

1 High-molecular-weight polymers from dietary fiber drive
2 aggregation of particulates in the murine small intestine

3

4 Asher Preska Steinberg*, Sujit S. Datta†, Thomas Naragon*, Justin C. Rolando*, Said R. Bogatyrev‡, Rustem F.
5 Ismagilov*,‡,§

6 *Division of Chemistry and Chemical Engineering

7 ‡Division of Biology and Biological Engineering

8 California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA

9

10 † Department of Chemical and Biological Engineering,

11 Princeton University, Princeton, NJ 08544, USA

12

13 §To whom correspondence should be addressed.

14 Tel: +1 626 395 2333; Fax: +1 626 568 8743; Email: rustum.admin@caltech.edu

15

16

17 **Abstract**

18 The lumen of the small intestine (SI) is filled with particulates: microbes, therapeutic particles, and food
19 granules. The structure of this particulate suspension could impact uptake of drugs and nutrients and the
20 function of microorganisms; however, little is understood about how this suspension is re-structured as it
21 transits the gut. Here, we demonstrate that particles spontaneously aggregate in SI luminal fluid *ex vivo*. We
22 find that mucins and immunoglobulins are not required for aggregation. Instead, aggregation can be controlled
23 using polymers from dietary fiber in a manner that is qualitatively consistent with polymer-induced depletion
24 interactions, which do not require specific chemical interactions. Furthermore, we find that aggregation is
25 tunable; by feeding mice dietary fibers of different molecular weights, we can control aggregation in SI luminal
26 fluid. This work suggests that the molecular weight and concentration of dietary polymers play an
27 underappreciated role in shaping the physicochemical environment of the gut.

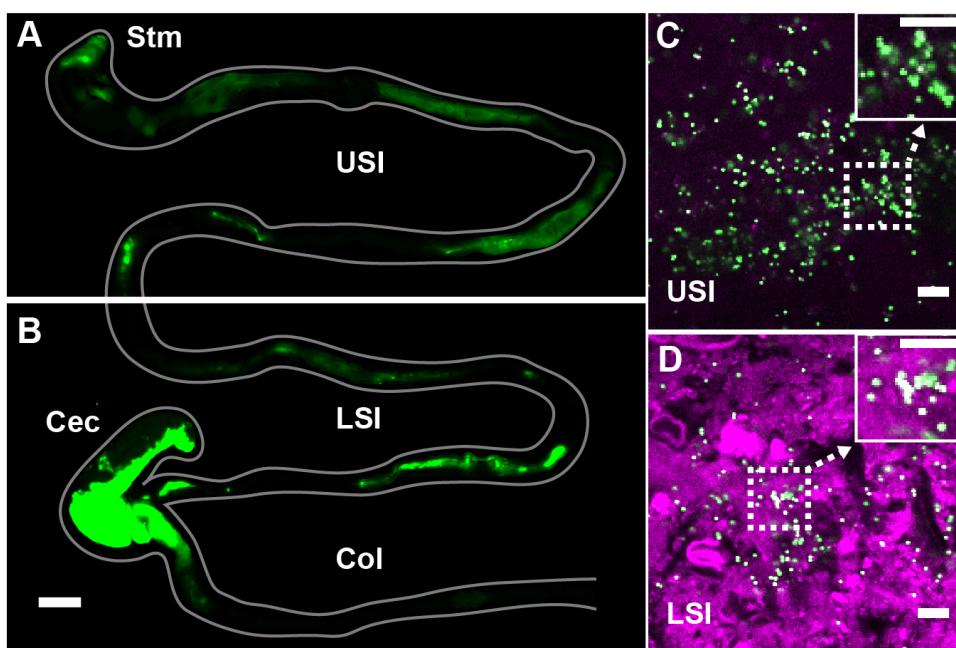
28

29 **Introduction**

30 The small intestine (SI) contains numerous types of solid particles. Some of these particles include microbes,
31 viruses, cell debris, particles for drug delivery, and food granules (1–5). Little is understood about the state of
32 these particles in the small intestine; do these particles exist as a disperse solution or as aggregates? An
33 understanding of how particulate matter is structured as it moves through the SI would contribute to
34 fundamental knowledge on a host of topics, such as how microbes, including probiotics and pathogens, function
35 in the SI (6–10). Knowledge of how particle suspensions change during transit would also provide insight into
36 how the uptake of drugs and nutrients are affected by the physiochemical properties of the SI environment (3,4).
37 It would also give us better comprehension of how the SI acts to clear potential invaders and harmful debris
38 (2,11).

39 Polymers abound in the gut in the form of secretions (e.g. mucins and immunoglobulins) and dietary
40 polymers (e.g. dietary fibers and synthetic polymers). It is well known that host-secreted polymers can cause
41 aggregation of particles via chemical interactions; for example, mucins (12–16), immunoglobulins (17–25), and
42 proteins (26) can cause bacteria to aggregate via an agglutination mechanism. However, non-adsorbing
43 polymers can also cause aggregation via purely physical interactions that are dependent on the physical
44 properties of the polymers, such as their molecular weight (MW) and concentration (27–33). Here, we
45 investigate whether these physical interactions play a role in structuring particles in the SI. For this work, we
46 study the interactions between polystyrene particles densely coated with polyethylene glycol (PEG) and the
47 luminal contents of the SI. It has been demonstrated previously that PEG-coated particles have little or no
48 chemical interactions with biopolymers (34,35), so using PEG-coated particles allows us to isolate and
49 investigate only the interactions dominated by physical effects.

50
51
52
53


54 **Results**

55 **PEG-coated particles aggregate in fluid from the murine small intestine**

56 It has been observed that both bacteria (19–21,23,25,26) and particles (3,36–38) aggregate in the gut.

57 Experiments have been performed in which mice are orally co-administered carboxylate-coated nanoparticles,
58 which are mucoadhesive, and PEG-coated nanoparticles, which are mucus-penetrating (3). The carboxylate-
59 coated particles formed large aggregates in the center of the gut lumen. In contrast, PEG-coated particles were
60 sometimes found co-localized with carboxylate-coated particles and also penetrated mucus, distributing across
61 the underlying epithelium of the SI as aggregates and single particles.

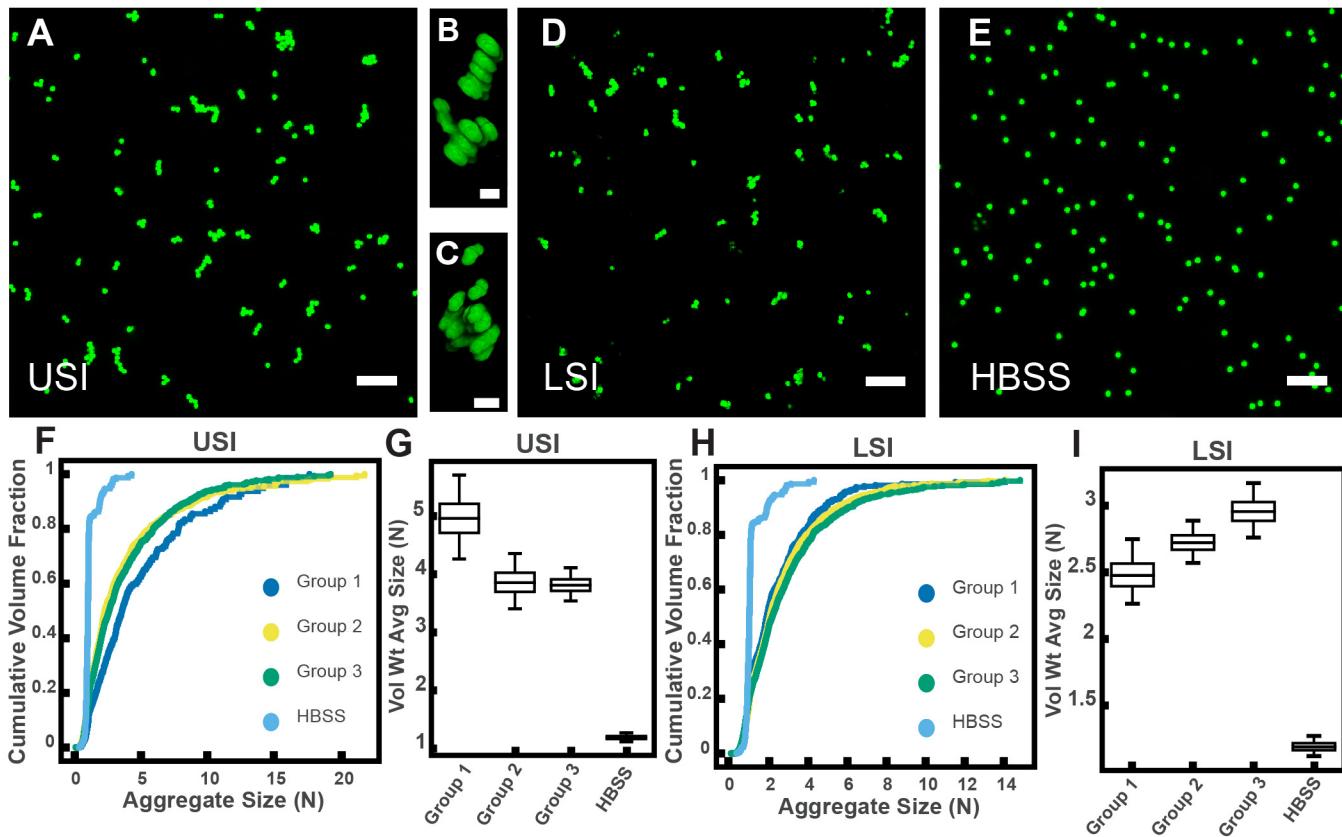
62 To evaluate the distribution of particulate suspensions in the SI, we suspended 1- μ m-diameter
63 fluorescent PEG-coated particles (see *Materials and Methods* for synthesis) in buffers isotonic to the SI and
64 orally administered them to mice. We chose 1 μ m-diameter particles because of their similarity in size to
65 bacteria. We collected luminal contents after 3 h and confirmed using confocal fluorescence and reflectance
66 microscopy that these particles aggregated with each other and co-aggregated with what appeared to be digesta
67 (Fig. 1C and D; *Materials and Methods*). On separate mice, fluorescent scanning was used to verify that
68 particles do transit the SI after 3 h (Fig. 1A and B; *Materials and Methods*).

70 **Fig. 1.** PEG-coated particles aggregate in the murine small intestine (SI). (A and B) Fluorescent scanner image
71 of gastrointestinal tract (GIT) from a mouse orally administered a suspension of 1- μ m diameter PEG-coated
72 particles (green). Scale bar is 0.5 cm. (see Figure 1 – figure supplement 1 for image processing steps and how
73 contours of gut were outlined). (C and D) Confocal micrographs of luminal contents from the upper (C) and
74 lower (D) SI of a mouse orally gavaged with PEG-coated particles (green) showing scattering from luminal
75 contents (purple). Scale bars are 10 μ m. Stm = Stomach; USI = upper SI; LSI = lower SI; Col = colon.

76

77 Given the rich complexity of the SI, wherein particles co-aggregate with digesta and bacteria, and are
78 subjected to the mechanical forces of digestion and transit (39), and other phenomena, we developed an *ex vivo*
79 assay to characterize the structure of particles in luminal fluid from the SI of mice. As a simple starting point,
80 we sought to understand interactions among particles of known chemistry and the luminal fluid of the SI. To
81 minimize chemical interactions with the biopolymers of the SI, we again chose PEG-coated polystyrene
82 particles. PEG coatings have been shown to minimize biochemical interactions between polystyrene particles
83 and biopolymers in a variety of contexts (34,35), and thus PEG-coated particles are commonly used in drug
84 delivery (3,38,40).

85 To create PEG-coated polystyrene particles for the *ex vivo* experiments, we took 1- μ m-diameter
86 carboxylate-coated polystyrene particles and conjugated PEG to the surface (*Materials and Methods*). We used
87 NMR to verify that PEG coated the surface of the particles (see *Materials and Methods* and Table 8). We found
88 that by coating with PEG 5 kDa and then coating again with PEG 1 kDa to backfill the remaining surface sites
89 on the particle allowed us to achieve a lower zeta potential than applying a single coat of PEG 5 kDa (Table 8).
90 We chose these particles for use in our assay. It has been suggested in the literature that a near-zero zeta
91 potential minimizes the interactions particles have in biological environments (35).


92 To collect luminal fluid from the SI of mice, we excised the SI of adult mice (8-16 weeks old), divided it
93 into an upper and lower section, and gently collected the luminal contents on ice. To separate the liquid and
94 solid phase, we centrifuged the contents and collected the supernatant. To further ensure that any remaining
95 solid material was removed from the fluid phase, we filtered the supernatant through a 30- μ m pore size spin

96 column and collected the filtrate (see *Materials and Methods* for more details). We then placed the PEG-coated
97 particles in the SI luminal fluid at a volume fraction of ≈ 0.001 . A low-volume fraction was chosen because
98 bacteria in the healthy SI are found at similarly low-volume fractions (41–43). We found that, despite the PEG
99 coating and low-volume fraction, aggregates of particles formed in 5–10 min (Fig. 2*A–D*), a timescale much
100 shorter than the transit time for food through the SI, which can be as short as ~ 80 min in healthy humans (39)
101 and ~ 60 min in mice (44). On longer timescales, peristaltic mixing could also play a role (39); during fasting,
102 the migrating motor complex (MMC) cycle first consists of a period of quiescence for ~ 30 –70 min, followed by
103 a period of random contractions, then by 5 to 10 minutes in which contractions occur at 11–12 counts per minute
104 (cpm) in the duodenum and 7–8 cpm in the ileum. After eating, MMC is substituted with intermittent
105 contractions in the SI and waves can occur at a frequency of 19–24 cpm in the distal ileum 1–4 h later. We
106 therefore chose to focus on aggregation at short timescales (~ 10 min) because we sought to understand the
107 initial formation of aggregates before aggregation is influenced by mechanical forces such as shear due to
108 peristaltic mixing and the transit of food.

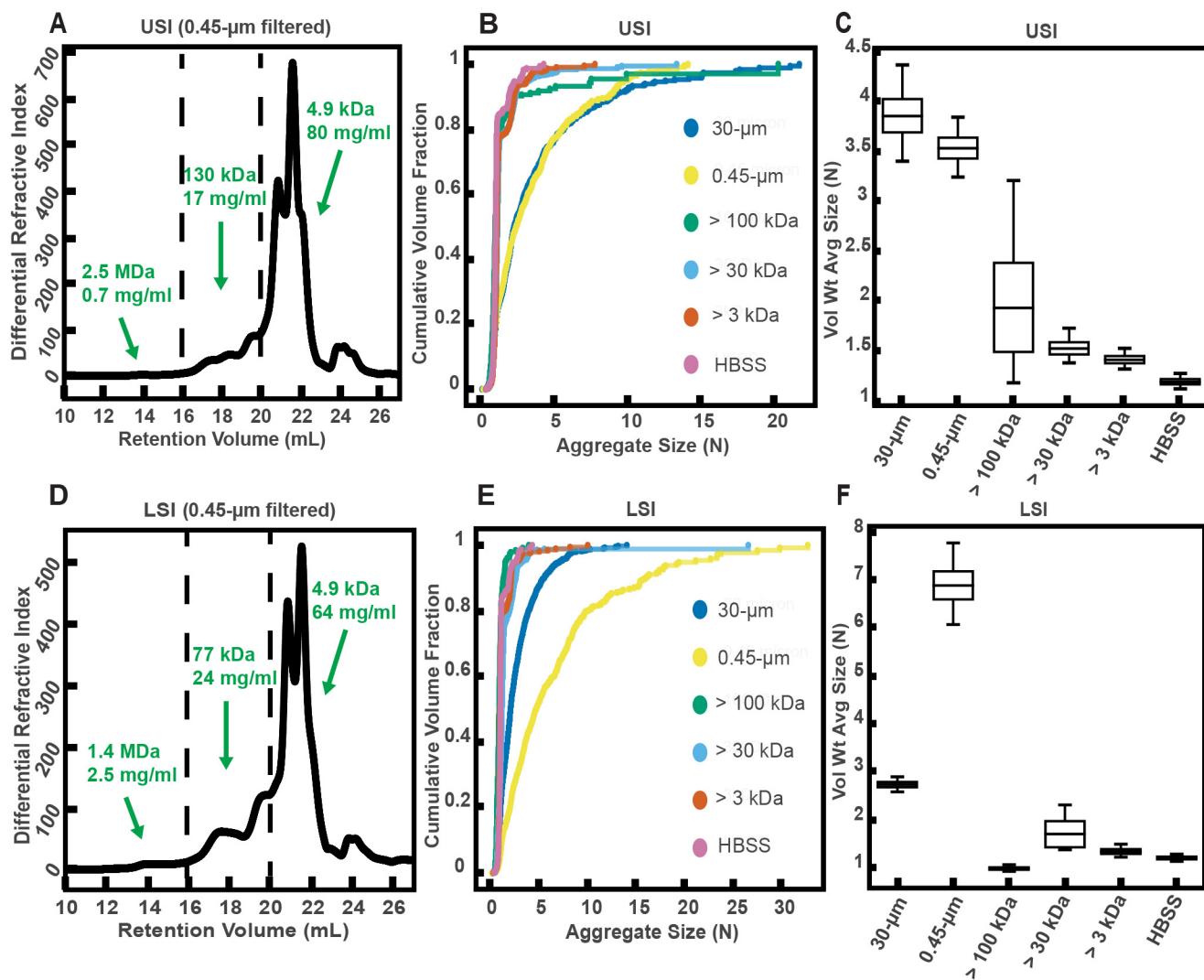
109 To quantify the amount of aggregation in samples of luminal fluid, we developed a method to measure
110 the sizes of all aggregates in solution using confocal microscopy (see *Materials and Methods*). From these
111 datasets, we created volume-weighted empirical cumulative distribution functions (ECDFs) of all the aggregate
112 sizes in a given solution. We used these volume-weighted ECDFs to compare the extent of aggregation in a
113 given sample (Fig. 2*F* and *H*). To test the variability of aggregation in samples collected from groups of mice
114 treated under the same conditions, we compared the extent of aggregation in pooled samples taken from three
115 groups, each consisting of three male mice on a standard chow diet. We plotted the volume-weighted ECDFs of
116 each sample (Fig. 2*F* and *H*) and observed that the variation among the groups under the same conditions
117 appeared to be small compared with the differences between the samples and the control.

