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27  Originality-Significance Statement

28 More rigorous and less arbitrary statistical methods could increase knowledge
29 regarding the role of microorganisms and their interactions. Here, we suggest a
30 probabilistic method to identify the microbial core community across systems. Our
31 method identifies a large proportion of the rare community that likely belongs to the
32 microbia core community, which was not identified by conventional methods. Our
33 probabilistic model is a non-arbitrary approach to defining the microbia core
34  community, which may help in the next step of the microbial core community studies.
35

36 ABSTRACT

37 The core microbial community has been hypothesized to have essential functions
38 ranging from maintaining heath in animals to protection against plant disease.
39 However, the identification of the core microbial community is frequently based on
40 arbitrary thresholds, selecting only the most abundant microorganisms. Here, we
41 developed and tested an approach to identify the core community based on a
42  probabilistic model. The Poisson distribution was used to identify OTUs with a
43  probable occurrence in every sample of a given dataset. We identified the core
44 communities of four extensive microbial datasets, and compared the results with
45  conventional, but arbitrary, methods. The datasets were composed of the microbiomes
46  of humans (tongue, gut, and skin), mice (gut), plant (grapevine) tissue, and the maize
47  rhizosphere. Our proposed method revealed core microbial communities with higher
48  richness and diversity than those previously described. This method also includes a
49  greater number of rare taxa in the core, which are often neglected by arbitrary threshold
50 methods. We demonstrated that our proposed method revels a probable core microbial
51 community for each different habitat, which extend our knowledge about shared
52  microbia communities. Our proposed method may help the next steps proving the
53  essential functions of core microbial communities.
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55 INTRODUCTION

56 The composition of microbial communities can vary greatly even over fine spatial
57 and temporal scales, making it difficult to identify the drivers of community dynamics
58 and the link between composition and function. To overcome the obfuscating effects of
59 this variation, researchers often limit their focus to the ‘core’ community, which is
60 defined as organisms that are ubiquitous in a given habitat, despite environmental
61 fluctuation (Hamady and Knight, 2009). In microbia ecology, the core community
62 refers to microbia taxa (Shade and Handelsman, 2012), or genes (Turnbaugh et al.,
63  2007), shared across a set of samplesin agiven ecosystem.

64 There are considerable attempts to identify the core community across different
65 hosts including corals (Ainsworth et al., 2015), zebrafish (Roeselers et al., 2011), mice
66 (Pédron et al., 2012), ruminants (Henderson et al., 2015), Arabidopsis thaliana
67 (Lundberg et al., 2012) and sugarcane plants (Y eoh et al., 2015). It has been suggested
68 that the core microbial community could play essential roles in ecosystem functioning,
69 and may aso be useful as indicators of system perturbation (Shade and Handelsman,
70 2012; Saunders et al., 2015). For example, an abundant microbia core was identified
71 across 210 human adult fecal samples, varying substantially in geographic origin, ethnic
72 background and diet (Sekelja et al., 2011). The authors suggested that this core has an
73 important role in gut homeostasis and health. Other studies have suggested roles for the
74  core in plant growth promotion and the maintenance of plant health (Schlaeppi et al.,
75  2014). However, few studies have been successful in directly linking the core microbial
76  community to important community or ecosystem functions.

77 The lack of evidences for the importance of the core community may be due to
78  how the core is identified. Since the core is defined to be ubiquitous in a habitat, it is
79  assumed that the microbial taxa or genes belonging to the core should be found in every

