rubio De Casas R, Wang TY, Donohue K. Diversification and the
598 evolution of dispersal ability in the tribe Brassiceae (Brassicaceae). *Ann Bot.*

599 2014;114:1675–86.

600 10. Avino M, Kramer EM, Donohue K, Hammel AJ, Hall JC. Understanding the basis of a
601 novel fruit type in Brassicaceae: conservation and deviation in expression patterns of six
602 genes. *Evodevo*. 2012;3: 20.

603 11. Dinneny JR, Weigel D, Yanofsky MF. A genetic framework for fruit patterning in
604 *Arabidopsis thaliana*. *Development*. 2005;132:4687–96.

605 12. González-Reig S, Ripoll JJ, Vera A, Yanofsky MF, Martínez-Laborda A. Antagonistic
606 Gene Activities Determine the Formation of Pattern Elements along the Mediolateral Axis
607 of the Arabidopsis Fruit. *PLoS Genet*. 2012;8:e1003020.

608 13. Spence J, Vercher Y, Gates P, Harris N. “Pod shatter” in *Arabidopsis thaliana*, *Brassica*
609 *napus* and *B. juncea*. 1996. doi: 10.1046/j.1365-2818.1996.111391.x.

610 14. Girin T, Paicu T, Stephenson P, Fuentes S, Korner E, O’Brien M, et al. INDEHISCENT
611 and SPATULA Interact to Specify Carpel and Valve Margin Tissue and Thus Promote
612 Seed Dispersal in Arabidopsis. *Plant Cell*. 2011;23:3641–53.

613 15. Girin T, Stephenson P, Goldsack CMP, Kempin SA, Perez A, Pires N, et al. Brassicaceae
614 INDEHISCENT genes specify valve margin cell fate and repress replum formation. *Plant*
615 *J*. 2010;63:329–38.

616 16. Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R. The FRUITFULL MADS-box gene
617 mediates cell differentiation during Arabidopsis fruit development. *Development*.
618 1998;125:1509–17.

619 17. Roeder A, Ferrández C, MF Y. The Role of the REPLUMLESS Homeodomain Protein in
620 Patterning the Arabidopsis Fruit. *Cell Press*. 1998;13:1630–5.

621 18. Ballester P, Ferrández C. Shattering fruits: variations on a dehiscent theme. *Current*

622 Opinion in Plant Biology. 2017;35:68-75. doi: 10.1016/j.pbi.2016.11.008.

623 19. Chávez Montes RA, Herrera-Ubaldo H, Serwatowska J, de Folter S. Towards a
624 comprehensive and dynamic gynoecium gene regulatory network. Curr Plant Biol. 2015.
625 doi: 10.1016/j.cpb.2015.08.002.

626 20. Dinneny JR, Yanofsky MF. Drawing lines and borders: How the dehiscent fruit of
627 Arabidopsis is patterned. BioEssays. 2005;27:42–9.

628 21. Ferrandiz C. Regulation of fruit dehiscence in Arabidopsis. J Exp Bot. 2002;53:2031–8.

629 22. Ferrández C, Fourquin C. Role of the FUL-SHP network in the evolution of fruit
630 morphology and function. Journal of Experimental Botany. 2014 Aug;65:4505-13. doi:
631 10.1093/jxb/ert479.

632 23. Xu L, Palatnik J, Springer P, Mao L, Hepworth SR, Ca S, et al. Beyond the Divide:
633 Boundaries for Patterning and Stem Cell Regulation in Plants. Front Plant Sci.
634 2015;6:1052. doi: 10.3389/fpls.2015.01052.

635 24. Groszmann M, Paicu T, Alvarez JP, Swain SM, Smyth DR. SPATULA and ALCATRAZ,
636 are partially redundant, functionally diverging bHLH genes required for Arabidopsis
637 gynoecium and fruit development. Plant J. 2011;68:816–29.

638 25. Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF.
639 SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature.
640 2000;404:766–70.

641 26. Liljegren SJ, Roeder AHK, Kempin SA, Gremski K, Østergaard L, Guimil S, et al.
642 Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell. 2004 Mar
643 19;116:843-53.

644 27. Kramer E, Irish V. Evolution of genetic mechanisms controlling petal development

645 investigated the genetic mechanisms controlling petal development. 1999;336:144-8.

646 28. Chung KS, Lee JH, Lee JS, Ahn JH. Fruit indehiscence caused by enhanced expression of

647 NO TRANSMITTING TRACT in *Arabidopsis thaliana*. *Molecules and Cells*.

648 2013;35:519-25. doi: 10.1007/s10059-013-0030-0.

649 29. Ferrández C, Gu Q, Martienssen R, Yanofsky MF. Redundant regulation of meristem

650 identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER.

651 *Development*. 2000;127:725–34.

652 30. Appel O, Al-Shehbaz IA. Cruciferae. In K.kubitzki and C.Bayer[eds.],*The families and*

653 *genera of vascular plants*. In: Springer-Verlag, Berlin, Germany. 2003. p. 75–174.

654 31. Lenser T, Theißen G. Conservation of fruit dehiscence pathways between *Lepidium*

655 *campestre* and *Arabidopsis thaliana* sheds light on the regulation of INDEHISCENT.

656 *Plant J*. 2013;76:545-56. doi: 10.1111/tpj.12321.

657 32. Mühlhausen A, Lenser T, Mummenhoff K, Theißen G. Evidence that an evolutionary

658 transition from dehiscent to indehiscent fruits in *Lepidium* (Brassicaceae) was caused by a

659 change in the control of valve margin identity genes. *Plant J*. 2013;73:824-35. doi:

660 10.1111/tpj.12079.

661 33. Gómez-Campo C. Seedless and seeded beaks in the tribe Brassiceae. *Eucarpia Crucif.*

662 1999;21:11–2.

663 34. Warwick SI, Sauder CA. Phylogeny of tribe Brassiceae (Brassicaceae) based on

664 chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed

665 spacer and chloroplast *trn* L intron sequences. *Can J Bot*. 2005;83:467–83.

666 35. Gómez-Campo C. Morphology and morpho-taxonomy of the tribe Brassiceae, in *Brassica*

667 crops and wild allies. Japan Scientific Societies press, Japan. 1980;3–31.

668 36. Hall JC, Tisdale TE, Donohue K, Kramer EM. Developmental Basis Of An Anatomical
669 Novelty: Heteroarthrocarpy In *Cakile Lanceolata* And *Erucaria Erucarioides*
670 (Brassicaceae). 2006;167:771-789

671 37. Hall JC, Tisdale TE, Donohue K, Wheeler A, Al-Yahya MA, Kramer EM. Convergent
672 evolution of a complex fruit structure in the tribe Brassiceae (Brassicaceae). Am J Bot.
673 2011;98:1989–2003.