118 To quantify the variability of aggregation among groups using an additional method, we bootstrapped
119 our datasets to create 95% bootstrap confidence intervals (CI) of the volume-weighted average aggregate size of

120 each of the three groups and the control in Hank's balanced salt solution (HBSS) (Fig. 2G and I; see *Materials*
121 and *Methods* for complete details of the bootstrapping procedure). All 95% bootstrap CI either overlapped or
122 came close to overlapping, again suggesting there was little variability among pooled samples treated under the
123 same conditions (male mice on a standard chow diet).

124
125 **Fig. 2.** PEG-coated particles aggregate in fluid from the murine small intestine (SI) *ex vivo*. The 1- μ m-diameter
126 PEG-coated particles form aggregates in fluid collected from the upper (A-C) and lower (D) SI in \sim 10 min. (A
127 and D) Maximum z-projections of 10 optical slices taken on a confocal microscope. (B and C) 3D renderings of
128 aggregates found in panel A. (E) Maximum z-projection of the same particles in HBSS. Scale bars are 10 μ m in
129 2D images and 2 μ m in 3D images. (F and H) Volume-weighted empirical cumulative distribution functions
130 (ECDFs) comparing aggregation of the particles in pooled samples from the upper (F) and lower (H) SI of three
131 separate groups of male chow-fed mice (each group consisted of three mice) and a control (particles suspended
132 in HBSS). The vertical axis is the cumulative volume fraction of the total number of particles in solution in an
133 aggregate of a given size. The horizontal axis (aggregate size) is given as the number of particles per aggregate
134 (N). (G and I) Box plots depicting the 95% empirical bootstrap CI of the volume-weighted average aggregate
135 size (given in number of particles per aggregate, N) in samples from the upper (G) and lower (I) SI (the samples
136 are the same as those from panels F and H). The line bisecting the box is the 50th percentile, the upper and lower
137 edges of the box are the 25th and 75th percentile respectively, and the whiskers are the 2.5th and 97.5th
138 percentiles. USI = upper SI; LSI = lower SI. See *Materials and Methods* for bootstrapping procedure.

140
141
142
143
144
145
146


147 **Fractionation of SI fluids suggests polymers play a role in aggregation of PEG-coated particles**

148 Given that polymers can aggregate particles and bacteria via several mechanisms (12–33), we hypothesized that
149 biopolymers in SI luminal fluid are involved in the aggregation of our PEG-coated particles. We therefore
150 sought to first quantify the physical properties of the polymers in the luminal fluid of the SI. To do this, we used
151 a 0.45- μ m filter to remove additional debris and ran samples from a group of three chow-fed mice on a gel
152 permeation chromatography (GPC) instrument coupled to a refractometer, a dual-angle light scattering (LS)
153 detector, and a viscometer (details in *Materials and Methods*). Chromatography confirmed that polymers were
154 indeed present in the SI fluid (Fig. 3A and D). Because we do not know the refractive index increment (dn/dc)
155 of the polymers present in these samples and the polymers are extremely polydisperse, we cannot make exact
156 calculations of the physical parameters of these polymers. We can, however, calculate estimated values by
157 assuming the range of the dn/dc values to be about 0.147 for polysaccharides and about 0.185 for proteins and
158 then dividing the sample into different fractions based on retention volume (estimates of concentration and MW
159 of polymers are displayed on Fig. 3A and D). The estimates suggest that the SI is abundant in polymers with a
160 range of MWs.

161 To qualitatively test our hypothesis that biopolymers in the SI were involved in the aggregation of our
162 PEG-coated particles, we collected SI luminal fluid from a different group of three male, chow-fed mice. We
163 performed an additional filtration step (0.45- μ m) to further ensure the removal of any solid materials. This
164 filtrate was then separated into aliquots and each aliquot was run through a different MW cut-off (MWCO)
165 filter (see *Materials and Methods*). We then collected the eluent of each aliquot and compared the aggregation

166 of our PEG-coated particles in each (Fig. 3*B*, *C*, *E*, and *F*). We generally found less aggregation in the
167 fractionated samples compared with the 30- and 0.45- μm filtered samples. When the MWCO was decreased to
168 3 kDa, the observed aggregation in the eluent matched the extent of aggregation observed for particles in HBSS.
169 Overall, these data supported our hypothesis that polymers were involved in the aggregation of these particles.

170 Interestingly, in the lower SI, we observed more aggregation in the 0.45- μm filtered sample compared
171 with the 30- μm filtered sample. From handling the samples, we observed that the 30- μm filtered samples
172 appeared to be more viscous than the 0.45- μm filtered samples. We postulate that this increase in viscosity was
173 due to the formation of self-associating polymeric structures, although we did not test this assumption. We
174 attribute this decrease in aggregation in the 30- μm filtered samples to slower aggregation kinetics due to
175 decreased diffusivity of particles in this viscous medium. This decrease in aggregation at high polymer
176 concentrations or viscosities is also observed in solutions of model polymers, as discussed in the next section.

177

178 **Fig. 3.** Gel permeation chromatography (GPC) of fluid from the small intestine (SI) and aggregation of PEG-
179 coated particles in fractionated fluid from SI. (A and D) Chromatograms of samples from the upper (A) and
180 lower (D) SI from a group of three chow-fed mice. Dashed lines indicate the three retention volumes the
181 chromatograms were divided into for analysis: 11-16 mL, 16-20 mL, and >20 mL. Estimated concentrations and
182 molecular weight (MW) are reported in green on the chromatograms for each retention volume. (B and E)
183 Volume-weighted empirical cumulative distribution functions (ECDFs) of aggregate sizes in the upper (B) and
184 lower (E) SI liquid fractions of chow-fed mice which have been run through MW cut-off (MWCO) filters with
185 different MWCOs. As a control, aggregate sizes were also measured for particles placed in HBSS. The vertical
186 axis is the cumulative volume fraction of the total number of particles in solution in an aggregate of a given
187 size. The horizontal axis is aggregate size (number of particles per aggregate, N). (C and F) Box plots depict the
188 95% empirical bootstrap CI of the volume-weighted average aggregate size (given in number of particles per
189 aggregate, N) in the samples from panels B and E, respectively (see *Materials and Methods* for bootstrapping
190 procedure). The line bisecting the box is the 50th percentile, the upper and lower edges of the box are the 25th
191 and 75th percentile respectively, and the whiskers are the 2.5th and 97.5th percentiles.

192

193 **Aggregation of PEG-coated particles in model polymer solutions shows complex dependence on the**
194 **concentration and MW of polymers.**

195 Before exploring the complex environment of the SI further, we sought to first understand how our PEG-coated
196 particles behaved in simple, well-characterized polymer solutions with similar MW and concentrations to those
197 polymers we found in the SI in the previous experiments (Fig. 3A and D). It has been demonstrated that the
198 aggregation of colloids and bacteria can be controlled by altering the concentration and size of the non-
199 adsorbing polymers to which particles are exposed (27–33). In these controlled settings, particles aggregate due
200 to what are known as depletion interactions (27–29). Many groups have focused on depletion interactions with
201 hard-sphere-like colloids; they often use polymethylmethacrylate particles sterically stabilized with
202 polyhydroxystearic acid, because these particles closely approximate hard-sphere-like behavior (45,46). In these
203 scenarios, depletion interactions are often described as forces that arise when particles get close enough to
204 exclude polymers from the space between them, resulting in a difference in osmotic pressure between the
205 solution and the exclusion region, leading to a net attractive force (27–31). Others have instead chosen to
206 describe the phase behavior of the colloid/polymer mixture in terms of the free energy of the entire system
207 (33,47). Short-range attractions (polymer radius is ten-fold less than particle radius) between hard-sphere
208 colloids induced by polymers have been described successfully in the language of equilibrium liquid–gas phase
209 separation (48,49).

210 Some groups have explicitly accounted for the effects of the grafted polymer layer used to sterically

211 stabilize colloids when studying interactions between polymer solutions and colloids (50–58); this includes
212 groups studying mixtures of polystyrene particles sterically stabilized with grafted layers of PEG (MWs of 750
213 Da and 2 kDa) and aqueous solutions of free PEG polymer (MW from 200 Da to 300 kDa) (51,52). It has been
214 found experimentally that in mixtures of polymers and sterically stabilized colloids, the colloids form
215 aggregates above a threshold polymer concentration. At even higher concentrations, as the characteristic
216 polymer size shrinks, the colloids cease to aggregate, a phenomenon referred to as “depletion stabilization.”

217 To test whether our PEG-coated particles behave similarly to what has been previously found in
218 mixtures of polymers and sterically stabilized particles, we created polymer solutions with PEG at a range of
219 polymer concentrations and MWs and measured the extent of aggregation in these polymer/particle mixtures
220 (Fig. 4A-D). We chose PEGs that have MWs similar to the MW of polymers we found naturally occurring in
221 the SI (Fig. 3A, D): 1 MDa, 100 kDa, and 3350 Da. Using PEGs with similar physical properties (i.e. MW,
222 concentration) as a simple model of polymers found in the SI allows us to focus solely on physical interactions
223 between the particles and polymers. We created PEG solutions in HBSS at mass concentrations similar to those
224 measured for polymers in the SI (Fig. 3A and D) and imaged the polymer/particle mixtures after ~10 min.
225 HBSS was chosen because it has a similar pH and ionic strength to that of the SI (59,60). At the high ionic
226 strengths of these buffered aqueous solutions (~170 mM), any electrostatic repulsions that can occur between
227 particles should be screened to length scales of order the Debye screening length ~0.7 nm (61,62), nearly an
228 order of magnitude smaller than the estimated length of the surface PEG brush (~6.4 nm; see *Materials and*
229 *Methods* for more details). We again chose to look at aggregation on short timescales (after ~10 min) because
230 we sought to understand the initial formation of aggregates; in the SI, on longer timescales, aggregation will
231 likely also be influenced by mechanical forces such as shear due to peristaltic mixing and the transit of food.

232 For PEG 1 MDa and 100 kDa solutions we found aggregates of similar sizes to those observed in the SI
233 luminal fluid (Fig. 4A-D). We did not detect any aggregation for the PEG 3350 Da solutions (Fig. 4D). Because
234 the pH is known to vary across different sections of the gastrointestinal tract and this could affect the observed
235 aggregation behavior, we measured the pH in luminal fluid from the upper and lower small intestine (see Figure
236 4 – figure supplement 1 and *Materials and Methods*). We found that the upper small intestine (USI) luminal
237 fluid was $pH = 6.0 \pm 0.1$ and for the lower small intestine (LSI) $pH = 7.5 \pm 0.3$. For the HBSS used, $pH =$
238 7.6 ± 0.1 (See *Materials and Methods*), which matches that of the LSI but not the USI. We therefore conducted
239 the same *in vitro* experiment for PEG 1 MDa in phosphate buffered saline with $pH = 6.0 \pm 0.1$ (*Materials and*

240 *Methods and Figure 4 – figure supplement 2).* We found some differences in the aggregation, but the overall
241 trends were similar to before.

242 Overall, though our system is not at equilibrium at these short timescales, we found trends consistent
243 with what has been observed in the literature for depletion interactions with sterically stabilized particles (50–
244 58). At dilute polymer concentrations, the extent of aggregation increased with concentration. At higher
245 polymer concentrations, the extent of aggregation began to decrease as the solutions begin to “re-stabilize.”
246 Additionally, the extent of aggregation was greater for longer polymers. Interestingly, we found that the curves
247 for the long polymers in Figure 4D could be collapsed by normalizing the polymer concentration by the overlap
248 concentration (which denotes the transition between the dilute to semi-dilute polymer concentration regimes)
249 for each respective polymer solution (Figure 4 – figure supplement 3). We next sought to describe the inter-
250 particle potential using theory that combines depletion interactions with steric interactions.

251 We applied previously established theoretical frameworks that combine depletion interactions with
252 steric interactions to better understand our system (50,54,58). To account for the depletion attractions between
253 colloids we used the Asakura–Oosawa (AO) potential (U_{dep}) (27–29):

$$254 \quad U_{dep}(r) = \begin{cases} +\infty & \text{for } r \leq 0 \\ -2\pi\Pi_P a \left(R_P - \frac{r}{2}\right)^2 & \text{for } 0 < r < 2R_P \\ 0 & \text{for } r > 2R_P \end{cases} \quad (Eq. 1)$$

255 Where U_{dep} is given in joules, Π_P is the polymer osmotic pressure (in Pa), a is the radius of the colloid (in m),
256 R_P is the characteristic polymer size (in m), and r is the separation distance between bare particle surfaces (in
257 m). This form of the depletion potential equation assumes that $a \gg R_P$, a condition satisfied for 1 μm particles
258 we used. For the polymer osmotic pressure, we used the following crossover equation for a polymer in a good
259 solvent (63,64):

$$260 \quad \Pi_P = \frac{N_{Avo} k T}{MW} c_P \left(1 + \left(\frac{c_P}{c_P^*}\right)^{1.3}\right) \quad (Eq. 2)$$

261 Where Π_P is given in pascals, N_{Avo} is Avogadro’s number, k is the Boltzmann constant, T is the temperature (in

262 kelvins), MW is the molecular weight of the polymer (in Da), c_p is the polymer mass concentration (in kg/m^3),
263 and c_p^* is the polymer overlap concentration (in kg/m^3). This equation describes the polymer osmotic pressure
264 well in both the dilute and semi-dilute regime.

265 For the characteristic polymer size, we used the concentration-dependent radius of gyration (31,65). This
266 can be written as:

$$267 R_p(c_p) = R_g(0) \left(\frac{MW}{N_{Avogadro} kT} \frac{d\Pi_p}{dc_p} \right)^{-\frac{1}{2}} \quad (Eq. 3)$$

268 Where $R_p(c_p)$ is the concentration-dependent radius of gyration or the characteristic polymer size given in
269 meters, $R_g(0)$ is the radius of gyration (in m) at dilute concentrations and Π_p is given by equation 2. The
270 characteristic polymer size is given by the dilute radius of gyration at low concentration and is close to the
271 correlation length of the polymer solution, or the average distance between monomers, in the semi-dilute
272 regime. Therefore, using equations 2 and 3, we acquire the correct limits for the depletion potential; the
273 Asakura–Oosawa potential in the dilute regime and the depletion potential described by Joanny, Liebler, and de
274 Gennes in the semi-dilute regime (66). Similar crossover equations have been found to adequately describe
275 experimentally observed depletion aggregation in polymer-colloid mixtures where the polymer concentration
276 spans the dilute and semi-dilute regimes (67). Using literature values for the hydrodynamic radii of the PEGs
277 (68) and the Kirkwood-Riseman relation, which relates the hydrodynamic radius to the radius of gyration (68–
278 70), we estimated $R_g(0)$ for each polymer. We estimated $R_g(0) \approx 62.6, 16.7, 2.9 \text{ nm}$ for PEG 1 MDa, 100 kDa,
279 and 3350 Da, respectively. Using both the estimates of $R_g(0)$ and the MW of each polymer, we then estimated
280 c_p^* for each polymer (63,71). We estimated $c_p^* = 1.6, 8.6, \text{ and } 52.6 \text{ mg/mL}$ for PEG 1 MDa, 100 kDa, and 3350
281 Da, respectively.