80 sample collected from a given habitat. The core microbial community is identified by
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81 identifying shared microorganisms or genes across a collection of samples (discussed by
82  Shade and Handelsman, 2012). In this approach, the core is represented by taxa found in
83 every sample analyzed (100% frequency across samples). However, to date no
84 methodological approach has fully assessed the microbial diversity of any
85 environmental sample (Kanagawa, 2003; Feinstein et al., 2009; Prosser, 2015). Current
86  sequencing methods used to survey complex microbial communities tend to target the
87 most abundant groups of microorganisms (Caporaso et al., 2011). Consequently, the
88 rare component of the core microbial community is missed in these studies. The most
89 commonly used approach to circumvent this problem is the definition of cutoffs for the
90 frequency of microbes or genes to be classified as a member of the core microbial. For
91 instance, researchers have used cutoff values ranging from 30% to 99% frequency
92  across samples (Li et al., 2013; Ainsworth et al., 2015) to define the core community in
93 environmental samples. However, these cutoffs still do not include rare taxa and also
94  could result in false assignments to the core, thus influencing inferences about its
95  function and composition.
96 Given the numerous difficulties associated with sampling and fully sequencing
97  microbial communities, one solution to identify core community members is to use a
98 probabilistic model to assign members of the microbial community to the core
99  community. Here, we develop and test an approach to identifying the core community
100 based on the Poisson distribution. Given the occurrence distribution of an event, i.e. a
101  microorganism, in a group of samples, this model estimates the probability of this event
102 in agroup of samples (Rao and Rubin, 1964). Among discrete probability models, we
103  selected the Poisson distribution because it is particularly suitable for large count
104  datasets, e.g. a high number of events, and the occurrence of small or rare probabilities

105 (Karlis, 2003), situations common when using microbial datasets to estimate a core
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106  community. Unlike other attempts to define the core community (e.g. Turnbaugh et al.,
107  2009) there is no abundance threshold in our proposed method, which allows inclusion
108 of rare taxa as possible members of the core microbial community.

109 We tested our proposed method using several previously published datasets, and
110 compared our results to those obtained using conventional (i.e. arbitrary threshold)
111  approaches. These datasets included human, mice, plant (grapevine tissue and maize
112  rhizosphere), and soil data, and were obtained from the Earth Microbiome Project

113 (EMP; http://www.earthmicrobiome.org). We hypothesized that our approach would

114 lead to the identification of a probable core community that would be a higher
115 proportion of the microbial community, and would also be composed of more
116  microorganisms with low abundances (rare community members), than the core

117  community identified using conventional approaches.
118 RESULTSAND DISCUSSION

119 Testing thedistribution models and rarefaction effect

120 The first step was to select the most appropriate probabilistic method that fitted
121  in OTU digtributions. We tested 13 different models (described in Supplementary
122  Materia), and in Figure S1, we can observe the fourth best distribution models
123  (Poisson, Chi-sguared, Gamma and Beta) fitted on each dataset (Human, Grape, Maize
124  and Mice). The Poisson distribution showed the higher and significant fit on OTU
125  distribution, which is indicated by R? and p-value < 0.05 in Table S1. We aso observed
126  that the Poisson distribution indicated lesser value of RMSE. Models based on
127 ‘Poissonization’ arguments has also been indicated as good predictor of microbia
128  unknown (Lladser et al., 2011).

129 The use of rarefaction, normalization method which equalizes the number of

130  sequences (or reads) per sample, is discussed in the literature. According to McMurdie
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131  and Holmes (2014), the rarefaction increases the number of false positives species, and
132  aso with different abundance across sample classes. However, other simulation studies
133 indicated that the rarefication is better than other normalization methods, clustering
134 samples as hiological origin (Weiss et al., 2017). As probability models requires the
135 normalization, we evaluated the effect of the rarefaction on our proposed.

136 It can be observed in Figures S2, S3, $4 and S5 that the rarefaction method
137  affects the line of Poisson distribution identification. We also observed that the values
138  of R? decreases with the increase of rarefication levels. However, the number of OTU’s
139 identified as probable members of the core microbial community did not present a
140 dSgnificant variation in general (Table S2). In grape dataset only the two highest
141 rarefication levels, and in maize and human dataset only the lesser rarefication level
142  showed a significant different number of core OTU’sidentified. Asindicated in Figures
143 S6, S7, S8 and S9, the taxonomic compoasition at the phyla level was not significant
144  affect by the most of rarefication levels. We verified the similarity of core community
145 composition by different rarefication levels using NMDS analyses (Jaccard similarity).
146  In Figure S10, we can observe that only the lowest level of rarefaction for the grape
147  (Core_500), maize (Core_100), and human (core_100) datasets showed a significant
148  difference from the other rarefaction levels. For the mice dataset, we observe the lower
149 variation than the other datasets, but with the same pattern (lowest rarefaction level is
150 not grouped). Considering this normalization effect, we decided to maintain the same
151 method (rarefaction level) used by the authors of each published datasets for the next
152  steps.