674 38. F K. Trim Galore! [Internet]. 2012. Available from:
675 http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

676 39. S A. FastQC: a quality control tool for high throughput sequence data [Internet]. 2010.
677 Available from: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>

678 40. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Trinity:
679 reconstructing a full-length transcriptome without a genome from RNA-Seq data HHS
680 Public Access. Nat Biotechnol Nat Biotechnol. 29:644–52.

681 41. Davidson NM, Oshlack A. Corset: Enabling differential gene expression analysis for de
682 novo assembled transcriptomes. Genome Biol. 2014;15:1–14.

683 42. Robinson M, McCarthy D, Smyth G. edgeR: a Bioconductor package for differential
684 expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–40.

685 43. McCarthy, D. Chen Y, Smyth K. Differential expression analysis of multifactor RNA-Seq
686 experiments with respect to biological variation. Nucleic Acids Res. 40:4288–97.

687 44. Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment search tool. J
688 Mol Biol. 1990;215:403–10.

689 45. Garcia-Hernandez M, Berardini T, Chen G, Crist D, Doyle A. TAIR: a resource for
690 intergrated *Arabidopsis* data. Funct Integr Genomics. 2002;2:239–53.

691 46. Wickham H. Ggplot2 [Internet]. 2009. Available from:
692 http://had.co.nz/ggplot2/book%0Ahttp://link.springer.com/10.1007/978-0-387-98141-3

693 47. R Core Team. R: A language and environment for statistical computing. [Internet]. R
694 Foundation for statistical Computing, Vienna, Austria. 2013. Available from:
695 http://www.r-project.org/

696 48. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome
697 comparisons dramatically improves orthogroup inference accuracy. *Genome Biol.*
698 2015;16:157. doi: 10.1186/s13059-015-0721-2.

699 49. Rau A, Gallopin M, Celeux G, Jaffrézic F. Data-based filtering for replicated high-
700 throughput transcriptome sequencing experiments. *Bioinformatics*. 2013;29:2146–52.

701 50. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo
702 transcript sequence reconstruction from RNA-seq using the Trinity platform for reference
703 generation and analysis. *Nat Protoc.* 2013;8:1494.

704 51. Wang Y, Coleman-Derr D, Chen G, Gu YQ. OrthoVenn: A web server for genome wide
705 comparison and annotation of orthologous clusters across multiple species. *Nucleic Acids
706 Res.* 2015;43:W78–84.

707 52. Conesa A, Gotz S, Garcia-Gomez J, Terol J, Talon M, Robles M. Blast2GO: a universal
708 tool for annotation, visualization and analysis in functional genomics research.
709 *Bioinformatics*. 2005;21:3674–6.

710 53. Schiessl K, Muiño JM, Sablowski R. *Arabidopsis* JAGGED links floral organ patterning
711 to tissue growth by repressing Kip-related cell cycle inhibitors. *Proc Natl Acad Sci U S A.*
712 2014;111: 2830-2835.

713 54. Schuster C, Gaillochet C, Lohmann JU. *Arabidopsis* HECATE genes function in

714 phytohormone control during gynoecium development. *Development*. 2015;142:3343-50

715 55. Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y. The
716 ASYMMETRIC LEAVES2 gene of *Arabidopsis thaliana* regulates formation of a
717 symmetric lamina, establishment of venation and repression of meristem-related
718 homeobox genes in leaves. *Development*. 2001;128:1771–83.

719 56. Simonini S, Deb J, Moubayidin L, Stephenson P, Valluru M, Freire-Rios A, et al. A
720 noncanonical auxin-sensing mechanism is required for organ morphogenesis in
721 *Arabidopsis*. *Genes Dev.* 2016;30:2286-2296.

722 57. Zumajo-Cardona C, Pabón-Mora N. Evolution of the APETALA2 Gene Lineage in Seed
723 Plants. *Mol Biol Evol*. 2016;33:1818-32

724 58. Guo M, Thomas J, Collins G, Timmermans MCP. Direct Repression of KNOX Loci by
725 the ASYMMETRIC LEAVES1 Complex of *Arabidopsis*. *Plant Cell Online*. 2008;20:48–
726 58.

727 59. Jaradat MR, Ruegger M, Bowling A, Butler H, Cutler AJ. A comprehensive transcriptome
728 analysis of siliques development and dehiscence in *Arabidopsis* and *Brassica* integrating
729 genotypic, interspecies and developmental comparisons. *GM Crops Food*. 2014;5:302-20

730 60. Kay P, Groszmann M, Ross JJ, Parish RW, Swain SM. Modifications of a conserved
731 regulatory network involving INDEHISCENT controls multiple aspects of reproductive
732 tissue development in *Arabidopsis*. *New Phytol*. 201;197:73-87

733 61. Marsch-Martínez N, Zúñiga-Mayo VM, Herrera-Ubaldo H, Ouwerkerk PBF, Pablo-Villa
734 J, Lozano-Sotomayor P, et al. The NTT transcription factor promotes replum development
735 in *Arabidopsis* fruits. *Plant J*. 2014;80:69-81.

736 62. Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, et al. Assessing

737 the redundancy of MADS-box genes during carpel and ovule development. *Nature*.
738 2003;424:85-8.

739 63. Rajani S, Sundaresan V. The *Arabidopsis* myc/bHLH gene *alcatraz* enables cell separation
740 in fruit dehiscence. *Curr Biol*. 2001;11:1914–22.

741 64. Romera-Branchat M, Ripoll JJ, Yanofsky MF, Pelaz S. The *WOX13* homeobox gene
742 promotes replum formation in the *Arabidopsis thaliana* fruit. *Plant J*. 2013;73:37-49

743 65. Busch A, Horn S, Zachgo S. Differential transcriptome analysis reveals insight into
744 monosymmetric corolla development of the crucifer *Iberis amara*. *BMC Plant Biol*.
745 2014;14:285.

746 66. Sinha S, Raxwal VK, Joshi B, Jagannath A, Katiyar-Agarwal S, Goel S, et al. De novo
747 transcriptome profiling of cold-stressed siliques during pod filling stages in Indian
748 mustard (*Brassica juncea* L.). *Front Plant Sci*. 2015;6:932

749 67. Balanzà V, Roig-Villanova I, Di Marzo M, Masiero S, Colombo L. Seed abscission and
750 fruit dehiscence required for seed dispersal rely on similar genetic networks.
751 *Development*. 2016;143:3372-81

752 68. Alonso-Cantabrina H, Ripoll JJ, Ochando I, Vera A, Ferrández C, Martínez-Laborda A.
753 Common regulatory networks in leaf and fruit patterning revealed by mutations in the
754 *Arabidopsis* ASYMMETRIC LEAVES1 gene. *Development*. 2007;134:2663–71.