282 To account for steric interactions between the two grafted layers upon close inter-particle separations,
283 we used equation 4 (50,52). For inter-particle separation distances between L and $2L$, where L is the length of

284 the grafted layer, the steric interactions between the two grafted layers can be described using the Flory–

285 Huggins free energy of mixing:

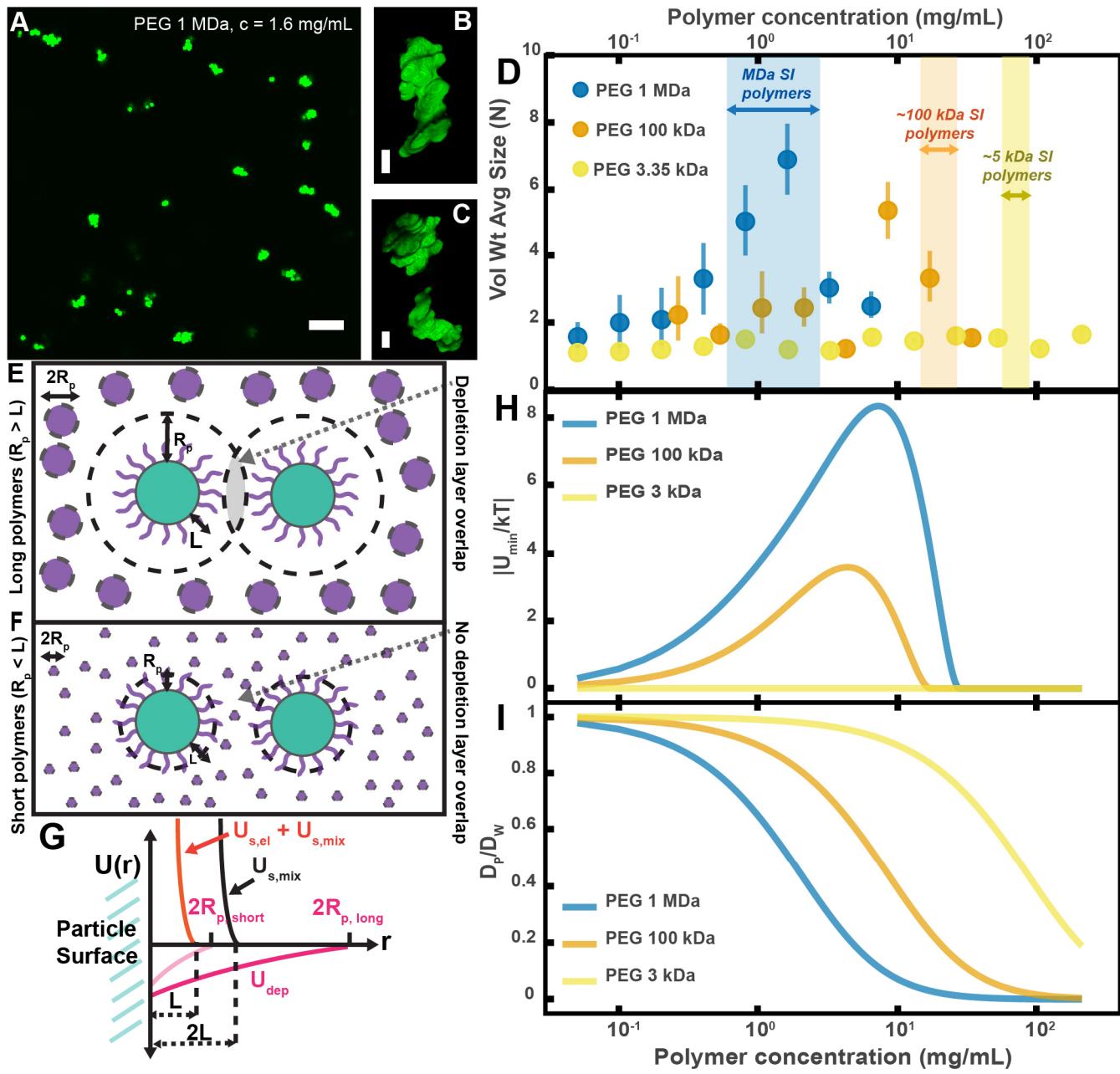
286

$$U_{s,mix}(r) = \frac{4\pi a k T}{v_1} \left(\overline{\phi_2^a}\right)^2 \left(\frac{1}{2} - \chi\right) \left(L - \frac{r}{2}\right)^2 \quad (Eq. 4)$$

287 Where $U_{s,mix}$ is the steric interaction energy due to mixing (given in joules), a is the particle radius (in m), v_1 is
288 the volume of a water molecule (in m^3), $\overline{\phi_2^a}$ is the average volume fraction of the grafted polymer (unitless), χ is
289 the Flory–Huggins interaction parameter for the grafted polymer and the solvent (unitless), and L is the length
290 of the grafted layer (in m). For PEG in aqueous solvents, $\chi = 0.45$ (72). Our NMR measurements (see
291 *Materials and Methods* for details) suggest that the grafting density of PEG is within the brush regime. We
292 therefore use the Alexander–de Gennes approximation (63) and our NMR measurements to estimate the length
293 of the grafted layer (L) as $L \sim 6.4$ nm and the average volume fraction to be $\overline{\phi_2^a} \sim 0.43$.

294 For inter-particle separations closer than L , one needs to account for elastic deformations of the grafted
295 layers (50,57). This is far greater in magnitude than U_{dep} , so one can simply assume that at this point the
296 potential is extremely repulsive. For inter-particle separations greater than L :

297


$$U(r) = \begin{cases} U_{s,mix} + U_{dep} & \text{for } L < r < 2L \\ U_{dep} & \text{for } r \geq 2L \end{cases} \quad (Eq. 5)$$

298 Using this theoretical framework, we can build a physical intuition for the system (Fig. 4E–G). Long
299 polymers have depletion layers that extend out past the brush layer and overlap, inducing attractions between
300 the particles (Fig. 4E). For short polymers ($R_P < L$), the depletion attractions are buried within the steric
301 repulsions induced by the brush and there are effectively no attractions among the particles (Fig. 4F). We can
302 use this crossover to estimate the magnitudes of the minima in the inter-particle potentials for the three PEG
303 solutions (Fig. 4H). It should be noted that we have made several simplifications; for example, we do not
304 consider interactions between free polymers and the grafted layer, which could lead to partial penetration of free
305 polymers into the grafted layer or possible compression of the grafted layer by the free polymers (50,56,57).
306 Despite such simplifications, we find that the calculated minima display similar concentration trends to the

307 trends seen in the average aggregate sizes (Fig. 4D). These calculations offer an explanation for why there is no
308 aggregation of PEG-coated particles in solutions of PEG 3350.

309 Another factor that needs to be considered at the short timescales and low-volume fractions we are
310 working at is aggregation kinetics (73–75). The probability that particles collide in solution is directly related to
311 the diffusion coefficient and the volume fraction of the particles. As we increase the polymer concentration we
312 increase the viscosity of the solution and decrease the diffusivity of the particles. In Fig. 4I, we plot theoretical
313 estimates of the diffusion coefficients of the particles against the concentrations of the PEG solutions. These
314 diffusion coefficients were estimated using literature measurements, the Stokes–Einstein–Sutherland equation,
315 and the Huggins equation for viscosity (63,68).

316 Because our system has not reached equilibrium, in this case the non-monotonic dependence of
317 aggregation on polymer concentration for long polymers is due to a complex interplay between thermodynamics
318 and kinetics (which we have not untangled). However, both the dependence of diffusivity (Fig. 4I) and the
319 equilibrium prediction of inter-particle minima (Fig. 4H) on polymer concentration suggest that we should
320 expect a decrease in aggregation at high polymer concentrations. The inter-particle minima also suggests that
321 we should not expect short polymers to induce aggregation. Both trends are consistent with what we observe.
322 Understanding how our PEG-coated particles behave in these so-called “simple” polymer solutions with similar
323 physical properties to the intestinal polymers we detected (Fig. 3A and D) informs the interpretation of the
324 results of the next sections.

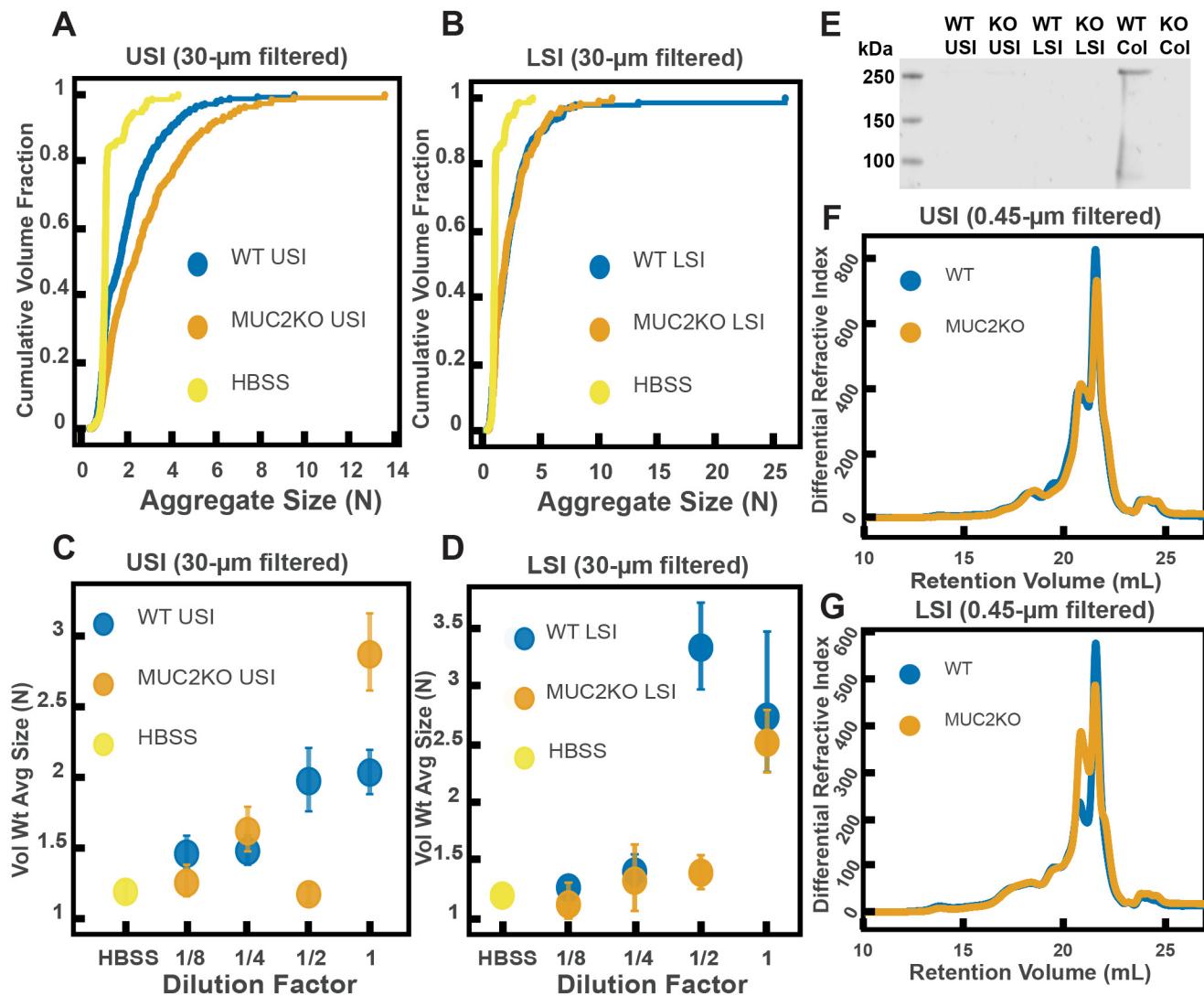
325

326 **Fig 4. Aggregation of PEG-coated particles in model polymer solutions shows complex dependence on**
327 **molecular weight (MW) and concentration of PEG.** (A) Aggregates of 1 μm diameter PEG-coated particles
328 in a 1 MDa PEG solution with a polymer concentration (c) of 1.6 mg/mL. Image is a maximum z-projection of
329 10 optical slices taken on a confocal microscope. Scale bar is 10 μm . (B and C) 3D renders of aggregates found
330 in panel A. Scale bars are 2 μm . (D) Volume-weighted average sizes for serial dilutions of PEG solutions of
331 three MW (1 MDa, 100 kDa, and 3350 Da). Volume-weighted average sizes are plotted on the vertical axis in
332 terms of number of particles per aggregate (N) against polymer mass concentration (c_p) in mg/mL. The vertical
333 error bars are 95% empirical bootstrap CI (see *Materials and Methods* for bootstrapping procedure). Shaded
334 regions indicate the concentration ranges of detected intestinal polymers of similar MW. (E) Schematic
335 depicting depletion interactions induced by “long polymers” (polymer radius (R_p) > length of the brush, L).
336 Free polymers are depicted as purple spheres. Colloids are depicted in green with the grafted brush layer in

337 purple. The depletion layer around each colloid is depicted by dotted lines. The overlap region between the two
338 depletion layers is indicated in grey. **(F)** Schematic depicting depletion interactions induced by “short
339 polymers” ($R_p < L$). The depletion zone does not extend past the length of the brush and there is effectively no
340 overlap in the depletion layers; the depletion attractions are “buried” within the steric layer. **(G)** Schematic
341 depicting the different contributions to the inter-particle potential ($U(r)$) against inter-particle separation
342 distance (r). The hard surfaces of the particles are in contact at $r = 0$. U_{dep} depicts the depletion potential for a
343 short polymer ($R_{P,short}$) and a long polymer ($R_{P,long}$). $U_{s,mix}$ shows the contribution to the steric potential due to
344 mixing. $U_{s,el} + U_{s,mix}$ shows the contribution due to elastic deformations and mixing at close inter-particle
345 separations. **(H)** The magnitude of the minima of the inter-particle potential (U_{min}/kT) plotted against polymer
346 concentration for the three PEG solutions in **(D)**. **(I)** Diffusion coefficients estimated from the Stokes–Einstein–
347 Sutherland equation for 1 μm particles in the PEG solutions used in **(D)**. Diffusion coefficients of particles in
348 polymer solutions (D_p) are normalized by the diffusion coefficients in water (D_w) and plotted against polymer
349 concentration.

350
351
352
353

354 **MUC2 may play a role in the aggregation of PEG-coated particles, but is not required for aggregation to
355 occur**


356 It has been demonstrated that mucins can aggregate and bind to bacteria *in vitro* (12–16); thus, we wanted to
357 test whether mucins, such as Mucin 2 (MUC2), which is the primary mucin secreted in the SI (76,77), drive the
358 aggregation of PEG-coated particles in SI fluid. It is known that in the presence of Ca^{2+} and at $pH \leq 6.2$,
359 MUC2 can form aggregates or precipitate out, but it is soluble without Ca^{2+} or at higher pH (78). Our
360 measurements of the pH throughout the SI suggest that it is possible that MUC2 precipitates out in the upper
361 small intestine; however, because it is unclear how much Ca^{2+} is in the lumen of the upper small intestine, there
362 could be soluble MUC2 in the upper small intestine. Additionally, the literature suggests that, based on the pH,
363 there should be soluble MUC2 in the lower small intestine. We therefore tested if MUC2 drives aggregation in
364 both the upper and lower small intestine. To do this, we compared the aggregation of our PEG-coated particles
365 in samples from MUC2 knockout (MUC2KO) mice to samples from wild-type (WT) mice. To carefully
366 preserve the native composition of the SI fluid, we used a protease-inhibitor cocktail when collecting the
367 samples (see *Materials and Methods*). We confirmed mouse MUC2KO status via genotyping and Western blot
368 (Fig. 5E; *Materials and Methods*). The Western blot detected MUC2 in the colons of WT mice and not

369 MUC2KO mice, as expected, however it did not detect a signal for MUC2 in the SI of either the WT or
370 MUC2KO mice. We speculate that the lack of MUC2 signal in the SI of WT mice may be due to low levels of
371 MUC2 present in the luminal contents of the SI.