153 A probabilistic method to identify the core microbial community

154 Using this probabilistic model, we identified core microbial communities for each

155  dataset selected for analysis with R? varying between 0.46 (mice) and 0.91 (grape), and
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156  with p-values as lower than 0.05. The obtained curves indicated the occurrence of OTUs
157  with distinct values of frequency occurrence as components of the core microbial
158 communities, which is not observed when other approaches are used (Figure 1 and
159  Supplementary Figures S11, S12, and S13). As the results were based on a probabilistic
160  method, we expected that our proposed method would identify a group closer to the real
161  core community than the group identified by conventional methods.

162 We observed that our probabilistic method reveals a rich and diverse group of
163  microorganism which has not been identified by conventional methods, but belong to
164  the probable core microbia community. For example, the core microbial community
165 identified in the mice database is composed of 170 OTUs using an arbitrary threshold of
166  30% detection frequency, and 1,717 OTUs using the method based on the Poisson
167  distribution (Table 2). In particular, these differences were found for the occurrence of
168 OTUs with low abundance, much more pronounced in the core community obtained by
169 the method based on the Poisson distribution (e.g. Figure 1).

170 In the literature, the microorganisms with low abundance are frequently referred
171 toasthe“rare biosphere” (Sogin et al., 2006). The rare biosphere was first described as
172  microorganisms with low growth rates, which could act as a “seed bank” of species or
173  genes important in maintaining the functional redundancy of a system (Pedros-Ali6,
174  2006). These taxa could become dominant (in high abundance) under certain conditions
175 (Shade et al., 2014). Following this view, members of the rare community can be
176 classified as conditionally rare taxa (CRT), suggested to be ubiquitous in some systems
177  (Shade and Gilbert, 2015). As members of a core microbial community, the CRT could
178 be important to the stability and functional resilience of a system. Using our
179 methodology, these groups could be properly classified within the core community,

180  whilethe arbitrarily defined core rarely included these putative CRTS, likely due to their
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181 lower frequency (e.g. Figure 1B). The cut-offs for the core may fail to identify members
182  of the core microbia community, i.e. this method may produce “false negatives’. By
183 failing to include members in the core (e.g. low abundance taxa that are ubiquitous),
184  researchers may be underestimating the contribution of the core to ecosystem function.
185 Data from the mice dataset (Turnbaugh et al., (2009) did not identify a core microbial
186  community across 100% of samples, or also using the PSM with abundance threshold.
187  The probabilistic method identified the same three phyla as the arbitrary cutoff method
188 (Actinobacteria, Bacterioidetes, and Firmicutes), but also recovered an additional eight
189 phyla (Cyanobacteria, Fusobacteria, Lentisphaerae, Proteobacteria, Synergistetes,
190 Tenericutes, TM7, and Verrucomicrobia) as members of the core microbial community
191  (Figure 2). The authors also indicated the distinct proportions of the Bacteroidetes and
192  Actinobacteria phyla associated to obese and lean mice. Both phyla were aso detected
193 by our probabilistic method, with OTUs affiliated with these groups as components of
194  the core microbial community.

195 Rather than defining a specific, core cutoffs, some researchers have used the
196 term ‘persistent’ — referring to taxawith a high (but below 100%) occurrence frequency,
197  or‘transient’ referring to taxa with low occurrence frequency. For example, Caporaso et
198 al., (2011) have identified a persistent and transient communities, which are classified
199 as OTUs occurring in 60% or 20% of samples, respectively. Using this dataset
200 (Caporaso et al. 2011), we identified a probable core community, also based on OTUs,
201  across al of the human site samples made of 8,751 OTUs (Supplementary Figure S10).
202 The authors identified classes belonging to the phyla Firmicutes, Proteobacteria,
203  Bacteroidetes, and Tenericutes in the human gut. Similar results were obtained by our
204  approach, with the maor affiliation of the OTUs to the phyla Firmicutes,

205 Proteobacteria, and Bacteroidetes (Supplementary Figure S14). We believe that our
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206  approach better succeeds to identify the core community for two reasons. First, our
207 method identified core communities across assessments previously identified as not
208  having a core community (as determined by 100% frequency occurrence). Second, our
209 method offers a complement to other terms as “persistent’ and “transient” communities,
210 e.g.indicating the rare microorganisms that could be classified in persistent group.