755 69. Barker MS, Vogel H, Schranz ME. Paleopolyploidy in the Brassicales: Analyses of the
756 Cleome Transcriptome Elucidate the History of Genome Duplications in *Arabidopsis* and
757 Other Brassicales. *Genome Biol Evol*. 2010;1:391–9.

758 70. Cardinal-McTeague WM, Sytsma KJ, Hall JC. Biogeography and diversification of
759 Brassicales: A 103 million year tale. *Mol Phylogenet Evol*. 2016;99:204–24.

760 71. Edger PP, Hall JC, Harkess A, Tang M, Coombs J, Mohammadin S, et al. Brassicales
761 phylogeny inferred from 72 plastid genes: A reanalysis of the phylogenetic localization of
762 two paleopolyploid events and origin of novel chemical defenses. *Am J Bot.*
763 2018;105:463–9.

764 72. Brock K. Tracking the Evolutionary History of Development Genes : Implications for the
765 Diversification of Fruits and Flowers in the Brassicaceae and Cleomaceae. M.Sc. Thesis,
766 The University of Alberta. 2014.

767

768

769

770 **Supporting information**

771

772 **Figure S1.** Graph of top Gene Ontology (GO) terms for *Erucaria erucarioides* and *Cakile*
773 *lanceolata*. Sample(n) and total(N) raw counts were log2 transformed for interspecies
774 comparison.