372 We observed aggregation in samples from both the MUC2KO and WT mice (Fig. 5A-B). To test the
373 strength of the aggregation effect in the different samples, we serially diluted the samples and measured the
374 average aggregate size to see when the effect disappeared (Fig. 5C-D). As explained in the previous section, we
375 do not necessarily expect to see a linear decrease in aggregation with dilution. For simplicity, we will refer to
376 the dilution factor at which aggregation begins to disappear as the “aggregation threshold.” We found
377 differences in the aggregation threshold in the samples from MUC2KO and WT mice (Fig. 5C-D), suggesting
378 that although MUC2 is not required for aggregation to occur, it could play a role in the aggregation of PEG-
379 coated particles.

380 We wanted to test differences in the MW distribution of the polymers found in these samples, so we
381 0.45- μ m-filtered our samples and analyzed them by GPC (see *Materials and Methods*). The chromatograms
382 from the refractometer (Fig. 5F-G) suggest that the polymer composition of MUC2KO and WT samples were
383 qualitatively similar. Following the same methods in Fig. 3, we made estimates of the physical parameters of
384 the detected polymers. These estimates are summarized in Tables 1–2 for both the upper and lower SI of
385 MUC2KO and WT mice. We find that these estimates suggest there are some differences in the polymeric
386 composition of the SI of these two groups.

387 To test whether these measured differences in polymeric composition are reflected in differences in
388 aggregation, we looked at aggregation in the 0.45- μ m-filtered samples. We found that the undiluted samples
389 from both groups displayed aggregation (Figure 5 – figure supplement 1A-B). We then created serial dilutions
390 of the samples and found different aggregation thresholds for the samples (Figure 5 – figure supplement 1C-D).
391 These results further confirm our conclusion that although MUC2 may play a role in particle aggregation, it is
392 not required for aggregation to occur.

394 **Fig 5. Quantification of the aggregation of particles in the small intestine (SI) in MUC2 knockout (MUC2KO) and**
 395 **wild-type (WT) mice. (A and B) Volume-weighted empirical cumulative distribution functions (ECDFs)**
 396 **comparing aggregation of the particles in undiluted, 30-μm filtered samples from the upper (A) and lower (B)**
 397 **SI of two separate groups of wild-type (WT) and MUC2-knockout (MUC2KO) mice to the control (particles**
 398 **suspended in HBSS). The vertical axis is the cumulative volume fraction of the total number of particles in**
 399 **solution in an aggregate of a given size; the horizontal axis is aggregate size in number of particles per**
 400 **aggregate (N). (C and D). Volume-weighted average aggregate sizes (Vol Wt Avg Size) for serial dilutions of**
 401 **30-μm-filtered samples from the upper (C) and lower (D) SI of two separate groups of WT and MUC2KO mice.**
 402 **The dilution factor is plotted on the horizontal axis; a dilution factor of 1 is undiluted, ½ is a two-fold dilution.**
 403 **The vertical error bars are 95% empirical bootstrap CI (see *Materials and Methods*). (E) Western blots of 30-**
 404 **μm filtered samples from the SI and the colon of WT and MUC2KO mice. WT USI = WT upper SI; KO USI =**
 405 **KO lower SI; WT LSI = WT lower SI; KO USI = KO upper SI; WT Col = WT colon; KO Col = KO colon (F**
 406 **and G). Chromatograms of samples from the upper (F) and lower (G) SI of groups of WT and MUC2KO mice.**

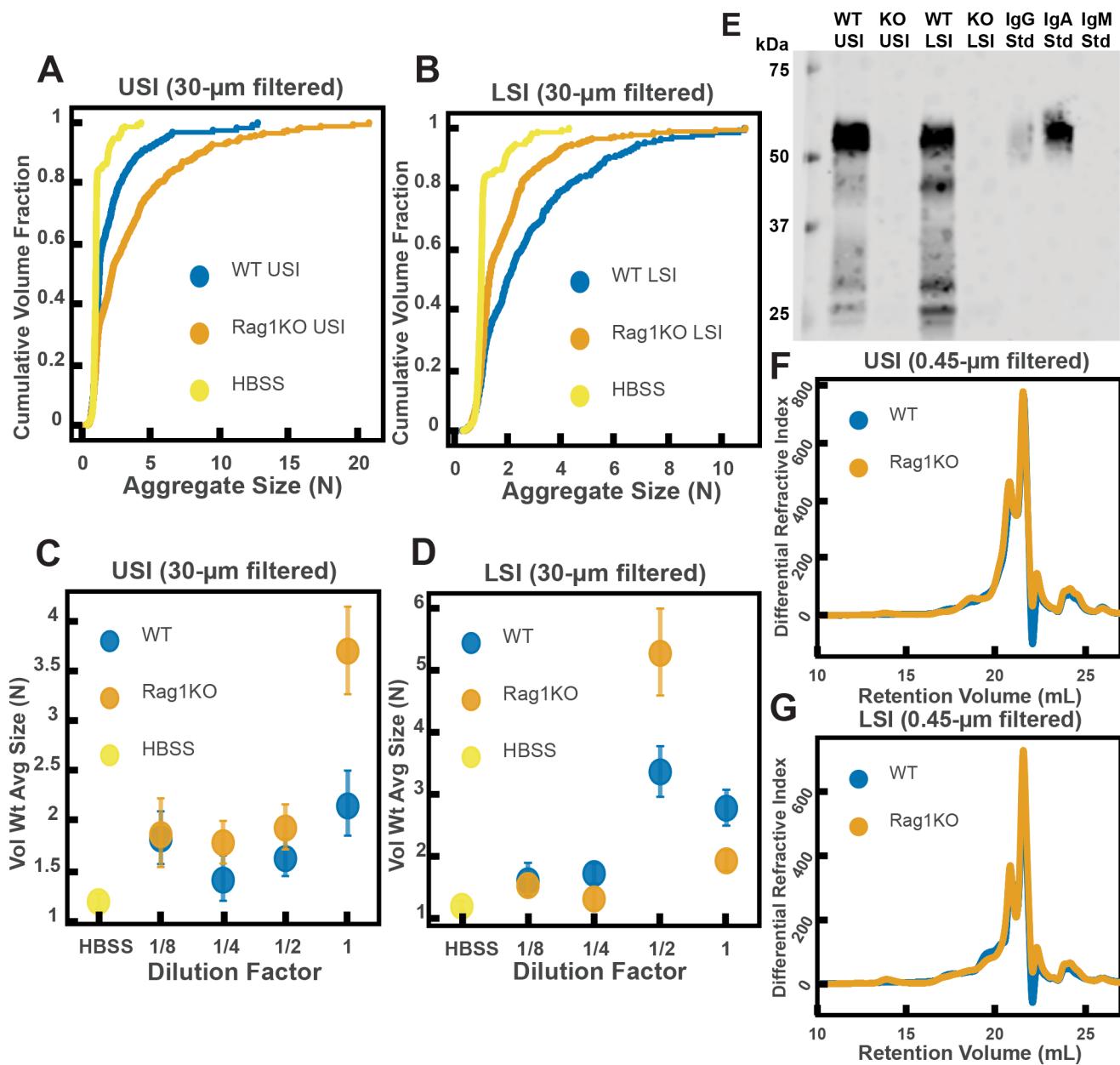
410

411 **Immunoglobulins may play a role in aggregation, but are not required for aggregation to occur**

412 It has also been demonstrated that immunoglobulins can bind to bacteria and induce them to aggregate (17–25).
413 We therefore wanted to test the hypothesis that immunoglobulins drive the aggregation of PEG-coated particles
414 in the SI. To do this, we compared the aggregation of our PEG-coated particles in samples from groups of
415 mutant mice that do not produce immunoglobulins (Rag1KO), to samples from groups of WT mice. Again, to
416 carefully preserve the native composition of the SI fluid, we used a protease-inhibitor cocktail when collecting
417 the samples (see *Materials and Methods*). Because Rag1KO mice are immunocompromised, they need be fed
418 an autoclaved chow diet. To control any potential differences in diet, both the Rag1KO and WT mice were fed
419 an autoclaved chow diet for 48 h before samples were collected.

420 The mice were confirmed to be Rag1KO via genotyping and Western blot (Fig. 6E). According to the
421 literature, IgA is abundant in the SI (79). As expected, we saw a signal for IgA in the upper and lower SI of WT
422 mice. We also tested for less abundant immunoglobulins such as IgG and IgM (Figure 6 – figure supplements 1
423 and 2, respectively), but did not detect their presence in the luminal contents of either WT or KO mice.

424 We observed aggregation in 30-μm-filtered samples from Rag1KO and WT mice (Fig. 6A and B). To
425 test the strength of the aggregation effect in the different samples, we serially diluted the samples and compared
426 the volume-weighted average aggregate sizes at each dilution (Fig. 6C and D). We found differences in the
427 amount of aggregation between the Rag1KO and WT samples at different dilutions, suggesting that although
428 immunoglobulins are not required for aggregation to occur, they could play a role in the aggregation of PEG-
429 coated particles.


430 We wanted to test differences in the MW distribution of the polymers found in these samples, so we
431 0.45-μm-filtered our samples and analyzed them by GPC (see *Materials and Methods*). The chromatograms
432 from the refractometer (Fig. 6F and G) suggested that the Rag1KO and WT samples were visually similar. We
433 again made estimates of the physical parameters of the polymers in these samples (summarized in Tables 3–4).

434 These estimates suggest that there are some differences in the polymeric composition of the SI of these two
435 groups of mice.

436 To test whether these measured differences in polymeric composition correspond with differences in
437 aggregation, we quantified aggregation in the 0.45- μm -filtered samples. We found that the undiluted samples
438 for both groups displayed aggregation (Figure 6 – figure supplement 3*A* and *B*). When we created serial
439 dilutions of the samples we found that the levels of aggregation were similar (Figure 6 – figure supplement 3*C*
440 and *D*). Taken together, the results suggest that immunoglobulins may play some role in aggregation, but the
441 presence of immunoglobulins are not required for aggregation to occur.

442 Interestingly, there are some differences in the levels of aggregation in WT mice fed the autoclaved diet
443 compared with the standard chow diet. The two diets are nutritionally the same, only the processing is different.
444 When samples from the WT mice in the MUC2KO experiments are compared with samples from the WT mice
445 in the Rag1KO experiments are compared, it is apparent that, compared with WT mice fed the normal chow
446 diet, samples from WT mice fed the autoclaved diet had (i) a lower average concentration of polymers and (ii)
447 polymers of lower overall MW (see “WT” samples in Tables 1–4). These observations suggested two
448 hypotheses: (1) dietary polymers may play a role in aggregation and (2) aggregation may be controlled by
449 changing the polymer composition of the diet. We tested these hypotheses next.

450

451

452 **Fig 6. Quantification of the aggregation of particles in the small intestine (SI) in Immunoglobulin-deficient**
453 **(Rag1KO) and wild-type (WT) mice.** (A and B) Volume-weighted empirical cumulative distribution functions
454 (ECDFs) comparing aggregation of the particles in undiluted, 30-μm filtered samples from the upper (A) and
455 lower (B) SI of two separate groups of wild-type (WT) and immunoglobulin-deficient (Rag1KO) mice to the
456 control (particles suspended in HBSS). Plotted on the vertical axis is the cumulative volume fraction of the total
457 number of particles in solution in an aggregate of a given size. Plotted on the horizontal axis are aggregate sizes
458 in number of particles. (C and D). Volume-weighted average aggregate sizes (Vol Wt Avg Size) for serial
459 dilutions of 30-μm filtered samples from the upper (C) and lower (D) SI of two separate groups of WT and
460 Rag1KO mice. The dilution factor is plotted on the horizontal axis, where a dilution factor of 1 is undiluted, $\frac{1}{2}$
461 is a two-fold dilution, and so on. The vertical error bars are 95% empirical bootstrap CI using the bootstrapping
462 procedure described in *Materials and Methods*. (E) Western blots of 30-μm filtered samples from the SI of WT
463 and Rag1KO mice. WT USI = WT upper SI; KO USI = KO lower SI; WT LSI = WT lower SI; KO USI = KO
464 upper SI. (F and G) Chromatograms of samples from the upper (F) and lower (G) SI of groups of WT and
465 Rag1KO mice.

466

467 **Polymers in the diet control aggregation of PEG-coated particles in a manner consistent with depletion-
468 type interactions**

469

470 As described in Fig. 4, the extent of aggregation can be controlled by altering the polymer size and
471 concentration of the polymer solution. Furthermore, as pointed out above, SI fluid from mice fed autoclaved
472 and non-autoclaved diets induced different levels of aggregation. We hypothesized that aggregation behavior
473 would differ between mice fed polymers of different sizes—even if the polymers were composed of similar
474 chemical monomers and were present at the same polymer mass concentration. We hypothesized that mice fed
475 short polymers would exhibit less aggregation in the SI (i.e. short polymers reduce the strength of the effect
476 because depletion attractions are reduced). We predicted that the converse would be true for long polymers (i.e.
477 long polymers increase the strength of the effect because depletion attractions are increased).

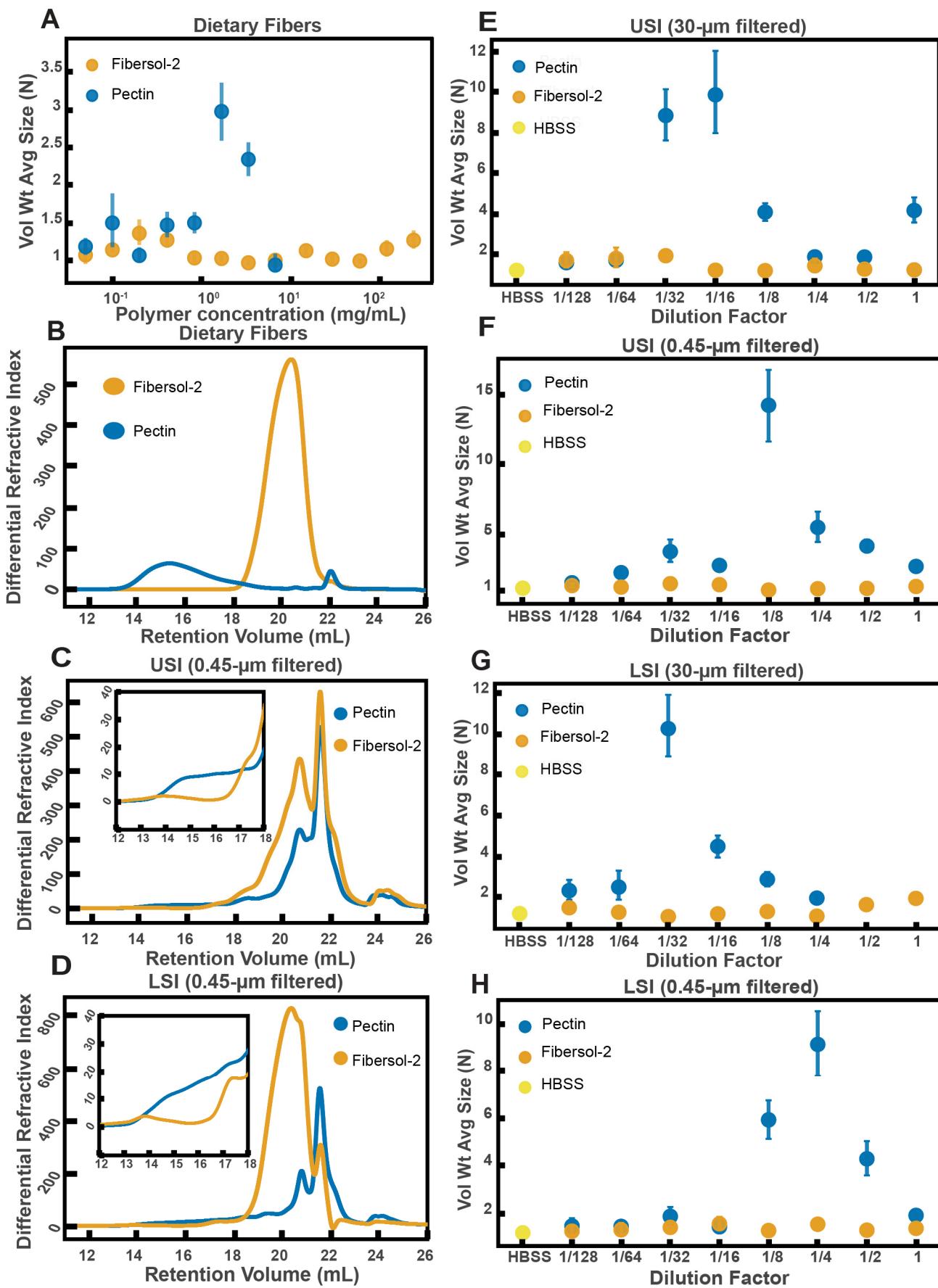
477

478 We first identified two candidate dietary carbohydrate polymers; Fibersol-2, a “resistant maltodextrin”
479 composed of D-glucose monomers (80,81), with a MW of ~3500 Da (see Table 5) and apple pectin, composed
480 of D-galacturonic acid and D-galacturonic acid methyl ester monomers (82,83), with a MW of ~230 kDa (Table
481 5). Before feeding mice these polymers, we first tested their effects on aggregation *in vitro* at various
482 concentrations in buffer (Fig. 7A). We found similar trends to the PEG solutions in Fig. 4. Pectin at low (~0.05
483 to ~1 mg/mL) and very high mass concentrations showed little aggregation (~7 mg/mL) and showed the most
484 aggregation at an intermediate concentration (~1.5 to ~3 mg/mL). Fibersol-2 did not induce much aggregation
up to a mass concentration of ~240 mg/mL.