211 Same results were observed applying our proposed method to grapevine (leaves,
212  flowers, grapes, and roots), and the maize rhizosphere. For example, Zarraonaindia et
213 al., (2015) suggested a bacterial core community identified by three OTUs across 75%
214  of samples from grape (leaves, flowers, grapes, and roots) and soils, over two growing
215 seasons. These OTUs belonged to the genera Bradyrhizobium, Seroidobacter and
216  Acidobacteria. By using our proposed method on the same dataset, 5,039 OTUs were
217 identified as belonging to the core community (Supplementary Figure S12A and S12B).
218 In addition, members of the Cyanobacteria phylum - which was a dominant group
219 identified by the arbitrary methods (90% of relative abundance; Supplementary Figure
220  S15) — comprised only a small component of the core microbial community using the
221  probabilistic method. This variation in dominance could directly affect the conclusions
222  about microbial composition across the system and may also affect the correlations with
223  environmental drivers.

224 Here, we demonstrate the use of a probabilistic model to identify the core microbial
225 communities. By applying a probabilistic model, our results suggest that the core
226  microbial community may be higher in richness and diversity than previously
227  demonstrated using other methods. Our method also alowed us to include rare (low
228  abundance) members in the core microbial community, which would otherwise be a
229 challenge using an arbitrary core cutoff. The use of a probabilistic model can extend our

230 detection of the core microbial community, and could potentially help researchers to
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231  better connect the core community to ecosystem functions. An increased understanding
232  of core microbial functions could support more robust studies in severa fields, from
233  human hedlth (Zaura et al., 2009) to increased crop production. The microbia core
234  community could also be used as an indicator of system perturbations (Shade and
235 Handelsman, 2012) such as disease occurrence. This new approach could provide future
236  studies a more redlistic strategy to define calculate the core community, and could help
237 to investigate the role of core microbial community in ecosystem function, or to
238  €eucidate the drivers of its composition. The probabilistic model is a new tool to step
239 forward in the microbial community investigation. Only with the use of more rigorous
240 and less arbitrary statistical methods it will be possible to understand the microbial

241  ecology and its interactions.

242 EXPERIMENTAL PROCEDURES

243 We selected four datasets composed of microbiomes from human samples
244 (tongue, gut, and palms), mice (gut), grapevines (plant organs and bulk soil), and the
245  maize rhizosphere to study the core microbial community identified using arbitrary
246  cutoffs and a probabilistic method based on the Poisson distribution (Table 1).

247 The mice dataset was used to evaluate how the gut microbiome influences host
248 adiposity (Turnbaugh et al., 2009). The data are from fecal samples from 154
249  individuals (mice) divided into adult females, monozygotic or dizygotic twin pairs, and
250 their mothers. The core microbia community was identified using the Phylotype
251  Sampling Model (PSM), which by Poisson distribution estimates the failures to observe
252  microbia groups possibly belonging to the core community. The authors established a
253  threshold value for abundance, considering only the OTUs with more than 0,5% of
254  relative abundance as members of the core microbial community.

255 The human microbiome database consists of 396 samples, collected along atime


https://doi.org/10.1101/491183
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/491183; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

256  series of two individuals a four body sites, including gut, tongue, and left and right
257 pam (Caporaso et al., 2011). In the original study, the authors aimed to evaluate the
258 temporal variation in the human microbiome. The authors used the terms persistent
259 (microbial taxa with high levels of occurrence across samples), and transient (taxa with
260 low levels of occurrence across samples) community, because it identified a very small
261 temporal core across al samples. The core was defined as the taxa found across 100%
262  of thesamples.