775

776

777

778

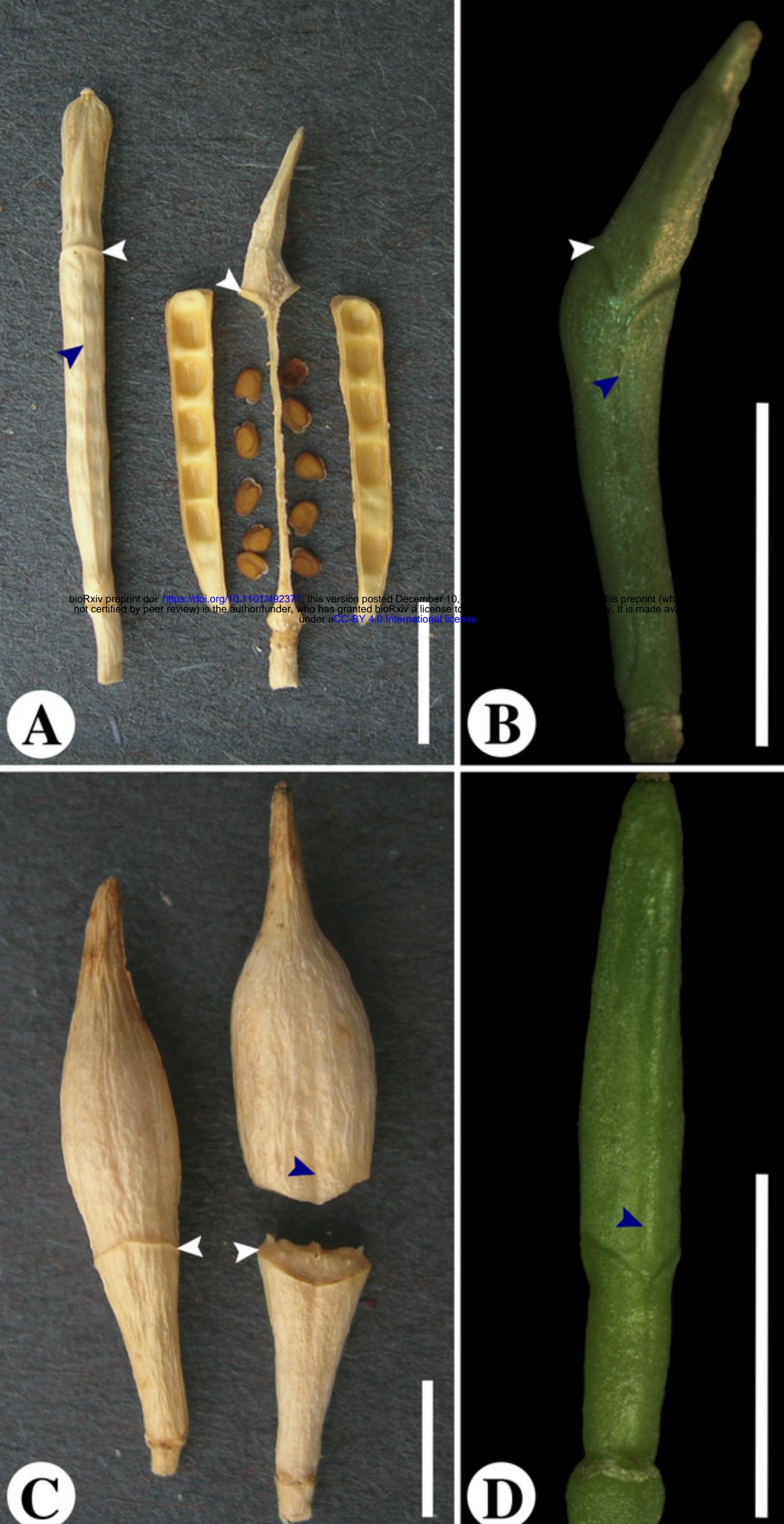


Figure 2

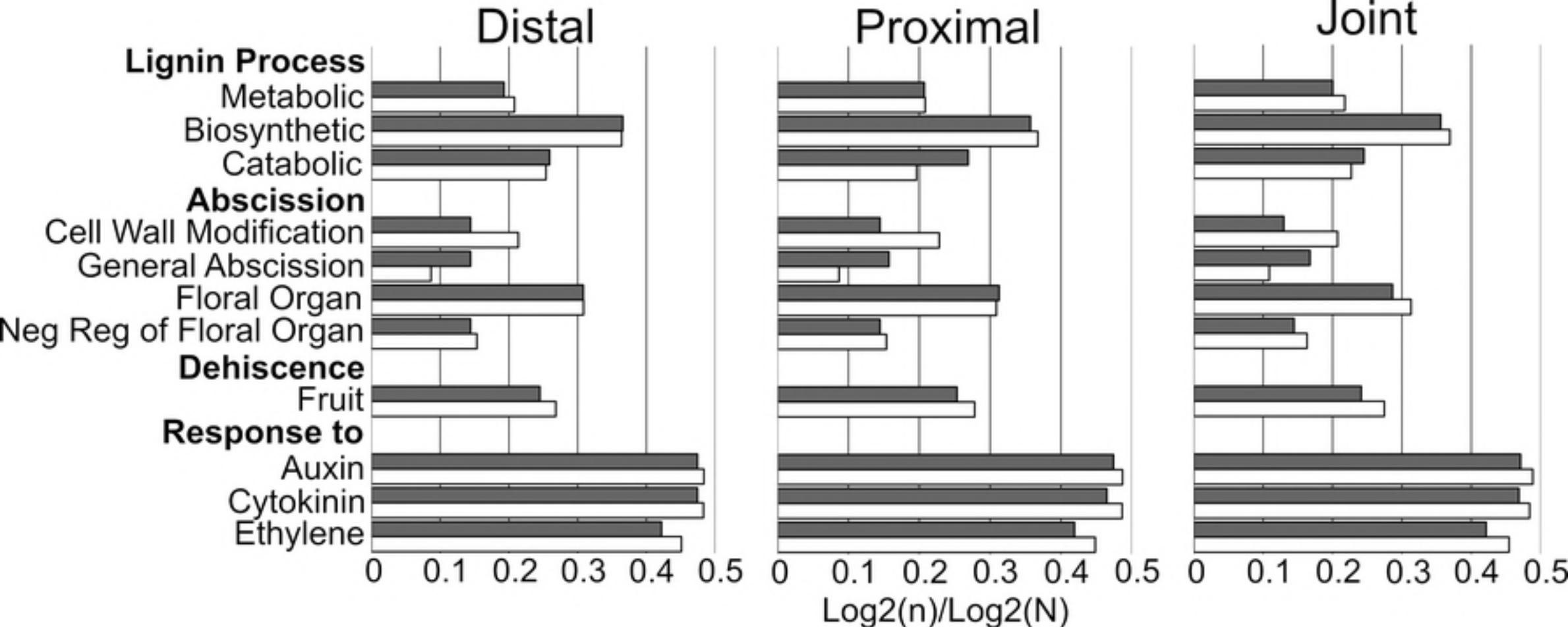
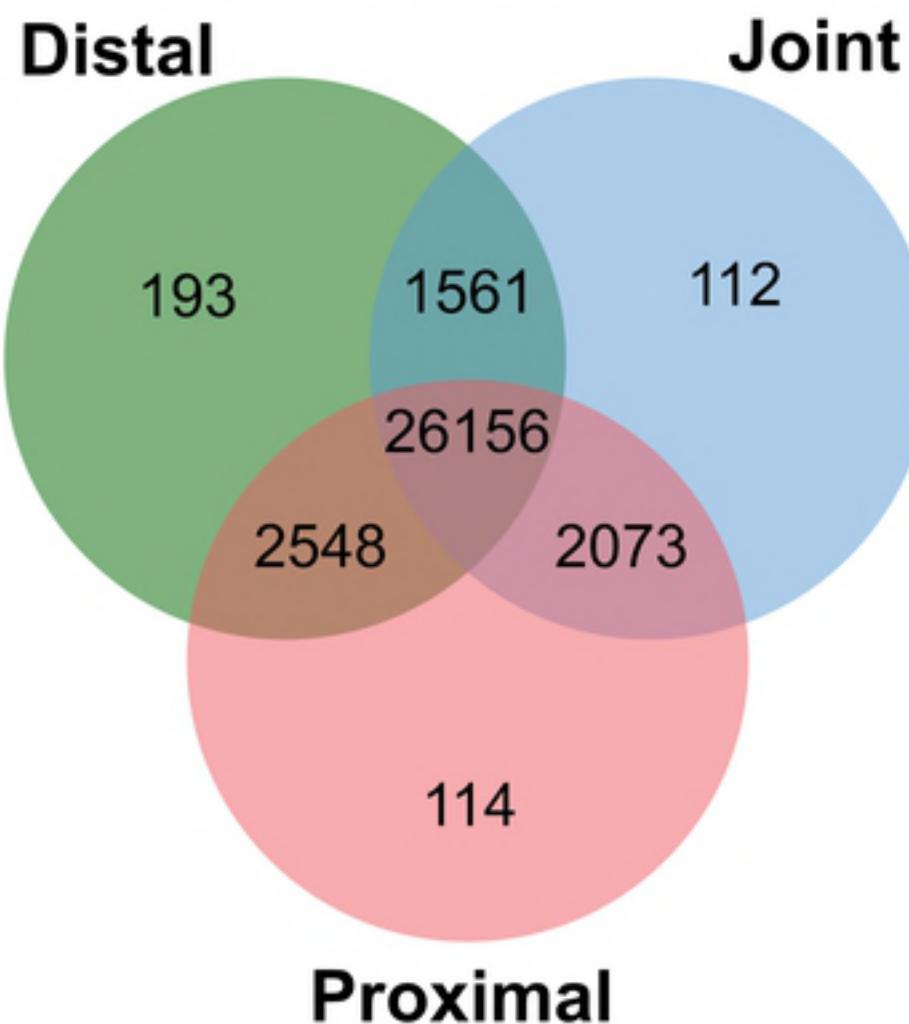
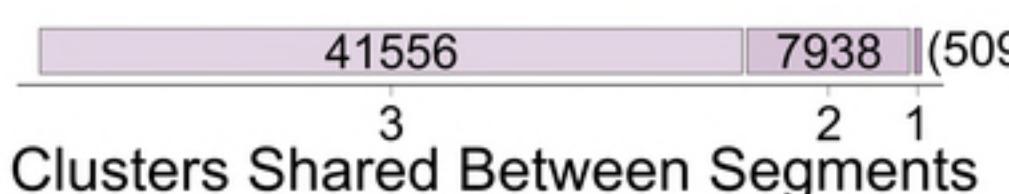
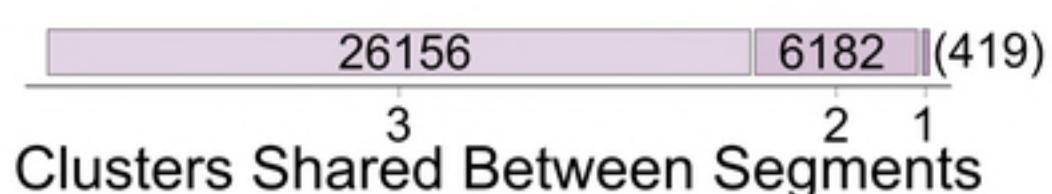
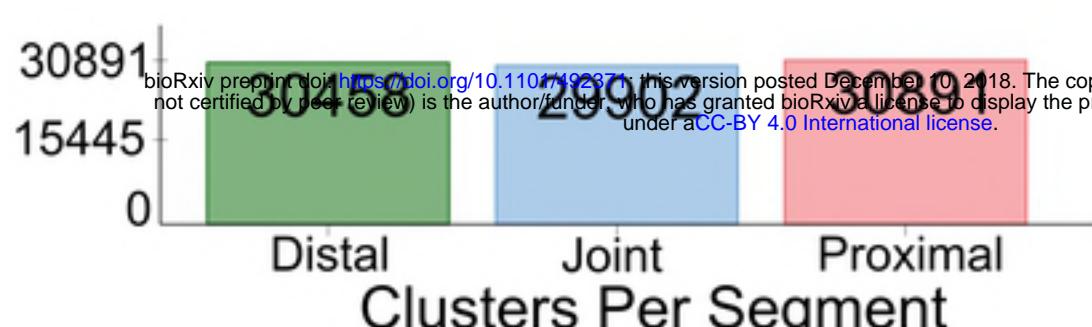
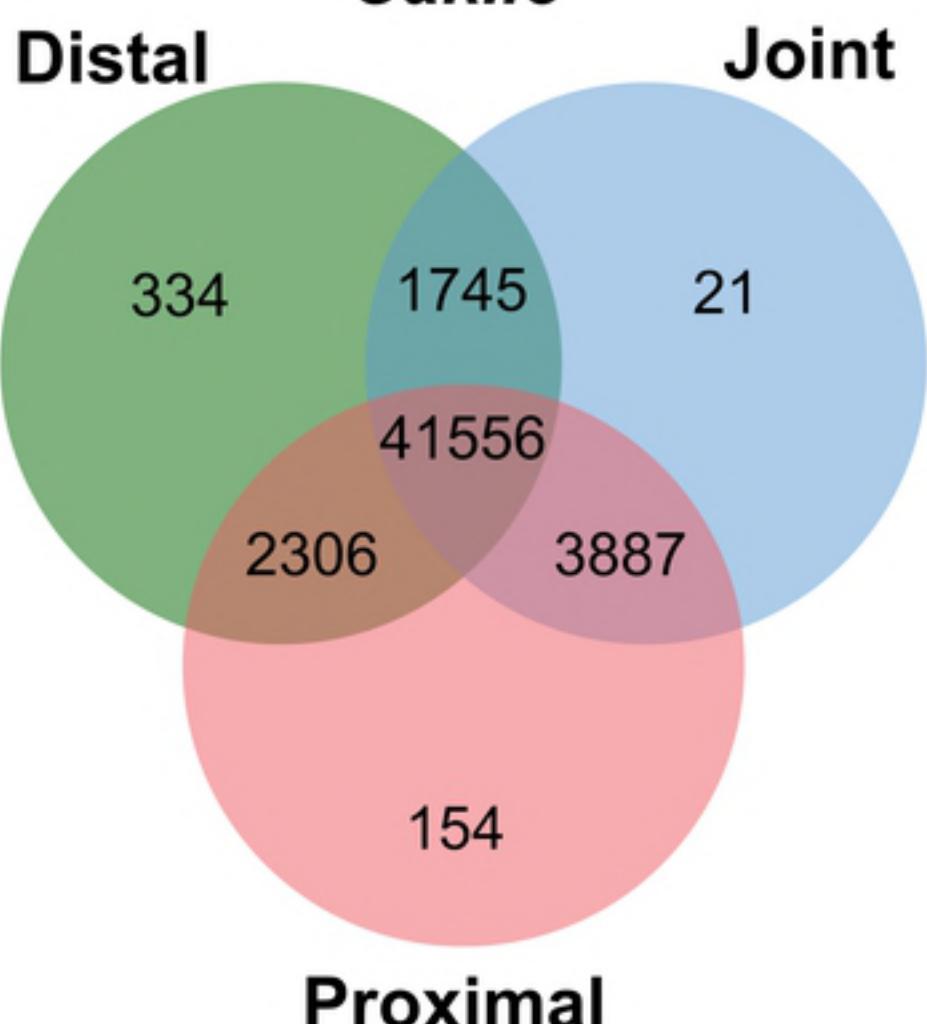