485

486 To test our hypothesis that we could use polymer size to control aggregation, we devised a simple
487 experiment. One group of mice was fed a solution of Fibersol-2 and a second group was fed a solution of apple
488 pectin for 24 h. The mass concentrations of the fibers in the two solutions were matched at 2% w/v and 5% w/v
489 sucrose was added to each to ensure the mice consumed the solutions. Mesh-bottom cages were used to ensure
that the mice did not re-ingest polymers from fecal matter via coprophagy. According to the literature, neither

490 of these two polymers should be broken down in the SI (81,84,85). As before, all samples were collected with a
491 protease-inhibitor cocktail.


492 As before, we created serial dilutions of the small intestinal luminal fluid and looked at the extent of
493 aggregation in each sample. In the 30- μ m-filtered samples from the upper SI we observed more aggregation in
494 the pectin-fed mice compared with the Fibersol-2 fed mice (Fig. 7E). For the undiluted 30- μ m-filtered lower SI
495 sample, the pectin-fed mice samples formed a gel-like material which we were unable to pipette and therefore
496 could not use for aggregation experiments. This gelation is not too surprising considering that pectin can form a
497 gel in certain contexts (83,86). We were able to dilute this gel four-fold and then compare the aggregation in
498 serial dilutions of the pectin-fed LSI to the Fibersol-2-fed LSI. We found, again, more aggregation in the pectin-
499 fed mice than the Fibersol-2-fed mice (Fig. 7G).

500 We again 0.45- μ m-filtered these samples and ran them on GPC to test differences in the MW and size
501 distributions of the polymers in these samples. The chromatograms from the refractometer (Fig. 7C and D)
502 suggest that there are differences in the polymeric distribution in the two groups of mice. Figure 7B shows
503 chromatograms of just Fibersol-2 and pectin in buffer. We see that pectin elutes between 14-18 min, which is
504 where we see an enhancement of the concentration of high-MW polymers in the samples from the SIs of the
505 group fed pectin. We also see that Fibersol-2 elutes between 18-22 min, which is where we see an enhancement
506 in the concentration of low-MW polymers in the samples from the SI of the group fed Fibersol-2. We again
507 made estimates of the physical parameters of the polymers in these samples which are summarized in Tables 6
508 and 7. The estimates also suggest that there are differences in the polymeric composition of the SI of the two
509 groups. Overall, the data from GPC suggests that the pectin-fed mice have more high-MW polymers than the
510 Fibersol-2-fed mice. Low-MW polymers appear to be more abundant in Fibersol-2 fed mice compared with
511 pectin-fed mice. We observed visually that the SI contents of the pectin-fed mice formed a gel and pectin is also
512 known to self-associate to form a gel or aggregates in solution (83,86). We note, therefore that by 0.45- μ m-

513 filtering these samples we may be removing these structures and decreasing the concentration of pectin in our
514 samples.

515 To test that these measured differences in polymeric composition are reflected in differences in
516 aggregation, we tested aggregation in the 0.45- μm -filtered samples. We found that in both the upper and lower
517 SI samples, the samples from the pectin-fed group showed more aggregation than the samples from the group
518 fed Fibersol-2 (Fig. 7F and H). When we created serial dilutions of these samples, we found that the samples
519 from the mice fed Fibersol-2 showed almost no aggregation at any concentration whereas the samples from
520 pectin-fed mice showed aggregation. We also observed that we needed to dilute the 30- μm -filtered samples
521 more to achieve the greatest extent of aggregation (Fig. 7E and G). We speculate that this shift in the
522 aggregation behavior between the 30- μm -filtered and 0.45- μm -filtered samples is due to some of the polymers
523 being lost when 0.45- μm -filtering the samples as a result of the aforementioned self-association of pectin.

524 These data taken together lead us to conclude that polymers in the diet can be used to control the
525 aggregation of PEG-coated particles. This data further suggests that feeding higher MW polymers at the same
526 mass concentration as lower MW polymers leads to an enhancement in aggregation. Due to the high
527 polydispersity and complex chemical composition of SI luminal fluid as measured by GPC, it is unfeasible to
528 apply the same theoretical analysis as was done in Fig. 4 to these data. We can, however, note that visually the
529 behavior is qualitatively consistent with the depletion-type interactions found in simple PEG solutions in Fig. 4.

531 **Fig. 7. Quantification of aggregation of PEG-coated particles in the small intestine (SI) of mice fed**
532 **different polymers from dietary fiber.** (A) Volume-weighted average aggregate sizes (Vol Wt Avg Size) for
533 serial dilutions of apple pectin and Fibersol-2. Volume-weighted average sizes are plotted on the vertical axis in
534 terms of number of particles per aggregate (N) against polymer concentration (mg/mL). The vertical error bars
535 are 95% empirical bootstrap CI using the bootstrapping procedure described in *Materials and Methods*. (B)
536 Chromatograms of apple pectin and Fibersol-2 in buffer. (C and D) Chromatograms of samples from the upper
537 (E) and lower (F) SI of two separate groups of mice (fed pectin or Fibersol-2). (E-H) Volume-weighted average
538 aggregate sizes (Vol Wt Avg Size) for serial dilutions of 30- μ m-filtered samples from the upper (E) and lower
539 (G) SI of two separate groups of mice (fed pectin or Fibersol-2) to the control (particles suspended in HBSS). (F
540 and H) Serial dilutions of 0.45- μ m-filtered samples from the same groups. The dilution factor is plotted on the
541 horizontal axis, where a dilution factor of 1 is undiluted, and $\frac{1}{2}$ is a two-fold dilution. The vertical error bars are
542 95% empirical bootstrap CI using the bootstrapping procedure described in *Materials and Methods*.

543 **544 Discussion**

545 This work shows that even PEG-coated particles, which have minimal biochemical interactions, form
546 aggregates in the luminal fluid of the SI. It reveals a previously unknown way in which dietary polymers can
547 impact, and be used to control, the structure of particles in the SI. We speculate that this phenomenon may play
548 a role in the aggregation of other particles in the SI such as microbes, viruses, nanoparticles for drug delivery,
549 and food granules. In these systems, other factors will also inevitably affect the formation of these aggregates
550 (e.g. interactions with mucins and immunoglobulins); thus, it will be important to explore the interplay among
551 all these factors. Another important next step is to investigate how mixing in the SI and the co-aggregation of
552 different types of particles may affect aggregation. We speculate that the aggregation of particles in the SI could
553 also have functional consequences, such as promoting colonization by microbes, affecting infection by
554 pathogens, and altering clearance of microbes (2,6-8,10,11). Aggregation will also need to be considered when
555 designing nanoparticles for drug delivery (3,4).

556 We found that MUC2 and immunoglobulins, which have been found to aggregate microbes both *in vivo*
557 and *in vitro* (12-25), are not required for the aggregation of PEG-coated particles. Instead, we found that by
558 feeding mice dietary polymers with similar chemistry but very different sizes we could tune the extent of
559 aggregation in the SI. These polymers (pectin and Fibersol-2) are forms of fiber commonly found in the human
560 diet. We found that feeding long polymers induced aggregation, whereas short polymers did not. More work

561 needs to be done to understand the underlying mechanism, but surprisingly the observed aggregation behavior
562 in the SI luminal fluid from mice fed dietary polymers of different sizes is qualitatively consistent with the
563 aggregation behavior in simple PEG solutions, where aggregation is driven by depletion interactions. Overall,
564 this suggests a simple dietary method for controlling aggregation in the gut. It will be important to extend this
565 work to microbes and other particles commonly found in the gut and to measure the relative contributions of
566 polymer-driven aggregation and chemical-driven aggregation. We note that mucins and immunoglobulins are
567 polymers that can also self-associate into structures of very high MW (78,87,88), suggesting that they could
568 cause aggregation via both physical and chemical mechanisms. Interestingly, during the review of this
569 manuscript, a study was published with *in vitro* work done using model buffer solutions of mucins, DNA, and
570 other biopolymers further implying that aggregation of bacteria by host-polymers can be depletion-mediated
571 (89). *In vivo*, it will also be important to consider the effects of flow, as it has been shown that flow in non-
572 Newtonian fluids can induce particle aggregation (90–92). In particular, studies have suggested that the
573 combination of flow and polymer elasticity can lead to aggregation (93) and that shear thinning viscosity can
574 influence aggregation as well (94). In our work, we neglected flow effects for simplicity and thus our findings
575 are most applicable to the initial formation of aggregates before aggregation is influenced by mechanical forces
576 due to peristaltic mixing and the transit of food. A rudimentary estimate of the Weissenberg number (see
577 *Materials and Methods*), which weighs the contributions of elastic and viscous forces, yields $Wi \sim 0.3$ to 10,
578 suggesting that elasticity-induced effects may play a role in the SI and will be an important direction to pursue
579 in follow-up studies. If flow-induced clustering does occur *in vivo*, the literature suggests it would aid in the
580 process, perhaps enhancing particle aggregation.

581 We note that current dietary guidelines do not differentiate between fibers of low and high MW (95,96).
582 Our work implies that the MW of fiber, and the subsequent degradation of a high-MW fiber into a low-MW
583 component (97), which we have discussed previously in the context of mucus compression, is important in
584 defining the physicochemical environment of the gut. Further studies will be required to understand the effects

585 of industrial food processing on MW of the dietary polymers present in foods, and which processing methods
586 preserve or produce high-MW polymers that impact mucus compression (97) and particle aggregation in the
587 gut.

588

589 **Materials and Methods**

Key Resources Table				
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
MUC2KO, C57BL/6 mice (female)	MUC2KO	Eugene Chang Lab provided initial breeding pairs which were provided to them from Leonard H. Augenlicht at the Department of Oncology of Albert Einstein Cancer Center		Genotyping was performed by Transnetyx Inc.; Western blot was done to confirm lack of MUC2 (See Fig. 5E)
Rag1KO, C57BL/6 mice (male)	Rag1KO	Provided by Mazmanian Lab at Caltech	RRID:IMSR_JAX:002216	Western blot was done to confirm lack of IgA as explained in the text (See Fig. 6E)
C57BL/6 mice (all male except for WT controls in MUC2KO experiments in Figure 5)	WT	The Jackson Laboratory	RRID:IMSR_JAX:000664	
antibody	MUC2 polyclonal antibody (rabbit host)	Biomatik	Cat No: CAU27315	
antibody	Li-Cor IRDye 800CW Goat Anti-Rabbit IgG	Li-Cor	P/N 925-32211; RRID:AB_2651127	
antibody	Li-Cor IRDye 800 CW Goat Anti-Mouse IgG	Li-Cor	P/N 925-32210; RRID:AB_2687825	

antibody	Li-Cor IRDye 800 CW Goat Anti-Mouse IgM	Li-Cor	P/N 925-32280	
antibody	Goat Anti-Mouse IgA-unlabeled	SouthernBiotech	Cat No: 1040-01	
antibody	Li-Cor IRDye 800 CW Donkey Anti-Goat IgG	Li-Cor	P/N 925-32214; RRID:AB_2687553	
chemical compound, drug	apple pectin	Solgar Inc.	"Apple pectin powder"; SOLGB70120 00B	
chemical compound, drug	Fibersol-2	Archer Daniels Midland/Matsutani LLC	Product code: 013100, Lot #: CY4P28540	
chemical compound, drug	USP grade sucrose	Sigma-Aldrich		
chemical compound, drug	Protease inhibitor cocktail	Roche cOmplete, Mini, EDTA-free Protease-Inhibitor cocktail, Roche		
chemical compound, drug	PEG 100kDa	Dow	POLYOX WSR N-10	
chemical compound, drug	PEG 1 MDa	Dow	POLYOX WSR N-12K	
chemical compound, drug	PEG 3350	Bayer	MiraLAX	
chemical compound, drug	Hanks' Balanced Salt Solution (without calcium, magnesium, phenol red)	GE Healthcare Life Sciences	Product code: SH30588.02	
software, algorithm	3D aggregate analysis pipeline	This paper; source code available through Dryad		Description in Materials and Methods; source code provided on Dryad
other	mesh-bottom (or wire-bottom) floors	Lab Products, Inc.	P/N: 75016	
other	1-µm diameter PEG 5kDa-coated polystyrene	This paper		Description of synthesis in Materials and Methods

	beads			
other	1- μ m diameter PEG 5kDa-coated polystyrene beads with PEG 1 kDa "back-filling"	This paper		Description of synthesis in Materials and Methods
other	standard chow diet	PicoLab	PicoLab Rodent Diet 20; Product #5053	
other	autoclaved chow diet	PicoLab	Laboratory Autoclavable Rodent Diet 5010	

590

591 **Details of animals used.** All mice were male or female specific pathogen free (SPF) C57BL/6 mice between 8-
592 16 weeks old. Mice on a standard, solid chow diet were given food and water *ad libitum*. Immunoglobulin-
593 deficient (Rag1KO) mice were maintained on an autoclaved chow diet due to their immunocompromised status.
594 The control group of WT mice used as a comparison to this group was maintained on the same autoclaved chow
595 diet for 48 h before euthanasia. Genotyping of MUC2 deficient (MUC2KO) and Rag1KO mice was done by
596 Transnetyx (Transnetyx, Inc., Cordova, TN, USA). Mice given only apple pectin (Solgar, Inc., Leonia, NJ,
597 USA) with sucrose (USP grade, Sigma-Aldrich, St. Louis, MO, USA) or Fibersol-2 (Archer Daniels
598 Midland/Matsutani LLC, Chicago, IL, USA) with sucrose were first raised on a standard chow diet and given
599 water *ad libitum*, then were maintained on a restricted diet consisting of only 2% apple pectin + 5% sucrose or
600 2% Fibersol-2 + 5% sucrose for 24 h. For those 24 h, these mice were kept on mesh-bottom cages to prevent the
601 re-ingestion of polymers from the standard chow diet via coprophagy. The MUC2KO colony was raised and
602 maintained by the Ismagilov Lab. The Rag1KO mice were provided by the Mazmanian lab (Caltech). All other
603 mice were from Jackson Labs (The Jackson Laboratory, Bar Harbor, ME, USA). All animal experiments were
604 approved by the California Institute of Technology (Caltech) Institutional Animal Care and Use Committee
605 (IACUC) and the U.S. Army's Animal Care and Use Review Office (ACURO). Mice were euthanized via CO₂

606 inhalation as approved by the Caltech IACUC in accordance with the American Veterinary Medical Association
607 Guidelines on Euthanasia (98).

608 **Oral administration of particles.** Particles were gavaged at a concentration of 0.1–2% w/v in either 1x HBSS
609 or 1x PBS. We used small fluid volumes (50 μ L) to minimize volume-related artifacts (3). We chose buffers
610 isotonic to the SI because it has been shown that the isotonicity of the delivery medium can greatly affect the *in*
611 *vivo* particle distribution (38). In some experiments, animals were food-restricted for 4 h prior to administration
612 of particles. It has been previously demonstrated though that food-restriction has minimal effects on the *in vivo*
613 distribution of PEG-coated particles (3). In all experiments animals were euthanized 3 h after administration of
614 particles.