263 In the grapevine database, Zarraonaindia et al., (2015) identify the OTUs shared
264  across grapevine organs (flower, leaves, grapes, root), the root zone, and bulk soil over
265  two growing seasons. The authors reduced the cutoff to 75% occurrence across samples
266  to determine the core community. This decision was justified by the authors due to the
267  lack of OTUs occurring across al samples.

268 The maize database is the only study included in our dataset that did not attempt
269 to identify the core community. The authors aimed to determine the impact of genetic
270  variation on the composition of bacterial communities inhabiting the maize rhizosphere
271  (Peiffer et al., 2013).

272 The biological observation matrices (BIOM) derived from these data were

273  obtained from the Earth Microbiome Project (EMP; http://www.earthmicrobiome.org),

274  available on the Qiita platform (https://qiita.ucsd.edu). We used the BIOM files due to

275  the similar treatment of data by bioinformatics, including quality filters and assignment
276 of OTU taxonomy (Elli et al., 2010; Caporaso et al., 2011; Peiffer et al., 2013;
277 Zarraonaindia et al., 2015). We used the software QIIME (Chen and Lifschitz, 1989) to
278  convert the BIOM files into text files, which were further imported into the R software
279 (Team 2016), where we analyzed it using the packages ‘RAM’ (Chen et al., 2016),

280 ‘vegan’ (Oksanen et al., 2016) and ‘Hmisc’ (Harrell Jr et al., 2016).
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281 The identification of the core microbial community is conventionally obtained by
282  defining limits of frequency across the samples, i.e. a core community could be defined
283  asmicroorganisms occurring in all samples (100% of occurrence frequency) or in a part
284  of the samples (varying from 30% to 90% of frequency). For example, Ainsworth et al.,
285 (2015) identified the ubiquitous endosymbiont bacterial community (or core
286 community) associated with corals using a 30% occurrence frequency cut-off.
287  Similarly, the human and grapevine studies were used determined the core community,
288  respectively at levels of 100%, 100% and 75% occurrence frequency across the
289 samples. We used a range of limits - 30, 40, 50, 60,70, 80, 90 and 100% occurrence
290 frequency - based on the OTU tables across the samples to verify the difference in the
291  core microbial community selected by these methods.

292 The method proposed here is based on the probability test for the distribution of
293 each microbial taxon (OTU) among samples. This probability test is based on the
294  Poisson distribution, which is a discrete random probability regresson model. The
295  Poisson distribution expresses the probability of an event taking place at a given point
296 in time (Rao and Rubin, 1964). Here we treat events as OTUs across a series of
297  collected samples. The Poisson distribution has previously been used in biogeographic
298  studiesto predict the abundance of species in a given ecosystem (Vincent and Haworth,
299  1983; Guisan and Zimmermann, 2000).

300 Following the idea proposed in the Phylotype Sampling Model (Turnbaugh et
301 al., 2009), the Poisson distribution was used to verify the sampling error expected given
302 the sample size and the probability of observing the minimum abundance of a
303  microorganism in any sample. However, the mgor difference from the previously
304  methods including the Phylotype Sampling Model is that our proposed method does not

305 present abundance or frequency thresholds. The probability (P) of Poisson distribution
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306 isobtained by P(x) = A* e~*/x! , where the lambda (&) and x represent the average of
307 relative abundance and the occurrence frequency of each taxon across the communities,
308 respectively. Using this formula, we have tested two hypotheses: Ho — the individual
309 (OTU) fits in the Poisson distribution and thus likely occurs in every sample (95% of
310 confidence), indicating that it cannot be excluded from the core microbial community;
311 H;-—theindividual does not fit in the Poisson distribution, and thus is unlikely to occur
312 inevery sample, supporting its exclusion from the core microbial community.

313 The calculation starts with the determination of the average of sequences per
314 community source (N), the average relative abundance of each taxon across
315 communities (p) and the occurrence frequency of each taxon across communities (f).
316 The p and f are calculated with values of A and rich > 0, and they are used in the
317  Poisson distribution, where the A is obtained per OTU by theformulad = N X p.