Figure 3

A

*Erucaria**Cakile*

B

Erucaria

Distal

2143

Joint

1812

Proximal

2035

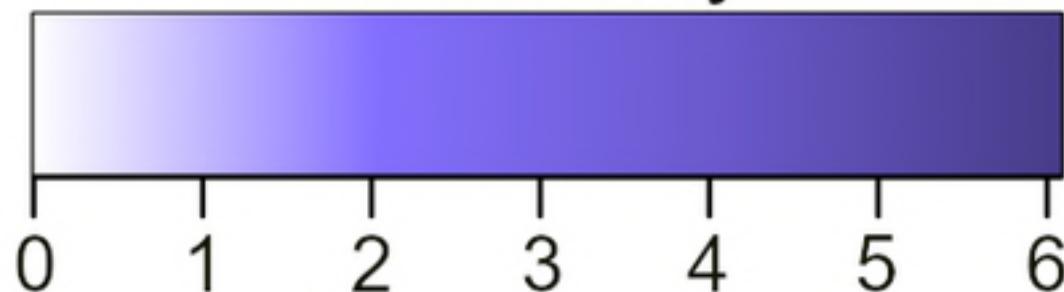
14812

14460

14774

5326

5272


5798

Cakile

Orthologous Clusters

figure 4

Color Key

log2(TPM)

bioRxiv preprint doi: <https://doi.org/10.1101/492371>; this version posted December 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