615 **Fluorescent scanner experiments.** Gastrointestinal tracts (GIT) were excised and laid out flat on petri dishes
616 on ice. Drops of saline were then placed around the GIT and the petri dishes were sealed with parafilm. Samples
617 were then immediately brought to the fluorescent laser scanner (Typhoon FLA 9000) for imaging. Samples
618 were scanned with an excitation wavelength of 473 nm and a 530 nm bandpass filter.

619 **Imaging of luminal contents from mice orally administered particles.** Immediately after euthanization the
620 small intestines of the mice were excised and divided into an upper and lower section. The luminal contents
621 were collected by gently squeezing the intestines with tweezers. They were placed directly onto a glass slide
622 and encircled by a ring of vacuum grease that did not touch the contents. A coverslip was then immediately
623 placed on top to create an air-tight chamber. Samples were kept on ice during the collection process. The
624 samples were then immediately taken for imaging. All imaging was performed using a Zeiss LSM 800 or a
625 Leica DMI6000, using either bright-field microscopy, epifluorescence microscopy (GFP, L5 Nomarski prism),
626 confocal fluorescence microscopy (488 nm excitation and 490-540 nm detection), or confocal reflectance
627 microscopy (561 nm excitation and 540-700 nm detection).

628 **Collection of intestinal luminal fluid.** Immediately after euthanasia, the SI of each mouse was excised and
629 divided into an upper and lower section. If luminal fluid was collected from the colon, then the colon was also

630 excised. The luminal contents were then collected from each section in separate tubes and kept on ice. The
631 luminal contents from an individual mouse was insufficient in volume to perform all the required analyses (i.e.
632 *ex vivo* aggregation, GPC, and sometimes Western blot), so contents were pooled from a group of three mice of
633 the same age that were co-housed. These pooled samples, kept divided by section, were then spun down at 17
634 kG at 4 °C for 1 h to separate the liquid and solid portions of the contents. The supernatant of each sample was
635 collected and then placed on 30 µm filters (Pierce Spin Columns – Snap Cap, Thermo Fisher Scientific,
636 Waltham, MA, USA) and spun down at 17 kG at 4 °C for 1 h. Part of the filtrates of each sample were then
637 collected, divided into aliquots, and frozen at -20 °C for future experiments. The remaining portion of the
638 filtrates was then taken and placed on 0.45 µm centrifugal filters (Corning Costar Spin-X centrifuge tube filters;
639 cellulose acetate membrane, pore size 0.45 µm, sterile) and spun down at 5 kG at 4 °C for 1 h. For experiments
640 in which a protease-inhibitor cocktail (Roche cOmplete, Mini, EDTA-free Protease-Inhibitor Cocktail, Roche,
641 Indianapolis, IN, USA) was used, a 100x concentrated stock solution was prepared in HBSS (without calcium,
642 magnesium, and phenol red; GE Healthcare Life Sciences, Marlborough, MA, USA). The same procedure as
643 detailed above were followed for the collection of luminal fluid, except immediately after the luminal contents
644 were brought back from the animal facility on ice, 10 µL of the 100x protease-inhibitor cocktail was added to
645 each tube. The mixtures were then vortexed briefly to mix. The contents were then spun down at 17kG at 4 °C
646 as described above to separate the solid from liquid contents. The liquid fraction collected from each group
647 before 30 and 0.45 µm filtration was usually ~200–300 mL, so the additional 10 µL of protease-inhibitor
648 cocktail only diluted the samples by ~5% at most.

649 ***Ex vivo* and *in vitro* aggregation assays.** We took 1-µm diameter PEG 5 kDa-coated polystyrene beads (with
650 PEG 1 kDa “back-filling”) and suspended them at 10 mg/mL in deionized water. Before use, they were
651 vortexed to re-suspend in solution and then sonicated for 1 min. The particle solution was then added to the
652 polymer solution or small intestinal luminal fluid at a ratio of 1:10. After addition of particles, the mixture was
653 vortexed for 10 seconds. Then, 2 µL of the mixture was then immediately pipetted into an imaging chamber

654 created with a SecureSeal imaging spacer (0.12 mm depth and 9 mm diameter, Electron Microscopy Sciences,
655 Hatfield, PA, USA) and a glass slide. The top of the imaging chamber was immediately sealed with a #1.5
656 coverslip. The samples were then imaged approximately 10 min later. In PEG solution experiments and serial
657 dilution experiments, HBSS (without calcium, magnesium, phenol red; GE Healthcare Life Sciences) was used
658 to dilute.

659 In the 1 MDa PEG experiments conducted in phosphate buffered saline (PBS) with pH = 6 (Figure 4 –
660 figure supplement 2) the PBS solution was initially prepared with 138 mM sodium chloride, 7.5 mM
661 monosodium phosphate dihydrate, 1.1 mM disodium phosphate heptahydrate, and deionized (DI) water (Milli-
662 Q). The sodium chloride was added to ensure that the ionic strength matched that of Hank's balanced salt
663 solution. The pH was then measured using an Orion 2-Star Benchtop pH Meter (Thermo Scientific) with an
664 Orion 9110DJWP Double Junction pH electrode (Thermo Fisher Scientific) after first calibrating the instrument
665 using the following reference standard buffers: pH = 10 (VWR BDH5078-500 mL), pH = 7 (VWR BDH5046-
666 500 mL), and pH = 4 (VWR BDH5024-500 mL). The pH of the solution was then adjusted to pH = 6 using 1 M
667 NaOH in DI water.

668 **Microscopy for *ex vitro* and *in vitro* aggregation assays.** All imaging was performed using a Zeiss LSM 800,
669 using confocal fluorescence microscopy (488 nm excitation, detection at 490-540 nm). We collected 3D stacks
670 which were 200 x 200 x 40 μm in volume. 3D renders of aggregates were created using Imaris software from
671 Bitplane, an Oxford Instruments Company.

672 **Imaging analysis.** All image analysis was done in FIJI (ImageJ 2.0.0) using an ImageJ macro written using the
673 ImageJ macro scripting language. These macros are available in Dryad. Z-stacks were saved as 16 bit .czi files
674 and were subsequently loaded into FIJI. Each z-stack extended \sim 40 μm deep into each sample in the z-direction
675 and was composed of 113 slices. As a result of the depth of the stacks in the z-direction, we observed a
676 significant drop-off in measured aggregate fluorescence between the first slice and the last slice, likely due to
677 scattering from the intestinal fluid and the particles themselves. To ensure that aggregates throughout a given

678 stack had a similar brightness, which is important for the 3D Object Counter plugin, the median pixel intensity
679 for aggregates in every slice was set as the maximum pixel intensity value for every slice. To achieve this, first
680 the 10th slice and the 10th to last slice of the z-stack were selected and thresholded using the Otsu method (99),
681 creating a binary image of the aggregates in the two slices. The binary images were used as masks to measure
682 the median pixel intensity of each aggregate in the two slices as well as the mean and max pixel intensity values
683 for the background of both images. The drop-off in intensity was assumed to be approximately linear, so the
684 median pixel intensity for aggregates in each slice was determined by interpolating between the median
685 aggregate pixel intensity values from the 10th slice and 10th to last slice. The minimum pixel intensity value for
686 each slice was determined by adding 1/3 of the mean background pixel intensity to 2/3 of the maximum
687 background pixel intensity for the 10th and 10th to last slices (this was necessary to deal with the challenge
688 determining background pixel intensities) and then interpolating to calculate the minimum for all other slices.
689 The process of intentionally introducing image clipping in the z-stacks was justified by the manner in which
690 aggregates were identified; aggregates were first measured by total volume instead of by particle count, thus
691 being able to discern individual particles inside of each aggregate was unnecessary.

692 The 3D Objects Counter plugin in FIJI was used to measure various parameters, including the volume of
693 each aggregate. The plugin initially thresholds all slices in a stack using a single thresholding value, which
694 requires objects in every slice of a stack to be roughly the same intensity (hence, the thresholding procedure
695 described previously). The plugin takes the resulting now-binary z-stack and determines the number of voxels
696 occupied by each aggregate and converts voxel volume to metric volume using metadata in each .czi file. A
697 second macro was used to determine the average size of a singlet (single particle) for each z-stack. In this
698 macro, we identified 10 singlets by visually inspecting the sample to determine the average size of a singlet.
699 This was then used to normalize differences in measured aggregate volume between samples by converting to a
700 particle count per aggregate. This normalization step was necessary due to variations in the average
701 measured singlet size between samples. It also helped account for any differences in the thresholding procedure
702 from sample to sample.

703 The accuracy of this method for determining aggregate sizes was validated by comparing empirical

704 cumulative distribution functions (ECDFs) of the cross-sectional area of the aggregates in a given z-stack

705 determined by the ImageJ macro to ECDFs generated by visually inspecting the samples to measure the cross-

706 sectional areas of aggregates. This comparison was done for at least three separate z-stacks. ImageJ macros will

707 be made available upon request.

708

709 **Quantification of aggregate sizes.** The sizes of aggregates in solution were quantified in two ways. One was

710 by comparing the volume-weighted empirical cumulative distribution functions (ECDFs) of the aggregate sizes

711 of each sample to each other. The volume-weighted ECDF, \hat{F} , as follows (100):

$$712 \hat{F}(N) = \frac{1}{\sum N_i} \sum_{i=1}^n I(N_i \leq N) \quad (Eq. 6)$$

$$713 I(N_i \leq N) = \begin{cases} N_i & \text{if } N_i \leq N \\ 0 & \text{if } N_i > N \end{cases} \quad (Eq. 7)$$

714 Where N_i is the number of particles per aggregate and n is the total number of aggregates in solutions (where

715 single particles also count as aggregates).

716 The other way in which the extent of aggregation was quantified was by creating bootstrap replicates of

717 the ECDFs of the aggregate distributions of each sample and computing the volume-weighted average

718 aggregate size ($\langle N \rangle$; given in number of particles per aggregate) for each bootstrap replicate. The volume-

719 weighted average aggregate size is given by the following equation in units of “number of particles per

720 aggregate”:

$$721 \langle N \rangle = \frac{\sum_{i=1}^n N_i^2}{\sum_{i=1}^n N_i} \quad (Eq. 8)$$

722 This allowed us to calculate 95% empirical bootstrap CI on the volume-weighted average aggregate size. We

723 generated 10,000 bootstrap replicates from the original ECDF of each sample to generate these. The advantage

724 of this approach is that we do not need to assume anything about the underlying probability distribution; it is

725 non-parametric (100). The original ECDFs, from which the replicates were generated, each contained at least
726 300 aggregates, in many cases containing ~1000 or more aggregates. The codes used for the analyses (volume-
727 weighted ECDFs and 95% empirical bootstrap CIs) were written in Python 3.6.4 and are available on Dryad.

728 **Filtration with MW cut-off filters.** Small intestinal luminal fluid was collected and 0.45 μm -filtered as
729 described in “Collection of Luminal Fluid”. It was then divided up and placed on MWCO filters (Pierce Protein
730 Concentrators, Thermo Fisher Scientific) of with the following MWCOs: 100 kDa, 30 kDa, and 3 kDa. The
731 samples were then centrifuged at 15 kG at 4 °C for 2 h, checking every 15 min for the first hour if additional
732 volume had flowed through. After the eluent from each was collected, they were diluted back to their original
733 volumes with HBSS.

734 **pH measurements of luminal fluid.** Pooled samples of luminal fluid were collected from each section
735 (stomach, upper small intestine, lower small intestine, cecum, and colon) and 30 μm -filtered as described in
736 “Collection of Luminal fluid” (with use of the same protease inhibitor cocktail). Samples were collected from
737 two separate groups of 2-month old B6 male mice on a standard chow diet. Each group had three mice. Because
738 there was only ~25 μL of luminal fluid from the colons of each group we did not 30 μm -filter the colonic fluid
739 as there was concern all the fluid would be retained by the filter. The colonic contents were simply spun down
740 at 17 kG at 4 °C for 1 h to separate the liquid and solid portions of the contents. Then the supernatant (luminal
741 fluid) was collected. Measurements were done using an Orion 2-Star Benchtop pH Meter. The instrument was
742 first calibrated with three reference standard buffers: pH = 10 (VWR BDH5078-500 mL), pH = 7 (VWR
743 BDH5046-500 mL), and pH = 4 (VWR BDH5024-500 mL). Measurements were conducted at T = 25 °C. There
744 was at least 100 μL of sample from each section except for the stomach sample from one group of mice and
745 from colon samples from both groups. Measurements were conducted with both a standard pH electrode (Orion
746 9110DJWP Double Junction pH Electrode) and a micro pH electrode (Orion 9810BN Micro pH Electrode,
747 Thermo Fisher Scientific). This was done because the standard electrode is only accurate for samples with
748 volumes of 200 μL whereas the micro electrode is accurate for samples as small as 0.5 μL in volume. The

749 results are consistent with other results for rodents (101,102) with the exception of a study conducted with mice
750 of a different gender, strain, and fed an 18% protein diet (103).

751 For the pH measurement of HBSS, the pH was measured with both the standard and micro pH
752 electrodes, and three technical replicates were done with each probe. The value for the pH reported in the main
753 text is the average of all six measurements.

754 **Estimation of coverage and length of grafted PEG layer.** Based on our NMR measurements (see section
755 NMR of PEG-coated particles with “backfill”) the grafting density (Γ) of the PEG polymer on our PEG 5 kDa-
756 coated particles with PEG 1 kDa backfill should be approximately: $\Gamma = 0.48 \text{ chains/nm}^2$ (to estimate this we
757 assume that all of the PEG on the surface is PEG 5 kDa). One can estimate the grafting density at which the
758 grafted chains transition from separate coils to overlapping coils or the brush regime by calculating the grafting
759 density at which coils would just begin to overlap (104). This can be estimated as:

760
$$\Gamma^* \sim \frac{1}{\pi R_g^2} \quad (\text{Eq. 9})$$

761 Where R_g is the radius of gyration of the grafted polymer. Using literature measurements of the hydrodynamic
762 radius of PEG 5 kDa and the Kirkwood-Riseman relation, this can be estimated as $R_g \sim 3.45 \text{ nm}$. We therefore
763 estimate that $\frac{\Gamma}{\Gamma^*} \sim 5$, meaning that the grafting density is such that the polymer coils on the surface should be
764 overlapping and within the brush regime. To estimate the length and average volume fraction of the layer, we
765 therefore made the assumption that the grafted polymer layer behaved as a brush and used the Alexander-
766 deGennes brush approximation (63,105). This theory was originally developed for high-MW polymer coils, but
767 has also been found, surprisingly, to quantitatively capture forces for grafted layers only a few segments long
768 (105). We estimated the length (L) of the brush as (63):(62,95). This theory was originally developed for high-
769 MW polymer coils, but has also been found, surprisingly, to quantitatively capture forces for grafted layers only
770 a few segments long . We estimated the length (L) of the brush as :

$$L \sim N \Gamma^{\frac{1-\nu}{2\nu}} b^{\frac{1}{\nu}} \quad (Eq. 10)$$

772 Where N is the number of monomers per grafted chain, ν is the Flory exponent, and b is the Kuhn length of the
773 grafted polymer. We used $b = 0.76$ nm based on literature measurements (106) and took $\nu \approx 0.588$, because
774 aqueous salt solutions are good solvents for PEG (107). Lastly, we estimated the number of monomers per
775 chain by assuming the number of monomers is approximately equal to the number of Kuhn segments and the
776 relationship between the radius of gyration, the Kuhn length and the number of Kuhn segments (63):

777 $N \sim \left(\frac{R_g}{h}\right)^{\frac{1}{0.588}} \sim 13$. We therefore estimate that $L \sim 6.4 \text{ nm}$.

778 The Alexander-de Gennes approximation assumes a step profile for the volume fraction of the grafted
779 polymer (ϕ). We can estimate this using the following equation (63):

$$\phi \approx \begin{cases} (\Gamma b^2)^{\frac{3\nu-1}{2\nu}} & \text{for } z < L \\ 0 & \text{for } z > L \end{cases} \quad (Eq. 11)$$

781 Where z is the distance from the bare particle surface. Using the same approximations as above we find $\phi \approx$
 782 0.43.