318 The goodness-of-fit of the Poisson model to distribution of OTUs were
319  determined from the R* (adjusted) and p-value. The goodness of fit (R?) indicates the
320 level of variance of an OTU’ s relative abundance explained by the Poisson distribution,
321 which in this case is correlated with the proportion of microbial community that could
322  be not excluded as possible member of the core microbia group. The p-value is used to
323 calculate the significance of OTUs predicted as probable core members by the Poisson
324  digtribution.

325 The arbitrary (thresholds of 30, 40, 50, 60, 70, 80, 90 and 100%) and the
326  proposed (Poisson distribution) methods resulted in OTU tables for the core microbial
327  community and the “variable’” community (made of those that do not belong to the core
328 community). The statistical analyses comparing the results were performed using the R
329 software version 3.2.2 (R Core Team, 2015), including the Shannon index. We also

330 developed afunction in R, which identifies a core microbial community by the method
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331 based on the Poisson distribution. The R script of this function is available in
332  Supplementary Code Simplified file, and the description is available in Supplementary

333  Code Description file.
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441  Tablelegends

442  Table 1 — Databases selected from EMP on the Qiita platform.

443

444  Table 2 - Number of OTU’s identified by the arbitrary and proposed method (based on
445  the Poisson distribution) across the datasets

446

447

448  Figurelegends

449 Figure 1 — The core and variable communities of the mice microbiome

450 determined by (A) our proposed method based on the Poisson distribution and (B) an
451  arbitrary, threshold-based method.

452 Figure 2 — Percentage of the relative abundance of the core communities of the
453  mice database determined by arbitrary methods (thresholds of 30,40,50,60,70,80,90 and
454  100%) and by our proposed method (Core Poisson).
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Table 1 — Databases selected from EMP on Qiita plataform

Study EMP —
ID

QiitaLink

Title

Number of
samples
Data Type
Number of
reads/ sample
OTUs

Reference

Databases selected from EM P
Grape Maize Human Mice
2382 1792 550 77

https://qiita.ucsd.ed

https.//giita.ucsd.

https://qiita.ucsd.e

https.//giita.ucsd.ed

u/study/description/  edu/study/descri  du/study/descripti  u/study/description/
2382 ption/1792 on/550 77
The Soil Diversity and
. . heritability of the
Microbiome . . . A core gut
maize Moving pictures . ) .
Influences . microbiomein
. rhizosphere of the human
Grapevine- . . . . obese and lean
. microbiome microbiome .

Associated ) twins

. . under field
Microbiota .

conditions
401 442 1,736 271

16S- HiSeq 16S—-454 FLX 16S—-454 FLX 16S—-454 FLX

1,000 2,080 5,000 1,000

8,583 10,747 16,129 4,495

(Zarraonaindia et (Peiffer etal., (Caporaso et al., (Turnbaugh et al .,
al., 2015) 2013) 2011) 2009)
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Table 2 — Number of OTU’sidentified by the arbitrary and proposed method (based on the Poisson distribution) across the datasets

Databases
Grapevine Maize Human Mice
Methods Core . Variabl e Core . Variabl e Core . Variabl e Core _ Variabl e
Communlty Communlty Communlty Communlty Communlty Communlty Communlty Communlty

g 30% 211 8,372 272 10,475 206 15,923 170 4,325
£ 4% 109 8,474 145 10,602 93 16,036 82 4,413
E  50% 40 8,543 80 10,667 42 16,087 35 4,460
T 60% 15 8,568 39 10,708 24 16,105 19 4,476
5 0% 5 8,578 19 10,728 12 16,117 5 4,490
S 80% 0 8,583 5 10,742 2 16,127 2 4,493
E 9% 0 8,583 3 10,744 0 16,129 0 4,495
O 100% 0 8,583 0 10,747 0 16,129 0 4,495

Proposed 5,039 3544 5,294 5,453 8751 7,378 1,717 2778

method ’ ’ ’ ’ ’ ’ ’ '
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