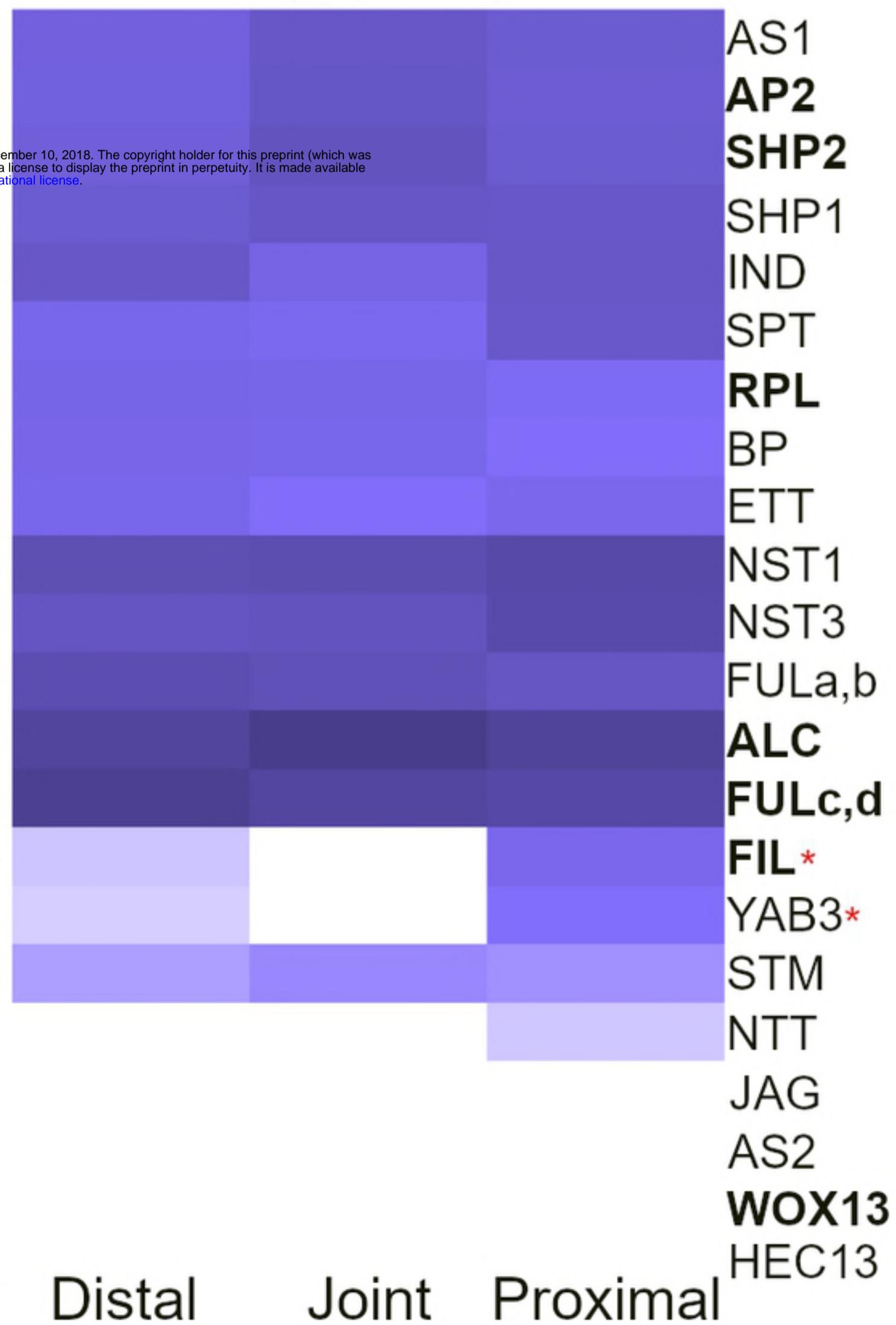
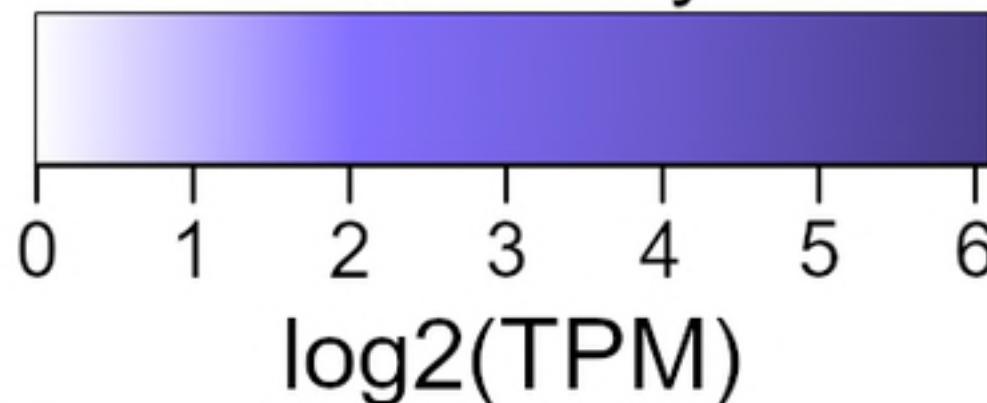



Figure 5

Color Key

bioRxiv preprint doi: <https://doi.org/10.1101/492371>; this version posted December 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