783 **Western blot of luminal contents.** 30- μ m filtered small intestinal luminal fluid was reduced in sample buffer
784 with 100 mM dithiotreitol DTT at 95 °C for 5 min (the luminal fluid was diluted 10-fold in the sample buffer).
785 Gel electrophoresis was then run on 4–15% SDS/PAGE gels. The transfer was performed using wet
786 electroblotting to a nitrocellulose membrane. For detection of MUC2, the primary antibody was diluted 1:1,000
787 (MUC2 polyclonal antibody, rabbit host, Biomatik, Wilmington, DE, USA) as a 1:10,000 in Odyssey blocking
788 buffer (Li-Cor, Lincoln, NE, USA) with 0.2% Tween 20. The secondary antibody (Li-Cor IRDye 800CW Goat
789 Anti-Rabbit IgG, Li-Cor) was diluted 1:10,000. For the detection of IgG and IgM, 1:10,000 dilutions of Li-Cor
790 IRDye 800 CW Goat Anti-Mouse IgG and Li-Cor IRDye 800CW Goat Anti-Mouse IgM were used
791 respectively. For detection of IgA, a 1:10,000 dilution of SouthernBiotech Goat Anti-Mouse IgA-unlabeled was

792 used as the primary and a 1:10,000 dilution of Li-Cor IRDye 800CW Donkey Anti-Goat IgG was used as the
793 secondary. All membranes were visualized using a Li-Cor Odyssey scanner.

794 **Gel permeation chromatography.** We used a Malvern OMNISEC RESOLVE connected to two Malvern
795 A6000M columns (Malvern, Westborough, MA, USA) equilibrated with 1x PBS with 0.02% sodium azide,
796 flow rate: 0.75 mL/min. For detection of the polymers, the OMNISEC REVEAL was used with a refractometer,
797 UV detector, dual-angle light scattering detector, and a capillary viscometer. Luminal contents were 0.45- μ m
798 filtered as described above, then diluted 10-fold in the running buffer (1x PBS with 0.02% sodium azide) before
799 injection into the system. Prior to injection, samples were kept on the autosampler at 4 °C.

800 **Synthesis of PEG-coated particles.** We amended a previously published protocol (3) to synthesize PEG-coated
801 particles; briefly, 2 mL of 1- μ m fluorescent carboxylic-acid-terminated polystyrene beads (FluoroSpheres,
802 Invitrogen, Thermo Fisher Scientific) at 2% v/v with 2 mM NaN₃ were rinsed at 3900g for 40 min using a
803 centrifugal filter (Millipore Amicon Ultra-4 mL 100 K MWCO). Particles were removed from the filter using 4
804 mL of a solution of 15 mg/mL 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC, Sigma-Aldrich) and 15
805 mg/mL N-hydrosuccinimide (NHS, Aldrich), an excess concentration of NH₂-PEG-OMe (5 kDa, Creative
806 PEGworks, Chapel Hill, NC, USA) in 1 mL increments using 100 mM borate buffer, pH 8.4. By an excess
807 concentration of NH₂-PEG-OMe we mean ten-fold the concentration of PEG required to enter the polymer
808 brush regime (see “Estimation of coverage and length of grafted PEG layer” section for details of calculation).
809 This solution was tumbled on a rotary tumbler for 4 h at room temperature in a 15 mL falcon tube. Particles
810 were washed three times to remove starting materials with 4 mL Milli-Q water in a centrifugal filter and re-
811 suspended in 2 mL in Milli-Q water.

812 **Synthesis of PEG-coated particles with “backfill.”** 12 mL of 1- μ m fluorescent carboxylic-acid-terminated
813 polystyrene beads at 2% v/v with 2 mM NaN₃ (FluoroSpheres 1- μ m; 505/515, Invitrogen) were centrifuged to a
814 pellet at 12,000g for 10 min. Beads were pelleted and rinsed three times with Milli-Q water. To the final pellet

815 of particles, 12 mL of a solution of 6 mM EDC (10 mg/mL; Sigma-Aldrich) and 5 mM Sulfo-NHS (1.08
816 mg/mL, ThermoFisher), with 50x excess of the number of chains needed to enter the brush regime (see
817 “Estimation of coverage and length of grafted PEG layer” for details of calculation) of NH₂-PEG-OMe (mPEG-
818 Amine 2kDa; mPEG-Amine 5kDa; Creative PEGWorks) in 10x PBS, pH 7.4 (100 mM), was added. This
819 solution was tumbled on a rotary tumbler for 4 h at room temperature. Tubes were vented every 30 min to
820 release gas produced by the reaction. Particles were then pelleted and rinsed three times with Milli-Q water. The
821 12 mL sample was divided into four 3 mL aliquots for the remaining conditions. For condition without backfill,
822 beads were quenched with 50 mM Tris pH 7.4 overnight at room temperature with slow tilt rotation prepared
823 from 10x Tris-buffered saline with Tween 20, pH 7.5 (Sigma-Aldrich). For particles with backfill, the 3-mL
824 aliquot was re-suspended in with 50x excess of the number of chains needed to enter the brush regime (see
825 “Estimation of coverage and length of grafted PEG layer” for details of calculation) of NH₂-PEG-OMe (mPEG-
826 Amine 350; mPEG-Amine 1 kDa; mPEG-Amine 5kDa, Creative PEGWorks) in 100 mM PBS, pH 7.4
827 containing 6 mM EDC and 5 mM Sulfo-NHS for 4 h before quenching overnight with 50 mM TRIS buffered
828 Saline with Tween 20, pH 7.5. All beads were washed three times with Milli-Q water before suspending in 3
829 mL sterile filtered PBS, pH7.4 with 1% BSA for storage.

830 **NMR of PEG-coated particles with “backfill.”** We took 400 μ l of 2% w/v samples and lyophilized (~8 mg),
831 then dissolved in deuterated chloroform (Cambridge Isotope Laboratories, Tewksbury, MA, USA) with 0.01%
832 tetramethylsilane (Aldrich) immediately before measurement. Data were collected on a Varian Innova 600 MHz
833 spectrometer without spinning, using a 45° pulse width and 1 sec relaxation delay between scans. The
834 concentration of PEG in each sample was determined by integrating the singlet at 3.64 ppm and normalizing the
835 integral to TMS internal standard at 0.0 ppm.

836 **Zeta potential measurements on PEG-coated particles with “backfill.”** Each particle solution was 0.1
837 mg/mL of particles in 1 mM KCl. Measurements were done on a Brookhaven NanoBrook ZetaPALS Potential

838 Analyzer (Brookhaven Instruments Corporation, Holtsville, NY, USA). Three trials were done where each trial
839 was 10 runs each and each run was 10 cycles. Values reported are the average zeta potential for the 30 runs.

840 **Estimate of Weissenberg number for small intestine.** The Weissenberg number (Wi), which weighs the
841 relative contributions of elastic and viscous forces, can be written as (108):

842 $Wi = \dot{\gamma}\lambda$ (Eq. 12)

843 Where $\dot{\gamma}$ is the shear rate (in s^{-1}) and λ is the fluid relaxation time (in s). The shear rate in the human small
844 intestine during peristaltic contractions has been estimated as $\dot{\gamma} \sim 29 s^{-1}$ (109). For dilute aqueous polymeric
845 solutions of polyacrylamide with MWs ranging from 10^4 to 10^7 Da, it has been found that $\lambda = 0.009$ to 0.45 s,
846 with the relaxation time increasing with MW as $\lambda \propto MW^{2/3}$ (110). Using these values, we can estimate the
847 Weissenberg number to be $Wi \sim 0.3$ to 10 .

848

849 **Author contributions:** APS, SSD, and RFI designed the research; APS, SSD, JCR, SRB performed the
850 research; APS, SSD, TN, JCR, SRB contributed new reagents/analytic tools; APS analyzed the data. All authors
851 wrote the paper.

852 **Acknowledgements:** This work was supported in part by DARPA Biological Robustness in Complex Settings
853 (BRICS) contract HR0011-15-C-0093, Army Research Office (ARO) Multidisciplinary University Research
854 Initiative (MURI) contract #W911NF-17-1-0402, the Jacobs Institute for Molecular Engineering for Medicine,
855 and an NSF Graduate Research Fellowship DGE-144469 (to APS). We acknowledge Michael Porter, Joong
856 Hwan Bahng, Jacob Barlow, Zhen-Gang Wang, Julia Kornfield, David Tirrell, Justin Bois, and Greg Donaldson
857 for useful discussions; the Beckman Institute Biological Imaging Facility, the Broad Animal Facility, and the
858 Church Animal Facility for experimental resources; Jennifer Costanza, Taren Thron, the Caltech Office of
859 Laboratory Animal Resources, and the veterinary technicians at the California Institute of Technology for
860 technical support; Joanne Lau for assistance with Western blot measurements; Emily Wyatt for assistance with

861 zeta potential measurements; the Mazmanian laboratory for providing Rag1KO mice; the Eugene Chang Lab
862 (University of Chicago) for providing the initial breeding pairs for the MUC2KO colony and Leonard H.
863 Augenlicht at the Department of Oncology of Albert Einstein Cancer Center for providing the original
864 MUC2KO line to them; and Natasha Shelby for contributions to writing and editing this manuscript.

865 **Competing interests:** The technology described in this publication is the subject of a patent application filed by
866 Caltech.

867 **Data availability statement:** All source data and data codes are available from the Dryad Digital Repository:
868 <https://doi.org/10.5061/dryad.kd1qt0p>.

869 **Figure Supplements:** Figure 4 – figure supplement 1, Figure 4 – figure supplement 2

870

References

1. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. *Nat Rev Microbiol* [Internet]. 2015;14(1):20–32. Available from: <http://www.nature.com/doifinder/10.1038/nrmicro3552>
2. McGuckin MA, Lindén SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. *Nat Rev Microbiol* [Internet]. 2011;9(4):265–78. Available from: <http://dx.doi.org/10.1038/nrmicro2538>
3. Maisel K, Ensign L, Reddy M, Cone R, Hanes J. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. *J Control Release*. 2015;40(6):1301–15.
4. Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. *Nat Rev Drug Discov* [Internet]. 2003;2(4):289–95. Available from: <http://www.nature.com/doifinder/10.1038/nrd1067>
5. Faisant N, Gallant DJ, Bouchet B, Champ M. Banana starch breakdown in the human small intestine studied by electron microscopy. *Eur J Clin Nutr* [Internet]. 1995;49(2):98–104. Available from: <http://europepmc.org/abstract/MED/7743990>
6. Millet YA, Alvarez D, Ringgaard S, von Andrian UH, Davis BM, Waldor MK. Insights into *Vibrio cholerae* intestinal colonization from monitoring fluorescently labeled bacteria. *PLoS Pathog*. 2014;10(10).
7. Lukic J, Strahinic I, Milenkovic M, Nikolic M, Tolinacki M, Kojic M, et al. Aggregation factor as an inhibitor of bacterial binding to gut mucosa. *Microb Ecol*. 2014;68(3):633–44.
8. Del Re B, Busetto A, Vignola G, Sgorbati B, Palenzona D. Autoaggregation and adhesion ability in a *Bifidobacterium suis* strain. *Lett Appl Microbiol*. 1998;27:307–10.
9. Kos B, Šušković J, Vuković S, Šimpraga M, Frece J, Matošić S. Adhesion and aggregation ability of probiotic strain *Lactobacillus acidophilus* M92. *J Appl Microbiol* [Internet]. 2003;94(6):981–7. Available from: <http://doi.wiley.com/10.1046/j.1365-2672.2003.01915.x>
10. Tzipori S, Montanaro J, Robins-Browne RM, Vial P, Gibson R, Levine MM. Studies with enteroaggregative *Escherichia coli* in the gnotobiotic piglet gastroenteritis model. *Infect Immun*. 1992;60(12):5302–6.
11. Howe SE, Lickteig DJ, Plunkett KN, Ryerse JS, Konjufca V. The uptake of soluble and particulate antigens by epithelial cells in the mouse small intestine. *PLoS One* [Internet]. 2014;9(1):e86656. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/24475164>
12. Puri S, Friedman J, Saraswat D, Kumar R, Li R, Ruszaj D, et al. *Candida albicans* shed Msb2 and host mucins affect the Candidacidal activity of salivary Hst 5. *Pathogens* [Internet]. 2015;4(4):752–63. Available from: <http://www.mdpi.com/2076-0817/4/4/752/>
13. Laux DC, McSweeney EF, Williams TJ, Wadolowski E a, Cohen PS. Identification and characterization of mouse small intestine mucosal receptors for *Escherichia coli* K-12(K88ab). *Infect Immun* [Internet]. 1986;52(1):18–25. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC391306/>
14. Sajjan SU, Forstner JF. Characteristics of binding of *Escherichia coli* serotype O157:H7 strain CL-49 to purified intestinal mucin. *Infect Immun*. 1990;58(4):860–7.
15. Wanke C a., Cronan S, Goss C, Chadee K, Guerrant RL. Characterization of binding of *Escherichia coli* strains which are enteropathogens to small-bowel mucin. *Infect Immun*. 1990;58(3):794–800.
16. Sun J, Le GW, Shi YH, Su GW. Factors involved in binding of *Lactobacillus plantarum* Lp6 to rat small intestinal mucus. *Lett Appl Microbiol*. 2007;44(1):79–85.

911 17. Doe WF. The intestinal immune system. *Gut*. 1989;30:1679–85.

912 18. Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut
913 homeostasis. *Cell Host Microbe*. 2007;2(5):328–39.

914 19. Levinson KJ, Jesus M De, Mantis NJ. Rapid effects of a protective O-polysaccharide-specific monoclonal IgA on
915 *Vibrio cholerae* agglutination, motility, and surface morphology. *Infect Immun*. 2015;83(4):1674–83.

916 20. Hendrickx APA, Top J, Bayjanov JR, Kemperman H, Rogers MRC, Paganelli FL, et al. Antibiotic-driven dysbiosis
917 mediates intraluminal agglutination and alternative segregation of *enterococcus faecium* from the intestinal
918 epithelium. *MBio*. 2015;6(6):1–11.

919 21. Endt K, Stecher B, Chaffron S, Slack E, Tchitchev N, Benecke A, et al. The microbiota mediates pathogen clearance
920 from the gut lumen after non-typhoidal *salmonella* diarrhea. *PLoS Pathog*. 2010;6(9).

921 22. Bunker JJ, Erickson SA, Flynn TM, Henry C, Koval JC, Meisel M, et al. Natural polyreactive IgA antibodies coat the
922 intestinal microbiota. *Science* (80-) [Internet]. 2017;358(6361):eaan6619. Available from:
923 <http://www.sciencemag.org/lookup/doi/10.1126/science.aan6619>

924 23. Moor K, Diard M, Sellin ME, Felmy B, Wotzka SY, Toska A, et al. High-avidity IgA protects the intestine by
925 en chaining growing bacteria. *Nature* [Internet]. 2017;544(7651):498–502. Available from:
926 <http://www.nature.com/doifinder/10.1038/nature22058>

927 24. Mantis NJ, Rol N, Corthésy B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut.
928 *Mucosal Immunol* [Internet]. 2011;4(6):603–11. Available from:
929 <http://www.nature.com/doifinder/10.1038/mi.2011.41>

930 25. Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB, Chou WC, et al. Gut microbiota utilize immunoglobulin A
931 for mucosal colonization. *Science* (80-) [Internet]. 2018;800(May):eaao926. Available from:
932 <http://www.sciencemag.org/lookup/doi/10.1126/science.aaq0926>

933 26. Bergström JH, Birchenough GMH, Katona G, Schroeder BO, Schütte A, Ermund A, et al. Gram-positive bacteria are
934 held at a distance in the colon mucus by the lectin-like protein ZG16. *Proc Natl Acad Sci* [Internet].
935 2016;113(48):13833–8. Available from: <http://www.pnas.org/lookup/doi/10.1073/pnas.1611400113>

936 27. Asakura S, Oosawa F. On interaction between two bodies immersed in a solution of macromolecules. *J Chem
937 Phys*. 1954;22(1954):1255–6.

938 28. Asakura S, Oosawa F. Interaction between particles suspended in solutions of macromolecules. *J Polym Sci*.
939 1958;33:183–92.

940 29. Vrij A. Polymers at interfaces and the interactions in colloidal dispersions. *Pure Appl Chem*. 1976;48:471–83.

941 30. Gast AP, Hall CK, Russel WB. Polymer-induced phase separations in nonaqueous colloidal suspensions. *J Colloid
942 Interface Sci* [Internet]. 1983 [cited 2018 Apr 19];96(1):251–67. Available from: https://ac.els-cdn.com/0021979783900279/1-s2.0-0021979783900279-main.pdf?_tid=92957995-976d-4b56-89e5-375e1f3503e6&acdnat=1524159252_a80a1a5abbd1c629ca137fce2b85a79d

945 31. Prasad V. Weakly interacting colloid polymer mixtures. Harvard University; 2002.

946 32. Lu PJ, Conrad JC, Wyss HM, Schofield AB, Weitz DA. Fluids of clusters in attractive colloids. *Phys Rev Lett*.
947 2006;96(2):28306.