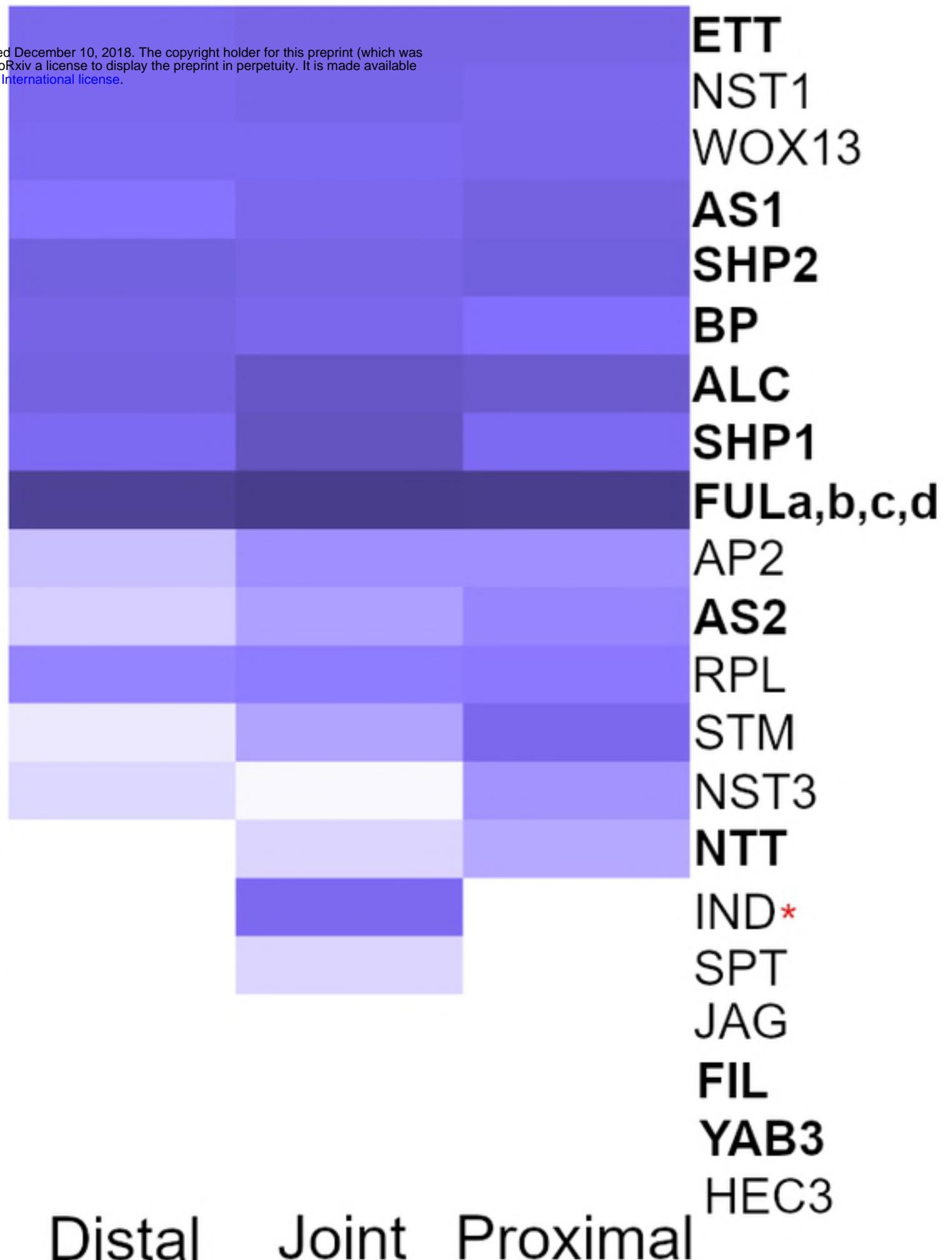


Figure 6

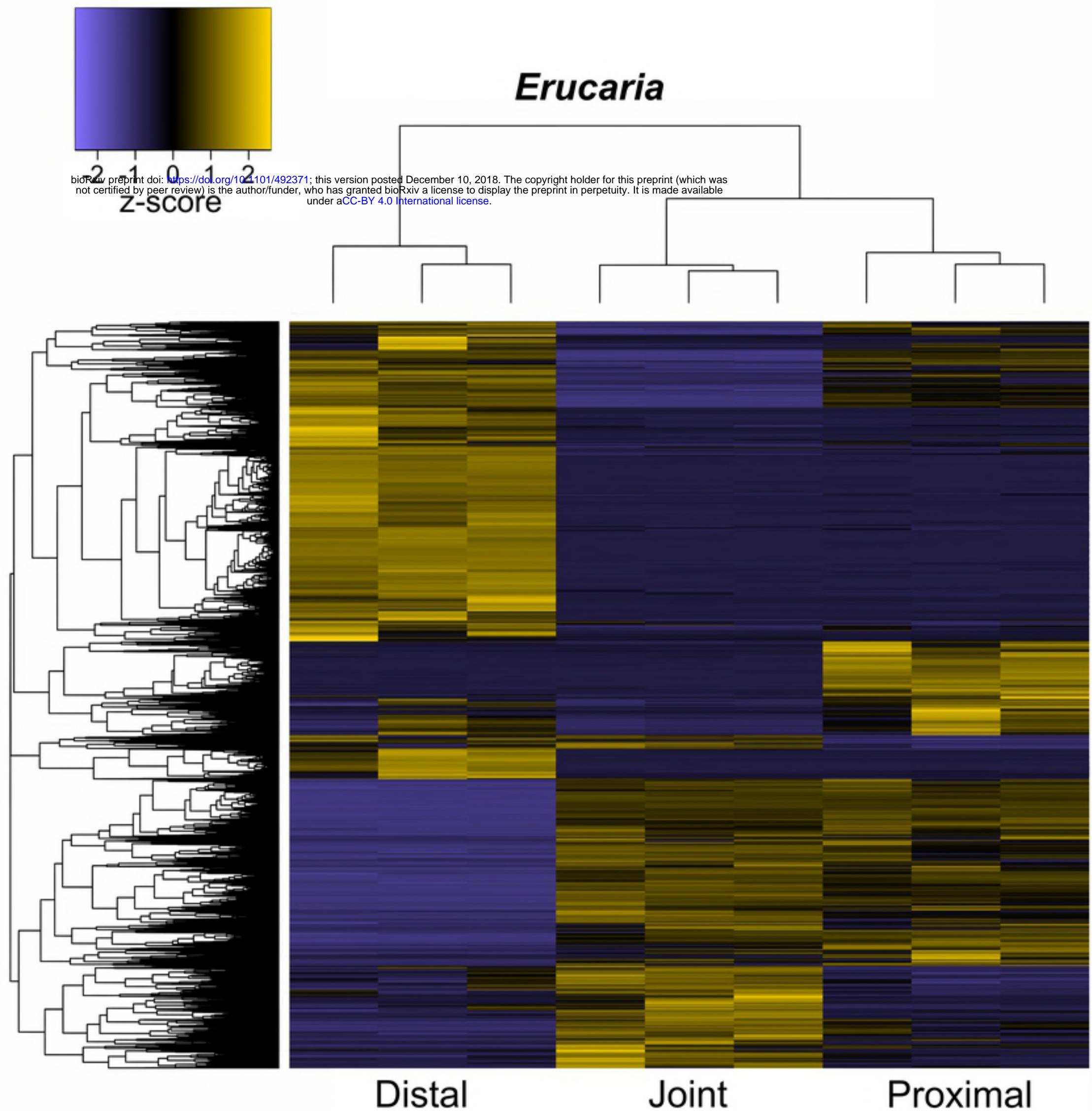


Figure 7

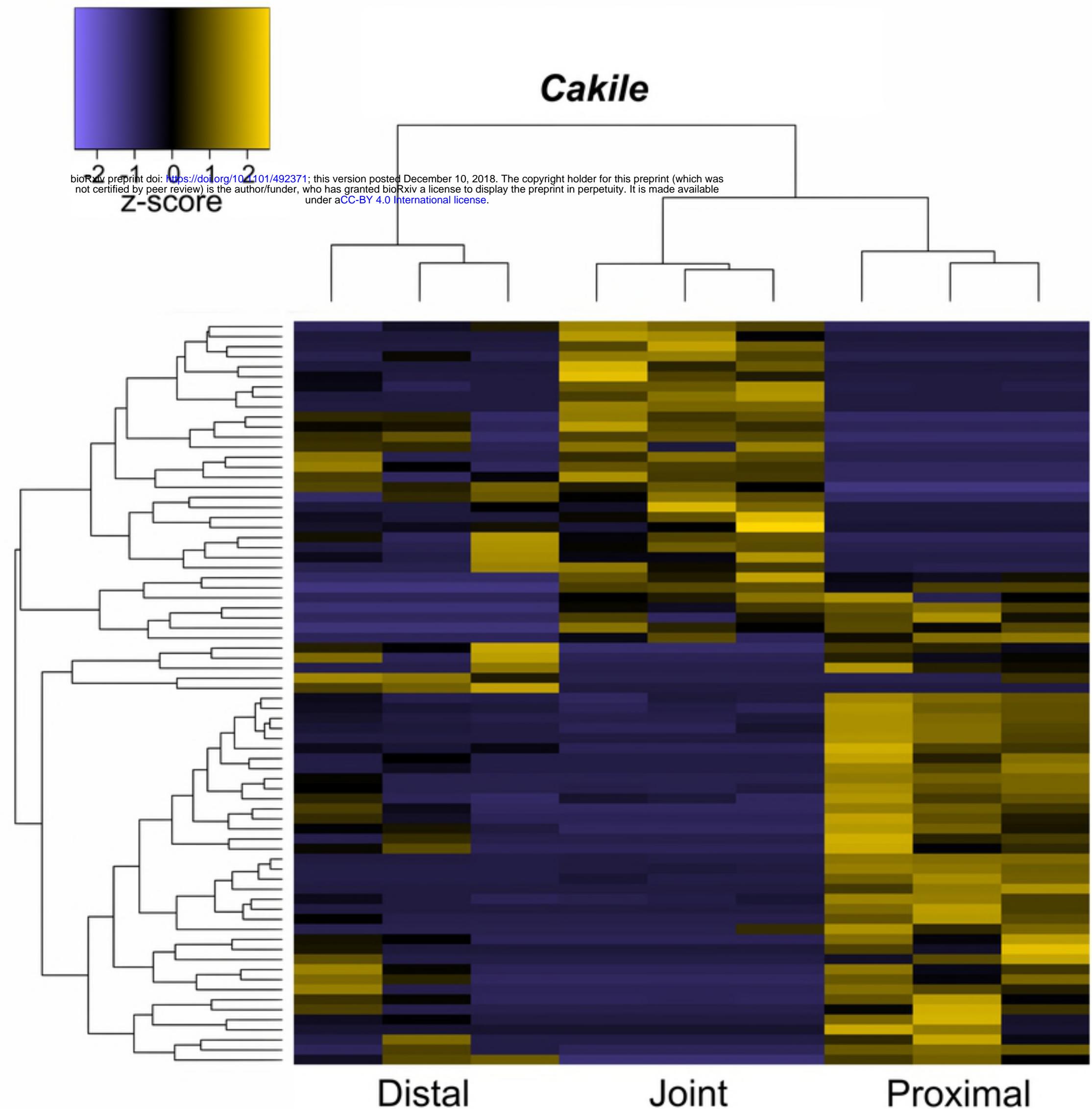
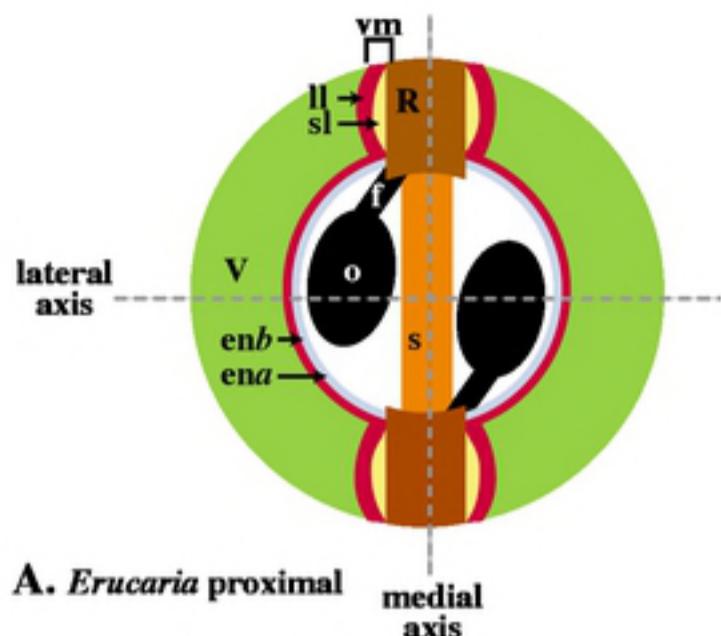
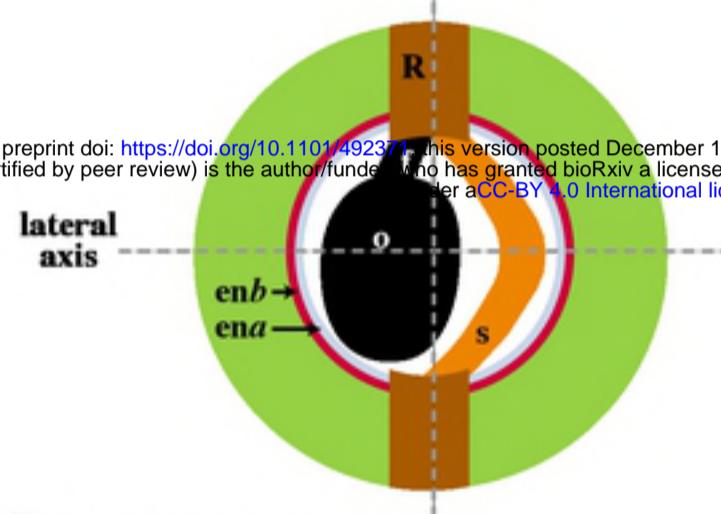


Figure 8



A



B

Fig 1 , Hall, Int. J. Plant.Sci 2006

A. *Erucaria* proximal

B. *Cakile* proximal

bioRxiv preprint doi: <https://doi.org/10.1101/492371>; this version