948 33. Illett S, Orrock A, Poon W, Pusey P. Phase behavior of a model colloid-polymer mixtures. *Phys Rev E*.
949 1995;51(2):1344–53.

950 34. Valentine MT, Perlman ZE, Gardel ML, Shin JH, Matsudaira P, Mitchison TJ, et al. Colloid surface chemistry

951 critically affects multiple particle tracking measurements of biomaterials. *Biophys J.* 2004;86(6):4004–14.

952 35. Wang Y-Y, Lai SK, Suk JS, Pace A, Cone R, Hanes J. Addressing the PEG mucoadhesivity paradox to engineer
953 nanoparticles that “Slip” through the human mucus barrier. *Angew Chemie-International Ed.* 2008;47(50):9726–
954 9.

955 36. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barrier.
956 *Adv Drug Deliv Rev.* 2012;64(6):557–70.

957 37. Tirosh B, Rubinstein A. Migration of adhesive and nonadhesive particles in the rat intestine under altered mucus
958 secretion conditions. *J Pharm Sci.* 1998;87(4):453–6.

959 38. Maisel K, Chattopadhyay S, Moench T, Hendrix C, Cone R, Ensign LM, et al. Enema ion compositions for enhancing
960 colorectal drug delivery. *J Control Release* [Internet]. 2015;209:280–7. Available from:
961 <http://dx.doi.org/10.1016/j.jconrel.2015.04.040>

962 39. Hasler W. Motility of the small intestine and colon. In: Alpers DH, Kalloo AN, Kaplowitz N, Owyang C, Powell DW,
963 editors. *Textbook of Gastroenterology*, Fifth Edition. 5th ed. Blackwell Publishing; 2009. p. 231–263.

964 40. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. *Adv
965 Drug Deliv Rev* [Internet]. 2009;61(2):158–71. Available from: <http://dx.doi.org/10.1016/j.addr.2008.11.002>

966 41. Rubio-Tapia A, Barton SH, Rosenblatt JE, Murray JA. Prevalence of small intestine bacterial overgrowth diagnosed
967 by quantitative culture of intestinal aspirate in celiac disease. *J Clin Gastroenterol.* 2009;43(2):157–61.

968 42. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. *EMBO Rep.* 2006;7(7):688–93.

969 43. Simon GL, Gorbach SL. Intestinal flora in health and disease. *Gastroenterology* [Internet]. 1984;86(1):174–93.
970 Available from: <http://www.gastrojournal.org/article/0016508584906061/fulltext>

971 44. Padmanabhan P, Grosse J, Asad ABMA, Radda GK, Golay X. Gastrointestinal transit measurements in mice with
972 99mTc-DTPA-labeled activated charcoal using NanoSPECT-CT. *EJNMMI Res* [Internet]. 2013;3(1):60. Available
973 from:
974 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630730/>

975 45. Royall CP, Poon WCK, Weeks ER. In search of colloidal hard spheres. *Soft Matter.* 2013;9(1):17–27.

976 46. Pusey PN, Van Megen W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. *Nature.*
977 1986;320(6060):340–2.

978 47. Lekkerkerker HNW, Poon WCK, Pusey PN, Stroobants A, Warren PB. Phase behavior of colloid + polymer
979 mixtures. *Europhys Lett.* 1992;20(6):559.

980 48. Lu PJ, Zaccarelli E, Ciulla F, Schofield AB, Sciortino F, Weitz DA. Gelation of particles with short-range attraction.
981 *Nature.* 2008;453(7194):499–503.

982 49. Zaccarelli E, Lu PJ, Ciulla F, Weitz DA, Sciortino F. Gelation as arrested phase separation in short-ranged attractive
983 colloid-polymer mixtures. *J Phys Condens Matter.* 2008;20(49).

984 50. Vincent B, Edwards J, Emmett S, Jones A. Depletion flocculation in dispersions of sterically-stabilised particles
985 (“soft spheres”). *Colloids and Surfaces.* 1986;18(2–4):261–81.

986 51. Cowell C, Li-In-On R, Vincent B. Reversible flocculation of sterically-stabilised dispersions. *J Chem Soc Faraday
987 Trans 1* [Internet]. 1978;74(0):337. Available from: <http://xlink.rsc.org/?DOI=f19787400337>

988 52. Vincent B, Luckham PF, Waite FA. The effect of free Polymer on the stability of sterically stabilized dispersions. *J
989 Colloid Interface Sci.* 1980;73(2):508.

990 53. Clarke J, Vincent B. Nonaqueous silica dispersions stabilized by terminally anchored polystyrene: The effect of
991 added polymer. *J Colloid Interface Sci.* 1981;82(1):208–16.

992 54. Feigin RI, Napper DH. Depletion stabilization and depletion flocculation. *J Colloid Interface Sci.* 1980;75(2):525–
993 41.

994 55. Vincent B, Clarke J, Barnett KG. The Flocculation of non-aqueous, sterically-stabilised latex dispersions in the
995 presence of free polymer. *Colloids and Surfaces.* 1986;17(1):51–65.

996 56. Gast AP, Leibler L. Interactions of Sterically Stabilized Particles Suspended in a Polymer Solution.
997 *Macromolecules.* 1986;19(3):686–91.

998 57. Jones A, Vincent B. Depletion flocculation in dispersions of sterically-stabilised particles 2. Modifications to theory
999 and further studies. *Colloids and Surfaces.* 1989;42(1):113–38.

000 58. Napper DH. Polymeric stabilization of colloidal dispersions. 1983. 398-399 p.

001 59. Lindahl A, Ungell A-L, Knutson L, Lennernas H. Characterization of Fluids from the Stomach and Proximal Jejunum
002 in Men and Women. *Pharm Res.* 1997;14(4):497–502.

003 60. Fuchs A, Dressman JB. Composition and physicochemical properties of fasted-state human duodenal and jejunal
004 fluid: A critical evaluation of the available data. *J Pharm Sci.* 2014;103(11):3398–411.

005 61. Yethiraj A, Van Blaaderen A. A colloidal model system with an interaction tunable from hard sphere to soft and
006 dipolar. *Nature.* 2003;421(6922):513–7.

007 62. Jones RAL. Colloidal dispersions. In: *Soft Condensed Matter.* 1st ed. New York: Oxford University Press; 2002. p.
008 52–62.

009 63. Rubinstein M, Colby RH. *Polymer Physics.* New York: OUP Oxford; 2003.

010 64. Cai L-H. Structure and Function of Airway Surface Layer of the Human Lungs and Mobility of Probe Particles in
011 Complex Fluids. Vol. PhD, Chemistry. [Chapel Hill]: University of North Carolina; 2012.

012 65. Burchard W. Structure formation by polysaccharides in concentrated solution. *Biomacromolecules.*
013 2001;2(2):342–53.

014 66. Joanny JF, Leibler L, De Gennes PG. Effects of polymer solutions on colloid stability. *J Polym Sci Polym Phys Ed.*
015 1979;17:1073–84.

016 67. Verma R, Crocker JC, Lubensky TC, Yodh AG. Entropic colloidal interactions in concentrated DNA Solutions. *Phys
017 Rev Lett.* 1998;81(18):4004–7.

018 68. Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC. The hydrodynamic radii of macromolecules and their effect
019 on red blood cell aggregation. *Biophys J.* 2004;87(6):4259–70.

020 69. Tanford C. *Physical Chemistry of Macromolecules.* New York: Wiley; 1961.

021 70. Lee H, Venable RM, Mackerell AD, Pastor RW. Molecular dynamics studies of polyethylene oxide and
022 polyethylene glycol: hydrodynamic radius and shape anisotropy. *Biophys J [Internet].* 2008;95(4):1590–9.
023 Available from: <http://dx.doi.org/10.1529/biophysj.108.133025>

024 71. Flory PJ. *Principles of Polymer Chemistry.* Ithaca, New York: Cornell University Press; 1953.

025 72. Brandup J, Immergut E. *Polymer Handbook.* 2nd ed. John Wiley; 1975.

026 73. Weitz D, Huang J, Lin M, Sung J. Dynamics of diffusion-limited kinetic aggregation. *Phys Rev Lett.*
027 1984;53(17):1657–60.

028 74. Ball RC, Weitz DA, Witten TA, Leyvraz F. Universal kinetics in reaction-limited aggregation. *Phys Rev Lett.*
029 1987;58(3):274–7.

030 75. Smoluchowski M. Drei Vortrage über Diffusion, Brownsche Bewegung und Koagulation von Kolloideinchen. *Phys*
031 *Zeit.* 1916;17:557–85.

032 76. Ermund A, Schütte A, Johansson ME V, Gustafsson JK, Hansson GC, Schuette A. Gastrointestinal mucus layers
033 have different properties depending on location - 1. Studies of mucus in mouse stomach, small intestine, Peyer's
034 patches and colon. *Am J Physiol Gastrointest Liver Physiol* [Internet]. 2013;305(5):ajpgi.00046.2013-. Available
035 from: <http://ajpgi.physiology.org/content/early/2013/07/05/ajpgi.00046.2013.reprint>

036 77. Johansson ME V, Ambort D, Pelaseyed T, Schütte A, Gustafsson JK, Ermund A, et al. Composition and functional
037 role of the mucus layers in the intestine. *Cell Mol Life Sci.* 2011;68(22):3635–41.

038 78. Ambort D, Johansson ME V, Gustafsson JK, Nilsson HE, Ermund A, Johansson BR, et al. Calcium and pH-
039 dependent packing and release of the gel-forming MUC2 mucin. *Proc Natl Acad Sci.* 2012;109(15):5645–50.

040 79. Murphy K, Travers P, Walport M. *Janeway's Immunobiology*. 8th ed. Current Biology, Ltd.; 2004.

041 80. Kishimoto Y, Kanahori S, Sakano K, Ebihara S. The maximum single dose of resistant maltodextrin that does not
042 cause diarrhea in humans. *J Nutr Sci Vitaminol (Tokyo)* [Internet]. 2013;59(4):352–7. Available from:
043 <http://www.ncbi.nlm.nih.gov/pubmed/24064737>

044 81. Fibersol-2 FAQ's [Internet]. Available from: <http://www.fibersol.com/products/fibersol-2/faqs/>

045 82. Dongowski G, Lorenz A, Anger H. Degradation of pectins with different degrees of esterification by *Bacteroides*
046 *thetaiotaomicron* isolated from human gut flora. *Appl Environ Microbiol.* 2000;66(4):1321–7.

047 83. Thakur BR, Singh RK, Handa AK. Chemistry and Uses of Pectin - A Review. *Crit Rev Food Sci Nutr.* 1997;37(1):47–
048 73.

049 84. Holloway W, Tasman-Jones C, Maher K. Pectin digestion in humans. *Am J Clin Nutr.* 1983;37(2):253–5.

050 85. Coenen M, Mosseler A, Vervuert I. Fermentative gases in breath indicate that Inulin and Starch start to be
051 degraded by microbial fermentation in the stomach and small intestine of the horse in contrast to pectin and
052 cellulose. *J Nutr.* 2006;136(May):2108–10.

053 86. Saha D, Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: A critical review. *J Food Sci*
054 *Technol.* 2010;47(6):587–97.

055 87. Grey H, Abel C, Zimmerman B. Structure of IgA proteins. *Ann New York Acad Sci.* 1971;190(1):37–48.

056 88. Kerr M. The structure and function of human IgA. *Biochem J* [Internet]. 1990;271(2):285–96. Available from:
057 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1149552/>

058 89. Secor PR, Michaels LA, Ratjen A, Jennings LK, Singh PK. Entropically driven aggregation of bacteria by host
059 polymers promotes antibiotic tolerance in *Pseudomonas aeruginosa*. *Proc Natl Acad Sci* [Internet].
060 2018;201806005. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC615115/>

061 90. Highgate D. Particle Migration in Cone-plate Viscometry of Suspensions. *Nature.* 1966;211:1390–1.

062 91. Michele J, Patzold R, Donis R. Alignment and aggregation effects in suspensions of spheres in non-Newtonian
063 media. *Rheol Acta.* 1977;16(3):317–21.

064 92. Kim J, Helgeson ME. Shear-induced clustering of Brownian colloids in associative polymer networks at moderate
065 Péclet number. *Phys Rev Fluids* [Internet]. 2016;1(4):43302. Available from:
066 <https://link.aps.org/doi/10.1103/PhysRevFluids.1.043302>

067 93. Highgate DJ, Whorlow RW. Rheological properties of suspensions of spheres in non-Newtonian media. *Rheol Acta*
068 [Internet]. 1970;9(4):569–76. Available from: <https://doi.org/10.1007/BF01985469>

069 94. Snijkers F, Pasquino R, Vermant J. Hydrodynamic interactions between two equally sized spheres in viscoelastic
070 fluids in shear flow. *Langmuir*. 2013;29(19):5701–13.

071 95. USDA. The Food Supply and Dietary Fiber : Its Availability and Effect on Health. *Nutrition Insight* 36. 2007.

072 96. USDA. 2015 – 2020 Dietary Guidelines for Americans [Internet]. 2015 – 2020 Dietary Guidelines for Americans
073 (8th edition). 2015 [cited 2018 Jun 11]. Available from: <http://health.gov/dietaryguidelines/2015/guidelines/>

074 97. Datta SS, Preska Steinberg A, Ismagilov RF. Polymers in the gut compress the colonic mucus hydrogel. *Proc Natl
075 Acad Sci U S A* [Internet]. 2016 Jun 28 [cited 2016 Jul 22];113(26):7041–6. Available from:
076 <http://www.ncbi.nlm.nih.gov/pubmed/27303035>

077 98. Leary S, Underwood W, Anthony R, Cartner S. AVMA Guidelines for the Euthanasia of Animals: 2013 Edition
078 [Internet]. American Veterinary Medical Association. 2013 [cited 2018 Jun 11]. p. 98. Available from:
079 <https://www.avma.org/kb/policies/documents/euthanasia.pdf>

080 99. Otsu N. A threshold selection method from gray-level histograms. *IEEE Trans Syst Man Cybern*. 1979;SMC-
081 9(1):62–6.

082 100. Bois J. BE / Bi 103 : Data Analysis in the Biological Sciences [Internet]. 2015. Available from:
083 [1.amazonaws.com/2017/lecture_notes/I06_frequentist_methods.pdf](http://beb103.caltech.edu.s3-website-us-east-
084 1.amazonaws.com/2017/lecture_notes/I06_frequentist_methods.pdf)

085 101. Ward FW, Coates ME. Gastrointestinal pH measurement in rats: Influence of the microbial flora, diet and fasting.
086 *Lab Anim*. 1987;21(3):216–22.

087 102. Smith HW. Observations on the flora of the alimentary tract of animals and factors affecting its composition. *J
088 Pathol Bacteriol*. 1965;89:95–122.

089 103. McConnell EL, Basit AW, Murdan S. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid
090 tissue, and implications for in-vivo experiments. *J Pharm Pharmacol* [Internet]. 2008;60(1):63–70. Available from:
091 <http://doi.wiley.com/10.1211/jpp.60.1.0008>

092 104. de Gennes PG. Conformations of polymers attached to an interface. *Macromolecules* [Internet].
093 1980;13(19):1069–75. Available from: <http://pubs.acs.org/doi/abs/10.1021/ma60077a009>

094 105. Israelachvili J. *Intermolecular and Surface Forces*. Intermolecular and Surface Forces. 2011.

095 106. Waters DJ, Engberg K, Parke-Houben R, Hartmann L, Ta CN, Toney MF, et al. Morphology of photopolymerized
096 end-linked poly (ethylene glycol) hydrogels by small-angle X-ray scattering. *Macromolecules*. 2010;43(16):6861–
097 70.

098 107. Kawaguchi S, Imai G, Suzuki J, Miyahara A, Kitano T, Ito K. Aqueous solution properties of oligo- and
099 poly(ethylene oxide) by static light scattering and intrinsic viscosity. *Polymer (Guildf)*. 1997;38(12):2885–91.

100 108. Arratia PE, Voth GA, Gollub JP. Stretching and mixing of non-Newtonian fluids in time-periodic flows. *Phys Fluids*.
101 2005;17(5):1–10.

102 109. Takahashi T. Flow Behavior of Digesta and the Absorption of Nutrients in the Gastrointestine. *J Nutr Sci
103 Vitaminol*. 2011;57:265–73.

104 110. Arratia PE, Cramer LA, Gollub JP, Durian DJ. The effects of polymer molecular weight on filament thinning and
105 drop breakup in microchannels. *New J Phys*. 2009;11(November).

107

108

109