posted December 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Valve

Valve
Margin

Replum

JAG FIL

YAB3

bioRxiv preprint doi: <https://doi.org/10.1101/492371>; this version posted December 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

FUL

SHP1/2

RPL

IND ALC

SPT

V

R

Axial

Plane

Valve

Replum

Valve

Margin

Arabidopsis
Silique

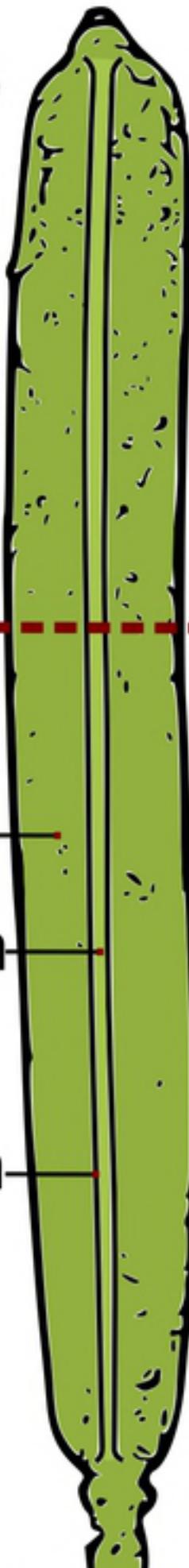


Figure 1